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Estimates of uncertainties and risks of the construction process are essential information for 

decision-making in infrastructure projects. The construction process is affected by different types of 

uncertainties. We can distinguish between the common variability of the construction process and 

the uncertainty on occurrence of extraordinary events, also denoted as failures of the construction 

process. In tunnel construction, a significant part of the uncertainty results from the unknown 

geotechnical conditions. The construction performance is further influenced by human and 

organizational factors, whose effect is not known in advance. All these uncertainties should be 

taken into account when modelling the uncertainty and risk of the tunnel construction.  

For reliable predictions, it is essential to realistically estimate the parameters of the probabilistic 

model. At present, such estimates mostly rely on expert judgement. However, these can be strongly 

biased and unreliable. Therefore, the expert estimates should be supported by analysis of data from 

previous projects.  

This thesis attempts to address these issues. First, it introduces a simple probabilistic model for 

the estimation of the delay due to occurrence of construction failures. The model is applied to a case 

study, which demonstrates, how the probabilistic estimate of construction delay can be used for 

assessing the risk and for making decisions. 

Second, advanced model including both the common variability and construction failures using 

Dynamic Bayesian Networks (DBNs) is presented. This model takes over some modelling 

procedures from existing models but it extends the scope of the modelled uncertainties. The model 

is applied to two case studies for the estimation of tunnel construction time. It is demonstrated, how 

observations from the tunnel construction process can be included to continuously update the 

prediction of excavation time.  

Third, an efficient algorithm for the evaluation of the proposed DBN is developed. A 

modification to the existing Frontier algorithm is suggested, denoted as modified Frontier 

algorithm. This new algorithm is efficient for evaluating DBNs with cumulative variables. 

Fourth, performance data from tunnels constructed in the past are analysed. The data motivates 

the development of a novel combined probability distribution to describe the excavation 

performance. In addition, the probability of construction failure and the delay caused by such 

failures is estimated using databases available in the literature. Additionally, a brief database of 

tunnel projects and tunnel construction failures from the Czech Republic is compiled. The database 

includes basic information on all tunnels, which have been constructed in the Czech Republic since 

1989. The database of failures, which occurred in the analysed tunnels, contains 17 events, mostly 

cave-in collapses. 

The models presented in this thesis are applied to the estimation of tunnel construction time. The 

construction costs can be assessed analogously by replacing the time variables with cost variables. 

The costs can also be modelled as a function of the construction time.  

 The statistical analysis of data presented in the thesis provides a valuable input for probabilistic 

prediction of construction time in infrastructure projects. The results of the case studies seem to 

realistically reflect the uncertainty of the construction time estimates.  
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Zhodnocení nejistot a rizik stavebního procesu je základní informací pro rozhodování v rámci 

plánování a řízení infrastrukturních projektů. Stavební proces je ovlivněn různými typy nejistot. 

Můžeme rozlišit mezi běžnou variabilitou stavebního procesu a možnou realizací výjimečných 

událostí. V tunelových stavbách pramení významná část nejistot z neznámých geotechnických 

podmínek. Postup stavby je dále ovlivněn lidskými a organizačními faktory, jejichž efekt není 

v předstihu znám. Všechny tyto nejistoty by měly být při modelování nejistot a rizik tunelové ražby 

zohledněny. 

Mají-li být predikce průběhu tunelové stavby spolehlivé, je nutné realisticky odhadnout 

parametry pravděpodobnostního modelu, jako je např. jednotkový čas nebo pravděpodobnost 

výjimečné události. V dosavadních aplikacích byly parametry určovány v naprosté většině případů 

expertním odhadem. Expertní odhady však mohou být značně subjektivní a zkreslené, měly by 

proto být podepřeny analýzou dat z dříve realizovaných staveb tunelů. 

Tato dizertační práce se snaží odpovědět na výše zmíněné problémy. Zaprvé je představen 

jednoduchý pravděpodobnostní model pro predikci zdržení stavby v důsledku výjimečných 

událostí. Příklad, na kterém je model aplikován, demonstruje, jak může být pravděpodobnostní 

odhad zdržení stavby použit pro kvantifikaci rizika a pro rozhodování o výběru technologie ražby. 

Zadruhé je navržen pokročilý model, který zahrnuje jak běžnou variabilitu stavebního procesu, 

tak potenciální realizaci výjimečných událostí. Model využívá dynamických bayesovských sítí, 

přejímá některé procedury z existujících modelů, ale rozšiřuje spektrum modelovaných nejistot. 

Model je aplikován na dvou příkladech pro odhad doby ražby tunelu. Apriorní odhad je 

aktualizován po započetí ražby na základě pozorování dosahovaných stavebních výkonů. 

Zatřetí je navržen efektivní algoritmus pro vyhodnocení tohoto modelu, který umožňuje rychlý 

výpočet doby ražby včetně její průběžné aktualizace. Algoritmus spočívá v modifikaci existujícího 

algoritmu známého pod názvem „Frontier algorithm“ a je vhodný pro vyhodnocování dynamických 

bayesovských sítí, které obsahují kumulativní (součtové) náhodné veličiny. 

Začtvrté jsou analyzována data z postupu tunelových staveb realizovaných v minulosti. Na 

základě této analýzy bylo navrženo nové kombinované pravděpodobnostní rozdělení, které dobře 

reprezentuje skutečný výkon stavby. Na základě existujících databází havárií tunelů byly 

analyzovány četnost výjimečných událostí a zdržení těmito událostmi způsobená. Dále byla 

vytvořena stručná databáze tunelů postavených v České Republice po roce 1989 a databáze 17 

výjimečných událostí, ke kterým při jejich stavbě došlo.  

Navržené pravděpodobnostní modely jsou použity pro predikci doby výstavby. Stavební 

náklady mohou být odhadnuty analogicky záměnou proměnných reprezentujících čas za nákladové 

proměnné. Stavební náklady mohou být také modelovány jako funkce doby výstavby.  

Prezentované výsledky analýzy dat jsou cenným podkladem pro odhad doby výstavby 

budoucích tunelových projektů i dalších typů liniových staveb. Výsledky případových studií 

dokládají, že navržené modely realisticky reflektují nejistoty spojené s odhadem doby výstavby. 
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In developed countries, investments into the transportation infrastructure (construction and 

maintenance of roads, railways etc.) vary in the interval from 0.5% to 1.5% of the GDP; new 

construction corresponds to approximately two thirds of this amount (Banister and Berechman, 

2000; U.S. Department of transportation, 2004; International Transport Forum - OECD, 2011). In 

developing countries, the share of the GDP may be significantly higher, up to 6% (UN ESCAP, 

2006). When including also water, energy and communication infrastructure, the global investments 

to infrastructure are assessed roughly ass 2.5% of the world GDP (OECD, 2007). The optimization 

of the design and construction of the infrastructure can therefore bring significant benefits to the 

society.  

To be successful, a project must meet financial, technical and safety requirements and it must 

fulfil a time schedule. The criteria of project success from the point of view of different 

stakeholders can be contradicting and finding an optimal solution is a challenging task. Many 

decisions must be made regarding design, project financing and type of contract. These decisions 

are made under high uncertainty, such as uncertainty in construction cost, time of completion, 

impact on third party property or maintenance costs. Assessment of these uncertainties is crucial for 

making the right decisions. Often, the solutions that seem to be cheaper and faster based on 

deterministic estimates, are associated with higher uncertainties and risks. Making decisions based 

on deterministic values is therefore insufficient.  

This thesis aims at developing models for quantification of uncertainties in the construction 

process of linear infrastructure. Specifically, the models are developed for probabilistic assessment 

of tunnel construction. Tunnels were selected because they represent a costly part of the 

infrastructure and because the progress of their construction is highly uncertain. Compared to other 

types of linear infrastructure, this additional uncertainty arises from the unpredictable geotechnical 

environment, where the tunnels are built (Staveren, 2006). The models developed for tunnel 

construction can be applied also to other types of linear infrastructure (e.g. roads or railways) as 

shown for example in Moret (2011); in such a case, modelling of geotechnical uncertainties can be 

simplified or neglected.  
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There are only few methods and models for quantification of uncertainty in construction time 

and cost prediction for infrastructure in general (Flyvbjerg, 2006), or for tunnels in particular, e.g. 

the Decision Aids for Tunnelling (DAT) developed at MIT in group of Prof. Einstein (e.g. Einstein, 

1996), an analytical model presented by Isaksson and Stille (2005) or a model combining Bayesian 

networks and Monte Carlo simulation proposed by Steiger (2009).  Probabilistic models have not 

been widely accepted in the practice so far. A first reason is that there was not real demand for the 

quantitative modelling of uncertainties and risk, because decision makers were not used to work 

with such information. A second reason is that the existing models often did not provide a realistic 

estimate of the uncertainties and they therefore did not gain acceptance among the practitioners. 

However, this situation seems to be changing in the recent years and both the demand and the 

reliability of the model results have increased.  

1.1 Research objectives 

The objective of this thesis is to provide tools for the analysis of tunnel construction uncertainties 

and risks. The particular aims are: 

 To propose a methodology that allows estimating the delay of tunnel construction due to 
failures on a probabilistic basis. The estimate might be used as a supplement to the 
deterministic estimates of construction time.  

 To illustrate the use of the probabilistic estimate of construction delay for quantification of 
risk and for making decisions. 

 To develop an advanced model that can realistically assess the overall uncertainty of the 
tunnel construction time (cost) estimates, including both the common variability of the 
construction process and the occurrence of failures (extraordinary events). 

 To demonstrate the updating of the estimates with the observed performance after the 
construction starts.  

 To develop an efficient algorithm for evaluation of the models in real time. 

Besides development of the probabilistic models, the thesis aims at gathering and analysing 

performance data from the constructed tunnels. Based on this analysis, the parameters of the 

probabilistic models (and not only those presented in this thesis) may be estimated more 

realistically. 

 The analysis of data describes both: 

 The common variability of the construction performance; 

 The extraordinary events and delays caused by these events. 

 A brief database of tunnel projects and tunnel construction failures in the Czech Republic 
since 1990 is established. It supplements the existing databases of world tunnels failures. 
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1.2 Thesis outline 

The thesis is organized into eight chapters and seven annexes. The second and third chapters are 

introductory: 

The second chapter “Tunnel projects and risk management” answers the question, WHY we should 

analyse uncertainties and risks of tunnel construction. It provides a brief introduction into the topic 

of tunnel projects and tunnel construction. The present practice of project planning and decision-

making is described. The concept of risk and its management is introduced.  

The third chapter “Analysis of tunnel construction” addresses the question, HOW we can analyse 

uncertainty and risk. The state-of-the-art in tunnel construction risk analysis is described; both 

qualitative and quantitative approaches are discussed. Selected methods and models for 

quantification of uncertainties and risk, which are used later in the thesis, are introduced. 

Corresponding basic definitions and axioms of probabilistic modelling together with an overview of 

the terminology and notation is provided in Annex 1. 

The new findings are presented in chapters four to seven. The application of the new models is 

demonstrated in three application examples. Two of the examples use a Czech tunnel denoted as 

TUN 3, which is also included in the analysis of data. One of the examples uses a Korean tunnel 

denoted as Dolsan A, this case study was taken from the literature (Min et al., 2003). 

The fourth chapter “Model of delay due to tunnel construction failures and the estimate of 

associated risk” introduces a simple probabilistic model for quantification of the delay caused by 

extraordinary events by means of Poisson processes and Event Tree Analysis (ETA). The 

application example 1 is presented using tunnel TUN3; the estimated delay is used for the 

quantification of risk and for the selecting an optimal construction technology. 

The fifth chapter “Dynamic Bayesian network (DBN) model of tunnel construction process” 

introduces a complex probabilistic model for the prediction of tunnel construction time and costs. A 

generic approach to the modelling is introduced. Furthermore, a specific model for the prediction of 

construction time is discussed in detail. This model is applied to the case study of the Dolsan A 

tunnel. The updating of the prediction with observed performance is demonstrated. The comparison 

and validation of the new model with results of the original case study taken from Min (2003) is 

provided in Annex 3.  

The sixth chapter  “Algorithms for the evaluation of the DBN” focuses on the probabilistic 

modelling itself; it can be skipped by a reader, whose interest is in risk modelling of tunnel projects. 

The chapter introduces the algorithms for inferring unobserved variables in the DBN and for 

learning the parameters of the DBN. The procedure for evaluating the DBN for tunnel construction 

is described in detail. A modification to the Frontier algorithm (Murphy, 2002) is proposed which is 

efficient for evaluating DBNs with cumulative variables. A comparison of the performance of the 

original and modified Frontier algorithm is presented in Annex 4. 

The seventh chapter “Analysis of tunnel construction data for learning the model parameters” 

presents methods for analysing performance data from projects constructed in the past. The 

common variability of the construction process and the construction failures are studied separately. 

The first is analysed using data from three Czech tunnels (full results of the analysis are given in 

Annex 6), the later is based on analysis of larger databases of tunnels and tunnel construction 

failures. The findings are applied to the case study of tunnel TUN3; prior estimates of the 
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parameters are determined by an expert judgement supported by the data analysis, the predictions 

are then updated with real observations. 

Because the existing databases of tunnel construction failures do not contain the cases that occurred 

in the Czech Republic, a database of tunnel projects and tunnel construction failures in the Czech 

Republic in the years 1990-2012 was collected (Annex 5). The database includes only basic 

information about the tunnels (e.g. type and length of the tunnel, time of construction) and 

construction failures (e.g. consequences, taken measures). Additional information can be found in 

the referred sources, which are available also in English.  

The eighth chapter “Conclusions and outlook” summarizes the main achievements and conclusions 

of the thesis and provides hints for future work. 

 

 



  

 

5 

With proceeding urbanization and increasing demands on life-quality, the importance of 

underground infrastructure, including tunnels, is likely to increase in the future. Tunnels minimize 

the impact of the infrastructure (e.g. road or railway) on the environment; they allow placing the 

infrastructure in the cities under ground and thus improve the life quality of the inhabitants. Tunnels 

also help to fulfil the increasing demands on the technical parameters of the infrastructure; the 

modern roads and railways, to comply with the requirements on high design speed, must have 

sweeping curves and gentle elevation. In a complicated terrain, this can often be gained only 

through designing tunnels.  

Tunnels are built in geotechnical conditions, which are not known with certainty before the 

tunnel is constructed. Other uncertainties influencing the project success come from the human and 

organizational factors. At present, the time and costs of the construction are commonly estimated on 

the deterministic basis. This approach, however, is likely to lead to wrong decisions, because it 

neglects the uncertainties of the estimates. 

This chapter aims at introducing the context and motivation of the probabilistic models for the 

estimation of tunnel construction time (or costs) presented later in this thesis. In Section 2.1, the 

importance of the construction phase for the life of the tunnel project is demonstrated and the need 

of probabilistic estimates of construction costs and time is discussed. The technologies of tunnel 

construction are described in Section 2.2. Because the geology and its appropriate description are 

decisive factors for tunnel design and construction, the commonly utilized geotechnical 

classification systems are introduced in Section 2.3. Section 2.4 describes, how the estimates of 

construction costs and time are done in the present practice. Section 2.5 discusses the failures of the 

tunnel construction, i.e. events, which have relatively small probability but potentially huge impact 

on the construction process. Section 2.6 focuses on risk management and its application in the 

tunnel projects: The definition of risk is introduced; the generic risk management process is 

described and implications of risk management for procurement and insurance of the tunnel project 

are examined. Finally, the uncertainties in the tunnel project are discussed in Section 2.7. 

2 Tunnel projects and risk 

management 



6 Tunnel projects and risk management  

 

2.1 Tunnel project planning and decision making 

In early phase of planning of an infrastructure project, several alternatives are commonly 

considered. These alternatives can include different layouts of the infrastructure, different 

combinations of tunnel and bridges or different construction technologies. The early design phase 

and the decisions taken at that time have the decisive role on the Life Cycle Costs of the 

infrastructure, as illustrated in Figure 2.1. 

The optimal solution is commonly selected based on a cost benefit analysis (CBA), which 

appraise costs and benefits expected during the project life (Lee Jr., 2000; HM Treasury, 2003; 

Flanagan and Jewell, 2005; Nishijima, 2009). The economic efficiency of the options can be 

expressed by measures such as the net present value (NPV), internal rate of return (IRR) or benefit-

cost ratio. For including the non-monetary factors such as traffic safety and social or environmental 

impacts into the decision-making, the multi-criteria analysis (MCA) can be utilized, which includes 

the economic efficiency as one of the criteria (Morisugi, 2000; Vickerman, 2000). 

 

Figure 2.1: Cost-influence curve for phases of the infrastructure project. Adapted from Project 
Management Institute (2008) 

Several decisions must be made also later in the project: In the design phase, the construction 

technology and detailed design of the tunnel must be selected and the contractor must be chosen. 

During the construction phase, unexpected geotechnical conditions or tunnel collapse can require 

decisions about the changes of design and construction method. All of these decisions should be 

based on objective appraisal of the options.  

Role of construction time and costs 

One of the most important factors influencing the decision whether and how a tunnel is to be built 

are the estimated time and costs of construction (Reilly, 2000). The importance of construction 

costs is documented by Table 2.1 using data from subsea tunnels in Norway presented by Henning 

et al. (2007). The table shows that in the analysed tunnels, the construction costs represent 39-72 % 

of the LCC. The LCC are calculated as the sum of investment costs (corresponding approximately 

to construction costs) and operation and maintenance (O&M) costs for the life of the tunnel, 



Tunnel projects and risk management 7 

 

assuming that the tunnel has a life of 150 years. The discounting is not considered and the life time 

is rather overestimated. Therefore, the share of construction costs on LCC is likely to be even 

higher.  

Similar conclusions are made by Flanagan and Jewell (2005) for a school building project, reporting 

the share of 43% of investment costs on LCC (with consideration of discounting and life of 30 

years).  

Table 2.1: Share of investment costs on life cycle cost (LCC) for selected subsea tunnels in Norway 

according to Henning et al. (2007). 

  O&M costs Investment costs Life O&M costs  Share of investment 

    (150 years life) costs on LCC 

  NOK/m/year NOK/m NOK/m 

Fannefjorden 450 47 000 67 500 0.41 

Freifjord  240 53 000 36 000 0.60 

GodØy  200 61 000 30 000 0.67 

Hvaler  550 53 000 82 500 0.39 

Kvalsund  440 60 000 66 000 0.48 

Nappstraumen 180 58 000 27 000 0.68 

Tromsoysund 350 132 000 52 500 0.72 

VardØ  600 122 000 90 000 0.58 

 

Realistic estimate of construction time is equally important. The construction time significantly 

influences the tunnel construction costs, because substantial part of the costs comprises of the 

labour and machinery costs, which are time dependent. Additionally, the construction often requires 

restrictions in operation of existing infrastructure and therefore causes secondary costs and is 

negatively perceived by pubic. Delays of opening of a tunnel operation are in general economically 

and politically problematic. 

Decisions under uncertainty 

Estimates of construction time and costs and of other performance parameters are highly uncertain 

(see Section 2.7). The earlier in the project the estimates are made, the higher is the uncertainty. In 

spite of that, most stakeholders require a deterministic estimate of costs and time in the current 

practice(see Section 2.4). These deterministic estimates are used as a basis for decision-making and 

they are communicated with public. This approach creates false expectations, which are unlikely to 

be fulfilled, and it can lead to wrong decisions.  

An example of probabilistic assessment of construction costs and time for two different options 

of the tunnel design (e.g. varying excavation methods) is presented in Figure 2.2. Whilst option 1 in 

this example appears on the basis of a deterministic estimation as unambiguously more 

advantageous, the probability of significant exceeding the costs and construction time estimated for 

this variant is substantially higher. Such an evaluation of uncertainties is crucial information for 

making decisions. Knowing them, the decision maker can decide whether the uncertainty is 

acceptable, whether some measures to reduce the uncertainty must be taken or whether to select the 

option 2.   
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Figure 2.2: Example estimate of construction costs and time for two project options 

The need of probabilistic prediction of construction time and costs and their communication with 

the stakeholders has been recognized in the tunnelling community in recent years (Lombardi, 2001; 

Reilly, 2005; Grasso et al., 2006; Edgerton, 2008) and the demand for applicable probabilistic 

models is apparent. 

2.2 Tunnel construction 

The construction of tunnels consists in two main phases: tunnel excavation (including construction 

of the tunnel support) and equipment of the tunnel with final installations (ventilation system, 

lighting and safety systems etc.). The latter is not discussed in this thesis. 

Three main tunnelling technologies commonly utilized in present practice are briefly described 

in the sequel. A special attention is paid to the conventional tunnelling which is used in application 

examples later in this thesis. 

2.2.1 Conventional tunnelling  

According to definition of International Tunnelling Association (ITA, 2009), the conventional 

tunnelling technology is construction of underground openings of any shape with a cyclic 

construction process of 

 excavation, by using the drill and blast methods or mechanical excavators (road headers, 
excavators with shovels, rippers, hydraulic breakers etc.) 

 mucking 

 placement of the primary support elements such as  

 steel ribs or lattice girders  

 soil or rock bolts  

 shotcrere, not reinforced or reinforced with wire mesh or fibres. 

One cycle of the construction process is denoted as round and the length of the tunnel segment 

constructed within one round is denoted as round length.  The final profile of the tunnel can be 
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divided into smaller cells, which are excavated separately. The usual types of excavation 

sequencing are shown in Figure 2.3. 

The excavation method, round length, excavation sequencing and support measures (in sum 

denoted as the construction method in this thesis) are selected depending on the geotechnical 

conditions and cross-section area of the tunnel. The decisive factor for the selection is the stand-up 

time of the unsupported opening. To give an example, a tunnel constructed in very good ground 

conditions with long stability of unsupported opening can be excavated full face with round length 

of several meters and it requires only simple support. On the contrary, in difficult ground 

conditions, a finer sequencing, shorter round length and demanding support measures must be 

applied. 

 

Figure 2.3: Typical excavation sequencing types in conventional tunnelling. Source: (ITA , 2009) 

In poor ground conditions, auxiliary construction measures can be used. These are for example jet 

grouting, ground freezing, pipe umbrellas or face bolts. Additionally, if the primary support is not 

sufficient for long-term stability of the tunnel, it must be supplemented by the construction of final 

(secondary) lining.  A picture of tunnel construction by means of conventional tunnelling with 

partial excavation is shown in Figure 2.4.  

The conventional tunnelling allows adjusting the construction process based on observations of 

the ground behaviour, which are continuously carried out during the construction. The technology is 

therefore especially suitable for tunnels with highly variable geotechnical conditions, tunnel with 

variable shapes of tunnel cross-sections and for short tunnels, where utilization of expensive TBM 

would not be economically justifiable.  

The geotechnical monitoring is an essential part of the construction process. It enables to check 

the structural behaviour with respect to the safety and serviceability criteria, to optimize the 

construction process and to control the impact of construction on the adjacent structures.  The 

monitored parameters are usually the deformations (displacements, strains, changes in inclination or 

curvature), stresses and forces on structural elements, piezometric levels and temperatures. 

The conventional tunnelling technology has many modifications depending on the local 

experience and geological specifics. The terminology is not fully unified. The conventional 

tunnelling is often referred to as New Austrian Tunnelling Method (NATM), because the 

technology was well established in Austria for building the Alpine tunnels and from there it spread 

to other countries (Karakus and Fowell, 2004). The Austrian norm ÖNORM B 2203 is accepted 

worldwide as the basic guidance for conventional tunnelling. The Norwegian Method of Tunnelling 

(NMT) (Barton et al., 1992) or Analysis of Controlled Deformations (ADECO) method (Fulvio, 

2010) also belong to the group of conventional tunnelling. 
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Figure 2.4: Conventional tunnelling in Dobrovskeho tunnel, Brno, Czech Republic. 

2.2.2 Mechanized tunnelling  

International Tunnelling Association defines mechanized tunnelling as tunnelling techniques, in 

which excavation is performed mechanically by means of teeth, picks or disks. The machinery used 

for the excavation is commonly called Tunnel Boring Machine (TBM). An example of TBM is 

shown in Figure 2.5. Diameter of the tunnel excavated with TBM can range from a metre (done 

with micro-TBMs) to 19.25 m to date.  

The application of TBM has several advantages compare to conventional tunnelling methods. 

The excavation is generally faster, the deformations of the ground and surface are smaller, which is 

beneficial for the existing structures. However, the TBM can only excavate a round tube and must 

be thus in most cases combined with other construction methods for construction of access tunnels, 

technological rooms etc. It is also only suitable for longer tunnels, where the initial investment into 

the TBM purchase is reasonable.  

The essential parts of the machine include the following items (ITA, 2001): 

 Rotary cutter head for cutting the ground 

 Hydraulic jacks to maintain a forward pressure on the cutting head 

 Muck discharging equipment to remove the excavated muck 

 Segment election equipment at the rear of the machine 

 Grouting equipment to fill the voids behind the segments, which is created by the over-
excavation.  

Different types of TBMs are designed for drilling in soft grounds and hard rocks. An overview is 

given in Figure 2.6.  
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Figure 2.5: TBM used for excavation of underground line extension in Prague. Source: 

http://stavitel.ihned.cz/ 

 

 

Figure 2.6: Types of tunnel excavation machines. Source: ITA, 2001 

http://stavitel.ihned.cz/
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2.2.3 Cut & cover tunnelling 

The cut & cover tunnels, unlike the previous bored tunnels, are constructed directly from the 

surface. The construction consists in excavating a trench or a cut, installing of temporary walls to 

support the sides of the excavation, roofing the tunnel and covering it with fill material. The costs of 

the excavation increase significantly with the depth of the tunnel, the method is thus suitable for 

construction of shallow tunnels. The method is often used for the construction of beginning and end 

parts of the bored tunnels as shown in Figure 2.7. The major disadvantages of a cut & cover 

construction is its disturbing impact on the surroundings and the need of extensive traffic 

restrictions. For more details, see for example Wickham et al. (1976). 

 

Figure 2.7: Blanka tunnel in Prague, Czech Republic, a section constructed with cut&cover method. 

2.3 Geotechnical classification systems 

Underground structures are man made objects constructed in heterogeneous and complex natural 

environment. For planning and designing of the structures it is thus crucial to describe the 

behaviour of the geological environment by parameters, which can be used in the structural analysis 

and for planning and monitoring of the construction process. For this purpose, several geotechnical 

classification systems have been developed.  

The internationally known quantitative classification systems are the Rock Mass Rating (RMR) 

and Rock mass Quality (Q-system). RMR and Q-system assign an index (rating) to the ground 

based on its mechanical properties, ground water conditions and joints/discontinuities - see 

Bieniawski (1989) or Singh and Goel (1999). Other quantitative classification systems are utilized 
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locally in individual countries or areas, for example the Czech method by Tesař (1989) assigning a 

so called QTS index. A comparison of this three indexing classification systems is given in Table 

2.2. 

Table 2.2: Orientation comparison of indexing classification systems (source: Barták and Makásek, 2011) 

Rock quality RMR Q QTS   

Very (Extremely) good >80 >100   >90 

Good  60-80 10-100   65-90 

Fair  40-60 1-10   45-65 

Poor  20-40 0.1-1   30-45 

Very poor  <20 <0.1   <30 

 

Another approach to geotechnical classification is the qualitative evaluation of the ground, which 

studies the ground behaviour. These methods classify the quality of ground based on the stand-up 

time of an unsupported span; the classification is thus made with respect to the geometry of the 

designed tunnel.  While a utility tunnel with small diameter can have a long stand-up time and thus 

be constructed with minimal support, a large road tunnel in the same ground can require immediate 

installation of support measures to ensure the stability. The approach was suggested by Rabcewicz 

(1957) and Lauffer (1958) and it is implemented in the Austrian norm for tunnelling (ÖNORM B 

2203).   

