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Chapter 1

Introduction and State of the Art

Identification of statistic causal relations among simultaneously recorded
signals is an important problem in the area of multidimensional time
series analysis with applications in many domains spreading from biology
to economics. It reveals connections among simultaneous time series and
identifies not only the strength of the relations but also the direction of the
information flow.
A whole new area opened for Granger causality in neurophysiology at the

end of 20th century. Human brain is the least explored body organ. Mapping
of activity in particular centres contributes not only to understanding
its functionality but also can lead to new procedures in the treatment
of various diseases. Functional magnetic resonance imaging (fMRI),
electroencephalography (EEG) and magnetoencephalography (MEG) (Toga
and Mazziotta, 2002) provide data which meets the conditions of causality
analysis very well and together with progress of computational technology, it
is possible to find causal relations in the large data of brain activity records,
e.g., (Liang et al., 2000, Brovelli et al., 2004, Uddin et al., 2009, Zhou et al.,
2009).

1.1 Multivariate Autoregressive Model Methods

One very important group of methods of causal relations analysis is based
on MVAR models. Once suitable model parameters are fitted to the data, the
methods try to estimate the causal connections from these model parameters.
The original Granger causality concept (Granger, 1969) is based only on

bivariate pairwise test classifying the strength of the causal connection by
one real non-negative number in one direction. The MVAR model is fitted
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1.1 Multivariate Autoregressive Model Methods
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Figure 1.1: Typical properties of causality analysis. (a) Bidirectional connection evaluated
via Granger causality, with source variable 1 and target variable 2, giving causal strength
F2←1. The analysis with source variable 2 and target variable 1 gives another result F1←2

as the causal relations are asymmetric, i.e., directional. (b) Sequential driving problem
should be detected as direct causal relations 3← 1 and 2← 3 however some methods also
detect false indirect 2← 1. (c) Different delay driving should be detected as direct causal
relations 2← 1 and 3← 1 however some methods also detect false indirect 3← 2 as 2
contains an information which can help to predict future values of 3 (the z-domain delay

represents the causal connection delay).

to the time series and if the variance of residual prediction error of the
target variable is lower in the case that the previous values of the source
variable are included into the model then we say the source variable causes
the target variable. For two variables, the pairwise Granger causality (GC)
gives asymmetric values for the respective directions. This is the essential
property of Granger causality, pointing the direction of information flow
between sources (see Fig. 1.1(a)).
If a data contains more time series, two problems may appear. The first

problem, a so called sequential driving, occurs when the causal connection
from the first to the second variable is completely mediated via the third
variable (see Fig. 1.1(b)). In this case, a pairwise test will detect also
indirect causal relation from the first to the second variable because it cannot
distinguish between direct and indirect connections. The second problem, a
different delay driving, occurs when the first variable drives both the second
and the third variable but the driving of the second variable has a smaller
delay than the driving of the third one (see Fig. 1.1(c)). Then, samples of
the second variable contain information which helps predict future samples
of the third variable. A pairwise method detects a causal relation from the
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Chapter 1: Introduction and State of the Art

second to the third variable and cannot distinguish that this is an indirect
one. Both problems with indirect connections were solved via multivariate
extension, referred to as Conditional Granger causality (CGC) (Ding et al.,
2006). It works with MVAR model that includes all time series in order to
find the direct connections and recognize and eliminate the indirect ones.
In recent years, MVAR models have been used on neurophysiological data

such as fMRI, MEG or EEG for analysing causal connections among brain
structures. The common task of these applications is to find which frequency
rhythms participate in the causal relation. A number of methods for the
frequency decomposition have been published.
The Directed Coherence (DC) (Saito and Harashima, 1981, Baccalá

