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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

The ability to communicate by speech is one of the most important attributes

of human beings. Although there are several other means of communication,

the speech is hard to substitute in everyday life. Inabilities to appropriate

communicate using speech also causing single out of the society. Problem of

isolation caused by speech impairment is significant for children affected by

developmental dysphasia (DD).

This work is only a part of on-going research project that brings together

results from the fields of neurology, psychology, logopedics and speech process-

ing. The aim of the research is to further advance in diagnosis of the children

and help to efficiently treatment the disease.

Our team at Laboratory of Artificial Neural Network Application (LANNA)

use knowledge acquired in the field of computer signal processing and utilize

artificial neural networks (ANN) for speech analysis [?] In cooperation with

the department of Paediatric Neurology in 2nd Faculty of Medicine of Charles

University in Prague we are developing methods for utterance analysis that

are suitable for patients with DD.

This thesis deals with speech parameterization suitable for analysis of utter-

ances pronounced by children suffering developmental dysphasia. The aim is to

develop signal representation that could be utilized in classification of speech

that contains various impairments. The parameterization and subsequent clas-

sification described in the thesis are intended to be a part of a software tool

evaluating progress of treatment and assist to a physician in clinical praxis.

Existing parameterization were examined and evaluated for this specific

task. Since they proved not to perform sufficiently when utilized in classifica-

tion of speech with impairments, new parameterization has been developed.
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CHAPTER 1. INTRODUCTION

The parameterization was developed to avoid problems with labelling of

utterances of children in age of 4 to 10 years. Labelling of the utterances

is difficult because of mispronunciation, various artefact caused by the move-

ments of fidget children.

Developed parameterization introduced in this thesis is based on match-

ing pursuit algorithm (MP), various improvements are introduced for better

performance on the speech of dysphatic children. Also simple classification

method based on artificial neural networks - Kohonen Self-Organizing Maps

(KSOM), is presented in following text. Both were developed with intent to

reduce additional demands on speech pre-processing. This should help to diag-

nose advance of treatment right in consulting room and without any additional

effort.

Descriptions of classification experiments are integral part of the thesis

(poly-syllables words and doubled words are concerned). The experiments

involve construction of evaluation methods that takes into account specific

features of KSOMs. To further test performance of parameterization when

utilized for classification based on KSOM. The KSOM is an effective plat-

form for visualization of high-dimensional data, to fully understand contents

of a data set it is a vital to fully understand contents exploit properties of data

set [?].

2
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Chapter 2

State of the Art

Developmental dysphasia is frequent and serious neurodevelopmental impair-

ment of speech analysis and production. DD affecting five percent of paediatric

population, the risk increases in premature new-borns. The impairment is of-

ten described as an inability to acquire and learn normal communication skills

in proportion to age. This happens despite to the fact that the child has ad-

equate peripheral hearing, is proportionately intelligent and deficit of broad

sensomotoric or congenital malformation of the speech or vocal system are not

noticed [?, ?, ?]. Often the disease negatively affects aspects of child’s person-

ality and its development [?]. In our work we deal with method that should

evaluate the progress of the disease that complicates and finally could prevent

children from learning to speak.

Utterances pronounced by dysphatic children are different from utterances

pronounced by healthy children at the same age [?]. This difference could be

observed by a trained therapist. The therapist is also capable of determining

whether the disease recedes or getting worse. Our aim is to develop software

that could assist and support physician in process of treating the disease. Since

developmental dysphasia has impact on the children speech ability, the clas-

sification of utterances helps to determine whether treatment and medication

are appropriate. The software based on analysis of these aspects should be

able to determine a degree of the disorder and also help to validate medica-

tion. Relation between developmental dysphasia and the degree of perception

and impairment of the speech was observed [?, ?, ?]. This observation allows

a method based on classification of utterances to be developed for diagnosing

of the disease. Roughly 5 percent of the paediatric population suffers from

developmental dysphasia. Such an occurrence puts this disease into the group

of the most frequently occurring neurodevelopmental disorders that affect chil-

dren [?]. Since the linguistic message is coded into movements of the vocal

tract [?], it is possible to classify the disease by the tractography [?], however

this approach requires advanced equipment and still do not fit the condition
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CHAPTER 2. STATE OF THE ART

of being simple and cheap enough to use in clinical practice. Research team at

workplace for special pedagogy and speech therapy pursue pathologic speech

analysis in Czech republic [?].

There are several methods helping in diagnosing and determining the pro-

gress of treatment of developmental dysphasia already available like MR trac-

tography or EEG analysis [?, ?]. These methods are accurate, however the

feasibility of repeating examination is limited due to discomfort to the small

patients, time requirements and limited financial resources. The aim is to

develop relatively simple analysing method based on speech that do not intro-

duce any further demands (in terms of labour and expenses) and thus might

be easily used in clinical practice. The method is planned to contribute in

obtaining the overall picture of patient’s status and help in determination of

appropriate therapy.

The work is a part of interdisciplinary research that brings together results

from the fields of neurology, psychology, logopedics and speech processing. In

that part, we focused on method based on speech signal processing. The main

advantage is that the analysis has only a little demand on the patient com-

pare to the complex examination (e.g. overnight EEG recording [?]). During

recording the is the child located in known environment, usually in examina-

tion room of psychologist or logopedist whom he/she regularly attends, and in

the form of a game repeats presented words. This approach is more convenient,

the analysis is not further complicated with influence of fear from unknown

environment.

Recording of utterances could be easily done with a little demand for com-

plicated and expensive equipment. Simple recording device, in our case wire-

less lavaliere microphone connected to a computer, is sufficient. A patient is

often fidget, walk around the room or turns. Lower quality of the microphone

is compensated by utilization of artificial neural networks in processing algo-

rithm. ANNs are not so sensitively to the noise and artefact contained in the

signal.

Since utterances are recoded in a physician office, the recordings contains

a lot of artefact (closing the doors) and noise. For that reason, the analysis

should be based on a method robust enough to neglect all these distorting

effects. For medical applications are suitable KSOM as a tool for visualising,

exploring and mining large datasets [?] they perform well in prediction of

seizures in epilepsy [?] or even analysing children speech with speech disorders

[?, ?].

Similar reported classification methods are based on distance-based ap-

proaches and utilizes Hidden Markov Models [?]. Several distance measures

and features have been published [?, ?, ?], however no single distance or feature

has been reported to perform optimally for this application [?].
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Our laboratory is also investigating other approaches how to tackle with the

analysis [?] and [?]. The aim is to bring results obtained by several methods

from different fields together and compute more precise results than these that

could be given by only a single analysis method.

Utterances recorded are defined with cooperation with clinical logopedics

and psychologists. The list includes types from single syllabic to complex

sentences. The task of classification on the whole set is huge, therefore only

isolated vowels were studied first [?] and in [?].

The initial development of classification method was based on common

parameterization used in the field of speech signal processing (e.g. linear

predictive coding (LPC), perceptual linear predictive analysis (PLP) or mel-

frequency cepstral coefficients (MFCC) - more in [?, ?]). All parameterization

mentioned above takes into account specifics of human auditory system. Un-

fortunately they were developed for automatic speech recognition (ASR) and

optimized accordingly. Probably this is the reason why the classification based

on these parameters is not right (as will be shown later, in chapter 11)

The results of analysis that utilizes KSOM-based classification and param-

eterizations mentioned were summarized in paper [?]. The results lead to

decision to continue and extend the method, and to develop more robust pa-

rameterization that performs well with classification based on KSOMs. Also,

this method should prevent manual labelling of utterances ( it is required for

classification based on KSOMs that dealing with the signals parameterized by

the means of MFCC, PLP or LPC).

A new parameterization developed is based on matching pursuit algorithm

[?, ?]. The algorithm involves finding projections of signal onto an over-

complete dictionary of functions. These functions are specified in advance

and could adapt the algorithm to various types of signal.

The algorithm allows to process multi-channel data and therefore is often

utilized on the field of EEG signal processing [?, ?, ?, ?, ?, ?]. But application

on music signals [?] and speech [?] are also reported.

Existing publication that focuses on application of matching pursuit to

speech signal processing [?] deals with suitable dictionary of functions. It was

reported that dictionary based on Gabor atoms [?] (described later in chapter

10.1) performs well but only when representing signal energy. Unfortunately

the representation based on signal energy is not sufficient when for reliable

analysis.

The method describes signal in more generic way but also allow incorpo-

rating relevant psychological phenomena as is common in contemporary pa-

rameterizations based on auditory models [?, ?, ?]. However the algorithm has

been updated for speech with impairment and further classification by means
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of KSOM. Updates are described in the thesis. The method will perform dis-

ordered speech assessment automatically based on features gathered from the

utterances, the method is not based just only on quantitative measures [?].

All the updates were implemented and experimentally proven. As a starting

point for implementation, recommendations in [?] were utilized. However the

adaptation required major changes. For this reason, a supporting framework

in Python programming language [?] has been prepared. Resulting parame-

terization is suitable for analysis and comparison of utterances (two and more

syllabic words) without any need for preceding segmentation of the signal.

6
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Chapter 3

Goals of the Thesis

The doctoral thesis has the following interrelated goals:

1. To verify applicability of standard speech parameterizations (LPC, PLP

and MFCC) to speech of children suffering developmental dysphasia.

Eventual adjustment of parameterization to best fit the utterances is

allowed. Resultant parameterization should be reliable enough without

any preceding manual operation on recordings (labelling). The parame-

terization should be applicable to isolated phonemes, syllables and words

(monosyllabic and more-syllabic). The parameterization should work to-

gether with the classification to be developed (see below). In case that

previous task fails, find and prepare another parameterization that com-

ply with the conditions given above.

2. To propose a method for classification of utterances of children suffer-

ing developmental dysphasia. The method should work with utterances

recorded in a consulting room, thus must be robust enough to disregard

artefacts and noise present in the signal. The method should be based

on artificial neural network.

3. Compare results obtained from the method with the findings of physi-

cians and discuss eventual discrepancies. The data obtained might serve

to adjust the parameters of underlying ANN. The method should be

able to distinguish between healthy and ill children. Also, the method is

assumed to have potential for further extension to perform fine classifi-

cation and distinguish stage of the disease.
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Chapter 4

Parameterization of Speech

The selection of proper parameterization of speech signal is import task when

designing any system dealing with processing of speech. The usual objectives

are the high level of compression of information contained in speech and elim-

inate all information not pertinent to analysis.

The aim of this chapter is to describe the basic parameterization of speech

signal being currently used. The motivation was to obtain speech parameteri-

zation that performs well in combination with Kohonen Self-Organizing Maps.

Initially, the experiments started with common methods like LPC, MFCC.

Later we realized that there is a need for method that do not neglect various

deviations caused by developmental dysphasia.

In order to perform various analyses on the signal, the amount of data

has to be reduced while maintaining important characteristics. It is always a

matter of definition which characteristics will be suppressed and which will be

emphasised. For the classification of children speech we struggle for parame-

terization that do not significantly neglect features included by developmental

dysphasia. At the same time, the parameterization should impose some degree

of generalization ensuring that features characteristics for DD will be extracted

rather then features for particular speakers.

Several methods described in the chapter requires the signal is divided

to intervals on which is stacionarity guaranteed. Each such a frame is then

processed independently and for each the frame a set of parameters is obtained.

4.1 Hamming Window

Obviously the signal is split into frames using a window function. The window

function has nonzero value on some interval and zero value outside of that

interval. Frequently chosen window function is Hamming window (4.1). Ham-
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CHAPTER 4. PARAMETERIZATION OF SPEECH

ming window is optimized to minimize the maximum (nearest) side lobe (see

figure 4.2).

w[n] = 0.54 + 0.46 cos

(
2πn

N

)
(4.1)

The interval is chosen to maintain stacionarity, for speech it is approxi-

mately 10 to 30 ms [?]. The windows are overlaid by 5 to 10 ms. It is advan-

tageous to set the exact window length as equal to the power of 2. This allows

to fully utilizing computation power when dealing with subsequent FFT.

Figure 4.1: Hamming window in time plot

Figure 4.2: Side lobe plot for Hamming window

10
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Chapter 5

Mel-Frequency Cepstral

Coefficients (MFCC)

Mel-frequency cepstral coefficients are, as well as perceptual linear predictive

coefficients [?] (see chapter 7), designed with regards to the human auditory

specific features [?]. MFCC tends to respect nonlinear perception of frequencies

and thus improve robustness for tasks dealing with the speech signal process-

ing.

MFCC define the triangular-shaped filter bank arranged nonlinearly on

frequency axis. Each the filter has different width. The width increases with

the central frequency of filter.

The nonlinearity is introduced by mel-frequency axis (5.1), where f is fre-

quency on linear scale in Hz and fm is resulting frequency on non-linear mel-

frequency scale in mel.

fm = 2595 log10

(
1 +

f

700

)
(5.1)

The band of filters is defined linearly on mel-frequency scale (their width is

constant on that scale). According to the (5.1), resulting filters are non-linearly

arranged on common frequency axis.

Before filtering, the signal is pre-emphasized and split into the segments.

The segments are then weighted by a window function. Common segment

length is in range between 10 to 30 ms. Segments are usually weighted by the

Hamming window (4.1).

In next step, amplitude spectrum |S(f)| is calculated for each the segment

[?]. Alternatively it is possible to utilize power spectrum |S(f)|2 - see (5.2)

(resp. (5.3)) and (5.6). Both steps are combined in (5.2) where w[n] stands

for windowing function (see (4.1)).

11
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S(ω, n) =
∞∑

k=−∞

s[k]w[n− k]e−jωk (5.2)

(5.2) might be rewritten as following: [?]

S(ω, n) = e−jωn
(
s(n) ∗

(
h(n)ejωn

))
(5.3)

Comprising pre-emphasis, the initial operations done on signal writes as

(5.4) - (5.4).

x[n] = p s[n] (5.4)

y[n] = x[n]w[n] (5.5)

|S(f)| =

∣∣∣∣∣
N∑
n=1

y[n]e
−j2πωn

N

∣∣∣∣∣ (5.6)

where s[n] in (5.4) is input signal, p is amplification coefficient (might be

in form of p[n]) and x[n] is signal after pre-amplification. In (5.5) w[n] stands

for window function (e.g. (4.1)). For each segment y[n] amplitude spectrum

|S(f)| is computed by (5.6). N stands for length of segments (in samples) -

all samples have the same length.

A key part of the parameterization is mel filtering. The filtering is per-

formed by a triangular-shaped filter bank that has regular spread of filters

over mel-frequency scale (5.1).

Number of filters M should be chosen a priory and according to the char-

acteristics of filtered signal. In table 5.1 are numbers recommended in [?]

including bandwidth in Hz and mel. The recommendation considers regular

spread over axis without gaps. Where it is advantageous for the task, filters

in intervals where no useful signal energy is present might be left.

fs [kHz] signal bandwidth

B [kHz]

signal bandwidth

Bm [mel]

number of

filters M

8 4 2146 15

11 5.5 2458 17

16 8 2840 20

22 11 3174 22

44 22 3921 27

Table 5.1: Recommendation for number of filters for MFCC parameterization

(according to [?])

12
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Central frequencies of filters are uniformly distributed over mel scale, their

central frequencies bm,i are determined according to (5.7) [?].

bm,i = bm,i + ∆m (5.7)

where bm,i = 0 mel, i = 1, 2, . . . ,M and

∆m =
Bm

M + 1
(5.8)

where M is the number of filters (e.g. according to table 5.1).

To compute responses of the filters, filters are recomputed to the scale in

Hz. All central frequencies have to be recomputed using inversion to the (5.1).

f = 700
(
exp

(
0.887 · 10−3 fm

)
− 1
)

(5.9)

Response of the filters then writes as (5.10).

Ym =

bi+1∑
f=bi−1

|S(f)| u(f, i) i = 1, 2, . . . ,M (5.10)

where frequencies f correspond to the frequencies used for computing Fast

Fourier transform (FFT) (5.6) and u(f, i) describing triangular filter (5.11)

(according to [?]).

u(f, i) =


f−bi−1

bi−bi−1
for bi−1 ≤ f < bi

f−bi+1

bi−bi+1
for bi ≤ f < bi+1

0 else

(5.11)

In figure 5.1 is the outline of distribution on the mel scale. The same filters

but distributed over common frequency scale are in figure 5.2.

In the next step, the dynamics of filter outputs Ym is reduced using loga-

rithm. This dynamic reduction is inspired by similar feature of human hearing.

The results are then transformed using Inverse Discrete Fourier Transforma-

tion (IDFT). Since the fact that power spectrum |S(f)|2 is symmetric and

real, IDFT is substituted by Discrete Cosine Transformation (DCT). Both

operations (including the substitution) are combined in (5.12).

cm(i) =
M∑
i=1

log ym(i) cos

(
πj

M
(i− 0.5)

)
j = 0, 1, . . . ,M (5.12)

13
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Figure 5.1: Distribution of triangular MFCC filters over mel frequency scale

(reprinted from [?])

Figure 5.2: Distribution of triangular MFCC filters over common frequency

scale (reprinted from [?])

Coefficient cm(0) is proportional to logarithm of energy and is often sub-

stituted by calculation directly of samples of the signal [?]:

cm(0) = log
N−1∑
k=0

(s(k)w(N − 1− k))2 (5.13)

MFCC values are not very robust to additive noise. It is common to nor-

malise their values to decrease the influence of noise [?]. Proposed modifica-

tions [?] to the basic MFCC algorithm to improve robustness including raising

the log-mel-amplitudes to a suitable power (around 2 or 3) before taking the

DCT. This counter measurement reduces the influence of low-energy compo-

nents.

MFCC coefficients are widely using in the field of speaker recognition (e.g.

[?]). Despite their tendency to generalize the speech (exclude features that

are specific to the speaker) their utilization in prosodic feature extraction was

reported [?].