2.3.1 Rock Mass Rating (RMR) 

The Rock Mass Rating (RMR) was developed by Bieniawski based on experiences from shallow 

tunnels in sedimentary rocks. The system has evolved significantly over the past forty years, which 

led to inconsistencies between its different versions.  Following Singh and Goel (1999), the RMR is 

determined as a sum of ratings of following parameters:  

 Uniaxial compressive strength of intact rock. (Rating 0 – 15) 

 Rock quality designation (RQD), which is a measure of rock mass integrity based on the 
condition of core samples. It is defined as a share of pieces with length >10 cm on the total 
length of the core run. For more info see (Deere and Deere, 1988). (Rating 3 – 20) 

 Spacing of discontinuities, which describes the distance between adjacent discontinuities. 
(Rating 5 – 20) 

 Condition of discontinuities, which describes the roughness of discontinuity surface, 
separation of the discontinuities etc. (Rating 0 – 30) 

 Ground water condition, which describes the water inflow and joint water pressure. (Rating 0 
– 15) 

 Orientation of discontinuities, which describes orientation/angle of the discontinuities with 
respect to the direction of the tunnel. (Rating -12 – 0) 

Based on the RMR index, a stand-up time of unsupported tunnel depending on the width of the 

tunnel can be determined. The tunnel support measures of a reference tunnel with 10 m span for 

different RMR values are recommended in Bieniawski (1989). 
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2.3.2 Q-system 

The Q-system was proposed at The Norwegian Geotechnical Institute. The Q value is determined as 

(Singh and Goel, 1999): 

   
   

  
 
  

  
 
  

   
, (2.1) 

where     is the Rock quality designation index (Deere and Deere, 1988);    is the joint set 

number representing the number of joint sets (sets of parallel joints);    is the joint roughness 

number for critically oriented joint sets;    is the joint alteration number for critically oriented joint 

sets;    is the joint water reduction factor and SRF is the stress reduction factor.  

Based on the Q value and the tunnel dimensions, the appropriate support patterns are 

recommended in the literature (Barton et al., 1974).  

2.3.3 Czech classification - QTS index 

The QTS index classification was proposed based on experiences from construction of the Prague 

underground system (Tesař, 1989). The index is calculated as: 

                                             (2.2) 

where    is the compressive strength of the rock,   is the average distance of discontinuities and   

is the depth of the investigated layer.        and   are reduction coefficients depending on the type 

and orientation of discontinuities and on water conditions. 

2.3.4 Qualitative and project specific classification systems 

The qualitative classifications following the ÖNORM B 2203 classify the ground based on its 

behaviour as follows: 

 The decisive parameters influencing the ground behaviour are selected depending on the type 
of geology. Other parameters are important in rocks, other in soils. For example, in volcanic 
rocks, the lithology, strength and types of discontinuities are the most important parameters.  

 Based on evaluation of the geotechnical parameters, hydrological conditions and geometry of 
the tunnel (cross-section area, position), the different types of ground behaviour such as 
ravelling, squeezing, swelling or slaking are predicted and the stability of the opening is 
assessed. The ground is classified into classes, which are characterized by the stand-up time 
of unsupported opening.  

In the design and construction of a tunnel, different classification methods are commonly combined 

and a project specific classification system is defined. This system considers the specifics of the 

local geology, the parameters of the tunnel (geometry, inclination) and the construction technology 

(conventional vs. mechanized tunnelling). The project specific classification system defines 

commonly 3-10 ground classes, which are used to design the tunnel support and to select the 

construction method (e.g. round length in case of conventional tunnelling, mode of the TBM in case 

of the mechanized tunnelling). Importantly, the ground classes also serve as the basis for pricing 
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and scheduling of the construction works. In some types of contract, the payments for construction 

works are determined based on the observed ground classes.    

2.3.5 Comparison of the classification systems 

As is evident from previous sub-sections, the approaches to geotechnical classification differ 

significantly and a clear relation between the systems cannot be found. The relation between 

quantitative/indexing methods such as RMR or Q-system cannot be defined unambiguously, 

because the systems consider different criteria (Goel et al., 1996; Laderian and Abaspoor, 2012). 

Additionally, the evaluated parameters are not exactly measurable, their assessment depends on 

“fuzzy” expert judgement (Aydin, 2004) and the final classification is thus also influenced by the 

expert.  

The qualitative approaches are site specific from their definition, because they take into account 

the characteristics of the tunnel to be built and the construction method. The many modifications of 

existing classification systems show that utilization of an universally valid system is not realistic. 

The only factor, which can be used as the integrating parameter of presented geotechnical 

classification systems and which can serve for their comparison, is the stand-up time of an 

unsupported opening (Barták and Makásek, 2011). 

An illustrative chart linking the three indexing methods (RMR, Q and QTS) with the NATM 

classification used in the Czech tunnels excavated with conventional tunneling is shown in Figure 

2.8. Because of the ambiguous relation between the classification systems, the diagram is 

approximate.   

 

 Figure 2.8: Geotechnical classification systems in tunnelling – comparison of stand-up time for given width 

of the opening predicted corresponding to different geotechnical classes. Source: Barták and Makásek (2011) 
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2.4 Estimation of construction time and costs 

Estimates of tunnel construction time and costs are a fundamental part of the tunnel project 

planning. The time and costs of tunnel construction depend primarily on the following factors: 

 Geological conditions (e.g. mechanical properties of the ground, frequency and orientation of 
discontinuities) 

 Hydrological conditions  

 Frequency of changes of the geological and hydrological conditions - (in)homogeneity of the 
environment 

 Cross-section area of the tunnel 

 Length of the tunnel 

 Inclination of the tunnel  

 Depth of the tunnel/height of overburden 

 Affected structures and systems (requirements on maximal deformations, protection of water 
systems and environment, operational constraints) 

 Quality of planning and design 

 Construction management and control, quality of construction works 

 

The methods of time and costs estimates vary in different project phases. In the early design phase, 

only little information is available about the geotechnical conditions, tunnel design and construction 

technology. Therefore, only rough estimates using the experience and/or data from tunnels 

constructed in the past can be provided.  Analyses of tunnel construction time and costs are 

available in the literature: Burbaum et al. (2005) provides a detailed guidance for tunnel 

construction costs estimates in early design phases, which is based on the experiences in Hessen, 

Germany. Kim and Bruland (2009) study the dependence of tunnel construction time on the 

geotechnical conditions classified using the Q-system (Section 2.3.2) and the cross-section area of 

the tunnel. Zare (2007) and Zare and Bruland (2007) analyse the construction time and costs in 

conventional tunnels. These three studies are based on Norwegian experiences and a detailed 

simulation of the construction process. Farrokh et al. (2012) presents a number of models for the 

prediction of the TBM penetration rate and compares the estimates of these models with data from 

tunnels constructed in the past. Other approach for tunnel construction time estimate in dependence 

on the geology, excavation technology, support system and other factors is presented in Singh and 

Goel (1999). 

In later planning phases, geotechnical surveys are carried out and a detailed tunnel design is 

prepared. Based on this information, more precise time and costs estimates are made taking into 

account the particular activities of the construction process and the associated utilization of 

resources such as material, labour and machinery. The estimates are done by experience cost 

estimators and projects planners. The estimators can use several simulation tools for modelling of 

the construction processes, an overview of the tools is given for example in Jimenez (1999). 

Applications of simulation models for tunnelling are presented in AbouRizk et al. (1999) and (Zhou 

et al., 2008). Some of the models allow to take into account uncertainties of the estimates, as will be 

discussed later in the Section 3.2. It should be noted that construction of tunnels is a chain of 

repetitive activities whose order is strictly given. There is therefore negligible uncertainty in the 

determination of critical path, which is the longest path through a network of construction activities 
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with respect to the given order of activities. From the modelling point of view, this is a big 

advantage compared to non-linear types of structures (Ökmen and Öztaş, 2008).  

In practice, the construction costs and time are often underestimated: (Flyvbjerg et al., 2002) 

show that final construction costs of tunnel and bridge construction projects are, on average, 34% 

above original estimates made at the time of decision to build. The study further shows that there 

has been no improvement over the past seventy years.  The reasons for this systematic 

underestimation are discussed in Flyvbjerg, (2006): First, people tend to “judge future events in a 

more positive light than is warranted by actual experience”; this psychological phenomena is called 

optimism bias. Second, the system of administering and financing of transport projects often 

motivates the people interested in realization of the project to purposely underestimate the 

construction costs and time, because it improves the chance of the project to be financed; this 

political and organizational phenomenon is denoted as strategic misrepresentation.  

Based on results of these studies, the British authorities recommend adjusting the cost estimates 

for bias and risk (HM Treasury, 2003). This adjustment should be based on analysis of projects 

constructed in the past. Extensive statistical analyses of the construction cost increase were made 

(Flyvbjerg and COWI, 2004; Flyvbjerg, 2006). These allowed determining the uplifts of the 

deterministic estimate for different reference project classes. For example, to obtain a cost estimate 

of tunnel or bridge construction projects with 80% probability of not being exceeded, the 

deterministic expert estimate should be increased by 55%. These studies are the first attempts 

known to the author, which aim at quantifying the uncertainty in cost estimates based on analysis of 

data from previous projects. The utilized approach differs from the one presented later in Chapter 7 

of this thesis in two main points: First, the authors do not study the actual cost related to a unit 

length (or unit volume) of the infrastructure but they examine the probability distribution of cost 

overrun. This approach seems to be unlucky. Assuming that the method will be systematically used 

in the practice and the practitioners will become more aware of the uncertainties in the estimates, 

they might start estimating even the deterministic costs more realistically. In such a case, the 

present study of the cost overruns will not be valid anymore. Second, the specifics of individual 

projects (e.g. geology, geometry and layout of the infrastructure, location in a country and 

inside/outside of a city) are not considered in the analysis. The practitioners will hardly accept the 

rough categorization of the projects and neglecting the local specifics. The guidance therefore 

allows a significant space for expert judgement and the benefits of the statistical approach are thus 

significantly reduced.  

2.5 Tunnel construction failures 

Tunnel construction failures are extraordinary events, which have severe impact on the construction 

process. They may cause high financial losses, severe delays or even human injuries or death 

(IMIA, 2006). The control of tunnel failures risks is thus of crucial importance.  

The most frequently reported tunnel construction failures are the cave-in collapses, tunnel 

flooding, portal instability or excessive deformation of the tunnel tube and the overburden. The 

tunnel construction failures can cause damages on adjacent buildings and infrastructure and they are 

thus especially adverse in tunnels built in the cities. Examples of cave-in collapses from the Czech 

Republic are shown in Figure 2.9. 
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Figure 2.9: Examples of a cave-in collapses, which occured during construction of tunnels in the Czech 

Republic: (a) Jablunkov railway tunnel, (b) Blanka road tunnel. Source: www.idnes.cz.  

Efforts to learn a lesson from past errors led to the development of numerous databases of tunnel 

construction failures. The British study HSE (2006) offers a database of over a hundred collapses; it 

is an expansion of the data contained in the preceding publication (HSE, 1996). The study analyses 

the most frequent causes and consequences of the collapses, focusing on tunnels driven in urban 

areas, through soils and lower quality rocks. 

An analysis of causes and failure mechanisms is provided by the diploma thesis of Seidenfuss 

(2006). The database contains over one hundred and ten cases of tunnel excavation failures. The 

work analyses above all the causes of the collapses and measures taken after their occurrence. The 

cases partially overlap with the database of thirty-three failures which was developed within the 

framework of Master thesis by Stallmann (2005). 

To date, the most extensive database of approximately two hundred tunnel construction failures 

was compiled within dissertation by Sousa (2010). The data were collected from the public domain 

and from correspondence with experts. The database summarizes information on the tunnels and on 

development and consequences of the failures. So far, the database is unfortunately not accessible 

online. The geographical distribution of the collected tunnel failures and the distribution of the 

types of involved tunnels are shown in Figure 2.10. 

Figure 2.11 summarizes numbers of accidents recorded in individual databases in the division 

carried out according to the utilized technology of tunnelling. It is noted that making conclusions on 

the quality and safety of particular tunneling technologies based on this data may be misleading 

without taking into consideration the share of these methods on the global tunnel construction. 

No collapse from the Czech Republic was recorded in the above-mentioned databases. The 

possible reasons are a language barrier and the fact that the Czech construction market is closed, 

with a minimum number of foreign subjects acting on it. It is, however, likely that cases from many 

other countries are also missing in the databases. A brief overview of tunnel collapses in the Czech 

Republic is presented in Annex 5. 

 

http://www.idnes.cz/
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Figure 2.10: Database of tunnel failures collected by Sousa (2010): (a) number of collapses collected in 

different continents, (b) share of the tunnel types in the database. 

 

Figure 2.11:  Numbers of accidents compiled in the four databases in the division according to the tunnelling 

technology (* mechanized excavation includes all cases, where “non_NATM” is referred to without any 

more detailed description) 

2.6 Risk management  

Risk management is an integral part of majority of infrastructure projects. Many methodologies and 

guidance have been developed. This section gives a brief overview of the methodologies and their 

applicability. 

Section 2.6.1 describes a general concept of risk management recommended by ISO 31000:2009 

guidelines on risk (ISO, 2009). The thesis also takes over the definition of risk introduced by this 

document. The risk is thus defined as: 

“effect of uncertainty on objectives”. 

Section 2.6.2 concerns with risk management of construction projects and of tunnels in 

particular. In Sections 2.6.3 and 2.6.4, the role of risk in procurement and insurance of the tunnel 

projects is discussed. 
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2.6.1 Risk management process 

The generic process for risk management is depicted in Figure 2.12. 

 

 

Figure 2.12: Risk management process according to ISO 31000:2009. 

The first, essential step of the process is establishing of the context. It consists in defining scope and 

aims of the risk management process, describing criteria of success and explaining the constraints 

and limitations. The risks must always be defined based on the stakeholders’ objectives. 

The risk assessment contains three steps: First, phenomena and events, which might influence 

the stakeholders’ objectives in either positive or negative way, are identified (risk identification). 

Second, the causes and likelihood of the events and their impacts are analysed on a qualitative or 

quantitative basis (risk analysis). Third, the results of the risk analysis are compared with the 

acceptance criteria and with the objectives and decisions are made how to treat the risks (risk 

evaluation).  

For risk treatment, four general strategies (also known as “4Ts of risk response”) can be applied: 

 Tolerate the risk: It can be applied, if the risk is acceptable.  

 Treat the risk: Means to take measures to decrease the risk.  

 Transfer the risk: Transfer the risk to another stakeholder or insurance company. 

 Terminate the activity or project, if the risk is inacceptable and other strategies are not 
applicable. 

The implementation of the selected risk management strategy must be properly controlled. At each 

stage of the process, the findings must be properly communicated with the stakeholders. The 

findings and decisions should be repeatedly revised whenever some new information is available or 

when the conditions change. 
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2.6.2 Risk management of construction projects  

Application of risk management in construction industry has been motivated by increasing 

complexity of the construction projects and by pressure for cost savings and for construction time 

reduction. Identification of risks in early design phase allows significant reduction of life-cycle 

costs through improvements of the design and planning and through appropriate treatment of the 

risk in the later phases. Generic guidance for the risk management process in construction projects 

can be found for example in Flanagan and Norman (1993), Edwards (1995), Wang and Roush 

(2000), Revere (2003), Institution of Civil Engineers et al. (2005), Smith et al. (2006) and Rozsypal 

(2008). A risk management section is also included in the broadly used manual of project 

management (Project Management Institute, 2008).  

Some manuals have been developed specifically for the underground construction and 

tunnelling projects (Clayton, 2001; Eskesen et al., 2004; Staveren, 2006). In these manuals, a 

special attention is paid to the geotechnical risks, which play a crucial role in the underground 

construction. 

2.6.3 Risk and procurement of tunnel projects  

An essential issue in the construction project is the selection of appropriate procurement method, 

which implies the sharing of risks between the stakeholders (project owner, designer, construction 

company). Several forms of contract are used in the practice, which enable different types of risk 

sharing (see Figure 2.13). A comprehensive manual for planning and contracting of underground 

construction projects derived from the USA practice is given in Edgerton (2008). Love et al. (1998) 

present a procedure for selection of the optimal procurement method in building projects. The 

infrastructure procurement practice in the USA is discussed in (Pietroforte and Miller, 2002) and 

experiences from Norway are summarized in Lædre et al. (2006).  

 

Figure 2.13: Selected types of contract and risk sharing adapted from (Flanagan and Norman, 1993) 

Risk assessment is beneficial for every construction project. However the contract forms 

transferring a significant part of the risks to the contractor require an especially detailed risk 

assessment, because evaluation of the risks is the essential basis for the contractor in determining 

the bid price and schedule. Additionally, the risk assessment has a high importance in the partnering 

types of contract, so called Public Private Partnership (PPP) projects – see e.g. (Li et al., 2005;Aziz, 

2007). 
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2.6.4 Risk and insurance of tunnel projects  

Insuring of construction projects is a common practice in countries such as USA or Great Britain. 

The insurers offer project specific insurance covering for example claims for injury, third party 

property damage or damage to the constructed structure, material and machinery. Standard types of 

insurance schemes for construction projects are the Contractors All Risk (CAR) insurance or 

Construction Project All risk Insurance (Allianz Insurence, n.d.). Because the private financing of 

the tunnel project has increased in recent years, demand for new types of insurance schemes is 

growing: for example Anticipated Loss of Profit / Delay in Start Up (ALOP/DSU) insurance 

(Landrin et al., 2006). 

After the insurance companies experienced major losses on insured underground project, they 

developed codes for tunnel project risk management (ABI and BTS, 2003; ITIG, 2006). 

Compliance with the codes is now required from most of the insured projects. Even if the codes are 

successfully applied in the practice (Spencer, 2008), insuring of tunnel projects is still very risky 

and the insurers must search for methods to improve the assessment of construction project risks. 

2.7 Uncertainties in the tunnel projects 

All phases of the tunnel project are influenced by numerous uncertainties. These can be categorized 

into two groups:  

 Usual uncertainties in the course of tunnel design, construction and operation 

 Occurrence of extraordinary events (failures) causing significant unplanned changes of the 
expected project development 

Both types of uncertainties influence the stakeholders’ objectives, which can be expressed using 

performance parameters such as costs, time, quality etc. Examples of the uncertainties and 

performance parameters, in division to the project phases, are given in Table 2.3. 

Table 2.3: Examples of uncertainties and the influenced performance parameters in the tunnel projects 

Planning phase Construction phase Operation phase 

Usual uncertainties  Usual uncertainties  Usual uncertainties 

- quality of planning team - geological + hydrological cond. - number of vehicles 

- quality of designer - performance of the technology - quality of maintenance 

- geotechnical survey - quality of organization and works - durability of materials 

- tendering  - prices of materials, labour… 

Extraordinary events Extraordinary events Extraordinary events 

- Strong public aversion - Tunnel collapse or flooding - Fire 

- Rejection of financing - Unpredicted existing structures - Vehicle accident 

- Legislative obstructions - Extensive deformations  - Tunnel collapse 

Performance parameters  Performance parameters Performance parameters 

- Land acquisition time and costs - Construction costs - Income/availability 

- Design cost, time and quality - Construction time - M&O costs 

- Time for acquisition of regulatory - Quality - Environmental impacts 

approvals and permits - Financing - Life time 
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Distinguishing between the two types of uncertainties is necessary, because the principal divergence 

of their nature requires different approaches to their analysis. It is further evident that the usual 

uncertainties influence the occurrence of extraordinary events. For example, unpredicted geological 

conditions and poor quality of construction management is likely to lead to a tunnel collapse. These 

dependences must therefore be considered in the quantitative risk analysis.   

For the modelling purposes it is further convenient to distinguish between the aleatory and 

epistemic uncertainties: 

 Aleatory uncertainty is the natural, intrinsic randomness in the analysed system, which cannot 
be reduced.  

 The epistemic uncertainty is the uncertainty resulting from incomplete knowledge of the 
system and it can be reduced when additional information is available.  

To give examples, the geotechnical parameters (e.g. number and orientation of discontinuities, 

compressive strength) can include both types of uncertainties. The aleatory uncertainty corresponds 

to the spatial randomness of these parameters (the discontinuities are not equally distributed in 

space). The epistemic uncertainty results from the fact that we are not able to describe the 

randomness with certainty because we only have limited knowledge about the geology (e.g. from 

local boreholes). A thorough discussion on aleatory and epistemic uncertainty is available in Der 

Kiureghian and Ditlevsen (2009). The authors claim that, in principle, distinguishing between the 

two types of uncertainties depends on the view and intentions of the modeller, i.e. on the judgment, 

whether or not the uncertainty can be reduced in later phases of the analysis. 

2.8 Summary 

Chapter 2 introduces the reader into the topic of tunnel project planning and management. While the 

remaining part of the thesis only deals with modelling of tunnel construction, Sections  2.1, 2.6 and 

2.7 put the construction phase into the context of project’s life cycle. It is shown that the time and 

costs of construction are not the only criteria for making decisions, but certainly very important 

ones. Additionally, it is demonstrated that analysing the uncertainties and risk is crucial for 

identifying optimal solutions in all phases of the project. A categorization of uncertainties 

influencing the tunnel projects is brought in this chapter as well, since it is important for their 

proper analysis and modelling. 

Sections 2.2 - 2.5 briefly discuss the tunnel construction itself. The commonly used tunnelling 

technologies are introduced in Section 2.2 with particular attention to the conventional tunnelling, 

which is used in application examples later in this thesis. Because the geological conditions and 

their proper description is essential for the tunnel construction and for the prediction of the 

construction time and costs, Section 2.3 gives a summary of the widely used geotechnical 

classification systems. It shows that the description of geotechnical conditions is highly site-

specific. Therefore, the transfer of experiences between different projects is not a straightforward 

task and it cannot be easily automated. This issue will be discussed later in relation to the data 

analysis in Chapter 7. Section 2.4 briefly explains, how the construction time and costs are 

estimated in different phases of the project. At present, the deterministic estimates are used in the 

majority of cases. However, the tunnelling community recently recognised the limitations of the 

deterministic approach and more attempts are made to quantify the uncertainties and risks (see 

Section 3.2). Finally, Section 2.5 discusses the possibility of occurrence of extraordinary events 

(failures) during the tunnel construction. These events represent a high risk for the tunnelling 
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procedure, as is shown in several studies collecting information on past events. Modelling of these 

events and their impact is discussed also in remaining part of the thesis. 

 



  

 

25 

Approaches and methods for risk analysis are presented in this chapter. As was introduced in 

Section 2.6, the risk is defined as “effect of uncertainty on the objectives”. The uncertainties 

influencing the tunnel project were briefly discussed in Section 2.7; it is distinguished between the 

usual uncertainties and extraordinary events. The objectives of a tunnel construction (measurable 

performance parameters) are as follows: 

 Completion of the construction on time 

 Completion of the construction within the budget 

 Fulfilment of the technical requirements 

 Ensuring safety during the construction 

 Minimization of impact on operation of adjacent structures  

 Minimization of damage to third party property 

 Avoidance of negative reaction of media and public 

In the following, the text mostly focuses on effect of uncertainty on the construction time, partly 

also on the construction costs, the other performance parameters are not explicitly considered in this 

thesis.  

Note that the risk is not a universal quantity. The objectives of individual stakeholders can differ 

and they also develop during the project. Additionally, the perception of the consequences of not 

meeting the objectives is also individual. Therefore, the risk must always be analysed with regard to 

the context and objectives.  

The state-of-the-art of tunnel construction risk analysis is summarized in this chapter: Section 

3.1 is focused on the qualitative method; Section 3.2 provides an overview of approaches to 

quantitative risk analysis. The purpose and limitations of the qualitative and quantitative approaches 

are discussed. Section 3.3 introduces selected methods and models for analysis of uncertainty and 

risk, which are utilized later in this thesis.  

3 Analysis of tunnel construction risk 
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3.1 Qualitative risk analysis 

The qualitative risk analysis (QlRA) aims at identifying the hazards threatening the project, to 

evaluate the consequent risks and to determine the strategy for risk treatment. The QlRA serves as a 

basis for preparation of contracts, for management of the project and for allocation of 

responsibilities amongst the stakeholders or their employees and representatives.  

The hazards are identified and collected in the so-called risk registers. Use of risk registers is 

recommended by most of the manuals and codes mentioned in Section 2.6. The risk registers should 

cover all thinkable events and situations, which can threaten the project. Therefore, experts from 

many different areas and with varying experiences should participate on the hazard identification 

(Staveren, 2006; ITIG, 2006). In QlRA it is not necessary to distinguish the different characters of 

the hazards, such as if the hazard belongs to the usual uncertainties or extraordinary events, or if the 

uncertainty is aleatory or epistemic (see Section 2.7). 

To evaluate the risks, varying classification and rating systems describing the probability of 

occurrence of a hazard and expected consequences in verbal form are used. Examples of such rating 

systems are given for example in Eskesen et al. (2004), Tichý (2006), Edgerton (2008), Shahriar et 

al. (2008), Hong et al. (2009) and Aliahmadi et al. (2011). The rating of the probability and 

consequences is combined in a risk index or by means of a risk matrix, in order to evaluate the risk.  

The risk matrices assign a verbal classification of the risk to every combination of the 

probability and consequence rating. An example risk matrix is given in Table 3.1. 

The risk indexes are usually calculated as product of the probability rating and consequence 

rating. To give an example, the Failure Mode and Effect Analysis (FMEA) is a method based on 

classification of risk using the Risk Priority number (RPN). The risks are collected in a database 

(similar to a risk register) and evaluated by the RPN, which is defined as the product of ratings of 

occurrence, severity and detectability. Example applications of FMEA in the construction industry 

are presented in Abdelgawad and Fayek (2010) or Špačková (2007). 

Table 3.1: Example risk matrix (source: Eskesen et al., 2004) 

       Consequence 

Frequency  Disastrous Severe Serious Considerable Insignificant 

Very likely  Unacceptable Unacceptable Unacceptable Unwanted Unwanted 

Likely  Unacceptable Unacceptable Unwanted Unwanted Acceptable 

Occasional  Unacceptable Unwanted Unwanted Acceptable Acceptable 

Unlikely  Unwanted Unwanted Acceptable Acceptable Negligible 

Very unlikely Unwanted Acceptable Acceptable Negligible Negligible 

 

Based on evaluation of the risks, the strategies for their treatment and the responsibilities are 

determined. All information (causes and consequences of the hazards, risk classification, 

responsibilities, treatment strategies) is collected in the risk register, which should be actively used 

and updated in all phases of the project (ITIG, 2006).  