et al., 1998) decomposes power spectral density of each MVAR variable to
causal components in frequency domain but is defined for a total transfer
between each pair of variables and hence, it cannot recognize the direct
path of connection. The Directed Transfer Function (DTF) (Kamiński
and Blinowska, 1991, Eichler, 2006) also does not distinguish the direct
connections from the indirect ones. The Partial Directed Coherence (PDC)
(Baccalá and Sameshima, 2001, Cadotte et al., 2009) solves this problem by
recognizing only the direct connections, but uses a normalization that causes
inability of comparison of the strength of the coupling among variables. The
lower value can mean a stronger relation exists (Baccalá et al., 2007). The
Direct Directed Transfer Function (dDTF) (Korzeniewska et al., 2003, Liang
et al., 2000, Cadotte et al., 2009, Astolfi et al., 2009, Benz et al., 2012)
claims to improve the DTF in order to distinguish the indirect connections.
A straightforward frequency transform of Granger causality (originally by
Geweke (Geweke, 1984)) leads to problems when utilizing three variables,
such as occasional occurance of negative values which have no meaning in
terms of causality. (Chen et al., 2006) applied a partition matrix technique
to overcome the problem. However, this method is limited to three variables
only. The Generalized Partial Directed Coherence (GPDC) (Baccalá et al.,
2007, Sato et al., 2009, Hoerzer et al., 2010) modifies the PDC using
additional normalization to make the values more comparable. Another
method, Renormalized PDC (Schelter et al., 2009) provides similar outcomes
as GPDC.
Since the time the Granger causality was formulated, several other

methods measuring causal relations have been proposed and are either based
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1.1 Multivariate Autoregressive Model Methods

on the similar idea or a completely different approach. The methods can
be split into two groups. The first group returns only a scalar value that
represents the total strength of the connection in the given direction. The
second group allows for an analysis in individual frequency bands. Some
methods work only with a pair of variables, other handle all variables
simultaneously in order to distinguish direct and indirect connections when
the information flow from the first variable to the second variable is
mediated by the third variable. Majority of the used measures are based
on autoregressive models but several others exploit different concepts. Some
studies utilize non-linear models in order to describe the nature more
accurately while others do not recommend this approach.
Majority of causality connection measures are based on MVAR models.

In recent years, they have been applied on neurophysiological data. The
methods use different approaches and their authors still work on their
improvements and modifications. It is hard to answer the question which
measure works best on a general data.
If one does not request the exact path analysis and only wants to find

related areas, the pairwise GC in time domain or DC in frequency domain
may be used. This can lead to simpler visualisation of general information
flow in the case of analysis of many variables (like the surface high resolution
EEG). A great advantage of DC is that it is defined in meaningful physical
terms as power spectra.
PSI, an estimator based on imaginary part of cross-spectra, is an

interesting novel approach in the causal connectivity analysis. It provides
more reliable results on mathematical models than Granger causality in
the case of unidirected connections. A small drawback is its bivariate
definition making it impossible to distinguish direct and indirect connections.
As mentioned above, this is not necessarily a big issue. However, much
more serious drawbak is its inability to recognize bidirectional connections
frequently present in the brain. One possible solution is the combination of
PSI with other estimators (proposed in the thesis) where PSI will serve as a
critical evaluator of the unidirectional results.
Further studies have to be done to demonstrate whether the non-linear

estimators deliver any extra information not contained in linear estimators,
in conjunction with preserving the estimation reliability.
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Chapter 1: Introduction and State of the Art

Although dDTF, PDC and GPDC methods claim to distinguish between
direct and indirect causal connections in the frequency domain, the definitions
and consequently interpretation of results vary.
(Blinowska, 2008) states: “Unfavorable feature of PDC is its weak

dependence on frequency (practically ‘flat’ spectrum), which does not permit

to distinguish well the role of different rhythms.” and “DTF detects not
only direct but also indirect flows. This feature may be important when
estimating transmissions from implanted or subdural electrodes. However

in these cases Direct Directed Transfer Function which combines DTF with
partial coherence, may be used.”

The dDTF is described by (Korzeniewska et al., 2003): “The maxima of
dDTF may better (in comparison to DTF) reflect a frequency of rhythm being

a carrier for information flow.”
The GPDC is explained by (Sato et al., 2009): “The square modulus of

GPDC value from jth time series by ith series can be understood intuitively as

the proportion of the power spectra of the jth time series, which is sent to the
ith series considering the effects of the other series.” In Sec. 3.0.1, it is shown
that this statement is not accurate and the newly proposed Autoregressive
Causal Relation (ACR) that uses the power spectral density is the same as
the square modulus of GPDC only in the case of two variables with one
unidirectional causal relation.
(Faes and Nollo, 2011) specifies: “Directed coherence (DC) measures

causality in meaningful physical terms as power contributions, but cannot
separate direct effects from indirect ones; GPDC determines the correct

interaction structure in terms of direct causal effects, but its absolute values
lack of straightforward interpretability.”