14
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Chapter 6

Linear Predictive Coding (LPC)

Another signal parameterization is linear predictive coding [?]. The method

determines a model of forming of speech based on short-time prediction. The

parameterization is based on predicting of the nth sample s(n) based on linear

combination the known value of preceding n − 1 samples and excitation u(k)

(6.1).

s(n) =
M∑
m=1

ams(n−m) +Gu(k) (6.1)

where am are predictive coefficients and M stand for order of the predictor

and G is amplification. The excitation differs for voiced and unvoiced speech.

For voiced speech it has a form of pulses with frequency that equals to f0. For

unvoiced speech, the excitation is assumed to be a noise with flat frequency

characteristic, ideally white noise [?].

Equation (6.1) represents an all-pole model. If the coefficients am are cor-

rectly determined, the value of the n-th sample is given by equation (6.1). The

short signal frame could be then described by limited number of all-pole filter

coefficients am.

Transfer function of the model writes as (6.2):

H(z) = G

(
1 +

M∑
m=1

amz
−m

)−1

(6.2)

If the signal is stationary on the time frame given, then the Least square

method might be utilized [?, ?]. Common and widely used method for deter-

mining the coefficients is the autocorrelation method. The method is based

on minimization of error e between real signal value s(n) and predicted value
ˆs(n).
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Function E that characterizes that error writes as (6.3).

E =
∑
k

(s(k)− ŝ(k))2 =
∑
k

(
s(k) +

M∑
m=1

ams(k −m)

)2

(6.3)

The error function E has minimum at

∂E

∂ai
, 1 ≤ i ≤M (6.4)

partial derivations ∂E/∂am = 0 leads to linear system of M equations and

M unknowns [?, ?, ?] that writes as (6.5) [?].

∂

∂aµ

 N∑
n=1

(
s(n)−

M∑
m=1

ams(n−m)

)2
 = 0 (6.5)

Where in (6.5) µ = 1, . . . , M . Equation (6.5) can be modified to the form

of (6.6)

∑
m

amR(|m− µ|) = R(µ) (6.6)

where R in (6.5) stands for autocorrelation function, R(µ) and R(|m− µ|)
are defined as below

R(µ) =
∑
n

s(n)s(n− µ) (6.7)

R(|m− µ|) =
∑
n

s(n−m)s(n−m+m− µ) (6.8)

Equation (6.6) can be rewritten in the form of matrix as


R(0) R(1) . . . R(M − 1)

R(1) R(0) . . . R(M − 2)
...

...
. . .

...

R(M − 1) R(M − 2) . . . R(0)




a1

a2
...

aM

 =


R(1)

R(2)
...

R(M)

 (6.9)

Matrix of autocorrelation coefficients in 6.15 is a Toeplitz matrix (symmet-

rical and positive semi-definite). This format of the matrix allows to utilize

Lewinson-Durbin algorithm [?, ?] to obtain coefficients am.
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The Lewinson-Durbin algorithm solves the system of equations (6.15) re-

cursively for i = 1, 2, . . . , Q [?].

E(0) = R(0) (6.10)

ki = −
R(i) +

∑i−1
j=1 a

(i−1)
j R(i− j)

E(i−1)
(6.11)

a
(i)
i = ki (6.12)

a
(i)
j = a

(i−1)
j + kia

(i−1)
i−j where 1 ≤ j ≤ i− 1 (6.13)

E(i) = (1− k2
i )E

(i−1) (6.14)

Amplification G can be obtained from (6.15).

G2 = R(0) +

Q∑
i=1

aiR(i) = E (6.15)

Coefficients ai allow to obtain spectral envelope of native (non-sampled)

signal H(jω).

H(jω) =
G

1 +
∑Q

i=1 aie
−jωi

(6.16)

Another possibility how to obtain the coefficients is the covariation method

[?]. The covariation method is suitable for tasks where only a small set of sam-

ples is available. Derivation of the method is similar as for the autocorrelation

method.

The important difference of the method is in characterization of over-

determined set of equation. Whereas results given by autocorrelation method

are remains stable with increasing order, coefficients given by covariation

method may lead to unstable system.

Critical is then to correctly determine order of the filter (predictor). Opti-

mal is M = 12, for order higher then M = 16 is no improvement [?]. Mutual

relation between the order of all-pole filter and error of prediction was reported

in [?] (see figure 6.1).

[?] recommend the order Q of the model to be determined with the respect

to sampling frequency fs in kHz as

Q = fs + 4 (6.17)

[?] recommends order in the range of Q = 7 to 20. The order should be

chosen according to task solved with respect to the sampling frequency of the

signal, bandwidth and accuracy of approximation.
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Figure 6.1: Variation of the minimum value of the RMS prediction error with

p, the number of predictor coefficients (reprinted from [?])
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Chapter 7

Perceptual Linear Predictive

Analysis (PLP)

When the order of the LP model is well chosen, the parameters approximate

the areas of high-energy concentration with sufficient precision. The important

part of the spectrum is then well described whereas less relevant details are

neglect. Satisfying these conditions, LP is an efficient tool for spectral analysis.

However, in practical situation is often not easy to choose the degree in such a

manner. To obtain more robust parameterization for speech recognition, the

specific perception qualities of human auditory system should be taken into

account, and the parameterization procedure correspondingly updated. One of

such an extended method, perceptual linear predictive analysis (PLP, seldom

referred as PLP-LP), was introduced by Hermansky [?].

Perceptual linear predictive analysis is based on linear predictive analysis.

The idea of PLP is to approximate the auditory spectrum of speech by an

all-pole model. Before approximation by the model, several modifications to

the spectrum regards to theories of the psychophysics of hearing are made.

Concepts utilized are the equal loudness curve, the intensity-loudness power

law and the critical-band spectral resolution. Utilization of these concepts

better adapts the LP model to properties of human auditory perceptions and

improves performance in tasks of speech recognition. The implementation is

described in details in [?], following text is intended only as an overview of

PLP and the implementation of the concepts mentioned.

The analysis doesn’t work on the whole signal at once, but on the segments.

The speech signal is segmented and weighted by Hamming window (4.1), and

then the analysis is performed for each the segment independently. The typical

length of the segment is 20 ms, usually windows are overlapping by 5 to 10

ms.

19



CHAPTER 7. PERCEPTUAL LINEAR PREDICTIVE ANALYSIS (PLP)

fs [kHz] number of filters step [bark]

8 15 + 2 973

11 17 + 2 971

16 19 + 2 985

22 21 + 2 983

44 25 + 2 991

Table 7.1: Recommendation for number of filters approximating critical-band

masking curves (according to [?])

For each segment is then estimated power spectrum. Utilizing Discrete

Fourier Transformation (DFT), the real and imaginary components are then

summed up and short-term power spectrum (7.1) is obtained for each segment.

P (ω) = |S(ω)|2 = Re[S(ω)]2 + Im[S(ω)]2 (7.1)

To approximate nonlinear perception of acoustic signal by humans, the

nonlinear transformation of frequency axis is performed. The power spectrum

P (ω) is then warped into the Bark frequency axis Ω(ω) by (7.2).

Ω(ω) = 6 ln

(
ω

1200π
+

√( ω

1200π

)2

+ 1

)
(7.2)

Warped power spectrum P (Ω) is masked by a set of filters (band passes)

simulating critical band masking curve Ψ given by (7.3). Application of these

filters simulates the critical-bands of spectral resolution.

Ψ(Ω) =


0 for Ω < −1.3

102.5(Ω+0.5) for − 1.3 ≤ Ω ≤ −0.5

1 for − 0.5 < Ω < 0.5

10−1.0(Ω−0.5) for 0.5 ≤ Ω ≤ 2.5

0 for Ω > 2.5

(7.3)

Piece-wise shape of Ψ is approximation of the asymmetric masking curve.

Convolution of signal spectrum P (ω) with approximation of masking curve

Ψ(Ω) yields critical-band power spectrum Φ(Ω) (7.4).

Φ(Ωi) =
2.5∑

Ω=−1.3

P (Ω− Ωi)Ψ(Ω) (7.4)
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Convolution of P (ω) with relative broad critical-band masking curves re-

sults in reduced spectral resolution of Ω(ω). The step between the filters is

chosen to cover the whole analysis band. Filters are distributed linearly in the

spectrum, with the step of approximately 1 bark. This span is consequence of

reduction of spectral resolution critical-band power spectrum P (Ω).

In [?] are presented recommendation for appropriate number of filters cov-

ering the spectrum and the step. The key to determine these values is sampling

frequency fs. The recommendation is reproduced in 7.1. These recommenda-

tions came from practical experience on the speech recognition tasks.

Figure 7.1: Illustration of the bank of filters for fs = 4kHz (a), fs = 11 kHz

(b), fs = 22 kHz (c) and fs = 44 kHz (reprinted from [?])

The resulting spectrum Ω is pre-emphasized by equal-loudness curve, resp.

its approximation E(ω). E(ω) takes into account difference in sensitivity of

human hearing that depends on the frequency of the sound. Approximation

adopted for PLP writes as (7.5). Figures 7.2, 7.3 and 7.4 shows the example

of bank of filters for fs = 16 kHz.

E(ω) =
ω4 (ω2 + 56.8× 106)

(ω2 + 6.3× 106)2 (ω2 + 0.38× 109) (ω6 + 9.58× 1026)
(7.5)
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Following operation on the signal is made to approximate relation between

the intensity of sound and perceived loudness (Intensity-loudness power law).

This relation is nonlinear, and it is approximated by amplitude compression

(7.6).

Φ(Ω) = Ξ(Ω)0.33 (7.6)

Finally, Φ(Ω) is approximated by the spectrum of an all-pole model. Auto-

correlation function of Φ(Ω) is yielded by application of inverse DFT (IDFT).

Values of autocorrelation function are then used to solve Yule-Walker equa-

tions. IDFT is preferred to FFT since only a few values are needed.

A side impact of the compression of amplitude that approximates Intensity-

loudness power law (7.6) is the reduction of spectral amplitude variation in the

critical-band spectrum. The reduction enables the autoregressive modelling

Φ(Ω) being done with relatively low model order. Papers [?] shows that degree

Q of 5 is sufficient.

Different experience is reported in [?] for speech recognition tasks. It is

recommended to use much higher degree Q of predictor.

The computational requirements are comparable to the requirements of LP.

The most demanding operation is spectral calculation (FFT). Other expensive

operations are the critical-band spectral integration and the cubic-root com-

pression. The cost of autoregressive modelling for original approach described

in [?] is negligible due to the low number of spectral samples.
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Figure 7.2: Illustration of the bank of filters for fs= 16 kHz

(reprinted from [?])

Figure 7.3: Bank of the filters taking into account the equal-loudness curve

(in Barks) (reprinted from [?])

Figure 7.4: Bank of the filters taking into account the equal-loudness curve

(in Hz) (reprinted from [?])
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Chapter 8

Relative Spectral

Representation (RASTA)

PLP parameterization was later expanded to RASTA parameterization (also

RASTA-PLP) [?]. The RASTA method was developed to improve overall

performance of speech recognition systems based where parameterization of

speech signal is done by PLP. The aim was to develop robust parameteriza-

tion insensitive to the effects caused by communication environment. RASTA

abbreviation comes from RelAtive SpecTrAl representation.

It further exploits the fact that human perception tends to react more to

the relative value of the change that to absolute value of an input stimulus.

The linguistic message is coded into movements of the vocal tract [?]. The rate

of change of non-linguistic component are assumed to lie outside the typical

rate of change of the vocal tract shape. It is possible then to separate signal

into part containing speech and the other one that contains only the non-

information component of the signal. Since the human perception is invariant

to slow changes, these components are then suppressed. RASTA suppresses

the spectral components that change more slowly or quickly that the typical

range of change of speech.

The parameterization focuses of suppression of additive and convolutional

noise. RASTA is based upon PLP parameterization. PLP is supplemented

with mean that suppress the non-information components before Φ(Ω) (7.6) is

approximated by the spectrum of an all-pole model.

Additional steps introduced by RASTA are similar to blind deconvolution.

A critical-band short-term spectrum Θ(Ω) from PLP (7.4) is replaced by a

spectrum estimate in which each channel is band-pass filtered by a filter with

a sharp spectral zero at the zero frequency. This spectral estimate is less

sensitive to slow variations in the short-term spectrum.
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The procedure of RASTA-PLP is described in the steps below [?]. On each

frame of signal to be analysed following operations are performed:

1. Compute the critical-band power spectrum Θ(Ωi) (as in PLP, see (7.4)).

2. Transform spectral amplitude through a compression static nonlinear

transformation. This step is introduced in RASTA. The nonlinear trans-

formation mentioned is supposed to be a logarithmic one.

3. Filter the time trajectory of each transformed spectral component.

4. Transform the filtered signal through expanding static nonlinear trans-

formation (exponential).

5. Simulate the power law of hearing (see (7.6)).

6. Approximate resulting spectrum by an all-pole model (6.1).

The procedure of the computing is in figure 8.1.

Figure 8.1: Block diagram of RASTA speech processing technique (reprinted

from [?])

To suppress constant factors in each spectral component prior to estimation

of the all-pole model, the signal is filtered by filter with transfer function

specified H(z) given by (8.1) (resp. by differential equation (8.2)).

H(z) = 0.1z4 2 + z−1 − z−3 − 2z−4

1− 0.98z−1
(8.1)
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Figure 8.2: Frequency response of RASTA band filter (reprinted from [?])

Causal variant of the filter (8.1) writes as differential equation (8.2) (ac-

cording to [?]).

y[k] =0.98 y[k − 1] + 0.2 x[k] + 0.1 x[k − 1]

− 0.1 x[k − 3]− 0.2 x[k − 4] (8.2)

The high-pass portion of the filter is expected to alleviate the effect of

convolutional noise in the channel. The integration constant is roughly equal

to the 500 ms. This means that the analysis result depends on its history that

exceeds the range of a single frame.

Further experiments [?] showed that the integration constant of 160 ms is

sufficient. Than the transfer function of the filter from (8.1), resp. (8.2) writes

as (8.3), resp. as (8.4).

H ′(z) = 0.1z4 2 + z−1 − z−3 − 2z−4

1− 0.94z−1
(8.3)

The differential equation for filter given by H ′(z) writes as:

y′[k] =0.94 y[k − 1] + 0.2 x[k] + 0.1 x[k − 1]

− 0.1 x[k − 3]− 0.2 x[k − 4] (8.4)
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Utilization of RASTA reduces requirements to the subsequent stochastic

analysis. The size of a set required to train/analysis with given precision is in

general lower compared to the size of the set when only PLP parameterization

is utilized. RASTA parameterization was reported to works well in tasks with

whole word models or phoneme-based recognizers that use triphones or broad

temporal input context [?].

The processing involved increases the dependence of the data on its previous

context, therefore the performance of simple context-independent subword-

unit recognizers can be degraded. According to [?], RASTA is not suitable for

the tasks where the speech signal without additional disturbances (clear) is to

be classified.

8.1 J-RASTA

RASTA processing using logarithmical function to perform compression by

nonlinear static transformation. Unfortunately this technique cannot divest

signal of additive noise. To deal with additive noise, the alternative called

J-RASTA was suggested in [?].

Instead of logarithmic compression function, J-RASTA utilizes transforma-

tion as (8.5).

y = ln(1 + Jx) (8.5)

where J is a signal-dependent positive constant [?]. This modification

helps to suppress additive noise as well as transfer channel distortion. Since

transformation (8.5) is almost linear for J � 1, the signal with substantial

additive noise is transformed linearly and it is then possible to remove the noise

in further spectral processing. The parts with small contribution of additive

noise will be transformed logarithmically (J � 1) and then it is possible to

remove impact of channel distortion during spectral processing.

Proper setting of J as indirectly proportional to the energy of additional

noise [?].

Inversion transformation to (8.5) writes as:

x =
ey − 1

J
(8.6)

When performing spectral subtraction, the exact inverse (8.6) of transfor-

mation (8.5) is not guaranteed to be positive. To avoid such a situation, usage

if approximate inverse transform (8.7) was suggested in [?].
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x =
ey

J
(8.7)

The RASTA and J-RASTA was intended as an extension to the original

PLP method. To better perform when processing signal with noise and distor-

tions, it leaves the idea of frame-by-frame processing and incorporates concepts

that depends on overall signal characteristics. To fully utilize advantages of

this parameterization, the signal processing chain should consist of additional

block. For J-Rasta, the value J (8.5) should be obtained by this block. RASTA

might be updated as well, by alternating trajectory filter H(z) (8.1)) as was

published in [?] for H(z) in (8.3).

The approach represented by RASTA or J-RASTA might be applied on

another parameterizations, e.g. MFCC.
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Chapter 9

Signal Approximation

To construct a different parameterization we have used a slightly different

view to the speech signal. The idea is to utilize approximative algorithm that

is modified and takes into account various speech-specific features. This is idea

that stands behind mentioned parameterizations. MFCC could be described as

a band of filters designed according to the features of human hearings. PLP is

improves tradition LPC with the equal loudness curve, the intensity-loudness

power law and the critical-band spectral resolution.

The speech is understood only as a signal. In signal processing orthogonal

(ad orthonormal) bases are common because they lead to efficient approxima-

tion of certain types of signal with just a few vectors [?].

Better approximations are obtained by choosing the M basis vectors with

the respect to the signal. A signal can be presented with M parameter in an

orthonormal basis by keeping M inner products with vectors chosen a priori.