It is noted, the risk registers are sometimes used as a basis for quantification of the overall 

project risk. For example Eskesen et al. (2004) recommend the following procedure for quantitative 

risk assessment: Each identified hazard is assigned with a frequency (probability) of occurrence and 

consequence (e.g. the expected financial loss). The individual risk for each hazard is estimated as 

product of the frequency and consequence. The total projects risk is determined as the sum of 

individual risk.  
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Arguably, this approach is likely to lead to an incorrect estimation of risk. The reason is that the 

hazards collected in the risk registers (or other risk database) are often overlapping, they are not 

identified on the same level of detail; the relations amongst the risks are not described. Therefore, 

pure summation of the individual risks in the database is not possible, as they do not fulfil the 

condition of mutual exclusivity. For example, hazards such as “inadequate geotechnical 

investigation”, “TBM gets stuck” and “high wear of the TBM cutters” can be identified in the risk 

register. It is evident, that these phenomena are strongly interdependent: The inadequate 

geotechnical investigation can lead to the selection of wrong type of TBM, which can result in high 

wear of the TBM cutters or even in the TBM being stuck in location with unpredicted geology. To 

quantify the risk, the relations amongst these phenomena must be properly analysed and evaluated.  

3.2 Quantitative analysis of uncertainty and risk  

The quantitative risk analysis (QnRA) aims to numerically evaluate the risk. Compared to the 

QlRA, the QnRA requires a clearer structuration of the problem, detailed analysis of causes and 

consequences and description of the dependences amongst considered events or phenomena. The 

QnRA provides valuable information for decisions-making under uncertainty such as for the 

selection of appropriate design or construction technology (see Section 2.1) and it allows efficiently 

communicating the uncertainties with stakeholders. It also enables to determine the bid price, time 

of completion and insurance premium (see Sections 2.4 and 2.6) with a required level certainty on 

an objective and quantitative basis.  

The selection of tools for QnRA depends on the objectives of the risk analysis and on the type of 

uncertainties, which are analysed. An overview of the approaches is given in Table 3.2.  

Table 3.2: Overview of approaches to quantification of uncertainty and risk (only effect on construction 

time and costs is considered) 

Extraordinary     Usual uncertainties 

Events  Not included Included 

Not included  Deterministic estimate of constr. time Probabilistic estimate of construction  

  and costs (see Section 2.4)* time and costs by means of:   

   - Monte Carlo (MC) simulation 

   - Bayesian Networks (BN) 

   - Analytical solution 

Included  Deterministic estimate of constr. time and costs Complex probabilistic model using: 

  and prob. estimate of delay and damage using: - Monte Carlo (MC) simulation 

  - Fault tree analysis (FTA) - Bayesian Networks (BN) 

  - Poisson model  - Analytical solution 

  - Event tree analysis (ETA) ** 

  - Bayesian Networks (BN)  

* the estimates can be accompanied by qualitative risk analysis 

** FTA and Poisson model is commonly used for assessment of probability of a hazard occurrence; ETA for 

analysis of consequences 

 

Several approaches for analysing the extraordinary events have been used in the literature and 

practice. Eskesen et al. (2004) and Aliahmadi et al. (2011) assess the expected value of construction 

risk for different tenderers in order to select the best contractor. Sturk et al. (1996) use a Fault tree 
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analysis (FTA) for the estimation of the probability that the tunnel construction harms trees in a 

park, in order to select an optimal construction strategy. Jurado et al. (2012) estimate the probability 

of ground water related hazards using the FTA. Šejnoha et al. (2009) present a methodology 

combining FTA and Event tree analysis (ETA) for quantification of the risk of extraordinary events 

in the course of tunnel construction. Sousa and Einstein (2012) introduce a dynamic Bayesian 

networks (DBN) model for modelling the risk of construction failure. The model estimates the 

expected utility as a sum of the expected costs and the risk of a tunnel collapse. The full probability 

distribution of the construction costs is not presented.  

Other models have been developed for modelling the usual uncertainties. In Ruwanpura and 

Ariaratnam (2007), tools for simulation of the tunnel drilling process are presented, which include 

Monte Carlo (MC) simulation for the evaluation of the usual uncertainties in predicting construction 

time and costs. In Chung et al. (2006) and in Benardos and Kaliampakos (2004) observed advance 

rates are used for updating the predictions of advance rates and resulting excavation time for the 

remaining part of the tunnel, by means of Bayesian analysis and artificial neural networks, 

respectively. A well-known model for probabilistic quantification of risks of the tunnel construction 

processes is the Decision Aids for Tunnelling (DAT), developed in the group of Prof. Einstein at 

MIT. It has been applied to several projects, an overview of which is given for example in (Min, 

2008). DAT uses MC simulation for probabilistic prediction of construction time, costs and 

consumption of resources. It takes into account the geotechnical uncertainties, which are modelled 

by means of a Markov process (Chan, 1981), as well as the uncertainties in the construction 

process. The updating of the model predictions with observations from the construction was 

implemented by Haas and Einstein (2002). In these applications, the coefficients of variation of the 

total construction time and cost estimated by DAT are typically less than 5%. This computed 

uncertainty is too low when compared to the one observed in practice, e.g. in Flyvbjerg et al. (2002) 

– see Section 2.4.  

Only few examples can be found in the literature, which include both the usual uncertainties and 

extraordinary events: Isaksson and Stille (2005) and Isaksson (2002) suggest an analytical solution 

for a probabilistic estimation of tunnel construction time and cost and apply the model to a case 

study of the Grauholz tunnel in Switzerland. The model considers the correlations in the 

construction performance and costs. Grasso et al. (2006) and Moret (2011) present an estimate of 

the construction time and costs using an updated version of the DAT model. The later applies the 

model to a case study of a new rail line in Portugal. The model is based on detailed modelling of 

individual activities; it includes the correlations in the construction performance and costs. Steiger 

(2009) suggests a model combining Bayesian network for representation of geotechnical 

uncertainties and Monte Carlo simulation for modelling of the construction process. However, the 

model of geology, even if very detailed, is not connected with the model of construction process 

and a significant part of the uncertainty is thus not captured.  

Limitations of existing models 

The models available in the literature were developed with different objectives; some of them 

focused only on very specific groups of hazards and risks. Some common limitations can be, 

however, identified. The existing models do not include the epistemic uncertainty, which results 

from the lack of knowledge the analyst faces during the design phase. Most of the models do not 

consider the effect of common factors, which influence the whole construction process and thus 

introduce strong dependences into the construction performance. The updating of the predictions 

with new information is commonly not considered. Therefore, none of the existing models fulfils all 
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requirements that are deemed important for a realistic estimation of construction time and costs; 

these requirements are summarized later in Section 5. This shortages motivated the development of 

Dynamic Bayesian Networks (DBN) model presented in this thesis.  

Additionally, the existing models strongly rely on expert assessment of the input parameters. 

These can be very unreliable, especially in assessing the variability and correlations of the 

construction performance and in the prediction of rare events (Moret and Einstein, 2011a). No 

systematic statistical analysis of the tunnel construction performance data, which might serve as a 

basis for probabilistic modelling in the future tunnels, is available in the literature. Methodology for 

such analysis is presented in Chapter 7. 

3.3 Introduction to selected methods for uncertainty and risk 

modelling 

Principles of selected methods and models used for the quantitative analysis of the tunnel 

construction risk are introduced in this section. The focus is on those, which are utilized later in this 

thesis  

The text assumes a basic knowledge of the probability theory, such as definition of random 

events, random variables, probability distributions or random processes. A brief summary of 

terminology, definitions and notation is given in Annex 1. For obtaining a complex theoretical 

background, publications Benjamin and Cornell (1970), Melchers (1987) and Kottegoda and Rosso 

(2008) are recommended. 

3.3.1 Fault tree analysis (FTA) 

FTA is a technique for analysis of the causes and estimation of the probability of an undesired event 

(a top event in the FTA terminology). The top event corresponds to a particular failure mode of the 

system (e.g. cave-in collapse). The fault tree (FT) itself is a graphical model displaying the 

combinations of events (e.g. geotechnical faults or human error) that may result in the occurrence of 

the top event. The method is in detailed described for example in Stewart and Melchers (1997) and 

Stamatelatos and Vesely (2002). 

FTA has an important disadvantage that is its limited ability to deal with dependent systems. In 

classical FTs, the basic events are supposed to be statistically independent. The dependence 

between particular events (random variables) can be included by repeating the branches of the tree 

or by other advanced techniques. These methods, however, lead to exponential increase in the 

complexity of the FT (Khakzad et al., 2011; Mahboob and Straub, 2011).  

Because there are strong dependences between the events and phenomena leading to a tunnel 

construction failure, the application of FTA for estimations of its probability is not very convenient. 

For this reason, FTA is not discussed in this thesis. The technique is mentioned here, because it is 

frequently used in the analysis of tunnel construction risks (see Section 3.2). The applications are 

not likely to provide a reliable estimate of the probability of the failure. On the other hand, 

application of FTA helps to understand and structuralize the problem and it can thus be beneficial 

as a complementary method for the analysis of risks.  
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3.3.2 Event tree analysis (ETA) 

The event tree analysis (ETA) is a graphical technique for identifying and evaluating possible 

scenarios following an initiating event (for example a cave-in collapse). The scenarios correspond 

to different combinations of events (consequences) brought about by the initiating event. An 

example of ET is shown in Figure 3.1. The events at each branching of the ET must be defined as 

mutually exclusive. This assures, that also the identified scenarios are mutually exclusive. 

Commonly each branch has only two possibilities: the event either occurs or not 

 

Figure 3.1: Example of an Event tree analysis   

The example ET analyses the risk associated with the occurrence of a cave-in collapse (event  ) 

during a tunnel construction.  Only two scenarios are considered in this simple example: A house 

above the tunnel is affected and damaged due to the cave-in collapse (event  ) or the house is not 

affected (complementary event  ̅). The probability of damage to the house conditionally on the 

cave-in collapse is assessed as     |      , the probability of the complementary event (no 

damage) equals     ̅|         |      .  

When evaluating the ET, the probabilities of the scenarios (here the unconditional probabilities 

of events   and  ̅) are calculated and the mean damages associated with each scenario are assessed. 

Finally, the risk resulting from each scenario is quantified as the product of the scenario’s 

probability and mean damage. Because the scenarios represent mutually exclusive events, the total 

risk equals the sum of the risks from individual scenarios.  

The probabilities of the initiating event and the conditional probabilities of the consequent 

events can be assessed by experts or with the use of the FTA. For more details on ETA the reader is 

referred to Stewart and Melchers (1997) and Ericson (2005). 

3.3.3 Bernoulli process, Binomial distribution and Poisson process 

Bernoulli process is a discrete stochastic process characterizing a sequence of binary random 

variables. In the following, the random variables describe the occurrence of failures in time/space, 

i.e. they represent a series of events with two outcomes “failure” and “no failure”. The probability 

of failure in a time/space segment is denoted as  . Lets assume that the occurrences of failures in 

individual segments are mutually independent, that the probability of more than one failure 

occurrences in one segment is negligible and that   is constant for all segments. Then the number of 

failures,   , in a series of   time/space segments has a binomial distribution with parameters   and 

  described by the probability mass function (PMF): 
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The expected number of failures, denoted as    equals     . 

 If the number of segments   is large and the probability of failure in one segment   is small, the 

PMF of Eq. (3.1) can be approximated as follows 

    
         [     | ]  

   

   
                       (3.2) 

The expression in Eq. (3.2) is the PMF of the Poisson distribution with parameter  . Both the 

mean and variance of this distribution are equal to  . 

The Poisson process is a random process      , whose value at time/in position   is the 

(random) number of failures, which occur in the interval 〈   〉. The Poisson process is thus counting 

the number of failures over time/space. The number of failures       at time   has the Poisson 

distribution. To include the variable  , it is convenient to write the PMF of Eq. (3.2) as 

    
           [     |   ]  

     

   
                        (3.3) 

where   is the parameter of the Poisson process.   is commonly referred to as the average rate of 

arrival, in case of failure modelling it is more specifically denoted as failure rate. It holds   
       , where      is the expected number of failures at time (position)  .  

The occurrence of failures must satisfy following assumptions to be representable by the 

Poisson process (compare to the assumptions for the Bernoulli process stated above):  

 The failure rate does not change in time/space. A Poisson process fulfilling this assumption is 
called homogeneous. 

 The probability of two or more failures in a short segment of time/space is negligible. This 
assumption is easily fulfilled when rare events are modelled.  

 The number of failures in any interval of time is independent of the number of failures in any 
other nonoverlapping interval of time. Because of this property, the Poisson process is called 
memoryless; i.e. past observations do not influence the probability of future events. 

In some cases the first assumption is not fulfilled and the parameter of the Poisson process,     , 
changes in time/space. Then we speak about a nonhomogeneous Poisson process and the PMF of 

number of failures       at time   equals 

    
            

       

   
   (     )                 (3.4) 

where      ∫     
 

 
   is the mean of the Poisson distribution.  

If the occurrence of failures follows a homogeneous Poisson process, the time/space interval,  , 

between two occurrences has an exponential distribution with parameter   and probability density 

function (PDF): 

                    (3.5) 

The Poisson process is used in many engineering applications (Cornell, 1968; Cooke and Jager, 

1998; Ditlevsen, 2006; Yeo and Cornell, 2009). In Chapter 4 of this thesis it is applied for 



32 Analysis of tunnel construction risk 

 

modelling of failures emerging in the course of the tunnel construction. For more details about the 

stochastic process and probabilistic models the reader is referred to Benjamin and Cornell (1970) 

and Kottegoda and Rosso (2008). 

3.3.4 Markov process 

Markov process is a stochastic process having the Markov property. A stochastic process has a 

Markov property, if at any point of the process the future behaviour of the system depends only on 

the present state and not on the past states. This property is also called memorylessness.  

A Markov process with discrete variables is called a Markov chain. The Markov chain is 

commonly defined for discrete steps of time or space, i.e. the variables are changing from one step 

to the other. Note that the Poisson process (Section 3.3.3) is a special case of the Markov chain.  

A homogeneous Markov chain containing a sequence of discrete random variables 

            with   states is defined by  

 The probability distribution of the initial state    
(  

   )    [    ]          . 

 The transition probabilities       [    |      ]                      , 
representing the probability that the variable    is in the  th state given that the variable at the 
previous step,     , is in the  th state.  

In case of a non-homogeneous Markov chain, the transition probabilities change in time/space. In 

the following, only the homogeneous Markov chain is considered. 

The transition probabilities can be conveniently organized in a transition probability matrix 

   [

      

      

 
 

   

   

    
          

] (3.6) 

and the marginal probability distribution of the variable    can be organized in a state probability 

row vector 

    [   
(  

   )    
(  

   )      
(  

   )]. (3.7) 

The probability distribution of    in the  th step of the Markov chain can be thus calculated as  

       
  (3.8) 

The Markov processes are used in many engineering applications such as in deterioration modelling 

and maintenance planning (Kobayashi et al., 2012) or fault detection and prognosis (Ge et al., 

2004). (Chan, 1981) suggests utilization of Markov process for modelling the geotechnical 

conditions along the tunnel axis. This approach is applied to the DBN model presented in Chapter 

5. For more details on the Markov processes and Markov’s chains the reader is referred to Parzen 

(1962) or Benjamin and Cornell (1970). 
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3.3.5 Bayesian networks 

Bayesian networks (BN) are directed acyclic graphical models for representation of a set of random 

variables. Random variables are symbolized by the nodes of the BN, the dependences between them 

are depicted by directed links. The set of random variables             is fully described by the 

graphical structure and the conditional probability distribution of each node    given its parent 

nodes       . Parent nodes are all nodes with links pointing towards   . The joint probability mass 

function of             is expressed using the chain rule as  

                ∏     |      
 
     (3.9) 

where     |        is the conditional PMF of variable    given its parent variables. The notation 

used here applies to discrete random variables. Whenever no ambiguity arises,                is 

used as the short notation for            
              and similarly     |        for 

   |         |        in the rest of this thesis. 

An example of a simple BN is depicted in Figure 3.2. This BN contains four random variables: 

geology  , construction method  , construction time   and construction costs    The construction 

method   is defined conditionally on geology   (i.e.   is a parent node of   and, correspondingly, 

  is a child node of  ), the excavation time   is defined conditionally on the construction method 

  and costs   are defined conditionally on both   and  .  

 

Figure 3.2: Example of a Bayesian network   

 

Following Eq. (3.1), the joint PMF of this BN is 

                   |     |     |     (3.10) 

where      is the PMF of   and    |  ,    |   and    |     are conditional PMFs of  ,   and 

 , respectively. The values of the conditional PMFs are conveniently organized in conditional 

probability tables (CPTs). Example of CPTs are provided in the application example presented in 

Section 5.3 and in Annex 2. 

The efficiency of the BN stems from the decomposition of the joint probability distribution into 

local conditional probability distributions according to Eqs. (3.9) and (3.7). This decomposition is 

made possible, because the graphical structure of the BN encodes information about dependence 

among random variables. From the BN graph, one can directly infer which random variables are 

statistically independent of each other (d-separated in BN terminology). The d-separation property 

follows directly from the type of connections amongst variables: 

Time Costs 

constr.
Method

 Geology
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 Serial connection – in Figure 3.2 for example the connection between  ,   and  . If the 
middle node of the serial connection, i.e. the construction method  , is known (fixed), 
variables   and   become statistically independent; i.e. any information about   does not 
alter the probability distribution of   if   is fixed. 

 Diverging connection - in Figure 3.2 for example the connection between  ,   and   if the 
link between   and   was deleted. It is a connection between a parent node and its child 
nodes. In diverging connection, the child nodes are d-separated if the parent node is fixed 
(known).  

 Converging connection - in Figure 3.2 for example the connection between  ,   and   if the 
link between   and   was deleted. It is a connection between parent nodes and their one child 
node.  In converging connection, the parent nodes are independent, if there is no evidence 
about the child node or any of its descendants.  

For a given set of nodes   it is possible to identify another set of nodes, which, when fixed, d-

separates   from the rest of the network. This set is called the Markov blanket of  . 

Several inference algorithms exist for evaluating the BNs, i.e. for calculating the marginal 

distributions of selected variables, for including the evidence and for learning the parameters of 

BNs. The algorithms are thoroughly discussed later in Section 6.1. 

The use of BN in engineering applications has grown significantly in recent years (Weber et al., 

2010). One reason is their graphical nature that facilitates communication of the model 

assumptions. Secondly, the BNs allow easily to update the prediction when additional information 

becomes available. Finally, the BN allows decomposing large models into local probabilistic 

dependences. Therefore, they are especially suitable for engineering applications, where statistical 

data is often sparse, but where conditional probability distributions of variables can be modelled by 

means of engineering models, expert judgment or other known relations. Applications of BN in 

engineering problems can be found for example in Faber et al. (2002), Grêt-Regamey and Straub 

(2006), Neil et al. (2008), Castillo et al. (2008) or Khakzad et al. (2011). For a more detailed 

introduction to BN the reader is referred to Jensen and Nielsen (2007) or Koski and Noble (2009). 

3.3.6 Dynamic Bayesian networks 

Dynamic Bayesian networks (DBN) are a special case of BN used for modelling of random 

processes. An example is depicted in Figure 3.3. The  th slice of the DBN represents the state of the 

system in time/position  .  

 

Figure 3.3: Example of a dynamic Bayesian network   

In the example of Figure 3.3, each slice   consists of two random variables geology    and unit 

excavation time   . The joint probability of    and    is obtained as 

          ∑            |         |       
 (3.11) 
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where         is the marginal probability distribution of random variable      in slice      , 
    |      is the conditional probability describing changes of geology between neighbouring 

slices and     |    is the conditional probability of    in slice   defined conditionally on geology in 

the same slice.  

Because the DBN contains only links between neighbouring slices, i.e. the variable    is only 

defined conditionally on     , the sequence of variables             represents a discrete-time 

Markov chain (see Section 3.3.4). 

Applications of DBN in engineering problems can be found for example in Straub (2009), 

Straub and Der Kiureghian (2010) or Hu et al. (2011). 

3.3.7 Utility theory in decision analysis 

The methods introduced in previous sections serve for modelling the uncertainties and quantifying 

the consequences. However, how can this knowledge be used for making decisions? How can the 

preferences of the decision makers be expressed in a consistent and quantitative way? 

For this purpose, the concept of utility can be successfully used (Keeney and Raiffa, 1993). 

Utility is an abstract measure of satisfaction. It is a formalized quantitative characteristic of the 

decision maker(s). Utility allows modelling the decision maker’s attitude to uncertain parameters, 

for example his perception of the potential high losses or uncertain gains. Additionally, utility 

allows incorporating different criteria (attributes) into the decision analysis: Different quantities 

influencing the decision (e.g. costs, time, environmental impacts) can all be expressed as the 

dimensionless utility
1
; the transformation is made in such a way that it reflects the relative 

importance of each criterion. If the utility is properly modelled, the option with highest expected 

utility is the most optimal one from the analysed set of options (Benjamin and Cornell, 1970).  

The concept of utility will be illustrated on transformation of incomes/losses from a point of 

view of two entities: a construction company and an insurer. The example is adapted from Straub 

(2011). The utility functions are depicted in Figure 3.4 for a range of loss/income of -10
6
 to 10

6
 

Euro. The construction company is significantly smaller than the insurer, a loss in order of 10
6
 Euro 

is liquidating for the company, the utility of high losses therefore decreases very quickly. The 

benefit from an additional income generally decreases with the wealth of the company. The utility 

function of the construction company is therefore concave. For the insurance company, loss/income 

in the displayed interval is an everyday reality. Indeed, the size of the insurer and the ability to 

cover losses of the clients is the core of its activity. The utility function of the insurer is therefore 

linear in the given range. 

                                                 
1
 Because the utility theory allows comparison of different criteria, it is regarded as a type of MCA (Department for 

Communities and Local Government, 2009). The use of MCA and CBA in transport project planning was discussed in 

Section 2.1. These applications, however, do not consider the uncertainties of the input parameters and the concept of 

utility. 
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Figure 3.4: Utility function of a construction company and a large insurer. Source: (Straub, 2011). 

Determining the utility function is a challenging task, which has not been studied sufficiently in the 

civil engineering field. Generally, the utility can be determined from previous decisions of the 

company and/or it can be based on questioning the managers (using a set of so called lottery 

questions
2
). Determining the utility for society or a public body is even more difficult. Moreover, 

the utility function is likely to change in time. In spite of the difficulties, introducing the utility 

concept into decision-making in civil engineering projects would allow making consistent and 

rational decisions. 

The utility concept is only illustrated for monetary values. Transforming and comparing 

different criteria is the topic of Multi-attribute utility theory (MAUT). MAUT is relevant for the 

infrastructure projects planning, but it exceeds the scope of this thesis. For more details the reader is 

referred to (Keeney and Raiffa, 1993) or (Jordaan, 2005). Applications of utility concept in 

construction projects can be found for example in Dozzi et al. (1996) or in Lambropoulos (2007).  

3.4 Summary 

This chapter has two main parts. The first part (Sections 3.1 and 3.2) discusses the diversity of 

the approaches to tunnel risk analysis available in the literature. It is shown that the diversity results 

from the varying objectives and purposes of the individual analyses.  

It is important to take into account the abilities and limitations of qualitative and quantitative 

approaches. The qualitative approaches (risk registers, FMEA etc.) summarized in Section 3.1 serve 

                                                 
2
 The manager is, for example, asked to answer the following problem: The company can either get 5000 with certainty 

or participate in a lottery, where it can win 10000 with probability   or loose (get 0) with the probability      . The 

manager is asked to give the value of  , for which both options have the same utility for the company (i.e. the expert is 

indifferent between the options). If the company has a linear utility in this range, the manager should asses      , 

because 
 

 
          

 

 
             . A risk averse manager (with concave utility function) will provide 

     , because for him the utility of gaining 10000 is less than twice as much as utility of 5000. 
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as a basis for project risk management, for prioritizing the hazards and risks, for developing risk 

treatment strategies and for allocating the responsibilities. The identification of hazards carried out 

within a qualitative analysis is a basis for risk quantification. However, because the qualitative 

approaches do not take into consideration the interconnectivity and dependences amongst different 

hazards, they cannot be used for quantitative estimate of the overall uncertainties and risks. 

Consequently, for making an objective decision, quantitative approaches should always be used, 

which model the complexity of the system. The quantitative estimates should also be presented to 

public and stakeholders. The existing quantitative models are presented in Section 3.2 and their 

limitations are discussed, which motivate the development of models presented in this thesis. 

Second part of the chapter (Section 3.3) introduces the tools and methods, which are used in the 

quantitative models presented later in the thesis. The principles of the methods are illustrated on 

simple examples related to the tunnel construction. Notation used throughout the thesis is 

introduced here and in Annex 1. 
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In this chapter, a simple model for probabilistic modelling of delay caused by tunnel construction 

failures is introduced. This model can be used as a complement to a deterministic estimate of 

construction time and cost. The failure occurrence is modelled as inhomogeneous Poisson process 

following the procedure described in Section 4.1.1. Consequences of the failures are assessed using 

the Event Tree Analysis (ETA) as shown in Section 4.1.2.  

The approach is applied to an application example in Section 4.2. The delay due to failures is 

assessed for a secondary tunnel constructed as a part of underground system extension by a 

conventional tunnelling method. The application example further illustrates the use of the 

probabilistic estimate of delay for quantification of risk (Section 4.2.3) and for making decisions 

(Section 4.2.4).  

The proposed model was previously published in Špačková et al. (2010), where the utilization of 

expert estimates of parameters of the Poisson model was discussed. The application example shown 

in Section 4.2 was not previously presented.  

4.1 Modelling delay due to failures - methodology 

4.1.1 Number of failures 

Following Eq. (3.3), the number of failures   , which occur during the excavation of a tunnel 

section with length  , has Poisson distribution. The probability of occurrence of   failures is 

calculated as: 

   [    |   ]  
     

  
          (4.1) 

where   is the failure rate, i.e. the number of failures per unit length.  

4 Model of delay due to tunnel 

construction failures and estimate of 

associated risk 



 Model of delay due to tunnel construction failures and estimate of associated risk 

 

40 

The probability of occurrence of one or more failures on the section with length   equals 

   [    |   ]      [    |   ]              (4.2) 

As is obvious from Eq. (4.2), the probability that at least one failure occurs grows with the 

increasing failure rate   and with growing length of the mined section  .   

Conditions affecting the failure occurrence vary along the tunnel axis due to the changes in 

geological conditions. The failure rate varies accordingly and the Poisson process is 

inhomogeneous. For modelling purposes, it is convenient to divide the tunnel into the so-called 

quasi-homogenous zones, i.e. sections for which the failure rate is considered to be constant. The 

probability of occurrence of   failures then equals (Compare with Eq. (3.4)): 

   [    |   ]  
(∑     

    
   )

 

  
      ∑     

    
     (4.3) 

where    is the length of the  th quasi-homogenous zone,     is the failure rate within this zone and 

   is the number of quasi-homogenous zones in the tunnel;   {           
} and   

{           
}. The average failure rate for the whole tunnel is:    

  ̅  
∑     

    
   

 
 (4.4) 

The construction performance and the occurrence of failures are influenced by common factors 

such as human, organizational and other external factors. These factors influence the failure rate but 

their effect is unknown in the planning phase. To give an example, the selection of a less 

experienced construction company or a suboptimal construction technology is likely to lead to 

higher failure rate. The quality of the construction company and the appropriateness of the 

technology are uncertain in the planning phase, therefore, the parameters    of the Poisson process 

are uncertain as well. 

To include this epistemic uncertainty, we introduce a discrete random variable human factor  . 

The human factor is supposed to be in the same state throughout the entire tunnel construction. This 

simple model reflects the fact that the influence of this common factor cannot be directly measured 

and can only be deduced from the average performance over long sections of the tunnel excavation. 