(Hu et al., 2011) mentions a possibility of misleading results of PDC,
GPDC, and dDTF methods.
(Wu et al., 2011) summarizes: “Comparing the DTF, PDC and their

derivatives, which of these measures is the most advantageous and accurate

is still an open question.”
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Chapter 2

Aims of the Doctoral Thesis

2.1 Thesis Outline

Although state-of-the-art methods are used for the real data analysis,
many studies point out difficulties with interpretation of their outputs.
Therefore, the primary focus of this thesis is in the model data analysis
with known causal relations and formulating a methodology that will allow
for a clear interpretation of causal relations in meaningful physical terms.
The thesis is organized as follows.

• The first chapter introduces the background and motivation for the
causal relation analysis using linear multivariate autoregressive models,
i.e., the scope of this thesis.

• The second chapter brings definitions of state-of-the-art methods
of causal relation analysis based mainly on linear multivariate
autoregressive model. It also briefly discusses the advantages and
problems of these approaches, laying the ground for the final section
of objectives and intended goals of this thesis.

• The third chapter deals with the original contribution of the thesis, a
novel method of spectral matrix decomposition, and proposes criteria
allowing for a better interpretation of causal relation analysis in
multivariate autoregressive time series.

• The fourth chapter demonstrates the ideas of the new method and
compares the results with the state-of-the-art methods on illustrative
synoptical model data examples.
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Chapter 2: Aims of the Doctoral Thesis

• The fifth chapter summarizes the results and discusses the advantages
and disadvantages of the methods with the focus on the future work.

2.2 Objectives of the Work

In conclusion, the DC method definition provides a causal relation analysis
in frequency domain and in meaningful physical terms but cannot distinguish
the direct connections from the indirect ones. Newer methods have tried to
overcome this problem but with the price of problematic interpretation of the
strength of the relations.
The primary focus of this work is in the analysis of linear multivariate

autoregressive (MVAR) model in frequency domain. The major contributions
of this thesis are

• Interpretation of MVAR model in the digital filtration aspect.

• Decomposition of power spectral matrix into separate causal components
in meaningful physical terms.

• Definition of novel causal measure respecting direct relations allowing a
comparison of strengths of relations in the signal power sense.

8



Chapter 3

Working Methods

This thesis is focused on methods based on multivariate autoregressive
(MVAR) models. It reviews state-of-the-art methods and suggests a new
measure Autoregressive Causal Relation (ACR) for evaluation of an absolute
and relative causal relation in frequency domain in the context of MVAR
models. ACR is based on the interpretation of MVAR model in the digital
filtration sense. ACR decomposes diagonal elements of a spectral matrix
into separate causal components that show the directions of influence among
multivariate time series of an autoregressive character. ACR measures
causality in meaningful physical terms as power contributions and can
separate direct effects from indirect ones.
Unlike the original Granger causality concept that evaluates the strength

of each causal relation with a single non-negative scalar value, the values
of ACR can either be positive or negative to model both an increase or a
decrease of the power spectral density caused by the causal relation in the
analyzed direction. Therefore, the ACR allows one not only to compare the
strength of the relations, but also to analyze their effects.
The experimental section of the thesis studies performance of state-of-the-

art methods and compares them with the novel ACR method in synoptic
artificial data experiments and discusses advantages of the new approach.
The MVAR model can be written as

p
∑

n=0

A (n)X (t− n) = E (t) (3.1)

where A (n) are model coefficients, X (t− n) are k real number stationary
variables with zero means (e.g., corresponding to particular simultaneous
channels), p is the model order and E (t) are vectors of residual errors.

9



Chapter 3: Working Methods

The frequency transform of the MVAR model can be expressed as

A (f)X (f) = E (f) . (3.2)

This can be rewritten as (Korzeniewska et al., 2003)

X (f) = A−1 (f)E (f) = H (f)E (f) (3.3)

where

H (f) =









H11 (f) · · · H1k (f)
... . . . ...

