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Abstract

Contracting in multi-agent systems is the key component for enabling agents cooperation in
various environments. Standard means of contracting, i.e. task allocation, is supported by well-
defined contracting protocols and agent strategies. In open heterogeneous environments, where
the agents follow their private constraints and goals, there is a need for more complex contracting
schemes. Such schemes are based on complex interaction protocols, private knowledge protection
and commitments security.

The design of the contracting mechanism composes of (i) definition of the inter-agent inter-
action protocol and (ii) internal agent decision making design. Separation of these two concepts
enables high flexibility in the multi-agent system design. A well-defined interaction protocol en-
sures feasibility and fairness of the contracts, while keeping privacy of the agent decision making
process. Local agent decision making comprises of application dependent mechanisms, such as lo-
cal optimization, planning or scheduling. The global result of the multi-agent contracting process
can be interpreted as a distributed plan, a solution of an allocation or a scheduling problem. More
generally, it can be interpreted as a set of social commitments that individual agents made. The
commitments representation supports contract execution, monitoring and corrections in the case
of an execution failure. In a cooperative environment, where the agents follow some shared agreed
goals, the contracting problem is often reduced to distributed problem solving. In a competitive
environment, the contracting problem is more oriented to identification of suitable partners and
contract negotiation. The protocols used in competitive environment have to deal with execution
failures, commitment corrections and potential decommitments with penalties as well.

The application scenarios of multi-agent contracting vary from production planning and
scheduling, cooperative problem solving in logistics domains to formation of virtual organizations.
In all these mentioned domains strong aspects of agent-based interpretation play an important
role. Examples of such features are decentralized solution enabling distributed execution of agents,
privacy of individual agents, openness of the system, and heterogeneous agent strategies and their
internal goals and metrics.

This work summarizes advances in task-oriented problem solving and applicability in man-
ufacturing and production planning. It is followed by an introduction of a contracting protocol
oriented to the domain of virtual organizations and a contracting model minimizing private knowl-
edge disclosure. The plan representation based on the social commitments and presentation of
study of commitments stability during plan execution concludes the thesis.
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Chapter 1

Introduction

A cooperation between agents is defined as a provider-customer relationship with defined con-
ditions – i.e. the provided service (of proper quality), the price, the due-date, penalties, etc.
An established cooperation is confirmed by a contract concluded by both the sides. The utility
gained by each participant in the contract is given by the conditions of the cooperation and each
participant’s current state.

Agents share their knowledge and dynamically form teams to achieve their goals [17]. Such
goals do not need to be necessarily related or compatible [2]. An agent also keeps knowledge
about other agents as well as the level of confidence in that knowledge. In the area of multi-agent
systems the concept of clustering individuals into cooperating groups is often used, for example
an alliance and a coalition [43]. The alliance is a collection of units that share information about
their resources and all agree to form possible coalitions. The alliance is regarded as a long-term
cooperation agreement among the units. The coalition is a set of units agreed to fulfill a single,
well-specified goal. A coalition, unlike an alliance, is thus usually regarded as a short-term
agreement between collaborative agents.

The modern cooperation concepts inspired by industrial domain go from the subcontracting,
through the supply chains to Virtual Organizations (VO) [38]. Collaboration between companies
is needed for businesses that cannot be executed by individual companies on their own [9, 59]. In
business-to-business e-commerce, a group of collaborating partners may act as a single company
and thus create a more competitive whole [12]. The commonly referred work of Davidow and
Malone from early 90’s suggests Virtual Corporations as an industrial strategy for the twenty-first
century [13]. Though innovative, it introduces a logical continuation of existing collaboration
strategies [60].

The agent-based representation of collaborating entities enable to model cooperation pro-
cesses from a global point of view while the privacy and autonomy of the actors are secured. The
problems like team formation, alliance creation, task allocation or distributed planning can be
modeled as contracting problem in multi-agent system. There exist various methods of negoti-
ating and coordinating of agents’ actions. Lomuscio et al. defines negotiation as ”. . . the process
by which a group of agents communicate with one another to try to reach agreement on some
matter of common interest.” [34]. They define two components of the negotiation mechanism:
the negotiation strategies and the negotiation protocol. The former one defines lists of actions
of individual agents that they have planned to reach their desires. The latter one (the protocol)
defines rules for messages that are allowed in the message sequence. To enable the cooperation
using particular contracting schema or protocol the agents still have to challenge the issues of (i)
identifying potential partners for collaboration and (ii) information sharing between potential
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CHAPTER 1. INTRODUCTION 2

partners while keeping maximal possible privacy of their internal data, intentions and goals [27].
An overview of the contracting problem in multi-agent systems is described in Section 1.1

followed by an introduction to Virtual Organizations concepts in Section 1.2. An introduction
of the most important contracting protocols is given in Section 1.3. The issues of information
sharing are addressed in Section 1.4. This chapter is concluded by the case studies documenting
the applicability of the introduced research advances in Section 1.5. Sections 1.2 and 1.3 are
mainly based on [52], which is also included in Appendices page 55. Section 1.4 is based based
on [25] and [14], which is also included in Appendices page 83.

1.1 Contracting in Multi-agent Systems

The problem of controlling entities in a heterogeneous distributed environment is crucial for
many domains [16]. Classical centralized methods depend on one central planning system. Such
a system gathers all required input data before the planning process takes place. Then the plan
(a set of plans respectively) is generated using these data. This approach faces various problems.
One problem is the need for private local knowledge of the actors. The other problem is the
need for real-time replanning based on environments and conditions changing dynamically over
time. On the other hand, in distributed methods of planning, each entity plans its own plan.
Cooperation and heading towards common goals is done by various methods of negotiation.
Distributed planning has been viewed as either (i) planning for activities and resources allocated
among distributed agents, (ii) distributed (parallel) computation aimed at plan construction or
(iii) plan merging activity.

A multi-agent system design is composed of two components: (i) local agent algorithms design
that respects autonomy, individual constraints, goals and resources of agents and (ii) inter-agent
interaction schemes that provide social aspects of the whole system and support (emergent)
macro behavior of the multi-agent system. Agent interactions are motivated by cooperative
solving of a given problem (even in the competitive environment). Similarly to social aspects
referred to as comparative advantage in economy [37], where a group of individuals cooperates
on the delivery of a service or goods at a lower opportunity cost than other groups, the agent
community tries to find a solution maximizing social welfare [4]. Agent theory recognizes various
types of agent environments based on various points of view. Basically, the nature of the agent
environment affects (or defines) the behaviour of members of an agent community operating
within the environment. A cooperative problem solving has been formalized by Wooldridge and
Jennings by means of social commitments in [61]. One of significant points of view along which
agent environments may be distinguished is a primary motivation of the agents to engage a
cooperative problem solving (i.e. a mutual cooperation) [57].

There are two most often recognized environments as the differences between them are sig-
nificant in many ways: collaborative and competitive. Agents in a collaborative environment are
motivated primarily by a common interest in maximizing their social welfare1 while agents in
a competitive environment maximize rather their individual utilities, no matter what the social
welfare is (the agents are so called self-interested) [46, 43, 6]. As shown in [57], the welfare max-
imization can be transformed to minimization of the cost of assignments of tasks (sub-problems)
to individual agents. This cost is computed locally using planning algorithms of individual
agents. The global overall solution is minimized using interactions between agents – task al-
location, delegation and reallocation. The allocation of a task to an agent is represented by
a social commitment that an agent undertakes [31, 32]. Social commitments in both coopera-

1A social welfare is usually defined as a total sum of individual utilities of all members of the observed agent
community.
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tive and competitive environment also differ substantially as well as their possible evolution. In
both cases, the commitment representation provides a powerful tool for task execution stability
and performance in dynamic and/or uncertain environments. The commitment-based approach
enables to change the solver-centric point of view to a more task-centric point of view and en-
hance the solver operations for heterogenous commitments in dynamic environments. Most of
the multi-agent systems designed and implemented for planning support operates mainly in co-
operative environment. In such setting the contracting algorithms follows well defined protocols
and the objective function of the algorithms are mostly based on cost minimization [57, 54].

The multi-agent systems supporting automated or semi-automated cooperation and coordi-
nation of independent individuals (such as Virtual Organization) operate in rather competitive
environments. A utility function of the each agent can differ and the goals do not need to be
compatible. A negotiation protocol used should cover all the aspects of competitive domain,
such as penalty and decommitment negotiation [52, 6].

Cooperative and Competitive Environments

Let us introduce a difference between a collaborative and a competitive multi-agent environment
[3]. By a collaborative multi-agent environment we understand an agent community, where the
agents usually share a common goal which they try to achieve cooperatively. In other cases
the agents may have different goals, but their primary motivation is a maximization of their
social welfare – the total sum of all the individual utilities (profits) of the collaborative agents.
On the contrary, by a competitive multi-agent environment we understand an agent community,
where the primary motivation of the agents is a maximization of their individual utilities; no
matter what the social welfare of the community is (agents are so called self-interested). The
agents establish a cooperation on the process of achieving a common goal only if it contributes
to maximization of their individual utilities. The willingness of the agents to keep the agreed
contracts also differs in both cases [6].

In a collaborative environment, the agents keep the contract as long as the social welfare
is maximized. When the social welfare goes down or a better collaboration opportunity ar-
rives, the agents either freely withdraw from the contracts or are willing to reconfigure the
contract. A collaborative behavior of all agents ensures maximal social welfare after decommit-
ment/reconfiguration. No penalty is charged in this case because both provider and customer
agree with the decommitment or reconfiguration. On the other hand, in a competitive environ-
ment, the contract is secured by penalties to be paid by the agents in case of decommitments or
an other breach of the contract. The contract is kept as long as the individual utilities of all par-
ties are maximized. A feasibility of an eventual reconfiguration is then substantially conditioned
by the utilities as well.

Social Commitments

An evolution of collective commitments has been inspected by Dunin-Keplicz [15]. The analysis
of commitments and their evolution within a group of cooperating agents has been based on
an assumption of persistency of their joint intentions. This assumption is valid in collaborative
environments, but does not necessarily hold in competitive environments. The basic flaw consists
in the fact that self-interested agents do not need to share the joint intention unconditionally.
As the primary motivation of self-interested agents is a maximization of their individual utilities,
any of them tends to drop the joint intention and breach the cooperation as soon as a better
opportunity for a maximization of its individual utility appears. Such opportunity does not need
to be recognized as the best one by all the agents involved in a cooperative problem solving as
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Figure 1.1: Commitment based plan representation example for two agents [32].

well as it does not need to be known to any but one agent in the cooperating group.
While social commitments in collaborative environments could be blind under a common

rationality restriction (i.e. the commitments are never dropped unless achieving a commonly
shared goal becomes unreasonable or mutually disadvantageous for all), Sandholm and Lesser
identify such commitments (referred to as full commitments [46]) as unsuitable and unreasonable
in competitive environments and introduce a new concept of leveled commitments [46]. Basically,
the agents do not commit blindly (unconditionally), but the commitments may be dropped (de-
committed) under a payment of a compensation to the party suffering from the decommitment.
The level of a commitment (its seriousness) is explicitly defined between each two agents. Thus,
on one hand, the self-interested agents are not prevented from behaving naturally (i.e. to be
opportunistic), on the other hand, the compensations to be paid for a decommitment prevent
the agents from a frivolous (irresponsible) behaviour [6]

The set of commitments agreed among a community of agents forms a distributed plan, where
every actor is responsible for its own part [32]. Figure 1.1 shows an example of commitment-based
distributed plan. Every commitment is secured by pre-agreed decommitment rules securing sta-
bility of the plan execution in dynamic, uncertain environment. Such rules can be i.e. relaxation
of the commitment (postponing in time or reducing quality), delegation to another agent (while
keeping the responsibility or paying penalty, etc.), or decommit (dropping of the task) [56, 55].
Causal relations between commitments captured by a commitment graph determine the influence
of the decommitment rule execution to the following commitments in the plan.

Service Level Agreement

A Service Level Agreement (SLA) introduces a formalization of a business relationship (or a part
of business relationship) between two parties (most often between a provider and a customer)
that is a key concept for service management [49, 10]. Most often it specifies a delivery of
products or services for certain price, meeting specified deadlines, quality requirements together
with financial guarantees and other contract terms. It may concern continuous, discrete or one-
shot service/goods deliveries. For example for Virtual Organizations it represents a description
of workflows, schedules, resource allocations, participant roles, prices, sanctions, guarantees,
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legacy-related and other contract management and coordination issues. The SLA introduces
an consistent (possibly reduced) electronic form of the contract signed by contract parties as a
paper document (the reduction may concern mainly non-technical/financial parts), expressed in
a machine-readable language (most often in XML that is nowadays considered as an interoperable
business information exchange format).

Service Level Agreement can be seen as a multi-attribute document that may contain a
relatively great number of attributes with explicit or implicit mutual dependencies. It is possible
to change several of the attributes in one round of a multi-attribute negotiation, but the more
attributes is changes, the less human-readable and comprehensive the negotiation may become.
The scaling of a negotiation may proceed basically in two aspects: (i) number of attributes
(complexity o the negotiated SLA) and (ii) the number or parties involved in the negotiation.
Both these aspects may be more-or-less interlinked. As the contract may require a participation
of more parties equipped with several different competencies (for competency management see
e.g. [? ]), the negotiation complexity may grow substantially. The first-type complexity can be
tackled by means of variable granularity of the SLA (e.g. there is no use of negotiating for a
deadline of a specific task unless the particular partner agrees on taking responsibility for the
task).

The second-type complexity can be tackled by means of a pre-negotiation picking a reasonably
small number of participants for a detailed negotiation on “high-granularity” terms of the SLA
while the rest of participants remain wait for their chance. Both these approaches reducing
the negotiation complexity are crucial when deploying agent systems as business facilitation
means that include human iteration with the system or its control as it reduces the practical
manageability of the negotiation for humans (e.g. a manager does not need to negotiate with all
the 50 of the addressed participants who of only five are going to participate on the contract,
but may reduce the group to 10 most promising partners and carry out the negotiation in a
more human manageable manner). Moreover, it reduces the number of messages exchanged and
thus the amount of data exchanged that may be important e.g. from a internet connection
dimensioning of the company line.

1.2 Virtual Organizations

During the last years, the concept of Virtual Corporations has evolved into various cooperation
models. In our work we focus on the original concept of Virtual Organizations (VO) although
the results may be applied to the other cooperation models as well (e.g. Extended Enterprise).
Gruber specifies the key features of VO also defined by most of another definitions as: an
extensive use of information technology for a coordination of the partners, sharing risk and
knowledge with partners, and focus on core competencies [24]. Defining a competence Neubert
refers to “the cognitive, conative and expressive abilities of humans to organise their activities
in order to produce certain results” [36]. Neubert suppose the competence to be a necessary
prerequisite “realizing a business process to create valuable results” [36] for each VO member.
Fischer describes a core competence of an enterprise as a set of skills, technologies, and know-how
crucial for the added value provided by the enterprise [19].

Classic subcontracting: Production of one partner (producer) is an input for the other one
(consumer).

Technology-driven subcontracting: One partner processes a task, but lacks for a compe-
tency for some of its part. Therefore, for this part of task a suitable supplier is subcon-
tracted.
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Capacity-driven subcontracting: Similar to the previous one but the partner responsible for
the task lacks for a capacity. The missing capacity is outsourced.

The VOs naturally operate in a competitive environment [6]. Every partner follows its own
goals and maximizes its utility. Each of individual utility functions may use different metrics and
they are usually hidden to the others. Standardized protocols for contracting are often insufficient
for bargaining over contracts in such environment as the related negotiation mechanisms do not
account for it [53]. In the agent system each participating partner company is represented by
its agent that is able to undertake predefined automated decision making support on behalf of
the partner company or it enables a user to interact with the system on behalf of the company.
Another possible roles played by agents in VOs are defined e.g. in [28].

Formation of a Virtual Organization (VO) is based on a negotiation between independent
partners willing to cooperate [51, 30, 12]. Individual partners (mostly SMEs) are motivated to
join the Virtual Organization to increase their business opportunities and to participate on larger
scale jobs.

The concept of Request-based Virtual Organizations (RBVO) defined by Roberts comprises
a cluster of partnering organizations that can get along without a hierarchical ordering into a
monolithic organization [44]. The RBVOs are short-living entities that are formed to respond to
business opportunities offered in electronic commerce. RBVOs operations are based on predefined
Service Level Agreements (SLAs). The organization and functioning of RBVOs activities is
ensured by a community of intelligent agents that automate procedures and operations of RBVOs.
In the RBVO defined by Roberts, the agents serve as assistants for human decision makers.

VO Lifecycle

The VO lifecycle and its phases have been described many times in previous works (e.g. [19]).
The basic phases, which are included or extended in most of definitions, are (see Figure 1.2):

Creation phase, which is the first phase after discovering a business opportunity. During this
phase the VO is created: The VO task is defined, VO team is formed, and then the VO is
initiated.

Operation phase, which contains all the value-adding processes of the VO. In some cases there
is a need for an evolution (also called adaptation) of the VO during this phase, e.g. in case
of initiation of new VO members.

Dissolution phase, which finalizes and evaluates the VO operation and potentially opens fu-
ture cooperation. When the task of the VO is accomplished the VO operation may be
evaluated.

Targeting any of these lifecycle phases various authors extend them by the other ones. The
first main phase is the creation. Fischer [19] distinguishes two phases of a creation process. In
the first phase the product is defined and related business process is separated to the partial
processes. In the second one the team of VO members is negotiated and formed. Aiming to
the latter phase (i.e. negotiation and formation, and supporting it by multi-agent technology).
Fischer distinguishes four sub-phases: identification of potential partners, generation of alterna-
tive mappings from partners to partial processes, evaluation of strategic interests and risk, and
finalization of partners and mapping to partial processes [19].
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Figure 1.2: VO lifecycle – the three basic phases and optional evolution/modification phase [52].

Virtual Organizations Creation

The VO establishment is based on an agreement on a cooperation of individual partners. The
concept of social commitments was introduced by Wooldridge and Jennings in [61]. This concept
may be applicable in some VO domains, but it does not address the problem of unilaterally
advantageous dropping of commitments. In most of VO domains an explicit employment of
rewards and penalties is needed as a clear qualification of utilities that the party gains or looses.
A concept of such explicit utility evaluation is then a part of commitments; the party providing
a service commits not only to perform appropriate actions (in order to gain the promised utility
which introduces its motivation), but also to provide a compensation in case of failing (e.g.
a compensation of the profit lost to the other party). The most complete approach to the
commitments in the competitive environment has been presented by Sandholm and Lesser [46]
as leveled commitment contracts (LCC) which include an explicit utility evaluation in a form
of a contract price and penalties. In order to provide a complete decision making mechanism,
the authors applied several significant restrictions (e.g. the utility function needs to be identical
for all participants, opportunity-cost business probability function for every agent is a common
knowledge, etc.). These assumptions are limiting [6] and basically prevent a direct deployment
of LCC in a real application. Nevertheless, LCC introduces a basis for notion of commitments
in competitive environments.

1.3 Interaction Protocols

The scheme of interactions between agents is captured by so called interaction protocols. The
protocols focused on contracting enable the agents agreed on the shared goal, pair-wise commit-
ments or contracts. The substantial assumptions enabling such negotiation are (i) renegotiability
of the involved commitments and (ii) existence of suitable negotiation means for such renegoti-
ation. As the former assumption concerns properties of the commitments as well as attitudes
of the committed agents, the latter concerns a negotiation mechanism comprising of both the
negotiation strategy and interaction protocol [34]. FIPA [18] has standardized the most com-
monly used agent interaction protocols as Request, Query and Subscribe Interaction Protocols,
several auction and brokering protocols as well as the Contract Net Protocol (CNP) proposed by
Smith [48] (FIPA CNP definition is shown on Figure 1.3). by Most of the protocols mainly deal
with the commitment conclusion negotiations, however, an execution of commitments or their
evolution as well as a termination of the cooperative problem solving are mostly underestimated
or completely disregarded. None of the FIPA interaction protocols includes proper means for an
eventual renegotiation or dropping of formerly concluded commitments (i.e. means of replanning
and reconfiguration). FIPA CNP allows for an eventual unilateral decommitment by employing a
Cancel Interaction Protocol. However, this approach principally violates the CNP which cannot
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Figure 1.3: FIPA Contract Net Interaction Protocol Specification [21].

be finished correctly ever since the Cancel Interaction Protocol used (the mutual commitments
are unilatelarly breached). It appears that FIPA interaction protocols were designed to support
full commitments which can be reasonably used in collaborative environments only. Moreover,
coverage of a contract life cycle as whole appears to be incomplete or unsatisfactory. There have
been proposed negotiation protocols for a flexible contracting in competitive environments by
Sandholm and Lesser [45] or Bergenti et Al. [5], etc. which allow for leveled commitments.

Contract Net Protocol (CNP)

Contract Net Protocol is one of the most popular negotiation protocol ever used in MAS’s. It
comes from economics and it is used in communities of altruistic as well as self-interested agents.
CNP was described by Smith, who described single-shot protocol for requesting and selection
of provider of product or service in group of one coordinator (who requests) and one or more
participants (who may provide) [48]. In the beginning of the session the coordinator requests
participants for offers and the interested ones reply their offers. Coordinator evaluates received
offers and chooses the most suitable participant(s) or dissolves the session. Finally, if one or
more offers are chosen, coordinator requests for them.

The CNP in its basic form provides a lot of freedom in each step of the interactions and the
obligation to fulfil the contract defined in the call is not required in the basic CNP (e.g. proposals
acceptance depends on the proposals themselves and the actual state of the coordinator at the
moment of the proposals evaluation). The CNP fits well in collaborative environments where
there are one subject evaluating possibilities and the others that are providing with for the call
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the most suitable offers. In the environments with some type of preferences expressions (e.g. by
money) and/or environments with competitive participants the CNP must be extended by rules
and features e.g. known from the auctions.

Auctions

An auction a method of optimal reallocation of resources according to the actual demand and
supply, which are usually measured by monetary unit. Many types of auctions exist; they vary
in features like bid adaptation possibility, number of sellers and buyers, discrete or continuous
evaluating of bids, number of criteria for evaluating a bid, and others. The definitions of basic
auctions are usually provided for a negotiation about a single issue with invariable features.
Basically two auction mechanisms are possible: the one-shot and iterative.

In case of the former one, there is only one round of a negotiation. It means that the
negotiation coordinator announces proposal to that the participants respond by obligatory offers.
Then the coordinator evaluates received offers and announces winning offer(s). There are two
basic types of the one shot auctions; they differ in price that the winner has to pay: (i) in the
First-price-sealed-bid auction the winner pay price that she proposed, (ii) in the Second-price-
sealed-bid auction the price to be paid is defined by the second best proposal. The Second-price-
sealed-bid is usually called the Vickrey auction. Although it is an application of the Vickrey
auction to the single-item single-unit domain it is not the only Vickrey auction. The Vickrey
auction is naturally single-item multi-unit. For one kind of a commodity (single-item) it provides
its redistribution of the commodity according to the match of the curves of supply and demand.

The iterative auctions are (i) the English auction, where the price of the auctioned issue is
being increased until only one participant is paying for it (for the reverse auction the price is
being decreased until only one interested provider remains), and the (ii) Dutch auction in that
the price is too high (low in reversion auction) at the beginning of the negotiation and then it
is being decreased (increased in reversion auction) until any participant accepts it. When the
English and the reverse English auctions are combined together the Double auction is created.
In that auction there are groups both of participants interested in selling and buying. The sellers
overbid themselves by decreasing the required price, while the buyers increase it. When some
selling and buying bids match the auction is successfully finished. The very special group of
iterative auctions is a group of the Continuous auctions in which the bids are evaluated on-line
and when some of them are matching the exchange is executed. Independently on an identified
match the auction continues in identifying another match of bids.

The iterative auctions are more complicated then the single-shot auctions especially in the case
of multi-criteria description of the proposals. In case of one-criteria auction, where each proposal
may by described by one number, e.g. price, (actually, there is only request for comparability
of each two from possible values and transitivity of the comparability), the solution is clear: the
one with the highest (not dominated) offer is winner and the individual offers depend on the
type of auction and preferences of the participants. The case of iterative multi-criteria auction
is the most complicated one.

Legal Agreement Protocol (LAP)

Legal Agreement Protocol [42] is based on Australian contract law. The protocol allows an M:N
negotiation which is split into several phases. The first phase allows a not-binding negotiation
(the agreed conditions do not imply any commitment for any of the parties) which enables the
parties to reach a mutually advantageous compromise. The next phase consists in a binding ne-
gotiation over a binding offer (which can be accepted or rejected). Once a contract is established,
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it is possible to terminate it in several ways – by fulfilling the contract (does not require com-
munication), unilateral decommitment under agreed penalties given by the agreement, mutual
agreement about cancelling the contracts without penalties, and contract breach (not solved by
the protocol – to be resolved per curriam). One instance of the protocol is started for each task (a
single-task negotiation) and multiple tasks are negotiated independently in concurrent protocol
instances (i.e. multiple contracts). The LAP allows flexible negotiations including backtrack-
ing, withdrawing offers, temporary rejections etc. (it is possible to implement various search
algorithms like depth-first search, A*, etc.). Decommitments are not negotiated upon, but are
carried out unilatelarly by informing the other party about the decommitment. The protocol
does not directly support contract renegotiation – it is covered by cancelling the contract or
decommitting while new contract conditions are negotiated in a new contract. The protocol
assumes safe message delivery and an absence of communication is involved as an interaction
option of the protocol (the protocol considers timeouts explicitly). The authors of the LAP have
proved various properties of the protocol like the protocol is free of a communication deadlock
(communication is always terminated, though, the matter of mutual commitments and their
status is not considered), etc [42].

Extended Multi-agent Negotiation Protocol

Extended Multi-agent Negotiation Protocol [1] is inspired by Extended Contract Net Protocol (
ECNP) [20]. It has been proposed for use in both collaborative and competitive environments.
The performatives used by ECNP either more-or-less correspond to some FIPA performatives
or introduce new speech acts: Announce, PreBid, PreAccept, PreReject, DefinitiveBid, Defini-
tiveAccept and DefinitiveReject. The protocol allows a multi-round barganing with more-or-less
commiting negotiation actions that optimize resource allocations (overbooking) and prevent the
agents from being forced to sequence their negotiation messages when involved in more par-
allel bargaining (more ECNP negotiations running in parallel are enabled due to preliminary
accept/reject actions allowing more flexibility). The content of messages is not restricted in
any way, though, it seems to be assumed task-plan/schedule/dependance oriented rather than
whole-contract oriented. Decommitments are intended to be completely prevented by a proper
contracting during the contract conclusion phase (the execution phase is rather disregarded). It
appears that the ECNP accounts for full commitments rather than for levelled commitments [46]
– any means for reflecting changes in attitudes of the participants once committed are not
provided. Thus, the rest of the contract lifecycle (execution and termination) remains rather
inflexible.

Competitive Contract Net Protocol

Competitive Contract Net Protocol (C-CNP) [58] is a FIPA-like protocol designed for flexible
contracting in a competitive environment (e.g. E-commerce and VOs) and aims at covering
the whole contract lifecycle, specifically: (i) contract conclusion phase, (ii) optional decommit-
ment phase, and (iii) contract termination phase. Not all the parties involved in a multi-round
negotiation of commitments need to be addressed by call-for-proposals (CFP) messages. The
protocol allows participants to impose their proposals (based on third-party information) into
an already running negotiation. The 1:N negotiation is held in a pairwise manner. During the
execution phase any of the parties involved in pairwise commitments may attempt to decommit
from the contract. The multi-round decommitment negotiation on conditions of dissolving the
cooperation may end up either by backing off by the decommitting party (the contract returns
back to normal) or by dropping the commitments under a payment of a penalty (the penalty
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may be fixed during the contract-conclusion negotiation or may remain opened and be adjusted
in time). Finally, in the termination phase the results are evaluated with respect to the agreed
commitments. Eventually, penalties for non-compliance with commitments are negotiated. The
message content is assumed to describe the contract as a whole, i.e. full and explicit descriptions
of commitments (i.e. not only a mere task assignment, but also resource allocation, quality of
service, schedules, etc.), rewards and sanctions are provided (such message content may be e.g.
an SLA). Thus, the negotiation is also assumed to be multi-attribute rather than single-attribute.
The multi-round manner of the protocol allows multiple simultaneously running negotiations and
as well as multi-level ordering of subsequent protocols (i.e. a participant of a C-CNP may become
a coordinator of another subsequent C-CNP negotiation, e.g. for outsourcing).

Renegotiable Competitive Contract Net Protocol

Renegotiable Competitive Contract Net Protocol (RC-CNP) [7] extends C-CNP by renegotia-
tion phases and provides means for fully flexible contracting in competitive environments and
enables a consistent evolution of commitments starting at their creation and terminating by
their fulfilment, adaptation or breach (even partial breach) under punishment (payment of a
penalty) – i.e. it covers a complete commitment lifecycle within a group of mutually committed
agents (commitments are pairwise between coordinator and participants). The protocol allows
M:N multi-attribute negotiations, it can be extended by not-binding phases and it leverages a
possible temporary communication inaccessibility by definition of timeouts and related default
transitions (as well as a possible synchronization backtracking).

RBVO Formation Protocol

RBVO Formation Protocol [52] has been designed to support a flexible formation of Request-
based Virtual Organizations (RBVO) with an emphasis on reflecting the conditions of real com-
petitive environments. It supports automated or semi-automated negotiations mainly in the
creation part of a Virtual Organization lifecycle and it accounts for a use of Service Level Agree-
ments (SLA). The protocol consists of three phases: (i) potential partner search, (ii) negotiation
of SLAs and RBVO establishment, and (iii) RBVO (execution and) dissolution.

1.4 Information Sharing

A cooperation of agents in competitive environments is more complicated than in collaborative
ones. Both the replanning and reconfiguration play the crucial role in the cooperation and
introduce a means for an implementation of a system flexibility. The concepts of commitments,
decommitments with the penalties and subcontractions may facilitate effective reconfiguration
and replanning. Complex task decomposition problems in large agent communities operating
in highly distributed heterogeneous environment is a problem that requires a big amount of
communication traffic and complex optimization processes.

The information support needed for contracting in multi-agent system comprises of (i) po-
tential partners search and (ii) information sharing between potential partners while keeping
maximal possible privacy of their internal data, intentions and goals.

A common solution used for information management in teams consists in a central point
maintaining the shared documents and enabling an access for all team members. Friese compares
features of centralized (client-server architecture) and distributed technologies for information
management. Without a central server, bottlenecks and single points of failure are avoided and
individual peers keep their independence. On the other hand, network administration lacks any
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central control, which is required in some domains to ensure consistency and verity of data within
the network [22]. Jun Yan et Al. also discuss weaknesses (mainly architectural limitations) of
conventional workflow management systems: poor performance, lack of reliability, limited scala-
bility, user restriction, and unsatisfactory system openness [62]. Examples of distributed architec-
tures for information sharing during the VO creation process and further workflow management
tasks are: peer-to-peer networks, grids, and multi-agent systems. Such information support in
multi-agent systems can be secured by the use of acquaintance models where the agents stores
the information about possible collaborators [39]. The acquaintance models helps significantly
reduce the number of exchanged messages and danger of private knowledge disclosure.

Profiles and Competencies

Sharing information about agent’ profiles, products, services, and available capacities within
the group of collaborating independent agents helps to establish a cooperation covering the
opportunities (complex tasks or a business opportunity for Virtual Organization) that cannot be
carried out by separate agents.

Before VO formation the enterprises need information about potential partners to choose the
right ones for the negotiation about the future collaboration. Support for the VO formation
is added value of collaborative network, which consequently allows its members to concentrate
to their profitable businesses. Specialized tool can simplify sharing information about agents’
profiles and competencies by rules and tools for information maintenance and processing.

Usually only part of internal information an enterprise desires to presented to the partners.
This task is solved in multi-agent systems by the Social Knowledge (described e.g. in [43]).
Information that the agent never says to others (e.g. real costs) is his private knowledge; infor-
mation given to the selected agents (e.g. during market negotiation) is semiprivate knowledge;
and information accessible to everyone (e.g. agent’s communication address) is public knowledge.
To get information about others, one can ask them directly (or use subscribe/advertise protocol),
or ask an information provider.

Generally, the problem of information sharing in distributed systems is addressed in research
of distributed databases [47] and P2P networks [23], partially centralized approaches uses spe-
cialized agents [35] like mediator, broker, matchmaker, or facilitator.

The tools for sharing and managing information in collaborative networks work with partner’s
profile. This profile contains basic information about partner (such as name, address and size)
and competencies. The works [50] and [8] are focused to human resources management but they
are also easily applicable to the other domains. Information shared in the aim of the future
collaboration is mainly based on the profiles including competencies of individual partners. Part
of such information is public knowledge and part of it is provided only to selected partners. Such
information is semiprivate knowledge as defined above.

An example of such tool is e-Cat system [28, 25], which is focused on the storing, maintaining
and sharing business information of partners’ profiles for production oriented Virtual Organiza-
tions creation support. The designed e-catalogue combines peer-to-peer approach together with
centralized architecture. Used architecture is open and easily extensible. It is possible to add
any component by desired functionality (e.g. web-services, proprietary GUIs, databases, etc.) or
’plug-in’ any new modules (general ontology support, trust mechanisms, advanced search algo-
rithms, etc.). The system can be also extended by modules for knowledge sharing in the domain
of VO formation, negotiation and management. An example of e-Cat screenshot is given in
Figure 1.4.

The catalogue hybrid solution enables effective cooperation in naturally distributed envi-
ronment based on the agent negotiation mechanisms as well as standard centralized web-based



CHAPTER 1. INTRODUCTION 13

Figure 1.4: An example of e-Cat web interface (profile editing).

approach. Distributed elements ensure maximal independence between individual partners and
facilitate storing sensitive information on their local servers. Local copy of data allows each
member to use the system, even if it is totally disconnected from the rest of the word. On the
other hand, the “master copy” of data, that are not safety critical, are managed by each member
so they are fully controlled by them. Centralized elements ensure common understanding of
competencies in the whole system, and by maintaining identifying information about members
they ensure access to the community only to authorized members.

Contracting Model

As shown in Section 1.1 the contracting in multi-agent system is based on appropriate interaction
protocol and the means for negotiation, i.e. the contract content to be agreed. Once an agent
identifies potential collaborators it utilizes agreed protocol to establish commitments.

The general contracting problem contains two pars: (i) task decomposition and (ii) service
allocation. These parts can be separated in theory, but practically they are strongly interre-
lated. Service allocation strongly depends on the results from the task decomposition algorithm,
(decomposition determines what services may be contracted), but the quality of decomposition
depends on a possible outcome of service allocation (how the services would be eventually con-
tracted). Besides, we consider the task decomposition to allow division by type and also by an
amount.