In Hilbert space H any f ∈ H can be decomposed regarding to orthonormal

base B = {gm}m∈N [?].

f =
+∞∑
m=0

〈f, gm〉gm (9.1)

To get just an approximation of the function f we use only first M inner

products

fM =
M−1∑
m=0

〈f, gm〉gm (9.2)

The approximation error is

εM = ‖f − fM‖2 =
+∞∑
m=M

|〈f, gm〉|2 (9.3)

The fact that

‖f‖2 =
+∞∑
m=0

|〈f, gm〉|2 < +∞ (9.4)
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implies that error decays to zero

lim
m→+∞

εM = 0 (9.5)

However, the decay rate of εM as M increases depends on the decay of |〈f, gm〉|
as m increases [?].

The Fourier basis can approximate uniformly regular signals with few low-

frequency sinusoidal waves.

f(t) =
+∞∑

m=−∞

〈f(u), ei2πmu〉ei2πmt (9.6)

where {ei2πmt}m∈Z is an orthonormal basis and

〈f(u), ei2πmu〉 =

∫ 1

0

f(u)e−i2πmudu (9.7)

the approximation error is then (for differentiable functions in the sense of

Sobolev) [?]:

εM = ‖f − fM‖2 =

∫ 1

0

|f(t)− fM(t)|2dt =
∑

|m|>M/2

|〈f(u), ei2πmu〉|2 (9.8)

To localize Fourier series approximations over intervals, we multiply f by

smooth window of compact support (see (4.1) or (10.2)). Regarding this situa-

tion case, we can construct orthonormal base by replacing complex exponential

by cosine functions:{
gp,k(t) = gp(t)

√
2

lp
cos

[
π

(
k +

1

2

)
t− ap
lp

]}
(9.9)

which is equivalent to segmenting f(t) into several windowed components

fp(t) = f(t)gp(t). Then the approximation

fp,M =
M−1∑
k=0

〈f, gp,k〉gp,k (9.10)

yields an error that depends on local regularity of f over each window support

[?].
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9.1 Linear Approximation with Multiresolu-

tion Analysis

Linear approximations of f are equivalent to finite element approximations

over uniform grids. The approximation of f over the first M wavelets and

scaling functions writes as

fM =
J∑

j=l+1

2−j−1∑
n=0

〈f, ψj,n〉ψj,n +
2−j−1∑
n=0

〈f, φJ,n〉φJ,n (9.11)

this can be rewritten as

fM =
2−l−1∑
n=0

〈f, φl,n〉φl,n (9.12)

The approximation error is the energy of wavelet coefficients at scales finer

than 2l:

εM = ‖f − fM‖2 =
l∑

j=−∞

2−j−1∑
n=0

|〈f, ψj,n〉|2 (9.13)

The relative approximation error ‖f − fM‖/‖f‖ is usually the same as in case

of Fourier basis.

9.2 Speech Signal Parameterization Based on

Wavelets

From the point of approximation error, there is almost none difference between

multiresolution analysis and Fourier series. However, signals with isolated

singularities are well approximated in a wavelet basis. Wavelets take advantage

of time-frequency localization property [?, ?].

Transients may play important role for identifying and discriminating speech

sounds, identification of transients is described in [?] (extraction plosives, frica-

tives and segment speech into 4 classes) and [?].

Often are wavelets uses in systems for speech recognition [?] where outper-

forms MFCC [?, ?, ?, ?]. Mel filter bank is a mature technology. Sub-band

in the mel-frequency filter bank are similar to those in wavelet decomposition,

they increase logarithmically in size as the frequency increases. They are noise

robust [?] and might improve MFCC based front-end system performance by

more than 44 percent [?].
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They often provides starting point for various parameterization, e.g. mel

frequency discrete wavelet coefficients MFDWC [?]. Bark wavelet transform

[?] performs better as MFCC [?], further improvement might be reached by

zero-crossing and peak detector [?]. Application of wavelets described in [?] im-

proves speech recognition improvement by 15 percent by utilizing compounding

wavelets.

Various Daubechies’ wavelets for speech recognition were studied [?], un-

fortunately classic decomposition schemes (dyadic DWT, packet wavelet WP)

do not provide sufficient number of frequency bands for effective speech anal-

ysis [?]. Best wavelet for speech signal were reported Meyer [?, ?], good re-

sults might be reached also with Daubechies, Meyer, Biorthogonal, Coiflets or

Symlets. Often, algorithms based on orthonormal set of the wavelet packet

decomposition of the signal (local cosine packet) for several reasons. Physical

model of cochlea suggests that it acts as a continuous wavelet transform in that

different portions of the membrane respond to different frequency excitations

logarithmically [?].

Systems based on wavelets are robust [?] regarding to the noise. successful

for denoising [?, ?]. They might be successfully combined with ANN, e.g.

in [?] was studied Gamma Tone Filter Bank and Wavelet Packet as front-end

system for Back Propagation Neural Networks. In [?] was studied speech signal

enhancement using ANN (adaline) and wavelet transform.

Also systems for feature extraction and phoneme recognition utilizing best-

basis method were studied. The organize wavelets bases into a binary tree [?] or

perform adaptation of wavelet packet base [?, ?]. In [?] was reported feature

extraction approach based on wavelet packet entropy that is robust against

noise.

9.3 Nonlinear Approximations

In Fourier and wavelet bases such a linear approximation is efficient only if the

signal is uniformly regular [?] which is not the case of speech signal. Following

section is an introduction to nonlinear approximations. The text is based on

theory introduced in [?].

Approximating f by the first M vectors of B according to (9.2) is not al-

ways precise, the vectors are not necessarily the best ones to approximate f .

Non-linear approximations calculate with vectors that are chosen adaptively.

A further degree of freedom is introduced when the basis is chosen adaptively,

according to the signal properties. Best basis outlines important signal struc-

ture and characterize their time-frequency properties.
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A signal f ∈ H approximated with M vectors selected to best approximate

f (adaptively, a priory) writes as

fM =
∑
m∈AM

〈f, gm〉gm (9.14)

where vectors gm belongs to adaptive basis B = {gm}m∈N . Approximation fM
in (9.14) is projection of f over M vectors from B. The difference to linear

approximation (9.2) is that gm are not taken one by one by index, but belongs

to a priory determined subset AM . Set AM contains M vectors, so the number

of approximating function is the same as for linear approximation (9.2).

Approximation error regards to B is the sum of the remaining coefficients.

ε(M) = ‖f − fM‖2 =
∑
m/∈AM

|〈f, gm〉|2 (9.15)

To minimize error ε(M), AM must contain vectors that best correlate with

f and have largest inner product amplitude |〈f, gm〉|. Resulting error is smaller

than the error of linear approximation 9.3 [?].

It is possible to define non-linear approximation in a wavelet orthonormal

basis [?]. Equation (9.14) rewrites as

fM =
∑

(j,n)∈AM

〈f, ψj,n〉ψj,n (9.16)

and the approximation error is

εM = ‖f − fM‖2 =
∑

(j,n)/∈AM

|〈f, ψj,n〉|2 (9.17)

The error is always smaller than the error of linear approximation [?]. If

f is piecewise regular then it could be shown that εM has a fast decay as M

increases [?]. The more regular is f between its discontinuities, the larger the

improvement is.

9.4 Adaptive Basis Selection

Obvious method how to get AM is to sort {|〈f, gm〉|}m∈N and apply threshold

function [?]. We denote sorted gm by one more index k, where

|〈f, gm,k〉| ≥ |〈f, gm,k+1〉| (9.18)

When applying threshold in form of

θT (x) =

{
x if |x| ≥ T

0 if |x| < T
(9.19)
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we obtain for non-linear approximation (with threshold T ):

fM =
+∞∑
m=0

θT (〈f, gm〉) gm (9.20)

The minimum non-linear approximation error is then

εM = ‖f − fM‖2 =
+∞∑

k=m+1

|〈f, gm,k〉|2 (9.21)

Another possibility is to get usage of dynamical programming and mini-

mizes a concave cost function.

Consider dictionary as union of several orthonormal bases in signal space

of finite dimension N .

D =
⋃
λ∈Λ

Bλ (9.22)

where each orthonormal basis is a family of N vectors

Bλ = {gλm}1≤m≤N (9.23)

If we want to optimize non-linear approximation of f we have to choose

M vectors from D (resp. Bλ) that maximize |〈f, gλm〉|. The best non-linear

approximation then writes as

fλM =
∑
m∈AλM

〈f, gλm〉gλm (9.24)

The approximation error is

ελM =
∑
m/∈AλM

|〈f, gλm〉|2 = ‖f‖2 −
∑
m∈AλM

|〈f, gλm〉|2 (9.25)

The definition of approximation error can be directly used to compare

two bases. We can say that base Bα = {gαm}1≤m≤N is a better basis than

Bβ = {gβm}1≤m≤N when

εαM ≤ εβM (9.26)

this might be rewritten as∑
m∈AαM

|〈f, gαm〉|2 ≥
∑
m∈AβM

|〈f, gβm〉|2 (9.27)

In practice, two bases are compared using a single concave function [?].

The cost of approximating f in basis Bλ is defined by Schur concave sum.

C(f,Bλ) =
N∑
m=1

Φ

(
|〈f, gλm〉|2

‖f‖2

)
(9.28)
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It is possible to prove [?] that Bα is better basis than Bβ for approximating f

when

C(f,Bα) ≤ C(f,Bβ) (9.29)

this condition is necessary but not sufficient to guarantee the statement because

(9.29) tests only a single concave function.

Coifman and Wickerhauser [?] find a best basis Bα in D by minimizing the

cost of f :

C(f,Bα) = min
λ∈Λ

C(f,Bλ) (9.30)

then there exist no better basis in D to minimize f [?]. However, often there

are basis that are equivalent. The choice of the particular one then depends

on function Φ.

For wavelets it is possible to utilize local cosine basis or wavelet packet.

These orthonormal bases include different types of time-frequency atoms and

resulting decomposition of the signal is efficient. Dictionaries of wavelet packet

or local cosine bases include more than 2N/2 bases (N stands for size of the

signal). The best basis minimizes the cost function

C(f,Bλ) =
N−1∑
m=0

Φ

(
|f, gλm|2

‖f‖2

)
(9.31)

Optimal basis according to (9.31) using brute force approach would require

more than N2N/2 operations. Fast dynamic programming algorithm presented

by Coifman and Wickerhauser [?] takes advantage of the tree structure parsing

and finds the best basis with O(N log2N) operations. The performance of best

approximations depends on the time-frequency properties of f .

A wavelet packet basis divides the frequency axis into interval of varying

size. Frequency tiling is made by a wavelet packet function that is translated

uniformly in time. Best wavelet packet could be shortly described as a ”best”

frequency segmentation [?].

Best wavelet packet approximates best signals with similar energy struc-

ture - time-frequency spread. The time translation of the wavelet packet is

well adapted to approximation of signal structure in this frequency range that

appear at different times.

Application of wavelet packets to pattern recognition remains difficult be-

cause they bases are not translation invariant. When applied to translated

signal, the minimization of cost function may yield a different basis. This

remark applies to local cosine bases as well.
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An example published in [?] shows signal for which is not possible to get

well adapted wavelet packet basis. Signal contain different type of high energy

structures located at different times u0 and u1 but in the same frequency

interval. It is sum of four transients:

f(t) =
K0√
s0

g

(
t− u0

s0

)
exp(iξ0t) +

K1√
s1

g

(
t− u1

s1

)
exp(iξ0t)

+
K2√
s1

g

(
t− u0

s1

)
exp(iξ1t) +

K3√
s0

g

(
t− u1

s0

)
exp(iξ1t)

(9.32)

Function g is smooth window whose energy is concentrated at low frequen-

cies. Fourier transform of f shows that the energy of function is concentrated

in frequency band centred at ξ0 and ξ1

f̂(ω) =K0

√
s0 ĝ (s0 (ω − ξ0)) exp(−iu0(ω − ξ0))

+K1

√
s1 ĝ (s1 (ω − ξ0)) exp(−iu1(ω − ξ0))

+K2

√
s1 ĝ (s1 (ω − ξ1)) exp(−iu0(ω − ξ1))

+K3

√
s0 ĝ (s0 (ω − ξ1)) exp(−iu1(ω − ξ1))

(9.33)

The time and frequency spread of the transients depends on values of s0

and s1. This is illustrated in figure 9.1. The best wavelet packet is adapted

to the transient of highest energy, the energy of the smallest transient is then

spread across many wavelet packets.

The example of signals whose energy distribution schemes change rapidly in

time and thus are not suitable for decomposition based on wavelet packets are

speech signals. Two different distants in the same frequency neighbourhood

might have very different energy distributions. A best wavelet is not adopted

to such a variation and thus gives poor non-linear approximations [?]. Similar

holds for natural scene images, although for specific class of images such as

fingerprints, it is possible to find wavelet packet that outperforms the wavelet

basis [?].

A local cosine bases are based on the idea similar to wavelet packet. But

instead of frequency division, they divide time axis into intervals of varying

sizes. To obtain best basis, one must adopt that time segmentation to the

variation of the signal time-frequency structures. The price paid is loss of

frequency flexibility - time and frequency bounds are reversed when comparing

to wavelet packet. A best local cosine basis is then adapted to signal which

includes structures of very different time and frequency spread at any given

time.
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Figure 9.1: The time and frequency spread of the transients from (9.32)

(reprinted from [?])

Figure 9.2: The wavelet packet (on left) determines frequency spread of

Heisenberg boxes (right) (reprinted from [?])

The sum of four transients (9.32) is not efficiently represents in a wavelet

packet but neither in a best local cosine basis. Since the scales s0 and s1 are

very different and signal contains two transients at frequencies ξ0 and ξ1 that

have different frequency spread and are located in different time u0 and u1.

The size of the window is adapted to the transient of highest energy and the

energy of the second transient is spread across best basis vectors.
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Figure 9.3: Time-frequency spread (Heisenberg boxes) of local cosine base

vectors (reprinted from [?])

9.5 Approximation with Pursuits

The set of non-orthonormal bases is much larger than the set of orthonormal

bases. If we would take an advantage of approximation in best basis sense, we

must introduce approach that deals with the complexity.

Let D = {gp}0≤p<P is a redundant dictionary of P vectors. Consider P

is higher (P > N) than the size of space of signals N . For any M ≥ 1, an

approximation fM of f might be calculated as a linear combination of any M

vectors from dictionary D:

fM =
M−1∑
m=0

a[pm]gpm (9.34)

The vector from D might be chosen freely. For dictionaries of P > N

vectors, computing the approximation fM is an NP-hard problem [?]. To

solve approximation that minimizes ‖f − fM‖, there is no known polynomial

algorithm.

Pursuit algorithms are fast, greedy algorithms that generalize these adap-

tive approximations and reduce computational complexity. Approximative

vectors are selected from redundant dictionaries of time-frequency boxes with

no orthogonally constraints. The price paid is that the approximation is not

optimal, but only sub-optimal. The relative good approximation is provided

with O(N3.5 log3.5
2 N) operations.
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Basic Pursuit performs decomposition of f to best basis B by (9.34). If

restriction to orthonormal bases is applied, then the basis would be optimized

by minimizing (9.35).

C(f,B) =
N−1∑
m=0

Φ

(
|a[pm]|2

‖f‖2

)
(9.35)

where Φ is concave. This result does not hold for general (non-orthogonal)

bases. Basic Pursuit searches for a best basis that minimizes (9.35) for Φ(x) =

x1/2:

C(f,B) =
1

‖f‖

N−1∑
m=0

|a[pm]| (9.36)

Minimizing the I1 norm of the decomposition coefficients avoids diffusing

the energy of f among many vectors [?]. Minimization procedure reduces

cancelation between the vectors a[pm]gpm . The cancelation increase the cost

(9.36) by increasing |a[pm]|. The minimization of an I1 norm is related to

linear programming that leads to fast computation algorithms [?]. Theory of

interior points had led to a large collection of algorithms. The approach is

summarized in [?].

Basic Pursuit algorithm is relatively computationally extensible. The rea-

son is that the algorithm minimizes a global cost function over all dictionary

vectors.

41



CHAPTER 9. SIGNAL APPROXIMATION

42



CHAPTER 10. MATCHING PURSUIT

Chapter 10

Matching Pursuit

Matching pursuit provides parameterization that expands the signal into wave-

forms whose time-frequency structures are adapted to the local signal struc-

ture. Compared to Basic Pursuit algorithm, matching pursuit algorithm uti-

lized a greedy strategy to reduce computation complexity. The algorithm was

proposed and fully described in [?, ?], this section only gives a short introduc-

tion and discuss application to speech analysis.

Previously described parameterizations like where the time-frequency char-

acteristics of speech were taken into account prior to definition of parameteri-

zation, the structure of the signal parameterized by matching pursuit is derived

by algorithm. Time-frequency characteristic of particular utterance is derived

after parameterization and it is specific for each utterance. Adoption to the

local signal structure allows tuning method for tracking particular features in

the speech.

Important advantage of parameterization based on matching pursuit algo-

rithm is that it is suitable for analysis and comparison of utterances without

any need for preceding segmentation of the signal. The utterance is analysed

at once and corresponding atoms (see section 10.1) are chosen to represent

important features in signal. It is possible to fine-tune the parameterization to

emphasize particular features. This might be also reached by proper selection

of atoms within dictionary.

The main problem with utilization of matching pursuit is the computational

complexity. To provide spatial representation of the signal is necessary to pass

through all the functions in the dictionaries.

The advantages of matching pursuit are utilized in signal, image and video

coding: [?, ?], shape representation and recognition [?], 3D objects coding [?]

and biomedical signal analysis (EEG) [?, ?, ?, ?, ?] and (ECG) [?, ?, ?, ?, ?,

?, ?].
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10.1 Matching Pursuit Algorithm

Matching pursuit algorithm [?] transforms any signal f from Hilbert space into

a linear expansion of waveforms g(t). The waveforms are selected from redun-

dant dictionary of given functions to best match the signal structure. A signal

is then represented with a finite set of waveforms gn(t) (10.1). Approximation

fN of f is given by (10.1), where αn are scalar coefficients (see (9.34)).

f(t) ∼= f̃N(t) =
N−1∑
n=0

αngn(t) (10.1)

Approximation f̃N of a signal by the functions from a suitable dictionary

often gives better representation compare to transformations based on unitary

basis [?].