Hk1 (f) · · · Hkk (f)









= A(f)−1 (3.4)

is the transfer function of the MVAR system. A power spectral density
representation, commonly reffered to as the spectral matrix, is

S (f) = lim
N→∞

E

[

1

N
X (f)X∗ (f)

]

=

= lim
N→∞

E

[

1

N
H (f)E (f)H∗ (f)E∗ (f)

]

= (3.5)

= H (f)V H∗ (f)

where V is a diagonal matrix with variances σ2
1, σ

2
2, . . . , σ

2
k. V is diagonal

because the covariances between residual noises are zero.
By reason of clear separation of the causal relation, and thereby its

explicit detection, a model without causal connection is defined and then,
a causal relation is added. The influence of this modification is analyzed
and interpreted in the scope of linear time invariant (LTI) digital filters. The
concept is explained on three synoptical artificial data experiments. The first
idea of this approach was published in (Bořil and Sovka, 2010a) and it was
fully developed developed in (Bořil and Sovka, 2011).
The criteria of causal influence analysis based on preceeding discussion,

are as follows.
Absolute value of causal influence

Ŝ2←1 (f) = Ŝ22 (f)− Ŝ ′22 (f) (3.6)

where Ŝ ′22 (f) corresponds to the signals without the causal relation, Ŝ22 (f)

contains the causal relation.
Relative value of causal influence

Ŝ2←1REL (f) =
(

Ŝ22 (f)− Ŝ ′22 (f)
)

/Ŝ22 (f) . (3.7)
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Figure 3.1: MVAR variable X1 (z) filtering diagram.

.
The problem is that in general case, such an easy and intuitive separation

of the causal influence is not possible.
In this section, we define a new method of a causal relation analysis using

the MVAR model. In comparison with the DC method, it decomposes the
diagonal values of the spectral matrix as well. In addition, and instead of the
DC, it decomposes the PSD components in the direct causal path, allowing
one to track the true causal route of the information flow via mediating
variables.
This MVAR model can be transformed to z-domain

X1 (z) =
1

A11 (z)

(

ε1 (z)−
k
∑

j=2

A1j (z)Xj (z)

)

(3.8)

where 1
A11(z)

is an all-pole infinite impulse response (IIR) filter and −A1j (z)

are finite impulse response (FIR) filters. Corresponding diagram is depicted
in Fig. 3.1. The advantage of this approach is that it does not detect false
indirect connections.
With substitution

Timn (f) = Aim (f)A∗in (f)Smn (f) , (3.9)

and
Uim (f) = Aim (f)A∗ii (f)Smi (f) . (3.10)

ine

Fi←i (f) =
σ2
i

|Aii (f)|2
, (3.11)

11



Chapter 3: Working Methods

Fi←m,n (f) =
−2Re (Timn (f))

|Aii (f)|2
, (3.12)

and

Fi←m (f) =
−|Aim (f)|2Smm (f)− 2Re (Uim (f))

|Aii (f)|2
. (3.13)

The final form of PSD decomposition of Sii (f) to individual causal
components can be written in the form of

Sii (f) = Fi←i (f) +

k−1
∑

m=1
m 6=i

k
∑

n=m+1
n 6=i

Fi←m,n (f) +

k
∑

m=1
m 6=i

Fi←m (f). (3.14)

The absolute autoregressive causal relation (absolute ACR) corresponds
directly to the portion of the PSD of the target variable Xi (t) not caused
by other variables or the portion of the PSD caused by individual source
variables Xm (t)

ACRi←mABS (f) =

{

Fi←i (f) , for m = i

Fi←m (f) , for m 6= i
(3.15)

and the portion of the PSD caused by couples of source variables Xm (t)
and Xn (t), present only in the case that both variables have direct causal
relation with theXi (t) (nonzero Aim (f) and Ain (f)) and the couple of source
variables has nonzero CPSD Smn (f)

ACRi←m,nABS (f) = Fi←m,n (f) , m 6= i, n 6= i, n > m. (3.16)

The key property of this approach is, as it can be seen from (3.14), for every
target variable Xi (t), the summation of its absolute components equals to
the PSD of the variable

k
∑

m=1

ACRi←mABS (f) +
k−1
∑

m=1
m 6=i

k
∑

n=m+1
n 6=i

ACRi←m,nABS (f) = Sii (f) , ∀i = 1 . . . k.