The number of possible decompositions is exponentially growing with increasing needed
amount and the number of possible delivery agent combination exponentially grows with increas-
ing number of involved agents. Enumeration of all the decompositions consumes big amount of
time and evaluation of such number of requires huge communication.

To avoid this problem, so called subscribe-advertise protocol can be used for update agent’s
knowledge before the course of service allocation is started. This method significantly reduces
communication flow of the allocation phase [40]. Generally, overall number of messages is not
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lower then with updating the model during allocation phase (in worst case, it has the same
complexity). But it can be much lower in the case of stable, slowly changing environment.
On the other hand, mass subscription among agents can produce huge communication during
knowledge-updating phase.

Building complete model of each possible service provider is not efficient. Actually, only
profitable part of the service providing distribution model is important. Unfortunately, agent
can not know which part of model is profitable before complete model is built. The providing
agents’ behaviors models (delivery time distribution, price policy, etc.) can be used by the
service requesting agent for searching the best estimation of the most suitable decomposition
and allocation. Collecting the most accurate knowledge about other agents helps to make proper
decisions without need of additional negotiation.

An example of acquaintance model minimizing the amount of information exchange is In-
crementally Defined Acquaintance Model (IRAM) [14]. From the single agent point of view
(requestor) the problem is to find the most optimal decomposition of the task service alloca-
tion within the community members. Provided that the model starts with the simplest possible
decomposition (1 task decomposes to exactly 1 service) and the problem is reduced to service
single allocation problem that has been previously solved by Contract Net Protocol [48] or var-
ious auctioning techniques [29, 11]. From this starting point the agent iteratively builds the
partially-linear acquaintance model that is beneficial mainly in stable or slowly changing agent
community, while it can be also usefully employed in dynamically changing communities.

Using models in the contracting (optimization) phase, the non-profitable partners can be
eliminated and they may not be contracted. It speeds up the contracting phase and reduces
private knowledge disclosure. In idealistic case, only the best partners should be contracted.

Using IRAM, the decomposition optimization and allocation phase is highly effective in the
both, competitive and cooperative environment. The number of exchanged messages is much
lower than without using these techniques and allows operate in the domains with poor connection
and restricted communication. This approach has been used for optimization of the delivery time
required to bring the aid to the needed [43]. An alternative usage of the acquaintance model
based negotiation is in the supply chain management where the task corresponds to a specific
manufacturing project in a single company [39]. The task is decomposed into the component list
and the components that need to be purchased externally correspond to the services. In supply
chain management the tasks are usually aggregated in clusters of projects. This is why purchase
of components is often organized in high volumes. It is not a rare situation when there is no
service provider that can provide the requested services in the amount desired. Similarly, there
is a potential for deploying the acquaintance based task decomposition in the project oriented
domains [52].

1.5 Case Studies

In the past 10 years the results of the research outlined in this chapter has been utilized in appli-
cations and demonstration prototypes developed in series of the research projects and industrial
cooperations.

An early prototype of the multi-agent contracting protocol has been adopted by Extra-
PlanT [26] multi-agent system for production planning. This system operates on two levels:
(i) intra-enterprise level represented by a set of planning and resource agents and (ii) extra-
enterprise level represented by enterprise-to-enterprise (E2E) agents which allow free capacity
sharing among independent enterprises. The standard Contract Net Protocol has been used for
intra-enterprise planning where all the agents maximize overall optimality criterion. On this
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Figure 1.5: An example of ExPlanTech planning system UI interface [41].

level the contracts are not breached, but may be modified by means of a reconfiguration – no
penalty is charged and no negotiation about decommitment is needed (example of the planning
result is captured on Figure 1.5). On the contrary, on the extra-enterprise level both the optional
decommitment and contract termination negotiations are to be taken into account. Each E2E
agent represents one independent enterprise with it’s own goals and other business opportunities.
Here C-CNP improves collaboration and cooperation possibilities of the system.

Extra-enterprise part of the ExtraPlanT has been adapted to support a cooperation in En-
terprise Resource Systems (ERP) value chains as a part of FP6 specific targeted research on
innovation project PANDA. A distributed intelligent agent system employs E2E agents for (i)
a potential collaborators search using e-Cat, (ii) a contract negotiation among several partners
using IRAM and RBVO formation protocol, (iii) a cooperation monitoring, and (iv) replanning
and reconfiguration. The E2E agents represent individual ERP vendors or dealers and support a
full human control of all the information provided by agents to the system. Contract details and
potential penalties are described by service level agreement. The successfully deployed prototype
has been tested in the real industrial environment. There were about 38 Partner Agents utilizing
the protocol deployed on various sites (hosted on platform central server or distributed on user
partners servers or PCs in 7 different geographical locations); 12 of them were able to play coor-
dinator role and thus initiate the RBVO formation. The Partner Agents were able to provide 5
different services with various constrains like languages, countries, industry domains, ERP mod-
ule expertise, reputation, price and availability etc. In worst case, there were maximal of 24.3
millions of potential RBVOs for non constrained 5-tasks CR if all companies offer all services.
The RBVO Formation Protocol empowered by IRAM algorithm and business logic captured by
rules provides efficient (semi-)automated cooperation establishment and effective collaboration
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Figure 1.6: An example of PANDA UI interface – RBVO proposals evaluation by coordinator
(left) and call response editing by partner (right).

support. Examples of user interfaces for RBVO proposals evaluation and participation proposal
editing in Partner Agent are depicted in Figure 1.6.

The complete application set of usage of the family of contracting protocols based on C-CNP
comprises of (i) a cooperation support in ERP value chains (a distributed intelligent agent system
which is a part of FP6 specific targeted research on innovation project PANDA), (ii) a formation
of virtual organizations (a distributed decision making support system which is as a part of FP6
integrated project ECOLEAD), and (iii) a distributed system for modelling and validation of
e-Business contracts (a part of FP6 specific targeted research project CONTRACT).

Although cooperating in a cluster, its members are self-interested in all the presented ap-
plication scenarios. Thus, they may have an intention of leaving an already concluded virtual
organization due to more profitable businesses. An another reason for a revision of an already
concluded contract is an incapability of a Virtual Organization to respond to new circumstances
that had not been known during the contract conclusion. In order to respect such features of a
cooperation in virtual organizations a possibility of both the contract adaptation and dissolution
must be taken into account.

The example of application from cooperative contracting environment is i-Globe system [33]
for planning in humanitarian relief scenarios using social commitments. Figure 1.7 shows an
example of system user interface and commitments execution visualization. The research results
applied there has been focussed on the process of setting the contract conditions. Both the
contract prices and penalties affect substantially the flexibility of the cooperation in both coop-
erative and competitive environments and their proper setting is a crucial issue in contracting [6].
In this case, the stability and reconfigurability of the commitments in unpredictable execution
environment has been studied [56, 55].

Selected publications about topics introduced in this chapter are summarized in next chapter
and included in Appendices.
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Figure 1.7: Screenshot of i-Globe simulation visualization – situation overview with selected plan
of one truck agent and corresponding commitments shown on the map (left) and time-table of
commitment execution (right).
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Chapter 2

Selected Published Works

The topics introduced in previous chapter are based on more that ten years of research performed
at Agent Technology Center1 established in 1999 at the Department of Cybernetics, Faculty
of Electrical Engineering, Czech Technical University in Prague, moved to the Department of
Computer Science and Engineering at 2011. It consists of the achievements and results from series
of projects focussed on multi-agent planning, contracting and cooperation (for more details see
Section 1.5).

This chapter summarises selected published works and provides references for additional
reading. It is divided into three section according selected topics: (i) planning and contracting
in multi-agent systems, (ii) interaction protocols and (iii) social commitments. In each section
the most important publications are introduced (the ones included in Appendixes) together with
additional references.

All impact factors (IF) of journals are taken from ISI Web of Knowledge Journal Citation
Reports as 5-Year Impact Factor by January 5, 2013. Source Normalized Impact per Paper
(SNIP) for journal papers is taken from SCOPUS database by January 5, 2013 for year 2011.
All publications are also supplied by the authorship ratio of the author of this thesis.

2.1 Planning and Contracting

The planning and contracting in multi-agent systems is an important issue from both theoretical
and application oriented point of views. The main theoretical achievement is represented in
following article (see article in Appendices page 29 or [20]).

J. Vokř́ınek, A. Komenda, and M. Pěchouček. Abstract architecture for task-oriented
multi-agent problem solving. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, 41(1):31 –40, 2011. (IF 2.397, SNIP 3.835, authorship
80%).

The article focusses to problem solving and planning in decentralized environments. It presents
an abstract architecture of a multi-agent solver and respective algorithm providing decomposi-
tion, task allocation, and task delegation. The article studies various features of the abstract
architecture, such as computational complexity or admissibility of the underlying optimization
heuristics. Additionally, the article presents an short overview of four instances of the abstract

1http://agents.fel.cvut.cz
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architecture implementations demonstrating the applicability of the presented abstract solver.
These implementations are described in more details in others articles and papers below. The
contributions of the author of this thesis are a definition of the multi-agent problem, proposed
solving architecture and algorithm, formal analyses of features, and multi-agent problem solver
implementation.

Applications of the multi-agent contracting in the domain of production planning are illus-
trated by following article (see article in Appendices page 39 or [13]).

M. Pěchouček, J. Vokř́ınek, and P. Bečvář. Explantech: Multiagent support for manu-
facturing decision making. IEEE Intelligent Systems, 20(1):67–74, 2005. (IF 2.316, SNIP
2.693, authorship 33%)

The article presents ExPlanTech, a consolidated technological multi-agent framework for decision-
making support in manufacturing production planning. It provides a proven alternative to known
mathematical and system science-modeling technologies for simulating the manufacturing pro-
cess. The article discusses main features of this framework, it architecture and implementation.
It also explains underlying agent coordination and negotiation methods and possible use cases.
The main contributions of the author of this thesis to this article are design of the contracting
mechanism, its implementation for production planning, and cooperation on the design of an
overall software architecture of the system.

The applicability study of the multi-agent contracting schema to solving vehicle routing
problems has been published on prestigious multi-agent conference2 (see paper in Appendices
page 47 or [22]).

J. Vokř́ınek, A. Komenda, and M. Pěchouček. Agents towards vehicle routing problems.
In Proceedings of the 9th International Conference on Autonomous Agents and Multia-
gent Systems: volume 1 - Volume 1, AAMAS ’10, pages 773–780, Richland, SC, 2010.
International Foundation for Autonomous Agents and Multiagent Systems. (authorship
80%)

The paper presents a multi-agent vehicle routing problem solver. The solver is based on multi-
agent solver abstract architecture discussed above. It utilizes the contract-net protocol based
allocation and several improvement strategies. The self-organizing capability of the system suc-
cessfully minimizes the number of vehicles used and the quality of the solution reaches 81% of
the best known solution in polynomial time. The presented solver architecture supports great
runtime parallelization with incremental increase of solution quality. In this case the main con-
tributions of the author of this thesis are formalization of the vehicle routing problem as a
multi-agent problem, adaptation of the abstract multi-agent solver architecture for this problem,
implementation and experiments evaluation.

Additional information about applications of multi-agent planning and contracting for man-
ufacturing domain can be found in [1, 4, 11, 12, 14, 17, 23]. The advances in agent-based vehicle
routing problem solving can be found in [7, 8, 9].

2Ranked as 6th of 361 Artificial Intelligence conferences by Microsoft Academic Search sorted by conference
H-index (by January 5, 2013).
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2.2 Interaction Protocols

The interaction protocols are the most important negotiation scheme for multi-agent contracting
and planning. The extension of Contract Net Protocol for competitive environment has been
published in [21]. Extension for contracting in Virtual Organizations has been published in [16]
and extended to following article (see article in Appendices page 55 or [15]).

J. Vokř́ınek, J. B́ıba, J. Hod́ık, and J. Vyb́ıhal. The RBVO formation protocol. Interna-
tional Journal of Agent-Oriented Software Engineering, 3(2/3):135–162, 2009. INDER-
SCIENCE ENTERPRISES LTD, World Trade Center BLDG. (SNIP 2.122, authorship
80%)

The article presents a protocol designed to support the flexible formation of Request-Based
Virtual Organisations with an emphasis on reflecting the conditions of real competitive environ-
ments. It supports automated or semi-automated negotiations mainly in the creation part of
a virtual organization life cycle and it accounts for the use of Service Level Agreements. The
case study is provided to show the applicability of the protocol in a real industrial case. The
prototype has been implemented on top of a web-service-based agent platform and validated in
an open distributed environment. The main contributions of the author of this thesis to this
article are design of the overall system architecture, design of the RBVO formation protocol and
cooperation on the design and implementation of the client applications in the presented case
study.

The contracting model minimizing information exchanged between agents that can be seen
as a extension of an protocol has been published in following paper (see paper in Appendices
page 83 or [2]).

J. Doubek, J. Vokř́ınek, M. Pěchouček, and M. Rehák. Incrementally refined acquaintance
model for consortia composition. In M. Klusch, M. Pěchouček, and A. Polleres, editors,
Cooperative Information Agents XII, 12th International Workshop, CIA 2008, volume
5180 of Lecture Notes in Computer Science, pages 280–291. Springer, 2008. (authorship
30%)

The paper presents a specific contracting algorithm that contributes to the process of distributed
planning and resource allocation. The algorithm is based on incrementally refined acquaintance
models of the actor that provide the right set of approximate knowledge needed for appropriate
task decomposition and delegation with minimization of the private knowledge disclosure. The
paper reports on empirical evaluation of the algorithm deployment in consortia formation in
virtual organizations domain. In this paper the main contributions of the author of this thesis
is are cooperation on problem definition and algorithm design, experiments design and results
interpretation.

The applicability of multi-agent contracting schemes based on profiles and competencies in
the domain of virtual organizations is also captured in [5, 6, 3].

2.3 Social Commitments

With given contracting scheme and protocols the distributed plan in multi-agent system can
be represented as a set of social commitments as introduced in following article (see article in
Appendices page 95 or [10]).
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A. Komenda, J. Vokř́ınek, and M. Pěchouček. Plan representation and execution in multi-
actor scenarios by means of social commitments. Web Intelligence and Agent Systems,
9(2):123–133, march 2011. (SNIP 0.886, authorship 20%)

The article presents an approach to plan representation in multi-actor scenarios. A distributed
hierarchical plan is represented by social commitments, as a theoretically studied formalism
representing mutual relations among intentions of collaborating agents. The article presents a
formal model of a recursive form of commitments and discusses how it can be deployed to a
selected hierarchical planning scenario. It also discusses decommitment rules definition and their
influence on the plan execution robustness and stability. The approach is verified and evaluated
in a simulated environment. The experimental validation confirms the performance, stability,
and robustness of the system in complex scenarios. The main contributions of the author of
this thesis in this paper are design of contracting mechanism using social commitments and its
implementation for i-Globe system used for evaluation and cooperation an the formalization plan
representation, mainly regarding decommitment rules.

The process of planning in complex, multi-actor environment depends strongly on the abil-
ity of the individual actors to perform intelligent decommitment upon specific changes in the
environment. The study of commitments stability during plan execution in non-deterministic
environment has been presented on prestigious multi-agent conference (see paper in Appendices
page 106 or [18]).

J. Vokř́ınek, A. Komenda, and M. Pěchouček. Decommitting in multi-agent execu-
tion in non-deterministic environment: experimental approach. In C. Sierra, C. Castel-
franchi, K. S. Decker, and J. S. Sichman, editors, 8th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2009), Budapest, Hungary, May
10-15, 2009, Volume 2, pages 977–984. IFAAMAS, 2009. (authorship 35%)

The paper focusses to a reasoning about decommitment alternatives during the planning process
that contributes to flexibility and robustness of the resulting plan. The formal definition of three
specific decommitment rules (relaxation, delegation and full decommitment) is given in the paper.
The potential of an appropriate selection, setting and preference ordering of the decommitment
rules to robustness of the plans during an execution is validated in a set of empirical experiments.
The main contributions of the author of this thesis are design, formalisation and implementation
of decommitment rules, and cooperation on experimental validation, mainly an interpretation of
results.

More details about commitments stability supported by the relaxation decommitment rule
can be also found in [19].
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[10] A. Komenda, Vokř́ınek, and Pěchouček. Plan representation and execution in multi-actor
scenarios by means of social commitments. Web Intelligence and Agent Systems, 9(2):123–
133, march 2011.
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multi-agent systems in production planning. International Journal of Production Research,
40(15):3681–3692, 2002.
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protocol. In Lecture Notes in Computer Science 4362 - SOFSEM 2007: Theory and Practice
of Computer Science, pages 656–668, Berlin, 2007. Springer-Verlag.
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p.55 J. Vokř́ınek, J. B́ıba, J. Hod́ık, and J. Vyb́ıhal. The RBVO formation protocol. In-
ternational Journal of Agent-Oriented Software Engineering, 3(2/3):135–162, 2009.
INDERSCIENCE ENTERPRISES LTD, World Trade Center BLDG.
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Abstract Architecture for Task-oriented Multi-agent
Problem Solving

Jiřı́ Vokřı́nek, Antonı́n Komenda, and Michal Pěchouček

Abstract—Problem solving and planning in decentralized envi-
ronments is a key technical challenge in numerous industrial appli-
cations, ranging from manufacturing, logistics, virtual enterprizes
to multirobotics systems. We present an abstract architecture of a
multiagent solver and respective algorithm providing decomposi-
tion, task allocation, and task delegation. Various features of the
abstract architecture, such as computational complexity or admis-
sibility of the underlying optimization heuristics, are analyzed in
the paper. Four instances of the abstract architecture implemen-
tations are given to demonstrate the applicability of the abstract
solver in a wide variety of real-problem domains.

Index Terms—Algorithms, complexity, distributed planning and
problem solving, multiagent applications, multiagent systems, task
allocation, task delegation.

I. INTRODUCTION

THE PROBLEM of distributed decision making, decentral-
ized planning, and controlling entities in heterogeneous

distributed environments is crucial for many application do-
mains [1]. Existing centralized methods depend on one central-
planning system that gathers all required data about decentral-
ized entities before the planning process starts. This approach
faces various difficulties. One problem is the need for shar-
ing private knowledge and information about the actual status
of these entities. The other problem is the need for real-time
replanning based on environments and conditions changing dy-
namically in time. We present an approach, where each entity is
in charge of suggesting their individual plans, where coopera-
tion, resource sharing, and deconflition is solved by methods of
negotiation.

The problem of distributed planning and problem solving
has been often discussed in the artificial intelligence planning
and multiagent research communities recently (e.g., [1]–[4]).
Distributed planning has been viewed as either 1) planning
for activities and resources allocated among distributed agents;
2) distributed (parallel) computation aimed at plan construc-
tion; or 3) plan-merging activity. In this paper, we are solving
the problem by algorithms based on task allocation and local
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26, 2010. Date of current version December 17, 2010. This work was supported
by Czech Ministry of Education, Youth and Sports under Grant 6840770038,
by Student Grant of Czech Technical University in Prague under Grant SGS10-
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University in Prague, Prague, Czech Republic.
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at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCC.2010.2073465

resource planning in cooperative environments and use the del-
egation for continual solution improvement, which is performed
in noncritical time. The paper is divided into two parts presenting
1) abstract multiagent solver, problem definition, solver archi-
tecture, and algorithms, including discussion of its computa-
tional complexity and conditions of strategies admissibility and
2) examples of application areas and description of implemented
multiagent systems.

II. MULTIAGENT SOLVER

Multiagent-planning approaches are used for solving a wide
variety of planning problems. As analyzed by Brafman and
Domshlak [5], the multiagent-planning techniques can be ben-
eficial for such problems, where the domain sizes of individ-
ual agents are considerably smaller (e.g., in logarithmic rela-
tion to each other) than the overall size of the problem (even
if the planning complexity of an individual agent is expo-
nential) and the number of dependencies between agents is
low.

The distributed planning and problem solving has been ana-
lyzed by Durfee [1]. One of the related strategies discussed is
a task-sharing approach. The principle is based on passing of
tasks from a busy agent to a vacant agent(s). The process can be
summarized in four basic steps.

1) Task decomposition: The tasks of agents are decomposed
into subtasks. Sharable subtasks are selected.

2) Task allocation: The selected tasks are assigned to the
vacant agents or agents, which ask for them.

3) Task accomplishment: Each agent tries to accomplish its
(sub)tasks. The tasks, which need further decomposition
are recursively processed and passed to other agents.

4) Result synthesis: The results of the tasks are returned to
the allocating agent, since it is aware how to use it in the
context of the higher tasks.

From the perspective of distributed problem solving, task
allocation and the result synthesis are the most crucial parts.
However, from the planning perspective, the other two phases
are more important. The allocation problem is usually solved by
contracting and negotiation techniques, which imply problems
related to the resource allocation domain, e.g., cross booking,
overbooking, backtracking, and others. In the allocation phase,
a hierarchy of agents is established, which may not be fixed in
heterogeneous multiagent systems.

The decomposition and delegation principle is widely used in
agent-based approaches for problem solving and planning, and
shows great applicability to realistic problems. Taking into ac-
count Brafman and Domshlak’s analysis, Durfee’s task-sharing
approach efficiency is tightly bound to the solver’s ability to

1094-6977/$26.00 © 2010 IEEE
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Fig. 1. Abstract architecture of agent-based solver/planner.

reduce the problem sizes for individual agents and keeping the
dependencies between agents low.

In the domains, where the optimization/planning problem can
be decomposed into independent tasks the multiagent approach
shows its benefits. Such a task can be allocated and executed
by different agents with low or no influence on each other. In
this paper, we assume that such problem decomposition exists.
In the rest of the paper, we assume that tasks are independent if
not stated otherwise.

We can define the abstract multiagent solver architecture as a
composition of three types of agents (see Fig. 1).

1) Task agent: This agent is for preprocessing of the problem.
It should use a domain-specific heuristic, generic ordering
strategy, and randomized method.

2) Allocation agent: This agent is for problem decomposition
into tasks and delegation of the tasks to resource agents. It
maintains task allocation and result synthesis. This agent’s
strategies and algorithms are domain-independent.

3) Resource agent: This agent is for individual case-specific
resource planning. In case of further decomposition, the
task is handed over to another task agent.

The multiagent system built upon this architecture is com-
posed of one task Agent, one allocation agent, and a set of re-
source agents. The resource agents represent distributed nature
of the multiagent problem.

For complex hierarchical systems, this abstract architecture
can be reflected in the multiagent system recurrently, it can be
reduced (i.e., one agent undertakes a role of more than one ab-
stract agent type), or it can be parallelized (more abstract solvers
are instantiated with potentially overlapping agents, e.g., sev-
eral task agents or allocation agents handling various problems
in parallel). In large systems, concurrent interactions may arise
that need to be handled. The agents’ interactions are guided by
interaction protocols, which are mostly built on Smith’s contract
net protocol (CNP) [6].

A. Multiagent Problem

The multiagent solver uses the principles of problem decom-
position and delegation to autonomous agents that solve parts of
the problem individually. The overall solution is then obtained
by merging the individual agents’ results.

The optimization based on CNP interactions in cooperative
environments is usually described as utilitarian social welfare
maximization [7]. Therefore, the abstract algorithm objective
function can be defined as maximization of social welfare, which
is as follows:

sw =
∑

a∈A
ua (1)

where A = a1 , . . . , an is the population of agents and ua is the
utility of agent a. In our case, the social welfare can be computed
as a sum of resource agents (R ⊂ A) utilities that can be defined
as follows:

ua =
∑

t∈Ta

(rew(t) − cost(t, a)) =

(∑

t∈Ta

rew(t)

)
− cost(Ta)

(2)
where Ta is a set of tasks allocated to the agent a ∈ R, rew(t)
is a reward for fulfilling task t, cost(t, a) is the cost of agent a
to perform task t, and

cost(Ta) =
∑

t∈Ta

cost(t, a) (3)

is the cost of the overall plan of an agent. The total reward for
fulfilling a set of all tasks T is as follows:

rew(T ) =
∑

a∈R
rew(Ta) =

∑

a∈R

∑

t∈Ta

rew(t) (4)

so the social welfare can be expressed as follows:

sw = rew(T ) −
∑

a∈R
cost(Ta) = rew(T ) −

∑

t∈T
cost(t, a). (5)

Since we assume the same quality of task fulfilling by any agent,
the reward k = rew(T ) is not influenced by the allocation of
tasks to the agents. We can derive social welfare as follows:

sw = k −
∑

t∈T
cost(t, a). (6)

As denoted earlier, the goal of CNP-based multiagent optimiza-
tion in cooperative environments is social welfare maximization.
Given by (6), it is the same as minimization of solution cost,
where cost(t, a) is evaluated by the resource agent a undertaking
task t. The objective function of the abstract solver is then

∑

t∈T
cost(t, a). (7)

The task allocation stage of the solver searches for the best
suitable mapping of the tasks T to the resource agents R that
minimizes the objective function given by (7). We can define
the goal of the allocation as finding such a partition P of the set
of tasks T that

argmin
P

v∑

i=1

cost(Ti) (8)
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where v is the number of resource agents, Ti is a subset of tasks
allocated to the resource agent ai , cost(Ti) is the cost of the
overall plan of agent ai performing Ti defined by (3), and

Ti ⊆ T ,

v⋃

i=1

Ti = T (9)

∀i, j : Ti ∩ Tj = ∅ iff i �= j. (10)

B. Abstract Algorithm

The abstract algorithm representing the presented multiagent
solver attempting to minimize objective function defined by (7)
is captured by Algorithm 1. According to the abstract architec-
ture depicted in Fig. 1, it contains three phases as following.

1) The first phase of the function solve is task preprocess-
ing provided by the task agent. The ordering heuristic
represents case-specific sorting of the tasks to increase the
solver’s efficiency in the particular domain. In some cases,
the ordering has no influence, but in others, it may pro-
vide significant improvement especially in domains with
stronger task dependencies.

2) The second phase is iteration over all tasks and allocation
performed by the allocation agent minimizing the inser-
tion cost computed by resource agents (the allocateCNP
function). As part of this iteration, the dynamic improve-
ment based on cooperation of allocation agent and all
resource agents takes place—the improvement strategy is
applied to every resource agent after allocation of each
task (see following for the description of improvement
strategies).

3) The third phase of the solve function is the final im-
provement of the solution. After allocation of all tasks the
improvement strategy is executed by all resource agents.

The algorithm is based on local optimization of a single-task
insertion and subsequent improvement. Each iteration of the
algorithm provides a greedy (order-dependent) task allocation
supported by locally optimized solution of resources utilization
(which can be seen from global point of view as hill-climbing
search). The algorithm does not use any backtracking mecha-
nism or exhaustive search of the state space. It has a significant
impact on the algorithm’s computational complexity (see Sec-
tion II-C), but it is susceptible to finding locally efficient solution
only. The global solution quality is improved by execution of
improvement strategies.

The resource agent uses a case-dependent resource-planning
heuristic for these computations. The functions for allocation
are as follows.

1) Insertion estimation costestI (t, a): The estimation of the
cost of the task insertion. It represents the increase of the
agent’s a cost function caused by undertaking the task t.

2) Insertion costinsert(t, a): The real cost of the task inser-
tion. This value is determined by adding a new task t to
the plan of the agent a in the current state. It is the result of
the particular resource-planning algorithm of the resource
agent.

The opposite functions used by improvement strategies are
as follows.

1) Removal estimation costestR (t, a): The estimation of the
cost of the task removal. It represents the decrease of the
agent’s a cost function caused by dropping the task t.

2) Removal costremove(t, a): The real cost of the task re-
moval. This value is determined by removing the task t
from the plan of agent a in the current state. It is the re-
sult of the particular resource-planning algorithm of the
resource agent.

The allocation in the CNP part of the Algorithm 1 is based
on the determination of the winner agent. The winner of task t
is a resource agent a with the lowest insertion cost; therefore,

winner = argmin
a∈R

costestI(t, a). (11)

The allocation agent allocates an unallocated task t ∈ T , where
∀ai ∈ R : t /∈ Tai

to a winner agent a

allocate(Ta , t) ⇒ t ∈ Ta (12)

provided that local plan of agent a exists and the agent a is
able to fulfill this task using the plan for the cost estimation
costestI(t, a) used in (11).
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One of the improvement strategies (see following) is based on
identification of the most resource consuming task of resource
agents. We define worst task tw of agent a as follows:

tw = argmax
t∈Ta

costestR(t, a) (13)

i.e., the savings (difference of the total plan cost with and without
this task) are maximized.

The improvement strategies basically swap tasks between
agents—we say an agent ai delegates task t ∈ Ti to an agent aj

delegate(Ti , Tj , t) ⇒ t /∈ Ti ∧ t ∈ Tj . (14)

The admissible delegation of task t from agent ai to agent
aj , where i �= j is a delegation that satisfies the improvement
condition

costestR(t, ai) − costestI(t, aj ) > 0. (15)

The improvement strategies used by abstract algorithm are as
follows (see Algorithm 2 for more details).

1) Delegate worst (DW): Each resource agent ai identifies
its worst task tw according to (13) and tries to delegate it
to another agent aj if the improvement condition defined
by (15) holds and aj is the allocation winner according to
(11).

2) Delegate all (DA): Each resource agent ai delegates all
its tasks Ti to the winner of each task if the improvement
condition is satisfied.

3) Reallocate all (RA): Each resource agent successively re-
moves all its tasks from the plan and allocates them again
using the CNP strategy. The result of the allocation can
be the same as before task removing, or a change of the
position of the task in the current agent plan, or delegation
to another agent. To ensure proper function of RA im-
provement strategy, we require for successive removing
and inserting of task t from/to agent a that

costinsert(t, a) ≤ costremove(t, a) (16)

i.e., when removing and reinserting task t ∈ Ta , the
cost(Ta) does not increase.

C. Complexity Analysis

The general computational complexity of the multiagent
solver is introduced in [5]. Using transformation of the
multiagent-planning problem to the distributed constraint sat-
isfaction problem, the worst case time complexity of the multi-
agent planning is upper bounded by

f(I) × exp(comm) + exp(int) (17)

where f(·) is the factor inducted by requesting each agent to
plan, while committing to a certain sequence of actions, I is
the complexity of an individual agent’s planning, exp(comm)
represents a factor exponential in min–max number of per-agent
commitments, and an additive factor exp(int) represents the
interactions of agents.

The consequences of (17) lead to interesting features of the
multiagent solver, such as that there is 1) no direct exponential
dependence on the number of agents; 2) no direct exponential
dependence on the size of the planning problem or size of the
joint plan; and 3) no direct exponential dependence on the length
of individual agent plans [5].

In our case, the feature 2) resulting from (17) does not have
a strong impact if the decomposition algorithm of the alloca-
tion agent is exponential because the size of its problem is the
same as the size of the overall problem, but for the resource
agents (and other subordinate agents in the case of a complex
hierarchical structure) this feature holds. However, the exponen-
tial factors are usually reduced by the polynomial heuristics—
decomposition, allocation, optimization, and resource-planning
strategies implemented in real applications. The ordering strat-
egy of the task agent does not have a strong influence on the
worst case complexity because of its additive nature and low
complexity (provided that tasks can be compared in constant
time). The multiagent solver benefits in the domains, where
problem can be easily decomposed to independent tasks, and/or
where the polynomial heuristics for the resource planning exist.

For the abstract algorithm (see Algorithm 1), (17) can be
represented as follows:

n × log(n) + n × Oalloc + n × m × Oimpr (18)

where n denotes the number of tasks and m is the number of
resource agents. The first part represents the ordering heuristic
and its complexity corresponds to the complexity of standard
sorting algorithms. The middle part is the complexity of the allo-
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cation part of the algorithm and the last part is the improvement
part of the algorithm.

The allocation and improvement time complexities of the
algorithm are defined as follows:

Oalloc = m × O(costestI(t, a)) + O(costinsert(t, a))

Oimpr = fi(n′)

where n′ = n/m is the average number of tasks allocated to a
particular resource agent and fi(n′) is the factor representing the
complexity of the implemented agents’ improvement strategy.
We assume

O(costestI(t, a)) = O(costinsert(t, a)) = fr(n′)

O(costestR(t, a)) = O(costremoval(t, a)) = fr′(n′)

where fr(n′) is the factor representing the complexity of the
implemented agents’ resource-planning strategy for the task in-
sertion and fr′(n′) is the factor representing the complexity of
the implemented agents’ resource-planning strategy for the task
removal. Therefore, the general worst case time complexity of
the presented abstract algorithm is as follows:

n × (log (n) + m × (fr (n′) + fi (n′))) . (19)

The complexity of improvement strategies defined in Sec-
tion II-B are as follows:

fiDW (n′) = Oworst + fr′(n′) + m × fr(n′)

fiDA(n′) = fiRA(n′) = n′ × (fr′(n′) + m × fr(n′))

where Oworst is the complexity of identification of the worst
task in the plan, i.e., finding the task with greater costestR(t, a).
It can be upper bounded by the iteration through all n′ tasks
and computation of removal cost of each one, so its worst case
complexity is upper bounded by Oworst = O(n′ × fr′(n′)). For
combination of all described improvement strategies, the im-
provement complexity is upper bounded by

fi(n′) = n′ × fr′(n′) + m × n′ × fr(n′). (20)

The factor m × n′ = m × (n/m) = n, so the improvement
complexity has no relation to the number of agents. Combining
(19) and (20) and taking n′ = n, the worst case time complexity
of the abstract algorithm is as follows:

n × log(n) + n2 × fr′(n) + m × n2 × fr(n). (21)

The presented complexity analysis shows the polynomial im-
pact of the decomposition and delegation principles used by
the multiagent abstract solver. The impact of the two factors
introduced by (17) is the following:

1) the complexity of the operations of resource agent are
multiplied by n2 ;

2) the influence of the number of resource agents is linear.
The complexity analysis shows us an important feature of

agent-base solver. When using polynomial heuristics for task
insertion and removal, the implemented multiagent solver pro-
vides polynomial worst case complexity. Together with linear
computational scaling with the number of agents makes the pre-
sented abstract architecture suitable for many application areas.

In real-application areas, ordering heuristics can be found that
result in allocation with no need of using improvement strategies
(e.g., production-planning system described in Section III-D).
In other cases, the planning of resource agents is implemented
with low complexity (e.g., linear) and the improvement strat-
egy has greater importance. In Section III, we present several
applications developed using the described abstract multiagent
solver.

D. Incremental Improvement Strategy

The basic multiagent solver can be enhanced by the incre-
mental improvement strategy. Algorithm 1 allocates the tasks
and runs improvement strategies (both dynamic and final), keep-
ing the computational complexity low (i.e., guaranteeing a good
response time of the algorithm). In many cases, it is benefi-
cial to perform incremental improvement of the solution when
we have enough time to wait for better results or the environ-
ment changes dynamically. The changes of the task constraints,
resources availability, and execution uncertainty affects the effi-
ciency of the static plan during execution. Algorithm 1 optimizes
(7) in a single run upon conditions that are valid at the time of
algorithm execution. When some conditions change, the solu-
tion quality diverts. In such a case, the incremental improvement
strategy should be used to keep the solution up to date with the
dynamic environment changes and/or improve the solution over
the time.