The probability of occurrence of   failures is then expressed as: 

   [    |   ]  ∑    [   ]
(∑      

    
   )

 

  
      ∑      

    
    

    
    (4.5) 

where    is the number of states of variable  ,     is the failure rate within  th quasi-homogeneous 

zone with length    for   being in state   and  

   [

    
  

    

 
          

] (4.6) 

Three different approaches are available for estimating the failure rates in the matrix of Eq. (4.6): 

expert judgment, reliability analysis or a statistical approach using data from constructed tunnels. 

The experts assessment was used in (Špačková et al., 2010), the statistical approach is presented 
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later in Section 7.2.2. The structural reliability based approach is not considered in this thesis. Each 

of the approaches has its strengths and weaknesses. Ideally, multiple approaches should be 

employed and results should be compared and critically examined. 

4.1.2 Estimation of damages  

The damage caused by a failure can represent the delay of construction, financial loss etc. In the 

following, the damage in terms of delay is modelled. Other types of damages can be analysed 

analogously. The total delay due to tunnel construction failures is quantified as 

      ∑   
  
    (4.7) 

where    is the delay caused by the  th failure and    is the number of failures. It is assumed that 

all delays  are independent and that they are not dependent on the position where the failure occurs. 

Because the delay caused by a failure is uncertain,   and      are continuous random variables 

with PDFs   |  
    and      

   , respectively. 

The delay   can be assessed directly by experts, it can also be estimated based on historic data 

as will be presented later in Section 7.2.1. In this chapter, the delay is assessed by means of ETA as 

shown in Figure 4.4. The PDF of the delay caused by a failure is expressed as 

   |     ∑   [    | ]   
     |    |       (4.8) 

where   [    | ]    [    ]    is the probability of the  th scenario given that the failure 

occurs,   |    |       is the distribution of delay caused by  th scenario (here modelled with 

lognormal distribution) and     is the total number of scenarios obtained from the ET. 

The PDF of total delay      equals: 

      
    ∑   [    ] 

        |  
  |      (4.9) 

where      |  
  |      is the PDF of total delay given that   failures occurred. The PDF of the 

total delay for    failures can be obtained as convolution of the PDFs of individual delays 

(Grinstead and Snell, 1997; Jordaan, 2005): 

      |  
       |     |        

|     (4.10) 

where   is the sign for convolution operation.  

Because the delays are described by identical PDFs   |    , the calculation of Eq. (4.10) can be 

performed successively as  

      |  
  |           |  

  |          |     (4.11) 

The convolution of Eq. (4.11) is, by definition, computed as: 

      |  
  |      ∫      |  

  |         |        
 

  
 (4.12) 

The convolution operation is illustrated later in Figure 6.3 on an example of discrete random 

variables. 
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4.2 Application example 1: Risk of construction failure in 

tunnel TUN3 

In this application example, the risk resulting from occurrence of failures during the excavation of a 

tunnel TUN3 with length of 480 m is analysed. The tunnel has only one tube and it is built as part 

of an underground extension project. First section of the tunnel serves as an access tunnel and it will 

not be utilized after the completion of the project. Remaining section of the tunnel will be used as a 

ventilation plant and as a dead-end rail track. The scheme of the tunnel is shown in Figure 4.1. The 

same tunnel is used also later in the case study in Section 7.3. 

The tunnel is constructed in homogeneous conditions of sandstones and clay stones. Based on 

the geotechnical survey, the tunnel is divided into seven quasi-homogeneous zones. The predicted 

borders of the zones are depicted in the scheme in Figure 4.1.  Cave-in collapse and extensive 

deformation of the tunnel tube are the most likely types of failure. Because the tunnel is built in a 

city area, as shown in Figure 4.2, the damages caused by a failure can be very high. The 

deterministic estimate of the construction time is 200 days. 

 

 

Figure 4.1: Scheme of the tunnel TUN3.  
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Figure 4.2: Scheme of the TUN3 tunnel layout. 

4.2.1 Number of failures 

The probability distribution of number of failures is assessed using Eq. (4.5). The lengths    of the 

quasi-homogeneous zones are summarized in Table 4.1. 

Table 4.1: Lengths    of quazi-homogeneous zones in [m] (compare with Table 7.8 and Table 7.9 - the 

values correspond to the mode estimates of the triangular distribution).   

Zone  1 2 3 4 5 6 7 

Length [m]  20 25 115 40 20 25 235 

 

The human factor   can take one of three states “favorable”, “neutral” and “unfavorable”; all states 

are assigned the same probability. The failure rates     for individual zones and human factors are 

summarized in Table 4.2. The failure rates are assessed with regard to the analysis of data presented 

later in Section 7.2.2. They are 15% higher than those used in the case study in Section 7.3 

(compare with Table 7.10). The higher failure rates were selected, because in contrast to the later 

case study, events with small consequences (i.e. causing a delay shorter than 15 days) are also 

considered to be failures of the construction process in this chapter.  

Table 4.2: Failure rates in [km
-1

] for different zones and Human factors.   

Zone  1 2 3 4 5 6 7 

           0.104 0.069 0.046 0.104 0.069 0.046 0.069 

           0.052 0.035 0.023 0.052 0.035 0.023 0.035 

         0.026 0.017 0.012 0.026 0.017 0.012 0.017 
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The resulting PMF of number of failures for TUN3 is shown in Figure 4.3. The probability of 

occurrence of one failure is   [    ]       , the probability of a higher number of failures is 

negligible.  

 

Figure 4.3: Estimate of number of failures for tunnel TUN3.  

4.2.2 Consequences 

The most likely types of tunnel construction failure in the analysed tunnel are cave-in collapse and 

excessive deformations of the tunnel tube. Because the tunnel is built in a developed area, the 

deformations of the ground above the tunnel caused by such a failure are likely to lead to high 

damages on the buildings and infrastructure. Additionally, the failure can threaten the health and 

life of the workers and inhabitants and it can negatively influence the underground water and lead to 

an environmental damage. An Event Tree (ET) analysing possible scenarios following a failure is 

shown in Figure 4.4.  

The measures taken after occurrence of a failure include for example reconstruction of the 

tunnel tube itself, reconstruction of the buildings and infrastructure, investigations of the failure 

event by authorities and a change of the design. The severity of consequences depends on many 

factors such as magnitude of the failure or time of occurrence.  The delay of the construction 

process is therefore uncertain. For each scenario, the delay is described by lognormal distributions 

with PDF   |    |   . The means and standard deviations of the delay are summarized in Figure 

4.4; the PDFs are shown in Figure 4.5.  
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Figure 4.4: ETA for failure occurrence in tunnel TUN3. PDFs of delay due to one failure for individual 

scenarios are depicted in Figure 4.5 

 

Figure 4.5: Lognormal PDFs of delays of the construction process for different scenarios,   |    |   . 

Because the probability of two and more failures is small, the expected value of delay can be 

approximated directly in the ET of Figure 4.4 using the procedure described in Section 3.3.2. The 

expected total delay is calculated as the sum of expected delays caused by individual scenarios.  

To include also the possibility of occurrence of more than one failure and to assess the full 

probability distribution of the delay,      
   , the following procedure is applied: The conditional 

PDF of delay given one failure occurs is obtained using Eq. (4.8); it is depicted in Figure 4.6. 
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The conditional PDFs of the total delay for      failures,      |  
   , are calculated using Eq. 

(4.11); the PDFs are also depicted in Figure 4.6. Finally, the unconditional PDF of total delay 

     
    is obtained using Eq. (4.9); it is shown in Figure 4.7.  

 

Figure 4.6: PDF of delay caused by    failures,   |  
   . 

 

 

Figure 4.7: PDF of total delay      failures,      
   . 

The expected value of total delay,  [    ]       , is slightly higher than the one predicted using 

the ETA in Figure 4.4. This difference is caused by the possible occurrence of two or more failures, 

which was not included in the ETA analysis. Note that the probability of zero delay equals the 

probability that no failure occurs (see Figure 4.3). 
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4.2.3 Risk quantification 

Quantification of risk will be shown by three illustrative cases: (1) from the view of investor; (2) 

from the view of contractor; (3) from the view of contractor taking into account the contractor’s 

aversion to higher losses. 

The uncertainty in the normal performance is not considered, the delay due to failures is 

therefore assumed to be the addition to the deterministic estimate of construction time of 200 days. 

This deterministic estimate is assumed to be accepted by the contractor and agreed in the contract. 

The monetary values used in the following examples only serve for illustration.  

Case 1: risk    

The risk is analysed from the viewpoint of the investor. A majority of the financial losses due to  

failures (i.e. reconstruction of the tunnel and the overburden, damage to the third party property, 

compensations to people) is transferred to the contractor. In spite of the transfer of the risks, the 

delay of the commencement of tunnel operation leads to additional monthly costs            € 

to the investor.    includes costs of traffic disruption and costs of debt financing. The risk to the 

investor is expressed as the expected financial loss: 

 

     [  ]   [    ]            € (4.13) 

where  [    ] is the expected delay due to failures obtained in Section 4.2.2 and  [  ] is the 

expected value of the investor’s financial loss   .  

Case 2: risk    

The risk is analysed from the perspective of the contractor. The contractor is insured against the 

direct financial loss caused by the construction failures. The insurance covers for example costs for 

reconstruction of the tunnel and the overburden, damage to the third party property and 

compensations to the injured people. The deductible of the contractor is           € for every 

failure. 

The prolongation of the construction brings, however, additional monthly costs             

€, which are not covered by the insurance. These costs consist in costs of labour and machinery, 

which is bound to the project, and in the penalty the contractor must pay to the investor in case of 

delay. The financial loss of the contractor    thus contains both the additional costs and 

contractor’s deductible.  

The risk can be expressed as expected financial loss: 

     [  ]  ∑   [    ]       
    [    ]             € (4.14) 

where    [    ] is the probability of occurrence of   failures and  [  ] is the expected value of 

contractor’s financial loss   .  
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Case 3: risk    

The risk of the contractor is evaluated alternatively in the form of expected utility. Using the utility 

 , it is possible to take into account the fact that high losses are dangerous for the contractor 

because they threaten the company’s liquidity. The danger resulting from the loss does not increase 

linearly with the height of the loss. The contractor’s utility function is: 

       
  (4.15) 

where    is the contractor’s financial loss, i.e.  the overrun of the budget allocated for given project,  

and      . The utility function was determined from analysis of the previous decisions and from 

questioning the company managers. The coefficient   can reflect for example the interests of 

operational loan or the costs of delayed payments. (Note that in the cases 1 and 2 we implicitly 

assumed that the utility corresponds to the negative of financial loss, i.e. that the relationship is 

linear:     ). 

The deductible of the contractor   is significantly smaller than the costs    and it is thus 

neglected in this analysis. The utility can thus be express as a function of delay:           
          

 . The dependence of loss and utility on the delay is depicted in Figure 4.8. Note that 

delay      and utility   are random variables and    and   are constants. The expected value of 

the utility then equals (Benjamin and Cornell, 1970): 

   [ ]   [       ]  ∫     
 

  
     

       (4.16) 

where      
    is the PDF of      shown in Figure 4.7. 

The risk is obtained as negative of expected utility: 

      [ ]          (4.17) 

 

Figure 4.8: Dependence of losses    and utility   on the delay     . 
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4.2.4 Alternative tunnelling technology, decision about the optimal technology 

Let us assume that there is an alternative technology of construction of the tunnel (denoted as 

option B). This option is cheaper but it has double failure rates than the one presented in Table 4.2. 

The costs saving resulting from selection of this option is         €. If the alternative technology 

is accepted, the contract price would be decreased by        €. Therefore the costs saving for the 

investor is           € and the costs saving for the contractor is           €.  

The delay due to failures and the associated risk for option B is evaluated following the 

procedure described in Sections 4.2.1 - 4.2.3. The results for both options are summarized in Table 

4.3.  

Table 4.3: Comparison of optional tunnelling technologies.   

Option  A   B 

Expected delay [months] 0.125   0.25 

Risk of  Investor Contractor  Investor Contractor 

           (utility)          (utility) 

Risk  12 500 €  19 000 € 79 550 25 000 € 38 000 € 159 270 

Cost saving against op. A 0 0 0 40 000 € 60 000 € 60 000* 

Increase of risk against op. A 0 0 0 12 500 €  19 000 € 79 720 

Cost saving – increase of risk 0 0 0 27 500 €  41 000 € -19 720 

*the utility of cost saving is considered to be linear, i.e.     . 

 

The options are compared based on the difference of risk and cost savings. If for option B the cost 

saving is higher than the increase of risk with respect to option A, the option B is more 

advantageous. On the contrary, if for option B the cost saving is lower than the increase of risk, it is 

better to select option A. 

As is evident from the results, the decision is disputable. If the utility is considered to be linear 

to the potential losses (as in the case of    and    ), the option B appears to be more advantageous 

for both the investor and contractor. However, taking into account the contractor’s aversion to 

higher losses, which is modelled by the power utility function (and included in   ), the option B 

turns to be risky for the contractor.  In this case, the interests of the investor and contractor are 

contradicting and the contractor is likely not to accept the alternative technology (option B).  

4.3 Summary and discussion 

A model for probabilistic estimate of damages caused by tunnel construction failures is proposed. It 

is applied for estimating the delay due to failures. The model takes into account the variable failure 

rate in different sections of the tunnel. Additionally, the epistemic uncertainty in estimation of the 

failure rate is included in the model by introducing the variable human factor. The variable 

represents the overall quality of the planning, design and construction, which affect the probability 

of failure occurrence. The influence of these factors is uncertain in the design phase giving rise to 

the uncertainty in the selection of the failures rates. The model is applied to a case study of tunnel 

TUN3 (see Section 4.2). The final estimate of the delay due to failures for this tunnel is shown in 

Figure 4.7.  
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The estimated delay can be used for quantification of risk, as illustrated in Section 4.2.3. The 

risk is quantified for three cases. In case 1 and 2, the risk is defined as the expected financial loss 

(from the point of view of the investor and contractor, respectively). The loss is expressed as a 

function of delay. For such analysis, only the estimate of expected value of the delay is needed.  In 

case 3, the risk is defined as negative expected utility. By introducing the utility the aversion of the 

contractor to high financial losses can be taken into account. For modelling the utility, the full 

probabilistic estimate of the delay is used. 

Finally, an example decision-making process is presented in Section 4.2.4. Two alternative 

tunnelling technologies are evaluated based on comparison of their risk and costs. It is shown that 

the decision would differ for the two alternative definitions of risk (cases 2 and 3). For the case 3, 

the risk aversion of the contractor outweighs the benefits from the cost savings.  

The example of risk estimate and decision-making presented in this chapter aims at 

demonstrating how the probabilistic estimates of construction time/cost should be utilized in the 

tunnel project management. The results of the models presented later in this thesis might be utilized 

in the same way. The selected monetary values as well as the utility function are purely illustrative. 

In reality, other factors should be included in the decision making-process, the modelling of 

construction costs should be improved and factors such as environmental or social impacts should 

be included. A detailed investigation into the decision-making concepts is, however, beyond the 

scope of this thesis. 

 

 

 

 

 



  

 

51 

A complex model for modelling of the tunnel construction time is presented in this section. The 

main requirements on the model are the following: (1) It should consider both types of 

uncertainties, i.e. the usual variability of the construction process and the extraordinary events – see 

Section 2.7. (2) The model should consider the common factors that systematically influence the 

construction process, such as human and organizational factors. These factors introduce stochastic 

dependence into the performance at different phases of the construction. The significant influence 

of such dependences on construction performance estimates is shown for example in van Dorp 

(2005), Yang (2007) and Moret and Einstein (2011). (3) The model should allow for making full 

use of data available from previous projects, such as advance rates and costs recorded during 

excavation of tunnels under similar conditions. In this way, the know-how can be systematically 

managed. (4) The methodology should facilitate the easy updating of predictions when new 

information on the analysed project (e.g. geotechnical investigations, advance rates and costs 

observed after commencement of excavation) is available. (5) The model assumptions and involved 

simplifications must be properly understood and described. This is important in probabilistic 

modelling where results are difficult to validate by experiments and must therefore be well 

reasoned.  

Many of the requirements could be satisfied by means of the commonly used MC simulation 

based or analytical approaches. One can model the occurrence of both types of uncertainties 

(requirement 1), it is also possible to include the dependences introduced by common factors 

(requirement 2). The DAT model (Einstein, 1996) or the models by Isaksson and Stille, 2005) and 

by Steiger (2009) can fulfil these requirements – see Section 3.2. Updating of the predictions 

(requirement 4) based on observed performance during the tunnel construction has been also 

presented in the literature, usually by means of Bayesian analysis (Chung et al., 2006).  

5 Dynamic Bayesian network (DBN) 

model of tunnel construction process 
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However, utilization of DBNs has several advantages: DBNs allow more efficient updating of 

the predictions with additional observations
3
. The graphical nature of DBN strongly facilitates the 

representation and communication of the model assumptions (requirement 5), in particular when 

dependences among random variables are present. Finally, the DBN model can provide an 

understandable framework for statistical analysis of data from past projects (requirement 3).  

In this chapter, a generic model of the tunnel construction process, which describes the basic 

principles and includes modelling of both construction time and costs, is presented in Section 5.1. A 

specific model of tunnel construction time is then presented in more detail in Section 5.2. The 

model is applied to an application example of Dolsan A tunnel in Section 5.3.  This case study was 

taken over from Min (2003). The algorithms for evaluation of the presented DBN model are 

described in Chapter 6; the methodology for learning the model parameters from data is discussed 

in Chapter 7. Validation of a simplified version of the DBN model and sensitivity analyses are 

presented in Annex 3. 

The generic model was previously presented in Špačková et al. (2012), the specific DBN model 

and the case study were published in Špačková and Straub (2012). 

5.1 Generic DBN model  

A generic DBN model of tunnel construction process is displayed in Figure 5.1. The scheme 

demonstrates the dependence amongst geotechnical conditions,   , construction performance,     
and extraordinary events,   , and their influence on the construction time,     , and costs,     . 

 

Figure 5.1: Generic DBN model for tunnel construction process. 

Each slice of the DBN represents a tunnel segment of length   . The segment length    is equal for 

all slices of the DBN, the  th slice thus represents a tunnel segment between position         and 

   . All variables are modeled as constant within a segment, i.e. the model implies that the 

geotechnical conditions and construction performance do not change within a segment.  

                                                 
3
 In a DBN one can update the parameters of the model (similarly to the updating procedures used in existing models) 

but also the probability distribution of hidden (not-observable) variables – see Section 6.2. 
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In a specific model, the geotechnical conditions, construction performance, as well as 

extraordinary events are described in more detail by sets of random variables reflecting the tunnel 

specifics. The selection of the appropriate set of variables depends on local geological conditions, 

construction technology, routines and experiences of the owner, designer and constructor and on 

information available in the time of the analysis. The levels of detailing in the modelling of 

individual aspects should be balanced. For example, a detailed model of geotechnical conditions is 

not beneficial for the time/cost prediction, if an accurate model of the associated construction 

performance does not accompany it.  

The modelling of different tunnels will mainly vary in the representation geotechnical 

conditions. The general approach to their modelling is described in Sections 5.1.1 the specific 

examples are shown in application examples in Sections 5.3 and 7.3. The modelling approaches for 

construction performance and extraordinary events described in Section 5.1.2 and 5.1.3 are 

generally applicable. The probabilistic definitions of the variables is shown in Section 5.2. 

5.1.1 Geotechnical conditions 

The area of the tunnel is first divided into zones, in which the ground has homogeneous 

geotechnical properties. Within each zone, the properties are modelled as a homogeneous stochastic 

process (as shown in the application example in Section 5.3) or as constant (as shown in application 

example in Section 7.3). The location of the zone boundaries is uncertain, a random variable zone 

introduces this uncertainty into the model.  

The geotechnical properties can be modelled on different levels of detail: The selected variables 

can either represent individual properties of the ground (e.g. lithology, discontinuities, water 

content, presence of boulders) or they can correspond to a chosen geotechnical classification system 

(RMR or Q class etc.).  

Modelling of geotechnical properties by means of spatial Markov process is suggested in (Chan, 

1981) and later utilized in other applications of the DAT model (see Section 3.2). Geotechnical 

properties such as lithology, faulting or rock class are modelled as Markov process in the DAT 

model (Einstein, 1996). The model assumes that the geotechnical parameters follow exponential 

distribution, i.e. that the changes occur as a Poisson process. Statistical investigations into 

geotechnical parameters available in the literature show that thickness of ground layers in sediments 

follows an exponential, power law or lognormal distribution (Chakraborty et al., 2002; Longhitano 

and Nemec, 2005; Felletti and Bersezio, 2010), distance of boulders follows exponential 

distribution (Ditlevsen, 2006). For other geotechnical parameters, no statistical analysis is available 

in the literature. The DBN model presented in this chapter takes over the modelling procedures of 

DAT, the assumptions on the Poisson distribution of changes of the geological conditions should 

be, however, proven in the future. 

A summarizing variable, denoted as ground class, is defined conditionally on the other 

variables used for representing geotechnical conditions. The ground class has direct correspondence 

to the utilized technology of excavation and support pattern, i.e. it should reflect all the geotechnical 

and hydrological conditions that influence the selection of construction method and thus the speed 

and price of the construction as discussed in Section 2.4.  
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5.1.2 Construction performance 

Construction performance is modelled by variables representing the tunnel geometry, construction 

method, human factor and unit time
4
.  

Geometry is a variable modelling the varying cross-section of the tunnel (e.g. typical cross-

section vs. extended cross-section for emergency parking places). The variable can also be used to 

model inclination of the tunnel, special requirements on the excavation at the beginning and end of 

the tunnel or in the position, where the tunnel passes other structures. 

The variable construction method represents the applied excavation method, round length and 

support pattern. The construction method is selected based on the ground class and tunnel 

geometry.  

In reality, the selection of the construction method also depends on the method utilized in the 

previous segments, because the change of methods is commonly connected with additional costs 

and time. In every cycle of the construction, a decision on optimal construction method must be 

made with regard to actual construction method and to the actual and expected geotechnical 

conditions. These decisions are made under high uncertainty. Techniques of modelling of such 

decision problem exist, it is for example possible to combine DBNs with decision nodes. Such 

model was presented for example in (Sousa, 2010), but with highly simplified assumptions. 

Combination of the DBN suggested in this thesis with decision nodes would be computationally 

very demanding and therefore not suitable for the real-time prediction and updating. The 

applications presented in Section 5.3 and 7.3 are thus based on the assumption that the construction 

methods can be changed any time and these changes are not associated with additional time.  

The variable human factor reflects the influence of common factors, which systematically 

influence the construction process and thus introduce strong stochastic dependences among the 

performance in each segment of the tunnel. These can be the quality of design and planning, 

organization of construction works or other external influences not included in other model 

variables. The variable human factor can also be interpreted as the uncertainty in selection of the 

appropriate probabilistic model (probability distribution) of unit time and failure rate, similar to the 

approach described in Cheung and Beck (2010) and used in Section 4.1.1. To give an example, the 

selection of a less experienced construction company or a suboptimal technology of the excavation 

is likely to lead to a slower and more variable excavation process in many or all segments of the 

tunnel. The quality of the construction company and the appropriateness of the technology are 

uncertain in the planning phase. The uncertainty in these common factors and the resulting 

uncertainty of the probability model of unit time increase the uncertainty in estimates of the total 

construction time. 

The human factor is supposed to be in the same state throughout the entire tunnel construction. 

After the construction starts, human factor can be updated based on observed performance, i.e. the 

probability of the most suitable probability distribution of unit time is increasing. 

The unit time represents the time for excavation of a tunnel segment with length   . It 

corresponds to an inverse of the commonly used advance rate as will be discussed later in Section 

7.1.1. The unit time is dependent on the construction method and on the human factor. The 

probabilistic distribution of unit time can be assessed by experts but recommendably it should be 

based on analysis of data from other excavated tunnels as discussed in Section 7.1.  

                                                 
4
 The definition of variables described in this section applies to the conventional tunnelling method (see Section 2.2). In 

case of mechanized tunnelling, definition of some variables might require adjustments. 
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The unit costs represent the costs for excavation of a tunnel segment with length   . The costs 

depend partly on the volume of works (material costs), and partly on the construction time (labour 

costs, machinery costs). In the model, they are defined based on the construction method, human 

factor and unit time. In the application examples in this thesis, the modelling of costs is not 

discussed. Including the construction costs increases the complexity of the model and the 

computational effort significantly. Additionally, no reliable data on construction costs are available 

to the author. 

5.1.3 Extraordinary events 

For the modelling purposes, the extraordinary events are defined as events that cause a delay higher 

than a threshold value (here selected equal to 15 days). The extraordinary events can represent for 

example a cave-in collapse, tunnel flooding or severe legislative or public obstructions.  

The occurrence of a failure is represented by a variable failure mode and it is defined 

conditionally on the ground class and human factor.  In the application examples in this thesis, the 

different types of failure modes are not distinguished; the variable has only two states “failure” and 

“no failure”. The probability of failure occurrence is calculated from the failure rates, i.e. the 

number of failures per unit length of the tunnel. The assessment of the failure rate from data is 

discussed in Section 7.2.2. 

The variable number of failures represents the cumulative number of failures, which occurred 

from the beginning of the tunnel excavation. It corresponds to the variable    introduced in the 

previous chapter (Section 4.1.1). 

5.1.4 Length of segment represented by a slice of DBN 

By choosing a slice length    in the DBN model, implicit assumptions about dependences among 
the variables along the tunnel are made. In the model, changes of conditions can only occur between 
slices. Therefore,    must be sufficiently small to capture the variability of geotechnical conditions 
along the tunnel axis (see Špačková and Straub, 2011). However, accurate modelling of 
geotechnical variability is not the only and main criterion. 

Because the model assumes that the construction method in slice   is determined purely based 

on ground class and geometry, it implies full flexibility in changing construction methods between 

slices. In reality, construction methods are only changed between excavation rounds (in case of 

conventional tunnelling). Therefore, for the model to be realistic, the slice length should not be 

shorter than the length of the round length.  

5.2 Specific DBN model  

A specific DBN model used for the tunnel construction process is depicted in Figure 5.2, an 

overview of model variables is given in Table 5.1. The definition of the random variables is 

discussed in the following. 
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Figure 5.2: DBN for modelling the construction of Dolsan A tunnel. (Variables are explained in Table 5.1.) 

 

Table 5.1: Overview of the variables in the DBN. 