(3.17)
This feature, along with the ability of modeling both increase and decrease
of the PSD caused by direct causal relations, are the main advantages of the
proposed measure as compared to state-of-the-art methods.

12



The relative autoregressive causal relation normalizes the absolute ACR
by the PSD of the target1 Sii (f) and hence, gives a quantity of the fraction
of the contribution to the target variable

ACRi←mREL (f) =

{

Fi←i(f)
Sii(f)

, for m = i
Fi←m(f)
Sii(f)

, for m 6= i
(3.18)

and

ACRi←m,nREL (f) =
Fi←m,n (f)

Sii (f)
, m 6= i, n 6= i, n > m. (3.19)

For every target variable Xi (t), the summation of its relative components
equals to 1

k
∑

m=1

ACRi←mREL (f) +
k−1
∑

m=1
m 6=i

k
∑

n=m+1
n 6=i

ACRi←m,nREL (f) = 1, ∀i = 1 . . . k.

(3.20)
This allows one to compare the strength of individual causal components
in percentage. Compared with DC squared, ACR also measures causality
in meaningful physical terms as power contributions but moreover, the
advantage of ACR is that it can also separate direct effects from indirect
ones.

3.0.1 Comparison of ACR and GPDC: Two Variables Case

As mentioned above, the square modulus of GPDC is often interpreted
as the proportion of the power spectra of the target variable caused by the
causal relation (Sato et al., 2009). To illustrate the fact that this statement
may not be accurate, a comparison with the relative ACR on a two-variables
case is conducted in the following paragraph.
A general equation for causal relation in the direction 2 ← 1 can be

obtained

GPDC2
21 (f) =

1
σ2
2

|A21 (f)|2
1
σ2
1

|A11 (f)|2 + 1
σ2
2

|A21 (f)|2
=

σ2
1|A21 (f)|2

σ2
2|A11 (f)|2 + σ2

1|A21 (f)|2
.

(3.21)

1A normalization by the PSD of the source variable does not make sense in terms of dividing a total power to its

parts because sources in the MVAR model definition are copied to targets, not divided.
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Chapter 3: Working Methods

Using the (3.18) (the component (3.19) is not present for k = 2), one gets

ACR2←1REL (f) =
−|A21 (f)|2S11 (f)− U21 (f)− U ∗21 (f)

|A22 (f)|2S22 (f)
(3.22)

where
U21 (f) = A21 (f)A

∗
22 (f)S12 (f) , (3.23)

this together with (3.5) results in

ACR2←1REL (f) =

=
1

|A22 (f)|2
(

σ2
2|A11 (f)|2 + σ2

1|A21 (f)|2
)

(

σ2
1|A21 (f)|2|A22 (f)|2−

− σ2
2|A12 (f)|2|A21 (f)|2 + σ2

2A11 (f)A22 (f)A
∗
12 (f)A

∗
21 (f) +

+ σ2
2A
∗
11 (f)A

∗
22 (f)A12 (f)A21 (f)

)

.

(3.24)

Let us consider two scenarios. (a) The model does not contain a causal
relation 1← 2, i.e., A12 (f) = 0. Then (3.24) can be reduced to

ACR′′2←1REL (f) =
σ2
1|A21 (f)|2

σ2
2|A11 (f)|2 + σ2

1|A21 (f)|2
(3.25)

and ACR′′2←1REL (f) = GPDC2
21 (f).

(b) The model contains the causal relation 1← 2. In contrast to the ACR,
the GPDC does not respect this fact; ACR2←1REL (f) 6= GPDC2

21 (f).

3.1 Statistical Evaluation

Since these causal measures have a highly nonlinear relation to the time
series data from which they are derived and distributions of their estimators
are not well established (Gourévitch et al., 2006), the use of a surrogate data
method is recommended.
The epoch surrogates (Kamiński et al., 2001) and FFT surrogates (Theiler

et al., 1992) methods are used. Data are shuffled in order to obtain
surrogate data with a very similar amplitude spectra but destroyed causal
relations. The causal measures are then calculated from the surrogate data.
By repeating this process a number of times, an empirical estimate of a
probability density function (histogram) is constructed, which corresponds
to the null hypothesis that there is no causal connection.