The nature of the task allocation process of the multiagent
solver enables us to run the improvement strategies continuously
and interrupt its improvement during any run without loosing the
correctness of the solution (assuming the delegation as atomic
process). The incremental improvement strategy described in
Algorithm 3 is an anytime algorithm monotonically improving
the quality of the solution. The improvement strategies (see
Algorithm 2) are executed until the solution is no longer being
improved (i.e., the overall cost of the solution defined by (7)
does not change between iterations).
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The inner loop iterates over all resource agents and pro-
vides the same features (complexity and convergence) as the
improvement part of Algorithm 1. The outer loop terminates
when the quality of two consequent solutions is the same.

E. Resource Agent Strategy Admissibility

The presented multiagent solver features strongly depends
on the functions provided by the resource agents. We investi-
gate the allocation process correctness and delegation stability,
and define the constraints to functions provided by admissible
resource agent strategy.

When using standard CNP, we require the estimation func-
tions of resource agent a to provide accurate estimations of
inserting/removal of task t, e.g.,

costestI(a, t) = costinsert(a, t) (22)

costestR(a, t) = costremove(a, t). (23)

In the case of more advanced allocation protocols with back-
tracking (e.g., extended CNP [8]), this accuracy can be relaxed.
In all cases, these constraints defined on the resource agent func-
tions ensure that Algorithm 1 is able to find a local minimum
of the cost function (7) and to guarantee the proper behavior of
improvement strategies.

The estimation functions provided by resource agent strategy
are admissible only if

costestI(a, t) ≤ costinsert(a, t) (24)

costestR(a, t) ≥ costremove(a, t) (25)

where for the upper bound of the estimation error holds

|costinsert(a, t) − costestI(a, t)| < εI (26)

|costremove(a, t) − costestR(a, t)| < εR (27)

and delegation improvement condition according to (14) and
(15) is modified to

costestR(t, ai) − costestI(t, aj ) > εI + εR . (28)

Keeping the defined constraints (improvement condition, es-
timation error, and admissibility of estimation functions), the
execution of any of the improvement strategies results in re-
duction of the solution cost or the solution is unaffected (i.e.,
the new solution is not worse than the previous one) and the
incremental improvement strategy termination is ensured after
a finite number of steps (if the environment does not change
during the execution of the improvement algorithm).

Using features discussed in previous sections, we can define
the admissible resource agent strategy (its internal heuristics
and estimation, and allocation functions) has to:

1) use admissible estimation functions according to (24) and
(25);

2) bound the estimation error according to (26) and (27);
3) fulfill the improvement condition defined by (28) (the del-

egation is admissible if the solution cost improves);
4) when using the reallocate-all improvement strategy, (16)

must hold (i.e., when reallocating, the new solution has to
be better or at least the same as the previous one);

5) the algorithm execution time must be low compared to the
frequency of the environment changes (the environment is
considered static during the execution of the algorithm).

III. APPLICATIONS

Due to high flexibility, robustness, and scalability, the agent
technologies promise a wide industrial applicability [9] even in
the real-time environments with a need of dynamic reconfigu-
ration and replanning [10]. This section presents four examples
of the multiagent systems implemented using the presented ab-
stract architecture. It demonstrates the applicability of the con-
cept in a wide variety of real-problem domains—vehicle rout-
ing problems (VRPs), strategic mission planning, multirobot
frontiers exploration, and production planning. All presented
multiagent systems share the same abstract architecture, algo-
rithm, and improvement strategies. For each application domain,
a particular resource optimization heuristic has been designed
and implemented by the resource agents. All the presented sys-
tems’ implementations have low-computational complexity and
provide high-quality solutions.

A. VRP Solver

The VRP is a well-known optimization problem. The problem
is NP-hard and is defined as routing of a fleet of gasoline delivery
trucks between a terminal and a number of service stations. The
trucks have load capacity limitations and deliveries have to be
accomplished at minimum total cost (distance traveled).

The agent-based approach to a variant of the VRP solver
has been presented, for example, in [11]. Zeddini et al. use
three types of agents—client, bidder, and vehicle agents. The
approach is based on the CNP allocation and the optimization
is based on exchange of tasks between the vehicle agents. The
vehicle agents use an insertion heuristic and improvement strat-
egy for task swapping between them. The error of the solution
(compared to the optimal solution) presented in the paper is
4%–29% for standard benchmark problems.

A similar approach has been used in [12] for a dynamic variant
of k-VRP (new tasks are added during the execution), where the
initial allocation is generated using a centralized algorithm. The
dynamic task allocation is made by the CNP protocol. Then, two
improvement phases are applied. The intraroute optimization
is applied to each agent route and interroute optimization is
performed between vehicle agents.

The VRP family solver built upon an abstract multiagent
solver, which is introduced by this paper is presented in [13].
The solver uses three ordering strategies, the combination of all
improvement strategies with dynamic improvement enabled or
disabled, and the resource agent algorithm implemented using
a standard cheapest insertion heuristic for traveling salesman
problem [14].

The objective function is based on the distance traveled by
vehicles (represented by resource agents) and fully corresponds
to (7). The implemented RA strategy fulfills the improvement
conditions defined by (15) and (16) and admissibility conditions
defined by (22) and (23).
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Fig. 2. Example of the VRP solver result.

The complexity of the resource agent cost computation func-
tions is kept low, i.e., fr(n′) = O(n′) and fr′(n′) = O(1). The
worst case time complexity defined by (21) (using n′ = n/m)
is O(n3), which has been also proved experimentally on bench-
mark instances.

The example of the solution provided by the solver is in
Fig. 2. There are 52 nodes served by seven vehicles (an optimal
number of vehicles has been obtained). The circles in the nodes
represent the size of transportation demand. The quality of the
solution to the problem presented in Fig. 2 is 93.4% compared to
the optimal path length. We measure the quality as costs o lv e r

costo p t im
×

100[%], where costsolver is the solution cost provided by the
solver and costoptim is the cost of the best known solution. The
optimal vehicle’s path is depicted by thin green lines and the
solution produced by the multiagent solver is represented by
thick red lines.

For the 115 evaluated benchmark instances (standard VRP
benchmark problems), the multiagent solver provides solutions
with the quality of at least 81% compared to the optimal so-
lution with average quality better than 91% (corresponds to
solution error of 19%, respectively, 9%). The self-organizing
capability of the system successfully minimizes the number of
vehicles used. The results show that the application of dynamic
improvement strategy provides better results than batch process-
ing with final improvement strategy only. The best performance
has been reached using DA and RA improvement strategies. The
implemented solver demonstrates very good applicability of the
abstract multiagent solver to the family of routing problems and
easy adaptation to problem variants.

B. Strategic Mission Planning Using Social Commitments

The multiagent abstract solver presented in this paper has
been used in a system for distributed planning and coordination

in dynamic nondeterministic multiactor mixed-initiative envi-
ronment [15]. The system provides flexible planning, replan-
ning, and task allocation. The system addresses several issues
that have to be solved in order to fulfill the requirements on
a system planning in dynamic nondeterministic environments.
An overview of the problems is as follows.

1) Distributed planning: Planning in such an environment is
practically realizable only as a distributed process.

2) Distributed resource allocation: An integral part of the
planning process is resource allocation both of the acting
entities in the world and of the static resources, and as the
planning process is distributed, the resource allocation has
to be distributed as well.

3) Distributed plan execution and synchronization: Consti-
tuted distributed plan consisting of several personal plans
has to be executed by the entities. The personal plans need
to be coordinated in distributed manner, as the entities do
not know each other’s plans.

From the perspective of allocation agent, the planning pro-
cess can be divided into three phases: 1) the hierarchical task
network I-Plan planner [16] is used for creating an abstract plan
for a long-time horizon; 2) the plan instantiating process uses
a distributed resource allocation based on the CNP [6]; and
3) with the help of this protocol, the appropriate subordinate
agents (resource agents) are found and the responsibilities for
the plan actions are fixed. The internal resource agents opti-
mization uses the as-early-as-possible scheduling heuristic. The
heuristic causes the earliest possible execution of the plan ac-
tions, which affects the length of the whole plan in the nonde-
terministic environment. The effect is directly proportional to
the amount of nondeterminism in the world (which has been
simulated as random prolonging of the actions durations). The
agents’ hierarchy in the system is captured by Fig. 4, there is a
commander creating tasks for builders, builders implementing
the abstract task agent and allocation agent roles in parallel,
and finally, we have a set of trucks implementing the abstract
resource agent roles.

All plans are described in the form of social commitments
substituting plan actions. The commitment is a knowledge-base
structure describing agent’s obligation to change the world-state
and a set of rules defining what the agent should do if the obliga-
tion is not satisfiable [17]. The commitments enable expressive
description of the decommitment rules, and thus, the replanning
process, it captures the improvement strategies executed on the
moment when the environment changes in the way that collide
with the plan.

In other words, the replanning process (i.e., the plan im-
provement process) by means of social commitments can be
described as successive recommitting [17]. For the decommit-
ting purposes, three basic decommitment rules were used: full
decommitment, delegation, and relaxation [18].

The deployment scenario of the system is a disaster relief
operation, where the resources have to be transported to the
impacted zone [19]. There are material resources, emergency
units, and transport units in the scenario. The emergency units
create plans and request the transportation for itself and for
required material resources. The problem is to find such a global
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Fig. 3. Strategic mission planning system—scenario island screenshot.

Fig. 4. Strategic mission planning system—hierarchy of agents.

plan that all units and material are transported to the demanded
area as soon as possible using limited transportation resources
(see a screenshot of the scenario island in Fig. 3).

The entire system provides fast convergence to the effi-
cient solution with time complexity of O(n3). The heuristic
of the resource agent strategy is admissible in terms defined in
Section II-B and provides fr(n′) = O(1) and fr′(n′) = O(n′).
The plan execution stability in the dynamic environment is en-
hanced using improvement strategies captured by decommit-
ment rules, and thus, incrementally invoked abstract algorithm
presented in Section III.

C. Cooperative Frontiers Exploration

The presented multiagent solver has been also utilized for
cooperative frontiers exploration problem [20]. The problem
is to find the shortest path for a convoy of vehicles through
a partially known urban area. The street map of the area is
a priori known, but the actual condition of the routes is not.
There is the convoy moving through the city using a path-

Fig. 5. Cooperative frontiers exploration—scenario screenshot.

planning algorithm that incorporates the information obtained
by a set of small autonomous vehicles. These vehicles explore
the area ahead of the convoy (see the scenario screenshot in
Fig. 5).

The goal of the multiagent system is to find the shortest path
through the area ensuring that 1) the convoy will not stop or u-
turn because of a street blockade and 2) the total traveled path of
all vehicles is minimized. The multiagent system is composed
of one convoy agent (task agent and allocation agent role) and a
set of unmanned ground vehicles (UGV) agents (resource agent
role). Besides path planning and navigating through the city, the
convoy agent generates a set of frontiers for exploration [21].
In this case, it is not a classical mapping task in an unknown
area, but the frontiers represent points of interests in the known
street map that should be investigated to ensure the convoy may
freely pass through the desired route. A similar robotic problem
has been also solved using a multiagent system for distributed
robotic planning, e.g., in [22]. The first goal (convoy nonstoping
movement toward a target) is secured using the incremental re-
planning algorithm for convoy path planning based on anytime
planning algorithm D-star [23]. The second goal (minimization
of the traveled path) is handled by a multiagent solver using the
presented architecture and algorithms. It is shown [20] that the
multiagent solver provides almost real-time response and signif-
icantly reduces the convoy traveled path even with small number
of UGVs keeping the overall traveled distance overhead low.

The convoy agent dynamically creates points of interests (ex-
ploration frontiers) and allocates them to the UGV agents using
Algorithm 1. In the case of any new information is discovered,
Algorithm 3 is used and also new frontiers are generated and al-
located (or some frontiers can be removed). The UGV agents use
a route optimization heuristic that attempts to minimize the trav-
eled distance similar to the VRP described earlier. It fulfills the
improvement condition defined by (15) and admissibility con-
ditions defined by (24) and (25). The computational complex-
ities of the strategy are fr(n′) = O(n′) and fr′(n′) = O(1).
The experimentally evaluated worst case time complexity of the
multiagent solver has been upper bounded by O(n3).



VOKŘÍNEK et al.: ABSTRACT ARCHITECTURE FOR TASK-ORIENTED MULTI-AGENT PROBLEM SOLVING 39

Fig. 6. Screenshot of multiagent production-planning system.

D. Production Planning

Classical-planning systems (using scheduling algorithms
with various heuristics, constraint logic programming, genetic
algorithms, and simulated annealing [24], [25]) work centrally
and allocate resources usually in one run for every product
(order) presented in the system. These methods use mostly
stochastic algorithms and generate near-optimal solutions for
minimization of defined criteria (e.g., a sum of weighted tar-
diness and inventory costs). Such a solution is fully sufficient,
while the required replanning and rescheduling affects the en-
tire plan. The plan is usually completely rebuilt and a random
aspect of the algorithms can cause major (unwanted) changes
in plans after replanning. This might not be suitable for many
manufacturing areas. With physical distribution of the produc-
tion units, it is advantageous to decompose and distribute the
planning problem [1].

The multiagent technology addresses all the phases of the
manufacturing decision-making support, while there are few
implementations of multi-agent systems that cover more than
a single stage. There are solutions for low-level scheduling or
control systems, the product configuration and quotation phases
to short-term and long-term production planning and supply-
chain management [26].

The example of the system that uses the same conceptual fun-
damentals as multiagent abstract solver presented by this paper
is presented in [27] and [28]. One of the goals of the multiagent
system is to create a production plan for middle- and long-
term horizon to give an overview of resource utilization (see
Fig. 6 for a screenshot of a multiagent production-planning sys-
tem). The production resources are represented by the resource
agents maintaining the constrains and capabilities of individual
production workshops. The task agent uses a classical task or-
dering heuristic based on weighted earliest deadline first, which
significantly improves the solution and there is no need for im-
provement strategy execution after allocation phase of the batch
of tasks. The production-order decomposition and planning is

provided by the planning agent, which allocates the parts of the
production order to the resource agents using the CNP according
to Algorithm 1. In case of environment changes (e.g., an update
of production times estimation, machines breakdowns, delays
in production, etc.), Algorithm 3 is executed. The solution of the
solver is optimal according to the cost computed as a weighted
delay penalty.

Resource agents use an admissible strategy [according to
(22), (23), and (15)] that minimizes the weighted average de-
lay of the production orders (see [29] for more details). The
computational complexities of resource agent algorithms are
fr(n′) = fr′(n′) = O(n′); therefore, the overall solver com-
plexity is upper bounded by O(n4).

IV. CONCLUSION

This paper describes an abstract multiagent solver architec-
ture and an algorithm for implementing a wide variety of prac-
tical multiagent-planning and problem-solving systems. The al-
gorithm maximizing social welfare of the cooperative agent
community is introduced and analyzed. CNP-based task alloca-
tion and solution improvement using task delegation provides
a powerful tool for problem solving when keeping the compu-
tational complexity within reasonable limits. We also discuss
the limitations and admissibility constraints of the resource op-
timization heuristic that has to be designed to implement the
multiagent solver for a particular problem domain and define
the resource agent strategy admissibility.

The solver benefits in domains, where decomposition of a
problem into independent tasks is possible. Finding indepen-
dent subsets of tasks significantly reduces the need for interac-
tions between agents. The tasks are planned and executed by
individual agents independently, and the overall solution is then
merged from the partial ones. The system is able to balance
the allocation of the tasks to the agents and provide anytime
monotonically improved solution.

The applicability of the presented abstract multiagent solver
is demonstrated on several real systems operating in the do-
mains of VRPs, strategic mission planning, multirobot frontiers
exploration, and production planning. In all application areas,
the implemented system provides low-computational complex-
ity (O(n3) or O(n4)) with good solution quality.
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ExPlanTech is a consolidated technological framework resulting from a series of

European Union Research & Technological Development and Trial projects in

agent-based production planning. ExPlanTech provides technological support for various 

manufacturing problems and comprises different components, which you can assemble to 

develop a customized system that supports a user’s
decision making in different aspects of production
planning. The system should help human users size
resources and time requirements for a particular order,
creating production plans, optimizing material
resources manipulation, managing and optimizing
supply chain relationships, visualizing and analyz-
ing medium- and long-term manufacturing processes,
and accessing external data.

Using ExPlanTech’s multiagent architecture as a
foundation for a software system, you can create a
component-based, flexible, and reconfigurable system
that allows distributed computation and flexible data
management. In Gersntner Laboratory, we integrated
each ExPlanTech component in an agent wrapper that
complies with the FIPA (Foundation for Intelligent
Physical Agents, www.fipa.org) standard for hetero-
geneous software agents. You can use these compo-
nents in various configurations or independently as
standalone applications. System configurations can
contain various planning, data-management, or visu-
alization agents. ExPlanTech also offers an agentifi-
cation process that integrates an enterprise’s existing
software and hardware into an FIPA-compliant agent.

Deploying agent technologies in manufacturing
problems (see the related sidebar) lets you process rel-
evant production data distributed across the enterprise.
A classical approach that collects and processes data
centrally has difficulty dealing with situations with volu-
minous and frequently changing production-planning
data. An agent approach lets you process data proac-
tively at its place of origin and exchange only neces-

sary results. ExPlanTech, or any agent-based technol-
ogy, certainly doesn’t provide an uncomplicated solu-
tion of NP-hard planning problems. However, agent
technology lets you integrate heavy-duty AI problem
solvers (such as constraint satisfaction systems, linear
programming tools, genetic algorithms, and so on).
Such technology works well for integrating manufac-
turing enterprises into a supply chain. In terms of plan-
ning, it’s irrelevant whether a system reasons about an
in-house manufacturing workshop or about a subcon-
tracted company. Additionally, production managers
are often interested in production process modeling
and simulation. Using ExPlanTech in a simulation
environment can simplify experimenting with changes
to production lines and help show how they affect the
manufacturing process. ExPlanTech doesn’t offer
agents and components for control and real-time diag-
nostics. Even though ExPlanTech technology is in prin-
ciple open to providing support for control and real-
time diagnostics, the current implementation doesn’t
feature any such agents or components.

ExPlanTech
Given our long experience working with the man-

ufacturing industry, we identified several key require-
ments that industrial users in manufacturing fre-
quently request. They want a system that is

• Open, extensible, and general. Allows cus-
tomization for several different domains and lets
you expand functionality (such as extending pro-
duction planning to supply chain management).

ExPlanTech’s

multiagent approach

offers a unified

framework for

decision-making

support and provides a

proven alternative to

known mathematical

and system science-

modeling technologies

for simulating the

manufacturing

process.
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Agent technologies and the concept of multiagent systems
(MASs) originated in artificial intelligence and computer sci-
ence, drawing from principles of component-based software
engineering, distributed decision making, parallel and distrib-
uted computing, autonomous computing, and advanced meth-
ods of interoperability and software integration.1 Agent-based
system operations are based on collaborative (or sometimes
self-interested) interactions of autonomous and loosely cou-
pled software or hardware entities—agents. An agent can inte-
grate existing software systems required for operating the man-
ufacturing enterprise, hardware modules such as computer
numeric control machines, and various programmable logic
controllers with advanced planning systems, simulation envi-
ronments, diagnostic algorithms, or sophisticated control
mechanisms. 

Agents technologies suit domains that have one of the fol-
lowing properties:

• Requires solving highly complex problems or controlling
highly complex systems

• Has distributed, not centrally available information required
for solving problems or controlling systems

• Has a dynamically changing environment and problem spec-
ification

• Must integrate a high number of heterogeneous software
(and possibly hardware) systems

Application areas
Several agent technology application areas typically relate

to manufacturing. In production, we solve highly complex
planning problems, so we must control dynamic, unpredictable,
and unstable processes. We might also need agent-based diag-
nostics, repair, reconfiguration, and replanning. 

For virtual enterprises and supply chain management, we
have requirements for forming business alliances, planning
long-term and short-term cooperation deals, and managing
(including reconfiguration and dissolving) supply chains. So,
we also can use various agent technologies for agents’ private
knowledge maintenance, specification of various ontologies,
and ensuring service interoperability across the supply chain.
For Internet-based business, we can use agent technologies for
intelligent shopping and auctioning, information retrieval and
searching, remote access to information, and remote system
control. 

Additionally, we can use MASs to manage transportation and
material handling and for optimal planning and scheduling—
especially in cargo transportation, public transport, peace-
keeping missions, military maneuvers, and so on. Also, agent
technologies nicely pair with managing utility networks such as
energy distribution, mobile operators, and cable providers. We
might use distributed autonomous computation for simulation
and predication of alarm situations, prevention of blackouts
and overload, and intrusion detection.

Available systems
Classical planning systems (using scheduling algorithms with

various heuristics, constraint logic programming, genetic algo-
rithms, and simulated annealing2,3) work centrally and allocate
resources usually in one run for every product order in the sys-
tem. These methods use mostly stochastic algorithms and gen-

erate near-optimal solutions to minimize the defined criteria
(for example, sum of weighted tardiness and inventory costs).
Such solutions are fully sufficient for planning in stable environ-
ments. However, in an environment with requirements to con-
tinually revise the plan, these approaches would breach the
calculative rationality requirement (the minimal time required
for two relevant changes in the environment is larger than the
maximal time needed to process the change). When replanning
is required, the plan is usually completely rebuilt and the algo-
rithms’ random aspect can cause major, unwanted changes,
which makes this approach unsuitable for many manufacturing
areas. For physically distributed production units, it’s advan-
tageous to break down and distribute the planning problem.4,5

Multiagent technology can address a wide range of manu-
facturing decision-making support problems, but few MAS
implementations cover more than a single type of a problem.
Solutions exist for low-level scheduling or control systems as
well as product-configuration and quotation phases for
short- and long-term production planning and supply chain
management.6–8

PROSA (products-resource-order-staff architecture) is a reference
architecture for manufacturing control.9 It’s mainly oriented to
interholon architecture and identifies kinds of holons (agents)—
their responsibilities, functionality, structure, and interaction
protocols. PROSA defines three main classes of holons: product,
resource, and order. Product agents manage production proce-
dures and process techniques—for instance, which operations to
perform to achieve the product. Resource agents represent
resources such as machines. Order agents represent manufactur-
ing orders and are responsible for following deadlines. The
PROSA architecture’s authors also designed staff agents to give
the previous basic agents sophisticated knowledge support. 

The Gerstner Laboratory’s ProPlanT (production planning
technology) is a hierarchical technology; it comprises several
basic agent classes that let you model the enterprise structure
by level (which depends on the chosen granularity). From this
point of view, PROSA’s basic structure seems rather flat. ProPlanT’s
architecture seems quite static and consists of a relatively rea-
sonable number of agents. Contrary to PROSA’s architecture, the
number of products, tasks, or orders doesn’t affect the size of
the ProPlanT agent community. On the other hand, exchanged
messages in ProPlanT are more complex compared to messages
in PROSA. The designers of the PROSA architecture admit that
using the basic structure as the reference architecture has seri-
ous drawbacks: Because of the scalability problem, a commu-
nity could end up with numerous agents (according to the size
of the factory and number of products). It could provide un-
predictable behavior. Additionally, PROSA’s optimization has not
been adequately addressed.

These drawbacks led PROSA designers to aggregate related
holons to create the staff holon, a bigger holon with its own
identity. Staff holons empower basic holons but play only an
advisory role to avoid conflicts with the system’s hierarchical
rigidity. We can say that holons in PROSA are loosely coupled
while in ProPlanT-like architectures a strong link exists among
agents on different hierarchical levels. 

More recent solutions, such as the Micro-Boss system (created
at the Robotics Institute at Carnegie Mellon University), let
scheduling systems constantly revise their scheduling strategies

Agent Technologies and Multiagent Systems
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while constructing or repairing a schedule. Micro-Boss can meet
new demands on the planning system and uses deterministic
algorithms. Unfortunately, despite many decentralized aspects,
it’s a centralized approach. 

The Robotics Institute also successfully integrated Micro-Boss
into the MASCOT (multi agent supply chain coordination tool)
system. They developed MASCOT for dynamic supply chain cre-
ation and coordination, and it doesn’t affect the intra-enter-
prise level. It solves the problem of dynamic reconfiguration
and supply chain creation and adequately covers demands on
integration and enterprise cooperation. At the University of
Calgary, they developed MetaMorph10 as a generic multiagent
architecture. It tries to cover every phase of the manufacturing
process using mediator-centric federation architecture but
provides only a simple research prototype. 

Additionally, many other initiatives have investigated
agent-based organization of manufacturing processes. The
MADEFAST project demonstrated collaborative engineering
possibilities.11 The AARIA system integrates manufacturing
capabilities (for example people, machines, and parts) in a
MAS so that each agent interoperates with other agents in
and outside its own factory.12 AARIA uses a mixture of heuris-
tic scheduling techniques: forward and backward, simulation
and intelligent scheduling. A proposed production
reservation approach (an alternative planning strategy, in
which tasks are scheduled in the order they arrive at the sys-
tem) has adopted the classical contract-net bidding technol-
ogy. The IMS (Intelligent Manufacturing Systems) consortium
has previously studied the role of multiagent systems and
holons in manufacturing.13 Table A shows the state of devel-
opment and properties of selected systems and architectures. 
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Table A. Selected systems and architectures’ state of development and properties.

System Domain Open Lightweight Standard Transparency Simulation Development

Centralized Planning, scheduling No No No No No Commercial systems

PROSA Planning, scheduling — — No Yes Yes Architecture

ProPlanT Planning, scheduling Yes Yes No Yes No Prototype

MASCOT Supply chain management Yes — No Yes No Pilot

MetaMorph Planning and control — No KQML Yes Yes Pilot
(Knowledge Query 
and Manipulation 

Language)

AARIA Control, scheduling No No No Yes No Architecture 



• Lightweight and low cost. Isn’t computa-
tionally demanding, can run on various
hardware, and optimizes reuse of the exist-
ing computational infrastructure.

• Standard. Uses standard interfaces to inte-
grate new modules and functionalities
(possible at runtime) with the existing
infrastructure.

• Transparent and tractable. Provides trans-
parent and tractable decisions.

• Simulation and integration. Links to both
physical production machinery and simu-
lation and planning algorithms using the
same mechanisms.

• Replanning and reconfiguration. Facili-
tates local, efficient replanning and mini-
mizes required manufacturing reconfigu-
ration due to physical malfunctions.

Our multiagent technology answers the listed
challenges to different extents. See the side-
bar and Table A for a brief analysis of the
available multiagent manufacturing systems
and an explanation of how they fit the require-
ments. Table 1 illustrates the ExPlanTech
multiagent system’s relevant properties.

Architecture
The ExPlanTech framework adopts the

ProPlanT multiagent architecture. It contains
an approximately fixed number of nontrivial
agents, each providing different system func-
tionality—for example, planning, simulation,
and user access. We built ExPlanTech on top
of the Java Agent Development Environment
(JADE, http://jade.cselt.it). 

It was easy to use JADE, which allows

rapid development of sophisticated and reli-
able multiagent systems. A predefined agent
core with already-implemented control and
message transport protocols frees the author
of MASs from low-level programming and
resource management. The designer can
focus on high-level functions and easily build
user-targeted application. Any application
built on the JADE platform complies with
FIPA interoperability standards (www.fipa.
org) for implementing independent software
agents. This feature facilitates easy integra-
tion of new and third-party components. We
implemented JADE (and thus the whole
ExPlanTech system) in Java 2, which gives it
platform independence and openness. Agents
can run on different platforms (MS Windows,
Windows CE, Linux, and even programma-
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Table 1. ExPlanTech components’ state of development and properties.

Domain Development Open Lightweight Low cost Standard Transparency

Control No — — — — —

Planning, scheduling System Yes No Yes Yes Yes

Supply chain management System Yes Yes Yes Yes Yes

Simulation Prototype Yes No Yes No Yes
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Figure 1. The ExPlanTech architecture.



ble logic controllers) and cooperate without
worrying about low-level, platform-specific
problems. We’ve developed an appropriate
ontology for semantic interoperability in the
manufacturing domain in ExPlanTech.

Planning agents
The core of the any ExPlanTech-based

system is a community of appropriate plan-
ning agents (see Figure 1). A planning agent
makes production plans for individual orders,
taking care of conflicts and managing replan-
ning and plan reconfiguration. Planning is
implemented by the production planning
agent, which primarily focuses on product
configuration and quotation using one or a
community of PMAs (production managing
agents). PMAs plan production by task
decomposition and partial-order planning.
Additionally, you can develop various exist-
ing AI planning engines to handle different
types of production—for example, linear
programming, constraint logic programming,
or genetic algorithm-based planning.

Resource agents
Typically, many resource agents running

in the system directly interact with a plan-
ning agent and carry out data gathering and
specific data preprocessing. ExPlanTech fea-
tures two types of agents for integrating or
representing manufacturing resources (see
Figure 1). These agents 

• Integrate a factory’s hardware & software
systems (for example, creating a bridge to
a material-resources-provision (MRP) sys-
tem, or integrating PLC controllers) 

• Simulate a specific machine, workshop,
or department (for example, a computer
numeric control machine or a computer-
aided design department).

Cockpit agents
Several different users could want to inter-

act simultaneously with the planning agent.
To allow this and control possible conflicts,
we developed the cockpit agent (see Figure
1). Cockpit agents offer a user-friendly way
to view the state of production processes,
plans, given resource loads, and so on. Cock-
pit agents also let users interact with the sys-
tem and, according to access rights, change
plans or resource parameters (see Figure 2).

Extra-enterprise and enterprise-to-
enterprise agents

Although we designed cockpit agents for

use inside the factory (and its security fire-
walls), extra-enterprise agents let authorized
users access the system from outside using a
thin-client technology (see Figure 1). An EE
agent has made the ExPlanTech system acces-
sible (through a secure connection protocol)
via a Web browser, PDA device, or WAP
(Wireless Application Protocol)-enabled
phone to remote users. An enterprise-to-enter-
prise agent makes the system accessible to the
external software systems, such as remote
cockpit agents or E2E agents at cooperating
factories or material resources suppliers.

Metaagent
We deployed the metaagent at the intra-

enterprise and extra-enterprise levels. It car-
ries out sophisticated methods of metarea-
soning to independently monitor information
flow among the agents and to suggest possi-
ble operation improvements (such as work-
flow bottlenecks, inefficient or unused 
production components, and long-term per-
formance measurements.) 

Agent coordination and
negotiation

ExPlanTech’s key concept is the agentifica-
tion of existing and new software components.
Our system has two levels of software inte-
gration: interaction and social. Interaction inte-
gration builds the interaction wrapper (pro-
vided by JADE’s special class agent) that acts as
an interface between the agent’s body and

other agents. Interaction integration also trans-
lates messages between the FIPA ACL (Agent
Communication Language) and the agent’s
internal language that invokes its behavior.

More interesting, however, is ExPlanTech’s
social integration. To efficiently collaborate,
the agents need to collect knowledge and data
about the other agents with which they may
collaborate—we refer to these sets of agents
as an agent’s monitoring neighborhoods.1 This
type of knowledge, often referred to as social
knowledge, is located in the agents’ acquain-
tance models. We developed different acquain-
tance models for each type of agent. The
cockpit agent, which only visualizes the in-
formation provided by the planning agents,
doesn’t need a rich acquaintance model, while
the planning agents need sophisticated ac-
quaintance models containing rich social
knowledge to provide efficient distributed
plans in a timely way. 

Distributed planning aims mainly to divide
the task into several relevant subtasks (often
selecting one of many options) and then sub-
contract these subtasks to collaborating
agents. This is a very complex activity that
can’t necessarily guarantee a global optimum.
Without a precompiled social knowledge, a
planning agent must initiate a contract-net-
protocol (CNP) for every admissible decom-
position. In complex situations this is almost
impossible. Social knowledge stored in the
acquaintance models circumscribes the space
of possible decompositions and contracts. 
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In practical applications, the concept of
the tri-base acquaintance model developed
for project-driven production planning
proved to be useful. This model collects
social knowledge in three separate bases:

• Cooperator-base. Contains static infor-
mation (a white page list comprising
physical information about locations, IP
address, and ACL encoding and a yellow
page list with information about provided
services) about the other agents.

• State-base. Administers nonpermanent
information about the agents in the moni-
toring neighborhood (operational load,
implementation state of various tasks, and
trust in competing communities).

• Task-base. Contains a list of all currently
planned tasks and the decomposition tem-
plates for new task decomposition if a spe-
cific requirement arrives.

When planning a task, the planning agent
selects the most optimal task decomposition
template in the task base and instantiates the
template with the cheapest (or fastest) coop-
erators in the state base. It further contracts
parts of the constructed plan to the coopera-
tors, using the cooperator base’s information. 

Maintaining the social knowledge repre-
sent the principal bottleneck of deploying
acquaintance models in real applications.
The more useful the acquaintance model the
more its data must be kept up-to-date. This
becomes very costly in complex agent sys-
tems. Several different approaches exist to
maintenance, ranging from periodical revi-
sions, in which the planning agent periodi-
cally asks cooperators about the informa-

tion’s validity in the state base, to subscrip-
tion-based interaction, in which the planning
agent subscribes to cooperators for the rele-
vant data. 

In decomposition-based planning, a per-
manent or semipermanent hierarchy of agents
exists, in which each agent decomposes a task
into subtasks and coordinates its completion.
By contrast, fully autonomous planning relies
on agents working together on the same plan-
ning problem. They form their local plans,
which are later merged (for example, by nego-
tiation and voting), and replanning (for exam-
ple, Partial Global Planning2) resolves con-
flicts. With backward-chaining planning—a
compromise between decomposition-based
planning and fully autonomous planning—
the request backpropagates through the man-
ufacturing flow. This doesn’t have a com-
mand-and-control hierarchy or a central
component, but the agents autonomously push
requests for their prerequisites 

In ExPlanTech, we used decomposition-
based planning mainly for production planning
and supply chain management. We used back-
ward-chaining planning primarily for simula-
tion purposes. We haven’t widely adopted the
concept of fully autonomous planning. 

In both the fully cooperative and self-inter-
ested (that is, competing) agent communities,
their negotiation methods let agents reach an
agreement. Although these methods focus
primarily on supply-chain management and
virtual enterprise organization, we’ve used
negotiation based on a classical CNP also in
the intra-enterprise environment. Negotiation
is also used for autonomous replanning, espe-
cially in domains in which the planning spec-
ification changes frequently. 

Possible use cases
These use cases represent the most usual

ways to use an ExPlanTech-based system.