Id. Variable Type States of the variable  

Z Zone Random/ Discrete 1,2,…,8 

R Rock class Random/Discrete I, II, III, IV, V 

O Overburden Determ./Discrete Low, Medium, High 

G Ground class Random/Discrete L-I, L-II, L-III, L-IV, L-V, M-I, M-II, M-III, M-

IV, M-V, H-I, H-II, H-III, H-IV, H-V 

H Human factor Random/Discrete  Favourable, neutral, unfavourable 

E Geometry Determ./Discrete 1 (begin/end), 2 (typical), 4 (chem.plant) , 5 (EPP) 

M Construction 

method 

Random/Discrete P.1, P.2, P.3, P.4, P.5, P.6,P.2-1,P.2-2,P.2-3,P.EPP 

T Unit time Random/ 

Discretized 

0,     ,      , …, 15 [days] * 

F Failure mode Random/Discrete Failure, No failure 

NF Number of 

failures 

Random/Discrete 0,1,2,3,4,>5 

Tcum Cumulative 

time 

Random/Discretized 0,     ,      , …,     ** [days] 

Textra Delays caused 

by failures 

Random/ 

Discretized 

15,     ,      , …,            
 [days] *** 

Ttot Total time Random/ 

Discretized 

0,     ,      , …,                   )[days] 

*
     is the discretization interval of time variables. In the application example it is             , 

  

**
upper bound of cumulative time = 122 x 15= (number of segments) x (upper bound of unite time)

 

***
             is the 99.9 percentile of Textra 
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5.2.1 Zone 

The variable represents the position of a tunnel segment in quasi-homogenous geotechnical zones 

along the tunnel axis. The uncertainty in the location of the boundary    between zones   and     

is described by the CDF of the location of the boundary,       . To establish the conditional PMF 

of   , let          denote the probability that segment   is part of zone j and            the 

probability that segment     lies in zone j. Assuming that a segment   can only be in either zone   
or zone    , the probability of the  th segment being in zone   is calculated as 

               (    
  

 
) (5.1) 

where    is the length of the segment represented by one slice of the DBN. 

The conditional probabilities defining the variable    (i.e. the values in the CPT) are: 

        |        
               

          
 

        

          
 (5.2) 

          |                 |          
        

          
 

(5.3) 

        |             
(5.4) 

If the segment   can be in more than two different zones (e.g. in zone    ,   and    ), Eq. (5.1)-

(5.4) must be extended. 

5.2.2 Rock class 

The rock class describes the geotechnical conditions along the tunnel axis. In a zone      it is 

modeled as a Markov process. Parameters of the continuous Markov process are obtained from 

experts in form of the average length   
   

 for which the rock class remains in state   and transition 

probabilities    
   

, i.e. probability that, in case of a change, rock class   is followed by rock class  . 

This definition follows the application of the DAT model in Chan (1981) resp. Min (2003)
5
.  

In the DBN model, the Markov process is discretized into a Markov chain, i.e. it is transformed 

to a discrete space represented by slices of the DBN corresponding to segments of length   . 
Assuming that changes in rock class occur as a Poisson process, the conditional probabilities of 

rock class in segment  ,   , are derived from the parameters of the continuous Markov process as 

follows: 

                                                 
5
 Note, that the definition of transition probabilities    

   
 for continuous Markov process differs from the definition of 

transition probabilities for discrete-time Markov chain, which is presented in Section 3.3.4 and used in the DBN model. 

In the continuous Markov process, the transition probability is conditioned by the change of the state, i.e. the probability 

of transition to the same state equals zero:    
   

          . This definition seems to be more intuitive and thus 

more easily understandable for the experts.  
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   ) (5.5) 

        |              
  

   
⌈      ( 

  

   
   )⌉         (5.6) 

Note that due to the dependence introduced through the parent variables   , the rock class is not a 

Markov process. (It is a Markov process only conditional on zone   .) 

5.2.3 Overburden and Ground class 

The variable    representing the height of overburden can take three states: “low”, “medium” and 

“high”. The variable is deterministic and it is defined as:  

   [        ]    and   [        ]    if the mid-point of the  th segment lies in the 
area with the low overburden,  

   [           ]    and   [           ]    if the mid-point of the  th segment 
lies in the area with the medium overburden, 

    [         ]    and   [         ]    if the mid-point of the  th segment lies in the 
area with the high overburden. 

The ground class    is defined deterministically for given    and   . As evident from Table 5.1, 

each    corresponds to a specific combination of    and   , e.g. ground class L-I stands for rock 

class I with low overburden, H-II for rock class II with high overburden. Therefore: 

    [      |         low     and    [      |         low    . 

    [       |          high     and    [       |          high    . 

 Etc. 

5.2.4 Variables describing construction performance  

The variable Human factor   , which represents the common factors influencing the construction 

performance (see Section 5.1.2) is in one of the three states “unfavourable”, “neutral” or 

“favourable” throughout the entire tunnel construction, i.e. the   s are fully dependent from one 

slice to the next and the conditional probability matrix     |      in each slice is the 3x3 identity 

matrix.  

The variable geometry    is deterministic and it models different cross-sections along the tunnel 

(a typical cross-section vs. extended cross-section for emergency parking places EPP), the special 

conditions at the beginning and end of the tunnel and at the location where the tunnel passes an 

existing chemical plant. The definition of the conditional probabilities of the variable    is 

analogous with that of the variable overburden. 

The construction method    describes the excavation type and the related support pattern 

applied in the  th segment and is determined conditional on the ground class    and tunnel geometry 

  . The conditional probabilities of    follow (Min, 2003) and they are summarized in Annex 2.  
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For every construction method    and human factor   , the unit time    is defined by a 

conditional CDF,     |      . To facilitate the application of the exact inference algorithm which 

will be presented later in Section 6.2, the variable    is discretized.  

5.2.5 Failure mode  

The variable failure mode    represents the possible occurrence of an extraordinary event in 

segment  , it is defined conditionally on    and   . Assuming that failures occur as a Poisson 

process for given    and   , in accordance with the Poisson model presented in Section 4.1.1, the 

conditional probability of failure mode    within a section of length    can be approximated by: 

                   |           (    |     
  ) (5.7) 

                |             (   |     
  ) (5.8) 

where    |     
 is the conditional failure rate (corresponds to the failure rate      in Section 4.1.1).  

5.2.6 Number of failures  

Number of failures      represents the total number of failures from the beginning of the tunnel up 

to the segment  . With    being the maximal number of failures to be considered (where state    

represents    or more failures), the conditional probabilities are: 

 

   (      |                       )   , for    {      } , (5.9) 

   (      |                        )   , for    {      } , 
(5.10) 

   (       |                      )   . 
(5.11) 

For all other conditional probabilities it holds 

  (    |           )    (5.12) 

5.2.7 Construction time  

The main output of the model is the total construction time,     . In the DBN, it is computed as the 

sum of construction time excluding extraordinary events,     , and the time delay caused by 

extraordinary events,       .  

The cumulative time        is the time needed for the excavation of the tunnel up to the location 

   . It is defined as the sum of          and the unit time in segment  ,   :                   . 
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         is the time delay due to occurrences of failures (extraordinary events) in the tunnel 

construction up to the segment  . The distribution of          for a given number of failures      can 

be derived from the PDF of the delay caused by one failure event,      , analogously with the 

procedure for derivation of     |  
 described in Section 4.1.2: With    being the delay caused by 

the  th failure, the total delay due to      failures is computed as the sum of the individual delays: 

          ∑   
    

    (5.13) 

To compute the PDF of          for a given      it is assumed that all delays    are independent and 

have identical PDF       . This implies the assumption that the expected delay caused by a failure 

is independent of the position where it occurs. The conditional PDF of        for given number of 

failures    is evaluated analogously to Eq. (4.11). 

Assessment of the total construction time,     , is in most cases of interest for the tunnel as a 

whole or for a section of the tunnel. Therefore, it is computed only at the end of the tunnel, in slice 

 , as illustrated in Figure 5.2. The total time is defined as                       , the PDF of        

can thus be calculated as convolution of the PDFs of        and         . 

5.3 Application example 2:  Dolsan A tunnel 

The DBN model is applied to the assessment of the construction time of a section of the Suncheon-

Dolsan road tunnel in South Korea. The case study was originally published in (Min, 2003) and 

(Min et al., 2003), where the DAT model was used for probabilistic prediction of the tunnel 

construction time and costs.  

The modelled part of the tunnel is a 610 m long tunnel tube with two lanes, which is excavated 

with a conventional tunnelling method. A scheme of the tunnel tube is depicted in Figure 5.3.  

 

Figure 5.3: Scheme of the Dolsan A tunnel. 

The DBN model and overview of the variables is given in Figure 5.2 and Table 5.1. The description 

of the geotechnical conditions (zone, rock class, overburden and ground class) as well as of some 
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variables describing the construction process (geometry and construction method) are taken from 

(Min, 2003). The tunnel is divided into eight zones. Unlike in (Min, 2003), the position of the zones 

boundaries is modelled as uncertain. In each zone the rock class is modelled as Markov process. 

The rock class definition combines the electrical resistivity, Rock Mass Rating (RMR) and Q-value 

as shown in Table 5.2. The height of overburden is categorized into three levels, as shown in Figure 

5.3. Variable geometry distinguishes between the typical tunnel profile, extended profile for 

emergency parking places and a section where the tunnel passes under existing power plant. 

Table 5.2: Definition of rock classes according to (Min, 2003). 

Rock class                                                I II III IV V 

RMR > 81 80-61 60-41 40-21 < 20 

Resistivity      > 3000 1000-3000 300-1000 100-300 < 100 

Q-value > 40 4-40 1-4 0.1-1 < 0.1 

5.3.1 Numerical inputs 

The selected length of tunnel segment represented by one slice of the DBN is      . The 

locations of the zone boundaries are described by triangular distributions. The parameters of the 

distributions for the boundary locations,       , for eight zones are summarized in Table 4.1 

Table 5.3: Parameters of triangular distribution,       , describing the location of the end boundaries of the 

zones in [m] from the beginning of the tunnel. 

Zone Min Mode Max 

1 15 25 35 

2 60 82 100 

3 110 122 130 

4 135 142 160 

5 250 283 310 

6 350 379 410 

7 440 483 520 

8 610 610 610 

 

The parameters of the Markov process describing the rock class in each zone are taken over from 
Min (2003). An example of the set of parameters for zone 2 is shown in Table 5.4. The 
corresponding conditional probability table of    derived from the parameters of the continuous 
Markov process is show in Table 5.5. CPTs for all eight zones are provided in the Annex 2. 

Table 5.4: Parameters of Markov process describing rock class in zone 2  - source: (Min, 2003) 

 Mean length   
   

 Transition probabilities    
   

 

 [m]                         

    10 0 0.66 0.34 0 0 

     10 0.66 0 0.34 0 0 

      5 0.34 0.66 0  0 0 

     0 1 0 0 0 0 

    0 1 0 0 0 0 
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Table 5.5: Conditional probability table (CPT) of rock class in zone 2 for a DBN with slice length      . 

For example, the conditional probability of the rock class in slice   being      , given that the rock class in 

slice     is          and the zone in slice   is     , is         |                  . 

v  Zi = 2 

Ri                                                  Ri-1 = I Ri-1 = II Ri-1 = III Ri-1 = IV Ri-1 = V 

I 0.606 0.260 0.215 1 1 

II 0.260 0.606 0.417 0 0 

III 0.134 0.134 0.368 0 0 

IV 0 0 0 0 0 

V 0 0 0 0 0 

 

The overburden,   , and geometry,   , are deterministic variables and they can be derived directly 

from Figure 5.3. The overburden is in state “low” in the first 283 m long section of the tunnel (i.e. 

in slices            of the DBN), in state “medium” in the next 200 m long section of the tunnel 

(i.e. in slices              of the DBN) and in state “high” in the last 127 m long section of the 

tunnel (i.e. in slices                of the DBN). The variable geometry is described 

analogously. 

The CPT for construction method    summarizing the conditional probabilities     |       is 

presented in Annex 2. 

The conditional probability distributions     |       of unit time    were determined based on 

data recorded during excavation of a Czech tunnel (in Section 7.1 denoted as TUN1 – tube 1). An 

example of the utilized non-parametric distributions of    for given construction methods    and 

human factor              is shown in Figure 5.4. The means and standard deviations of    

conditional on the human factor    and the construction method   , as applied in the numerical 

example, are summarized in Table 5.6. The discretization interval for    and        is selected as 

             . 

 

Figure 5.4: PDF of unit time    for excavation of a segment with length of      , on the condition of 

neutral human factor    and for selected construction methods     
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Table 5.6: Means and standard deviations of unit time    [in days] for different human factors and 

construction methods, for slices of length      . The description of construction methods is taken from 

Min et al. (2008). 

Constr. Excavation type Bolts: Length/ 

horizontal interval / 

vertical interval [m] 

Unfavourable 

human factor 

Neutral 

human factor 

Favourable 

human factor 

Mean St.d. Mean St.d. Mean St.d. 

P.1 Full face 3/ > 3.5 / >2 1.56 1.36 1.40 1.13 1.24 0.89 

P.2 Full face 3/3.5/2  1.56 1.36 1.40 1.13 1.24 0.89 

P.3 Full face 3/2/1.8  1.56 1.36 1.40 1.13 1.24 0.89 

P.4 Bench cut 4/1.5/1.5  1.62 1.35 1.46 1.02 1.35 0.83 

P.5 Bench cut 4/1.2/1.5  3.49 2.35 3.21 1.78 2.83 1.44 

P.6 Bench cut 4/1.0/1.5  3.49 2.35 3.21 1.78 2.83 1.44 

P.2-1 Full face - 2.02 1.88 1.83 1.48 1.65 1.20 

P.2-2 Full face - 2.02 1.88 1.83 1.48 1.65 1.20 

P.2-3 Full face - 2.02 1.88 1.83 1.48 1.65 1.20 

P.EPP - - 2.02 1.88 1.83 1.48 1.65 1.20 

 

The conditional probability of an extraordinary event (a failure) in segment  ,     |      , is 

estimated based on experience from the Czech Republic (see Section 7.2.2). The rate of failures is 

dependent on human factor    and ground class   , and the estimated values [in number of failures 

per m] are assessed to range from          to          for unfavourable influence of human factor, 

from          to          for neutral influence of human factor, and from          to          for 

favourable influence of human factor.  

To study the influence of introducing the variable human factor   , two alternative prior 

distributions are applied. The utilized probabilistic models are: 

 H(a):                         ,                      ,                        
   .  

 H(b):                          ,                       , 
                       .  

Assessment of the probability distribution of the delay caused by one extraordinary event, 

 (        |      ), is discussed later in Section 7.2.1. A shifted exponential distribution with a 

minimum at 15 days, the mean value at 175 days and the standard deviation being equal to 160 days 

is used.  

Performance data for updating of the prediction 

To demonstrate the ability of the DBN for updating the prediction as the construction proceeds, 

hypothetical performance data are introduced. These are from the first 120m of the tunnel and 

include the observed rock class   , the number of failures        and the cumulative time        at 

each segment.  

It is assumed that no failure occurs in this section and that the cumulative time is slightly higher 

(up to 10 per cent) than the mean prior prediction. The predicted and observed cumulative time 

       is shown in Figure 5.5. Rock class II is found in the first 49 meters, rock class III in the next 

41 meters and rock class IV in the last 30 meters of the section. 
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Figure 5.5: Performance data used for updating the predictions: (Hypothetical) observed excavation time 

     in the first 120m of the tunnel, together with the mean predicted excavation time     . 

5.3.2 Results  

The resulting probabilistic estimates of the construction time for the whole tunnel are presented in 

Figure 5.6 and Figure 5.7. Figure 5.6 shows the prediction while leaving the extraordinary events 

out of consideration, Figure 5.7 includes the extraordinary events. In both figures, results are shown 

separately for the two a-priori probabilistic models of the human factor   . In addition, results for a 

fixed human factor              are shown, which correspond to a model that does not consider 

human factor as a random variable, i.e. which neglects the epistemic uncertainty. By comparing the 

results for both the fixed and uncertain human factor, the effect of introducing    can be observed: 

The standard deviation of the construction time estimate increases due to the uncertainty in   . If 

the average performance (e.g. advance rate) is uncertain, the overall uncertainty of the total 

construction time is higher than in the case when this average value is known and only the 

variability of the performance is considered (which is the case of the fixed human factor    
         ).  

By comparing Figure 5.6 and Figure 5.7, the significant impact of extraordinary events on the 

expected construction time and, in particular, on the uncertainty in the construction time are 

evident. The resulting distributions of total excavation time are strongly skewed towards larger 

construction times. 
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Figure 5.6: Prediction of excavation time       with no consideration for extraordinary events, for two a-

priori models of human factor and for the case of fixed human factor. Comparison with the original estimate 

by (Min, 2003). 

 

Figure 5.7: Prediction of total excavation time      with consideration of extraordinary events, for two a-

priori models of human factor and for the case of fixed human factor. 

Updated estimates with performance data 

The updated estimates of the cumulative time      (excluding extraordinary events) and the total 

time      (including extraordinary events) for the whole tunnel, conditional on the hypothetical 

observations described in Section 5.3.1, are shown in Figure 5.8 and Figure 5.9. For comparison, 

the estimates computed without the observation data are also provided (corresponding to the results 

shown in Figure 5.6 and Figure 5.7). The updated estimates are identical for the two prior models of 

human factor   , because the observed performance strongly indicates that the human factor is 

                 . This can be observed from Figure 5.10, which shows the updated probability 

of    as the construction proceeds.  

The updated estimate of      (which excludes extraordinary events) shown in Figure 5.8 

exhibits a lower standard deviation, because there is no more uncertainty in   , i.e. in the 



66 Dynamic Bayesian network (DBN) model of tunnel construction process 

 

 

 

appropriate probabilistic model of unit time   . However, the standard deviation of the updated total 

construction time      (including extraordinary events) shown in Figure 5.9 is higher, because the 

resulting                   implies an increased probability of failure (extraordinary events).  

 

 

Figure 5.8: Updated prediction of excavation time      (without extraordinary events) for Dolsan A tunnel 

based on observations made during excavation of 120 m of the tunnel. 

 

 

Figure 5.9: Updated prediction of excavation time      (with consideration of extraordinary events) for 

Dolsan A tunnel based on observations made during excavation of 120 m of the tunnel. 
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Figure 5.10: Updated prediction of human factor    for Dolsan A tunnel, as a function of the observed 

construction progress. 

5.4 Summary and discussion 

The proposed DBN model and computational algorithm for tunnel excavation processes is a step 

towards a quantitative assessment of uncertainties that is needed to support the optimization of 

decisions in infrastructure projects. The significant uncertainty in estimates of construction cost and 

time observed in practice is not fully reflected in most existing models. In our view, a main reason 

for this underestimation is the assumption of independence among the performances at different 

phases of the construction. This observation was also made recently by van Dorp (2005), Yang 

(2007) and Moret and Einstein (2011b). In the proposed DBN model, we represent correlation 

among the performance at different phases of the construction through the random variable “Human 

factor”, which is assumed to represent the overall quality of the planning and execution of the 

construction process and other external factors influencing the entire project.  As observed in Figure 

5.6 and Figure 5.7, the inclusion of this variable leads to an increased variance of the estimate of 

construction time. As stated earlier, the variable ¨Human factor¨ can also be interpreted as a model 

uncertainty, which reflects the fact that the applied probabilistic models of tunnel excavation 

performance are based on a limited amount of data or expert estimates. This second interpretation 

has the advantage of not being judgmental and therefore more easily acceptable in practice. As we 

show in the example application (Figure 5.10), the DBN model facilitates to update the estimate of 

the “Human factor”, i.e. as the construction proceeds, the observed performance is used in an 

automated manner to learn the model and to improve the prediction for the remaining construction. 

Another main reason for the underestimation of the uncertainty in construction time and cost is 

that most existing models do not account for possible extraordinary events, which can be considered 

as failures of the construction process. These events are included in the DBN model; their effect is 

also discussed later in Section 7.3.2.  

The proposed DBN approach is flexible with regard to changes in the model. One aspect that 

should be revised in future work is the modelling of the variable    to more realistically reflect 
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changes of construction technology during the excavation process. The present model assumes full 

flexibility in changing the construction patterns based on changes in geology. In reality, the 

construction pattern is not modified so frequently, as this is connected with additional time and 

costs. This effect is even more pronounced when mechanized excavation is used. A second aspect 

that should be addressed is the modelling of costs. The variable time can be replaced by the variable 

cost to obtain a cost estimate. However, for a combined modelling, an extension of the DBN model 

is needed to account for the dependence of construction costs on construction time.  

The DBN is computationally efficient and applicable in practice. It is flexible in including 

observations to update the predictions. Besides updating the model with performance data and the 

observed geology of the excavated tunnel sections, as shown in Section 5.3, other types of 

observations, e.g. borehole tests, can be included in the future. 
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To obtain probabilistic estimates of selected variables in the DBN (e.g. cumulative time, total time, 

human factor), the DBN model must be evaluated. Several algorithms exist that perform inference 

in BNs and DBNs, an overview is given in Section 6.1. However, the DBN presented in this thesis 

has a rather complex structure and contains random variables described by different probabilistic 

models. When discretized, some of the variables have a large number of states. The available exact 

inference algorithms are therefore inefficient for evaluation of this DBN model. A modification at 

the Frontier algorithm (Murphy, 2002) is therefore proposed.  

The modified Frontier algorithm (mFA) exploits the fact that the variables with a large number 

of states are defined as sums of other variables in the DBN. Their PDFs can be thus efficiently 

calculated by using the convolution operation. The new algorithm is suitable for problems that 

involve the development of a cumulative variable in time (space). Comparison of the computational 

efficiency of the modified and original FA on an academic example is presented in Annex 4.  

The procedure for evaluation of the DBN including the mFA was previously published in 

Špačková and Straub (2012). The parameter adaptation is first described in Section 6.2.5 of this 

thesis. 

This chapter starts with introduction to inference of BNs and DBNs (Section 6.1). The 

procedure for evaluation of the DBN for tunnel construction process is described in Section 6.2. 

The techniques for updating the predictions with observations of the construction performance are 

explained in Section 6.2.4 and 6.2.5.  

6.1 Introduction to inference in Bayesian networks 

Three groups of inference problems for BN can be distinguished: 

 Inferring unobserved variables: Estimation of the probability distribution of selected 
variables. If we are interested in estimation of the probability distribution given some 

6 Algorithms for evaluating the DBN 
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observations (also called evidence in the BN terminology), we speak about updating of the 
original estimate.  

 Parameter learning: Determination of the conditional probabilities (CPT tables) from data. 
The CPT tables can also be updated with observed data; this procedure is called adaptation of 
the parameters. 

 Structure learning: Determination of the structure of the Bayesian network from data. This 
type of inference is not used in this thesis and is thus not discussed in more detail.  

Several algorithms exist for solving these inference problems; they are either exact or approximate 

algorithms. Selection of the appropriate algorithm depends on the complexity of the network and on 

the probability distributions of the variables included in the network. Generally, the computational 

effort increases exponentially with the number of nodes and links in the BN and with the number of 

states of discrete variables. 

Many software packages can be used for building and evaluating the BNs. These are for 

example freeware codes such as Genie developed at the University of Pittsburg 

(http://genie.sis.pitt.edu/), Elvira developed at the university of Granada (http://leo.ugr.es/elvira/) or 

commercial products such as Hugin (http://www.hugin.com/), Agena (http://www.agenarisk.com/) 

and Netica (http://www.norsys.com). An overview of the software solutions is available at 

http://www.cs.ubc.ca/~murphyk/Bayes/bnsoft.html. A Bayesian network toolbox for Matlab has 

been developed by Kevin Murphy and is freely available (http://code.google.com/p/bnt/). However, 

for more complex problems and where changes of the existing algorithms are required, utilization 

of the available software is impractical. The algorithm presented in Section 6.2 is therefore 

implemented in Matlab environment with its statistical toolbox.  

6.1.1 Inferring unobserved variables 

First we limit ourselves to BNs with discrete RVs. The same example BN which is presented in the 

Section 3.3.5 is used for illustration. The BN is also displayed in Figure 6.1(a).  

The first basic operation used in evaluating the BNs is the combination of probability 

distributions. This operation is used for calculating the joint PMF of selected set of RVs (Langseth 

et al., 2009). It corresponds to the application of the chain rule. For the example BN it is illustrated 

in Eq. (3.10) and it is repeated here: 

                   |     |     |     (6.1) 

The second basic procedure is the elimination of variables (also called marginalization in the BN 

terminology), which corresponds to removing selected RVs from the joint PMF. Because the states 

of the discrete random variables are mutually exclusive and collectively exhausting events, 

elimination of a variable corresponds to summing a joint PMF containing the variable over all states 

of the variable.  

To eliminate the variable   from the joint PMF describing the whole BN, the following 

calculation is performed:  

          ∑             (6.2) 

where the notation ∑ denotes the summation over all states of  . The elimination operation can 

be performed repeatedly for selected variables at any stage of the calculations; in this way, the 

http://leo.ugr.es/elvira/
http://www.hugin.com/
http://www.norsys.com/


Algorithms for evaluating the DBN 71 

 

 

marginal PMF of the variables of interest is determined. The order of the elimination operations 

influences the efficiency of the computations. 

Eliminating nodes in the BN graph must follow rules formulated in Shachter (1986) for 

influence diagrams, of which the BNs are a special case. The specific procedure for BNs is 

described in Straub and Der Kiureghian (2010).  A node can be removed from BN if it has no child 

nodes and does not receive evidence (such node is also called a barren node). If the node, which 

should be removed, has a child node, the elimination process requires reversing all the links 

pointing from this node to its child nodes. If a link is reversed, both nodes connected by this link 

inherit the parents of the other node. At any step of the process the BN must stay acyclic. The order 

of reversing the links is arbitrary as long as the acyclicity is assured. The order of the operations can 

influence the form of the final network. 

The procedure of eliminating the node   from the example BN is illustrated in the Figure 6.1. 

First the link between nodes   and   is reversed (step b). A new link pointing from   to   is 

established, because   inherits the parent nodes of  .   has no parent nodes except  , there is 

therefore no new link pointing to  . Second, the link between   and   is reversed (step c). A new 

link pointing from   to   is established, because   inherits the parent nodes of  .   has   as a 

parent but there is already a link from   to   from the previous step so no new link pointing to   is 

needed. Finally, node   has no child nodes and can thus be removed. The final BN is depicted in 

Figure 6.1d.  

Note that in the example BN, it is not possible to change the order of reversing links. If we 

started with reversion of the link between   and  , a cycle would be created connecting the nodes 

 ,   and  .  

 

Figure 6.1: Elimination of node from the sample BN 

The third basic operation for inference in BNs is called restriction and it is used for including the 

observations (Langseth et al., 2009). For example, if the value of        is observed, the 

information is included into the known (prior) joint PMF,         , by setting the probability 

  [               ]    and normalizing the probabilities of the remaining outcome states. 

The normalization ensures that the sum over all states of the updated (posterior) joint PMF, 

       |    , is equal to one. 

When evaluating a BN, one is often interested in calculating the conditional probability of a 

set of variables given set of other variables in the BN. For example, we can want to know the joint 

conditional probability of    and   given    Using the joint PMF from Eq. (6.2), this conditional 

PMF can be obtained as: 

      |                 (6.3) 

where the      is the marginal distribution of    
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In real problems it is not efficient to calculate the full joint PMF of all variables in the BN. 

Therefore, it is necessary to find a sequence of operations (combination of PMFs, elimination of 

nodes, restriction and calculation of conditional probabilities), which gives the required answer and 

at the same time is computationally efficient. The exact inference algorithms for BNs generally 

aim to find such an optimal sequence of operations using the graph theory or other techniques.  The 

universally used ones are the junction trees and joint trees (Jensen and Nielsen, 2007). The exact 

inference algorithms require the RVs in the network to be discrete. 

As evident from the previous description, a principal computational task in evaluating the BNs 

is the numerical integration of the joint probability functions (resp. their summation in the discrete 

space). The approximate inference algorithms are mostly using various sampling methods 

(nondeterministic methods) or deterministic methods to perform such integration (Minka, 2001). 

Only a brief overview of the approximate methods is given here, because they are not further used 

for evaluation of the proposed DBN.  