14



Chapter 4

Results

The thesis demonstrates the state-of-the-art methods on model data
examples and illustrates the proposed ACR method. The goal is to compare
their behavior in various situations, understand their properties, and be able
to interpret their outputs.
In this statement, we will focus on partion of such a one example.

4.1 Comprehensive MVAR Model

In order to compare results of ACR, DC, dDTF and GPDC, an advanced
five-variables MVAR model of the third order used in (Baccalá and
Sameshima, 2001, Ding et al., 2006) was chosen (see Fig. 4.1)

X1 (t) = ε1 (t) + 0.95
√
2X1 (t− 1)− 0.9025X1 (t− 2) ,

X2 (t) = ε2 (t) + 0.5X1 (t− 2) ,

X3 (t) = ε3 (t)− 0.4X1 (t− 3) ,

X4 (t) = ε4 (t)− 0.5X1 (t− 2) + 0.25
√
2X4 (t− 1) + 0.25

√
2X5 (t− 1) ,

X5 (t) = ε5 (t)− 0.25
√
2X4 (t− 1) + 0.25

√
2X5 (t− 1)

(4.1)
where ε1, ε2, ε3, ε4, and ε5 are Gaussian white noises with zero means and
variances of 0.6, 0.5, 0.3, 0.3, and 0.6 respectively.
In addition to the bidirectional connection 4↔ 5, the model also contains

indirect causal connections. The sequential driving 5 ← 4 ← 1 can cause a
false detection of the indirect relation 5 ← 1. And the differently delayed
drivings 2← 1 and 3← 1 can cause a false detection of indirect 3← 2 because
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Chapter 4: Results

z−3

z−2

z−2

z−1

z−1

1

2

3

4 5

Figure 4.1: Comprehensive MVAR model; diagram of model data connection. The
z-domain delay represents the connection delay (the minimal value of the time shift in the

equation).

the samples of 2 contain an information which helps with the prediction of
3, although in fact this is the information transferred from 1.

4.1.1 Causal Measures from Exact MVAR Model Coefficients

Let us focus on measures in frequency domain computed from exact
coefficients of the MVAR model of the order of 3.
The absolute ACR (see Fig. 4.2 and 4.4(a)) shows PSD of the contribution

of the causal relation to the target variable. The main diagonal values
correspond to the PSD of the variable which is not caused by other variables.
The summation of all contributions to the target variable is equal to the total
power spectral density of the variable (3.17), a diagonal value of the spectral
matrix (3.5).
The advantage of ACR is that it correctly detects only direct relations

and excludes false indirect ones (e.g., ACR5←1ABS (f) or ACR3←2ABS (f) in
Fig. 4.2 are zero) and therefore uncovers the correct connection diagram of
causal relations among time series.
The relative ACR (see Fig. 4.3 and 4.4(b)) is the absolute ACR normalized

by the PSD of the target variable Sii (f), thus depicts the relative amount of
the contribution of the causal relation and the summation of all contributions
equals to 1. The main diagonal values correspond to the relative part of the
power spectral density of the variable which is not caused by other variables.
The suggested use is to evaluate the absolute ACR in order to get an

overview of the power of the contributions at each frequency, and then
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4.1 Comprehensive MVAR Model

compare the values with the total PSD of the target variable via the relative
ACR. The use of the relative ACR alone cannot be generally recommended
because such results can return high values at frequencies where signals have
a very low power because of the ratio of the two values being close to zero.
The DC squared (see Fig. 4.5) is very similar to the relative ACR (see

Fig. 4.3) as it also decomposes diagonal values of the spectral matrix to causal
components and the summation of all contributions to the target variable
equals to 1. However, it reflects the total causal relation from the source
to the target variable without considering the real direct route of the causal
influence. While it has no problem with the different delay driving (3← 2 is
zero), the 5 ← 1 is nonzero caused by the sequential driving mediated by 4.
This is the main difference between DC squared and relative ACR.
The dDTF (see Fig. 4.6) often returns shapes similar to the absolute

relations (see Fig. 4.2), however this is not always the case (e.g., relations
5← 4 and 4← 5). The strength of the relations values is difficult to compare
and interpret. The dDTF falsely detects the indirect causal relation 5 ← 1
with the same order of magnitude as the correct direct relation 5← 4.
The GPDC (see Fig. 4.7) normalizes the values of the relation strength