Production planning, dynamic
replanning

The most obvious use case is intra-enter-
prise production planning. ExPlanTech pro-
vides sets of linear and nonlinear plans and
schedules in-house manufacturing activities so
that the requested orders and tasks are achieved
while optimizing enterprise resources. Given
fixed deadlines, the system gives the user
resource requirements and an appropriate man-
ufacturing schedule. If the available resources
are insufficient to meet the deadline, the system
notifies users and initiates a supervised process
of replanning and rescheduling. Replanning in
ExPlanTech often occurs when the planning
problem dynamically changes (for example, if
the manufacturing machinery malfunctions).
So, replanning solves existing or potential con-
flicts in production plans. ExPlanTech pro-
vides sophisticated tracking of interdepen-
dence among particular tasks, which makes
replanning very fast and avoids planning again
from scratch.

ExPlanTech continually analyses production
data to give feedback to the project planner and
keep plans up to date. Users can change task
specifications and resources capacities at any
time, and it recomputes and displays new plans
in real time. Variant planning lets users exam-
ine several possible orders, test their feasibil-
ity, and choose the best one.

Supply chain management
Solving the complicated task of automated

supply chain management requires overcom-
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ing many technical and commercial difficul-
ties. Unlike in intra-enterprise planning,
ExPlanTech lacks complete knowledge about
a supplier’s parameters and capacities. This is
why the simplest interaction approach (mas-
ter-slave) doesn’t suffice and ExPlanTech
offers classical auctioning techniques (such as
CNPs). Additionally, ExPlanTech handles
secure and authenticated communication
through the X-Security component and uses
acquaintance models to handle temporary sup-
plier inaccessibility. For supply chain integra-
tion and management, ExPlanTech provides
EE agents, E2E agents, and MRP agents. 

Simulation
Simulation can support decision-making

in two ways. First, users can simulate a new
factory or an overhauled or upgraded exist-
ing factory. The simulation tool supports a
high-fidelity analysis of what an alternative’s
performance will be. Second, simulation can
aid decision support in factory control to test
how key machines’ performance changes
would affect the manufacturing process.
ExPlanTech’s integrated simulation envi-
ronment lets users simulate different manu-
facturing scenarios to make technology
changes and control safer. 

EE access
Users can implement EE access either by a

thin-client technology that requires an appro-
priate browser on the client side or by a thick
client technology that assumes installation of
software based on Java and JADE technology

on a user’s computer. Remote users (accord-
ing to access rights) can exploit the function-
ality, which ranges from a passive observation
of the system to active interventions (for exam-
ple, planning custom orders). 

ExPlanTech deployed
We’ve collaborated with several industrial

partners to deploy ExPlanTech. They didn’t
all use an identical collection of the software
system, so we customized solutions for each.

Modelárna Liaz
Modelárna Liaz is a mid sized pattern shop

enterprise in the Czech Republic. The enter-
prise’s customers are mainly from the auto-
motive industry in the Czech Republic, Ger-
many, and Belgium. The pattern shop
specializes in single-part production of pat-
tern equipment; permanent molds and dies;
measuring and gauging devices; and weld-
ing, cooling, positioning, and machining fix-
tures and cubings (see Figure 3a).

The enterprise adapted ExPlanTech on the
planning level. It aimed to improve medium-
and long-term horizon efficiency. The impor-
tant criterion was the load of strategic depart-
ments (machines) and delivery times. It imple-
mented multiagent decomposition-based
planning within the ExPlanTech. ExPlanTech
agentified the factory information system and
updated resource agents with real-time pro-
duction feedback. One planning agent is
responsible for the whole planning course.
ExPlanTech implemented several cockpit
agents for parallel connection to the system.

Once the enterprise resource planning sys-
tem (denoted in Figure 3b as ISML, Infor-
mation System in Modelárna Liaz) receives
the order specification, ExPlanTech produces
a complete set of production plans that are
reshipped to the ERP system. Planning a new
order or a change in the factory shop floor
(represented by the resource agents) triggers
a replanning process of all precommitted
plans in ExPlanTech. 

Besides production planning, ExPlanTech
supports factory management with EE access
to the planning data and automation of its
supply chain management. The complete
solution helps to find more efficient intra-
enterprise plans and improve EE activities.
The faster and more precise cooperation with
suppliers and selling free capacities can
shorten the production lead-time and create
higher use of the factory. After several
months of testing, the system proved its
potential by improving machine use by 30
percent and reduced the finished product’s
due time by 5.3 percent.

SkodaAUTO
The SkodaAUTO motor factory, in col-

laboration with Gedas and CertiCon software
companies, has successfully applied the
ExPlanTech technology to design a robust
planning system for car engines manufac-
turing. This exemplifies high-volume pro-
duction, in which a few thousand engines
(see Figure 4a) are manufactured daily. A
high variability exists in the types of motors
to be manufactured. The planning system
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needed to provide us with hourly plans for a
period of six weeks. The production process
(see Figure 4b) involves three production
lines (ZK, Rumpf, ZP4) and two different

parts buffer stores (vehicle and conveyor) and
the main store for the finished products.

The agent technology provided a great
help in solving the highly complex problem
of planning assembly line production. We
designed planning to occur on two indepen-
dent levels:

• On a higher level, ExPlanTech produces a
rough plan. This plan specifies an approx-
imate amount of engines to be produced
each day so that all the requested con-
straints are met. We have used a linear pro-
gramming based heavy-duty agent for
elaborating this higher level plan. 

• On a lower level, the agents (each repre-
senting a line or a buffer store) analyze the
provided higher-level plan and check for
conflicts. In an ideal situation, the amount
of conflicts is reasonable so that agents can
negotiate and solve conflicts by swapping
the tasks within days. The lower-level
planning algorithm primarily performs
conflict resolution by negotiation. The
lower-level planning also provides daily
ordering of the tasks.

Behr
The use case for Behr, an automotive sup-

plier in the field of cooling and air-condition-
ing systems, employs mainly ExPlanTech’s
production simulation, supported by simpli-
fied planning and special cockpit agents and
metaagents. The simulation aims primarily to
compare the long-term effectiveness of sev-
eral shop floor layouts. The simulation also
lets Behr find production bottlenecks and opti-
mal product buffer positions and evaluate the
impact of important machine failures. These
results are very important in decision support
during the design of new or reconfiguration
of an existing factory or even during impor-
tant control decisions. Behr carried out adop-
tion of ExPlanTech within the MPA (Modular
Plant Architecture) project funded in part by
the European Commision.

ExPlanTech’s—and that of agent-based
technologies in general—main virtue is

in its high level of integration openness. When
implementing an ExPlanTech-based, pro-
duction-planning system, it’s possible to
reuse most of the previously existing IT infra-
structure and software equipment as well as
to integrate new decision-making support
modules. At the same time, users have noted

the system’s high level of decision-making
transparency and ability to involve human
experts in the planning process.

In any of the listed deployments, the agent-
based solution doesn’t guarantee to provide
optimal solutions with fewer computational
resources (such as time and memory) than
classical AI planning systems. This is one of
the most common disappointments that
agent-based technology adopters experience.
However, the multiagent paradigm’s ability
to combine distributed AI algorithms with
heavy-duty problem solvers and heuristic
knowledge of the planning problem provides
sophisticated solutions in specific cases. 

JADE-based systems such as ExPlanTech
require substantial amounts of computational
resources to run promptly. As we have always
developed a limited number of agents (up to
30), with any of the deployed applications,
this hasn’t been a problem. Scalability of the
JADE-based software system has proven to
be a bottleneck (especially in situations where
several agent-based systems are working with
the same hardware or software resources). A
server-based version of the ExPlanTech sys-
tem was developed to overcome this obsta-
cle. Users access the system via a community
of lightweight cockpit agents or from Web
browsers by means of EE agents. 

Currently, at Gerstner Laboratory, we’re
investigating in the concept of lightweight
agent platforms that would allow massive
scalability in the number of agents. We devel-
oped a novel lightweight platform—A-globe
(http://agents.felk.cvut.cz/aglobe)—which
recently received the System Innovation
Award at a prestigious Cooperative Infor-
mation Agent (CIA) workshop at the NetO-
bject Days event in Erfurt.
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ABSTRACT
A multi-agent VRP solver is presented in this paper. It
utilizes the contract-net protocol based allocation and sev-
eral improvement strategies. It provides the solution with
the quality of 81% compared to the optimal solution on 115
benchmark instances in polynomial time. The self-organizing
capability of the system successfully minimizes the number
of vehicles used. The presented solver architecture supports
great runtime parallelization with incremental increase of
solution quality. The presented solver demonstrates appli-
cability to the VRP problem and easy adaptation to problem
variants.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Ar-
tificial Intelligence—Intelligent agents, Multiagent systems

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Vehicle routing problem, heuristic, multi-agent solver, bench-
marks

1. INTRODUCTION
The Vehicle Routing Problem (VRP) is a well-known opti-

mization problem introduced in [3]. The problem is defined
as routing of a fleet of gasoline delivery trucks between a
terminal and a number of service stations. The trucks have
load capacity limitations and deliveries have to be accom-
plished at minimum total cost (distance traveled).

This paper presents an agent-based solver producing fea-
sible solution of the VRP instance in a polynomial time that
doesn’t use exhaustive searches or randomizing methods.
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1.1 Problem Statement
The VRP falls into the category of the NP-hard problems

and so it is difficult to solve it in reasonable time. It is
based on interdigitation of two underlaying problems that
are also NP-hard – the Multiple Traveling Salesman Prob-
lem (MTSP) and Bin Packing Problem (BPP). A feasible
solution to the VRP is a solution of MTSP that satisfies
the capacity constraints (decision variant of BPP). By re-
laxation of one of the underlying problems (MTSP, BPP
respectively), we can transform VRP into the other sub-
problem (BPP, MTSP respectively).

The Vehicle Routing Problem can be formalized as:

Definition 1. Let us have a set of cities c1, . . . , ck with
known mutual distances and positive demands d1, . . . , dk,
the Vehicle Routing The problem is to find a set of m tours
that together visit all nodes, each node is visited exactly once
and by only one tour, the sum of the tours is minimal and
the sum of the node demands served by each tour doesn’t
exceed the vehicle capacity C.

We define the set of tasks T = {n1, ..., nk}, where ni is a
doublet of a city and the corresponding demand:

ni = (ci, di), (1)

∀i∀j : ci �= cj iff i �= j.

The vehicle capacity constrain is defined for each route as:

lX
i=1

di ≤ C, (2)

where l is a number of tasks in the route and di is the de-
mand of ith task of the route. For ensuring feasibility of the
solution we require:

∀i : di ≤ C. (3)

It is obvious that for di > C, there is no way to handle
this demand by a single truck and thus no solution for the
problem exists.

In practical applications, the VRP is defined either with
a fixed number of vehicles or as a problem with a minimal
number of vehicles demanded. The determination of the
minimal number of vehicles is a decision variant of BPP and
is related also to determining the minimal number of routes
for MTSP. Even though this problem is NP-hard, we can
easily define the lower and upper bound of the number of
vehicles (routes):
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Theorem 1. The number of vehicles m in the feasible
solution of the Vehicle Routing Problem is bounded byPk

i=1 di

C
≤ m ≤ k

where k is the number of cities, C is the capacity of the
vehicle, and di is a demand of the ith city.

Proof. The lower bound of the number of vehicles re-
spects the capacity constraints stated in Definition 1. For
m vehicles the cumulative capacity of the whole fleet ism×C
and the cumulative size of the demand is

mX
j=1

lX
i=1

d′i,j =

kX
i=1

di,

where d′i,j is a demand of the ith city on the jth route. Re-
specting Equation 2 the cumulative size of the demands in
the feasible solution cannot exceed the cumulative capacity
of the fleet. The upper bound is given by Equation 3 in the
case where every demand is served by one route, i.e. l = 1
and m = k.

1.2 Existing Solution Techniques
In the original Dantzig’s article [3] the problem is for-

mulated as a linear program providing a near-optimal solu-
tion. Classical solution techniques include wide variety of
exact methods (branch and bound, branch and cut, set cov-
ering, spanning tree, shortest path relaxation, etc.), heuris-
tics (constructive, two-phase, improvement, etc.), and meta-
heuristics (simulated annealing, tabu search, genetic algo-
rithms, ant algorithms, neural networks, etc.). More infor-
mation about solution techniques can be found for example
in [6], [7], or [9]. This paper focuses on k-VRP (k is the
number of cities), which is proven to be NP-hard and the
best known approximation of the k-VRP is 5

2
− 3

2n
for the

metric case (triangle inequality is satisfied) [5].
The Agent-based approach to a variant of the VRP solver

has been presented for example in [10]. Authors use three
types of agents – Client, Bidder and Vehicle agents. The
approach is based on the contract-net protocol (CNP) allo-
cation and optimization based on exchange of tasks between
the Vehicle Agents. The Vehicle Agents use an insertion
heuristic and improvement strategy for task swapping be-
tween them. The error of the solution (compared to the
optimal solution) presented in the paper is 4–29%.

A similar approach has been used in [1] for a dynamic vari-
ant of k-VRP (new tasks are added during the execution),
where the initial allocation is generated using a centralized
algorithm. The dynamic task allocation is made by the
CNP protocol. Then two improvement phases are applied.
The intra-route optimization is applied to each agent route
and inter-route optimization is performed between Vehicle
Agents (1 or 2 random tasks are moved between agents).
The optimization is performed continuously during vehicle
rides until all tasks have been fulfilled or a new dynamic
task comes (1 hour interval in the experiments). The er-
ror of solution on all static requests has been reached 0–8%,
but it is not described how much computation time has been
used for static instances and also there is no discussion of
stability and the speed of convergence of the solution qual-
ity (the optimization algorithm terminating condition is not
defined).

In both [10] and [1] there is no discussion of the number
of Vehicle Agents and handling of the potential allocation
failure because of capacity constrains (no Vehicle Agent is
capable of undertaking the next task) which can arise when
the number of Vehicle Agents is lower than the upper bound
defined by Theorem 1.

2. MULTI-AGENT SOLVER
The multi-agent planning approaches are used for solving

a wide variety of planning problems. As analyzed in [2] the
multi-agent planning techniques can be beneficial for such
problems where the domain sizes of individual agents are
considerably smaller (e.g. in logarithmic relation) than the
overall size of the problem (even if the planning complexity
of individual agent is exponential) and the number of depen-
dencies between agents is low. Although the Vehicle Routing
Problem consists of several NP-hard problems which may
not satisfy the presented conditions (e.g. the BPP part pro-
duces an agent domain comparable to the overall problem
size for the agent maintaining task distribution), this pa-
per shows the applicability of the agent-based approach and
discusses it’s benefits and limitations.

2.1 Architecture
In this section we introduce the polynomial agent-based

Vehicle Routing Problem solver producing a feasible solu-
tion, according to Definition 1, minimizing the routes’ cost
and the number of vehicles used. The solver is composed of
three types of agents (see Figure 1). They are

• Task Agent for processing of demands and allocation
invocation,

• Allocation Agent for maintaining allocation and the
improvement process, and

• Vehicle Agent for route planning and optimization.

The multi-agent solver is composed of one Task Agent, one
Planning Agent and a set V of Vehicle Agents (each agent
utilizes one of the strategies described below). The number
of Vehicle Agents respecting Theorem 1 is constrained by
the lower and upper bound.

Since the agent-based solver doesn’t use the exact method
for solving the BPP part of the problem it may be impossible
to find a solution using a minimal number of vehicles. In
such a case, the whole process has to be restarted with an
increased number of Vehicle Agents or an agent has to be
added during the solving process. On the other hand, the
upper bound of the number of Vehicle Agents guarantees
the feasibility of solution but may produce worse results.
Thanks to the agent paradigms, we can expect some sort
of self-organizing behavior that emerges during the process
of solution improvement. Let us formulate the following
hypothesis:

Hypothesis 1. The implicit self-organizing ability of the
agents emerges to the solution that corresponds to the min-
imal number of vehicles. The solutions produced by the sys-
tem converge to the same number of vehicles regardless of the
initial number of Vehicle Agents (provided that the solution
is found).

To solve the given VRP instance, we generate a set of
solvers utilizing a different combination of strategies and
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Figure 1: Generic architecture of agent-based VRP
solver.

processing an input instance in parallel. The solvers pro-
duce solutions of the given problem independently and then
the solutions are aggregated by the Composite Solver which
selects the best one that minimizes the cost of the solution:

cost = min
S

cost(S), (4)

where S is a solution provided by a solver and cost(S) is
the cost of the solution (see Equations 5 and 8). From the
strategies described in the next subsections, we have built 42
solvers competing to answer the fundamental VRP question.

2.2 Task Agent
The Task Agent is responsible for collecting the demands

and passing them to the Allocation Agent. It optionally
applies the ordering preprocessing to the set of incoming
tasks. It is able to pass the tasks to the Allocation Agent
one by one (this represents the dynamic variant of VRP) or
in a batch.

We suppose the ordering of the tasks directly influences
the BPP part of the VRP. In the case of wrong ordering, the
VRP solution may not be feasible for the lower bound of the
number of Vehicle Agents because of capacity constraints
(Equation 2). In the case of correct ordering, there may
be a bigger chance to optimally allocate the tasks to the
Vehicle Agents. These assumptions lead us to formulate the
following hypothesis:

Hypothesis 2. Applying appropriate ordering to a set of
tasks, the chance of finding the solution of VRP with a min-
imal number of vehicles is increased and the cost of the so-
lution is decreased.

Since the number of possible orderings increases rapidly
with the size of the task set, we are not able to investigate all
the orderings (in fact, the complexity of such an exhaustive
search is comparable to solving the VRP itself). The First
Fit Decreasing (FFD) heuristics is a classical BPP algorithm
that has been recently proved [4] to provide the tight bound
of 11

9
OPT + 6

9
(e.g. when the instance of BPP can be opti-

mally solved with 6 bins, the FDD is able to solve it with the
maximum of 8 bins). Since it is a good algorithm for BPP,
we decided to build the strategy of Task Agent inspired by

this algorithm. The Task Agent strategy doesn’t directly
affect the allocation of the tasks to the Vehicle Agents, but
it may have strong influence on the Allocation Agent strat-
egy efficiency because of ordering capability. To inspect the
influence of the Task Agent strategy, we have created also
an opposite strategy to FFD for comparison.

The Task Agent uses the following three ordering strate-
gies:

1. Most Demand First (MDF) based on the FFD, where
the tasks are ordered with decreasing demands,

2. Least Demand First (LDF), which is opposite to
MDF, so the tasks are ordered with increasing de-
mands,

3. First In First Out (FIFO), where tasks are not or-
dered and their sequence corresponds to the time of
arrival.

The time complexity of the Task Agent preprocessing (MDF
and LDF strategies) corresponds to the complexity of stan-
dard sorting algorithms, which is O(nlog(n)). The complex-
ity of the FIFO strategy is O(1). Therefore the complexity
of the Task Agent algorithm is OTA = O(nlog(n)).

The task processing (passing them to the Allocation Agent)
can be handled by one of two strategies:

1. Batch processing (NORM), where all available tasks
are sent as one batch, and

2. Iterative processing (ITER), where task are sent
one by one.

2.3 Allocation Agent
The Allocation Agent applies a defined strategy to allo-

cate the tasks to the set of Vehicle Agents. The allocation
strategy searches for the best suitable mapping of the tasks
to the Vehicle Agents that minimizes the overall cost. The
goal of Allocation Agent is to find such a partition P of the
set of all tasks T that

argmin
P

vX
i=1

cost(Ni), (5)

where v is a number of Vehicle Agents, Ni is a subset of
tasks allocated to the ith Vehicle Agent, cost(Ni) is a cost
function computed by the ith Vehicle Agent (Equation 8),
and Ni ⊆ T,

Sv
i=1 Ni = T where ∀i, j : Ni∩Nj = ∅ iff i �= j.

Equation 5 conforms to Definition 1, where Equation 2 is
covered by Vehicle Agents.

The Allocation Agent algorithm consists of two phases:
(i) allocation phase and (ii) improvement phase.

The first phase builds a feasible solution and the second
performs incremental improvement. Both phases are cap-
tured by Algorithm 1.

Two allocation strategies implemented by the Allocation
Agent are:

1. Contract-net based (CNP) – is based on the well-
known contract-net protocol. For every task the best
Vehicle Agent is selected according to insertion esti-
mation (see Section 2.4) satisfying capacity constrains
(Equation 2). This strategy contains no backtrack-
ing and in case of allocation failure (because of ca-
pacity constraint of Vehicle Agents) the whole process
is restarted with a higher number of Vehicle Agents.
This strategy is described by Algorithm 2.
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2. Capacity backtracking strategy (BC) – is based on
the previous strategy, but with backtracking in case
of allocation failure. In case when no Vehicle Agent
can undertake a new task because of the capacity con-
straint, the best Vehicle Agent is selected regardless
of capacity limitations. This agent removes the worst
tasks until the new task fits the increased free space.
After that, the removed tasks are allocated again. The
reallocation counter controls the number of realloca-
tions and when it reaches the pre-defined maximum,
the number of Vehicle Agents is increased and the pro-
cess is restarted. This strategy is described by Algo-
rithm 3.

The CNP strategy can fail because of capacity constrains

and can be restarted up-to k−
Pk

i=1 di

C
times when the num-

ber of Vehicle Agents reaches upper bound (see Theorem 1).
The BC strategy can provide feasible allocation with a

lower number of Vehicle Agents because of backtracking,
but also can be trapped in an infinite reallocation loop. The
reallocation counter helps to recover from this loop. In the
worst case, the strategy is being restarted until the num-
ber of Vehicle Agents reaches the upper-bound and the BC
provides the same result as CNP.

After successful allocation, the improvement phase takes
place. We have designed three improvement strategies that
Allocation Agent can use. The strategies are improvement
heuristics that produce the same or better solution after each
run. In all cases, the strategy is repetitively executed on all
vehicle Agents until the solution overall cost (see Equation 5)
stops improving (see Algorithm 1).

The improvement strategies are (see Algorithm 4 for more
details):

• Delegate worst (DW) – each Vehicle Agent identifies
it’s worst task and tries to delegate it to another agent
if the savings are higher than the insertion cost (see
Equations 10 and 9).

• Delegate all (DA) – each Vehicle Agent delegates all
its tasks (only if the savings are higher than the inser-
tion cost).

• Reallocate all (RA) – each Vehicle Agent successively
removes all its tasks from the plan and allocates it
again using the CNP strategy. The result of the allo-
cation can be the same as before task removing, or a
change of the position of the task in the current agent
plan, or delegation to another agent.

The results produced by the two-phase algorithm are in-
fluenced by the Task Agent processing strategy. The NORM
strategy allows to allocate all tasks and then perform the im-
provement phase. The ITER strategy provides a high degree
of dynamism where tasks are allocated one by one and the
optimization is performed after allocation of each task.

The worst-case time complexity of the Allocation Agent
algorithm is

OAA = n×Oalloc + n2 ×m×Oimpr, (6)

where n is the number of tasks, m is the number of agents,
Oalloc is the complexity of the allocation strategy, and Oimpr

is the complexity of the improvement strategy. The com-
plexity of individual strategies is shown in Table 1 where rc
is the reallocation counter threshold (constant) and OestI ,

Algorithm 1 The Allocation Agent main algorithm.

function solve(T , V ) begin
forall t : T begin

run allocation strategy for task t
if allocation not successful then

restart solver with increased
number of Vehicle Agents

end
end
improvement := true
repeat until improvement is false

improvement := false
forall v : V begin

run improvement strategy for agent v
if solution has been improved then

improvement := true
end

end
end

end

Algorithm 2 Contract-net based allocation strategy.

function allocateCNP(t, V ) begin
forall v : V begin

find winner with the lowest insertion
estimation of t not exceeding capacity C

end
if winner is found then

assign t to the winner
else

allocation not successful
end

end

Algorithm 3 Capacity backtracking allocation strategy.

function allocateBC(t, V ) begin
allocateCNP(t, V )
if allocation not successful then

if reallocation counter is reached then
allocation not successful
return

end
forall v : V begin

find winner with the lowest insertion
estimation of t ignoring capacity constrain

end
while winner has not enough capacity for t begin

remove the worst task of winner
and put it to REALOC

end
assign t to the winner
forall r : REALOC begin

allocateBC(r,V )
end

end
end
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Algorithm 4 Improvement strategies of Allocation Agent.

function improveDW(v,V ) begin
t = the worst task of agent v
forall a : V � v begin

find winner with the lowest ins. estimation of t
end
if ins. cost of winner is lower then savings of v then

swap t from v to winner
end

end

function improveDA(v,V ) begin
forall t : tasks of agent v begin

forall a : V � v begin
find winner with the lowest ins. estimation of t

end
if ins. cost of winner is lower then savings of v then

swap t from v to winner
end

end
end

function improveRA(v,V ) begin
forall t : tasks of agent v begin

remove t from agent v
allocateCNP(t,V )

end
end

OestR, Oworst, Oins, and Orem are complexities of Vehicle
Agent algorithms for task insertion/removal estimation, task
insertion, finding the worst task, and task removal defined
in the next section.

2.4 Vehicle Agent
The Vehicle Agent represents a single truck and is respon-

sible for optimization of the route cost through the assigned
tasks. It starts and finishes the route at the depot. In fact,
this routing problem corresponds to the traveling salesman
problem, where new customers come successively (as the Al-
location Agent progress with task allocation).

Let N = (n1, . . . , nl) be a set of l tasks allocated to the
agent, I = (i : 1, . . . , l) is an ordered index set, where I ∈
I, |I| = l and I is a set of all index permutations.

According to Definition 1 the objective function of Vehicle
Agent can be formalized as follows:

argmin
I∈I

d(nd, nI1) +

l−1X
j=1

d(nIj , nIj+1) + d(nIl , nd), (7)

where d(ni, nj) is a distance traveled between task i and j,
and nd is the depot, ensured that Equation 2 holds.

Given the I minimizing Equation 7, the cost function of
the Vehicle Agent is then

cost(N) = d(nd, nI1) +

l−1X
j=1

d(nIj , nIj+1) + d(nIl , nd). (8)

The Vehicle Agent is able to compute the cost function
during interactions with the Allocation Agent in the case of
addition of new tasks, removal of an already assigned task,
and estimation of adding/removing a task.

OCNP m×OestI +Oins

OBC rc× (OCNP +m×OestI + n×Orem +Oins)

ODW Oworst + (m− 1)×OestI +Oins +Orem

ODA n×OestR + (m− 1)×OestI +Oins +Orem

ORA Orem +m×OCNP

Table 1: Complexity of Allocation Agent strategies.

The algorithm used by Vehicle Agent is based on the well-
known cheapest-insertion heuristics [8]. When inserting new
tasks nl+1 the algorithm searches (in case of satisfying Equa-
tion 2) for the best suitable index j, where

argmin
j∈I′

d(nI′j−1
, nl+1) + d(nm+1, nI′j

)− d(nI′j−1
, nI′j

), (9)

and I ′ = (d) ∪ I ∪ (d). The inner part of the Equation 9
is the insertion cost estimation. The new task nl+1 is then
inserted on the position k = j − 1 in the agent’s plan, e.g.:

I := (i1, . . . , ik−1, l + 1, ik, . . . , il),

N := N ∪ nl+1,

m := l + 1.

The same heuristics is used for identification of the worst
task (invoked by the delegation strategy of Allocation Agent),
so the worst task nj is such a task where:

argmax
j∈I′

d(nI′j−1
, nI′j

)+d(nI′j
, nI′j+1

)−d(nI′j−1
, nI′j+1

), (10)

i.e. the savings (the right part of the equation) of removing
such tasks are maximized.

In the dynamic variant of the VRP, the algorithm is sim-
ply modified by constructing I ′ = (c)∪(ip, . . . , il)∪(d) where
nc is the current position of the agent and nip is the next task
to be serviced. The plan is not searched from the beginning
but from the current point of execution – new task cannot
be inserted to the already traveled path (ni1 , . . . nil−1). This
modification has minimal impact on the functionality or the
source codes of the whole system. The Vehicle Agent is also
able to easily cover modifications of VRP such as the multi-
depot variation, heterogenous capacities, additional route
constraints, etc.

The complexity of insertion heuristics for inserting the ith

task is Oins = O(i), so the overall complexity of the plan-

ning l tasks allocated to an agent is O( l
2

2
). The complexity

of finding the worst task is the same as planning a task and
insertion estimation, thus Oworst = OestI = O(i), removing
one task costs only one operation as does removal estima-
tion, thus Orem = OestR = O(1).

2.5 Complexity
The general computational complexity of the multi-agent

solver is introduced in [2]. Using transformation of the
multi-agent planning problem to the distributed constraint
satisfaction problem, the worst-case time complexity of the
multi-agent planning is upper-bounded by

f(I)× exp(comm) + exp(int), (11)

where f(·) is the factor inducted by requesting each agent to
plan while committing to a certain sequence of actions, I is
the complexity of an individual agent’s planning, exp(comm)
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represents a factor exponential in min-max number of per-
agent commitments, and an additive factor exp(int) repre-
sents the interactions of agents.

The consequences of Equation 11 lead to interesting fea-
tures of the multi-agent solver, such as (i) no direct expo-
nential dependence on the number of agents, (ii) no direct
exponential dependence on the size of the planning prob-
lem or size of the joint plan, and (iii) no direct exponential
dependence on the length of individual agent plans [2].

In our case the feature (ii) does not have a strong impact
on the BPP part of the problem because in the worst case
the size of the problem of our agents is the same as the size
of the overall problem (for the MTSP part of the problem
the feature holds). On the other hand the exponential fac-
tors are reduced by the polynomial heuristics – allocation
and improvement strategies of the Allocation Agent and the
insertion heuristic of the Vehicle Agent. The ordering strat-
egy of the Task Agent does not have a strong influence on
the worst case complexity because of its additive nature and
low complexity.

By combining complexities of the individual agent strate-
gies described earlier, we can define the complexity of the
overall solver. Because of the space limitations of the article,
we are not able to describe the complexity of every combi-
nation of strategies, so we present only the results here. The
upper-bound of the worst-case time complexity of the solver
is (taking into account the worst-case number of restarts,
reallocations and backtracking)

O(n3), (12)

where n is the number of tasks (i.e. nodes or demands).
There is no influence of the number of agents, but the num-
ber of Vehicle Agents is reflected by its dependency on the
number of tasks (see Theorem 1) and increase the worst-case
complexity exponent by one because of restarts towards the
upper-bound number of vehicles.

2.6 Experiment Baseline Solver
For the evaluation purposes we have created a baseline

solver reconstructing the optimal (or the best known) so-
lution. It is based on the known results of the benchmark
instances. It is composed of the presented three types of
agents with special strategies. For the Task Agent it is:

• Optimal order, where tasks are ordered in an optimal
way. This strategy is based on the previously known
optimal solution. The order of the tasks is given by
merging optimal routes, where tasks are ordered by
their distance from the depot to the corresponding city
computed on the vehicle route.

The Allocation Agent algorithm is composed only of the
following allocation strategy (no optimization strategy is
needed):

• Optimal allocation, where tasks are allocated to the
Vehicle Agents according to routes in the known opti-
mal solution.

The Vehicle Agent optimal strategy is bounded to the opti-
mal allocation (it is obvious that with non-optimal alloca-
tion, the Vehicle Agent strategy is not able to produce the
globally optimal solution). So the optimal Vehicle Agent
strategy is:

• Optimal route, where tasks are ordered in the same
way as in the known optimal solution.

This baseline solver is used for comparison in the experi-
ments as a whole (reconstructing the best known solution)
or as a part of the standard solver for investigating influences
of the individual agents.

3. EXPERIMENTS
The presented solver has been evaluated on the VRP bench-

mark instances from two sources. The first source is VR-
PLIB1 (s̈ymetric CVRP instances)̈, and the second is a com-
pilation of instances from the COIN-OR project2. All the
instances use the Euclidean distance for edge weights and the
number of nodes varies from 16 to 484. We have used 115
instances with a known solution (optimal or best known).

The comparison of solutions has been made against solu-
tions reconstructed by the baseline solver (see Section 2.6).
We measure the computation time and quality of the solu-
tion defined as:

costsolver
costoptim

× 100[%], (13)

where costsolver is the solution cost provided by the solver
(see Equation 4) and costoptim is the cost of the best known
solution. All the experiments have been run on a standard
laptop with 3GB of RAM and 2.5GHz dual core processor.
The solver has been implemented as JAVA application with
no performance optimizations.

3.1 Solution Quality
The quality of the solution has been evaluated for the

composite solver (using 42 parallel solvers with combination
of strategies as described in Section 2). The aggregated re-
sults of all experiments show that the best solution quality
reached is 100%, the lowest quality is 81.3% and the average
solution quality over all instances is 91.3%. The results per
instance (the x-axis represents instances with an increasing
number of nodes to the right) can be seen in Figure 2 –
the dots are the best solutions of the composite solver, the
vertical lines represent the span of results of other solvers
(e.g. non-winning strategies combinations). The results of
the experiment also indicate that there is no dependence of
the solution quality on tightness of the instance. The com-
posite solver has reached the solution quality of more than
81% on all the benchmark instances and the average quality
has been 91%. The quality of 100% has been reached for
3 instances, for 28 instances we reached quality better than
95% and there have been 63 instances with solution better
than 90%.

3.2 Ordering Strategy
These experiments evaluate the influence of the Task Agent

ordering strategy on the quality of the solution provided by
the solver. The strategies of Task Agent are compared to
the baseline Optimal Order strategy. Table 2 shows the so-
lution quality of the solver through all instances aggregated
for ordering strategies (solvers are divided into the groups
according to the ordering strategy used and the best solution

1http://www.or.deis.unibo.it
page /research pages/ORinstances/VRPLIB/VRPLIB.html
2http://www.coin-or.org
page /SYMPHONY/branchandcut/VRP/data/
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Figure 2: Solution quality of the composite solver
per each benchmark instance.

Task Processing max min average deviation

MDF 100.0 75.83 87.62 6.30
LDF 99.1 68.46 87.06 7.39
FIFO 100.0 75.87 88.45 5.87

Optimal Ordering 100.0 69.8 88.84 6.39

Table 2: A comparison of the task processing meth-
ods. The values are the best results in form of solu-
tion quality.

is used for each instance and ordering). The best solution
for all ordering strategies reaches 100% of solution quality
and the average quality is almost the same for all evaluated
ordering strategies. The worst performance provides LDF
(also the biggest deviation of results). It seems to be prov-
ably worse than MDF, which looks like potential support of
Hypothesis 2 and good influence of FFD heuristics for BPP.
Unfortunately, the FIFO strategy provides a similar statis-
tical performance as MDF. Moreover, the Optimal Ordering
does not show big difference of the solution quality, so we
can state that Hypothesis 2 is refused. We have found
no strong influence of the selection of the ordering strategy
on efficiency of the solver, we have not even found influence
of usage of the FFD heuristic to the solution quality.