The commonly used sampling (nondeterministic) methods are for example Markov Chain 

Monte Carlo (MCMC) simulation (Gilks et al., 1996), importance sampling (Yuan and Druzdzel, 

2006), likelihood weighting or rejection sampling (Russell and Norvig, 2003). The main advantage 

of the sampling methods is their flexibility; they can be applied to any BN as they are not limited by 

the type of RVs in the network. The main disadvantage is their computational inefficiency.  

The approximate methods using deterministic methods generally aim to approximate the 

required integrand, i.e. the (joint) PMF of required set of RVs. These are for example the 

Variational methods, Loopy belief propagation, Bayesian averaging, Laplace’s method or 

Expectation propagation. These methods can be computationally very efficient but their application 

is limited by several restrictions, which the evaluated BN must fulfill. Additionally, they often 

strongly simplify the results e.g. when assuming them to be Gaussian. For a detailed discussion on 

these methods, the reader is referred to Minka (2001) and Murphy (2002). 

BNs with continuous RVs 

A BN can consist of continuous RVs (then it is called a continuous BN) or it can combine both the 

discrete and continuous RVs (then it is called a hybrid BN). 

BNs with Gaussian variables or hybrid BNs with discrete and conditionally Gaussian variables 

have been studied extensively and efficient algorithms for their evaluation are available. They 

utilize the fact that under a linear dependence structure the joint probability function of Gaussian 

variables is also Gaussian. An example hybrid BN with conditionally Gaussian RVs is presented in 

Annex 4. 

The joint probability functions of non-Gaussian variables are not defined. Therefore, evaluation 

of the BNs containing continuous non-Gaussian RVs requires utilization of approximate algorithms 

or discretization of the RVs. When the RVs are discretized, the previously discussed exact 

algorithms can be applied. The discretization process is described later in Section 6.1.3. 

In hybrid BNs, where we are not interested in the probability distribution of the continuous RVs, 

these can be eliminated from the BN and the resulting BN can be solved by the known exact 

inference algorithm as proposed in Straub and Der Kiureghian (2010). 

Inference in DBNs 

The algorithms for evaluating DBNs are based on the same principles that apply to inference in the 

BNs.  Because the DBN consist of repeating sets of nodes, the inference algorithms have a 
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recursive nature. They generally involve the so-called forward and backward passes: The forward 

pass evaluates the DBN slice by slice from the beginning (i.e. from left to right) and the backward 

pass from its end (i.e. from right to left).  

In most cases, only some of the RVs are observable. Let    denote the observed RVs in slice   
and    denote the unobserved (hidden) RVs in slice  . Three types of tasks can be distinguished 

(Murphy, 2002):  

 Filtering: Estimating the state of the system in time/position  , having observations from 
slices          . It corresponds to evaluating the probability     |      and requires 
application of the forward pass up to the slice  . 

 Prediction: Estimating a future state of the system in time/position      , where    , 
knowing the observations from slices          . It corresponds to evaluating the 
probability       |      and requires application of the forward pass up to the slice    ; in 
slices                 no evidence is included. 

 Smoothing: Estimating a past state of the system in the      th slice of the DBN, where 
   , knowing the observations from slices          . It corresponds to evaluating the 
probability       |      and requires application of both the forward and backward pass. 
This case is not further discussed in this thesis. 

From these three operations, we only perform prediction in this thesis, either with or without 

evidence. 

The exact algorithms for DBNs with discrete RVs are the Frontier algorithm, which is in more 

detail discussed later in Section 6.1.3, or the Interface algorithm, which is a modification of the 

Frontier algorithm optimizing the set of nodes operated at each step of the evaluation suggested by 

(Murphy, 2002). A complex summary of the algorithms for DBNs is provided in Murphy (2002) or 

Russell and Norvig (2003).  

6.1.2 Parameter learning 

Two problems are solved when learning the BN parameters from data:  

 Prior estimation of the model parameters (also called off-line learning), where a large set of 
data is available at once. 

 Sequential updating/adaptation of the parameters with observations (also called on-line 
learning), where model parameters are updated with every new set of observations.  

Different methods must be used for complete and incomplete data sets. Only the methods used later 

in the thesis are introduced in more detail in this section. Techniques for learning parameters of 

BNs are also applicable for DBNs (Murphy, 2002). 

We assume that the structure of the BN is known and that the parameters for the various RVs in 

the network are independent, i.e. that we can learn the parameters of each RV independently. Let   

be the set parameters of the analyzed variable  ,  ̂  be the best estimate of the parameters and   be 

the data set. If the random variable is discrete,   consists of the values in the CPT. If the RV is 

continuous and it is described by a parametric distribution (e.g. Normal, Lognormal etc.) 

conditionally on its parents,   contains the parameters of the parametric probability distribution.  
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Prior estimation 

The most common approach to the prior estimate of the BN parameters with a complete data set is 

the Maximum likelihood estimation (MLE), which aims to maximize the likelihood (resp. log-

likelihood) of the parameter set   given the observed data set  : 

  ̂            |              |   (6.4) 

The likelihood is calculated as  

    |   ∏   [    | ]  (6.5) 

where    is a single observation of the variable  . For computational reasons it is more convenient 

to work with log-likelihood, which is defined as: 

     |   ∑      [    | ]  (6.6) 

Note that Eqs. (6.4) - (6.6) assume independence of observations for given  . 

If the dataset is not large enough, we may wish to combine the data with experience. In this 

case, the Bayesian approach is suitable allowing one to combine a prior estimate of the 

parameters, obtained for example from an older database, literature or expert judgment, with new 

data. This technique is not used in this thesis, for more details the reader is referred for example to 

Russell and Norvig (2003) or Špačková et al. (2011).  

The Expectation maximization (EM) algorithm is a popular method for learning parameters 

from an incomplete dataset. It is used when data in the dataset are missing or some variables are not 

observable (Jensen and Nielsen, 2007). It is an iterative approach consisting of two steps: in the 

expectation step, the missing data are replaced with expected values obtained based on the current 

estimate of parameters; in the maximization step, the new set of data is used to make new parameter 

estimate.  

Please note that in the example of Section 5.3, we also deal with incomplete data, because the 

variable human factor is not observed. However, for learning the model parameters we make 

assumption on the state of the unobserved variable (we assume it to be in the state “neutral”). 

Therefore, the MLE algorithm is used for learning the parameters of unit time. 

Updating/adaptation of the parameters 

The (epistemic) uncertainty in the model parameters can be conveniently modelled by introducing 

an unobservable model type variable into the BN (Jensen and Nielsen, 2007;Der Kiureghian and 

Ditlevsen, 2009). This hidden variable is automatically updated with observations using the 

inference methods described in Section 6.1.1. In the DBN model of the tunnel construction process, 

the variable    is such a hidden variable. If this type of updating is not sufficient, the parameters of 

the BN (i.e. the CPTs) can be updated directly by means of Fractional updating or Fading (Jensen 

and Nielsen, 2007). Both methods are approximate, the Fractional updating is described in more 

detail in the following: 

We want to update the CPT of variable  , which is defined conditionally on variables   and  . 

Let   [    |         ]                be the prior estimate of the parameter and 

   [    |           ]    ̂    be the updated estimate. The reliability of the prior 
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distribution is expressed by the fictitious sample size    ; the higher the sample size is selected, the 

higher the reliability (weight) of the prior estimate.  

The evidence can have different forms: we can observe a deterministic value of   or just its 

probability distribution, we can know the state of its parent variables at the time of the observation 

with certainty or not. Generally, the evidence has the following form:   [         | ]      
and    [    |           ]      . The updated estimate  ̂    can be approximated as 

  ̂    
            

       
 

        [              | ]

      [         | ]
 (6.7) 

For more details the reader is referred to Neapolitan (2004) or Koski and Noble (2009). 

6.1.3 Discretization of random variables 

For application of the exact inference algorithms, the continuous variables must be discretized. The 

following procedure is applied in this thesis. Let  ̃ be the original continuous random variable with 

parent variables     ̃ , which is defined by a CDF   ( ̃|     ̃ ). Let   be the corresponding 

discrete random variable whose    states are denoted by   , where         . Let state    

represent an interval 〈 ̃     ̃ 〉 in the original continuous space,  ̃  is the upper bound of the 

interval corresponding to state   . The conditional probability mass function of   then equals  

  (  |    ̃ )   ( ̃ |    ̃ )   ( ̃   |    ̃ ) (6.8) 

The intervals are defined so that they have an equal length     . Each state    is represented by the 

central value of corresponding interval, i.e.     ̃  
    

 
. 

It is noted, that the discretization introduces some inaccuracy. The discretization method 

proposed here is not suitable for problems that require accurate estimation of probability of extreme 

events, i.e. where an accurate approximation of tails of the continuous probability distributions is 

required. For these cases, a more general type of discretization called Mixture of truncated 

exponentials can be applied (Langseth et al., 2009).   

6.1.4 Principles of the Frontier algorithm 

The Frontier algorithm (Murphy, 2002) belongs to the group of exact inference methods and is 

applicable to DBNs with discrete nodes.  

The Frontier algorithm utilizes the fact that in the DBN one can identify sets of nodes, which, if 

fixed, d-separate the nodes on their left side from the nodes on their right side. These sets of nodes 

are Markov blankets of the sets of nodes on either their left or their right side. (See section 3.3.5 for 

introduction to the concept of d-separation.) These sets are called frontiers (or frontier sets). To give 

an example, all variables in slice   of a DBN representing a memoryless process create a frontier. 

They d-separate variables in slices    , representing future states of the process (right side of the 

DBN), from the variables in slices    , representing past states of the process (left side of the 

DBN).  

For the evaluation of the DBN, the frontier is moved slice by slice along the network. We can 

add a variable to the frontier, if all its parents are already included in the frontier. We can remove a 

variable from the frontier, if all its children variables are included in the frontier.  
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In the following, the Frontier algorithm is illustrated on a DBN containing   variables in each 

slice. One cycle of the algorithm moving frontier from slice     to slice   is shown in Figure 6.2. 

The variables marked with grey are those included in the frontier at a particular step. At the 

beginning of the cycle (Figure 6.2a), the frontier contains variables                        and 

                    is the known joint PMF of these variables.  

 

Figure 6.2: Graphical representation of one cycle of the Frontier algorithm for an example DBN. The grey 

nodes are those included in the frontier at a given step; the nodes with dashed line are those operated at a 

given step. 

In step (b), a variable      is added to the frontier and variable        is removed from the frontier. 

Adding      corresponds to calculating the joint probability mass function 

                         through combination of known PMFs (compare with Eq. (6.1)) as: 

                                              (    |        ) (6.9) 

Removing        corresponds to marginalization of this variable (compare with Eq. (6.2)): 

                        ∑                                     
 (6.10) 

The above steps are repeated for other nodes until the frontier consists only of nodes of slice   as 

shown in Figure 6.2(d). The cycle is then repeated for the next slice     and so on. The marginal 

distribution of any variable      can be obtained from the joint distribution of any frontier that 

includes this variable, through elimination of all other variables in that frontier. 

As seen from Eqs. (6.9) and (6.10) above, in each step the algorithm requires operating only the 

joint PMF of the variables in the frontier, which reduces the computational demand significantly. In 

every step, the frontier should include as few variables as possible. We therefore add a new variable 

to the frontier as late as possible and we remove variables from the frontier as soon as possible.  

Updating 

Evidence (observations of random variables) can be efficiently included in the DBN. Consider 

observation of node       . The frontier algorithm proceeds until a frontier including      is 

reached.  The observation is then included by setting the probability of all outcome states with 
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       equal to zero and normalizing the probabilities of the remaining outcome states. This 

operation is called restriction in Section 6.1.1. 

With this procedure, the probability distribution of a variable in slice   is updated with the 

evidence from all slices    . The evidence in slices     is not included. To include such 

evidence, the updating algorithm must be extended by a backward computation, in which the 

frontier moves from right to left. This case is not considered in this thesis. Details on the algorithm 

can be found in Murphy (2002); (Straub, 2009) presents an application of the algorithm to 

modelling the effect of inspection and monitoring of deteriorating structures. 

6.2 Evaluation of the DBN 

The application of the previously discussed inference algorithms to the DBN model of tunnel 

construction process is presented in this section and a modification of the Frontier algorithms is 

proposed. The evaluation of the DBN proceeds in three steps: First, all continuous variables are 

discretized. Second, some of the nodes are eliminated from the DBN in order to simplify the 

computations in the modified Frontier algorithm. Third, the modified Frontier algorithm is applied. 

The three steps are presented in the following. In Sections 6.2.4 and 6.2.5, the procedures for 

updating of the prediction based on observed geotechnical conditions and performance are shown.  

6.2.1 Discretization of random variables 

Random variables defined in a continuous space (i.e. variables describing unit time    and delay 

caused by an extraordinary event       ) are transformed into random variables defined in a discrete 

space. The discretization is performed following the procedure described in Section 6.1.3.  

Since        is defined as a sum of          and   , it is convenient to use the same 

discretization interval length      for all three variables and to define the representative values of 

their states as integer multiplications of     . This, however, implies that the number of states of 

       increases with every slice of the DBN as is illustrated in Figure 6.3. If    is the number of 

states of   ,        , then the number of states of        is                  . To deal 

with the resulting large number of states of       , a modification to the Frontier algorithm is 

proposed in section 6.2.3. 
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Figure 6.3: Illustration of the summation of two discretized random variables: PMF of cumulative time 

        , unit time    and cumulative time        for tunnel segment    , zone      , human factor 

            , and rock class       . The PMF of        is obtained through convolution of          and 

   (see Section 5.2.7 and Section 6.2.3). 

6.2.2 Elimination of nodes 

Prior to the application of the Frontier algorithm, it is computationally beneficial to eliminate some 

nodes from the DBN. Such an elimination of nodes can be considered a pre-processing of the DBN. 

In the presented DBN, we eliminate ground class   , overburden   , cross-section geometry    and 

construction method   . This operation can be performed generically for all slices in the DBN. The 

resulting DBN is shown in Figure 6.4. When eliminating nodes from the network, additional links 

are added to the remaining nodes, to ensure that their joint probability distribution is not altered (see 

Section 6.1.1). New links are introduced from    to    and   , and from    to   . This new definition 

includes all the information from the eliminated nodes, which ensures that the reduced DBN gives 

the same results as the original DBN.  

In principle, one could directly define this reduced DBN instead of the original DBN. However, 

because the effect of variables such as overburden or ground class is only implicit in this reduced 

model, the direct determination of the conditional probabilities in the reduced DBN would not be 

straightforward. 

For the resulting network, due to the new links introduced in the elimination process, it becomes 

necessary to compute the conditional PMFs     |       and     |         . The conditional PMF of 

failure mode    can be calculated as (compare with Figure 5.2 of the original DBN): 

     |       ∑        |        
 ∑     |      ∑     |       

        
  (6.11) 

     |          
 

     
∑        |      ∑     |      ∑     |                 

  (6.12) 
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Figure 6.4: DBN after elimination of nodes. 

6.2.3 Modified Frontier algorithm 

In the following, one cycle of the modified Frontier algorithm is presented. It advances the frontier 

from slice    , with corresponding joint PMF   (                              ), to slice  , with 

corresponding joint PMF   (                    ). The frontier is moved from slice     to slice   
by sequentially adding nodes from slice   and removing nodes from slice     in the frontier. The 

individual steps are graphically documented in Figure 6.5 and are described in the following. 

At the beginning of the cycle, the joint PMF  (                              ) is available from 

the previous cycle. In the first step (a) of the cycle, the node    (zone  is added and node      is 

removed, as indicated in Figure 6.5 (a). The corresponding computation is 

  (                            )  

∑  (                              )    |         
 

(6.13) 

 

where     |      is obtained as described in Section 5.2.1. 

In the second step (b) of the cycle, the random variable rock class    is added to the frontier and 

     is removed, as depicted in Figure 6.5 (b). The corresponding computation is: 

  (                          )  

∑  (                            )    |            
 

(6.14) 

 

where     |         is obtained as described in Section 5.2.2. 

In the third step (c) of the cycle, the random variable human factor    is added to the frontier 

and      is eliminated, as shown in Figure 6.5 (c). The corresponding computation is 

  (                        )  ∑  (                          )    |         
 (6.15) 
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Figure 6.5: Graphical documentation of one cycle of the Frontier algorithm for evaluation of the DBN of 

tunnel excavation processes. The grey nodes are those included in the frontier at a given step. The nodes with 

dashed line indicate the nodes that are operated in a particular step (i.e. nodes which are added or removed 

from the frontier in this step). 

The conditional probability     |      is defined by an identity matrix (see Section 5.2.4). Because 

of this definition, the calculation from Eq. (6.15) can be skipped and the joint PMF can be obtained 

simply by replacing      with    in the known joint PMF  (                          ).  

In the fourth step (d) of the cycle, the random variable     , representing the number of failures,  

is added to the frontier and        is removed. Since      is defined conditional on the failure mode 

  , this random variable is also added to the frontier. The step is shown in Figure 6.5 (d) and the 

corresponding computation is 

  (                         )  

∑  (                        ) (    |         )    |            
 

(6.16) 

where  (    |         ) is computed as described in Section 5.2.6 and     |       is obtained after 

the elimination of nodes according to Section 6.2.2. 

In order to complete the cycle, one could, in principle, perform the following two operations 

corresponding to the fifth step shown in Figure 6.5 (e). First, the random variable   , representing 

unit time, could be added and    removed 

  (                         )  ∑  (                         )  
    |          (6.17) 
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Second, the cumulative costs        could be added, while          and    could be eliminated 

  (                    )  

 ∑ ∑  (                         ) (      |           )          
 

(6.18) 

Because random variables          and        can have large numbers of states, computation of Eq. 

(6.18) puts high demands on computer memory, which can make exact computations infeasible. For 

this reason, an alternative solution that avoids this computation is developed in the following.  

We exploit the fact that the cumulative time in segment   is obtained as the sum        
           , by using the convolution function to compute the distribution function of       . If 

         and    were independent random variables, the PMF of        could be computed as 

        
    ∑          

        
     (6.19) 

where the summation is over all states   of   . This is the convolution function (illustrated in Figure 

6.3), which is written in short notation as 

        
             

    
    (6.20) 

However,          and    are dependent and direct application of Eq. (6.20) is not possible. From 

the graphical structure of the DBN, it can be inferred that          and    are independent for given 

values of   ,   ,    and   . (This follows from the d-separation properties of the BN.) Making use 

of this conditional independence, we can write 

        |           
             |           

    |        
    (6.21) 

where the conditional PMF of   ,     |         , is known from Eq. (6.12). Furthermore, from the 

joint PMF of step (d), Eq. (6.16), we obtain 

  (        |           )  
∑  (                         )    

∑ ∑  (                         )             

 (6.22) 

The convolution operation in Eq. (6.21) is numerically efficient because it avoids the summation 

over the states of         , which is necessary in the conventional approach (Eq. (6.18)). This 

reduces the number of necessary operations by a factor corresponding to the number of states of 

        . Additionally, standard software like Matlab has optimized algorithms for computing the 

convolution function based on Fast Fourier Transform. The computation times of both algorithms 

are compared in Annex 4. 

With   (      |           ) of Eq. (6.21) the final frontier shown in Figure 6.5 (f) is calculated 

from: 

                         ∑  (      |           )                     
 (6.23) 

with 

  (                )  ∑  (                         )        
 (6.24) 

where  (                         ) is the joint PMF of step (d). 
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The full DBN is evaluated by repeatedly applying the cycle described above, starting at     

and ending at the last slice    . To initiate the calculation, the frontier in slice     must be 

known. It is 

  (                )  

         |        ∑     |       (    |  )    |            
(6.25) 

Because          , the joint PMF of the initial frontier is obtained simply by replacing    with 

       in the above expression. 

6.2.4 Updating 

If observations of the tunnel construction performance are available, the predictions can be updated. 

Commonly, the rock class, cumulative time and number of failures for individual segments can be 

directly observed as the construction proceeds. The observations in segment   are denoted as 

         ,               and            . To include the evidence in the Frontier algorithm, the 

joint PMF computed according to Eq. (6.23),                        , is replaced by the conditional 

PMF 

  (                    |                    )  

{
   (                    )                                         

      
    

(6.26) 

where   is a normalization constant to ensure that the sum over all states of 

 (                    |                    ) is equal to one. This conditional PMF is then used as the 

input for the next cycle of the Frontier algorithm. 

6.2.5 Adaptation of the model parameters 

Additionally to the automatic updating described in the previous section, the CPT of unit time    

can be adapted using the Fractional updating method described in Section 6.1.2.  Parameters of the 

original DBN depicted in Figure 5.2 are updated, where the unit time    is defined conditionally on 

construction method    and human factor   . In this way, the updated conditional PDFs of    can 

be directly compared with the prior estimates. 

The updated estimate with observations up to slice  ,   , is obtained as (compare to Eq. (6.7)): 

  ̂   
       [     |              ]   

    
         [                 |  ]

   
        [           | ]

 (6.27) 

where     
       ̂   

        
     . The sample size is set to    

       
        and the joint PMFs 

of   ,    and    given the evidence are calculated as 

           |        |          |    (6.28) 

where   [     |  ]    for                    and zero otherwise and the second component is 

calculated as  
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        |    ∑ ∑     |               
 

∑ ∑     |           ∑ ∑ ∑  (                    |                    )
                

  
(6.29) 

where  (                    |                    ) is known from Eq. (6.26) and the other conditional 

probabilities correspond to the definition of the variables (Section 5.2). 

To include the updated probability distribution of    in the next cycle of the Frontier algorithm, 

the conditional PMF from Eq. (6.12) must be recalculated with the updated PMF     |          

instead of     |      . 
To initiate the process, the prior sample size    

    must be selected. The prior sample size 

reflects the reliability of the prior estimate of the distribution, the higher the    
   , the bigger weight 

we give to the prior estimate.  

This type of updating is not included in the application example presented in Section 5.3, it is 

only used in the example of Section 7.3. 

6.2.6 Calculation of total time 

The total time        is the sum of the cumulative time        and delays caused by extraordinary 

events          :                        . For given value of     ,        and          are 

independent. Therefore, the distribution of         can be computed via the convolution function as 

        |    
           |    

          |    
    (6.30) 

The conditional PMF        |    
 is obtained from the joint PMF  (                    ), which 

results from the Frontier algorithm, as follows 

  (      |    )  
 (           )

 (    )
 

∑ ∑ ∑  (                    )      

∑ ∑ ∑ ∑  (                    )            

 (6.31) 

         |    
 is evaluated as described in Section 5.2.7. 

6.3 Summary and discussion 

Chapter 6 presents the algorithms for evaluation and learning the BNs and DBNs. The BNs are a 

relatively new tool for probabilistic modelling of dependent systems, which has gained popularity 

in many different fields of science and engineering in recent years. These new applications lead to 

more complex BN and DBN models with specific requirements. Development of new efficient 

algorithms for evaluating the BNs and DBNs is thus on-going.  

There are generally two problems to be solved: inferring unobserved variables, either with or 

without including evidence (Section 6.1.1), and learning the model parameters (resp. structure) of 

the BN from data (Section 6.1.2). The algorithms can be divided into two categories: exact or 

approximate. The exact algorithms, which are used in this thesis, require discretization of the 
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continuous random variables in the network, e.g. following the procedure described in Section 

6.1.3.  

The specific procedure for evaluating the DBN model proposed in this thesis is described in 

Section 6.2. The novel contribution described in this chapter is the modified Frontier algorithm 

(Section 6.2.3). Two modifications to the original FA (Section 6.1.4) are proposed, which avoid 

defining large conditional probability tables: (a) the frontier is optimized by excluding some of the 

variables; this modification was originally proposed by Murphy (2002) under the name “interface 

algorithm”; (b) some steps of the original algorithm are replaced by computations of convolutions 

of conditional PMFs; to our knowledge, this modification has not been previously published. The 

new algorithm is computationally efficient; computations shown here were performed in Matlab 

and take in the order of 80 CPU seconds on a MacBook Pro with a 2.53 GHz Intel Core 2 Duo 

Processor, 4 GB 1067 MHz DDR3 RAM and Mac OS X v. 10.6.8. The computational efficiency of 

the modified Frontier algorithms in comparison with the original Frontier algorithm is presented in 

Annex 4.  
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To obtain realistic results from the probabilistic modelling, it is essential to properly describe the 

model parameters. As was discussed in Section 3.2, the majority of probabilistic models of 

construction processes rely on expert assessment of the inputs. The unit cost and activity durations 

or advance rates are commonly described using uniform, triangular or beta distribution (Min, 2003; 

van Dorp, 2005; Yang, 2007; Project Management Institute, 2008; Said et al., 2009). Triangular and 

uniform distributions are especially popular, because the experts feel generally comfortable in 

assessing the boundary values resp. mean/mode of the variables. Studies analysing the data from 

construction projects, however, show that other probabilistic models, such as lognormal or Weibull 

distribution, are more suitable (Wall, 1997; Chou, 2011).  

In this section, data from tunnels constructed in the past are statistically analysed in order to 

obtain realistic description of model parameters. Only data on construction time are analysed, 

information on construction costs were not available. It is proposed to categorize the performance 

of the excavation process in three classes: (1) Normal performance, where the excavation round is 

commonly finished within one day. (2) Small disturbances of the process associated with delays in 

the order of a few days. (3) Extraordinary events, corresponding to cases when the excavation 

stopped for longer than 15 days.  

The statistics of normal performance (1) and small disturbances (2) can be assessed from the 

observed excavation performance. Such analyses are presented in Section 7.1 using data from three 

tunnels in the Czech Republic. The analysis includes selection of an appropriate probabilistic model 

and analysis of correlations of the construction process. For extraordinary events (3), statistical 

analysis is only meaningful if it is based on a larger dataset including a large number of tunnel 

projects, as presented in Section 7.2.  

The findings of the data analysis are used in the application example of Section 7.3. The DBN 

model presented in Chapter 5 is used to model the construction time of tunnel TUN3. Inputs of the 

model are determined with regard to the results of data analysis. TUN3 was used already in case 

study of Section 4.2, where the risk of extraordinary events and partly also small disturbances was 

7 Analysis of tunnel construction data 

for learning the model parameters 
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modelled using a simple model. The major part of this chapter was previously published in 

Špačková et al. (2012). 

7.1 Unit time  

The unit time   is the time spent for excavating a segment with fixed length    under normal 

performance and small disturbances. In this section, a statistical approach to determining the 

conditional probability distribution of the unit time   is presented and illustrated using data from 

three tunnels. While the DBN model presented in this thesis uses unit time, the advance rate is also 

introduced in the Section 7.1.1, because it is commonly used in the tunnelling practice. 

7.1.1 Advance rate and unit time as a stochastic process 

The unit time   resp. the advance rate   can be regarded as a random process. The advance rate is 

defined as 

      
     

  
 (7.1) 

where      is the location of the tunnel heading at time  . In practice, we can measure      only at 

discrete points in time. If measurements are made every   , the corresponding advance rate is 

calculated as 

        
            

  
 (7.2) 

  and     are related by: 

        
 

  
∫       
 

    
 (7.3) 

If the tunnel advance rate is a homogenous process, then   and     will be the same in the mean. 