in the range from 0 to 1. The squared modulus of the GPDC (see Fig. 4.7)
partially resembles the relative ACR (see Fig. 4.3) but appears more flattened.
It reaches high values even for frequencies where signals have a very low
power. On the other hand, the maxima are lowered in comparison with the
relative ACR. These facts complicate the interpretation of the GPDC results.
In comparison to the dDTF, the advantage of GPDC (as well as of ACR) is
that it detects only the direct causal connections, excluding the false indirect
ones. This is caused by the numerator of the GPDC definition which uses
only the MVAR coefficients of the direct connection.
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Figure 4.2: Absolute ACR from exact coefficients; causal relation from source Xm (t) to
target Xi (t). The summation of all components creating the target variable including the
relation from couple of sources in Fig. 4.4(a) is equal to the PSD of the variable Sii (f)

depicted in the 6th column.
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Figure 4.3: Relative ACR from exact coefficients; causal relation from Xm (t) to Xi (t).
The summation of all components of the target variable including the relation from couple

of sources in Fig. 4.4(b) is always one (see the 6th column).
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Figure 4.6: dDTF from exact coefficients; causal relation from Xj (t) to Xi (t).
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Figure 4.7: GPDC from exact coefficients; causal relation from Xj (t) to Xi (t).
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Chapter 5

Conclusion

The primary focus of this work is in the analysis of linear multivariate
autoregressive (MVAR) models in the frequency domain. It reviews well-
accepted methods based on MVAR modeling for causal relation analysis of
multichannel signals with AR characteristics.
CGC performs well in distinguishing direct and indirect causal relations

(Bořil, 2009). A combination of CGC with pairwise PSI is proposed in order
to get more reliable results in noisy conditions, (Bořil and Sovka, 2010b).
In many applications, a frequency decomposition of causal relations is

desirable. It allows to analyze which frequency rhythms participate in
the information flow. DC decomposes spectral matrix to separate causal
components and reflects the total causal relation from the source to the target
variable. This approach does not consider the real direct route of the causal
influence and cannot recognize a connection diagram of sequentially driven
systems.
GPDC overcomes this problem but loses the advantage of the

interpretation of the strength of causal relations in meaningful physical terms
(Bořil and Sovka, 2010a), dDTF also tries to detect only direct relations but
it fails in some cases as shown in this work.
We have suggested criteria of evaluation of causal relations in frequency

domain (Bořil and Sovka, 2011) and based on these criteria, we have proposed
a novel measure ACR in order to recognize the direct route of the causal
influence and preserve the advantageous of the PSD interpretation. ACR
decomposes diagonal elements of a spectral matrix into separate causal
components that show directions of influence among multivariate time series
of an autoregressive character. ACR measures causality in meaningful
physical terms as power contributions and can separate direct effects from
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Chapter 5: Conclusion

indirect ones. This easily interpretable definition allows one to evaluate
the performance of state-of-the-art methods. The concurrent use of both
absolute and relative ACR is always recommended for obtaining a complete
representation of absolute values of causal relations and also the proportion
of their impact on the target. The ACR is focused on the real impact of each
connection, i.e., what part of power is transferred via the connection.
As the time series have random character, the PSD approach must be

applied. As a result of the PSD utilization, the ACR contains extra coupled
causal relations from two sources together. However, these components are
present only in the case when both source variables have a nonzero cross
power spectral density and both have direct causal influence to the target
variable, so the presence of such components does not affect the causal
relations connection diagram.
Unlike the original Granger causality concept that evaluates the strength

of each causal relation with a single non-negative scalar value, the values
of ACR can be positive or negative in order to model both an increase or
a decrease of the power spectral density caused by a causal relation in the
analyzed direction. Therefore, the ACR allows one not only to compare the
strength of the relations, but also to analyze the effect of the relation.
The advantage of the ACR is that the summation of components creates

the total PSD of the target variable. This allows one to compare and clearly
interpret the strength of the causal components.
The experimental section of the thesis studies performence of state-of-the-

art methods and compare them with the novel ACR method in synoptic
artificial data experiments and explains advantages of the new approach.
When analyzing artificial signals with known generating equations, ACR may
serve for evaluating other methods.
In the case of estimation of MVAR model coefficients, two methods of