3.3 Insertion Heuristic
This experiment demonstrates the error of the Vehicle

Agent insertion heuristic. The solution of a baseline solver is
compared to the solution of the solver with the baseline Task
Agent and Allocation Agent (i.e. optimal Order and opti-
mal Allocation) and the optimal number of regular Vehicle
Agents.

The maximum reached solution quality for this solver set-
ting has been 100%, minimum 80% and the average quality
has been 95%. The average error of the insertion heuristics
computed for each Vehicle Agent route’s individually has
been 0.8%, the maximal single route error has been 9%.

3.4 Strategies Composition
This experiment evaluates the efficiency of Allocation Agent

strategies combined with a different task processing strat-
egy of Task Agent. The effectiveness of the used strategies
can be expressed as an aggregation of the ranks across the
benchmark instances and solvers (see Figure 3).

The strategies utilized by the solver are expressed us-
ing their abbreviations as defined in Section 2 in the form:

Figure 3: A histogram showing which task process-
ing, allocation, and optimization strategies are more
effective in all instances.

task processing strategy – allocation strategy – improvement
strategy. If no improvement strategy is used, it is denoted as
NA. We have run the solvers for all task ordering strategies
and selected the best results to eliminate the influence of the
task ordering strategy. The histogram in Figure 3 shows the
ITER-CNP-DA together with ITER-CNP-RA are in 78% of the
instances ranked as the best generic solvers. On the other
hand, the worst strategies are NORM-BC-NA and NORM-CNP-NA

which are ranked as last and one before last in 86% and 85%
of the instances. Strategies NORM-CNP-DW, NORM-BC-DW, and
ITER-BC-DW also show considerably bad effectiveness. These
occupy ranks from 10–12 (out of 14) of the chart in 66% of
instances.

3.5 Computation Time
This experiment focuses of the computation time of the

composite solver. Figure 4 shows the average computation
time of all combinations of strategies and orderings on the
benchmark instances. During the time, the composite solver
provides the solution presented in Figure 2. The x-axis rep-
resents the number of nodes in the instance. The y-axis
represents the processing time of the composite solver (the
aggregated time of 42 solvers for each instance). For all in-
stances, the first solution (from one of the 42 solvers) has
been obtained in a few milliseconds (11 milliseconds for the
largest instance with 484 nodes) and the longest processing
time of a single solver is close to 10 seconds (again for the
instance with 484 nodes). The lowest processing time of the
composite solver has been 6 milliseconds (P-n16-k8 ) and the
longest time has been 49 seconds (E484-19k). The computa-
tion time of the solver in the experiments is upper-bounded

by n3

1500
, which is better than the worst case complexity de-

noted by Equation 12.

3.6 Number of Vehicle Agents – Optimization
In this experiment we investigate the influence of the ini-

tial setting of the number of Vehicle Agents. We have com-
pared two settings – the lower-bound and upper-bound.

Thanks to improvement strategies the solution provided
by the solver starting with a lower-bound number of Vehicle
Agents (L-B) and the solver with an upper-bound number of
Vehicle Agents (U-B) is the same. On all instances the solu-
tion of U-B solver converged to the exactly the same solution
as L-B solver. The only difference was the instance A-n62-
k8, where the U-B solver provides the solution of quality
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Figure 4: Computation time (aggregated) of the al-
gorithm for all instances.

Number of vehicles max min average deviation

Unlimited 100.0 81.82 92.22 4.95
Minimal 100.0 76.95 91.0 5.64

Table 3: A comparison of solution quality of the best
solutions by the numbers of vehicles.

0.88%, but the L-B solver stuck on 0.86% (both produce the
solution using 8 vehicles, which is the optimal value). The
computation time of the U-B solver was 2 times longer than
L-B solver on average, in the worst case it was 5.4 times
longer and in the best case 1.6 times faster (it was slightly
faster in 6% of all cases). In the case of the U-B solver,
the allocation and improvement strategies reduce the num-
ber of used Vehicles Agents and the solution converge to the
solution of L-B solver. This experiment demonstrates the
emergent self-organization ability of the agent-based system
and strongly supports Hypothesis 1.

3.7 Number of Vehicle Agents – Constraint
This experiment focuses on the constrained number of

vehicles. The solution obtained by the composite solver
doesn’t always meet the potential constraint for a minimal
number of vehicles used (the BPP part of the VRP). A solu-
tion using the minimal number of vehicles has been produced
by the solver for 92 instances. Table 3 shows the difference
between the best solutions produced by the composite solver
constrained by the minimal number of vehicles (given by the
known optimal solution) and the solution with an unlimited
number of vehicles. In the constrained case, some of the
solvers do not provide the solution and thus the composite
solver provides worse result. For three particular instances
(E421-41k, P-n55-k8, P-n55-k15 ), the solution with an op-
timal number of vehicles could not be found using any com-
bination of solver strategies (those three are not included in
the computation of values for the case with minimal number
of vehicles in Table 3).

4. CONCLUSIONS
We have designed and evaluated a multi-agent VRP solver

that provides a feasible solution in polynomial time. The
quality of the solution has been over 81% of all benchmark
instances that greatly outperforms the known lower-bound
approximation. The time complexity of the solver on exper-
imental instances has been upper-bounded by O(n3). We
have defined the bounds for the Vehicle Agents and shown

that thanks to self-organization principles the presented agent-
based solver converges to the same solution when starting
from the lower bound and upper bound number of vehicles.

The presented solver architecture supports great runtime
parallelization and it is able to provide the first solution in
a very short time with good solution quality (for the biggest
instance the first solution is produced under 10 milliseconds
with 50% solution quality).

The results show that iterative task processing provides
better results than batch processing and the backtracking
strategy is not very efficient. The best performance has
been reached with iterative task processing and ordinary
CNP allocation with Delegate All and Reallocate All im-
provement strategies. The possible extension of the solver
would be to introduce more improvement strategies and the
mechanism of their runtime combination but in exchange of
the computation time (and also worst-case complexity) in-
crease. Another extension should be randomization of the
task ordering strategies.

The presented solver demonstrates very good applicabil-
ity to the VRP problem and easy adaptation to problem
variants. Generalization of this approach to other problems
(e.g. multiple traveling repairman problem and its variants)
seems to be a promising way of future research.
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Abstract: The proposed protocol has been designed to support the flexible 
formation of Request-Based Virtual Organisations (RBVOs) with an emphasis 
on reflecting the conditions of real competitive environments. It supports 
automated or semi-automated negotiations mainly in the creation part of a 
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1 Introduction 

The formation of a Virtual Organisation (VO) is based on a negotiation between 
independent partners that are willing to cooperate. Individual partners (mostly Small and 
Medium Enterprises (SMEs)) are motivated to join the VO to increase their business 
opportunities and to participate in larger-scale jobs. 

The VOs naturally operate in a competitive environment. Every partner follows  
its own goals and maximises its utility. Each of the individual utility functions may  
use different metrics and they are usually hidden from the others. Standardised protocols 
for contracting are often insufficient for bargaining over contracts in such an 
environment, as the related negotiation mechanisms do not account for it (Vokřínek et al., 
2007). This paper presents the Request-Based Virtual Organisation (RBVO) Formation 
Protocol, which aims at the creation of a VO in the competitive domain by two levels of 
iterative negotiation – the potential partners search and Service Level Agreement (SLA) 
negotiation. The execution of the VO is not directly covered by the protocol – it controls 
only the dissolution of the VO. 

2 Theoretical background 

The modern cooperation concepts go from subcontracting, through the supply chains and 
then to VOs. Wiendahl and Lutz (2002) has identified three basic types of subcontracting 
between partners in a network. Although other reasons for subcontracting exist as well 
(e.g., strategic reasons), these three are also basic for VOs: 
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1 Classic subcontracting: The production of one partner (producer) is an input for the 
other one (consumer). 

2 Technology-driven subcontracting: One partner processes a task, but lacks a 
competency for some of its parts. Therefore, for those parts of the task a suitable 
supplier is subcontracted. 

3 Capacity-driven subcontracting: This is similar to the previous one, but the partner 
responsible for the task lacks a capacity. The missing capacity is outsourced. 

This article proposes a protocol for cooperation establishment in the competitive 
environment. The protocol focuses on virtual consortia formation, which is in principle a 
technology- and capacity-driven subcontracting. 

2.1 The virtual organisation concept 

The VO is understood (e.g., Faisst, 1997; Van Wijk et al., 1998; Gruber and Nöster, 
2005) to be “… a specific form of network organizations”. Gruber and Nöster (as well as 
Van Wijk et al., 1998, for example) also specifies the key features defined by most of the 
definitions: the extensive use of information technology to coordinate the partners, 
sharing risk and knowledge with partners and focus on core competencies. Fischer 
describes a core competency of an enterprise as a set of skills, technologies and  
know-how crucial for the added value provided by the enterprise (Fischer et al., 1996). 
The core competency of a VO consists of the members’ core competencies that  
are crucial for the added value of the VO. The other commonly mentioned features  
are (presented, for example, by Faisst, 1997 or Capó et al., 2004): autonomy and 
independence of members, operating towards the customer as a single company and 
temporality of an existence, which is mission-oriented. Very often mentioned features  
are also a distribution of members and slight bureaucratic overhead, and one face to  
the customer. 

In the same manner Aubrey (1991) describes the features of VO members. They are 
autonomous (each entity is an independent company or freelancer with its own interests, 
commitments and goals), distributed (entities are naturally distributed in the real world) 
and heterogeneous (each entity may use different technologies and procedures). All these 
aspects are directly addressed by distributed artificial intelligence and its component of 
multiagent technologies (Molina et al., 1998) that have already been utilised in the 
domain of VOs. Fischer (1996) defines the VO and the agents employed in it. Petersen  
et al. (2001) describes the use of agents for the modelling of Virtual Enterprises (VEs, a 
special case of a VO concept). 

Most of the presented features of a VO are commonly accepted, although along  
with them, there are implementations of a VO methodology that do not fully comply  
with all the enumerated features. For example, Faisst (1997) draws attention to VOs  
that may exist without being supported by information technology. Also, the autonomy  
of members is restricted in some works, where altruistic behaviour is expected from 
them. In the VO, it must hold that “loyalty is shared among the partners and  
the cooperation is based on trust and information technology” (Van Wijk et al., 1998). It 
is necessary for fruitful collaboration. On the other hand, the VO members would 
participate in such collaboration only if it is also fruitful for them – purely altruistic 
behaviour is not typical in a real business environment. Nevertheless, VOs that optimise a 
common profit only also exist. In such cases, there are no private profits of individual 
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members that could be decreased due to increases in the profits of others. Actually, the 
VO members are optimising their private profits independently based on the fact that 
profits are shared. 

2.2 Request-based virtual organisations 

The concept of RBVOs defined by Roberts et al. (2005) comprises a cluster of  
partnering organisations that can get along without a hierarchical ordering into a 
monolithic organisation. The RBVOs are short-lived entities that are formed to respond 
to business opportunities offered in electronic commerce. RBVO operations are based  
on predefined SLAs. 

The organisation and functioning of RBVOs’ activities are ensured by a community 
of intelligent agents that automate the procedures and operations of RBVOs (Mařík and 
McFarlane, 2005). In the RBVO defined by Roberts, the agents serve as assistants for 
human decision makers; in the agent system each participating SME is represented by  
its agent, which is able to undertake predefined automated decision-making support  
on behalf of the SME or enables a user to interact with the system on behalf of the  
SME. Other possible roles played by agents in VOs are defined, for example, in Hodik  
et al. (2007). 

2.3 The VO life cycle 

The VO life cycle and its phases have been described many times in previous works (e.g., 
Fischer et al., 1996). The basic phases (see Figure 1), which are included or extended in 
most definitions, are: 

• the creation phase, which is the first phase after discovering a business opportunity. 
During this phase the VO is created: the VO task is defined, the VO team is formed 
and then the VO is initiated. 

• the operation phase, which contains all the value-adding processes of the VO. In 
some cases there is a need for an evolution (also called adaptation) of the VO during 
this phase, e.g., in the case of initiation of new VO members. 

• the dissolution phase, which finalises and evaluates the VO operation and potentially 
opens future cooperation. When the task of the VO is accomplished, the VO 
operation may be evaluated. 

Figure 1 The VO life cycle – the three basic phases and the optional evolution/ 
modification phase (see online version for colours) 
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Targeting these main life cycle phases, various authors split them into more phases and 
define additional subphases as well. The first main phase is creation. Fischer et al.  
(1996) distinguishes two phases of the creation process. In the first phase, the product  
is defined and the related business process is separated from the product is defined and 
the related set of business processes is formulated. In the second one, the team of VO 
members is negotiated and formed. In this second phase (i.e., negotiation and formation, 
and supporting it with multiagent technology), Fischer distinguishes four subphases: 

1 identification of potential partners 

2 generation of alternative mappings from partners to individual business processes 

3 evaluation of strategic interests and risk 

4 finalisation of partners and mapping to partial processes. 

A similar concept is presented by Tagg (2001), who has identified three phases of the  
life cycle for VEs: VE development (establishment phase), business development, and 
operational. The first and second phases correlate to the two phases defined by Fischer. 
During these two phases, the VO is created and set up during the establishment and 
business development phases. These phases consist of negotiations between potential 
members, checking for potential partners’ credibility and authenticity, and contracts 
(tasks and responsibility allocation). The establishment phase is launched not only  
at the beginning of the VO; it also covers the expansion and adaptation of a VO  
team. The operational phase covers doing business and VO performance monitoring  
and management. 

Extending Fischer’s work, Faisst replaces the creation phase with three other ones: 
identification, formation and design (Faisst, 1997). The works of Fischer and Faisst  
are referred to by Rocha and Oliveira (1999) and Preece (2001), who point out four 
phases of the VO life cycle: identification of needs, partners selection, operation and 
dissolution. The creation phase is also extended by Van Wijk et al. (1998), who defines 
seven steps of the VO life cycle: modification of strategy, cooperation strategy, weighing 
cooperation alternatives, selection of partners, design and integration, management, 
dissolution and evaluation. 

In work related to competency cells, Neubert also mentions the VO creation process 
(Neubert et al., 2001). When a cell discovers a business opportunity (attracts a  
customer’s production task), the first step that is done in creating a cooperation network 
is production planning. The cell creates a production plan or subcontracts a specialised 
cell to do it. The next steps are searching for partners and cooperation formation. The 
output of the second step (searching for partners) is a set of the potential configurations 
of a network. From this set the best possible configuration is chosen after negotiation 
with the agents of potential partners in the third step (cooperation formation). When a 
suitable configuration of cells is found, they are requested to confirm the obligations. 

Most of the authors focus on the creation phase. On the other hand, there are authors  
like Camarinha-Matos and Afsarmanesh, who concentrate on the operation phase as  
well. They have defined a life cycle that consists of four phases: creation, operation, 
modification and dissolution (e.g., in Camarinha-Matos and Afsarmanesh, 1998).  
The modification phase contains significant adaptations of VOs that cannot be  
executed during the operation phase. This phase is also called the evolution phase 
(Camarinha-Matos and Afsarmanesh, 2001). 
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There are projects, such as CONOISE/CONOISE-G, which concentrate on the 
operation phase as well (Shao et al., 2004). The ‘happy path’ of their VO life cycle 
consists of the following phases: formation, operation and dissolution. These phases may 
be extended by perturbation, which is applied in case of some of these events: 

• significant deviation is identified and its implications are eliminated by the VO 
adaptation/evolution 

• the VO manager has identified a provider who can provide some service that is 
included in the plan of the VO in a better way (quality, price, etc.) than the provider 
already included in the VO team, and has negotiated a substitution. 

2.4 Cooperation, coordination and commitments in competitive environments 

The VO establishment is based on an agreement on the cooperation of individual 
partners. The concept of social commitments was introduced by Wooldridge and Jennings 
(1999). This concept may be applicable in some VO domains, but it does not address  
the problem of the unilaterally advantageous dropping of commitments. In most VO 
domains, an explicit employment of rewards and penalties is needed as a clear 
qualification of the utilities that the party gains or loses. The concept of such an explicit 
utility evaluation is then a part of the commitments; the party providing a service 
commits not only to perform appropriate actions (in order to gain the promised utility 
which is its motivation), but also to provide compensation in case of failure (e.g., a 
compensation of the profit lost to the other party). The most complete approach on the 
commitments in the competitive environment has been presented by Sandholm and 
Lesser (2001) as Levelled Commitment Contracts (LCCs), which include an explicit 
utility evaluation in the form of a contract price and penalties. In order to provide a 
complete decision-making mechanism, the authors applied several significant restrictions 
(e.g., the utility function needs to be identical for all participants, the opportunity-cost 
business probability function for every agent is common knowledge, etc.). These 
assumptions are limiting (Bíba and Vokřínek, 2006) and basically prevent the direct 
deployment of LCC in a real application. Nevertheless, LCC introduces a basis for the 
notion of commitments in competitive environments. 

An SLA introduces a formalisation of a business relationship (or a part of a business 
relationship) between two parties (most often between a provider and a customer), which 
is a key concept for service management (Trienekens et al., 2004). Usually it specifies 
the delivery of products or services for a certain price, meeting specified deadlines  
and quality requirements together with financial guarantees and other contract terms. It 
may concern continuous, discrete or one-shot service/goods deliveries. For an RBVO,  
it represents a description of work flows, schedules, resource allocations, participant  
roles, prices, sanctions, guarantees, legacy-related and other contract management and 
coordination issues. The SLA introduces a consistent (possibly reduced) electronic form 
of the contract signed by the contract parties as a paper document (the reduction may 
concern mainly nontechnical/financial parts) expressed in a machine-readable language 
(most often in XML, which is nowadays considered as an interoperable business 
information exchange format). 
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2.5 VO/RBVO formation mechanisms 

There exist various methods of negotiating and coordinating team actions. Lomuscio  
et al. (2003) define negotiation as “…the process by which a group of agents 
communicate with one another to try to reach agreement on some matter of common 
interest”. They define two components of the negotiation mechanism: the negotiation 
strategies and the negotiation protocol. The former defines the lists of actions that 
individual agents have planned to reach their desired goals. The latter (the protocol) 
defines rules for messages that are allowed in the message sequence. The rules: 

• restrict the allowed types of messages (the ‘performative’ in the Foundation for 
Intelligent Physical Agents (FIPA)1 messages) 

• provide constraints for the message content 

• define time-outs for receiving the message. 

The most popular negotiation and coordination methods are derived from the Contract 
Net Protocol (CNP) and from the auctions. An introduction of the most important  
ones follows. 

2.5.1 Contract Net Protocol 

The Contract Net Protocol (CNP) is one of the most popular negotiation protocols  
ever used in Multi-Agent Systems (MAS). It comes from economics and is used in 
communities of altruistic as well as self-interested agents. The CNP was described by 
Smith (1980), who described a single-shot protocol for requesting and selecting a 
provider of a product or service in a group of one coordinator (who requests) and one or 
more participants (who may provide the needed item) (Smith, 1980). In the beginning of 
the session, the coordinator requests for offers from the participants and the interested 
ones reply with their offers. The coordinator evaluates the received offers and chooses the 
most suitable participant(s) or dissolves the session. Finally, if one or more offers are 
chosen, the coordinator grants the business to participants offering them. 

In its basic form, the CNP provides a lot of freedom in each step of the interactions 
and the obligation to fulfil the contract defined in the call is not required in the basic CNP 
(e.g., acceptance of proposals depends on the proposals themselves and the actual state of 
the coordinator at the moment of the proposals evaluation). The CNP fits well in 
collaborative environments where there is one subject evaluating the possibilities and the 
others are providing the most suitable offers for the call. In environments in which 
preference is somehow explicitly expressed (e.g., by money) and/or in environments with 
competitive participants the CNP must be extended by rules and features, e.g., known 
from the auctions (Ovcharenko et al., 2006). 

2.5.2 Auction 

The auction is a method of optimal reallocation of resources according to the actual 
demand and supply, which are usually measured by monetary units. Many types of 
auctions exist; they vary in features like bid adaptation possibility, number of sellers and 
buyers, discrete or continuous evaluation of bids, number of criteria for evaluating a bid  
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and others. The definitions of basic auctions are usually provided for a negotiation about 
a single issue with invariable features. Basically two auction mechanisms are possible: 
the one-shot and the iterative. 

In the case of the former one, there is only one round of a negotiation. It means that 
the negotiation coordinator announces a proposal to which the participants respond by 
obligatory offers. Then the coordinator evaluates the received offers and announces the 
winning offer(s). There are two basic types of one-shot auctions; they differ in the price 
that the winner has to pay: 

1 in the first-price-sealed-bid auction, the winner pays the price that he/she proposed 

2 in the second-price-sealed-bid auction, the price to be paid is defined by the second 
best proposal. 

The second-price-sealed-bid is usually called the Vickrey auction. Although it is an 
application of the Vickrey auction to the single-item single-unit domain, it is not the only 
Vickrey auction. The Vickrey auction is naturally a single-item multi-unit. For one kind 
of commodity (single item), it provides its redistribution of the commodity according to 
the match of the curves of supply and demand. 

The iterative auctions are the English auction, where the price of the auctioned issue 
is being increased until only one participant is paying for it (for the reverse auction, the 
price is being decreased until only one interested provider remains), and the Dutch 
auction, where the price is too high (low in reversion auction) at the beginning of the 
negotiation and then it is being decreased (increased in the reverse auction) until a 
participant accepts it. When the English and the reverse English auctions are combined 
together, the Double auction is created. In that auction there are groups both of 
participants interested in selling and those interested in buying. The sellers overbid 
themselves by decreasing the required price, while the buyers increase it. When some 
selling and buying bids match, the auction is successfully finished. A very special  
subgroup in the group of iterative auctions are Continuous auctions, in which the  
bids are evaluated online and when some of them match, the exchange is executed. 
Independent of an identified match, the auction continues to identify another match  
of bids. 

The iterative auctions are more complicated than the single-shot auctions. In case of a 
one-criteria iterative auction, where each proposal may by evaluated by a number, e.g., 
price, the solution is clear: the one with the highest (not dominated) offer is the winner 
(actually, the evaluation requires a comparability of each two values from the domain of 
definition to which the evaluation is mapped and the comparability must be transitive). 
Individual offers depend on the type of auction and the preferences of the participants. In 
case of a multicriteria description of the proposals such evaluation becomes incredibly 
difficult and therefore an iterative multicriteria auction is the most complicated one. 

2.5.3 Legal Agreement Protocol 

The Legal Agreement Protocol (LAP) (Perugini et al., 2007) extends the Provisional 
Agreement Protocol and is based on Australian contract law. The protocol allows an  
M:N negotiation which is split into several phases. The first phase allows a not-binding 
negotiation (the agreed conditions do not imply any commitment for any of the parties) 
which enables the parties to reach a mutually advantageous compromise. The next phase 
consists in a binding negotiation over a binding offer (which can be accepted or rejected). 
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Once a contract is established, it is possible to terminate it in several ways: by fulfilling 
the contract (this does not require communication), unilateral decommitment under 
agreed penalties given by the agreement, mutual agreement about cancelling the contracts 
without penalties and a contract breach (not solved by the protocol – to be resolved per 
curriam). One instance of the protocol is started for each task (a single-task negotiation) 
and multiple tasks are negotiated independently in concurrent protocol instances (i.e., 
multiple contracts). The LAP allows flexible negotiations including backtracking, 
withdrawing offers, temporary rejections, etc. (it is possible to implement various search 
algorithms such as depth-first search and A*). Decommitments are not negotiated upon, 
but are carried out unilaterally by informing the other party about the decommitment. The 
protocol does not directly support contract renegotiation – it is covered by cancellation of 
the contract or decommitment while new contract conditions are negotiated in a new 
contract. The protocol assumes safe message delivery and the absence of communication 
is involved as an interaction option of the protocol (the protocol explicitly considers 
timeouts). The authors of the LAP have proved various properties of the protocol, e.g., 
the protocol is free of a communication deadlock (communication is always terminated, 
though the matter of mutual commitments and their status is not considered) (Perugini  
et al., 2007). 

2.5.4 Competitive Contract Net Protocol 
The Competitive Contract Net Protocol (C-CNP) (Vokřínek et al., 2007) is a FIPA-like 
protocol designed for flexible contracting in a competitive environment (e.g.,  
e-commerce and VOs) and aims at covering the whole contract life cycle, specifically: 

• the contract conclusion phase 

• the optional decommitment phase 

• the contract termination phase. 

Not all the parties involved in a multiround negotiation of commitments need to be 
addressed by Call-for-Proposal (CFP) messages. The protocol allows participants to 
impose their proposals (based on third-party information) onto an already running 
negotiation. The 1:N negotiation is held in a pairwise manner. During the execution 
phase any of the parties involved in pairwise commitments may attempt to decommit 
from the contract. The multiround decommitment negotiation on conditions of dissolving 
the cooperation may end up either by the decommitting party backing off (the contract 
returns to normal) or dropping the commitments under the payment of a penalty (the 
penalty may be fixed during the contract-conclusion negotiation or may remain open  
and be adjusted in time). Finally, in the termination phase, the results are evaluated  
with respect to the agreed commitments. Eventually, penalties for noncompliance with 
commitments are negotiated. The message content is assumed to describe the contract  
as a whole, i.e., full and explicit descriptions of commitments (i.e., not merely the  
task assignment, but also resource allocation, quality of service, schedules, etc.), rewards 
and sanctions are provided (such message content may be, for example, an SLA). Thus, 
the negotiation is also assumed to be multiattribute rather than single-attribute. The 
multiround manner of the protocol allows multiple, simultaneously running negotiations 
as well as multilevel ordering of subsequent protocols (i.e., a participant of a C-CNP may 
become a coordinator of another subsequent C-CNP negotiation, e.g., for outsourcing). 
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2.5.5 Renegotiable Competitive Contract Net Protocol 

The Renegotiable Competitive Contract Net Protocol (RC-CNP) (Bíba et al.,  
2008) extends the C-CNP through renegotiation phases, provides means for a fully 
flexible contracting in competitive environments and enables a consistent evolution of 
commitments starting at their creation and terminating with their fulfilment, adaptation  
or breach (even a partial breach) under punishment (payment of a penalty) – i.e., it covers 
a complete commitment life cycle within a group of mutually committed agents (the 
commitments are pairwise between coordinator and participants). The protocol allows 
M:N multiattribute negotiations and it can be extended by not-binding phases. Moreover, 
it is capable of dealing with a possible temporary communication inaccessibility by 
utilising communication timeouts and related default transitions (as well as a possible 
synchronisation backtracking). 

3 The RBVO Formation Protocol 

The protocols and approaches presented in the previous section give solid bases for  
any negotiation-based cooperation establishment. In this work, we focus on the RBVO 
formation. It is based on a negotiation between independent actors that are willing to 
cooperate. Individual actors are motivated to join the VO to increase their business 
opportunities and to be able to participate in larger-scale contracts. An RBVO is a 
mutually agreed consortium of such individuals that is formed to cover a complex 
business opportunity. This business opportunity is introduced by the coordinator, which 
leads the negotiation with several potential participants – partners selected to cover some 
part of the business opportunity. 

The protocols described before are not sufficient or are too complex for practical 
usage in the domain of RBVO formation. Thus we have designed the RBVO Formation 
Protocol, inspired by CNP and C-CNP, which allows the implementation of arbitrary 
business strategies or auctions. It is targeted at the negotiation protocol component of  
the negotiation mechanism (Lomuscio et al., 2003). It does not address the planning  
step introduced in Neubert et al. (2001), but focuses on the searching for partners and 
cooperation formation steps. This work also builds on the results of other works (e.g., 
Rocha and Oliveira, 1999; Preece, 2001; Van Wijk et al., 1998) that focus on establishing 
a cooperation using the concept of VO as well. 

In the RBVO domain, we understand the business opportunity introduced by  
the coordinator as the prepared production plan and RBVO formation as Neubert’s 
configuration of the network. 

3.1 Protocol description 

The RBVO Formation Protocol supports a contract negotiation on several levels. It 
consists of three phases: 

1 the search for potential partners (prenegotiation of contract) 

2 negotiation of SLAs with selected partners and establishment of the RBVO (one 
partner or a small number of partners that together cover the required competencies) 

3 (execution and) dissolution of the RBVO. 



   

 

   

   
 

   

   

 

   

    The RBVO Formation Protocol 145    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

The first two phases enable multiround negotiations and concern the creation phase of an 
RBVO life cycle. Both the coordinator and the individual potential partners are allowed 
to withdraw from the negotiation for any reason. During the first two phases, the final 
RBVO configuration is agreed together with the related commitments (given by pairwise 
or multiparty SLAs) for all the parties. The final phase concerns the simplified execution 
and termination phases of the RBVO life cycle. 

A sequence diagram of the RBVO Formation Protocol is shown in Figure 6 and the 
hybrid state diagram is in Figure 7. The individual phases (see Figure 2) are described in 
detail as follows: 

Phase 1 the search for potential partners 

The first phase aims at a prenegotiation of the contract conditions with possible 
partners (equipped with the required competencies) with respect to the ratings  
of their offers so that the number of partners selected for detailed negotiations  
of SLAs is reduced and the best candidates are chosen. The negotiation is  
started by sending a Collaboration Request (CR) message as a CFP. The CR 
describes the decomposed tasks, respective competencies required for their 
accomplishment and constraints (e.g., geographical location of a potential 
candidate, due dates). The coordinator and the candidates enter into a pairwise 
multiround bargaining (in a propose/counter-propose manner) in which they try 
to agree on preliminary cooperation rules. Thus, the coordinator obtains several 
possible configurations of the resulting RBVO. The coordinator decides on  
the best configuration and sends the respective candidates preliminary-accept 
messages containing SLA proposals. The other candidates are not rejected 
immediately, but should remain in the first phase of the bargaining process 
while the preselected candidates enter the second phase. The waiting candidates 
may get their chance if the coordinator fails to reach agreements on SLAs with 
some of the preselected candidates. The granularity of information in CRs is 
generally less fine than in SLAs (some of the attributes may be irrelevant to 
negotiate upon until the pre-agreement is reached). Both the coordinator and the 
candidates are allowed to terminate the negotiation for any reason by sending 
refuse participation (candidates) or reject participation (coordinator) messages. 

Phase 2 negotiation of SLAs and establishment of the RBVO  

The coordinator and the candidates preselected for the negotiation of the 
detailed terms and conditions of the resulting SLAs try to reach a final 
agreement reflecting various aspects like time schedules, qualitative parameters, 
prices and penalties. The pairwise multiround bargaining (again in a propose 
SLA/counter-propose SLA manner) may be terminated by any of the parties 
provided a mutually advantageous compromise on the contract conditions 
appears unreachable. In such a case, some of the waiting candidates, equipped 
with respective competencies can be invited to the final negotiation by a 
preliminary accept message from the coordinator. As soon as all SLAs are 
finalised, confirm-SLA messages are sent to the candidates and the RBVO is 
practically established. The waiting candidates that are not included in the 
RBVO receive reject-participation messages. The RBVO is created and the 
execution and termination phases of the RBVO life cycle can take place. 
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Phase 3 (execution and) dissolution of the RBVO 

As soon as a participant accomplishes its tasks, it sends an SLA-done message to 
the coordinator. The coordinator terminates the cooperation by confirming the 
dissolution of the RBVO. 

Figure 2 The RBVO life cycle supported by the RBVO Formation Protocol (see online version 
for colours) 

The RBVO Formation Protocol, as designed, does not provide direct support for the 
evolution (also named modification or perturbation) phase of the VO life cycle. The 
evolution may be invoked during the operation (execution) phase in case of incidents that 
endanger accomplishment of the RBVO mission or in case of an opportunity to increase 
the efficiency of the RBVO. 

On the other hand, such a situation may be understood as a very special case of 
RBVO formation with additional constraints. The constraints are twofold: 

1 Existing tasks which have been already started or finished can no longer  
be modified. 

2 Existing tasks which have not been started can be modified. 

The assignment of the latter ones may be modified. The modification process consists of: 

• the substitution of the tasks to be modified by new decompositions considering the 
already fulfilled/finished tasks 

• the invocation of both the prenegotiation and SLA negotiation phases of the  
protocol to find partners to take on the alternative obligations defined by the new 
decomposition subset. 

The alternative obligations are applied to the involved participants as well as to the 
coordinator. It means that the coordinator may be obliged to pay a penalty in case of  
the cancellation of the contract, although the partner has not started working on it yet  
– the partner may have already booked resources for it and even if the partner will not  
use them, the related costs have to be paid. 

This modification process influences the assignment only of the tasks included in the 
set to be modified. The other tasks are not influenced but they may generate constraints 
(especially for the available starting date and due dates) that the coordinator must take 
into account during the evaluation of offers received from potential participants. 
Actually, the list of tasks considered for the assignment modification may vary many 
times during this phase because it is affected by the ongoing negotiation. 
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3.2 Timeouts and accessibility synchronisation issues 

According to Lomuscio et al. (2003) the timeouts for the messages should be defined.  
Not all messages have to be secured by timeouts. The critical messages are the 
collaboration request, propose, counter-propose, pre-accept, SLA propose and SLA 
counter-propose messages. 

Due to the nature of the distributed environment, there are potential problems with 
timeouts and synchronisation of the protocol for each participant. An inconsistency of the 
protocol state can be caused by: 

• a message loss, when a party sends the message and the other party does not  
receive it 

• a protocol breach caused either intentionally by a party (e.g., when it is unwilling to 
communicate with a certain party or an unexpected message is received) or by a 
software bug 

• communication inaccessibility, when a party is not able to send messages to others 

• a timeout, when some message is sent or received after the deadline  
(e.g., the participation proposal). 

All the above occasions lead to an inconsistency in the protocol state of the coordinator 
and one or more participants. The protocol has been designed to operate in dynamic 
environments, where it is often not possible to ensure that the participants will follow the 
protocol without intended or non-intended breaches (e.g., because of timeouts or lost 
messages). Mainly, the initial CR may remain unanswered by the addressed participants 
for any of the presented reasons. In this case, the coordinator continues to execute the 
protocol and the participants have to synchronise their state. To keep the business logic 
consistent, the following suggestions are made: 

• Missing received communication is understood as refuse, reject or refuse SLA sent 
(depending on the current protocol state). 

• If the coordinator receives a message that breaches the protocol, it ignores it. 

• If a participant receives an unexpected message, it has to synchronise its state and 
continue according to the protocol. 