However, the variance of     differs from that of   and is (Vanmarcke, 1983): 

     

     [
 

  
∫       
  

 
]    

  
 

  
∫ (  

 

  
)        

  

 
   

        (7.4) 

where   
  is the variance and    is the correlation function of the random process     .       is a 

so called variance function of the random process (Vanmarcke, 1983): 

       
 

  
∫ (  

 

  
)        

  

 
 (7.5) 

The square root of the variance function is a reduction factor (Vanmarcke, 1983), which is applied 

to reduce the standard deviation corresponding to a fully correlated process, similar to the approach 

presented in Isaksson and Stille (2005). With       the standard deviation for the advance rate 

measured over any time    can be determined by  
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      √

     

 (     )
 (7.6) 

where      
 is the standard deviation of the advance rate measured over a reference time      . 

      depends on the correlation function. For the special case of an uncorrelated process, it is 

       ; for a fully correlated process it is       .  

Eqs. (7.3) and (7.4) give rise to the averaging effect: The variance of     becomes smaller as    

increases. This must be accounted for when estimating the advance rate from observations. 

However, in practice this effect is often neglected when advance rates are estimated by experts, 

which can lead to significant under- or overestimation of the uncertainty.   

In the DBN model, unit time   is utilized instead of the advance rate. It is defined as 

                   (7.7) 

where      is the time the tunnel heading passes the position   and    is the length of a tunnel 

segment. 

For a homogenous process, the mean    of unit time increases linearly with   :  

    
  

     
     

 (7.8) 

where      
 is the mean of the unit time      for a reference length      . 

The variance of the    is also a function of   . In analogy to Eq. (7.6), it can be expressed as a 

function of      
, the standard deviation of the unit time      for a reference length      : 

    
  

     
     √

     

 (     )
 (7.9) 

where the variance function is: 

       
 

  
∫ (  

 

  
)        

  

 
 (7.10) 

where    is the correlation function of the unit time. Examples of correlation functions of unit time 

along the tunnel axis are derived in Section 7.1.4. 

For more details on the analysis of stochastic processes the reader is referred to Vanmarcke 

(1983) and Elishakoff (1999).  
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7.1.2 Data 

Data on the excavation progress from three tunnels built in the Czech Republic were collected for 

the analysis of unit time. The basic information on the tunnels is summarized in Table 7.1. 

Table 7.1: Basic information on analysed tunnels. 

Tunnel  TUN1 TUN2 TUN3 

Type  City road tunnel with 2  City road tunnel with 2 Access and technology 

  (partly 3) lanes in each  lanes in each tube tunnel for subway  

  tube   system 

No. of tubes 2 2 1 

Length of mined 2231+2224m 1060+1053 m 491 m 

Sections 

Data available  1843+1543 m 661+980 m 480 m 

from length 

Technology of  Conventional – mechanized Conventional – mechanized Conventional - mechanized 

excavation  (partly drill&blast) 

Excavation sequence Heading/bench/invert Partial with side drifts Full face 

  (partly vertical division) (6 cells) 

Cross-section area 124/174 m2 125m2 37/43/46 m2 

of the tunnel tube 

Cross-section area ~60/~85 m2 13m2 37/43/46 m2 

of analysed heading ~30/~42 m2 for vertical  

  sequencing 

Number of   failures 2+2 1+1 0 

 

The tunnel TUN1 is one of the longest mined tunnels in the Czech Republic. The tunnel was driven 

through Ordovician rocks comprising of sandy and clayey shales, fine-grained quartzite and 

quartzose sandstone. The rock was hard to weakly weathered, and strongly tectonically affected 

with many fault zones. In some locations, the rock overburden was critically low (up to 1.5 m).  The 

tunnel was mostly driven with crown-bench-invert pattern, in some sections a finer sequencing was 

used. The maximal inflows of water were about 120 litres per second. Before excavation of the 

main tunnels, an exploration tunnel was built in the location of one of the future tubes.  

The mining of the final tunnels proceeded from one portal. Two cave-in collapses occurred 

within a short section of one of the tubes and the second collapse stopped the works also on the 

other tube. The accidents resulted in total delay of approximately one year. In the most critical 

section of the tunnel with minimal height of rock overburden, high inflow of water and blocky 

jointing of the rock, the round length was reduced to 0.8 m and forepoling was used to improve the 

stability of the system. After the collapses occurred, jet grouting from the surface and chemical 

grouting was applied and additional monitoring was prescribed. 

The tunnel TUN2 was built under a densely developed area, the control of surface deformation 

was therefore of immense importance. The tunnel was driven through homogenous geotechnical 

environment consisting of Neogene clays covered by anthropogenic fills. The clays are stiff, locally 

hard. They are highly plastic and in combination with water extremely squeezing.  The total 
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overburden ranged from 6 to 21 m, the minimal thickness of the clay layer of 2-3 m above the 

tunnel crown was ensured in all positions of the tunnel. 

The mining of the final tunnels proceeded from one portal, just a short section at the other end 

of the tunnel was excavated in the opposite direction. To minimize the surface deformation, the 

partial excavation with side drifts was used (with 6 cells) in the whole tunnel. Minimal distance 

between each heading was prescribed to be 6 m. The round length in each of the cell was 1 m. 

Auxiliary measures such as pipe umbrella were used. In the analysed sections of the tunnel, two 

extraordinary events occurred which stopped the construction of the main tunnel heading for 17 

resp. 31 days.  

The last analysed tunnel, TUN3 with total length of 490 m, was built within a metro line 

extension project (see also Section 4.2). The tunnel was mined in homogeneous conditions of 

sandstones and clay stones under the water table. First 220 m long section of the tunnel section 

serves as an access tunnel for excavation of a metro station and it will not be used after completion 

of the project. The access tunnel is followed by a 93 m long tunnel, which will be used for a 

ventilation plant. The third section of the tunnel with length of 178 m is to be used as a dead-end 

tail track. The length of excavation cycles varied from 0.8 to 2.5 m depending on the geotechnical 

conditions. No unexpected events occurred during the excavation.  

In all three tunnels, inspections of geotechnical conditions at the tunnel heading and controls of 

construction performance were made regularly, commonly at the end of each round. From these 

records we obtained the following data: 

 Date of the inspection  

 Position of the main tunnel heading at this time 

 Classification of the geotechnical conditions in the vicinity of the tunnel heading to ground 
classes, which serve as the basis for selection of the construction method (support pattern) and 
for pricing and progress payments. The short characterization of ground classes used in the 
Czech Republic and their representation in the studied tunnels is summarized in Table 7.2, the 
relation to the common geotechnical classification systems is shown in Figure 2.8 

 Short descriptions of extraordinary events, when the excavation was stopped for more than 15 
days. 

Table 7.2: Characterization of ground classes (NATM technological classes) and their share in the analysed 

tunnels. 

Grou

nd 

class 

Characterization of ground classes  Length of sections belonging to the class 

TUN1 TUN2 TUN3 

Stability  Round 

length 

Sequencing; primary support 1st tube 2nd tube  1st tube 2nd tube   

1 > 2 weeks Unlimited Not needed 0  0  0  0  0  

2 2 days     - 

2 weeks 

>2.5m Horizontal seq.; bolts + 50-

100 mm shotcrete  

0  0  0  0  0  

3 2 hours   - 

2 days 

1.5-2.5 m Horizontal seq.; bolts, 

shotcrete + mesh 

808 m      

44% 

706 m 

46% 

0 0 156 m 

33% 

4 < 2 hours 1-1.5 m Horizontal ev. vertical seq.; 

girders, ribs, shotcrete + 

auxiliary; closure of support 

ring 

618 m      

33% 

230 m 

22% 

596 m  

90% 

843 m 

86% 

289 m 

60% 

5 unstable 

ground 

<1 m Horizontal an vertical seq.; 

girders, ribs, shotcrete + 

auxilary; closure of support 

ring 

417 m      

23% 

497 m 

32% 

65 m    

10% 

137 m 

14% 

35 m     

7% 
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Only the progress of the main tunnel heading is studied because it has decisive influence on the 

overall excavation performance. As an example, the excavation progress in tube 1 of TUN1 is 

depicted in Figure 7.1. The two extraordinary events can be clearly identified. The plots of the 

construction progress in other analysed tunnels are presented in Annex 6. 

 

Figure 7.1: Construction progress in the 1st tube of the tunnel TUN1. 

Figure 7.2 summarizes the relative frequency of times between records, which allows to identify 

cases where the excavation progress was delayed. Note that the time between two records does not 

correspond to the unit time, because it is not related to the excavated length. In case of TUN 1 and 

TUN3, approx. 97% of the records were made within one day. Those where the excavation rounds 

were not completed within one day, are considered to be associated with disturbances of the 

excavation process. These are mostly caused by organizational problems. In TUN2, which was 

mined in poor geotechnical conditions, only 76% of the records were made in less than one day. 

The breaks in order of 2-4 days are likely to be inevitable parts of the excavation technology 

associated with the synchronization of works at the parallel tunnel headings. 

 

Figure 7.2: Relative frequency of time between records (numbers in brackets show the frequency of time 

between records smaller than 1 day)  
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7.1.3 Statistical analysis 

For the statistical analysis, we follow the modelling framework provided by the DBN model. 

Therein, unit time   is the time for excavation of a segment with length   . It is dependent on the 

construction method (i.e. on combination of ground class and geometry). For given construction 

method, the unit time is a stationary random process.  

Following the DBN model framework, the unit time is furthermore dependent on the human 

factor. It is recalled that the human factor represents the deviation of the actual performance from 

the estimated performance. By definition, the human factor is constant throughout one tunnel. 

Based on the data alone, i.e. without knowledge of the original estimate, it is not possible to 

determine the human factor. Therefore, the dependence on human factor is not explicitly included in 

the data analysis. 

In the analysis, a segment length        was selected. Because the records were not made at 

the borders of the segments, the unit time observed in  th segment of the tunnel, denoted as  ̂ , was 

calculated by linear interpolation of the observed data as illustrated in Figure 7.3.  

 

Figure 7.3: Determining the observed unit times  ̂  from the data with linear interpolation. 

The variability of the observed unit time  ̂ per 5 m in different locations along the 1
st
 tube of the 

tunnel TUN1, after excluding the extraordinary events, is depicted in Figure 7.4. The graphs of the 

observed unit time in other analysed tunnels are presented in Annex 6. 

 

Figure 7.4: Observed unit time  ̂per 5 m in different positions of the tube 1 of the tunnel TUN1 after 

excluding the extraordinary events. 
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The probabilistic model of the unit time   must include both the normal performance (1) and small 

disturbances (2). Given normal performance, the unit time is described by a probability density 

function (PDF)    
.  Given small disturbances it is described by a PDF    

. Furthermore, let   be 

the probability of normal performance in a segment; consequently the probability of small 

disturbances is    . Following the total probability theorem, the PDF of the unit time including 

both (1) and (2) is: 

                        |                           |          
      

             
    

(7.11) 

From the data one cannot clearly distinguish between the normal performance and small 

disturbances. If this was possible, we could calculate the probability   as the share of normal 

performance on the whole sample and fit common probabilistic models,    
    and    

   , to the 

classified data. To avoid this manual classification, we use a probabilistic approach and we fit 

directly a combined probabilistic model: 

                      
                 

        (7.12) 

where     
        is here modelled as a lognormal PDF with parameters     and    

        as a 

beta PDF with parameters    , bounded from 0 to 15 days. The parameters           are 

estimated by means of the maximum likelihood method (see Section 6.1.2).   

The left bounded lognormal distribution describes well the normal performance, which has 

mean close to zero, relatively small variance and is slightly skewed. The beta distribution is suitable 

for the small disturbances, which have much higher variance and following the definition in our 

model framework are bounded between 0 and 15 days. However, the model of Eq. (7.12) is also 

valid with other distribution types for    
 and    

. 

Example PFDs and CDFs for tunnel TUN1 and ground class 5 are shown in Figure 7.5. The 

distributions of unit time for other ground classes and analysed tunnels are presented in Annex 6. 

 

Figure 7.5: Fitted PDFs and CDFs of unit time   per 5 m for tunnel TUN1, ground class 5, for different 

excavation sequencing. 
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The means and standard deviations of the unit time   for particular construction methods calculated 

directly from data are summarized in the first part of Table 7.3. The second and third part of Table 

7.3 show the means and standard deviations of the two components of the unit time: the normal 

performance described by    
        and small disturbances described by    

       . These 

values are determined from the fitted distributions. The fourth part of the table shows the 

probability   of normal performance and the last part of the table summarizes the number of tunnel 

segments with length      , where the construction method was used (i.e. the sample size). 

Table 7.3: Statistical estimation of unit time   per 5 m of the tunnel tube in [days]  - summary of mean 

values and coefficients of variation (in brackets) for different ground classes, cross-section areas and 

excavation sequencing 

 Tunnel  TUN1  TUN2  TUN3  

 Sequencing Horizontl Vertical Horizontl Vertical Full face 

 

      Area 

Ground          

class 

~60 m2 ~30 m2 ~85 m2 13 m2 37 m2 43 m2 46 m2 

Both 

component

s 

3 1.4 (0.5) 1.9 (1.1) 1.9 (1.1) - 1.5 (0.4) 1.9 (0.5) 0.9 (0.1) 

4 1.4 (0.5) 2.0 (1.2) 2.0 (0.2) 3.2 (0.6) 1.6 (0.1) 2.4 (1) 2.1 (0.7) 

5 2.6 (0.5) 3.5 (0.5) - 3.7 (0.5) 2.1 (0.3) - 3.0 (1.0) 

Normal 

perform. 

   
        

3 1.2 (0.2) 1.5 (0.2) 1.5 (0.2) - 1.4 (0.3) 1.4 (0.1) 1.0 (0.2) 

4 1.3 (0.2) 1.5 (0.2) 2.0 (0.2) 2.9 (0.6) 1.6 (0.1) 1.6 (0.1) 1.5 (0.2) 

5 2.3 (0.3) 3.3 (0.4) - 3.1 (0.3) 1.6 (0.0) - 1.2 (0.1) 

Small 

disturbanc

es

   
        

3 3.2 (0.6) 11.3 (0.1) 12.3 (0.1) - 3.2 (0.3) 3.5 (0.3) 1.0 (0.6) 

4 3.2 (0.5) 12.0 (0.4) 2.3 (0.4) 4.3 (0.25) 1.8 (0.1) 7.5 (0.5) 5.2 (0.2) 

5 5.8 (0.3) 6.8 (0.4) - 8.1 (0.2) 2.7 (0.0) - 8.3 (0.2) 

Prob. of 

normal 

perf. ( ) 

3 0.93 0.95 0.95 - 0.93 0.75 0.95 

4 0.95 0.95 0.95 0.79 0.95 0.87 0.83 

5 0.93 0.95 - 0.87 0.55 - 0.75 

Sample 

size 

3 245 28 28 0 19 4 8 

4 138 45 9 286 3 47 6 

5 88 95 0 41 4 0 4 

 

The performance of the excavation in TUN1 and TUN3 is relatively similar. Even if the total cross-

section area of the two tunnels is different, the leading tunnel heading allows utilization of high-

performance machinery. A difference can be observed in the tunnel TUN2, where the excavation is 

significantly slower (i.e. the mean unit time is higher). TUN2 is excavated in very difficult 

geotechnical conditions requiring complicated excavation sequencing and support measures. The 

leading tunnel heading has only 13 m
2
, the utilized machinery is therefore not very efficient and the 

support measures are demanding.   

The coefficient of variation (c.o.v) for the normal performance is in most cases in the range of 

0.1 – 0.3. A higher c.o.v. can be observed in tunnel TUN2 and in case of vertical sequencing in 
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tunnel TUN1. This indicates that for demanding excavation technologies the variability of the 

performance is increased.  

Excluding the cases for which the sample size is insufficient, we can conclude that the 

probability of normal performance, as expressed by the parameter  , is in the order of 0.8 to 0.95. It 

is noted that the estimated values of   correspond well to the observed frequencies of time between 

records shown in Figure 7.2. 

For several construction methods, the data basis is not sufficient for reliably estimating the 

parameters of    
. Nevertheless, the analysis shows that the small disturbances can explain the 

difference between the c.o.v. of the observed unit time and the c.o.v. of the normal performance. 

The latter is the value that most experts would estimate. 

7.1.4 Correlation analysis 

In addition to assessing the marginal distribution of unit time, it is necessary to analyse the 

correlation of construction performance among different locations. For this analysis, the unit time 

per 1 m of tunnel tube, denoted as    , is evaluated. The sample coefficient of correlation of the 

unit time     for two segments at a distance   is calculated as: 

      

 

  
∑   ̂            ̂            

  
   

    
  (7.13) 

where      and      are the sample mean and standard deviation of    ,  ̂     is the unit time 

observed at position   and  ̂       is the unit time observed at position    .    is the number of 

observations:       , where   is the length of the tunnel tube excavated with a given 

construction method. 

A power-exponential function      is fitted to the observed correlation coefficient: 

                  (7.14) 

where   and   are the parameters to be fitted.       is a correlation function (Vanmarcke, 1983). 

Other correlation functions were investigated, but the power-exponential function was found to best 

describe the data from the analysed tunnels.   

Figure 7.6 depicts the observed correlation function for unit time    , calculated from data of 

geotechnical class 4.  
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Figure 7.6: Correlation function       of unit time for ground class 4 in different tunnels. (The number in 

parenthesis shows the Scale of fluctuation,   ) 

As evident from Figure 7.6 the coefficient of correlation approaches zero already for     , 

indicating that the unit times observed at a distance of more than 5 m are uncorrelated for a given 

ground class. To objectively evaluate the distance at which the unit time becomes uncorrelated, the 

scale of fluctuation is calculated: 

    ∫        
 

 
 (7.15) 

The scale of fluctuation is used instead of the more intuitive correlation length, because the 

definition of the correlation length depends on the type of the utilized correlation function and it 

thus cannot be used as a consistent measure. The observed scales of fluctuation for different tunnels 

and geotechnical classes are summarized in Table 7.4. 

Table 7.4: Scale of fluctuation of unit time,  , for different tunnels and geotechnical classes. 

Tunnel  TUN1  TUN2  TUN3 

Tube  tube 1 tube 2 tube 1 tube 2 

Ground class Scale of fluctuation,  ,  in [m] 

3  3.7 3.3 N/A N/A 2.4 

4  4.0 2.0 1.7 2.0 2.2 

5  3.7 5.2 1.7 1.9 2.0 

All classes  43.5 30.9 1.6 1.9 2.3 

 

When analysing the data from all ground classes jointly, a large scale of fluctuation can be observed 

(for TUN1). In this case, the correlation indicates that two observations nearby are more likely to 

belong to the same ground class.   

With known correlation function, it is possible to assess the mean and standard deviation of the 

unit time for any segment length   , following section 7.1.1. For example, to determine the 

statistics of   (corresponding to segment length      m) from the statistics of    , the following 

relationships hold: 

           (7.16) 
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         √
    

    
 (7.17) 

The variance function      can be calculated according to Eq. (7.10) using the correlation function 

      fitted to the data, which is presented in Eq. (7.14). Alternatively, it can be determined using 

the observed correlation      for discrete values                 according to Eq. (7.13) by 

       
 

   
∑ ∑   |   |   

   
  
    (7.18) 

To demonstrate the validity of the above relations, we compare the sample means and standard 

deviations of unit time per 5 m,    and   , with the means and standard deviations calculated from 

     and     
using Eqs. (7.16) and (7.17). An example of such a comparison is given in Table 7.5 

for the tube 1 of tunnel TUN1  

Table 7.5: Means and standard deviations of unit time in tube 1 of TUN1, in [days] - comparison of values 

obtained from data and calculated using Eqs. (7.16) and (7.17). 

 Unit time per 1 m Unit time per 5 m Unit time per 5 m 

 From data  Calculated  From data 

Ground class     
     

             

3 0.28 0.31 1.4 1.1 1.4 1.1 

4 0.30 0.28 1.5 1.1 1.5 1.0 

5 0.64 0.63 3.2 1.9 3.2 1.8 

All classes 0.37 0.42 1.8 1.5 1.8 1.5  

  

7.2 Extraordinary events 

Extraordinary events (failures) are events that stop the excavation works for more than 15 days. 

This section presents the assessment of the failure rate and the probabilistic distribution of the delay  

due to a failure, based on historic data.  

7.2.1 Delay caused by a failure 

Project delays resulting from failures of the tunnel exaction process are analysed by Sousa (2010), 

using data from sixty-four failures for which this information was available. The data are 

summarized in Figure 7.7. Only one case of a delay shorter than 2 months is reported in the 

database. It is likely that events leading to short delays were not reported by the questioned experts 

and were not stated in the available sources. To fit the distribution of the delay caused by one 

failure,   , we therefore assume that data on events causing a delay in the range of 15-60 days are 

missing. Furthermore, we assume that these events are frequent and that a shifted exponential 

distribution is therefore suitable to describe the delay   . The applied shifted exponential 

distribution with parameter   is described by its CDF 
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                          (7.19) 

The observed delays from Sousa (2010) are provided as a histogram with thirteen intervals, 

         ⟩           ⟩               as shown in Figure 7.7. The lower borders of the 

intervals are denoted as   
    

       
 ; the number of observations in the intervals are denoted as 

             . Because data from the first interval are missing,    is unknown. To fit the 

probability distribution, the maximum likelihood method (see Section 6.1.2) was used to find two 

unknown parameters: the parameter of the exponential distribution,  , and the total number of 

observations including the missing data,     =∑   
    
   . The likelihood function is formulated using 

the binomial distribution as follows: 

         |           ∏ (
    

  
)    

     
        

        (7.20) 

where    is the probability of being in the  th interval, which is determined from the exponential 

CDF of Eq. (7.19) as 

            
          

     (7.21) 

The resulting fitted distribution of    is depicted in Figure 7.7, together with the normalized data 

from Sousa (2010).  The parameters found by the maximum likelihood method are   
             and        . The missing data from the first interval          ⟩ therefore 

represent 24% of the cases. The mean and standard deviation of    are 175 days and 160 days, 

respectively 

 

Figure 7.7: Distribution of delay,   , caused by one failure -  data collected in Sousa (2010) and fitted 

shifted exponential distribution.  

7.2.2 Failure rate 

The failure rate    |     
 is defined as the number of failures (extraordinary events) per unit length 

of the tunnel tube. In the presented probabilistic model, it is defined conditionally on ground class 

   and human factor   . Three different approaches can be used to estimate the failure rate: expert 

judgment, reliability analysis or a statistical approach using data from constructed tunnels. Each of 
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the approaches has its strengths and weaknesses. Ideally, several approaches should be used and the 

results should be compared and critically examined.  

Expert estimations of probabilities of rare events are commonly not reliable. They can be 

strongly biased by recent experiences (either positive or negative) of the expert and by many other 

factors (Lin and Bier, 2008; Goodwin and Wright, 2010). Such estimates should therefore be 

supported by other types of analyses and/or statistical data.  

Reliability analysis of tunnel excavation processes is a highly complex task and it is possible 

only with strong simplifications. Compared to the analysis of a completed structure, the analysis of 

a tunnel excavation process must take into account additional uncertainties connected with the 

construction process. One needs not only to analyse the reliability of the final tunnel, but the 

reliability of each of the interim states of the process (different levels of support, different phases of 

excavation). Additionally, uncertainties resulting from the influence of human and organizational 

factors, which are of crucial importance during the construction process, are not included in 

common reliability analysis (Blockley, 1999).  

In the following, a rough estimate of failure rates using data available in the literature is 

presented. The most comprehensive database known to the authors is presented in Sousa (2010); 

other databases considered are HSE ( 2006), Seidenfuss (2006) and Stallmann (2005) – see also 

Section 2.5. 

To determine    |     
 based on data, one must know the total number of failure events and the 

total length of excavated tunnels, ideally separately for individual ground classes. Because failures 

are rare events, data collected from a large number of tunnels would be needed. A rough estimate of 

   |     
 based on global data is made and compared with estimates using data from the Czech 

Republic. Because no information is available on the geological conditions and other features of the 

included tunnels, only the unconditional failure rate    can be assessed.  

According to HSE (2006), tunnels with a total length of 8750 km were constructed in the years 

1999-2004 worldwide, as summarized in Table 7.6,  their geographical distribution is displayed in 

Figure 7.8. These data were collected from freely accessible websites; their accuracy is limited and 

their completeness cannot be verified. For this reason, the data reported for the Czech Republic by 

HSE (2006) is compared with detailed information from Barták (2007) and from the overview 

presented in Annex 5. HSE (2006) reports construction of 29 tunnels with a total length of 59.6 km 

in the Czech Republic in the years 1999-2004. This number overestimates the length of constructed 

tunnels by 15% if parallel tunnel tubes are considered as separate tunnels and by 35% if parallel 

tubes are considered as one tunnel. Additionally, approximately 15% of the tunnels in the Czech 

republic constructed in this period are excavated by the cut&cover method. Assuming that these 

shares apply also to the data in other countries, we reduce the total length of tunnels reported in 

HSE (2006) to estimate the total length of mined tunnels. The resulting estimates are shown in 

Table 7.6. 
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Figure 7.8: Total length of tunnels built in years 1999-2004 in different continents according to HSE 

(2006). 

It is likely that many extraordinary events are missing in the available databases, because these 

include mainly major collapses reported by media or remembered by the interviewed experts. As is 

evident from Section 7.2.1, at least 24 % of extraordinary events can be considered as missing. The 

reported number of failures is therefore increased accordingly. The resulting estimates are shown in 

Table 7.6. These represent a lower bound, since many failures are likely to be missing in the 

databases. As discussed in Section 2.5, failures from the Czech Republic are not covered by any of 

the considered databases. The estimated failure rate    reported in Table 7.6 is determined by 

dividing the estimated number of collapses with the estimated length of mined tunnels and is also a 

lower bound. 

Table 7.6: Global data for assessment of failure rate,   , from the years 1999-2004 – sources HSE (2006), 

Seidenfuss (2006) and Stallmann (2005). 

Type of tunnel Total length of Total length of Number of Number of     

 constructed tunnels mined tunnels collapses collapses 

 HSE (2006) (estimate) (reported) (estimated) 

Road ~ 2000 km 1320 km 13 17 0.013 km-1 

Rail ~ 4200 km 2770 km 25 33 0.012 km-1 

Utility ~ 2100 km 1390 km 9 12 0.009 km-1 

Other ~ 450 km 300 km 1 1 0.003 km-1 

Total 8750 km 5750 km 48 63 0.011 km-1 

    

Approximately 60 km of mined tunnels (incl. utility tunnels) have been constructed in the Czech 

Republic since 1990 – see Annex 5. In case of tunnels with several tubes, only the longest tube is 

considered, because in case of a tunnel collapse or other severe problems, construction of both tubes 

is likely to be stopped even if the collapse is considered as one failure. Since 1990, 14 severe 

collapses have been reported (causing delay longer than 15 days or where the delay is unknown). 

The failure rate can be thus estimated as          . Assuming that around 24 % of cases are 

missing, the failure rate rises to          . This failure rate is almost 30 times higher than the 

failure rate computed from the global data. 

A similar observation is made in the study by Srb (2011), which compares the number of 

collapses and excavated tunnel lengths in the Czech Republic and Austria. The study reports 10 

collapses in 35 km of road and railway tunnels in the Czech republic resulting in a failure rate of 
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          and 8 collapses in 315 km of road and railway tunnels in Austria resulting in a failure 

rate of           .  

The presented estimates show a huge spread and can only serve as a basis orientation for critical 

expert estimation.  