The redundant and over-complete set of time-limited functions gn is called

dictionary D = {gn}n∈Γ. Functions gn(t) are called atoms. The choice of

content of a dictionary (functions) is arbitrary. A dictionary might be adjusted

to the particular application by choice of atoms (as was discussed in chapter

9.3).

Although atoms might be of arbitrary choose [?], often Gabor dictionaries

(10.2) are utilised [?]. The dictionary is constructed by modulating, translating

and scaling a Gauss window ĝ(t) = 21/4 exp(−πt2):

g(t) =
1√
s
ĝ

(
t− u
s

)
eiξt (10.2)

Resulting Gabor dictionary is time and frequency translation invariant

modulo period of a discrete Gauss window N .

Matching pursuit begins by projecting f on vector (atom) g0 ∈ D:

f = 〈f, g0〉 g0 +Rf (10.3)

Because g0 is orthogonal to Rf

‖f‖2 = |〈f, g0〉|2 + ‖Rf‖2 (10.4)
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Atom g0 ∈ D has to be chosen so that |〈f, g0〉|. This selection minimizes

‖Rf‖. To further decrease computation demands, this operation is usually

replaced by finding vector that is almost optimal so

|〈f, g0〉| ≥ α sup
γ∈Γ
|〈f, gγ〉| (10.5)

where α ∈ (0, 1] is an optimality vector.

Next iteration of the algorithm repeats this procedure to decompose residue.

Assume that f = R0f and that the m-th order residue is already computed.

The next iteration chooses gγm ∈ D so that

|〈Rmf, gγm〉| ≥ α sup
γ∈Γ
|〈Rmf, gγ〉| (10.6)

and projects Rmf on gγm :

Rmf = 〈Rmf, gγm〉gγm +Rm+1f (10.7)

The orthogonality of gγm and Rm+1 implies that

‖Rmf‖2 = |〈Rmf, gγm〉|2 + ‖Rm+1f‖2 (10.8)

(10.7) implies, when summing m between 0 and M − 1:

f =
M−1∑
m=0

〈Rmf, gγm〉gγm +RMf (10.9)

similarly (10.8) gives:

‖f‖2 =
M−1∑
m=0

|〈Rmf, gγm〉|2 + ‖RMf‖2 (10.10)

It can be proven that ‖Rmf‖ converges exponentially to 0 when m tends

to infinity [?]. With increasing size of the signal space N , the convergence

rate decreases. An infinite number of iterations is necessary to completely

reduce the residue, even in finite dimensions [?]. In most signal processing

application, only sufficiently precise approximation of the signal is needed,

thus only N iterations are performed.

Matching pursuit with a relative precision ε is implemented with the fol-

lowing steps [?].

1. Initialization. Set m = 0 and compute {〈f, gγ〉}γ∈Γ

2. Best match. Find gγm ∈ D such that

|〈Rmf, gγm〉| ≥ α sup
γ∈Γ
|〈Rmf, gγ〉| (10.11)
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3. Update. For all gγ ∈ D with 〈gγm , gγ〉 6= 0

〈Rm+1f, gγ〉 = 〈Rmf, gγ〉 − 〈Rmf, gγm〉〈gγm , gγ〉 (10.12)

4. Stopping rule. The run might be stop after certain number of iterations

or as well some condition is fulfilled, e.g.

‖Rm+1f‖2 = ‖Rmf‖2 − |〈Rmf, gγm〉|2 ≤ ε2‖f‖2 (10.13)

It is possible to reduce directory and include only atoms that matches with

signal. This helps to reduce computation in steps 2 and 3. The sub-directory

D∫ is constructed in the way that all function in a sub-directory D∫ where

D∫ = {gγ}γ∈Γ maximizes |〈f, gγ〉|. Selection of sub-directory - choice of the

particular directory strongly depends on the application for which is intended.

It is also possible to perform orthonormalization of dictionary [?]. The

advantage is then that matching pursuit converges quickly - when the num-

ber of iterations gets close to N , the residues of orthogonal matching pursuit

(resp. its norms) decrease faster than for non-orthogonal matching pursuit.

In practice this is seldom used, since the orthonormalization is an expensive

operation.

To best fit the function being approximated, atoms (10.2) are translated

by the factor u and scaled by s so that term 1/
√
s normalizes g(t) to the norm

of 1. ξ represents frequency modulation (range (0; fS/2), where fS is the

sampling frequency of the signal). All the factors (u, s and ξ) are determined

by the algorithm (see (10.11) - (10.13)).

Function ĝ is Gaussian window (10.2), equation for discrete variant with

the length of T samples is in (10.14). Parameter σ influences a shape of the

window. The range of σ is given as σ ≤ 0.5. Time plot of discrete window is

in figure 10.1.

ĝ[t] = e−
1
2( t−(T−1)/2

σ(T−1)/2 )
2

(10.14)

Figure 10.3 illustrate signal made of two different atoms. Atom g1 (top

pane, right) and g2 (top pane, left) are concatenated in a simple signal. Atom

g1 starts at t0 = 0.1 s, has length 0.3 s, amplitude = 500, ξ = 50 Hz and σ =

0.22, atom g2 starts at t0 = 0.4 s, has length 0.4 s, amplitude = 1000, ξ = 250

Hz and σ = 0.22. Sampling frequency fs = 2000 Hz. Spectrum of the signal

g1 +g2 is in the bottom of figure 10.3, the plot is limited to maximal frequency

ξ = 400 Hz.

The expansion maintains energy, which guaranties convergence of the al-

gorithm [?]. Matching criterion is based on inner product of the signal f(t)

and functions (atoms) in dictionary g(t). Approximation for N -th step (or as

well by N atoms) writes as (10.15).
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Figure 10.1: Gauss window in time plot (N=60)

Figure 10.2: Side lobe plot for Gauss window
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Figure 10.3: Two atoms and corresponding spectrogram - x axes (time) are

in equal scale

f(t) = f̃N(t) +RNf =
N−1∑
n=0

〈Rnf, gn〉gn +RNf (10.15)

During N -th iteration of algorithm (10.11) - (10.13), the approximation

f̃N−1(t) of the signal is improved by adding an atom gN for which has inner

product with residual signal RNf minimal square error (10.16).

max
[
〈RNf, gn〉

]N
n=0
→ gN (10.16)

The signal is equal to a combination of N scaled and translated atoms gn
and residual signal RNf . To simplify notation, each atom writes as vector γ

(10.17).

gn(t) = αn
1
√
sn
g

(
t− un
sn

)
eiξnt 7→ γn = (αn, un, ξn) (10.17)
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Figure 10.4: Approximation f̃250(t) of utterance “televize”– television

(N = 250 atoms)

Figure 10.5: Approximation f̃500(t) of utterance “televize”– television

(N = 500 atoms)

49



CHAPTER 10. MATCHING PURSUIT

Figure 10.6: Approximation f̃750(t) of utterance “televize”– television

(N = 750 atoms)

Figure 10.7: Approximation f̃1000(t) of utterance “televize”– television

(N = 1000 atoms)
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Matching pursuit decomposes real signals by grouping atoms gγ+ and gγ−
from Gabor dictionary. Indices γ± = (αn,±un, ξn). In each step, instead of

projecting Rn f over and atom gγ, algorithm computes its projection on the

plane generated by gγ+ and gγ−.

For better illustration of the algorithm are in figures 10.4, 10.5, 10.6 and

10.7. spectrograms obtained for different approximations (f̃250(t), f̃500(t),

f̃750(t) and f̃1000(t)) of the same utterance (“televize”– television). Each figure

consists of map of atoms gn in time-frequency plane (top) and of spectrogram

of approximation f̃N(t) (bottom). In the time-frequency plane in the top of

figures, each atom gn is drawn symbolically as a line at frequency ξn (y-axis)

located appropriately in time (x-axis). This gives simple overview of the den-

sity of atoms approximating the utterance. In this figure no considerations

about bandwidth are taken into account.

The approximations f̃(t) (figure 10.4 to figure 10.7) were obtained by the

matching pursuit algorithm without any further modifications. Atoms that

approximate the utterance were determined by iterating process described by

equation (10.15). The process was set to decompose the signal to 250, resp.

500, 750 and 1000 atoms.

In contradiction to common parameterizations used in the field of speech

processing (e.g. MFCC, PLP) atoms gn obtained can be used to synthesize

back the approximated signal f̃N(t). Spectrograms constructed for f̃(t) are

at the bottom of respective figures. Spectrograms of approximation may be

compared to the spectrogram of original signal f(t) in figure 10.8.

Figure 10.8: Spectrogram of utterance “televize”– television (source signal

f(t))

Comparison of figures 10.4 to 10.7 gives an overview of the decomposition

advance during algorithm progress. As could be easily noticed, f̃1000(t) in fig-

ure 10.7 approximates the signal f(t) in more detail especially in the term of

higher frequencies. This is related to the synergy of algorithm’s feature to pre-

serve energy and properties of human hearing. Since MP tends to decompose

signal starting from parts containing the most of energy, the approximation
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of a speech signal suffers with one unpleasant consequence where the approx-

imations results in coverage that does not approximate equally all parts of

spectra, but preferring the lower frequencies that carry more energy as could

be observed in the figures 10.4 to 10.7. From the beginning, the algorithm

tends to approximate lower parts of spectra. A reasonable approximation of

the higher frequency bands is obtained only by increasing the number of atoms

and iterations.

To better illustrate spectral composition of approximated signal f̃N(t) dur-

ing algorithm iterations, in figure 10.9 are shown histograms of four approx-

imations that differ in number of atoms N . As could be observed from the

histograms, approximation of higher-frequency parts is being more precise with

increasing number of approximating atoms. This effect is caused by combi-

nation of previously mentioned feature of matching pursuit algorithm and at-

tributes of human speech and is unpleasant when dealing with speech signals.

Neglecting middle and high-frequency parts noticeably reduces information

remaining in approximation f̃N(t) and negatively adverse classification.

Figure 10.9: Frequency distribution of atoms for approximations consisting of

different number of atoms N (normed histograms, the scale of axes is equal)
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Chapter 11

Matching Pursuit for Speech

Parameterization

In order to perform various analyses on the signal, the amount of data has to

be reduced while maintaining important characteristics. To optimally describe

and measure differences in speech, the parameterization has to respect subtle

differences between patterns occurring in the signal that usually represent word

with close meanings [?].

Common parameterizations like LPC, PLP and MFCC are adapted to spe-

cific features present in human speech. Unfortunately these parameterizations

consider only speech without any significant disorder. As was experimentally

proven (see chapter 13), when disorders have to be taken into account, utiliza-

tion of parameterization that is less optimized is inevitable.

Low level signal representation must provide explicit information on very

different properties while giving simple cues to differentiate close patterns.

This concept is important for natural speech processing and parameterizations

follows it. When dealing with speech of children with disorders, the impor-

tance of the concepts is even higher. Flexible decomposition is important for

characterizing patterns that vary in time and frequency.

The variance of pattern for children suffering developmental dysphasia is

higher compare to the patterns that are found in the speech of healthy children.

To correctly determine the progress of treatment, it is important to correctly

track these patterns and characterize differences. Ability to track subtle dif-

ferences becomes even more important when the progress of one speaker is to

be determined.

The MP algorithm might be as well adapted to better deal with a speech

signal. Matching pursuit algorithm has been extended to avoid the conse-

quences of the effect of prioritizing low parts of spectra as was described in

chapter 10.1. Another technique that helps to deliver better results consider-
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ing speech signal is alternating of matching criterion (10.16). In general, the

alternation might be written in form of frequency-dependent weighting func-

tion h (11.1). Function h within the equation would respect specific properties

of human hearing. The function should adjust overall results of 〈Rnf, gn〉 so

that these properties are taken into account.

max [h (〈Rnf, gn〉)]Nn=0 → gn (11.1)

Function h in (11.1) has to be chosen with respect to specific features

of human auditory system. As an example, techniques implemented in PLP

might be used. Function h then could include concepts of equal loudness

curve, intensity-loudness power law and critical-band spectral resolution. This

will improve results obtained when parameterising speech in general. However

presented form is not suitable for parameterization of speech with disparities,

especially speech od children with severe form of DD. As is discussed in chapter

13, PLP doesn’t outperform LPC when dealing with the children with DD.

Discussion about adaptation to energy distribution scheme of signal dis-

cussed in chapter 9.3 leads to solution that allows setting up the areas within

the signal. An area in signal is determined by vector (tstart, tstop, fstart, fstop).

Definition of several areas makes a tiling scheme on signal. Tiling scheme does

not to cover whole time-frequency plane, partial coverage is allowed. Matching

pursuit is then run separately on each of the area. Results - atoms found in

areas are then gathered and represent the signal.

Size of an area is limited to be at least equal to Heisenberg box. Maximum

size is limited by signal itself (we consider implementation with isolated words)

or by computation demands. In case of the infinite signal (streaming of voice)

or for signal with significant length, it is recommended to split the signal into

time frames. Splitting might be based on voice activity detector (VAD).

Since the application considered in this thesis is analysis of the utterances

where these utterances are stored as separated words in database, splitting

in time is no longer considered. Only frequency splitting is assumed without

detriment to generality.

The idea of splitting a signal into frequency bands and then analyse these

band independently comes from MFCC algorithm (see chapter 5). The exten-

sion relies on definition of M non-overlapping frequency bands. The decom-

position of the signal is performed for each of M bands separately. Arbitrary

number of atoms might be found in each band but for simplicity equal number

of N/M atoms is set. Bands were defined according to recommendation in [?]:

there are 24 bands covering range of 0 to 15500 Hz. A width of the band is de-

pendent on the frequency, higher frequency bands have wider bandwidth. This

corresponds with characteristics and properties of human hearing. Definition

of bands is in table 11.1.
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Lower

frequency fL
[Hz]

Upper

frequency fH
[Hz]

Central

frequency f

[Hz]

Bandwidth B

[Hz]

0 100 50 100

100 200 150 100

200 300 250 100

300 400 350 100

400 510 450 110

510 630 570 120

630 770 700 140

770 920 840 150

920 1080 1000 160

1080 1270 1170 190

1270 1480 1370 210

1480 1720 1600 240

1720 2000 1850 280

2000 2320 2150 320

2320 2700 2500 380

2700 3150 2900 450

3150 3700 3400 550

3700 4400 4000 700

4400 5300 4800 900

5300 6400 5800 1100

6400 7700 7000 1300

7700 9500 8500 1800

9500 12000 10500 2500

12000 15500 13500 3500

Table 11.1: Frequency band definition (according to [?])
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The ceiling of 15500 Hz is sufficient despite the fact that critical frequency

fs/2 is higher. Atoms with ξ ≥ 15500 Hz are rarely found it the approximation

of a speech signal. This extension to the original algorithm helps to balance

the content of the spectra in favour of higher-frequency components neglected

by the original algorithm.

The overview of the results of decomposition based on frequency bands is

in figure 11.1. The layout of the figure 11.1 is the same as for figures 10.4 to

10.7. Upper part shows distribution of atoms gn in time-frequency plane (top),

lower part contains spectrogram of approximation f̃ ′N(t) (bottom).

Figure 11.1: Approximation f̃ ′500(t) of utterance “televize”– television, with

atoms (N = 500) distributed over whole frequency bands

Figure 11.2 shows spectral composition of approximated signal f̃N(t) for

the original (left) and f̃ ′N(t) modified algorithm (right). On the left is ap-

proximation according to the original algorithm given by (10.15), right figure

shows the distribution of atoms when modified algorithm was utilised. Both

approximations were calculated for 500 atoms (N=500).

The extension helps to obtain approximation with balanced spectral com-

ponents. This helps in classification task dealing with utterances of healthy

children and children with developmental dysphasia.

The number of atoms N is chosen prior to decomposition, often an esti-

mate is done on empirical basis. MP allows performing analysis with excess

number of atoms, performing analysis of power and distribution of atoms and
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Figure 11.2: Comparison of histograms for approximation of utterance

“televize”– television obtained by original algorithm (left – f̃500(t)) and

algorithm based on frequency bands (f̃ ′500(t) – right) – normed histograms,

the scale of axes is equal

then shrink the number of atoms accordingly. The iterative process of decom-

position also might be stopped due to some criterion, e.g. based on energy of

the residuum |RNf | (see (10.13)).

Approximation of a signal in the terms of bands allows performing compar-

ison based on these bands. Comparison based only on bands is not sufficient

for the task. Classification based on KSOM delivers better results since it

involves the overall utterance (see experiment described in chapter 14).

Variability of KSOM allows to create maps that are adapted to particu-

lar speakers and perform the classification regarding specific feature of these

speakers. This is helpful when dealing with task of classification of children

with DD according to degree of disease. Overall classification is then based on

several classificators where each is trained on speech with different degree of

impairment or different utterances.

Updates to original matching pursuit algorithm described in [?, ?] allows to

utilize this algorithm in task of classification of speech. Analysis is performed

on variable time-frequency boxes instead of the whole signal. In general, this

helps to adjust the analysis to the nature of the signal. For classification of

isolated utterances (words) the scheme based only on frequency bands proved

to be sufficient (see experiment described in chapter 14 and 15).
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Chapter 12

Speech Classification Based on

Artificial Neural Network

Natural data are not always describable by low-order (first and second order)

statistical parameters; their distributions are non-Gaussian; and their statistics

are non-stationary [?]. The functional relations between natural data elements

are often nonlinear. Under these conditions neural-network computing meth-

ods are more effective and economic than traditional ones. Neural networks are

often suitable for nonlinear estimation and control tasks in which the classical

probabilities methods fail [?].