3.3 Protocol extension by exceptional messaging 

In some cases, there is a need to adapt the protocol to enable more freedom for the 
business strategies. For example, the timeout of some proposals can be shorter than the 
timeout for the CR. In this case, the coordinator has to move the protocol state with a 
particular partner and continue with a pre-accept or counter-proposal message before 
another partner sends the initial proposal. In fact, this is not a protocol breach or 
inconsistency. Individual coordinator-to-participant relations are not affected, but due to 
the selected business strategy, the coordinator has to decide the proposal evaluation 
before all the proposals are received. 
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Let us discuss this issue with the following example. The coordinator is looking for a 
rent-a-car provider. Its business strategy is to look for the lowest available price with a 
desired daily rate under 200 euros. There are three potential participants: A, B and C; so 
the coordinator starts the negotiation by sending a CR to all of them with the timeout of 
one day. Participant A answers immediately with a proposal for 250 euros per day with a 
one-day validity. Participant B answers in one hour with a proposal for 180 euros, but  
this proposal is valid for one hour only. Participant C sends no proposal within the next 
hour. At this moment, the coordinator has to decide either to wait for the last proposal 
and potentially lose the best offer or to finish the negotiation by accepting the proposal  
of Participant B. The coordinator chooses the second option and sends a pre-accept 
message to Participant B and continues to the SLA agreement. When the SLA is 
confirmed (between the coordinator and Participant B), the coordinator sends reject to 
Participant A. According to the protocol, it is not possible to send reject to Participant C, 
but if Participant C sends a proposal in the future it should certainly be rejected as well. 

This example illustrates the need for exceptional protocol handling due to complex 
business strategies. We introduce in-advance messages for handling this. Such a message 
can be understood as a default message that will be used as a response to another party’s 
activity. This type of functionality is mainly needed at the coordinator side, so the usual 
in-advance messages are counter-propose, pre-accept and reject. In-advance messages 
are handled by the protocol controller to ensure consistency and correct termination of 
the protocol. 

Another type of exceptional message can be provoked by changes during negotiation. 
In general, the negotiation is performed in a dynamic environment, where individual 
agreements affect each other. An example would be as follows: The coordinator receives 
a proposal from another participant not involved in the negotiation yet. It sends a 
counter-propose message, but meanwhile (as more proposals are received) the first 
proposal becomes satisfactory. At this moment, the coordinator is willing to accept the 
proposal, but this leads to a protocol breach. To help with this issue, we introduce instant 
messages that can be sent even if it is not the particular actor’s turn. The possible instant 
messages for the coordinator are counter-proposal, pre-accept and reject. For the 
participant, the possible instant message is proposal. 

Both types of messages are summarised in Table 1. In-advance and instant messages 
address the need for exceptional messaging. The protocol is not breached by using those 
messages, but the synchronisation issue arises (see Section 3.2). 

Table 1 Exceptional messages of the RBVO Formation Protocol 

Action Message type Actor 

Counter-propose In-advance Coordinator 

Pre-accept In-advance Coordinator 

Reject In-advance Coordinator 

Counter-propose Instant Coordinator 

Pre-accept Instant Coordinator 

Reject Instant Coordinator 

Propose Instant Participant 
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4 Auctions implementation using the RBVO Formation Protocol 

The process of RBVO creation consists of the following steps: 

Step 1 the search for partners 

Step 2 obligations finalisation during RBVO establishment. 

The auctions usually concentrate on the latter phase and they do not solve the former  
one; the potential partners are identified before or during the negotiation initiation. 
Another difference between the RBVO Formation Protocol and classical auctions is that 
the auctions mostly define convergent criteria for the proposals and counterproposals 
offered during the negotiation; the RBVO Formation Protocol does not limit the 
composition and evaluation process of proposals and counterproposals. Therefore the 
RBVO Formation Protocol may implement almost any auction mechanism type for  
the negotiation. This is done by applying the rules defining the chosen auction type to the 
RBVO Formation Protocol. 

In the RBVO Formation Protocol, the auction mechanisms may be applied during  
the RBVO establishment phase. Many auction mechanisms exist and their suitability  
for negotiation is domain dependent. Here we provide examples of how the auction 
mechanisms may be included in the RBVO Formation Protocol: 

• The one-shot auctions (e.g., first-price-sealed-bid or second-price-sealed-bid 
auctions) are implemented by one round of SLA negotiations, when the SLA 
proposal is provided by the coordinator to the participants, which consequently 
respond with counterproposals. Such counterproposals are evaluated according to the 
used auction rules and the winner(s) is (are) announced by the final SLA proposal(s) 
that they agree and that are finally confirmed by the coordinator. 

• The English iterative auction may be implemented through continuous SLA 
proposing being conducted by the coordinator. During the auction process, the 
coordinator adapts the offer in order to slightly improve its own potential profit, as it 
would be if the proposed SLA is confirmed by all parties. The negotiation continues 
until the group of interested participants is decreased to the minimal group included 
in the formed RBVO. The interested participants’ group is expected to be reduced 
because increasing the potential profit of the coordinator negatively influences the 
potential profit of the participants in the RBVO. Therefore they leave the negotiation 
because the conditions under negotiation may become disadvantageous for them. 
The last participant(s) standing is (are) the winner(s). 

• The Dutch iterative auction may be implemented similarly to the English auction,  
but the first proposal given by the coordinator is not profitable for any participant to 
accept it. Then the proposed conditions are continuously adapted in order to make 
them more interesting for the potential participants until the group of participants 
covering all the requirements for the RBVO establishment is identified by their 
acceptance of the proposals given by the coordinator. 
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5 The PANDA case study 

The presented RBVO Formation Protocol has been utilised by the multiagent system 
prototype within the PANDA2 project, which aims at collaborative process automation in 
the ERP/CRM3 industry. It facilitates the creation of international e-collaborations based 
on RBVO formation using sector-specific SLAs and a community of intelligent agents. 
The individual value chain actors act as service providers mainly for consulting, software 
implementation, installation and customisation, training and maintenance. The motivation 
is to find the most suitable consortium of service providers to meet customer 
requirements such as cost, experience in the industrial domain and appropriate ERP 
solution, geographical location and language. 

The system is composed of a set of distributed partner agents and a central or 
distributed platform that supports services. The central platform services provide public 
data and they are considered to be fully accessible for the agents (that are online). The 
agents operate in a semi-accessible mode – it means the agents can be inaccessible for 
some time (e.g., any agent can be offline or turned off). 

The PANDA system prototype is composed of the following components: 

• portal – a unified user interface that incorporates all the user interactions with the 
whole system 

• central services – data and directory services providing competency taxonomies, 
profiles, etc. 

• agent platform-supporting services – web-services-based FIPA-compliant  
platform implementation provides agent management, online and offline agent 
communication channel and directory services 

• partner agents – distributed components representing the companies operating in the 
system. Every company deploys one agent that performs negotiations on behalf of  
its owner. 

The PANDA intelligent agents play the role of the partners’ representatives for  
(semi-)automated negotiation that supports the e-business acceleration in the ERP value 
chain domain. Although inspired by real business, the outcome of the PANDA intelligent 
agents system should be generalised for the wider domain and be adaptable for any value 
chain and different domains. 

The generic constrains of the PANDA case should be summarised as follows: 

• The system should support independent, self-interested, geographically distributed 
players registered within the chain. 

• Every member can introduce new business opportunities and start the  
RBVO formation. 

• The RBVO is formed upon peer-to-peer negotiations. 

• Every member is able to use private preferences and constraints during negotiations. 

• The coordinator (the one who starts the RBVO formation) is able to evaluate the 
cooperation proposals using private preferences and rules. It is also able to choose 
the type of auction and evaluation method. 

• The actors’ responses are based on dynamic private knowledge. 
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The main goal of the PANDA multiagent system is to provide negotiation-based 
matchmaking methods, taking into account limited information provision, multicriteria 
evaluation of proposals and private preferences and metrics for each participant.  
Using public data, previous experience or reputation mechanisms, the coordinator starts 
the negotiation (using the defined communication protocol – the RBVO Formation 
Protocol) with a preselected set of potential participants, which provides the highest 
probability of matching the coordinator preferences after the negotiation phase. The  
peer-to-peer negotiation is used for gathering semiprivate knowledge to be able to select 
the appropriate partners (proposals are based on participants’ private preferences and 
availability and cannot be evaluated without negotiation) and construct the RBVO. The 
finalisation of the matchmaking is done by the RBVO proposals evaluation and there is a 
possible backtracking when the evaluation gives nonsatisfactory results. 

A typical CR contains global constraints (e.g., validity of the CR, owner, deadline, 
overall indicative budget) and a list of tasks. Each of the tasks contains more detailed 
constraints (e.g., the service required, starting date, end date, language, location,  
resource amount required) and provider constraints (e.g., required expertise domains, 
ERP modules expertise, reputation). By way of illustration, the CR for RBVO can by 
composed of the following tasks: 

Task 1 implementation in Germany, required expertise in the food industry and sales 
management ERP module 

Task 2 consulting in Germany in English, required expertise in sales management  
ERP module 

Task 3 support in Germany in English, required expertise in the food industry. 

The coordinator is looking for a consortium of participants – an RBVO covering all  
three tasks in the best condition. The evaluation metrics of the RBVO is private for  
the coordinator. 

5.1 Deployment of the RBVO Formation Protocol in PANDA 

The negotiation-based matchmaking is based on the interaction of the coordinator and the 
potential participants, where all actors follow their own private strategies. The interaction 
is based on the presented RBVO Formation Protocol. The coordinator introduces  
a business opportunity and starts to negotiate the potential RBVOs. It facilitates  
the multiattribute/multicriteria evaluation of the potential RBVOs combined from the 
received proposals. The goal is to find a pareto-optimal set of RBVO clusters with 
respect to user-defined constraints and preferences (represented by rules, weights, etc.). 
Such RBVO clusters are dynamically created from a combination of proposals and 
appropriate counterproposals are generated to converge to the desired solution. 

The example of the RBVO Formation Protocol utilisation is given in Figure 3. There 
are three Partner Agents (A, B and C) and two involved Users (A and B). The figure 
illustrates the first stage of the RBVO Formation Protocol with no counterproposals. 
Company A (represented by Partner Agent A and User A) is the coordinator and 
Companies B and C are the participants. While Company C is represented by a fully 
automatic agent with no user interaction, Company B is represented by a semi-automated 
agent in the role of an assistant. Also, the final selection of the best RBVO is approved by 
the human user. 
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Figure 3 A simplified example of RBVO Formation Protocol utilisation in PANDA 

Let us discuss a realistic scenario based on the CR defined above. Let Participant B 
propose to provide all three services for an overall price of 1000 euros. Participant C 
proposes the provision of Task 1 for the price of 500 euros. There are two potential 
RBVOs constructed from this proposal: 

1 all three tasks will be provided by Participant B for 1000 euros 

2 Task 1 will be provided by Participant C for 500 euros and Tasks 2 and 3 will be 
provided by Participant B for less than 1000 euros. 

For the second RBVO, the coordinator does not have enough information to evaluate the 
price correctly, so the counterproposal should be made to Partner B for the provision of 
Tasks 2 and 3. In the worst case, all the combinations have to be examined. The RBVO 
Formation Protocol allows such bargaining to reach the most suitable solution, but the 
logic of the bidding is within the scope of the implemented business strategy. When the 
final RBVO is selected, the coordinator sends the respective pre-accept messages and 
continues with the SLA negotiation phase. In the PANDA demonstration prototype, the 
SLA negotiation is done mainly offline or in the form of text document attachments. The 
second and third phases of the protocol usually follow the simplest, straightforward, 
message sequence: SLA propose, agree SLA, confirm SLA, SLA done. 

 



   

 

   

   
 

   

   

 

   

    The RBVO Formation Protocol 153    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

5.2 Rule-based matchmaking strategies using the RBVO Formation Protocol 

As described before, the RBVO Formation Protocol can be used for the utilisation of  
any type of auction mechanism. In the PANDA prototype, the business logic is provided 
by the agent Knowledge Processing Module. It utilises the Drools engine – a business 
rule management system provided by JBoss.4 During the negotiation driven by the 
RBVO Formation Protocol, the Knowledge Processing Module executes a set of business 
rules to create a proposal as a participant, and evaluate the obtained proposals and 
generate counterproposals as a coordinator. This approach enables the abstraction of the 
business logic layer from the protocol and implementation of any kind of business 
strategy on top of the RBVO Formation Protocol. Table 2 shows an example of the 
business rules implemented in the prototype. The overall optimisation strategy is to get 
the cheapest possible RBVO while all the defined constraints are satisfied. 

Table 2 Example of business rules implemented by the PANDA partner agent 

Business rules  

I need to finish the negotiations in x days 

Only consider partners that offer services in the same country as the requested services (Y/N) 

Only consider services offered by local partners (Y/N) 

Reject listed sellers – blacklist (Y/N) 

Don’t show me consortia > x partners 

Offer discount x% for specified buyer  

I will always start my bidding at my listing price, irrespective of the project budget (Y/N) 

I do not want to participate in projects less than x euros 

I do not want to participate in tasks less than x Mandays 

I do not want to participate in projects (i.e., set of tasks offered to me) less than x Mandays 

I do not want to participate in projects more than x euros 

Reject listed buyers – blacklist (Y/N) 

Give a discount x% in my reply that include multiple tasks 

The whole negotiation matchmaking logic in PANDA is supported by three components: 

1 the RBVO Formation Protocol as a negotiation frame 

2 business rules as a proposal generation and RBVO evaluation tool 

3 the Incrementally Refined Acquaintance Model (IRAM) algorithm as an 
optimisation strategy. 

The iterations of negotiation towards RBVO formation are executed by the IRAM 
algorithm (Pěchouček et al., 2008), which provides fast convergence to the optimum 
while minimising the loss of private information. It enables one to minimise the number 
of counterproposals and (thus the information obtained) needed to reach the best RBVO. 
The algorithm is also able to provide the best known solution in every iteration step. The 
schema of the agent processing logic is in Figure 4. The agent communicates via the 
Remote Module and Agent Communication Channel (ACC) with other agents according 
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to the RBVO Formation Protocol controlled by the Negotiation Module. The Knowledge 
Processing Module behaviour depends on the agent’s role in the particular negotiation. 
The business rules can differ for the coordinator and participant and the IRAM algorithm 
is utilised by the coordinator only. 

Figure 4 The simplified structure of the PANDA prototype partner agent 

 

5.3 Agent system implementation 

There are several technologies for integrating web services and agent platforms. One  
of the approaches is to enable the transparent cooperation of agents operating on an 
existing agent platform and web services (Esteban, 2007; Overeinder et al., 2008). Such 
an integration is usually gateway based5 – the service invocation or agent messaging is 
transparently translated and passed to the other side. So the agents can be invoked as web 
services (only simple protocols like request-respond are supported) and agents can 
communicate with web services in the agent manner. This approach is suitable for the 
integration of the existing agent system and web services and takes advantages (and also 
disadvantages) from both – the agent platform and web services technology. 

Since the PANDA agent system has been designed to work in an open internet 
environment from the beginning, the focus has been placed on the maximisation of the 
system’s stability and robustness. To keep all the main features like FIPA compliance, 
openness, stability, usage of up-to-date standards and technologies, we have designed and 
implemented the web-service-based agent platform. 

The agent platform complies with the FIPA standards, while all the platform  
services are implemented as web services (see Figure 8). The agent programming 
interface provides access to all the necessary interactions with the platform (Directory 
Services, Agent Management System and ACC). On top of the agent platform, the RBVO 
formation protocol controller has been implemented. Through this layer, the agents no 
longer need to implement standard message handling (in the manner of sendMessage  
and handleMessage methods), but the high-level methods are available for controlling  
the protocol. 
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For example, when a new negotiation for RBVO formation has to be started, the 
agent invokes (a standard JAVA method call) the method of the protocol controller with 
the CR as a parameter. According to the CR, the protocol controller invokes the directory 
service of the agent platform (the JAVA method call redirected to the WS invocation) 
and receives the addresses of potential collaborators. Then the protocol controller 
prepares the CFP and calls the sendMessage method of the platform (the JAVA method 
call redirected to the WS invocation – the direct invocation of the messaging service of 
online agents and the invocation of offline platform message service when needed). The 
messaging web service of the receivers puts the CFP message into the incoming message 
buffer. Then the protocol controller obtains the CFP, creates a new instance of the RBVO 
Formation Protocol for this call, and the preparation of a proposal is started. In the case of 
offline messaging, the agent checks the offline message box (WS invocation) upon 
starting, and then periodically, to handle temporal connection problems or a network 
configuration with a limited peer-to-peer communication. 

The described implementation of the agent platform allows the development of 
lightweight independent agents with the ability to operate while being widely distributed 
across the internet in various network settings (see Figure 5). The web service nature of 
the platform guarantees agents’ full operation as long as the web service invocation of the 
agent platform services is possible (the agents operate in the passive mode). When the 
invocation of the web services deployed on each agent (mainly distributed ACC) is 
enabled, the agents are able to communicate directly in full peer-to-peer manner (the 
agents operate in the active mode). The agent platform also provides several optional 
tools for message sniffing, logging and interactions inspection and visualisation. 

Figure 5 Example of the deployment of the PANDA agents (see online version for colours) 

Note: The agents can be hosted on the server and run on the public network, on the 
private network (behind address translation), or on the mobile devices. 
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Figure 6 RBVO Formation Protocol sequence diagram 
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Figure 7 RBVO Formation Protocol hybrid state diagram (see online version for colours) 
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Figure 8 The structure of the PANDA Agent Platform (see online version for colours) 
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Note: There are also horizontal interactions with the PANDA Portal (transparent to 

agents) and vertical interactions for the integration of individual agents with 
other systems of the agent’s owner. 

The PANDA Partner Agent application is able to act in the community of agents  
as a coordinator and/or participant at the same time (this means it is able to start  
RBVO formation or participate in an RBVO formation initiated by another agent). It is 
empowered by the implementation of the RBVO Formation Protocol, rule engine  
and set of private business rules adjusted by the owner (human user). For the user 
interactions, it is equipped with the JAVA graphical user interface. In the case of server 
hosting, when direct application access is not possible, the agent can be controlled by the 
remote Graphic User Interface (GUI) using the PANDA Agent Service. This service is 
optionally deployed on each agent and enables one to access agent capabilities remotely. 
Although the service does not provide all the features like the application GUI (such as 
the CR editor, business rules editor, various RBVO filtering and sorting, etc.), it allows 
one to create any kind of custom user interface or integration of the agent in the internal 
business processes and applications of the company. This web service provides the 
following methods: 

• submitCr – enables the submission of a collaboration request to the agent. The 
method also allows the definition of the set of business parameters for this CR 

• getRbvoProposals – provides the list of proposed RBVOs for a particular CR 

• getCrStatus – provides the status of a collaboration request 

• confirmRbvo – enables the selection of an RVBO and signals the agent to close the 
collaboration request 

• getParticipBizRuleParams – enables acquisition of the list of business rules 
parameters actually used on the participant’s (collaborator’s) side 
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• setParticipBizRuleParams – enables updating of the list of business rules parameters 
actually used on the participant’s (collaborator’s) side 

• getObtainedNegotiations – enables acquisition of the list of negotiations that the 
agent participates in 

• submitObtainedNegotiation – enables updating of a negotiation (that is in pending or 
empty status). 

To have a complete picture, there is a possibility to integrate the agent with the private 
company data stores. There is a web service interface designed to enable the Knowledge 
Processing Module of the agent to ask an external service for the creation of proposals  
for incoming CRs. The idea is to substitute the Drools engine used by agents internally 
with any proposal creation mechanism. Using this interface, the agent is enabled  
by the possibility to create collaboration proposals based on real data and standard 
intracompany processes. 

The implementation of the PANDA agent system has been performed in the JAVA 
programming language. The platform services have been deployed on the TOMCAT 
server beside the Portal and Central Services. The Partner Agents use native JAVA  
JAX-WS6 implementation as the service container. Each agent runs as a separate JAVA 
application and is able to be deployed ‘any-place’, where JAVA 1.6SE or a better runtime 
environment is installed. It needs at least an outgoing internet connection (for web 
services calls) and optional incoming connection. The distribution (and also updating) of 
the agents is provided using Java Web Start Technology.7 

6 Conclusion 

The proposed protocol has been designed for RBVO formation, but it is also possible to 
deploy it to other domains of VOs which employ the concept of SLAs. The protocol 
allows for reflecting the conditions of real competitive environments as well as 
negotiation scalability and complexity and is a support for human-assisted negotiation. 

The first phase of the protocol focuses on the multiround prenegotiation of the 
contract conditions between the partners. This phase is finished by a preliminary 
agreement or a participation refusing/rejection and can be fully or partially automated 
(agents negotiating on behalf of their owners). The second part contains pairwise 
multiround bargaining of the agreements. The result of this part is a set of SLAs or 
participation rejections. The third part is focused on RBVO dissolution and does not offer 
any special terminating conditions (e.g., penalties, quality of service delivered) or RBVO 
execution/evolution control. 

A possible improvement of the presented RBVO Formation Protocol consists in the 
adoption of features of the C-CNP Protocol in its decommitment and termination phases. 
In fact, the proposed RBVO Formation Protocol can be used instead of the contracting 
phase of the C-CNP. The decommitment phase of C-CNP or (the more complex) 
renegotiation phase of the RC-CNP should directly address the needs of the evolution 
(modification/perturbation) phase of the VO life cycle. 
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The RBVO Formation Protocol has been successfully deployed in the PANDA 
prototype and tested in the real demonstration of the system. There are about 38 partner 
agents utilising the protocol deployed on various sites (hosted on the central platform 
server or distributed on the user partners’ servers or PCs in seven different geographical 
locations); 12 of them are able to play the role of coordinator and thus initiate  
RBVO formation. The partner agents are able to provide five different services with 
various constraints like languages, countries, industry domains, ERP module expertise, 
reputation, price and availability. In the worst case, there is a maximum of 24.3 million 
potential RBVOs for nonconstrained five-task CR if all of the companies offer all of  
the services. The RBVO Formation Protocol empowered by the IRAM algorithm  
and business logic captured by rules provides efficient (semi-)automated cooperation 
establishment and effective collaboration support. 
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Abstract. This paper presents a specific contracting algorithm that
contributes to the process of distributed planning and resource allocation
in competitive, semi-trusted environments. The presented contraction al-
gorithm is based on incrementally refined acquaintance models (IRAM)
of the actor that provide the right set of approximate knowledge needed
for appropriate task decomposition and delegation. This paper reports
on empirical evaluation of the IRAM algorithm deployment in consortia
formation domain.

1 Introduction

This work focuses on a technique for distributed consortium formation with
limited knowledge sharing. The consortia formation is based on a negotiation
between independent self-interested providers. The providers can offer several
services and the goal is to find the best suitable composition of providers to
cover required set of services.

The targeted domain organizes multi-party interaction in the environments
that are:

− non-centralized and with flat organizational structure [R1] – the existence
of a central coordination is minimal and the information about the skills of
actors, resource availability, knowledge and goals is distributed,

− multi-party involvement [R2] – the final project cannot be implemented
in isolation by a single actor, consortium composition can be initiated by
several actors simultaneously,

− provides partial knowledge sharing [R3] – the actors in the environment
are motivated to keep a substantial part of their private planning knowledge
and resource availability information undisclosed.

Due to the presented requirements, the consortia cannot be evaluated centrally
and the service allocation to the individual providers has to be negotiated. The
goal is to minimize the interactions with the providers to the necessary minimum
to reduce their private knowledge disclosure and simultaneously ensure the qual-
ity of the solution. To fulfill those demands we have designed presented algorithm
and acquaintance model representation and provide experimental evaluation.
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This algorithm contributes to the process of distributed planning and resource
allocation in competitive, semi-trusted environments. The presented algorithm
is based on incrementally refined acquaintance models (IRAM) – the model that
the actor is maintaining about potential collaborators [1].

2 Problem Statement

The consortium composition can be represented as distributed state-space search
through all the potential consortia in the environment with limited information
sharing. Let us denote R as a requester agent, At as a set of services that R
requests to fulfill the task t. Furthermore we have agent Pj , as a provider agent
offering a certain set of services Amax

j , where j ∈ {1 . . . n} and

Fj(Aj) : {Aj ⊂ Amax
j } (1)

is pricing function for agent Pj to provide set of services Aj . When asked agent
Pj sends back just the price value.

The problem is then to acquire the optimal price

c(At) = min

n∑

j=1

Fj(Aj) � {Aj ⊂ Amax
j ;

⋃

j∈{1...n}
Aj = At} (2)

In this paper we then focus to find optimal vector of sets (A1, . . . , An) as a
decomposition of task t, where the overall price c(At) is minimal. Set of all
vectors that satisfies task the condition

⋃
j∈{1...n} Aj = At will be referenced as

a Deal Space - DSt.
In our model we have made several assumptions:

− Fixed price – the price of a particular subset of services is fixed during
algorithm run.

− Tasks are independent – a provider is capable of delivering same services
during all negotiation even if he was contracted for some services in the
previous tasks.

− Non-increasing partial price – a provider constructs a Fj(Aj) as ag-
gregated price from prices for individual services that are hidden to the
requester. We assume the individual services price to be non-increasing in
reference to increasing |Aj |.

3 IRAM-Based Consortium Formation

We have designed a straightforward decomposition mechanism that finds the
optimal decomposition given the right objective function and a complete in-
formation about provider’s resource availabilities. The decomposition algorithm
is polynomial and easy to construct (see [2]). Its behavior, however, worsens
strongly with lower quality of information about the provider’s prices stored
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in the requestors’ acquaintance models (containing a subset of the deal space).
The most efficient approach in fully cooperative communities would be if the re-
questor queries all the providers and reconstructs the deal space for all services
provided by all actors prior to computing the optimal a contract.

As this is not possible in the environment compliant with the requirements
R1 and R3, the requestor needs to approximate such knowledge with only par-
tially available information. We are proposing incrementally refined acquaintance
model (IRAM) algorithm for handling partial knowledge sharing and private
knowledge disclosure [1].

This approach has been evaluated and compared with the another method
of provider prices estimation - the well-known Chebyschev Polynomials approx-
imation method.

3.1 Acquaintance Model

The acquaintance model can have a number of forms [3], [4]. In this particular
application the acquaintance model is understood as function that predicts actor
responses to a particular call-for-proposals (CFP) type of message. We represent
the acquaintance model (am) as a mapping from a set of P(Amax

j ) possible sub-
sets asked from the provider Pj to a 1 dimensional real-value space representing
cost C.

Fam
j :P(Amax

j ) → C (3)

Let us discuss several properties of an acquaintance model. The fixed point is
such a mapping among the actor, single service and a particular cost that is
based on exact information acquired from the communication with the specific
actor. In a fixed point asσ

x

Fam
j (asσ

x) = fj(sx, |Aj |, pcj) where |Aj | = σ (4)

where fj(sx, |Aj |, pcj) represents the price contribution of presence of service sx

in Aj to the total price of the entire set Fj(Aj).
Provided that the fixed points of the acquaintance model are collected in a

set Δ(Fam
j ), we define the size of the acquaintance model δ(Fam

j ) the amount
of the fixed points in the acquaintance model as follows:

δ(Fam
j ) = |Δ(Fam

j )|. (5)

Various approximation functions have been used in the acquaintance models,
e.g. [2]. In our model we have selected the pairwise constant approximation. The
unknown price of service sy in subset with size |Aj |, equals to the closest bigger
known fixed point in means of the size of the containing subset|A′

j | : sy ∈ A′
j

Fj(sy, |Aj |, pcj) = Fj(sy, |A′
j |, pcj) if |Aj | � |A′

j |, (6)

provided that the symbol � represent the smallest bigger value.
The error of the acquaintance model - ε(Fam

j ) - represents how well does
the acquaintance model capture real capability of the providers. Error of the
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acquaintance model is a dual quantity to the quality of the acquaintance model.
There can be a number of ways how the error can be related to the quality. We
only require that with a monotonic increase of quality the error decreases and
vice versa.

We represent the error of the acquaintance model as a sum of the differences
between the real costs and the information on costs provided by the acquaintance
model.

ε(Fam
j ) =

∑

p,j

|Fam
p (Ap,j) − fp(Ap,j , pcj)| (7)

the index p goes through all possible subsets of Aj , and j goes through all
partners.

As said before, the reason why we use the acquaintance models for contract-
ing is that we are motivated by minimizing the unwanted knowledge disclosure
during interaction (requirement R3). Each interaction represents disclosure of
private information. By CFP the actors disclose their inability to perform a task
as well as their intention to do so. By a response to CFP the agents disclose
information about availability of particular resources. It is evident that with
rising δ(Fam

j ), the acquaintance model is more exact and thus provides better
information (i.e. lower ε(Fam

j )). Better acquaintance model managed to reduce
communication (and thus private knowledge disclosure) during the negotiation
between the actors. However, bigger δ(Fam

j ) (and thus smaller ε(Fam
j )) required

substantial interaction during the acquaintance model construction phase where
lots of unwanted information may have been disclosed.

The IRAM algorithm is balancing the size and the quality of the acquaintance
models. In order to evaluate performance of the IRAM algorithm we have devel-
oped a reference algorithm that is working with a similar acquaintance model,
constructed prior negotiation. Both algorithms are based on distributed state-
space search using negotiation between actors. As a negotiation protocol, we use
the competitive contract-net protocol [5], but any protocol that enables iterative
contract negotiation can be used.

3.2 IRAM Algorithm

The run of this algorithm for one particular task t is started with the initiation
phase. All providers are contacted for every single service and for maximal subset
of services from task t. The IRAM model am is constructed using the closest
bigger known fix-point approximation (see eq. 6). The model is represented by
sets of prices for specific service and pricing function settings (see eq. 1). The
price is set blank when is not known, and thus is calculated from other fixed
points.

The algorithm constructs the Deal Space and evaluates it with the prices
from Fam

j . The cheapest consortium Consbest is selected and the providers are
requested for appropriate services. Offered prices are then integrated into the
IRAM model. The deal space is then reevaluated and the cheapest consortium
is selected. If the new consortium is composed from fixed points (represents
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Fig. 1. IRAMmodel(labeled with triangles) for one service according to sx, fixed points
in 1,8,17. Approximated function is labeled by diamonds.

real price of the consortium – no price approximation), this we understand as
optimum. Request for this consortium will lead to the exact same information
and due to eq. 6 the algorithm has converge to the optimum. The phases of
IRAM can be seen below.

Initialization. It is necessary to know at least two fixed points of acquaintance
model for specific service from each provider, for proper functionality of IRAM
algorithm. So if the algorithm have not these from previous contracts, it obtains
them in the first iteration. Due to this fact the amount of communication is
considerably higher regarding to following iterations. Preferably we choose the
single service data and maximum provider coverage data (Amax

j ). Single service
provides us data needed for proportional price reconstruction necessary due to
aggregated price. And the max coverage data gives us the lowest possible prices
from provider needed for approximation.

Iteration Phases. The iteration phases represent processes that follow each
other in further negotiation stage.

− Contacting the best known consortium given by acquaintance model
− Updating IRAM model by the received responses
− Reevaluating the acquaintance model
− Sorting the deal space by total consortium price
− Termination condition evaluation

Termination Condition. The algorithm is iterating (contacting and updating
model) till the best evaluated consortium consists of fixed points only (e.g. no
part of consortium has estimated evaluation)

The steps of IRAM algorithm can be seen in Figure 2.
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1 Construct deal space DSt.

2 Send CFP(si) for all si ∈ t to all providers P.

3 Update am according to received responses.

4 Send CFP(Amax
p ) to all providers P.

5 Update am according to received set of responses Ap.

6 Select Consbest from DSt evaluated by am.

7 If Consbest ⊂ S
j∈P (ΔFam

j ) then terminate algorithm.

8 Send CFP(Ap,j), where
S

j=1...n Ap,j = Consbest to providers 1 . . . n.
9 Goto 5.

Fig. 2. IRAM algorithm steps

3.3 Properties of IRAM

The presented IRAM algorithm is sound and complete. The proof of complete-
ness of the algorithm is made through conversion of whole idea to A∗ algo-
rithm [6], where the nodes of searched space are individual consortia from DS,
and edges represent inclusion (or exclusion) of one provider to a consortium.
This representation corresponds to Coalition Structure graph [7].

The heuristics of A∗ is then based on acquaintance model approximation, all
of the nodes are priced particularly by real prices (fixed-points) and by com-
puted prices given by acquaintance model. The price of the consortium Cons is
represented by

c(Cons) = g(Cons) + h(Cons),

where g(Cons) =
∑

Aj⊂Δ(Fam
j )

(Fam
j (Aj)) =

∑

Aj⊂Δ(Fam
j )

Fj(Aj),

and h(Cons) =
∑

Aj⊂P(Amax
j )/P(Δ(Fam

j ))

Fam(Aj). (8)

The g(Cons) represents price of the of subsets from Cons that is known from
previous negotiations (the fixed-points) and h(Cons) is the unknown price of
the subsets from Cons estimated by acquaintance model.

The non-increasing individual pricing function assumption causes

sx ∈ Aj,1; sy ∈ Aj,2; sy = sx; |Aj,1| ≤ |Aj,2|

⇒ fj(sx, |Aj,1|, pcj) ≥ fj(sy, |Aj,2|, pcj) (9)

According to eq. 6 and 9 the h(Cons) is always equal or lower then the real price
of this subset, so h(Cons) ≤ h∗(Cons) and the eq. 8 is admissible heuristics of
A∗ algorithm. Since the IRAM is based on exploration of the best candidates
evaluated by eq. 8 the algorithm provides the features of A∗ algorithm [6].
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3.4 Reference Algorithm

The presented approach has been empirically validated by comparison with the
state-of-the-art algorithm with behavior similar to IRAM algorithm. Generally
the IRAM method is used to approximate unknown pricing functions of part-
ners and determine the direction of future negotiation. For the benchmarks pur-
poses we have implemented a reference algorithm based on deployment of known
Chebyshev polynomials [8], previously used for modeling of sellers production
pricing function.

The Chebyshev polynomials exactly Chebyshev polynomials of the first kind
are defined as

Tn(x) = cosn arccosx (10)

Due to its orthogonality with respect to the weight w(x) = (1−x2)−1/2 in the
interval [-1,1] are widely used for approximation, in most cases they are more
effective than Taylor’s. The Chebyshev polynomial state can be represented by
the recursion formula: Tn+1 = 2xTn(x)−Tn−1(x), where T0 = 1; T1 = x. Further
information can be obtained in [9].

The approximation itself is made through computing weights (ck). They rep-
resent the contribution of every Chebyshev polynomial to the resulting function.
The complete approximation formula is

f(x) ≈
N−1∑

k=0

ckTk(x) − 1

2
c0 (11)

The defining weights are reconstructed from approximated known points
(xk, f(xk)), k = 1..M with formula

cj =
2

M

M∑

k=1

f(xk)Tj(xk) (12)

The values of xk should be mapped to [−1, 1].