estimation of statistical properties are examined. Based on surrogate data
analysis, emperical distribution functions are obtained. ACR is found to be
more sensitive to inaccurate estimates of the MVAR model coefficients. DC
is less sensitive to inaccuracies and can help to review ACR results. In the
case where DC returns zero, ACR should be also zero because ACR detects
only the direct causal connections and DC detects both direct and indirect
ones.
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The contributions of the thesis are in interpretation of MVAR model in the
digital filtration aspect. A novel method was proposed, decomposing of power
spectral matrix into separate causal components respecting the direct route
of the causal relations. Experiments featuring the method were statistically
analysed using a surrogate data technique. These contributions can serve
to advance both knowledge and algorithm development for causal relations
analysis in MVAR models.
While this thesis suggests new methodology of interpretation of MVAR

model in term of causal relations in the frequency domain, future research
should be focused on behaviour of signals not strictly satisfying the MVAR
conditions. Elaborate study of numerical stability in such cases should be
also examined.
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Chapter 7

Summary

Identification of statistic causal relations among simultaneously recorded
signals is an important problem in the area of multidimensional time
series analysis with applications in many domains spreading from biology
to economics. It reveals connections among simultaneous time series and
identifies not only the strength of relations but also the direction of the
information flow.
This thesis is focused on methods based on multivariate autoregressive

(MVAR) models. It reviews state-of-the-art methods and suggests a new
measure Autoregressive Causal Relation (ACR) for evaluation of an absolute
and relative causal relation in frequency domain in the context of MVAR
models. ACR is based on the interpretation of MVAR model in the digital
filtration sense. ACR decomposes diagonal elements of a spectral matrix
into separate causal components that show the directions of influence among
multivariate time series of an autoregressive character. ACR measures
causality in meaningful physical terms as power contributions and can
separate direct effects from indirect ones.
Unlike the original Granger causality concept that evaluates the strength

of each causal relation with a single non-negative scalar value, the values
of ACR can either be positive or negative to model both an increase or a
decrease of the power spectral density caused by the causal relation in the
analyzed direction. Therefore, the ACR allows one not only to compare the
strength of the relations, but also to analyze their effects.
The experimental section of the thesis studies performance of state-of-the-

art methods and compares them with the novel ACR method in synoptic
artificial data experiments and discusses advantages of the new approach.
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Chapter 8

Résumé

Důležitým problémem v oblasti analýzy vícerozměrných časových řad je
identifikace statistických kauzálních vztahů mezi simultánně zaznamenanými
signály, aplikaci nachází v mnoha oblastech od biologie po ekonomii.
Taková analýza totiž odkrývá vazby mezi souběžnými časovými řadami a
vyhodnocuje nejen jejich sílu, ale také směr šíření informace.
Tato disertace je zaměřena na metody vycházející z vícerozměrných

autoregresních (MVAR) modelů. Seznamuje se současným stavem v této
problematice a navrhuje novou metodu Autoregresní kauzální vazba
(Autoregressive causal relation – ACR), která také vychází z MVAR modelu
a umožňuje vyhodnocení kauzálních vztahů v absolutní i relativní míře, a
to ve frekvenční oblasti. Myšlenka metody ACR vychází z interpretace
MVAR modelu z pohledu číslicové filtrace. ACR rozkládá diagonální prvky
spektrální matice na jednotlivé kauzální komponenty ukazující směr vlivu
mezi souběžnými signály s autoregresním charakterem. ACR měří míru
kauzality v rozumném fyzikálním smyslu jako výkonový příspěvek. Navíc
dokáže odlišit přímou cestu šíření od nepřímé.
Narozdíl od Grangerovy kauzality, která vyhodnocuje sílu každé vazby

nezáporným skalárním číslem, hodnoty ACR mohou být jak kladné, tak
záporné. Z toho důvodu umožňují modelovat jak přírůstky, tak poklesy
výkonové spektrální hustoty způsobené kauzální vazbou v daném směru.
ACR tak umožňuje porovnávat nejen sílu vazeb, ale rovněž jejich skutečný
dopad.
Experimentální část této práce studuje chování moderních uznávaných

metod na přehledných modelových příkladech a porovnává je s nově
navrženou metodou ACR, diskutuje rozdíly a výhody nového přístupu.
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