Only ANN-based models rely on redundancy of representations in space

and time. Such models are able to describe features present in the input

vectors as well as catch the relationship between features. ANN has ability

to ignore individual appearing features that are deviated from the standard

set. In other words ANN concentrates on collective properties and neglects

the role of individual signals and patterns which is advantageous for speech

classification.

Specifically this feature helps in classification of speech signals that is im-

perfect (i.e. contains noise and various artefacts). The perception of speech-

like sounds is dependent on the preceding sound, namely, that it depends on

the spectral difference between the current sound and the preceding sound [?].

Models will describe the sounds and the difference between models is propor-

tional to the spectral difference which is in distance between models.

12.1 Kohonen Self-Organizing Maps

Kohonen Self-Organizing Maps are artificial neural networks trained using un-

supervised learning algorithm. Training algorithm forms representation of the

input space called that represents distribution function of input vectors - the
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topological properties of the input space. There are two opposing tendencies in

the self-organizing process (during performing training algorithm). First, the

set of weight vectors tends to describe the density function of the input vectors.

Second, local interactions between processing units tend to preserve continuity

in sequences of weight vectors. The reference vector distribution tending to

approximate a smooth hyper surface and introduce a kind of features that de-

scribes the overall set when conserving and generalising all important qualities

- features [?].

The main applications of KSOM are in the visualization of complex data

in a two-dimensional display and creation of abstraction like in many other

clustering techniques. The mapping is ordered and descriptive of the distribu-

tion of input vectors. The collection of models is ordered by definition, if each

model is equal to the average of input data mapped to its neighbourhood.

KSOM is a kind of nonlinear projection of the probability density function

of the high-dimensional input data vectors onto the two-dimensional display.

Another dimension of output space is possible, however more often is two-

dimensional projection.

We make use of these properties and prepare classificator based on KSOM.

It allows to process complex data gathered by analysis of speech signal and

classify the speaker (see experiments in chapter 14). The ability to generalize

allows constructing parameterization that is redundant and let the KSOM to

choose collective (and more important) features. This specifically ability allows

features presented in the speech to be expressed implicitly (as numbers) and

as well explicitly (as a distribution of vectors in input set)

KSOM is an effective platform for visualization of high-dimensional data.

This helps to fully understand contents of a data set and it is a vital to fully

understand contents exploit properties of data set. KSOM allows transforming

whole input set containing overwhelming number of data to a small set of

features vector. For example, a set of word pronounced by healthy children

containing several tens of utterances might be transformed to a set of several

(tens) of vectors - features [?]. This compact representation is still sufficient to

converse all important features within speech and comparable with similar set

of features extracted in a similar manner without losing important information

(e.g. the speaker with unknown status might be then classified as healthy or

unhealthy).

The visualization feature of KSOM helps to verify results obtained from

numerical analysis. During our cooperation with specialist physicians we found

out that several of them prefer form of figures (two-dimensional U-map) to the

table of numbers. The characteristics of one speaker do not have to be ex-

pressed as a set of numbers (relatively small, to allow human compare various

set in between), but might be expressed as well as picture. We gained experi-

ence that is possible to utilize figures instead of numbers just only after a short
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introduction that shows several cases and comment them. Two-dimensional

grid allows visual representation and interpretation of the clusters. Clustering

is a way of extraction the most important features from trained KSOM [?].

For example see experiment described in chapter 13. Here the clustering based

on k-means is utilized to obtain high level of abstraction over speech signal [?].

Every cluster represent different main feature, these features are isolated and

then compared.

Utilization of KSOM brings another advantage to the processing of natural

language. Since we have to record all the recording not in studio, the recordings

contains a lot of noise and other artefacts. KSOM ability to concentrate on

collective features allows using these recordings without any preceding modifi-

cation (e.g. denoising). The most common features presented are emphasized

whereas seldom occurring non-speech signals are ignored and has no influence

on the overall classification.

Ability to concentrate on general features prioritizes KSOM. Several stud-

ies dealing with competing Hidden Markov Models (HMM) on KSOM were

published (e.g. [?]). For several applications there are exist modification to

the KSOM algorithm, like Deep Neural networks (DNNs) that have many hid-

den layers and are trained using new method have been shown to outperform

Gaussian mixture models (GMMs) on a variety of speech recognition bench-

marks, sometimes by a large margin [?].

On the pure form, the SOM defines an elastic net of points (parameter,

reference or codebook vector) that are fitted to the input signal space to ap-

proximate its density function in an ordered fashion [?].

12.2 KSOM Training Algorithms

Kohonen describes two algorithms for training KSOM [?]. Firstly was in-

troduced iterative algorithm that performs training by utilizing vectors from

training set on one-by-another basis. Second, improved, algorithm is based

on performing mean operation on the subset of the training vectors (batch

training).

The iterative algorithm performs following steps for each of the vector from

training set:

1. Initialization of map M - random initialization is suggested as the best

and also the fastest policy. It is strongly recommended to use it in

practice.

2. Take a vector from training set (denoted as x) and find best-matching

model (neuron) mc (also referred as winner) from all the neurons mi
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in the map (M is number of the neurons in the net). Each time a new

vectors is taken to perform following steps with, the epoch (discrete-time

coordinate) denoted as t increments. Best-matching node is defined to

have the smallest Euclidean distance d from the vector.

d = ‖x−mi‖ (12.1)

so we are looking for neuron mc that satisfies (12.2)

c = argmin (‖x−mi‖) (12.2)

this might be rewritten as

‖x−mc‖ = min {‖x−mi‖} (12.3)

3. update value of the winner (mc) for next epoch

mi(t+ 1) = mi(t) + hci(t) [x(t)−mi(t)] (12.4)

where hci acts as so-called neighbourhood function, a smoothing kernel

defined over the lattice points.

For convergence it is necessary that hci → 0 when t → ∞. One of the

neighbourhood kernels is in (12.5).

hci(t) = α(t) exp

(
−‖rc − ri‖

2

2σ2(t)

)
(12.5)

where α(t) is scalar-values learning-rate factor. Parameter σ(t) defines the

width of the kernel - it corresponds to the radius of the neighbourhood. Both

α(t) and σ(t) are monotonically decreasing functions of time. Their settings

have major impact on the results of the training, improper settings (too quick

decreasing) might result in malformation of the map.

The number of epochs is multiple to the number of vectors in the training

set. To guarantee generalization it is desired that each of the training vectors

inputs several times into training process with random order, so t�M . This

is because learning is a stochastic process and the final statistical accuracy of

the mapping depends on the number of steps in the final convergence phase.

The phase must be reasonably long, so the selection of optimal α(t) is required

to both conserve statistical accuracy and minimize learning time.

The iterative algorithm was studied first (see experiment described in chap-

ter 13), and later was abandoned for the batch algorithm. The batch algorithm

provides comparable results, it is faster and doesn’t require so precise setting

of the parameter α(t) for training.
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12.3 KSOM Batch Training Algorithm

The algorithm resembles Linde-Buzo-Gray algorithm [?] where all the trainings

samples are assumed to be available when learning begins.

Notation defined in preceding section is valid here as well: KSOM is defined

a set of M models (neurons) mi. Each model mi is represented by a vector with

the dimension that is equal to the dimension of input data vectors. A set of mi

is ordered, i.e. exist relation that order the set in output space. All the models

are ordered into the space of dimension Nout, usually Nout = 2. The ordering

then defines occupations of the neurons of the point in Nout-dimensional lattice.

Near points on the lattice forms a neighbourhood when the distance d (see

(12.1)) from central model is lower that certain value Nc.

Each part of the vector represents different variable. These variables might

have different dynamic range. Normalization is not necessary in principle, but

it may improve numerical accuracy because the resulting reference vectors then

tend to have the same dynamic range. Learning algorithm performs the steps

in the following order:

1. Random initialization - it is suggested as the best and also the fastest

policy (it is the same as for iterative algorithm). It is strongly recommended

to use it in practice. It is also possible to take first M vectors from training

set.

2. For each model mi, collect a list L of copies of all those training samples

x whose nearest reference vector belongs to mi, so d(mi, x) is minimal.

3. Take for each new reference vectors the mean over the union of the list

made in step 2.

mi(t+ 1) = mean(L) (12.6)

4. Repeat from 2 a few times.

The batch training algorithms is more efficient especially for application

with large input data sets. Utilization of this algorithm avoids problems con-

nected with correct setting of α(t) for training.

Implementation of the batch algorithm suppose that all training vectors

are known before the start of training, whereas when utilizing the iterative

algorithm, the data might be supplied during the training (but must be stored

in order to perform multiple passes and guarantee correct generalization).

To measure how well is a map trained, a quantization error is introduced.

Quantization error is norm of difference of signal vector from the closest model

(neuron) in signal space [?]. To verify whether the training was appropriate,

a topological error might be utilized.
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Topological error is the average number of times when the second best

vector was not classified to belong in the neighbourhood of the same neuron

as the best vector.

12.4 Visualization

As was mentioned in the beginning of the section, KSOM is an effective plat-

form for visualization of high-dimensional data. This unique ability helps to

fully understand contents of a data set and exploit contents in more convenient

way.

Two-dimensional KSOMs (vast majority) are usually visualised in the form

of U-matrix (Unified Distance Matrix). U-matrix is a representation of a self-

organizing map (SOM) where the Euclidean distance between the codebook

vectors of neighbouring neurons and the internal vector of the neuron is de-

picted in a colour-scale image. It is used to visualize the data in a high-

dimensional space on a 2-dimensional space (more examples in [?]). Example

of an U-matrix is in figure 12.1.

Figure 12.1: U-matrix

Each hexagon on odd position (the first, third, ...) represents by its colour

the internal vector of a neuron. The colour of the hexagon that lies between

two neighbours represents distance d between them. Different colours (and

their shades) tends to represent distances.
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12.5 Comparison of Maps

Comparison of the maps is performed using distance-based approach [?]. Un-

like visualization using U-matrix, distance between neurons in one net is not

taken into account. The distance for comparison of the maps is distance be-

tween two neurons, each being of the different map.

To compare two different KSOMs, two diverse criteria to compare maps

were suggested [?, ?]. Both the criteria distinguish between features obtained

from a base map (further referenced as B) and futures gathered from a map to

compare (C). Generally, a swap of the maps leads to a different result. Both

criteria are based on pairing neurons (models) within maps according to their

internal weights.

The first criterion is more general (and therefore further references as G).

For each feature neuron b in a base map B neuron c in map to compare C is

found. The c is chosen regardless whether it was previously pared with another

vector from B or not, c itself could be paired with one or more than one b or

with no neuron as well. No restrictions are applied for the pairing. The pair

is made with respect to minimal Euclidean distance between the vectors of

internal weight of neuron Fb from B and vector of internal weights of neuron

Fc from C (12.7).

d(b, c) = d(Fb,Fc) =

√ ∑
n∈|B|,|C|

(Fb[n]−Fc[n])2 (12.7)

In (12.7), vectors Fb, resp. Fc, represent internal weights of a neuron from

B, resp. C. The overall distance D(B,C) between maps B and C is defined

as average distance between paired neurons (12.8), where P is the number of

neuron pairs. P equals to the number of neurons in smaller map.

D(B,C) =
1

P

∑
b∈B,c∈C

d(b, c) (12.8)

The second criterion is more restrictive (further references as R). It allows

each neuron c from map C to be paired only with no more than one neuron

b from the base map B. The criterion have to be evaluated twice for each

two nets X and Y , separately for X being a base B and then for net Y being

a base. When the number of neurons in the base map |B| is equal to the

number of neurons in map to compare |C| (|B| = |C|), the distances D(B,C)

and D(C,B) are equal (D(B,C) = D(C,B)) regardless of the map taken as

a base map. The overall distance between maps D is then determined in the

same manner as for criterion G (12.8). To distinguish between the criterion

used, the overall distance will be references as DG for general criterion, resp.

DR for the restrictive one.
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12.6 Implementation of KSOM

This section deals with modifications to the original algorithm regards the

implementation [?]. Not only implementation in toolbox [?] or in software sense

[?, ?, ?], conclusions presented are also valid for hardware implementation of

KSOM in a form of standalone accelerator (e.g. in Field-Programmable Gate

Arrays (FPGA)) [?, ?, ?, ?].

Considering software implementation, both iterative and batch training al-

gorithms might be implemented. The disadvantage when implementing batch

algorithms is that it might require large memory to store the data and subse-

quent getting very slow operations on such a large datasets.

This is almost discriminative for batch algorithm when dealing with im-

plementation in hardware when the sources are much limited. However the

iterative algorithm might be implemented very efficiently.

KSOM algorithm itself is very robust. It is possible to introduce several

changes to the algorithm that slightly influence obtained results whereas lead

to the much efficient operation.

The first problem when implementing algorithm is common for every pro-

grammer that have ever tried to write a code that implements some of the

common digital signal processing operations. The problem is final resolution

of the numbers in computer - variable types. To get an efficient implemen-

tation, it is an advantage to utilize fixed point data types instead floating.

Some means of implementation also allows to specify the width of variable,

computers allow to encode the variable 8 or 16 bit wide. The question is

even complicated on platforms based on FPGA. The length of the word might

be set arbitrarily, with indirect impact to the performance (more bit - less

performance).

KSOM algorithm is sensitive to the length of data word. Improper selection

might cause training to diverge - worse the selection of proper width, less

frequently divergence of the algorithm occurs. The effect of quantization can

be derived in advance, the features of the implementation also depend on

the distribution function of data vectors [?]. Only possible solution how to

derive sufficient quantization is to simulate it on the representative set of data.

Proper quantization is then obtained empirically from these results. Disturbing

quantization effects can’t be described generally because they tightly coupled

with distribution function of the data.

Further simplifications leads to replacement of the neighbour function.

Neighbourhood function hci (e.g. (12.5)) also known as “Mexican hat”can

be replaced by rectangular or triangular window. This avoids computation of

hyperbolomic functions. The influence to the results is minimal [?]. Euclidian

distance (12.1) in could be replaced by Manhattan distance (12.9).
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d(x,m) =
∑
i

|mi − xi| (12.9)

Utilization of fixed point arithmetic leads to noticeably higher amplitude

of quantization error during training (see section ). The example of the dif-

ference is shown in figure 12.2. This effect masks the edges observable in the

quantization error curve for badly trained maps. Therefore advanced meth-

ods of poorly trained net have to be used. More information (including code

examples in Matlab) are provided in [?].

Described techniques helps when dealing with implementation of KSOMs.

Unfortunately, the nature of the disturbing effect is complicated enough that

each implementation should be tested on the representative data set.

Figure 12.2: Quantization error comparison during training with iterative

algorithm
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12.7 Other Types of ANN in Speech Signal

Processing

Several hundreds or thousands of experiments that utilize ANNs for speech

signal processing were published. Intention was always to improve processing

of speech signal. Current section contains only the selected overview. The aim

is to illustrate possibilities different than KSOM.

Gemello, Albesano, Mana and Moisa presented in [?] multi-source neural

network aimed to find the optimal combination of features for classification.

Most of the papers deals with representation of signal based on wavelet

transform and its combination with ANN. For example, Daqrouq, Abu-Isbeih

and Alfauri presented speech signals enhancement system that using neural

network and wavelet transform [?]. They compare system based on ADA-

LINE, feed-forward neural network and hybrid system based on combination

of wavelet transform with ADALINE. The most enhancements were obtained

when utilizing ADALINE (10dB) then by hybrid system consisting of wavelet

parameterization and ADALINE (8dB). Less improvement by provided by the

system based on feed-forward neural network (3dB).

Similar paper from Gandhiraj and Sathidevi [?] presents Auditory-Based

Wavelet Packet Filter bank for Speech Recognition Using Neural Network. The

idea is to evaluate Gamma Tone Filter Bank and Wavelet Packet as front-end

system for Back Propagation Neural Network.

Since ANN represents alternative to the systems based on Hidden Markov

Models and gaussian mixture models (GMM). Several studies were published

touching this topic (e.g. [?]). Several variations of ANN were made to process

data speech as for example Deep Neural networks (DNNs) [?]. DNNs have

many hidden layers and are trained using new training method. It was shown

that DNNs outperform Gaussian mixture models (GMMs) on a variety of

speech recognition benchmarks, sometimes by a large margin.

12.8 KSOM Variants

Kohonen describes in his book [?] modification to the KSOM that is intended to

to generate filters for time-domain speech waveforms. The derivation is known

as the adaptive-subspace self-organizing maps (ASSOM). In this map each

model represents a wavelet filter. The filters (models) are formed automatically

in the ASSOM process using following algorithm - for each learning episode

S(t) consisting of successive time instants tp ∈ S(t) do the following:
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1. Find the winner (indexed by c):

c = argmax

 ∑
tp∈S(t)

‖x̂(i)(tp)‖2

 (12.10)

2. For each sample x(tp), where tp ∈ S(t) rotate the basis vector of the

module

b
(i)
h (t+ 1) =

[
I + λ(t)h(i)

c (t)
x(tp)x(tp)

T

‖x̂(i)(tp)‖‖x(tp)‖

]
b

(i)
h (t) (12.11)

3. For each sample x(tp), where tp ∈ S(t) dissipate the components b
(i)
hj of

the basis vectors b
(i)
h :

b
(i)
hj ‘ = sgn

(
b

(i)
hj

)
max

(
0, |b(i)

hj | − ε
)

(12.12)

where

ε = ε
(i)
h (t) = α

∣∣∣b(i)
h (t)− b(i)

h (t− 1)
∣∣∣ (12.13)

4. Orthonormalize the basis vector for each module.

The algorithm results in producing smooth, asymptotically stable, single

peaked band pass filter with continuous distribution of their mid-frequencies

over the range of speech frequencies.