3.5 Implementation

As mentioned above, searched approximation method was selected according to
initial environmental conditions similar or equal to IRAM’s. In case of Chebyshev
polynomials the conditions matched exactly. The implementation of the IRAM
algorithm was just slightly modified in the field of approximation and all the
other interfaces (like communication, consortium construction and evaluation)
were left untouched. For a proper explanation of its deployment, let us explain
the adaptation of Chebyshev polynomials to the environment. The first two
samples (fixed points), needed in general for every approximation, are gathered
from the initiation phase of negotiation (same as IRAM). The deal space is then
evaluated from Chebyshev approximation of the pricing functions. The final
condition is also same as in IRAM. If the same solution is evaluated as the best
in two following iterations it is returned as result.
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As mentioned previously, the only alteration (from the IRAM algorithm) in
the optimal consortium search was the approximation process. Just like in IRAM
there is a pricing function model for every particular service from every provider,
this model consists of set of weights (eq. 11), the number of weights depends on
the number of Chebyshev polynomials used. The number is also correlated with
approximation quality (will be further described). The origin of the polynomials
is the same for all approximations thus is stored as a constant. The exploiting
of the incoming information takes place during the weight computation, which
is performed as a result of collecting each new price information.

4 Experiments

The key contribution of the presented paper is in empirical evaluation of the
presented algorithm. We will be analyzing the behavior of IRAM in relation to
the reference algorithm presented above.

For presenting the contribution of IRAM we construct a market model that
contains a set of four providers P , one simple requester that requests providers for
set of 17 tasks S = t1 . . . t17 using IRAM and reference algorithm for comparison.

In our experiments we randomly generated 4 providers, where everyone of
them was capable of delivering 14 services from total 18 services, this setting
was chosen due to computation requirements. The max size of acquaintance
model is δmax(Fam

j ) = 65532 possible proposals i.e. fixed points, and average deal
space size in one task is 〈|DSt|〉 = 8777. The individual pricing functions were
randomly generated as follows. We generate uniform distribution set of prices
UP = (bp1 . . . bps) in defined range (200, 600) for base price bp of every service
from U . Then we create one random value in range dj ∈ (0.6, 1) for particular
provider pj that represent the discount in price according to the number of total
services asked |Aj |. From discount is then computed margin value mj

mj = 1 + 0.05 ∗ ((1 − dj)/0.8) ∗ ((1 − dj)/0.8 + 1)/2. (13)

The price fi,j of single service si is then derived from base price bpi and total
service asked |Aj | as follows.

fj(si) = mjbpid
|Aj |−1 + 0.5mjbpi (14)

Then the pricing function corresponds to eq. 1 Every provider then responds
only with this price when is asked for some services.

4.1 Quality of a Model

As shown in [8], the quality of a approximation rises with the number of polyno-
mials used. It can be shown that for a approximation of a polynomial function of a
certain degree d the number of Chebyshev polynomials needed for exact approx-
imation is also d. However in our case the pricing functions (eq. 1) are little bit
different to be specified exactly like a polynomial. Therefore we run quality tests
to find the right Chebyshev polynomial count. The results are shown in figure 3.
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Fig. 3. Chebyshev approximation performance with different polynomial count

The scenario of the test is performed by 6 partners with 17 services each from
34 possible services. They are gradually asked for 20 tasks composed of 9 services.
The pricing functions specifications are the same as usual.The size of the deal
space is then according to the setting 19683. There is a set of tests on the same
setting just with different count of Chebyshev polynomials used. Measured vari-
ables was failure count (finding the wrong optimum), failure percentage, average
relative failure height (to the price of optimum) and computational time (on the
same hardware setting in ms). The table shows us that the approximation has
interesting numbers in one polynomial case, which represents the linear approx-
imation with one straight line. The other results worsens with rising polynomial
number until the peak at 11 polynomial for failure count and 5 for average rela-
tive failure height. The computational time is rising due to computing of higher
and higher powers. By the polynomial count of 23 we can se ideal approximation
of our pricing functions represented by 0 failures. So this setting we can use as
a proper benchmark for IRAM in this particular environment.

4.2 Benchmarking IRAM vs. Chebyshev

Finally we can unveil the key comparison of Chebyshev method and IRAM. For
the first set of tests we simply use the setting described in previous section in or-
der to illustrate major differences. The measured variables are average Iteration
count, sum of asked proposals and sum of asked services. The Figure 4 providing
measured variables with IRAM’s results in the last column, clearly shows that
with the same level of quality (zero failures) the shared information (gathered and
paid) from partners is 50 % bigger in negotiation than using Chebyshev approxi-
mation. To be equal in information requirements we have to accept 85 % chance to
have 5 % failure with Chebyshev of the order 11. Just for clear comparison of the
average computational time for one IRAM negotiation was 859,8 ms comparing to
13235,65ms of Chebyshev of the order 23. The time results have just relative infor-
mation value because the implementation of Chebyshev polynomial computation
can be slightly upgraded, which is not the key object of this paper. For the next
experiments we will use the Chebyshev polynomial of the order 11 and Chebyshev
polynomial of the order 23 for benchmarking with IRAM’s results.
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Fig. 4. IRAM vs. Chebyshev comparison

Another key comparison which can be shown on multiple task solving sce-
narios, is the progress of the harvested data utilization. Due to incrementally
better and larger model sizes we can obtain the solution with lower negotiation
requirements. Results of this experiments are shown in figures 5 and 6. In the
first one there is the number of fixed points requested from the partners in ev-
ery negotiation. This value has the meaning of shared information among the
partners. We can see a notable computational overhead needed for Chebyshev
of the order of 23 in the beginning of the negotiations. This trend then gets
significantly better than IRAM numbers with increasing number of task solved.
This is caused by bigger (thus better) Chebyshev of the order 23 model. The
Chebyshev of the order 11 has almost the same data. It was chosen because of
its equal data requirements as IRAM. On this particular data we can see pro-
gressive IRAM’s character in the single task formation problem, i.e. the model is
build from scratch. In the first step of the graph IRAM outperforms Chebyshev
by 50 %. In unknown environments or in highly dynamic cases this capabil-
ity become very useful. In the second figure we shown the sizes of each model
(see eq. 5) and how this size continually grows with the number of negotiations.

Fig. 5. IRAM vs. Chebyshev 11 and Chebyshev 23 asked fixed points in particular
negotiations
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Fig. 6. IRAM vs. Chebyshev 11 and Chebyshev 23 in size of the models

Again, we can see the overhead needed by Chebyshev of the order 23. It comes
with the robustness of 23 Chebyshev polynomials and its requirements for ini-
tial data to construct the proper approximation. Trends for all of the algorithms
are almost the same. With an increasing number of negotiations they tend to
converge to certain bound where the models have mapped all interesting areas
of partner’s pricing functions. In those regions IRAM shows significantly lower
need for collected information to provide the best solution.

As we can see, the deployment of IRAM algorithm in this type of domains
brings significant improvement in performance, not just in information sharing
field but with its simple implementation even in computational requirements.

5 Conclusion

The paper also presents a specific algorithm for distributed task delegation and
resource allocation in semi-trusted multi-actor communities - the Incrementally
Refined Acquaintance Model (IRAM). This algorithm is based on incrementally
maintained social knowledge of the service requestor about the service providers.
The novelty of the presented approach is in the fact that social knowledge is
used even if very imprecise and it is gradually refined by means of unsuccessful
attempts to contract.

The presented IRAM algorithm allows consortia composition with respect
to defined requirements, mainly non-centralized approach and minimization of
private knowledge disclosure. In environments with a certain degree of dynam-
ics, IRAM’s decent information requirement in initiative phase of building the
model brings it a significant benefit in comparison with classical approximation
approaches (Chebyshev). It can be outperformed in longer sets of negotiations
due to more voluminous models representing the opponents.

High dynamics of the environment causes devaluation of acquaintance model
and it can lead to incorrect solution. In such dynamic environment, the IRAM
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algorithm has to start building the model from scratch for every new task. In one
deal scenario, the presented IRAM algorithm still provides quick convergence to
the optimum with low communication and thus low private knowledge disclosure.
Another option is limit the validity of the information obtained and reconstruct
part of the model only.

Acknowledgment

The work is funded by the European Commission’s FP6 programme within the
projects Collaborative Process Automation Support using Service Level Agree-
ments and IntelligentDynamic Agents in SME clusters (PANDA), IST-No.027169.
The research is also partly funded by the Ministry of Education, Youth and Sports
of the Czech Republic grant No. MSM 6840770038 and No. 1M0567.

Any opinions expressed in this paper are those of the author(s)/organization
and do not necessarily reflect the views of the European Community. The Com-
munity is not liable for any use that may be made of the information contained
herein.

References
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5. Vokř́ınek, J., Hod́ık, J., B́ıba, J., Vyb́ıhal, J., Pěchouček, M.: Competitive contract
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Abstract. We present an approach to plan representation in multi-actor scenarios that is suitable for flexible replanning and plan
revision purposes in dynamic non-deterministic multi-actor environments. The key idea of the presented approach is in repre-
sentation of the distributed hierarchical plan by social commitments, as a theoretically studied formalism representing mutual
relations among intentions of collaborating agents. The article presents a formal model of a recursive form of commitments
and discusses how it can be deployed to a selected hierarchical planning scenario. The decommitment rules definition and their
influence on the plan execution robustness and stability is also presented. The approach was verified and evaluated in a sim-
ulated environment. The experimental validation confirms the performance, stability, and robustness of the system in complex
scenarios.
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1. Introduction

Cooperation between intelligent agents is usually
established by means of negotiation resulting in a set
of obligations for the participating agents that lead
onwards to achievement of a common goal agreed
to by the agents. Wooldridge and Jennings formalize
the obligations by describing the cooperative problem
solving by means of social commitments [20] - the
agents commit themselves to carry out actions in the
social plan leading onwards to achievement of their
joint persistent goal [10].

The problem of distributed planning (DP) has been
often discussed in the AI planning and multi-agent re-
search communities recently (e.g. [3], [1], [5], [18]).
Distributed planning has been viewed as either (i) plan-
ning for activities and resources allocated among dis-
tributed agents, (ii) distributed (parallel) computation

*Corresponding author.

aimed at plan construction or (iii) plan merging activ-
ity. The classical work of Durfee [3] divides the plan-
ning process into five separate phases: task decomposi-
tion, subtask delegation, conflict detection, individual
planning and plan merging.

The distributed planning approach proposed in this
paper does not provide constructive algorithms for
dealing with either of the phases. Instead we propose
a special mechanism for plan execution in distributed,
multi-actor environment. As such it will affect all the
phases of the Durfee’s distributed planning architec-
ture.

While classical planning algorithms produce a series
of partially ordered actions to be performed by individ-
ual actors, we propose an extension of the product (but
also an object) of the planning process so that it pro-
vides richer information about the context of execution
of the specific action. The context shall be particularly
targeted towards mutual relation between the actions

1570-1263/11/$27.50 c© 2011 – IOS Press and the authors. All rights reserved
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to be performed by individual actors and shall be used
mainly for replanning and plan repair purposes.

The planning problem we are trying to deal with can
be informally understood as the task of solving a clas-
sical HTN (hierarchical task network) planning prob-
lem, defined by an initial partially ordered (causally
connected) series of goals, by a set of admissible op-
erators (defined by their preconditions and effects) and
methods suggesting a decomposition of a goal into a
lower-level planning problem. The plan can be sought
for by an individual actor or in collaboration of mul-
tiple actors (sharing knowledge and resources). The
product of planning is a set of partially ordered termi-
nal actions, allocated to individual actors who agreed
to implement the actions under certain circumstances.
These circumstances are expressed by specific com-
mitments including the following pieces of informa-
tion:

– commitment condition that may be (i) a specific
situation in the environment (such as completion
of some precondition) or (ii) a time interval in
which the action is to be implemented no mat-
ter what the status of the environment is or (iii) a
combination of both.

– decommitment conditions specifying under which
condition the actor is allowed to recommit from
the commitment once the task is finished (e.g. no-
tification) or once the task cannot be completed
(e.g. a failure)

For long, multi-agent research community has been
providing interesting results in the formal work in the
field of agents’ social commitment, as specific knowl-
edge structures detailing agents individual and mutual
commitments. The presented research builds on and
extends this work.

The article is an extended and modified version of
the original work [7] published on the International
Multiconference on Computer Science and Informa-
tion Technology (IMCSIT/ABC 2008).

The work is structured as follows. In the section 2,
the formal description of commitments by Wooldridge
is extended, a recurrent notation formalizing the com-
mitments is presented and its use for distributed plan-
ning purposes is shown using a scenario for verifica-
tion. The section 4 gives a brief overview of the most
relevant works to our approach. Finally, the last section
concludes the paper.

2. Commitments for Planning and Re-planning

As stated in the introduction, a social commitment
is a knowledge structure describing an agent’s obliga-
tion to achieve a specific goal, if a specific condition is
made valid and how it can drop the commitment if it
cannot be achieved. The commitment does not capture
description how the committed goal can be achieved.
Individual planning for a goal achievement, plan ex-
ecution and monitoring is a subject of agents internal
reasoning processes and is not represented in the com-
mitment.

In the context of the planning problem defined in the
Introduction, we understand the agent’s specific goal
(to which it commits) as an individual action, a com-
ponent of the plan, which resulted from the given plan-
ning problem. While typical action in a plan contains
only a precondition and an effect, in this paper we will
describe how its representation can be extended so that
the commitment-related information is included.

Michael Wooldridge in [21] defines the commit-
ments formally as follows:

(Commit A ψ ϕ λ),
λ = {(ρ1, γ1), (ρ2, γ2), . . . , (ρk, γk)}, (1)

where A denotes a committing actor, ψ is an ac-
tivation condition, ϕ is a commitment goal, and λ is
a convention. The convention is a set of tuples (ρ, γ)
where ρ is a decommitment condition and γ is an in-
evitable outcome. The convention describes all possi-
ble ways how the commitment can be dropped. Gener-
ally speaking, the actor A has to transform the world-
state in such a way that the ϕ goal becomes true if ψ
holds and any γ has not been made true yet. The ac-
tor is allowed to drop the commitment if and only if
∃i : ρi which is valid. A decommitment is allowed
provided that γi is made true. A formal definition in
modal logic (working with the models of mental atti-
tudes like Believes, Desires, Intentions, [14], and tem-
poral logic where the operator AG denotes an the in-
evitability and operator x denotes the temporal until)
follows as defined in [21]:

(Commit A ψ ϕ λ) ≡
((Bel A ψ)⇒ AG((Int A ϕ)
∧(((Bel A ρ1)⇒ AG((Int A γ1))) x γ1)
. . .
∧(((Bel A ρk)⇒ AG((Int A γk))) x γk)

) x
∨
i

γi).

(2)
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Fig. 1. Commitments and bindings - the actor A’s commitment influences the actor B’s commitment using the causal (sequential) link, the link
is described using the ψ and ϕ clauses (e.g. ψ = building-is-ready(B) and ϕ = ready(B)). The actor B’s commitment is influenced
by external causality too. The actor B’s commitment can be decommitted in two cases: either the temporal condition ρ becomes true or one of
the actor A’s rules requests the decommitting. The decommitment request is triggered by one of the actor A’s ρ conditions.

This definition is used in a declarative way. Provided
that whatever the agent does during a specific behavior
run complies with the above defined commitment, the
expression 2 is valid throughout the whole duration of
the run.

One of the goals of the research described in this pa-
per was to provide a formalism for networked commit-
ments to be used for replanning. As clearly stated in
the introduction, the commitment conditions can rep-
resent variable bindings among preconditions and ef-
fects of the individual commitments achieved either
by monitoring the environment status or by inter-agent
communication (e.g. reception of a specific trigger
message). Such representation would be very inflex-
ible in practical applications as it would either need
the agents to do nothing and wait for an inhibiting
event to happen or risk that once an inhibiting event
happens the agent will be busy performing other com-
mitments. Therefore the agents may want to engage
in booking and the commitment’s precondition would
contain fixed time when the commitment is supposed
to be adopted. The most flexible approach would be a
combination of both - inhibition event and preliminary
booked time window, specifying when the inhibiting
event is likely to happen. Let us assume that this is the
case in the remainder of the paper.

In the distributed plan execution a failure may oc-
cur. The indirect impact of this failure may be e.g. a
situation where the arranged inhibition event will not
happen in the preliminary booked time window. Such
occurrence may invoke replanning and allow some
agents to e.g. drop unnecessary commitments. This is
the reason why the commitments shall not be linked
one with other not only via preconditions but also by
means of variable bindings among individual agent’s
decommitment rules. Using these bindings, we can de-
scribe the causal sequentiality of the commitments and
requests for particular decommitments (Figure 1).

While we will be generalizing on the process of de-
commitment later in the paper, let us work for now
with the specific particular decommitment case sug-
gested in the previous paragraph. Let us assume one
agent A forcing decommitment of the other agent’s
B commitment by means of setting a value of a vari-
able contained in the other agent’s commitment. The
agent A contains a commitment with a decommitment
rule in the form 〈ρ, v〉 and the agent B contains a
commitment with a decommitment rule in the form
〈v,decommit(B)〉 ∈ λA.The request is started by ρ
precondition of the actor A (e.g. decommitting the A’s
commitment). Thus the actor A intends to make the
variable v valid. This causes the agent B to intend to
decommit by intending the variable decommit(B) to
be valid (see Figure 1).

This clear example uncovers two needed extensions
of the classical social commitment model: (i) recur-
rence of the commitment form – enabling a possibility
to disable (decommit) a decommitment request and (ii)
explicit termination condition – describing termination
without any intentional part.

2.1. Commitment Recurrent Form

The original Wooldridge definition of a commit-
ment makes a clear distinction between the commit-
ment subject (ϕ) and the set of mini-goals in the com-
mitment convention (γ). While there is a mechanism
for the agent to drop ϕ, a once adopted mini-goal γ
cannot be decommitted. Due to high dynamism and
uncertainty of the target scenario, we assume the re-
planning and plan repair mechanisms to be substan-
tially more complex. We require that the mechanism
would allow the agent to try out several different de-
commitment alternatives, based on the current proper-
ties of the environment. The set λ allows listing var-
ious different decommitment rules, while no mecha-
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Fig. 2. Commitment and its λ∗ commitments (Figure 1). is extended by one decommitment of request which can be decommitted if the most inner
ρ condition becomes true. Decommitting of the request causes the actor B’s commitment cannot be decommitted by the actor A’s convention
goal any more. Here the recurrent form enables the nesting of the inner commitment.

nism have been specified how different decommitment
alternatives are tried out.

That is why we propose generalization of the com-
mitment so that each goal in the commitment structure
can be treated equally. Let us introduce the recurrent
form of a commitment:

(Commit A ψ ϕ λ∗), λ∗ =
{(Commit x1 ρ1 γ1 λ

∗
1),

(Commit x2 ρ2 γ2 λ
∗
2), . . . ,

(Commit xk ρk γk λ
∗
k)},

(3)

which enables the nesting of the commitments (Fig-
ure 2).

The formula 3 extends the definition in 2 not only
by inclusion of a set of decommitment rules in each of
the individual decommitment rules. It also allows the
newly adopted commitments to be assigned to differ-
ent actors. The delegation kind of decommitment be-
tween two agents A and B would have the following
form:

(Commit A ψ ϕ {(Commit B ρ ϕ ∅)}), (4)

representing that agent A can drop the commitment
towards ϕ provided that ρ is valid and provided that B
accepts a commitment towards ϕ on A’s behalf.

This form is very expressive in the sense of the de-
scription of exceptional states. It allows us to have a
branched chain of individual nested commitments for
each individual situation. The recurrent nature allows
us to describe an arbitrarily complex protocol using
only one knowledge base structure. The definition of
the commitment in the recursive form simplifies to:

(Commit A ψ ϕ λ∗) ≡
((Bel A ψ)⇒ AG((Int A ϕ) ∧∧

j

λ∗j ) x
∨
i

γi), (5)

Fig. 3. Commitment graph – the causal links define the sequentiality
of the commitments of each actor. The commitment C3 of the actor
A can be decommitted by both C1 and C2 commitments. The C2

commitment of the actor B can be decommitted by actor A using the
decommitment request.

where the
∧
j

λ∗j part acts as the convention set in the

original definition in formula 2.
With the help of the proposed form, we can trans-

form the set of mutually interconnected commitments
into a graph notation. The formalization is convenient
especially due to a broad field of well-known princi-
ples and algorithms (e.g. dead-lock detecting, known
complexity, extensive transformations and others). Ad-
ditionally, we will propose a violation solving algo-
rithm (in Section 2.3), based on graph representation
of the commitments.

Vertices of the commitment graph (Figure 3) repre-
sent particular commitments and edges describe inter-
commitment bindings (causality and decommitment
requests). Formally, the commitment graph is defined
as follows:

~G = (V,E),

M : V (~G)→ P((Commit)),

W : E(~G)→ P((Commit))× P((Commit)),

(6)

where ~G is an oriented graph with vertices V and edges
E. Additionally, the functionsM andW map the com-
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mitments and their bindings to the vertices and edges.
The set P((Commit)) stands for all possible commit-
ments.

2.2. Decommitment Rules

We require the agents carrying out intelligent plan-
ning and re-planning by means of social commitments
to be able to perform at least basic reasoning about the
decommitment rules attached to the particular commit-
ments. This is needed at the time of re-planning, when
an agent needs to decide which decommitment rule
(i.e. a new commitment) to adopt, provided that con-
ditions for more than one of them are satisfied. Simi-
larly, agents, when they negotiate about who will ac-
cept which commitment, shall be able to analyze not
only properties of the goal and costs associated with
the goal completion process but also the various de-
commitment rules when considering the likelihood of
the particular failure to occur. Ideally, the agent shall
be able to estimate costs of each decommitment rule.
However, with the lack of information about the dy-
namics of the environment, we will be only able to par-
tially order the decommitment rules.

Before analyzing the decommitment rules, we have
to describe a basic decommitment frame, which is
based on the type of the base commitment. The types
of the commitment mutuality are the following:

– Individual commitments (IC) - commitments that
do not involve other agent than the agent itself.
These commitments shall be used if the impact of
a failure within the multi-agent community shall
be minimized. Individual commitments shall rep-
resent several other ways how an agent can ac-
complish a given task.

– Minimal social commitment (MSC) - is the clas-
sical type of decommitment, where the agent is
required to notify the members of the team about
its inability to achieve the commitment.

– Joint commitments (JC) - these commitments pro-
vides mutually linked commitments (of several
agents) via decommitment rules. In a replanning
situation the joint commitments proactively as-
sure that the cost of the failure is minimized. An
example of the use of a joint commitment is a
decommitment of another agent’s linked commit-
ment as explained in the Section 2

Starting with the IC, each decommitment rule set
(corresponding to Wooldridge’s commitment conven-
tion) must contain two basic rules, which ensure the ra-

tionality of the agent’s decision making process. These
rules are based on the definition of the open-minded
commitment defined in [21]:

(Commit A ϕ) ≡
AG((Int A ϕ) x ((Bel A ϕ) ∨ ¬(Bel A EFϕ))),

(7)

where the operator EF denotes future possibility. Thus
in each and every commitment the initial decommit-
ment in the λ∗ set should be the success triggering
commitment

(Commit A false (Bel A ϕ) ∅) (8)

and the λ∗ set should be always closed with a fail-safe
trigger turning a violated commitment eventually off

(Commit A false ¬(Bel A EFϕ) ∅), (9)

which is used provided that no other decommitment
rule can be used and the parent commitment became
unrealizable.

The triggering decommitment condition ρ in rules
(8) and (9) cannot become true (as ρ = false), which
means the agent will never intend the decommitment
outcome γ according to the definition (5)

((Bel A ρ)⇒ AG((Int A γ))) x γ
(false ⇒ AG((Int A γ))) x γ,

(10)

nevertheless the rule can drop the commitment using
the drop-out part

∨
i

γi. (11)

This principle can be used for any drop-out rule with
no need for explicit intention.

Let us introduce three different types of decommit-
ment rules based on the definition in [17]:

– Full decommitment (Fd) - the basic decommit-
ment strategy is dropping the commitment. Under
defined circumstances the agent is completely re-
leased from the commitment. The full decommit-
ment decommits the original commitment if and
only if the commitment goal ϕ is unrealizable.

– Delegation (D) - by using this type of commit-
ments the agent shall be able to find another agent
who will be able to complete its commitment
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on the original agent’s behalf. It is possible that
such a commitment will contain unbound vari-
ables representing the need to search for an agent
suitable for delegation. Delegation decommits the
original commitment if and only if the commit-
ment goal ϕ is unrealizable and the new commit-
ment on the other agent’s side is formed.

– Relaxation (R) - is a special decommitment,
where the original commitment is replaced with a
new commitment with a relaxed condition and/or
goal. The new commitment must be consistent
with all other bound commitments. Provided that
the bound commitment is of another agent, the re-
laxation must be negotiated. The agent being ad-
dressed tries to fit the requested relaxed commit-
ment into its knowledge base and eventually use
some other decommitment rules of other commit-
ments to change it and fulfill the request. Relax-
ation decommits the original commitment if and
only if the commitment goal ϕ is unrealizable,
the negotiated relaxation conditions hold and the
relaxed commitment is formed.

The ordering and presence of particular decom-
mitment rules between the two basic decommitments
(success and violation) has a non-trivial impact on
the robustness of the execution (especially in an over-
loaded system) as shown in [17]. The best results for
heavily stressed systems can be reached by the ordered
set of (D, R, Fd) decommitment rules. On the other
hand, the best set for more vacant systems seems to be
(R, D, Fd).

For commitments of the MCS type, the rule set has
to contain a notification sub-commitment which in-
forms other agents about the state of the parent com-
mitment. The most complex commitments (JC) con-
tain arbitrary number of mutual sub-commitments,
which can act as multi-agent coordination messages,
synchronization protocols, joint actions and others.

2.3. Violation Solving Algorithm

A graph notation can be used to describe the pro-
cess of successive solving of exceptional states. The
process is based on traversing through the commitment
graph. The traversing starts with the first violated com-
mitment. One of the decommitment rules is triggered
(depending on the violation type). As the decommit-
ment rule is a commitment it invokes an intention of
the agent to terminate the commitment. In the case that
the intention is a decommitment request, the process

passes on the requested commitment (decommitment
rule respectively) and starts one of the decommitment
rules on the side of the requested commitment. Pro-
vided that the decommitment rule terminates the com-
mitment without a need to request other decommit-
ments, the process ends here and the violation is fixed.

The algorithm written in BDI pseudocode follows:

Input: Vertex v of a commitment graph ~G
representing violated commitment C.

Output: Updated graph with solved violation.
function solve(v, C, ~G) begin
D := find appropriate decommitment rule in C
run D begin

(Int A γ(D))⇒
if γ(D) is request then

solve(M−1(γ(D)(M(v))), γ(D)(C), ~G)
else

fix subgraph induced by vertex v
from graph ~G

end
end

end

3. Evaluation

The approach presented in this article has been eval-
uated in a realistic simulation scenario for distributed
planning and coordination in non-deterministic envi-
ronments [9], [8], [19] emphasizing mixed-initiative
planning and decision making. Figure 4 shows the sce-
nario takes place on an island inspired by the Paci-
fica Suite of Scenarios1. (Pacifica domain for DARPA
planning initiative [12], [13] and other experiments).
The Pacifica scenarios adopt the concept Go places, do
things, a tasking base that allows a range of missions
to be designed for experiments. On the island, there
are cities and a network of roads connecting them, but
off-road movement is also allowed. There are also sev-
eral seaports and airports. Scenario actors are of var-
ious types: ground units, armored units, aerial or sea
units, civilian and hostile units (see Figure 4).

The scenario takes place in a hostile environment
with limited information visibility and sharing. Due to
this, the environment provides non-deterministic be-
havior from the point of view of a single unit. There
are heterogeneous independent self-interested units in

1http://www.aiai.ed.ac.uk/oplan/pacifica
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Fig. 4. Scenario island screenshot

the scenario that commit to the shared/joint goals. To
fulfill the desired strategic mission (designated in form
of high-level strategic tasks by the human operators) in
such an environment, the units provide complex coop-
erative actions on several levels of planning and con-
trol.

The aim is to fulfill strategic goals defined by mid-
and long-term planners on the strategic level (fulfilling
the mission) for each type of unit. The generation of
strategic plans is provided by a set of commanders that
are responsible for each type of field units - ground,
aerial, sea and armored. The number and specialization
of commanders reflects the desired scenario setting.
The field units are dedicated to a particular comman-
der and receive strategic goals from it. The hierarchical
structure of the tactical planners then creates tactical
plans for each field unit (tactical planners are part of
each unit’s tactical layer). Tactical plans are confronted
with the developed multi-agent simulation and adapted
to the actual feedback provided by the simulation in
real-time. Execution of the plan of the individual unit
is simulated and integrated with the environment feed-
back from the simulation engine.

There are ground units which serve as Transporters
(can provide faster transportation of other unit(s), ma-
terial or civilians), Construction units (can repair dam-
ages or assemble/disassemble stationary units) and
Medical units (provide medical care for other units or
some rescue operations). Armored units are used for
protection of other units or securing an area or a con-
voy. Aerial units – UAVs with an extended visibility
range and Sea units for transportation over the sea.

The problem of automated planning in such a world
can be described by several more or less separable

problems which need to be solved in order to be able to
plan in a dynamic non-deterministic environment. The
overview of the problems follows:

– Distributed planning – Planning in such an en-
vironment is realizable only as a distributed pro-
cess. This affirmation is supported by several
facts: the objects of planning are naturally dis-
tributed in the world, the robustness of the plan-
ning process is a key issue, and finally, each en-
tity has to hold its own private knowledge of its
capabilities in the form of a planning domain.

– Distributed resource allocation – An integral
part of the planning process is resource allocation
both of entities acting in the world and of static
resources. The allocation process must be appro-
priately integrated with the planning system and
similarly, the planning process has to be robust
with respect to the aforementioned constraints of
the environment.

– Distributed plan execution and synchroniza-
tion – The distributed plan consisting of sev-
eral personal plans has to be executed by the en-
tities. The plan has to be robust enough to be
able to minimize its volatility and does not need
to be completely replanned in case of any non-
determined effect.

Planning and control of activities of individual units
and actors in the scenario is loosely structured into
three levels of detail. We recognize several layers of
coordination and control:

– Strategic layer: The actors use aggregated meta-
information from the tactical layer. This layer
provides an overall strategic plan for middle- and
long-term horizon. High-level planning and peer-
to-peer coordination among the actors is possible
(while non-transparent to the tactical level).

– Tactical layer: On this layer, the units use ag-
gregated information from the individual layer,
the information obtained through communication
with each other and the information obtained
from the strategic layer. The units and actors use
classical planning and cooperation methods and
can create new goals or adapt the goals received
from the strategic level.

– Individual layer: On this layer, the units should
perform reactive behavior based on the obtained
information and current goals.

The suggested coordination is hierarchical with re-
spect to the type of unit, area of operation and vis-
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ibility. Three-layer architecture enables to separate
middle- and long-term strategic planners from the real-
time planning and control on the tactical and individ-
ual level. The strategic planner can utilize advanced
planning methods using aggregated meta-data from the
whole system. On the other hand, the tactical planner
has to provide real-time response and it uses limited
information provided by an individual layer of the re-
spective unit. On the tactical level, local cooperation
and information sharing of the field units is provided.
The local cooperation include algorithms e.g., forma-
tion planning and holding, rendezvous point designa-
tion, target selection and others.

Each agents is using all or a subset of all three lay-
ers. Each layer produces particular commitments and
these commitments define the plan. The commitments
on the individual layer describe which actions should
be executed (simply by defining that ϕ = a, where a
is an action). Moreover, the commitments on all layers
describe possible success and decommitment rules (in-
cluding delegation policies and relaxation intervals).
As each layer works with its own level of abstrac-
tions, the commitments for each layer can vary. Addi-
tionally, the commitments are inter-linked always only
between two neighbouring layers. The joint commit-
ments describe mutual commitments of two or more
agents (typically used for plan synchronization).

The strategic layer uses the HTN I-X planner [15]
and a distributed resource-allocation algorithm. The
planner uses an abstract sub-domain derived from the
scenario domain and produces an abstract plan. This
plan is instantiated using negotiation about the re-
sources (Figure 5). The negotiation is based on well-
known contract-net protocol. The initiator agent calls
for proposals and other agents reply with their offers
valuated by length of the sub-plans. The initiator picks
the most suitable (shortest) sub-plan and informs the
offering agent. This agent, based on the acceptance,
commits itself to the sub-plan goal(s) and thus helps
the initiator agent to fulfill its plan. The process is re-
cursive and produces dynamically agent hierarchy nec-
essary for the fulfillment of the top-most goal.

Fig. 5. Instantiated strategic plan - the medic unit M was requested
by the commander agent to fulfill a task: deal with the injured in city
A, and it negotiated the transport with the transport unit T .

The instantiated plan is converted into commitments
(Figure 6). The conversion process creates a commit-
ment according to the particular plan action (ϕ = a)
and according to forward causality links of the plan.

The commitments of the tactical layer are based on
strategic commitments. The layer uses negotiation to
form the most suitable mutual commitments. The con-
straints for negotiation respect the particular needs of
the agents. The tactical commitments also define de-
commitments to the strategic layer and they can ad-
ditionally refine strategic commitments too. They are
much more refined than the strategic commitment in
the sense of spatio-temporal constraints, and particular
world states. The tactical commitments are most en-
riched by the λ∗ commitments. Thus, the most impor-
tant part of the decommitting / replanning process is
done by this layer.

An example of the tactical negotiation can be: A
transport unit T is planning the tactical commitment
moveto(l1, l2), it can find out it needs support from
another unit. In this case, a negotiation process must
find an appropriate support unit Sp that proposes the
most complying commitment (e.g. in terms of tempo-
ral constraints). If such a unit is found the JC is estab-
lished, planned, and connected to other commitments
in the knowledge base.

And finally, the individual layer plans commitments
for later execution. These commitments copy the tac-
tical commitments, but some of these can be omit-
ted (e.g. atPosition in the Figure 6). Each individual
commitment contains a decommitment request only to
its parent commitment (from the tactical layer).

During the execution of the plan the commitments
are processed. The commitment can evolve (Section
2.2) according to the plan or due to unexpected en-
vironment interactions. The stability and performance
of the various types of decommitment rules and their
combinations has been studied in [17]. The experimen-
tal evaluation proved significant improvement of plan
execution performance and stability when using partic-
ular combinations of decommitment rules. The success
rate of commitment execution and available resources
utilization significantly increases with the size of the
decommitment rule set. A detailed analysis of the re-
laxation decommitment rule and its utilization for the
presented scenario can be found in [16].

4. Related Work

Formalization of commitments has been extensively
studied in the past using various formalisms, most of
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Fig. 6. Commitment bindings of multi-layer architecture for two units – the medic unit M is committed to fulfill a task: deal with the injured
in city A, and the transport unit T is committed to transport the medic unit M to city A. The figure shows the directions of the potential
decommitment propagation among the layers of actors.

all building on and extending the BDI framework when
describing obligations the agents adopt. Fasli [6] dis-
tinguishes two classes of obligations - general and rel-
ativized - and adoption of a social commitment by an
agent is described as an adoption of a role. Thus, the
agent promises its coherence with a (behavior) norm
defined by the commitment. The framework extends
BDI into a many-sorted first order modal logics to
add concepts of obligations, roles and social commit-
ments while it also uses branching temporal compo-
nents from Computational Tree Logics (CTL) [4]. Be-
sides strategies for adoption of social commitments
by the agents the framework also defines strategies
regarding conditions for a successful de-commitment
from the agent’s obligations.

Another formal representation of commitments con-
sidering temporal account has been introduced in [11].
CTL [4] has been extended to capture features not be-
ing usually considered in common approaches (but rel-
evant for realistic environments), namely time inter-
vals considered in commitments satisfaction, “main-
tenance” manner of commitments next to “achieve”
manner of commitments and vague specification of
time. Commitments have been formally defined using
Backus-Naur Form as an n-tuple (Commit id, x, y, p)
where the commitment identified uniquely by its
id and the interpretation is that x commits to y
to make the condition p become true. The formal

framework uses event calculus and defines oper-
ations create(x,C), cancel(x,C), release(y, C),
assign(y, z, C), delegate(x, z, C) and commitment
discharge(x,C) above the commitments as well as
new predicates satisfied(C) and breached(C) which
evaluate the status of the commitments. The past
is considered linear while the future is branching.
When created, the commitment is neither satisfied nor
breached (the satisfaction of commitments is applied
three-value logics). A commitment once satisfied or
breached remains satisfied or breached once and for
ever since the time.

Evolution of commitments in teamwork has been
studied by Dunin-Keplicz [2]. Teamwork is explicitely
represented using BDI framework by introducing a
concept of a collective intention resulting in a plan-
based collective commitment established within a
group of agents adopting it. The teamwork consists
of four consecutive stages - (i) potential recogni-
tion, (ii) team formation, (iii) plan formation and
(iv) team action. The collective commitment based
on a social plan (the collective intention) splits into
sub-actions expressed as pairwise social commit-
ments between agents. Establishment of the collec-
tive commitment consists in a consecutive execution
of social actions defined at the particular stages: (i)
potential-recognition → (ii) team-for-
mation → (iii) plan-generation executed as
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task-division → means-end-analysis →
action-allocation and (iv) team-action
implemented as execution of respective actions allo-
cated to each agent in the former stage. Naturally,
the above-mentioned social actions are hierarchically
bound from the first to the last stage. Dynamically
evolving environment may cause unfeasibility of the
allocated actions during the team action which results
in a need for evolution of the collective commitment
accordingly. In such a case, the maintenance of the col-
lective commitment is achieved by invoking reconfig-
uration at the action-allocation level progress-
ing upwards to higher levels of the hierarchy of social
actions, possibly up to the potential-recogni-
tion. Finally, the collective commitment is adapted
(another potential for the teamwork recognized) or
dropped. The hierarchical manner of the reconfigura-
tion allows for minimization of changes necessary to
perform in order to adapt the collective commitment.
The communication necessary for the reconfiguration
is explicitly involved and formalized in the framework.
Adaptation of the commitment is motivated by persis-
tency of the joint intention which differs given a cho-
sen intention strategy (blind, single-minded and open-
minded). For the sake of not making the presented
multi-modal logical framework even more complex
and less tractable, temporal aspects of the cooperation
are assumed to be expressed in a procedural way rather
than by employing temporal and dynamic elements
among the modalities used.

5. Conclusion

This article dealt with the problem of distributed
planning used for replanning and plan repair processes.
The classical work on commitments has been extended
towards commitment recurrence for flexible and more
expressive representation of replanning alternatives.
Similarly, the termination condition has been defined
as a specific type of commitment. The various types
of commitments were classified according to the im-
pact they may have on the other collaborating actors.
This classification enables the agents to make the right
decisions during the decommitment process.

Based on the social commitment representation
we have defined and formalized basic decommitment
rules for open-minded commitments representation.
The evaluation of the presented approach has been
made on an experimental realistic scenario and de-
ployed in a multi-agent system for commitment-based

distributed planning. The combinations of particular
rules provide a complex decommitment behavior and
significantly improve plan execution performance and
stability. The success rate of commitment execution
and available resources utilization significantly in-
creases with the size of the decommitment rule set.
Different rule combinations have to be chosen for dif-
ferent application scenarios.
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ABSTRACT
The process of planning in complex, multi-actor environ-
ment depends strongly on the ability of the individual actors
to perform intelligent decommitment upon specific changes
in the environment. Reasoning about decommitment alter-
natives during the planning process contributes to flexibil-
ity and robustness of the resulting plan. In this article we
formally introduce and discuss three specific decommitment
rules: (i) relaxation, (ii) delegation and (iii) full decommit-
ment. We argue that appropriate selection, setting and pref-
erence ordering of the decommitment rules contributes to
robustness (measured as a number of failures) of the over-
all plans. The presented claims are supported by empirical
experiments.

Categories and Subject Descriptors
I.2.11 [Computing Methodologies]: Artificial Intelligence—
Intelligent agents; I.2.8 [Computing Methodologies]: Ar-
tificial Intelligence—Plan execution, formation, and genera-
tion

General Terms
Measurement, Performance, Reliability, Experimentation, Ver-
ification

Keywords
social commitment, decommitment rule, commitments based
planning, non-deterministic environment

1. INTRODUCTION
The process of planning in complex, multi-actor environ-

ment depends strongly on the ability of the individual actors
to perform intelligent decommitment upon specific changes
in the environment. Reasoning about decommitment alter-
natives during the planning process contributes to flexibility
and robustness of the resulting plan.
Multi-agent research community has provided a viable for-

malism for representing agents commitment towards their
individual as well as joint intentions. Wooldridge and Jen-
nings have formalized such mental attitude of the agents by

Cite as: Decommitting in Multi-agent Execution in Non-deterministic
Environment: Experimental Approach, J. Vokřínek, et al., Proc. of 8th
Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi (eds.), May,
10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
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means of special knowledge structures, referred to as social
commitments [13].
Social commitment is a knowledge structure describing

agent’s obligation to achieve or maintain a specific goal, un-
der specific conditions. The commitment does not capture
description how the committed goal can be achieved. An
important knowledge component in the commitment – de-
commitment rule, sometimes referred to as a convention [12]
– provides information about how and under which circum-
stances the commitment can be dropped. Reasoning activ-
ities of a rational agent such as individual planning for a
goal achievement, plan execution and monitoring as well as
replanning, plan reparation or plan merging and plan coor-
dination are supported by the information encoded in the
social commitments.
In the context of classical planning, agents deliberate about

primitive (or compound) actions, components of the plan, in
order to form appropriate ordering (or decomposition) rep-
resenting a result of a specific planning problem. While a
typical action in a plan contains only a set of preconditions
and resulting postconditions, we suggest extending the ac-
tion representation with the commitment-related informa-
tion. A planning agent will not only reason about precondi-
tions and effects of an action but also about how much and
in which way it can rely on someone implementing the given
action. This capability is critical for agents to be able to co-
ordinate their actions and to perform multi-agent planning
in the sense of forming plans (i) by interaction among mul-
tiple autonomous agents and (ii) to be executed by multiple
autonomous agents.
The product of planning with commitments is a set of

partially ordered terminal actions, allocated to individual
actors who agreed to implement the actions under certain
circumstances, clustered into two categories :

• commitment condition that may be (i) a specific situ-
ation in the environment (such as completion of a par-
ticular precondition) or (ii) a time interval in which
the action has to be implemented no matter what the
status of the environment is or (iii) a combination of
both.

• decommitment conditions specifying under which con-
dition the actor is allowed to decommit from the com-
mitment once the task is finished (e.g. notification) or
once the task cannot be completed (e.g. a failure)

Planning with commitments results in a plan where agents
commit themselves to carry out actions leading towards achieve-
ment of e.g. a joint persistent goal [5]. Planning strate-
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gies used for establishing such a plan are usually based on
the delayed-commitment principle [1]. Other approach uses
eager-commitment strategy as showed in [11].

In this paper we formally introduce and discuss three spe-
cific decommitment rules: (i) relaxation, (ii) delegation and
(iii) full decommitment. We argue that appropriate selec-
tion, setting and preference ordering of the decommitment
rules contributes to robustness (measured as a number of
failures) of the overall plans. The particular focus of this
contribution is the preference ordering of the decommitment
rules in various non-deterministic environments. Besides
formal specification of the decommitment rules, the key re-
search contribution lies in experimental analysis of the use
of the various decommitment strategies and their mutual
dependence.

The article is structured as follows. Section 2 gives a brief
overview of works most relevant to our approach. In Sec-
tion 3 we adapt the formal description of commitment by
Wooldridge and introduce a particular commitment conven-
tion to improve the flexibility of the commitments. The
verification and experimental evaluation is presented in Sec-
tion 4. Finally, the last section concludes the paper.

2. RELATED WORK
Formalization of commitments has been extensively stud-

ied in the past using various formalisms, most of all build-
ing on and extending the BDI framework [9] when describing
obligations the agents adopt. Fasli [4] uses a model based on
branching temporal components from Computational Tree
Logics (CTL) [3], which is much more expressive than our
model based on temporal intervals, however it is too complex
for experimental deployment. Fasli also defines strategies re-
garding conditions for a successful decommitment from the
agent’s obligations, which in several aspects correlate with
Wooldridge’s convention [12] and thereby with our decom-
mitment rule set.

Another formal representation of commitments consid-
ering temporal account has been introduced in [7]. CTL
has been extended to capture features usually not consid-
ered in common approaches (but relevant for realistic en-
vironments), namely time intervals considered in commit-
ments satisfaction, maintenance type of commitments next
to achieve type of commitments and vague specification of
time. However, most of these aspects can be also captured
using BDI and Wooldridge’s social commitment framework
showed in [12] in combination with an appropriate temporal
model.

The uncertainty in agent’s commitments has been stud-
ied in [14]. The authors have extend the commitment with
“... uncertainty by explicitly describing the possibility of fu-
ture modification/revocation of the commitment ...”. The
paper concentrated on the uncertainty in the quality of the
commitment fulfilment (quality of service) rather than on
decommitting conditions.

The last but not least is an extensive related research
field of planning in dynamic and/or uncertain environment.
There is a wide range of approaches, for example proba-
bilistic planning – MAXPLAN [6], contingency planning –
system CIRCA [8], planning under uncertainty [2]. These
approaches focus on creating plan alternatives to avoid un-
certainty, in contrary to the commitment based planning
where the emphasis is put on individual commitments and
its decommitment strategies.

3. DECOMMITMENT RULES
As stated in the Introduction, the targeted topic of the

research proposed in this paper is the impact of the decom-
mitment rules on the plan execution. In this section, we
provide formalization for the three most commonly used de-
commitment rules.

We require the agents that perform intelligent planning
and replanning by means of social commitments to be able
to perform at least basic reasoning about the decommit-
ment rules attached to the particular commitments. This is
needed at the time of replanning, when an agent needs to de-
cide which decommitment rule (i.e. a new commitment) to
adopt, provided that conditions for more than one of them
are satisfied. Similarly, when negotiating about who will ac-
cept which commitment, the agents shall be able to analyze
not only properties of the goal and costs associated with the
goal completion process but also the various decommitment
rules when considering likelihood of the particular failure to
happen. Ideally, the agent shall be able to estimate costs of
each decommitment rule. In the scope of this paper we are
not addressing the agents’ decision making, but we focuss
on the performance and usability of several decommitment
strategies settings during execution of the commitments in
dynamic environment.

Michael Wooldridge in [12] defines the commitments for-
mally as follows:

(Commit A ψ ϕ λ),
λ = {(ρ1, γ1), (ρ2, γ2), . . . , (ρk, γk)}, (1)

where A denotes a committing actor, ψ is an activation
condition, ϕ is a commitment goal, and λ is a convention.
The convention is a set of decommitment rule tuples (ρ, γ)
where ρ is a decommitment condition and γ is an inevitable
outcome. The convention describes all possible ways how the
commitment can be dropped. Generally speaking, the actor
A has to transform the world state in such a way that the ϕ
goal becomes true if ψ holds and any γ has not been made
true yet. The actor is allowed to drop the commitment if
and only if ∃i : ρi which is true. A decommitment is fulfilled
provided that γi is made true. A formal definition in modal
logic (working with the models of mental attitudes like Be-
lieves, Desires, Intentions, [9], and temporal logic where the
operator AG denotes inevitability and operator � denotes
the temporal until) follows as defined in [12]:

(Commit A ψ ϕ λ) ≡
((Bel A ψ) ⇒ AG((Int A ϕ)

∧(((Bel A ρ1) ⇒ AG((Int A γ1))) � γ1)
. . .
∧(((Bel A ρk) ⇒ AG((Int A γk))) � γk)

) �
W

i

γi).

(2)

This definition is used in a declarative way. Provided that
whatever the agent does during a specific behavior run com-
plies with the above defined commitment, the expression 2
is valid throughout the whole duration of the run.

The structure of our commitments is based on this defini-
tion and the decommitment rule set is in detail discussed in
the next section.

We have recognized three main types of decommitment
usually used in commitments: (i) Full Decommitment for
dropping the commitment, (ii) Delegation of the commit-
ment to another agent, and (iii) Relaxation of the time
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frame of the commitment. The decommitment condition for
each decommitment strategy is defined to enable flexibility
of the commitment under various circumstances. During the
planning process, the preference relation over the decommit-
ments is defined as a part of the decommitment rule set. The
decommitment rules are unordered according to the defini-
tion (1) and thus we must slightly change the definition of
the commitment:

(Commit A ψ ϕ λ),
λ =

`
(ρ1, γ1), (ρ2, γ2), . . . , (ρk, γk)

´
,

(3)

where the ordering is fixed and the rules are processed in a
specific order. The processing of the rule means that drop-
ping a part of the commitment definition in (2)

W

i

γi (4)

simplifies to

γ∗, (5)

where γ∗ is the inevitable outcome of an active decommit-
ment rule. There is only one active rule for each commitment
and the rules are switching from the first rule to the last one.
The switch is performed only if γ∗ is not realizable and ρ
of the next active rule holds. The switching process uses
defined fixed ordering of the rules to determine the correct
succeeding rule.
According to our understanding, each decommitment rule

set (corresponding to Wooldridge’s commitment convention)
must contain two basic rules, which ensure the racionality of
the agent’s decision making process. These rules are based
on the definition of the open-minded commitment defined in
[12]:

(Commit A ϕ) ≡
AG((Int A ϕ) � ((Bel A ϕ) ∨ ¬(Bel A EFϕ))),

(6)

where the operator EF denotes future possibility. Thus in
each and every commitment the initial rule should be the
success rule

(false, (Bel A ϕ)) (7)

and the decommitment rule set should be always closed with
a fail-safe rule turning a violated commitment eventually off

(false,¬(Bel A EFϕ)), (8)

which is used provided that no other rule can be used and
the commitment became unrealizable.
The decommitment condition ρ in rules (7) and (8) cannot

become true (as ρ = false), which means the agent will
never intend to the decommitment rule outcome γ according
to the definition (2)

((Bel A ρ) ⇒ AG((Int A γ))) � γ
(false ⇒ AG((Int A γ))) � γ,

(9)

nevertheless the rule can drop-out the commitment using
the drop-out part

W

i

γi or γ
∗

(10)

respectively. This principle can be used for any drop-out
rule with no need for explicit intention.

Definition 3.1. Each commitment can be decommitted
if the commitment goal ϕ is achieved (the commitment suc-
ceeded) or if the commitment goal ϕ can not be achieved any
more (the commitment is violated).

The formal definition of the decommitment rule set in each
commitment follows

(Commit A ψ ϕ λ),
λ =

`
(false, (Bel A ϕ)),
. . . investigated decommitment rules . . . ,
(false,¬(Bel A EFϕ))

´
,

(11)

where the three investigated rules are injected between two
basic rules and thereby the last violation rule can be avoided.
The rate of avoidance is one of the experimental metrics and
is discussed in Section 4.
Three proposed decommitment rules can be defined using

the adopted formalism as follows:

Definition 3.2. Full decommitment decommits the orig-
inal commitment if and only if the commitment goal ϕ is
unrealizable.

Definition 3.3. Delegation decommits the original com-
mitment if and only if the commitment goal ϕ is unrealizable
and the new commitment on the other agent’s side is formed.

Definition 3.4. Relaxation decommits the original com-
mitment if and only if the commitment goal ϕ is unrealiz-
able, the negotiated relaxation conditions hold and the re-
laxed commitment is formed.

In the three following subsections, we describe the rules in
more details and we formalize them using a temporal model,
based on the duration time interval of the commitment being
the only constraint of the commitment goal ϕ. This model
is suitable for commitment-based planning, since the plan is
a (partially) ordered list of temporally successive commit-
ments.

3.1 Full Decommitment
The basic decommitment strategy is dropping the com-

mitment. Under defined circumstances the agent is com-
pletely released from the commitment.
Let the commitment time interval Tϕ = 〈ts, te〉, where ts

is the starting time and te is the ending time of the commit-
ment time interval. The commitment duration is defined as
td = te − ts Let the commitment goal condition ϕ contain
only defined temporal properties, then the decommitment
rules can be described as:

(Commit A ψ ϕ λ),
(tests > ts ⇒ update(ts, t

est
s ), false) ∈ λ,

(teste > te, t
est
e > te) ∈ λ,

te ∈ ϕ,

(12)

where tests and teste are estimations of the real start and end
of the activity. The first part of the rule describes continu-
ous adjustment of the commitment’s start time in the case
the agent is forced to postpone its execution (which may
not affect the end time condition and can not affect other
commitments). The second part reflects Definition 3.2.
The ts, te are the parameters of the commitment nego-

tiated and fixed at the planning (contracting) time. The
estimates tests and teste are continuously updated and can
vary over time.

3.2 Delegation
By using this type of the decommitment rule the agent

shall be able to find some other agent who will be able to
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complete its commitment on the original agent’s behalf. It
is possible that such a commitment will contain unbound
variables representing the need to search for an agent suit-
able for delegation. The basic idea is to find an agent that
is able to undertake the commitment under circumstances
when the decommitment condition (which is true in case of
the original agent) became false, so the new agent is able
to fulfill the commitment. The delegated commitment can
contain a new set of decommitment rules.

Formally we can use the same variables as in full decom-
mitment, but we are using

(Commit A ψ ϕ λ),
(tests > ts ⇒ update(ts, t

est
s ), false) ∈ λ,

(teste > te, (Commit B ψ ϕ λ)) ∈ λ,
te, B ∈ ϕ,

(13)

where B is the other agent undertaking the commitment.

3.3 Relaxation
Relaxation is a special decommitment, where the original

commitment is replaced with a new commitment with re-
laxed condition and/or goal. In the scope of this text we are
focusing on the relaxation of the commitment time interval
for the sake of simplicity. The commitment time interval is
usually captured by the commitment subject ϕ and speci-
fies the time frame booked for the commitment execution.
The temporal uncertainty can be a part of the commitment
subject definition (and thus the whole commitment has to
be renegotiated in case of any change) or, more preferable,
it can be included in the commitment as an instance of a
decommitment rule.

According to Definition 3.4, the decommitment rule can
be then described as:

(Commit A ψ ϕ λ),
(tests > ts ⇒ update(ts, t

est
s ), false) ∈ λ,

((tests < ts) ∧ (tests ∈ T rlx
s ),

(Commit A ψ ϕ λ) ∧ update(ts, tests ) ∈ λ,
((teste > te) ∧ (teste ∈ T rlx

e ),
(Commit A ψ ϕ λ) ∧ update(te, teste ) ∈ λ,

ts, te ∈ ϕ,

(14)

where T rlx
s and T rlx

e are the agreed relaxation intervals (ne-
gotiated relaxation conditions) for the start and end time.
The T rlx

s and T rlx
e is an extended set of parameters negoti-

ated and fixed at the planning time and the update(ts, t
est
s

part changes the temporal parameters of the newly forming
commitment to relaxed values.

3.4 Impact of Decommitment Rules
The impact of the particular rules is discussed in Sec-

tion 4.2.1. We assume the complex combination of the de-
commitment rules provides non-trivial behavior and should
improve the performance of the commitments’ execution in
non-deterministic environments under stress conditions (the
system is overloaded). Let us postulate the following hy-
pothesis:

Hypothesis 3.1. A proper combination of the three de-
fined decommitment rules, i.e. relaxation stated in Defini-
tion 3.4, delegation stated in Definition 3.3, and full decom-
mitment stated in Definition 3.2 improves the commitment
execution stability in the non-deterministic environment and
preserves the utilization of resources and should increase the
commitment’s execution success rate.

Figure 1: Scenario island screenshot

Each of the presented rules provides different impact on
the agent’s current state. For example, relaxation helps to
maintain the commitment execution, delegation effectively
unblocks the agent’s resources and full decommitment re-
leases the agent’s resources by dropping the commitment.
We expect a combination of the decommitment rules to
emerge in a self-adaptation pattern that should lead to some
sort of a real-time commitment execution optimization.

The decommitment rules introduced in this chapter have
been implemented in the commitment-based planning sys-
tem and experimentally evaluated. The next section de-
scribes the experimental scenario and discusses the influence
of the rules on stability of the commitments execution and
decommitment flexibility.

4. EXPERIMENTS
The decommitment rules temporally formalized in Sec-

tion 3 have been deployed in a realistic simulation scenario
based on an island inspired by the Pacifica Suite of Scenar-
ios1– Fig. 1. The scenario simulates limited information
visibility and information sharing. Due to this, the envi-
ronment provides non-deterministic behavior from a single
unit’s point of view. There are heterogenous independent
self-interested units in the scenario that commit to the goals.
During the execution of a plan the commitments are pro-
cessed. The commitment can evolve according to the plan
or due to unexpected environment interactions. Monitoring
of the commitments is triggered by a change of the world,
e.g. a tick of the world timer, movement of a unit, a change
of a world entity state, etc. The process evaluates all com-
mitments in the actor’s knowledge base. The value of the
commitment defines the commitment state and can start the
decommitting process.

For the experimental evaluation purposes we have de-
signed a multi-actor transport scenario, where individual
agents provide non-accurate estimates of the transportation
time (the execution time may differ because of unexpected
events such as unit breakdowns, path changes, etc.). We
combine decommitment strategies introduced in Section 3.
The influence of the selection of strategies and ordering is
analyzed by a series of experiments.

In the experimental scenario, there is a set of resource
agents able to provide a unified resource to the requestor
agent. The requestor agent introduces a set of tasks and
allocates it to the resource agents. The allocation is done by
the planning process that takes tasks one by one and finds
the best resource agent for its execution. The planning pro-

1http://www.aiai.ed.ac.uk/oplan/pacifica
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cess is based on the well-known contract-net-protocol [10]
and provides an almost even distribution of tasks across the
resource agents. During planning, the appropriate decom-
mitment rules are set according to the experiment settings
(see Section 4.2).
The experiments have been evaluated by the simulation,

where the results have been aggregated from 10 runs for
each experiment setting. For each run, random values of
configuration variables have been generated. Each agent re-
computes the parameters for the next ongoing commitment
according to the current state and executes decommitment
rules when necessary.
The decommitment rules execution differs for each com-

mitment according to the experiment setting. The decom-
mitment rules have been set according to the definitions in
Section 3. A detailed description of the implementation fol-
lows:

Basic decommitment rules – according to Equation 11,
we can use the temporal model formerly proposed; the
goal ϕ is achieved if the commitment execution is fin-
ished not later than te and the commitment is vio-
lated if the execution is finished later than te (the goal
ϕ cannot be achieved and the resource time frame is
wasted).

Full decommitment – according to Equation 12; the teste

is computed during the simulation. If this rule applies
the commitment is removed from the plan.

Relaxation – according to Equation 14; this rule can be
applied before the commitment execution (relaxation
of the start of the commitment ts within T relax

s ) or
during the commitment execution (relaxation of the
end of the commitment te within T relax

e ).

Delegation – according to Equation 13; the teste is com-
puted during the simulation. If this rule applies the
agent tries to find another agent which is able to un-
dertake the commitment (the original commitment is
delegated with no decommitment rules except the ba-
sic ones). The delegation is based on negotiation be-
tween agents, where each agent bids for the commit-
ment undertaking. If there is no winning bidder the
new commitment is not formed and the decommitment
condition ρ remains true.

The delegation algorithm is based on contract-net-protocol.
Each agent prepares the bid for the commitment delega-
tion based on it’s current state and commitment parameters.
The bid computation is the following:

1. Let t be the current simulation time and Dts,
Dte,

Dtd parameters of the commitment D that has to be
delegated.

2. If there is an active current commitment C in time t,
compute

Dteste = Cteste + Dtd,

else set

Dteste = t+ Dtd.

3. If there is a next commitment N in the plan, compute

tlimit =
N tests ,

else set

tlimit = positive infinity .

4. If the next commitment N contains a relaxation rule,
recompute the estimate as

tlimit = max(T rlx
s ).

5. Compute the bidding value

bid = tlimit − Dteste .

6. If bid < 0 reject delegation, else send the bidding value
bid.

The negative bidding value means that commitment D
cannot be inserted to the agent’s plan without breaking con-
sequent commitments. Only the potential relaxation of the
first consequent commitment is taken into account when es-
timating impact of delegation on the agent’s plan. This
approach doesn’t affect the risk of subsequent commitments
violation and has linear complexity, but it reduces the possi-
bility of the delegation with comparison to the more complex
methods operating with the subsequent commitments’ rule
sets.

4.1 Scenario Setup
The experiments show the influence of the selected de-

commitment rules and their order on flexibility, robustness
and execution stability in the non-deterministic stressed en-
vironment.
In the experiments, the environment dynamics is simu-

lated by non-deterministic prolonging of the activities. This
dynamics is not taken into account by agents during the
planning process. The prolonging events are generated for
each agent individually using uniform distribution with mean
value ē = 15000 time units and variance σ2 = 8333 time
units. Each experiment has been performed on a sequence
of 10 randomly generated runs. The duration of the pro-
longing event varies from 0 to 14000 to evaluate the system
behavior under different stress conditions and it is referred to
as repair time tr

2. The system is critically overloaded when
tr = 15000, where the repair time is equal to prolonging
events’ meantime and the execution of commitments fails.
To enable the possibility of delegation rule execution we

introduce vacant resources - the agents with no plans that
are joining the system during execution phase and they are
able to undertake delegated commitments. The number of
vacant agents is set to 5 which produces 10% of overall free
resources.
Each agent has a plan containing 100 commitments. The

duration of the commitment execution td (ideally with no
prolonging events) is randomly generated with uniform dis-
tribution from 5000 to 15000 time units. The start time of
the commitment ts is set to the earliest possible time of the
winning resource agent and the end time is set to

te = ts + td, (15)

which makes 100% load of the agents in ideal conditions
(with no prolonging events taken into account). The relax-
ation intervals are set to

T rlx
s = 〈0.7× ts, 1.3× ts〉, T rlx

e = 〈0.7× te, 1.3× te〉 (16)
2The individual agent load can be computed as (1+ tr

ē−tr
)×

100% and is varying from 0 to 1500%.
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that makes 30% relaxation intervals. The commitment exe-
cution is non-interruptible, so if the decommitment rule ap-
plies after the commitment execution is started the resource
is blocked for the whole td.
When we enable the prolonging events the overall sys-

tem performance is very stressed. In the experiments we
focus on the qualitative results of presented decommitment
strategies rather than fine tuning commitment parameters
according to current experimental settings. The evaluation
and discussion is presented in the next chapter.

4.2 Results
This chapter summarizes the results of experiments based

on the experimental setting described above. First, we will
discuss the influence of individual decommitment rules used
separately. Next, we will show the influence of the mixed
strategies. We measure the number of executed decommit-
ment rules and the number of successfully achieved commit-
ments. Due to the over-stressed system, the utilization of
agents is 100%, thus this parameter is not evaluated.

4.2.1 Single Rule
The first experiment provides the results of influence to

the commitment execution for single rules usage. The dele-
gation (D), relaxation (R) and full decommitment (Fd) rules
have been used separately. For comparison we also measured
the empty decommitment set noted as basic. For tr = 0
there are zero rule executions and 100 successful commit-
ments. The individual agent stress experiment results are
the following (see Figures 2 and 3):

Basic – the number of successful commitments varies from
0 to 2 in the whole range. No decommitment rules are
executed.

Full decommitment – the number of rule executions grows
with the increasing tr. The curve converges to the
maximum number of commitments for a critically over-
loaded system. The number of successful commitments
decreases with increasing tr from 18 and converges to
0 for the critically overloaded system.

Delegation – the number of rule executions corresponds to
possibility of delegation to the vacant agents. When
vacant agents are saturated the delegation uses agents
freed by the delegation of longer commitments. The
number of successful commitments goes from 19 to 10.
The variance between agents starts to be significant
when tr > 10000 so the robustness of this rule is de-
creasing.

Relaxation – the relaxation rule provides the best stabil-
ity. It is executed for every commitment and provides
no violations when the system is overloaded below the
relaxation interval limitations. When the relaxation
interval fails, the number of executed rules goes to 0
very fast and so does the number of successful com-
mitments.

The delegation rule execution is also affected by the num-
ber of vacant agents. The relaxation and full decommitment
rules are obviously not affected by the number of vacant
agents. The second experiment examines this dependency.
Figure 4 shows a typical curve shape for 5 vacant agents and

Figure 2: Number of decommitment rules execution
for different tr in single rule setting.

Figure 3: Number of succeeded commitments for
different tr in single rule setting.

Figure 4: Number of delegation rule execution for
different number of resource agents. The number of
vacant agents is 5 and tr = 2000
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Figure 5: Number of rules execution for varying tr
in combined rule R-D-Fd setting.

tr = 2000. This shape remains the same even for a differ-
ent setting of the parameters. The number of decommit-
ment rule executions is constant until the number of agents
reaches the critical value ncrit. After this point the number
of executions decreases because of saturation of the vacant
agents. At this stage, the commitments are delegated mainly
to other resource agents (the influence of vacant agents is
decreasing). The position of the ncrit point depends on the
experiment setting. With an increasing number of vacant
agents the ncrit shifts to the right and with an increasing tr
it shifts slightly to the left. It’s position corresponds to the
relative number of vacant agents in the system and the indi-
vidual agent’s stress (the vacant agents are saturated sooner
with increasing tr).

4.2.2 Combined Rules
This set of experiments inspects the influence of decom-

mitment rules combinations and their ordering. The main
focus is on the two ordering scenarios – R-D-Fd for

relaxation � delegation � fulldecommitment

and D-R-Fd for

delegation � relaxation � fulldecommitment

that provide the most significant results. The full decommit-
ment rule is ordered as the last one, because of its nature –
no decommitment rule can be applied after its application.
The combination of rules provides complex results. The

number of individual rules execution can be seen in Figures 5
and 6. The number of the full decommitment rule executions
is similar in both cases but with different impact on the
number of successful commitments. In the first part of the
chart, when the system is slightly overloaded (tr < 3000),
only the first rule applies. In the range of an overloaded
system (tr ∈ 〈3000, 12000〉) the second and the third rule
starts to apply. When the system is close to the critical
overload (tr > 12000) the number of rules executed starts
to provide increasing deviation across the experiments runs
and the robustness of the execution is reduced.
The number of successful commitments is compared for

R-D-Fd and D-R-Fd with D-Fd, R-Fd, R-D and D-R sets
and presented in Figure 7.

Figure 6: Number of rules execution for varying tr
in combined rule D-R-Fd setting.

4.3 Discussion
The experiments show that for an overloaded system there

is an increasing number of dropped commitments using full
decommitment rule. The full decommitment rule applies
when all preceding rules fail. This rule effectively release
resources originally booked for dropped commitments. This
causes a bigger chance for delegation of commitments and
space for relaxation. Delegation rule provides the ability
of real-time re-allocation of commitments according to cur-
rent agents performance. The experimental results shows
the ability of the system to adapt to the overload and thus
to increase the number of succeeded commitments with in-
creasing size of decommitment rule set and keep high uti-
lization of available resources (execution time of the com-
mitments compared to free time of resources excluding pro-
longing events).
As shown in Figure 7, the number of successful commit-

ments is reaching 50% for R-D-Fd (D-R-Fd) for tr = 7500
(7000) that corresponds to system load of 200% (187%). At
this point, the R-D-Fd (D-R-Fd) method is able to utilize
100% (94%) of the overall system resources available. For
tr = 7500, the single rule settings (including basic rule set
with no decommitment rules) reach maximum of 15% of suc-
ceeded commitments for delegation rule (Figure 3), which is
30% of utilization of available resources. Combined rule sets
composed from decommitment rule pairs reach maximum of
30% of succeeded commitments, which is 60% of utilization
of available resources.
This experimental observations prove Hypothesis 3.1 for

any combination of rules. The best performance provides
the biggest sets of decommitment rules. The R-D-Fd set
has the biggest success rate of commitments execution un-
til tr = 7000. For bigger tr the higher success rate can be
observed for D-R-Fd, but with lower stability (higher vari-
ation of experiment runs). The best success rate for near
critical load (tr > 10000) can be reached with D-R set, but
with minimal stability (most of the experiment runs provide
worse results then both R-D-Fd and D-R-Fd).
The sets containing Fd provides generally better results,

but may not be suitable in all application domains because
of commitment drop-out by this rule.
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Figure 7: Number of succeeded commitments for
varying tr for different rules settings.

5. CONCLUSION
Based on the well-known social commitment representa-

tion we have defined basic decommitment rules for open-
minded commitments representation. We have formalized
three decommitment strategies (relaxation, delegation, and
full decommitment) and showed how they affect application
of the commitments in non-deterministic stressed environ-
ment. The evaluation of the presented approach has been
made on an experimental realistic scenario and deployed in a
multi-agent system for commitment-based distributed plan-
ning.

The relaxation decommitment rule provides the best per-
formance in the limits of an estimated relaxation model.
The delegation rule produces a relatively high amount of
violations (even for small tr) because of the usage of the
non-optimal algorithm. Further improvement of this algo-
rithm (e.g. by involving future commitments’ decommit-
ment rule sets) may lead to reduction of the number of vi-
olations and all the results affected by delegation rules may
scale down. The full decommitment rule significantly re-
duces the number of violated commitments under high load,
but may not be suitable for all applications (because of com-
mitment drop-out).

The combinations of particular rules provides a complex
decommitment behavior and significantly improves commit-
ment execution performance and stability. The success rate
of commitment execution and available resources utilization
significantly increases with the size of the decommitment
rule set. Different rule combinations have to be chosen for
different application scenarios. We have identified, evaluated
and discussed the strong and weak points of the presented
combinations of decommitment rules.
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