Described experiment was motivation for several subsequent applications

that leads to connection of the speech signal and KSOM. They were published

sequentially firstly experiments with operator maps that each of the model

represents the filter [?, ?, ?] and subsequent improvements [?]. This research

lead to the utilization of matching pursuit algorithm [?] that is described in

this work.

There were several modification to the KSOM published. For example

Expanding Self-Organizing Map (ESOM) published in [?]. This modification

deals with better topology correspondence between the input data and output

grid. It reaches lower topological and quantization error (see chapter 12.6).

This modification addresses mainly large data set and visualization issues.

Another variant that helps with clustering of the map. Growing Hierarchical

Self-Organizing Maps [?] constructs the tree based hierarchy of clusters right

during the training process.

The other noticeable variation is the FastSOM [?]. Main issue addressed is

the speed of iterative training algorithm. The disadvantage of the algorithm

is higher instability of the quantization and network error during the training.

According to the experiments that were done in our laboratory, the stability

of the algorithm is the issue and it is more probable that the training phase

will lead to unaligned network that is suboptimal.
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12.9 Resulting Method - Utilization of KSOM

in Classification

A children ability to pronounce vowels and isolated words will be investigated.

The utterances will be parameterized. the output of parameterization method

is supposed to be in a set of vector, where for each of the utterances will be

produced set consisting of several vectors.

Set for particular utterances might be grouped. This grouping takes places

before the training of the map and will be done on the criteria supplied exter-

nally (e.g. same utterances for several speakers).

For each of the group, the trained map is provided. Parameters of the map

(size, etc.) are to be specified externally. It is supposed that correct settings

will be found experimentally during the work with the data.

Since there will be several groups, it is vital to be able to compare resulting

KSOMs (trained on the data) with another network. Comparison is to be done

based on criteria in section 12.5.

By comparison of the maps previously trained on specified (sub)set by the

map trained on the speaker, the overall classification of the speaker will be

derived. This area is out-of-scope of this work, there still on-going debate how

exactly perform the overall classification.

However, the vital role in the classification plays the parameterization. As

is described in following section, classification based on MFCC, PLP or LPC

is not sufficient for the task. The idea is that the parameterization should

provide a broad range of parameters that describes utterance(s). Thanks to

generalization property of KSOM, the shrinkage of the range then might be

done to further focus important features contained in signal.
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Chapter 13

Classification Based on LPC,

PLP and MFCC

Parameterizations

This chapter focuses on method developed for classifications of the speech with

disorders. Described classification method is based on children’s speech signal

analysis and allows observing the trend of the speech disorder during therapy.

The parameterization included in this experiment was chosen as initial. The

intent is to compare and select parameterization that work best when dealing

with the speech of children with developmental dysphasia.

The classification is based on the fact that the disorder has a direct impact

on speech production (i.e. movement of vocal tract). Thus, we can mea-

sure the trend of the disorders comparing patterns obtained from speech of

healthy children to the patterns obtained from children with disorder. Clas-

sification utilized in the experiment is based on cluster analysis of Kohonen

Self-Organizing Maps [?] trained on parameterized speech signals. The main

advantage of using artificial neural network is adaptability to specific attributes

of the signal and tolerance for the noise contained in recordings.

The aim of described method is to distinguish between healthy and ill

children and describe advance of disorder during therapy. The method is based

on a comparison of the differences in the parameterized speech. Purpose of

the parameterization is not to give perfect representation for recognition, but

describe the differences.

The process of analysis is divided into the two phases. In the first phase,

the samples from selected subset of healthy children are taken and the patterns

are worked out (see figure 13.1). Input set is divided in two disjunctive parts.

The first part is used for training KSOMs. The second part serve as an input

for computing the patterns using trained KSOMs.
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There is one map for each class of samples from database. Since the com-

plexity involved, only results for vowels are presented. The choice of these

classes is not arbitrary, the effect of developmental dysphasia to the vocal

triangle was already described [?, ?, ?] and in [?].

In the second phase, patterns for selected ill children are calculated and

compared with the patterns for training set (see figure 13.2). Whereas in the

first part utilized only samples from healthy children, the computation in the

second part is done using the samples from only one (ill) child acquired during

one session. Comparing these two results we can observe the trend of the

disorder. Important conditions are sufficient size of the training set and using

different samples for computing the patterns. Satisfy these conditions ensures

generalization of children’s speech signal and avoid adaptation on individual

speakers. Results of the experiment were partially published in [?].

13.1 Description of Method

The patterns are estimated from the subset consisting only samples (speech)

from healthy children. The speech is processed common way, firstly, the signal

is divided into segments and weighted by the Hamming window (4.1). Then,

every segment is represented in the terms of standard parameters: MFCC,

PLP [?] and LPC coefficients [?] and [?].

MFCC and PLP coefficients are utilized generally in the various tasks in the

field of speech signal processing. Whereas MFCC and PLP coefficients were

created for recognition and thus, they tend to generalize, LPC coefficients

clearly describe parameters of vocal tract with respect for these differences.

LPC shows the best option when dealing with speech of 4 to 6 years old

children. Generated vectors are used to train KSOMs.

For each segment, three different vectors are created, one for each type of

parameters. Whole speech is then represented by the series of such vectors.

These series are then processed using artificial neural network, namely by

Kohonen Self-Organizing Maps [?].

There are three independent networks, one for each type of representation

(i.e. one KSOM for MFCC, one for PLP and another for LPC). The greater

part of the input data (training set) is used as the input for the training. The

rest is for calculation of the patterns. We tend to preserve ration roughly 3 : 1

between the size of training set and verification set. Overview of the phase is

in figure 13.1.
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Figure 13.1: Overview of the first phase - preparing patterns

After training, the cluster analysis of each KSOM is performed. For this

purpose we utilize k-means algorithm. The analysis is utilized to obtain higher

level of abstraction of the speech - every cluster represents specific features in

the speech.

Using the clusters, patterns are generated. Patterns are vectors, which

dimension is equal to the number of clusters in particular KSOM. Each com-

ponent of the pattern represents the percent occurrence of the input vectors

in the corresponding cluster. The patterns are calculated using the rest of

the samples from the input set (verification set). These vectors are important

for following comparison. The patterns are derived from map trained only on

healthy children’s speech.

The patterns are generated solely from speech of healthy children. In this,

initial, experiment the influence of various artefact contained in recordings

(doors bumping, traffic on corridor, parents, etc.) and as well in the speech

itself (various defect independent from developmental dysphasia) must have

been supressed as much as possible.

sets boys girls speakers utterances

training 7 14 21 90

verification 2 5 7 35

children with disorder 2 1 3 43

total 11 20 31 168

Table 13.1: Overview of the number of utterances in experiment
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Because of that very strict rules for selecting the speakers for experiments

were applied which reduced the size of a set of proper speakers (see table 13.1).

Then we compute patterns for the child with disorder (see figure 13.2). Af-

ter comparison with patterns estimated from healthy children’s speech, we get

observable differences. The measure of those differences (Euclidean distance

of these two vectors) qualifies differences between the ill child’s speech and

the speech of healthy children. The Euclidean distance between representa-

tive vectors and the particular vector serves as a main criterion. Observing

distances on the various classes of speech, we can approximate the trend of

disease. Reciprocal usage of method (training on ill children and evaluate for

healthy children) is possible, however, the set of available utterances was very

small (as mentioned above).

Figure 13.2: Overview of the second phase - classification

13.2 Parameterization of Utterances

Settings and results for the experiment with classification of vowels “a”, “e”,

“i”, “o”and “u”is described in the following text. For the training set consisted

of recording (samples) taken from twenty-one children (see table 13.1). As was

described above, whole training set was divided into two parts.

There was also verification set consisting of seven healthy children (two boys

and five girls) and three children with speech disorder (two boys and one girl).

The samples in this set were intended to confirm the results obtained from
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the described method. For every ill children, three recordings from various

sessions (i.e. recordings made on different days) were used. The overview of

the division of the children taken to the experiment is in table 13.1.

Speech signal was pre-processed in the following way: whole recordings of

the vowels were segmented by the 30ms Hamming window with 10ms overlay.

The MFCC, PLP and LPC coefficients were calculated from these segments.

For MFCC and PLP coefficients, the basic band (22kHz) was divided into

twenty sub bands. The LPC coefficients were of the 8th order, the MFCC and

PLP coefficients were counted for 20 bands.

Figure 13.3: U-matrix for KSOM 10× 10 trained on MFCC coefficients

Figure 13.4: U-matrix for KSOM 10× 10 trained on PLP coefficients

Figure 13.5: U-matrix for KSOM 10× 10 trained on LPC coefficients
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13.3 KSOM Training

We used three different sizes of the maps in the experiment 10× 10 neurons,

20× 20 neurons and 30× 30 neurons. All the computation was done using

Matlab and SOM Toolbox [?].

The maps of 10× 10 neurons were too small (see figures 13.3, 13.4 and

13.5). The exceedingly generalisation was performed and therefore the distri-

bution function has not been captured in details.

Better results were obtained using maps with 20× 20 neurons (see fig-

ures 13.9, 13.10 and 13.11) , where the best results were observed for map

trained on LPC coefficients. The approximation in the map trained for MFCC

was worse compared to the maps trained on PLP or LPC.

Here is completely different situation with the maps containing 30× 30

neurons (see figures 13.6, 13.7 and 13.8). Maps trained on MFCC and PLP

coefficients generalized excessively. This is suitable for recognition, but not for

our purposes. In the analyses of the differences in the speech maps trained for

LPC gave better results.

Nevertheless, the maps with dimension 30 neurons are not suitable for

described training group because of the effect of limited generalization. For

classification for described purposes, the 20× 20 maps are appropriate.

Figure 13.6: U-matrix for KSOM 30× 30 trained on MFCC coefficients
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Figure 13.7: U-matrix for KSOM 30× 30 trained on PLP coefficients

Figure 13.8: U-matrix for KSOM 30× 30 trained on LPC coefficients

13.4 Clustering of Maps

The k-means algorithm was then utilized for getting clusters in a map. More

clusters contribute to better classification of a signal. The calculations were

randomly initialized. The lowest number of clusters was extracted from maps

trained on MFCC coefficients - from 10 to 14 clusters. For the maps trained on

LPC and PLP the k-means sensitivity was better. For LPC coefficients there
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Figure 13.9: U-matrix for KSOM 20× 20 trained on MFCC coefficients

Figure 13.10: U-matrix for KSOM 20× 20 trained on PLP coefficients

Figure 13.11: U-matrix for KSOM 20× 20 trained on LPC coefficients

were extracted from 19 to 24 clusters, for PLP coefficients algorithm found

between 20 and 24 clusters.

Examples of clustered maps are in figures 13.12, 13.13 and 13.14. Each area

filled in different colour represents one cluster. The cluster is a group of the
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Figure 13.12: Clusters in MFCC-trained map

Figure 13.13: Clusters in PLP-trained map

Figure 13.14: Clusters in LPC-trained map
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one or more neurons, which consist of neurons that represents similar features

in the speech. Dividing the trained network into cluster bring a higher level of

generalization into analysis – instead 400 (almost - considering 20 × 20 map)

similar prototypes represented by the neurons, there will be only about 20 dis-

tinctive features represented by the clusters. As could be seen in figure 13.12,

MFCC parameterization gives fewer clusters. It means that this parameteriza-

tion does not describing so much details as LPC based parameterization (see

figure 13.14). The reasons of such differences are mentioned in section 13.3.

13.5 Classification

The patterns were calculated using the second part of the training set. Then

the samples from the verification set and also the samples obtained from chil-

dren with disease was compared against these vectors. In table 13.2 and ta-

ble 13.3, there are results of comparison for the vowel A. In table 13.2, each row

represents results from different speaker from verification set. In table 13.3,

each row represents one recording session form one of the three children with

disorder. The number after R is the number of recording - sessions were

recorded in 3 months interval.

speaker LPC PLP MFCC

H1 1.4878 1.1767 1.1939

H2 1.1741 0.4844 0.6514

H3 0.8275 1.3865 1.1705

H4 0.9739 0.5795 0.7437

H5 0.7824 0.4418 0.4904

H6 1.3211 1.3218 1.1320

H7 0.6218 0.6435 0.7373

average 1.0269 0.8620 0.8742

Table 13.2: Results for healthy children (vowel A)

As could be seen, there is difference between results obtained from various

parameterizations. For MFCC coefficients, there is not satisfactory variabil-

ity to distinguish healthy and ill children and therefore these coefficients are

not suitable for classification of children with disorders using KSOMs. For

this task, the LPC and PLP parameterization giving better results. It is in

accordance with the reasons mentioned above.

The average results obtained for both groups of children and all parame-

terisations are in table 13.4. The aim of the method is to distinguish between

healthy and ill children - greater difference means more suitable parameteriza-

tion. The results are distinguished by the method used to obtain coefficients
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speaker LPC PLP MFCC

D1R1 1.1273 1.1983 1.7149

D1R2 1.3461 1.2415 1.7149

D1R3 1.4625 1.1907 1.7149

D2R1 1.5789 1.2703 1.7151

D2R2 1.4989 1.2553 1.7149

D2R3 1.5127 1.2208 1.7149

D3R1 1.5613 1.3012 1.7149

D3R2 1.5663 1.3012 1.7149

average 1.4568 1.2474 1.7149

Table 13.3: Results for the children with disorder (vowel A)

from segments. As one could be seen, the LPC parameterization gives the best

result in distinguish between healthy children and children with disorder. The

PLP is also possibly useful, but MFCC parameterization giving unsatisfactory

results that are not suitable for described purposes.

vowel group LPC PLP MFCC

“a” healthy 1.0269 0.8620 0.8742

disorder 1.4568 1.2474 1.7149

“e” healthy 1.3924 1.2464 1.2868

disorder 1.7652 1.2795 2.0644

“i” healthy 1.9056 0.4446 0.7204

disorder 2.0020 0.9438 1.4936

“o” healthy 1.1604 0.9426 1.0637

disorder 1.4143 1.2510 1.4122

“u” healthy 0.7170 0.6567 0.6683

disorder 0.5177 1.3335 1.6071

Table 13.4: Results for both groups of children – all parameterizations

13.6 Discussion

The results are strongly depended on the type of speech units. We suppose that

vowels are the simplest units to analyse and in the more complicated cases,

the result could be only worse. The method well detect ordinary problems

in speech of the children with developmental dysphasia – interchange of the

high vowels in the vocalic triangular. The performance of described method

depends on using proper KSOMs size according to the size of a training set.
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Utilization of the KSOM allows modifications of the process that distin-

guish between speakers, to the process where common attributes are extracted

and allows to distinguish between healthy children and children with disor-

der. The method discussed in this chapter has to be extended in order to get

more information about children’s speech and to reliable describe trend of the

disorder.

Purpose of the parameterization is not to give perfect representation for

recognition, but describe the differences. Therefore, the MFCC parameteri-

zation is not convenient, as was shown above. Classification based on MFCC

could be used in the task of distinguishing whether a child is healthy or suffers

developmental dysphasia, however, the parameterization is not convenient for

the determining the progress of the disease.

For the task of deterring the progress of the disease, PLP and LPC param-

eterizations seem to be more suitable. Classification based on PLP coefficients

has similar problems as MFCC, but the results are not so much influenced as in

the case of MFCC. There also observed when dealing with vowels “o”, “u”and

sometimes “i”. As could be seen in table 13.4, the difference in in averages for

healthy and ill children is minimal.

We intentionally utilize LPC-based parameterization, which is not suitable

for recognition. However, LPC coefficients are suitable for our analysis because

it describing the differences in the speech better than MFCC coefficients. To

perform final classification, it is suggested to perform both with LPC and PLP

parameterizations.

13.7 Proper Size of KSOMs

The maps were trained by batch training algorithm which reduces convergence

issues. However, as could be seen in the results presented, proper size of the

network remains a vital factor.

After realization of several other experiments with the method described,

formula (13.1) was derived to help establish the correct size settings. In (13.1)

N represents the number of neurons that constitute an edge of a square Ko-

honen Map with hexagonal topology. Parameter nt represent overall number

of vectors obtained by parameterization of all utterances in training set, nu
represents the number of utterances in the training set. Parameter ns stand

for the number of speakers whose utterances are in the training set, nut rep-

resent number of types of utterances that are included in training set. The

assumption is training set contains almost are utterances (one for each type)

from almost all speakers.
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N ∼=
√
k
nt
nu
∼=
√
k

nt
ns nut

(13.1)

Coefficients k represents the average number of vectors from training set

that should be represented by a neuron. According to the experience gained,

k is dependent on the parameterization used. The value of k is summarized in

table 13.5.

parameterization k

MFCC 16 – 18

PLP 8 – 18

LPC 10 – 24

Table 13.5: Recommended values of k (see (13.1))

Values of coefficient k were determined empirically and agreed with obser-

vation that the size of a map trained on vectors obtained by MFCC parame-

terization are proper maps larger that for vectors obtained by LPC and PLP

parameterizations. On the other hand, for PLP parameterization better suits

slightly smaller maps.

Another conclusion obtained considers sensitivity to size of a map. As

could be seen in table 13.5 LPC parameterization shows the least sensitivity,

whereas MFCC has the highest.

The role of experiment described in chapter 13 is, apart from the compari-

son of parameterizations, to illustrate the influence of size of a map. Therefore

it was not intended only the size obtained by the formula (13.1). The values

of coefficient k for the maps in the experiment are summarized in table 13.6.

parameterization k

MFCC 3.61

PLP 14.45

LPC 32.53

Table 13.6: Values of k for maps in the experiment

Formula (13.1) as well as accompany values of k in table 13.5 express em-

pirical experience gained when working with the parameterizations mentioned.
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Chapter 14

Classification Based on

Matching Pursuit on Spectral

Bands

The method described in the following text was developed to analyse disor-

dered children speech. Since developmental dysphasia has impact on the chil-

dren speech ability, the classification of utterances helps to determine whether

treatment and medication is appropriate. The paper describes method devel-

oped to provide classification based on utterances but without any additional

demands on speech pre-processing (e.g. labelling). The method uses matching

pursuit algorithm for speech parameterization and Kohonen Self-Organizing

Maps for extraction of features from utterances. Features extracted from the

utterances of healthy children are then compared to features obtained from

the speech of children suffering the illness.

As an initial experiment, simple task that prove the convenience is pre-

sented. The aim of the experiment is to determine whether the method can

distinguish between utterances pronounced by healthy and ill childrenThe ex-

periment represents just only a simple application of the method described

above. Results were published in [?].

14.1 Description of the Method

Description of the method is divided into three parts. Each part corresponds

to the one of main steps in analysing utterances. At the first step, parame-

terization of utterances is carried out. Matching pursuit [?, ?] algorithm with

usage of spectral band is utilized 11. For a given signal, the algorithm finds the

set of waveforms that approximate the signal. These waveforms (called atoms)

are picked out from a redundant dictionary. The signal is then replaced by a
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set of atoms. The replacement preserves all important information included

in the authentic signal. The parameterization is adjusted so that information

can be easily extracted in the next steps.

Analysis continues with feature extraction. The sets of atoms represent-

ing particular utterances are employed as a training data for Kohonen Self-

Organizing Maps [?]. During training, characteristic features for each set are

found. Finally, characteristic features obtained from the sets are compared

and distortions are observed and measured.

14.1.1 Feature Extraction

After parameterization, an utterance is represented by a finite set of vectors

γ (10.17). As was discussed previously, matching pursuit reduces greatly the

amount of data for each utterance, however the set is still too large to perform

direct comparison. Therefore it is necessary to introduce another processing

step that reduces the size of data and preserves all relevant information (fea-

tures).

The method makes use of KSOM. Vectors γ obtained from a given set of

utterances serve as input data set for training maps. To train maps we use

data sets that consist of the same utterances pronounced by several speakers.

After training phase, map approximates the distribution of γ vector in the

training set. The internal weights of the neurons are then extracted and serve

as features vectors F for further processing and then for comparison. Dimen-

sion of the feature vectors F is the same for arbitrary data set and is given by

the dimension of γ vectors.

The features are not extracted for each single utterance, but for a set of

utterances (data set). A set consists entirely of the utterances of healthy

children or only of the utterances of children suffer developmental dysphasia.

For the most experiments, a set consists only of the same kind of utterances.

An experiment could require several sets to be utilised.

Particular speaker is selected according to the demands of actual exper-

iment (e.g. age, gender). Using utterances obtained from different speakers

guarantee that features represent significant characteristics of the utterance(s)

and do not adapt to a particular speaker. Utterances are stored in database

and the software is capable of choosing particular subset of all available records,

based on gender, age and health status. To keep the generalization, the large

as possible training data set is desirable.
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Several parameters have impact on the training and subsequently on in-

formation carried by the features. The maps are trained by the batch map

algorithm [?], so the order of vector γ does not influence the results. Appro-

priate size of the map has to be chosen, the shape is always rectangular. A

selection of proper map size influences comparison of maps.

14.1.2 Classification

The method described in the paper is being developed to determine whether

a speaker suffers developmental dysphasia or not. In case of positive answer

it is should be possible to particularize the stage of the disease. Utterances of

the speaker examined are acquired and then parameterized. After parameteri-

zation, feature extraction and classification a comparison takes place. Usually

the comparison is based on two sets: one made of utterances of healthy children

and the other consists of utterances of children with developmental dysphasia.

However, this scheme is not obligatory – more than two sets may be used. It

is possible to compare an utterance of the one speaker to a number of different

sets. The number and extend of the training sets are specified separately for

each particular experiment. Generally, the comparison is performed separately

for each different utterance type.

As a basis for comparison, the database of utterances of healthy children

(in different age, both genders) and children suffers developmental dysphasia is

maintained. A set of different utterances is being kept for each child as well as

health status. For most experiments all the utterances meeting the requirement

of an experiment are split into two sets: one set is made of utterances of the

healthy children only and the set of utterances of dysphatic children only. Also,

splitting up the set of utterances of dysphatic children to several smaller sets

according to the degree of the disease is possible.

Classification is performed using distance-based approach. Distance of fea-

ture vectors obtained by training KSOMs (resp. internal weights of neurons

within a map) for each the set is compared one to each other. Criteria to

compare maps were already described in section 12.5, but since the definitions

are straightforward, they are duplicated here.

Both the criteria distinguish between features obtained from a base map

(further referenced as B) and futures gathered from a map to compare (C).

Generally, a swap of the maps leads to a different result. Both criteria are

based on pairing neurons (models) within maps according to their internal

weights.

The first criterion is more general (and therefore further references as G).

For each feature neuron b in a base map B neuron c in map to compare C is

found. The c is chosen regardless whether it was previously pared with another

87



CHAPTER 14. CLASSIFICATION BASED ON MATCHING PURSUIT
ON SPECTRAL BANDS

vector from B or not, c itself could be paired with one or more than one b or

with no neuron as well. No restrictions are applied for the pairing. The pair

is made with respect to minimal Euclidean distance between the vectors of

internal weight of neuron Fb from B and vector of internal weights of neuron

Fc from C (12.7).

d(b, c) = d(Fb,Fc) =

√ ∑
n∈|B|,|C|

(Fb[n]−Fc[n])2 (14.1)

In (14.1), vectors Fb, resp. Fc, represent internal weights of a neuron from

B, resp. C. The overall distance D(B,C) between maps B and C is defined

as average distance between paired neurons (14.2), where P is the number of

neuron pairs. P equals to the number of neurons in smaller map.

D(B,C) =
1

P

∑
b∈B,c∈C

d(b, c) (14.2)

The second criterion is more restrictive (further references as R). It allows

each neuron c from map C to be paired only with no more than one neuron

b from the base map B. The criterion have to be evaluated twice for each

two nets X and Y , separately for X being a base B and then for net Y being

a base. When the number of neurons in the base map |B| is equal to the

number of neurons in map to compare |C| (|B| = |C|), the distances D(B,C)

and D(C,B) are equal (D(B,C) = D(C,B)) regardless of the map taken as

a base map. The overall distance between maps D is then determined in the

same manner as for criterion G (12.8) resp. (14.2).

To distinguish between the criterion used, the overall distance will be ref-

erences as DG for general criterion, resp. DR for the restrictive one.

14.2 Healthy and Ill Children Distinction

The experiment deals only with two-syllabic words. To simplify the analysis,

utterances involved are limited to only following: “paṕır”(paper), “pivo”(beer)

and “sokol”(falcon).

Source data for the experiment are utterances obtained from 65 healthy

children (43 female, 22 male) and 44 children suffering developmental dys-

phasia (14 female, 30 male). These experiments are supported by extended

database of children utterances. Previous experiments were done on database

with lower number of utterances. These (previous) experiments were consid-

ered to be an introductory study.
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Only the healthy children without any additional speech impediment are

included. Since the number of dysphatic children in our database is relatively

low, all the speakers suffering developmental dysphasia who were able to pro-

nounce the utterances requested were involved in the experiment. Degree of

the disease varies a lot through that set, children with all three degrees we in-

ternally differentiate (light handicap, medium handicap and serious handicap)

are involved. For each the speaker, all three utterances were obtained.

Two sets are constructed for each of the utterance: the first consists only

of the utterances pronounced by healthy children (further referenced as H).

Another set is made of the utterances pronounced by dysphatic children (fur-

ther references as I). Each utterance is parameterized using matching pursuit

on frequency bands with equal number of atoms in each band (35 atoms in

each of the 24 bands). As a representation of each utterance, 840 atoms are

obtained. There are 54600 γ vectors for each of the utterances “paṕır”(paper),

“pivo”(beer) and “sokol”(falcon) in training set H. For set I, exactly the same

method as for set H is utilised and 36960 atoms are obtained.

To train KSOMs only the γ vectors representing particular atom approx-

imating an utterance are used. Two maps were trained: one for set H and

another one for set I. Feature vectors FH obtained from the maps trained

on set H were then compared to the features vectors FI given by the maps

trained on set I.

The size of the maps is determined with the respect to the previous ex-

perience gained when solving similar tasks [?]. To explore influence of the

size to results of comparison, three maps with dimensions of 30×30, 40×40

and 50×50 are trained for both sets. Results of comparisons are described in

following sections, separately for criterion G and R.

14.2.1 Results for General Criterion G

Results for general criterion G are in tables 14.1 (utterance “paṕır”- paper),

14.2 (“pivo”- beer) and 14.3 (“sokol”- falcon). Each table contains results of

comparison between the maps trained for the utterances given. Both data sets

are taken into account: healthy (denoted as H) and ill children (denoted as

I).

It could be seen that the distance between maps DG tends to be lower

when comparing maps of the same size. For utterance “paṕır”(paper), this is

valid with exception when comparing maps from group of dysphatic children

(I) of sizes 40×40 and 50×50. The same results are obtained for utterance

“pivo”(beer) and, as well, for utterance “sokol”(falcon).
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This leads to conclusion, that for given utterance and given parameteriza-

tion (840 γ-s) the set of feature vectors for dimensions sizes 40×40 and 50×50

is inevitably large and the features contained are not generalized enough. The

result is influenced by the number of utterances in each of the group, so it

is not possible to conclude that for these utterances are maps of 40×40 and

50×50 neurons too large. Also, it is not possible to distinguish whether the

issue is in maps trained on utterances of healthy children (H), or in the maps

for dysphatic children (I) or both.

Assumption is that the convenient size of a net is proportional to number

of γ vectors obtained for each utterance. However the experiment presented

here does not consist of enough data to prove the assumption.

Diagonal of a table (i.e. when comparing the set to itself) must be equal

to 0, or might be very small errors caused by a rounding during computation.

↓ C; B → H 30×30 H 40×40 H 50×50 I 30×30 I 40×40 I 50×50
H 30×30 0.0000 0.0389 0.0321 0.0484 0.0401 0.0352
H 40×40 0.0433 0.0000 0.0328 0.0486 0.0386 0.0365
H 50×50 0.0447 0.0419 0.0000 0.0495 0.0437 0.0371
I 30×30 0.0534 0.0498 0.0391 0.0000 0.0421 0.0357
I 40×40 0.0509 0.0436 0.0390 0.0473 0.0000 0.0361
I 50×50 0.0550 0.0534 0.0420 0.0483 0.0447 0.0000

Table 14.1: Distances DG for utterance “paṕır”(paper)

↓ C; B → H 30×30 H 40×40 H 50×50 I 30×30 I 40×40 I 50×50
H 30×30 0.0000 0.0303 0.0267 0.0400 0.0359 0.0335
H 40×40 0.0369 0.0000 0.0297 0.0416 0.0387 0.0328
H 50×50 0.0375 0.0343 0.0000 0.0462 0.0411 0.0362
I 30×30 0.0598 0.0527 0.0494 0.0000 0.0370 0.0360
I 40×40 0.0664 0.0590 0.0532 0.0458 0.0000 0.0376
I 50×50 0.0635 0.0532 0.0500 0.0464 0.0410 0.0000

Table 14.2: Distances DG for utterance “pivo”(beer)

↓ C; B → H 30×30 H 40×40 H 50×50 I 30×30 I 40×40 I 50×50
H 30×30 0.0000 0.0253 0.0260 0.0316 0.0307 0.0272
H 40×40 0.0299 0.0000 0.0208 0.0349 0.0321 0.0266
H 50×50 0.0358 0.0251 0.0000 0.0384 0.0337 0.0294
I 30×30 0.0380 0.0361 0.0333 0.0000 0.0314 0.0284
I 40×40 0.0437 0.0394 0.0343 0.0392 0.0000 0.0299
I 50×50 0.0458 0.0406 0.0369 0.0408 0.0357 0.0000

Table 14.3: Distances DG for utterance “sokol”(falcon)

14.2.2 Results for Restrictive Criterion R

Result obtained for the restrictive criterion R are in tables 14.4 (“paṕır”-

paper), 14.5 (“pivo”- beer) and 14.6 (“sokol”- falcon). Structure of the table

is the same as for tables described in section 14.2.1.
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The second criterion shows a different phenomenon. The sensitivity varies

proportionally to the difference in the size of maps. The resolution is best

when comparing maps with the same dimensions. In that case, the results are

better than using criterion G.

↓ C; B → H 30×30 H 40×40 H 50×50 I 30×30 I 40×40 I 50×50
H 30×30 0.0000 0.0431 0.0329 0.0957 0.0442 0.0366
H 40×40 0.0431 0.0000 0.0388 0.0622 0.0972 0.0469
H 50×50 0.0329 0.0388 0.0000 0.0415 0.0470 0.0822
I 30×30 0.0957 0.0622 0.0415 0.0000 0.0466 0.0367
I 40×40 0.0442 0.0972 0.0470 0.0466 0.0000 0.0437
I 50×50 0.0366 0.0469 0.0822 0.0367 0.0437 0.0000

Table 14.4: Distances DR for utterance “paṕır”(paper)

↓ C; B → H 30×30 H 40×40 H 50×50 I 30×30 I 40×40 I 50×50
H 30×30 0.0000 0.0321 0.0275 0.1044 0.0398 0.0352
H 40×40 0.0321 0.0000 0.0329 0.0604 0.1272 0.0374
H 50×50 0.0275 0.0329 0.0000 0.0537 0.0717 0.0888
I 30×30 0.1044 0.0604 0.0537 0.0000 0.0395 0.0372
I 40×40 0.0398 0.1272 0.0717 0.0395 0.0000 0.0446
I 50×50 0.0352 0.0374 0.0888 0.0372 0.0446 0.0000

Table 14.5: Distances DR for utterance “pivo”(beer)

↓ C; B → H 30×30 H 40×40 H 50×50 I 30×30 I 40×40 I 50×50
H 30×30 0.0000 0.0264 0.0268 0.0791 0.0331 0.0281
H 40×40 0.0264 0.0000 0.0224 0.0397 0.0920 0.0304
H 50×50 0.0268 0.0224 0.0000 0.0351 0.0414 0.0783
I 30×30 0.0791 0.0397 0.0351 0.0000 0.0348 0.0294
I 40×40 0.0331 0.0920 0.0414 0.0348 0.0000 0.0340
I 50×50 0.0281 0.0304 0.0783 0.0294 0.0340 0.0000

Table 14.6: Distances DR for utterance “sokol”(falcon)

But for this case the nets must be of the same size. It would further com-

plicate analysis, but only in if optimal net size is also significantly dependent

on the amount of vector in training set.

If there is only relatively small difference between the number of γ vectors

for each set of utterances, the criterion R should be prefer over criterion G.

14.3 Discussion

This section describes first steps on the way to get reliable and robust classifica-

tion for utterances pronounced by children with developmental dysphasia. The

overall processing starting from parameterization of utterances to classification

of speaker based on several utterances has been described. The parameteri-

zation is based on matching pursuit algorithm [?] improved by matching on

spectral bands.
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Feature extraction is based on Kohonen Self-Organizing Maps [?]. The

ability of KSOM to neglect disturbing effect like noise and speech artefacts [?]

is utilised. Matching pursuit performs parameterization that is adjusted right

to the signal. The only prerequisite is a proper dictionary of functions. The

dictionary should be large enough to represent a signal, but large dictionary

slows the computation. The difference and potential disadvantage is that the

signal is not parameterized in vectors that represents it in equidistant man-

ner. Representation in the terms of atoms is closer to an analytic description.

Because of that successive processing (classification, etc.) is being adopted.

Since internal weights of neurons in maps have similar meaning as vectors

γ, the features extracted might be resynthesized to the form of a signal. The

signal might be then assessed by a speech therapist and the results obtained

(based in empirical experience of a trained specialist) compared to the results

of the method described.

Presented experiment shows that the method has ability to distinguish

between utterances pronounced by healthy children and children suffering de-

velopmental dysphasia. The simple criteria were chosen to only show the

potential of the method. There is a still a lot of degrees of freedom (e.g. size

of γ vectors, number of features (size of F ), etc.) that must be carefully exam-

ined and their influence described. Assumption that the convenient size of the

net is proportional to the number of γ vectors obtained for each one utterance

should be the starting point. For the presented experiment, these parameters

were set according to the previous experience when solving similar problems

[?, ?].

The parameterization using matching pursuit algorithm and further feature

extraction by Kohonen Self-Organizing Maps has potential to be further ex-

tended for software intended to clinical praxis. The method is being developed

to provide more precise results that allows to classify children with develop-

mental dysphasia into several groups based on the degree of disease. Matching

pursuit parameterization is being used besides the common parameterizations

(LPC, PLP and MFCC) and all the results obtained will be included in a

speaker-overall classification.

The overall classification then would be compared to results of psycholog-

ical and logopedical examination as well as to the result of methods based

on electroencephalography (EEG) analysis and magnetic resonance analysis

(MRI) and further adjusted. The aim is to provide software that allows fast

classification and performs processing of utterances recorded during examina-

tion. This will provide a doctor feedback during therapy and also offer cheaper,

instant and children friendly way how to verify treatment right during or right

after examination.
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Chapter 15

Fine Tuning of Classification

Previous chapter described experiment where modified matching pursuit al-

gorithm is utilized to distinguish between health and ill children. Matching

Pursuit on spectral bands described in chapter 11 proved to have ability to

detect features specific to speech of children with DD.

This chapter deals with extent of algorithm towards improvement od al-

gorithm that allows fine classification. The aim is to possess whether the

algorithm is sufficient for the task.

This experiment utilizes parameterization matching pursuit on spectral

bands. Since utterances are taken from database where are stored as sepa-

rated - one file, one utterance with aligned start, there is no need to introduce

time slicing. So, for the experiment only frequency are bands are considered

(as was discussed in chapter 11).

The scheme of the experiment is following: records of two utterances (tele-

vision - “televize”and multi-coloured - “r̊uznobarevný”). Selection of utter-

ances is not arbitrary, children with heavy forms of dysphasia have troubles to

pronounce word with 4 or more syllables.

This utterance was reported to cause pronunciation problems to children

with impairment. Utterance “televize”(television) is include because of having

regular structure (three same vowels, two of them in a row) and should also

cause problems to children with DD.

Utterance are taken from database and it is known in advance whether

they are pronounced by healthy or ill children. The task does not deal with

classification of healthy/ill as was described in chapter 14, however the method

should be also used for this. The difference to the experiment described in

chapter 14 is that we deals not with comparing two networks (each trained on

particular set) but with single utterance. The results of the experiment should

show whether the method has potential to perform fine classification and reveal

what are the factors that have to be carefully adjusted to get reliable results.
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15.1 Description of the Method

Experiment involves utterances of both healthy and ill children in age of 4 to

10 years. Number of utterances and speakers is summarized in table 15.1.

children utterances

utterance healthy ill healthy ill

“r̊uznobarevný”

(multi-coloured)

70 67 140 290

“televize”(television) 70 67 140 264

Table 15.1: Number of speakers and utterance involved in experiment

Each utterance is parameterized using 35 atoms for each spectral band. The

definition of spectral bands is according to table 11.1. The number of atoms

within one band is overwhelming, so only 10 first most significant atoms are

included in training set.

In figures 15.1 and 15.2 are boxplot diagrams that shows distribution of

atoms within one spectral band. Each of the box in figure represent distribu-

tion of atoms that are determined on particular place - order of the atoms is

on x-axis. Edges of the box represents 25th percentile, red line in the centre

of a box represents medians. The whiskers shows most extreme data points

that are not being outliers. Plots help to compare distribution and range of

atoms. Since the plots serves only to adjust the method, only atoms gathered

from healthy speakers are considered.

By detailed comparison of the diagrams for each of the band, we might

obtain bands and the number of significant atoms that shows the most differ-

ences. This might later help to adjust the method, for example only several

bands would be considered for classification. However this experiment involves

all bands.

After parameterization of all utterances, KSOM are trained separately for

utterances of healthy and utterances of ill children. These networks then serve

as pattern and single utterances of particular children are compared to them.

The difference to the experiment described in chapter 14 is that there is no

comparison between maps trained to healthy children and children with im-

pairment. Rather, there is comparison of atoms gathered from utterances of

single children which are compared to both networks.
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Figure 15.1: Distribution of atoms obtained by MP from utterances of

healthy children (band with frequency range 400 to 510 Hz)

Figure 15.2: Distribution of atoms obtained by MP from utterances of

healthy children (band with frequency range 3150 to 3700 Hz)
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15.2 Classification of an Utterance

Single utterances are compared to the nets based on distance (15.1).

du = min


√√√√ N∑

n=0

(mn − gu,n)2


M

(15.1)

Where M is the number of atoms and where N is dimension of atoms gu
(10.17). Neural network is represented by its neurons m which have the same

dimension as atoms gu. Square root is not necessary because results are only

for comparison. Equation (15.1) then becomes

du = min

{
N∑
n=0

(mn − gu,n)2

}
M

(15.2)

Distance du is computed for each single atom that comes from utterance

being compared. Individual distance are then summed up from and forms

overall distance of utterance D.

D(U) =
∑
u∈U

du (15.3)

Where U is set of atoms that comes from parameterization of utterance.

15.3 Results

Distance D for several arbitrarily chosen utterances that were excluded from

training set and then utilized as verification vectors are in figures 15.3 and 15.3.

Figure 15.3 shows result for utterance “televize”(television). In figure 15.4 are

results for utterance “r̊uznobarevný”(multi-coloured). Particular utterances

from healthy children start with H, whereas utterances from ill children start

with L. Number after the letter denotes speaker.

15.4 Discussion

The experiment was carried out to find out whether the parameterization based

on matching pursuit algorithm is suitable for classification of utterances pro-

nounced by children with developmental dysphasia. The parameterization is

based on matching pursuit algorithm [?] improved by matching on spectral

bands. Parameterized speech is further used to train Kohonen Self-Organizing
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Figure 15.3: “televize”(television)

Figure 15.4: “r̊uznobarevný”(multi-coloured)
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Maps [?]. KSOM delivers two generalized set of features contained in speech of

healthy children and children with developmental dysphasia. Single utterances

are then compared to these patterns.

The comparison is influenced by proper selection of number of atoms in

each frequency band. Results presented were obtained for constant number

of atoms (10) in each the band. Possible improvement might be obtained by

determining threshold based on power distribution in atoms according to the

order in which are they determined by modified MP algorithm (see figures 15.1

and 15.1).

Presented experiment shows that the method has ability to distinguish

between utterances pronounced by healthy children and children suffering de-

velopmental dysphasia. This ability was also demonstrated in experiment de-

scribed in chapter 14. However the difference in the procedure allows classify-

ing just one speaker.

Experiment was worked out only for two types of utterances. Results of the

experiment shows that the method has have potential for further extension to

perform fine classification and distinguish stage of the disease. To gather more

robust classification for one speaker it is substantial to judge several utterances

and deliver final classification of the speaker based on results obtained for all

these utterances.

To obtain more stable results and also to sort out speakers to the groups

according to the degree of impairment, it is expedient to use more than two

generalized sets (trained KSOMs).

Limiting factor for performing more experimental work and perform all

adjustment is implementation. The algorithms were implemented in Python

language [?]. The advantage is that all changes and adjustment might be

done relatively easy, however extensive computation demands with conjunction

of interpreted language produce relatively long computation times. It takes

approximately 16 hours to compute results presented in this chapter .
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Chapter 16

Conclusion

The method described in the thesis was developed to analyse disordered chil-

dren speech. We focused on children with developmental dysphasia and believe

that utilization of the method in clinical practise will bring more insight into

progression and treatment of the disease and help to think out efficiently treat-

ment of the disease.

This work is only a part of on-going research project focused on treatment

of developmental dysphasia. In cooperation with the department of Paediatric

Neurology in 2nd Faculty of Medicine of Charles University in Prague we are

developing methods for utterance analysis that further advance diagnosis of

the children with DD and help to find the most efficient therapy.

Laboratory of Artificial Neural Network Applications is focused on devel-

opment of classification method based on artificial neural network. ANN,

namely Kohonen Self-Organizing Maps, were chosen because of their robust-

ness to artefacts and noise present in the signal. This specific feature helps to

develop methods that might be later used directly in clinical practise without

any special and expensive equipment. Also, children examined is not forced to

change the known environment and might stay in examination room of special-

ist that is well known for him. This advantage is vital for not insignificant part

of patients that refuses to communicate if they are in unknown environment.

Another advantage is that KSOM is an effective platform for visualization

of high-dimensional data. This unique ability helps to fully understand con-

tents of a data set and exploit contents in a way that is more convenient for

physicians.

Thesis started with testing of commonly used speech parameterization

(MFCC, LPC and PLP). We observed unreliable classification results, espe-

cially in the case where MFCC and PLP were utilized. Results reported shown

that these parameterization are not suitable for speech with major impairment.
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Classification based on MFCC could be used in the task of distinguishing

whether a child is healthy or suffers developmental dysphasia. However, MFCC

is not convenient for the determining the progress of the disease.

For the task of deterring the progress of the disease, PLP and LPC param-

eterizations seem to be more suitable. Classification based on PLP coefficients

shows similar inaccuracy as MFCC, but the results are not so much influenced

as in the case of MFCC.

Explanation to the observation is that parameterization used were devel-

oped and optimized for speech recognition. Developmental dysphasia causes

impairment that is over limits that were taken into account when the param-

eterizations were designed and thus the main features present in the speech of

children suffering DD are suppressed. For the task given, purpose of the pa-

rameterization is not to give perfect representation for recognition, but rather

describe the differences. Because of that we decided to develop parameteriza-

tion that is suitable for speech of dysphatic children and possibly be adaptable

to another impairment.

We focused on parameterization based on wavelets and, after several in-

troductory experiments, decided to further explore class of pursuit algorithms.

Idea was to adjust some of the algorithms to perform well on speech with im-

pairment and avoid time-consuming time of labelling utterances. Labelling of

the utterances is difficult because of mispronunciation, various artefact caused

by the movements of fidget children. Intention was to develop algorithm that

does that autonomously or doesn’t rely on labelling.

Finally, matching pursuit algorithm was chosen. The algorithm is reported

to be utilized in fields of signal, image and video coding, shape representation

and recognition and as well in the field of biomedical signal analysis (EEG and

ECG). The algorithm must have been improved to perform better on speech

signal.

We decided not implement improvements that take into consideration fea-

tures of vocal or auditory tract - i.e. how the speech is produced and perceived

and its advanced implementation. Reason for declination was that these tech-

niques are utilized in parameterization mentioned and these parameterization

were observed not to work perfectly on speech with impairment.

Rather, we adopted simple time and frequency dividing scheme and ensure

that decomposition obtained from MP are not focused only on the lower part

of the spectral where the energy of the signal is concentrated.

The parameterization using modified MP algorithm and feature extraction

by Kohonen Self-Organizing Maps has potential to be further extended for

software intended to clinical praxis. The method has been developed to pro-

vide more precise results that allows to classify children with developmental
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dysphasia into several groups based on the degree of disease. Presented ex-

periment shows that the method has ability to distinguish between utterances

pronounced by healthy children and children suffering developmental dyspha-

sia.

16.1 Further Development

To gather more robust classification for one speaker it is substantial to judge

several utterances and deliver final classification of the speaker based on results

obtained for all these utterances. To find and adjust overall classification

scheme, it is necessary to compare results obtained from the method with

the findings of physicians and discuss eventual discrepancies. Final aim is to

develop method that will classify children to three groups: healthy, with DD

(light form, medium form and hard form). Final method should incorporate

comparison of one utterance to several groups to improve robustness.

Since no features specific for DD were taken into account during develop-

ment and the method was developed in a way that allows adaptation to features

in speech in general, it is probable that the classification based on matching

pursuit and Kohonen Self-Organizing Maps will perform well for another kind

of impairment.

Also, in classification method presented is a still a lot of degrees of freedom

either for matching pursuit (size of γ vectors, number of features, extent of

dictionary, etc.) as well as for KSOM (size of the network, adjusting of gain

during training). Settings of these parameters was adjusted for utterances in

experiments. Although settings would probably work for the rest of utterances

that are on list (and recorder during each session with therapist), it is desirable

that influence and impacts of variation of this parameterization has to be

evaluated and described.

Before extensive testing must be rewritten to further decrease computa-

tion demands. The current situation is that the algorithm is implemented in

python [?]. This is advantageous when dealing with development, since it al-

lows software to be easily debugged and modified. But to fine tune algorithm

to perform fine classification task on DD (determine advance of disease) an

extended set of computation is to be performed. Nowadays the one series of

computation for one set of parameters takes approximately 5 to 13 hours on

powerful server.
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The algorithm is now being rewritten in C++ language to be computed

in multithreaded way on many cores in one time. Also, implementation on

Epiphany parallel architecture accelerator [?] is being considered. Since both

main algorithmic parts, matching pursuit and KSOM, are easily parallelized,

this allows setting of all parameters to finally perform well enough to perform

such extensive experiments.
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[14] Komárek V., Hrnč́ır Z., “Analyses of EEG recordings,” Neural Network

World, vol. 14, no. 1, pp. 21 – 25, 2004, ISSN 1210-0552.

[15] Geach J. E., “Unsupervised self-organised mapping: a versatile empirical

tool for object selection, classification and redshift estimation in large

surveys,” Monthly Notices of the Royal Astronomical Society, vol. 419,

no. 3, pp. 2633 – 2645, Jan. 2012, ISSN 1365-2966.

[16] Tetzlaff R., Senger V., “The seizure prediction problem in epilepsy:

Cellular nonlinear networks,” IEEE Circuits and Systems Magazine,

vol. 12, no. 4, fourth quarter 2012, ISSN 1531-636X.

[17] Singh S., “Quantitative classification of conversational language using

artificial neural networks,” Aphasiology, vol. 11, no. 9, pp. 829 – 844,

1997, ISSN 1464-5041.
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česky (Talking with Computer in Czech), Academia, 2006, ISBN 80-200-

1309-1 (in Czech).

[25] Rabiner L., Juang B. H., Fundamentals of Speech Recognition, Prentice-

Hall, 1993, ISBN 978-0130151575.

[26] Mallat S., Zhang Z., “Matching pursuit with time-frequency dictionar-

ies,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397

– 3415, Dec. 1993, ISSN 1053-587X.

[27] Mallat S., A Wavelet Tour of Signal Processing, Academic Press, 2nd

edition, 1999, ISBN 978-0124666061.

[28] Schneider R., Lau S., Kuhlmann L., Vogrin S., Gratkowski M., Cook M.,

Haueisen J., “Matching pursuit based removal of cardiac pulse-related

artifacts in EEG/fMRI,” in World Academy of Science, Engineering and

Technology, 2011.

[29] Vařeka L., “Matching pursuit for p300-based brain-computer interfaces,”

in Proceedings of the 35th Internation Conference on Telecommunica-

tions and Signal Processing (TSP), July 2012, pp. 513 – 516.

[30] Bénar C. G., Papadopoulo T., Torrésani B., Clerc M., “Consensus

matching pursuit for multi-trial EEG signals,” Journal of Neuroscience

Methods, vol. 180, no. 1, pp. 161 – 170, May 2009, ISSN 0165-0270.

[31] Durka P. J., Blinowska K. J., “Analysis of EEG transients by means of

matching pursuit,” Annals of Biomedical Engineering, vol. 23, pp. 608

– 611, 1995, ISSN 1573-9686.

105



REFERENCES

[32] Durka P., Matching Pursuit and Unification in EEG Analysis, Artech

House, 2007, ISBN 978-1580533041.

[33] Grais E. M., Erdogan H., “Single channel speech-music separation using

matching pursuit and spectral masks,” in IEEE 19th Conference on

Signal Processing and Communications Applications (SIU), Apr. 2011,

pp. 323 – 326.

[34] Sturm B. L., Gibson J. D., “Matching pursuit decompositions of non-

noisy speech signals using several dictionaries,” in Proceedings of the

International Conference on Acoustics, Speech, and Signal Processing

(ICASSP’06), May 2006, vol. 3.

[35] Gabor D., “Theory of communication,” Journal of I.E.E., vol. 93, no.

26, pp. 429 – 441, 1946.

[36] Stern R. M., Morgan N., “Hearing is believing: Biologically inspired

methods for robust automatic speech recognition,” IEEE Signal Pro-

cessing Magazine, vol. 29, no. 6, pp. 34 – 43, nov 2012, ISSN 1053-5888.

[37] Chi T., Ru P., Shamma S. A., “Multiresolution spectrotemporal analysis

of complex sounds,” Journal of the Acoustical Society of America, vol.

118, no. 2, pp. 887 – 906, aug 2005, ISSN 0001-4966.

[38] Kim C., Stern R. M., “Power-normalized cepstral coefficients (PNCC)

for robust speech recognition,” in IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), march 2012, pp. 4101

– 4104, ISSN 1520-6149.

[39] Gu L., Harris J. G., Shrivastav R., Sapienza Ch., “Disordered speech

assessment using automatic methods based on quantitative measures,”

EURASIP Journal on Applied Signal Processing, vol. 2005, no. 9, pp.

1400 – 1409, Jan. 2005, ISSN 1687-6180.

[40] Krstulovic S., Gribonval R., “MPTK: Matching Pursuit made tractable,”

in Proceedings of the International Conference on Acoustics, Speech, and

Signal Processing (ICASSP’06), May 2006, vol. 3, pp. 496 – 499.

[41] Lutz M., Programming Python, O’Reilly, 4th edition, 2011, ISBN 978-

0596158101.

[42] Hermansky H., “Perceptual linear predictive (PLP) analysis of speech,”

Journal of the Acoustical Society of America, vol. 87, no. 4, pp. 1738 –

1752, Apr. 1990, ISSN 0001-4966.

[43] Davis S. B., Mermelstein P., “Comparison of parametric representations

for monosyllabic word recognition in continuously spoken sentences,”

106



REFERENCES

IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 28,

no. 4, pp. 357 – 366, Aug. 1980, ISSN 0096-3518.

[44] Milner B., Shao X., “Clean speech reconstruction from MFCC vectors

and fundamental frequency using an integrated front-end,” Speech Com-

munication, vol. 48, no. 6, pp. 697 – 715, June 2006, ISSN 0167-6393.

[45] Tyagi V., Wellekens C., “On desensitizing the mel-cepstrum to spuri-

ous spectral components for robust speech recognition,” in Proceedings

of IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP’05), 2005, vol. 1, pp. 529 – 532.

[46] Zhou X., Garcia-Romero D., Duraiswami R., Espy-Wilson C., Shamma

S., “Linear versus mel frequency cepstral coefficients for speaker recog-

nition,” IEEE Automatic Speech Recognition and Understanding Work-

shop, 2011.

[47] Singh N., Khan R. A., Shree R., “MFCC and prosodic feature extraction

techniques: A comparative study,” International Journal of Computer

Applications, vol. 54, no. 1, pp. 9–13, September 2012, Published by

Foundation of Computer Science, New York, USA, ISSN 0975 - 8887.

[48] Markel J. D., Gray A. H., Linear Prediction of Speech, Springer-Verlag,

1976, ISBN 0-13-007444-6.
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using neural networks,” in Analýza a zpracován signál̊u VI, Praha, 2005,
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vývojovou dysfázíı - analysis of speech of children with developmental

dysphasia,” in Trendy v biomedićınském inženýrstv́ı, Sborńık 7. česko-
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