7.3 Application example 3: TUN3 

The application of the DBN model is presented on the example of tunnel TUN3. TUN3 was studied 

in Section 4.2, where the risk of extraordinary events was quantified using the Poisson process and 

ETA. Performance data from this tunnel were analysed in Section 7.1.2.  

In this application example, an estimate of the total excavation time is carried out using the 

DBN model as would be done during the planning phase of the project. In this phase, the 

parameters of the probability distribution of unit time are assessed by expert judgement. The 

prediction is further updated with the excavation time observed during the tunnel excavation. 

The scheme of the modelled tunnel is shown in Figure 7.9. The modelled tunnel is 480 m long, 

each slice of the DBN represents a tunnel segment with length      . i.e. the DBN has 96 slices 

in total. The area is divided into 7 zones. Unlike in the application example in Section 4.2, the 

position of boundaries of these zones is modelled as uncertain. For given zone, the ground class is 

defined deterministically, i.e. in each zone either ground class 3, 4 or 5 is to be expected. The height 

of overburden is not explicitly considered in the model.  

The cross-section area of the tunnel varies from 37 to 46 m
2
. Nine construction methods are 

defined conditionally on ground class    and geometry   . For example, construction method “3-

37” is a method to be used in ground class 3 if the tunnel tube has a cross-section area of 37 m
2
. For 

all excavation methods, the full-face excavation is used. The primary support consists of rock bolts, 

20 cm of shotcrete, two layers of meshes and lattice girders. Some characteristics of the 

construction methods (average round length and length and number of bolts) are summarized in 

Table 7.9. 

 
 

Figure 7.9: Scheme of the modelled tunnel TUN3. The predicted zone borders are modelled by triangular 

distributions.  
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The DBN used for prediction of the excavation time is depicted in Figure 7.10. The variables are 

summarized in the Table 7.7 and described in Section 7.3.1. 

 

 

Figure 7.10: DBN model for prediction of total excavation time of the tunnel TUN3.  

Table 7.7: Summary of variables of the DBN model for prediction of total excavation time of the tunnel 

TUN3.  

Id. Variable Type States of the variable  

Z Zone Random/ Discrete 1,2,…,7 

G Ground class Random/Discrete 3,4,5 

H Human factor Random/Discrete  Favourable, neutral, unfavourable 

E Geometry Determ./Discrete 37 m2, 43 m2, 46 m2 

M Construction 

method 

Random/Discrete 3-37, 3-43, 3-46, 4-37, 4-43, 4-46, 5-37, 5-43, 5-46 

T Unit time Random/ 

Discretized 

0,     ,      , …, 14.5 [days] * 

F Failure mode Random/Discrete Failure, No failure 

NF Number of 

failures 

Random/Discrete 0,1,2,3,>4 

Tcum Cumulative 

time 

Random/Discretized 0,     ,      , …,     ** [days] 

Textra Delays caused 

by failures 

Random/ 

Discretized 

15,     ,      , …,            
 [days] *** 

Ttot Total time Random/ 

Discretized 

0,     ,      , …,                   )[days] 

*
     is the discretization interval of time variables,             , 

  

**
upper bound of cumulative time = 96 x 14.5= (number of segments) x (upper bound of unite time)

 

***
             is the 99.9 percentile of Textra 
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7.3.1 Definition of the random variables and numerical inputs 

Probabilistic definition of the individual variables follows the one presented in Section 5.2. The 

only exception is that in this second application example we do not model the rock class    and 

overburden    (compare the DBNs from Figure 5.2 and Figure 7.10). The ground class    is defined 

deterministically for the zone    by the conditional PMF     |    
6
 as shown in Figure 7.8. For 

example, in zone 1 at the beginning of the tunnel, ground class 5 is expected, followed by zone 2 

with ground class 4, therefore: 

    [    |    ]    and    [    |    ]    

    [    |    ]    and    [    |    ]    

 etc. 

The positions of zone boundaries are represented by triangular distributions, the parameters of the 

distributions are depicted in Figure 7.9 and they are summarized in Table 4.1.  

Table 7.8: Parameters of triangular distribution,       , describing the location of the end boundaries of the 

zones in [m] from the beginning of the tunnel. 

Zone Min Mode Max 

1 15 20 30 

2 35 45 50 

3 140 160 180 

4 185 200 210 

5 215 220 225 

6 230 245 260 

7 480 480 480 

 

The geometry,   , represents the varying cross-section area of the tunnel tube. It is 37 m
2
 in the first 

130 m long section of the tunnel (i.e. in slices            of the DBN), 46 m
2
 in the next 90 m 

long section of the tunnel (i.e. in slices               of the DBN) and 43 m
2
 in the last 460 m 

long section of the tunnel (i.e. in slices              of the DBN). 

The construction method    is defined deterministically for given    and    by the conditional 

PMF     |       as shown in Figure 7.8. For example: 

    [         |            ]    and    [         |            ]    

    [         |            ]    and    [         |            ]    

The human factor    can be in one of three states: “unfavourable, “neutral” and “favourable”. It is 

assumed that each of the states has the same probability.  

The unit time,   , is defined conditionally on construction method    and human factor   . The 

conditional PDFs of unit time are described by combined distributions accordingly with Eq. (7.12). 

The parameters of the distributions are assessed by the authors, the parameters of unit time for 

             are summarized in Table 7.9. The means and standard deviations for both the 

                                                 
6
 For direct application of the algorithms described in Section 6.2 it is possible to keep the DBN structure from the 

application example 1 (Figure 5.2) and to define the variables as follows: The variable overburden    has only one 

state; rock class    has the same states as ground class and it is defined deterministically for each zone, e.g.    [   
 |    ]    and    [    |    ]   ; the ground class is defined deterministically conditionally on    and   , for 

example    [    |       ]     and    [    |       ]   . 
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normal performance and for small disturbances for                  are by 10% lower and for 

                  they are by 10% higher.  

Table 7.9: Parameters of probabilistic distribution of unit time    for different construction methods    and 

for human factor             .    is unit time under normal performance,    is unit time under small 

disturbances,   is the  probability of normal performance. 

Construction 

method    

Average 

round 

length  

[m] 

Bolts: 

Length 

[m]/ 

number per 

round 

  Mean  
of    

St.dev.  
of     

Mean  
of    

St.dev.  
of     

3-37 1.6 3/ 4 0.95 1.20 0.24 4.00 2.00 

3-43 1.6 3/ 4  0.95 1.25 0.25 4.00 2.00 

3-46 1.7 3/ 4-12 0.95 1.25 0.25 4.00 2.00 

4-37 1.5 4/ 6-7  0.90 1.70 0.34 6.00 3.00 

4-43 1.5 3/ 4-7  0.90 1.80 0.36 6.00 3.00 

4-46 1.3 3-4/ 4-7 0.90 1.80 0.36 6.00 3.00 

5-37 1.0 4/ 6-7 0.85 1.80 0.38 8.00 4.00 

5-43 - - - - - - - 

5-46 1.2 4/ 10 0.85 1.90 0.38 8.00 4.00 

 

An example PMF of unit time for construction method 3-37 and              is depicted in 

Figure 7.11. 

 

Figure 7.11: PMF of unit time per 5 m for construction method 3-37,             . 

The probability distribution of delay is taken over from Section 7.2.1. The probability of failure 

mode    being in state “failure” is assessed based on failure rate analysed in Section 7.2.2. The 

failure rates for different ground classes and human factors are summarized in Table 7.10. The 

failure rates were chosen close to the values estimated base on global databases (Table 7.6). Unlike 

in application example 2 (Section 5.3), where much higher failure rates are applied, close to the 

estimates based on the Czech database. Slightly higher failure rates are used also in the application 

example 1 (Section 4.2), because there the definition of failure is broader (also events causing delay 

shorter than 15 days are considered as failures).  
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Table 7.10: Failure rate in [km-1] for different ground classes    and human factors   . 

                                       
     0.040 0.020 0.010 

     0.060 0.030 0.015 

     0.090 0.045 0.023 

Performance data for updating  

The prediction of excavation time can be updated with the performance observed during the 

excavation. The preliminary prediction is updated with observations of the zone   , the cumulative 

time        and the number of failures     .  

The first zone with ground class 5 is 19m long, here construction method 5-33 is used and it is 

excavated in 9 days. In the second zone with length 15 m, the ground class 4 is found and the 

construction method 4-33 is used and it is excavated in 5 days etc.  (see Figure 7.9 and Figure 7.12). 

No failures occur during the excavation. 

 

Figure 7.12: Predicted (mode) and observed cumulative time      in tunnel TUN3. 

Two types of updating are carried out: (1) Bayesian updating of the probability distribution of 

human factor    as described in Section 6.2.4. (2) Bayesian updating of the conditional probability 

distribution of unit time     |       by means of fractional updating as described in Section 6.2.5. 

The prior sample size is selected to be equal to 20.  

7.3.2 Results 

Prior prediction of the construction time (planning phase) 

The estimated progress of the tunnel excavation without consideration  of extraordinary events, i.e. 

the cumulative time        for       , is depicted in Figure 7.13. The uncertainty in the 

prediction is illustrated by the lines depicting 5th, 25th, 50th, 75th and 95th percentiles of the 

cumulative time in each position of the tunnel. The uncertainty increases with length of the tunnel, 

as the uncertainty for longer section is higher.  
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Figure 7.13: Estimated excavation progress for the tunnel TUN3 – prior prediction in the planning phase. 

The predicted cumulative time        and total time        for the whole tunnel, i.e. for     ,   is 

depicted in Figure 7.14. Besides the PDFs, also the exceedence probability is shown, which is 

defined as the probability that the variable is greater than a value  . Accordingly, the exceedeence 

probability equals one minus the CDF evaluated at    

 

Figure 7.14: Prediction of construction time made during the planning phase for the tunnel TUN3. 

Probability distribution of cumulative time     , which excludes extraordinary events, and total time     , 

which includes extraordinary events. (a) Probability density functions; (b) exceedance probability.  

The results show a small difference between the estimated cumulative time       , which excludes 

the extraordinary events, and the total time       . The effect of failures is small because the 

probability that one or more failures occur during the construction is only 0.016 as is shown in 

Figure 7.15. Even with this small probability of failure, the standard deviation of construction time 

increases considerably when including the extraordinary events, which is also evident from the tail 

behaviour depicted in Figure 7.14b showing that the probability of extreme values is significantly 

higher in case of       . 
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Figure 7.15: Prediction of number of failures     , for the whole tunnel TUN3. 

As is evident from comparing Figure 7.15 with Figure 4.3, the number of failures predicted with the 

DBN model is close to the prediction obtained from the Poisson model. The lower failure rates used 

in the DBN model make only minor difference in the results, e.g. the probability that one failure 

occurs during construction of the tunnel is   [      ]       , while in the application of the 

Poisson model   [    ]       .  

Sensitivity analysis 

The effect of the variable    and the sensitivity of the results to the selected failure rates are shown 

in the Table 7.11. The first row in the table corresponds to the results presented in Figure 7.14, 

where the    is uncertain and the failure rate is as shown in Table 7.10. The 2
nd

 to 4
th

 rows of the 

table show the estimates of total time for fixed values of   . The last row of the table assumes a 5 

times higher failure rates than the one presented in Table 7.10. 

Table 7.11: Sensitivity analysis of estimated total time,     . 

Human factor    Failure rate Mean St.dev.        
uncertain Acc. to Table 7.10 197 days 38 days 19% 

           Acc. to Table 7.10 218 days 43 days 20% 

              Acc. to Table 7.10 197 days 32 days 16% 

                 Acc. to Table 7.10 177 days 24 days 14% 

uncertain 5x higher 209 days 73 days 35% 

Updated prediction with observed performance  

The estimated progress of the tunnel excavation without consideration of extraordinary events 

updated with observations from 150 m section of the tunnel is depicted in Figure 7.16. 
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Figure 7.16: Estimated excavation progress for the tunnel TUN3; updated prediction based on performance 

observed in the first 150 m of the tunnel. 

By comparing Figure 7.13 with Figure 7.16, the reduction of the uncertainty in the prediction can be 

observed. There is no more uncertainty in the excavation progress in the first 150 m long section of 

the tunnel and the uncertainty in the remaining part is reduced. The uncertainty reduction is also 

depicted in Figure 7.17b, which compares the prior estimate of total time      with the posterior 

estimate. The PDFs of updated estimate of cumulative time      and total time      for the whole 

tunnel are depicted in Figure 7.17a. 

 

Figure 7.17: Prediction of construction time for the tunnel TUN3 updated with observations from 

construction phase: (a) PDFs of cumulative time     , which excludes extraordinary events, and total time 

    , which includes extraordinary events; (b) comparison of prior and updated     . 

The epistemic uncertainty modelled with variable human factor is reduced. The probability 

distribution of    updated with observations from the 150 m section is:    [                ]  
    ,    [            ]      ,    [              ]      . The most likely state is 

            , because the probability distribution of unit time for              is closest to 

the observed performance.  
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The second type of updating is adaptation of the conditional probability of unit 

time     |      . An example of the prior and posterior estimate of the conditional probabilities is 

for construction method 3-37 and              is depicted in Figure 7.18. The updated 

conditional probabilities for other construction methods and human factors are shown in Annex 7. 

 

Figure 7.18: Prior and updated PMF of unit time per 5 m for construction method 3-37,              - 
compare with Figure 7.11. 

Reduction of uncertainty with continual updating  

Next, we demonstrate Bayesian updating of the estimate of the total time in the course of the entire 

construction phase. After excavation of each segment, an updated distribution of the total time      

is computed, like the one shown in Figure 7.17. These updated distributions are shown in Figure 

7.19 in a form of a contour plot.   

 

Figure 7.19: Contour plot of the distribution (PDF) of total time      for the whole tunnel TUN3 updated 

with observations from the excavated tunnel section, as a function of the construction progress. 
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The uncertainty reduction with increasing amount of observations is represented by narrowing of 

the prediction spread from left to the right of the chart. The prediction of total time for zero length 

of observed section (i.e. for no observations) corresponds to the results presented in Figure 7.14. 

The prediction of total time for observed section with length equal to 150 m corresponds to the 

results presented in Figure 7.17. The prediction of total time for observed section with length equal 

to 480 m (i.e. for complete observations) equals to 193 days, which is the total observed excavation 

time of the tunnel TUN3.   

The jumps in the updated predictions in Figure 7.19 are caused by small disturbances observed 

during the construction process. The largest jump in the prediction appears after excavation of 280
th

 

m of the tunnel, where the excavation stopped for 13 days. If such disturbance is observed, the 

mean predicted total time increases suddenly. Additionally, the standard deviation of the prediction 

increases as well. The increase of the standard deviation has two reasons: (1) the uncertainty 

introduced by the human factor, which is updated following the procedure described in Section 

6.2.4, increases and (2) the standard deviation of conditional PMF of unit time     |      , which 

is adapted following Section 6.2.5, increases due to the higher probability of small disturbances. 

The adapted conditional PMFs of unit time for different construction methods and human factors 

are shown in Annex 7. 

The trends of the updated distribution of      in Figure 7.19 are related to the updated 

distribution of the human factor   , which is shown in Figure 7.20. It is reminded that    represents 

common factors that systematically influence the construction process and it takes the same value 

throughout the entire construction. However, its probability distribution changes throughout the 

construction as it is continuously updated with the observed performance. Note the correspondence 

between Figure 7.12 and Figure 7.20: When the excavation proceeds faster than originally 

predicted, i.e. where the increment of the cumulative time in most segments is smaller then the 

predicted one (e.g. in the last 200 m of the tunnel), the probability of a favourable human factor 

increases. Conversely, when the excavation proceeds slower, the probability of a favourable human 

factor decreases. The increased probability of an unfavourable human factor indicated in the early 

phases of the construction is caused by a slightly slower performance in the first segments of the 

tunnel. 

 

Figure 7.20: Updating of the variable human factor based on observed performance for tunnel TUN3, as a 

function of the construction progress. 

From the Figure 7.19 and Figure 7.20 it can be observed, that the reduction of epistemic uncertainty 

is not straightforward. Performance in different sections of the tunnel indicates different levels of 
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human factors and therefore the prediction of the total excavation time varies significantly 

depending on the length of the excavated section. For example, after excavation of first 200 m of 

the tunnel we would strongly underestimate the total excavation time. This can be caused by the 

fact, that some characteristics of the modelled tunnel (e.g. the inclination, crossing of existing 

structures) are not considered in the model, because the information is not available. As is evident 

already from the Table 7.3, performance in some of the construction methods (4-43 and 3-46) 

shows unexplained deviations. From the Figure 7.20 it can be observed that at the beginning of 

using construction method 4-43 (in the section between 240
th

 and 330
th

 m of the tunnel), the 

performance is obviously worse and later (in the section between 330
th

 and 480
th

 m of the tunnel) it 

improves significantly.  

7.4 Summary and discussion 

The analysis of data from the excavation of three tunnels presented in this section confirmed the 

assumption that three different phenomena can be distinguished in the construction process: (a) 

normal performance and (b) small disturbances of the construction process, which are both 

modelled within the variable unit time in the DBN model, and (c) extraordinary events or failures, 

which are modelled separately.  

The empirical analysis of tunnel performance from data of past projects must be performed 

separately for different utilized construction methods (excavation technology and support pattern). 

In the presented model framework, the construction method is defined through the ground class and 

tunnel geometry. Because in tunnelling practice the definition of ground classes depends on the 

project-specific geotechnical classification system (see Section 2.3.4), they are not directly 

comparable among different projects. As a consequence, also the data is not directly transferable 

and a purely statistical approach to learning model parameters for prediction purposes is not 

feasible. The statistical analysis must be accompanied by a geological evaluation, which links the 

different classification systems.  

To cover the many possible tunnelling conditions, a large database of constructed tunnels would 

be needed. Therefore, the data presented in this thesis cannot serve as a general database for 

probabilistic modelling of excavation performance in future tunnels. Section 7.1 however makes the 

following general contributions: (1) It presents a methodology for statistical analysis of tunnel 

performance data, which is broadly applicable. (2) It suggests a combined probability distribution 

(see Eq. (7.12)) for the unit time, which allows distinguishing the normal performance and the small 

disturbances on a probabilistic basis without using expert judgment. These two types of 

uncertainties can thus be studied separately. (3) The obtained coefficients of variations and other 

parameters of the proposed combined distribution can serve as a basis for expert assessments used 

in future probabilistic models. The results in Section 7.1.3 show that small disturbances 

significantly influence the probability distribution of the unit time. When experts make the 

estimates of the distribution of advance rates resp. unit time, only the normal performance is 

modelled and the effect of small disturbances is commonly neglected.  

The modelling of the extraordinary events during the construction process is arguably the most 

critical part in the probabilistic estimation of tunnelling performance. The significant influence of 

the selected failure rate on the predicted excavation time is shown in Table 7.11. The influence of 

failure rate can also be observed when comparing results of application examples 3 and 2 in Figure 

7.14 and Figure 5.7, respectively. In the example 2, significantly higher failure rates were used and 
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the resulting estimate of total time is thus strongly skewed. The failure rate has not been studied 

systematically in the past and cannot be assessed reliably from the available data, as discussed in 

Section 7.2.2. At present, available databases collect detailed information on selected observed 

extraordinary events. However, for the purpose of estimating failure rates, records of all 

extraordinary events within a sample of tunnels would be needed. Such a sample could e.g. be all 

tunnels of a certain type in a specific region and time period. Ideally, additional information on 

geotechnical conditions and construction method should also be available in such a database. When 

modelling a specific tunnel construction, the statistical estimate of the failure rate should be 

accompanied by expert estimates and/or structural reliability analysis.  

The utilization of the resulting statistical models for the probabilistic prediction of tunnel 

construction time using a DBN model is illustrated in the application example of Section 7.3. For 

the prior prediction during the design phase, the parameters of the DBN model are determined by 

expert assessments informed by the available data. During the construction, the prior prediction is 

updated using observed performance data. A significant part of the prior uncertainty is due to the 

epistemic uncertainty modelled by the random variable human factor, which represents the 

deviation of the actual performance from the mean predicted performance. In the present model, 

this human factor is assumed to take on one value during the entire construction. The results of the 

case study indicate that a more refined model, which allows for different values of the human factor 

for different construction methods, might be more accurate. In spite of this, the results show that the 

proposed model enables learning during the construction process.  

-
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The construction time and cost in infrastructure projects are systematically underestimated. A main 

reason for this underestimation is the fact that the uncertainty of the estimates is not considered in 

the planning of the projects and estimators are asked to provide deterministic values. Because of 

psychological and political reasons, they tend to estimate the construction time and costs too 

optimistically. However, even if the estimators would provide correct expected values of the 

construction time and cost, such estimates might not be sufficient for making optimal decisions, 

because the decision should also reflect the attitude of the decision maker to risk.  

In current practice, the project risks are commonly analysed on a qualitative basis. Qualitative 

analysis is an irreplaceable basis for prioritizing the hazards and risks, for development of risk 

treatment strategies and for allocating the responsibilities. The identification of hazards carried out 

during the qualitative analysis is a basis for risk quantification. However, direct use of risk registers 

for assessment of the overall risk, which is often applied in the practice, is incorrect. The risk 

registers do not take into account the interconnectivity and dependences amongst different hazards. 

They therefore cannot provide a correct numerical estimate of the overall risk. 

To make the investments to the infrastructure more effective, it is thus needed to change the 

present practice and to estimate the construction time and costs on a probabilistic basis. The model 

for such estimation must realistically assess the uncertainties influencing the construction process, 

the assumptions and logic of the model must be understandable and transparent, the inputs of the 

model should be based on analysis of data from past projects and the evaluation must be efficient 

enough in order to be utilizable for real-time management of the construction process.   

This thesis is a step towards realistic quantification of construction risk. It presents two models 

for probabilistic prediction of tunnel construction time: a simple model for estimating delay of the 

tunnel construction due to failures using Poisson process and Event Tree Analysis (Chapter 4) and 

an advanced model using Dynamic Bayesian Networks (Chapter 5). The models consider the 

common factors (e.g. quality of planning, organization of the construction works), which 

systematically influence the construction performance, and the epistemic uncertainty, i.e. the 

uncertainty in the expected construction progress due to incomplete knowledge the estimator has in 

8 Conclusions and outlook 
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the planning phase. The DBN model allows taking into account the uncertainties in geotechnical 

conditions and the common variability of excavation performance. Further, it allows updating of the 

predictions based on excavation performance observed after the construction commences. The 

utilization of the models is demonstrated by three applications examples. 

The use of the probabilistic estimation of construction time for the risk assessment and decision-

making is illustrated in Chapter 4, taking into account the risk perception of the decision-maker by 

means of a utility function. Two alternative tunnelling technologies are evaluated based on 

comparison of the associated risk and costs. It is shown that including the risk aversion of the 

decision-maker changes the decision; the risk aversion of the contractor outweighs the benefits from 

the cost savings. 

A methodology for statistical analysis of excavation performance data is shown in Chapter 7 

using data from three tunnels built with conventional tunnelling method. The results show that three 

types of phenomena can be observed in the construction performance: (1) the normal performance, 

(2) small disturbances of the construction process, (3) the extraordinary events. All of these 

phenomena have a significant impact on the estimate of the construction time. Expert estimates 

based on such statistical analyses are more likely to realistically appraise the effects of small 

disturbances and extraordinary events on the total construction time. 

An algorithm for the efficient evaluation of the DBN is described in Chapter 6. The existing 

Frontier algorithm was modified to better address specific features of the proposed DBN. The 

modification enables one to deal with discrete random variables with the large numbers of 

outcomes states that result from the discretization of continuous random variables such as time or 

cost. We exploit the fact that these variables are defined as cumulative sums of other random 

variables in the DBN and that the probability distribution of a sum of two random variables can be 

efficiently calculated by means of convolution.  

8.1 Main contributions of the thesis 

This thesis had two main objectives (see Section 1.1): to develop probabilistic models for realistic 

estimate of tunnel construction time (costs) and to analyse the performance data from the tunnels 

constructed in the past. The thesis focuses on quantitative analysis of the uncertainties. Compared to 

previous works carried out in this field, the thesis makes the following new contributions: 

 A simple model for the probabilistic estimation of the delay due to tunnel construction 
failures (e.g. cave-in collapses) is proposed. It can be used in conjunction with a deterministic 
estimate of the construction time. The model has the following new features: 

 It takes into account the uncertainty in the estimates of the failure consequences. 
By now, the consequences of the construction failures were commonly 
represented by their mean values or they were evaluated qualitatively. 

 The model takes into account the variability of the failure rate in different 
sections of the tunnel; the failure rate changes with the changing geotechnical 
conditions along the tunnel axis. 

 The model includes the epistemic uncertainty in the estimation of the failure rate. 

 The model framework enables learning the model parameters from data. The 
logic of the model is analogous with modelling of failures in the complex DBN 
model, the parameter estimations are thus valid for both models.  



 115 

 

 

 An advanced DBN model was proposed including both types of uncertainties, i.e. the 
common variability of the construction performance and extraordinary events (failures). 
Compared to existing models it has the following main advantages: 

 It includes the epistemic uncertainty which reflects the fact that the applied 
probabilistic models of the construction performance are uncertain. The 
uncertainty is caused above all by the unknown effect of human and other 
external factors. These factors cause strong correlation among the performance at 
different phases of the construction. The inclusion of the epistemic uncertainty 
leads to an increased variance of the estimate of construction time.  

 The proposed DBN approach is flexible with regard to the changes in the model. 
Modelling of geotechnical conditions can be adjusted depending on the specific 
conditions of the tunnel; the modelling of construction performance can be 
modified for other tunnelling technologies or even for other infrastructures. 

 The DBN model allows for an efficient updating of the predictions with 
additional observations. 

 The graphical nature of DBN strongly facilitates the representation and 
communication of the model assumptions.  

 The results of the model demonstrated in two application examples seem to 
realistically reflect the uncertainties of the construction time estimates. 

 An efficient algorithm for evaluating the DBN model is proposed. The algorithm can be used 
in various applications of DBN models which include random variables that are defined as 
sums of other random variables in the DBN. 

The analysis of data from previous projects makes the following contributions: 

 A methodology for statistical analysis of tunnel performance data is presented which is 
broadly applicable also to other types of linear infrastructure. 

 It is shown that the commonly used probabilistic models of variability of unit time (activity 
duration), i.e. the triangular, beta or lognormal distributions, are likely to miss an important 
part of the uncertainty - the small disturbances of the construction process.  

 A novel combined distribution for representing the unit time is therefore proposed. It allows 
distinguishing the normal performance and the small disturbances on a probabilistic basis 
without using expert judgment. 

 Data from available databases of world tunnels and tunnel failures are analysed. The analysis 
gives a rough indication of the construction failure rates. Hitherto, such analysis was not 
available in the literature.  

 The delays of tunnel construction due to occurrence of failures are studied statistically using 
data from an existing database. A shifted exponential distribution seems to accurately 
describe the delay.  

 An overview of tunnels and tunnel construction failures in the Czech republic since 1990 is 
collected. These data were missing in all the available databases of tunnel failures.  

8.2 Outlook 

The presented thesis addresses just a part of the problem of optimization of the decisions in 

infrastructure projects. Further research and work is needed before the new concept can be applied 
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in the practice. Additionally, the proposed models may require improvements in the future. 

Limitations of the presented work and directions for future research are discussed in the following: 

 The models presented in this thesis are applied to estimate the tunnel construction time; the 
construction costs are discussed only briefly. The construction costs might be assessed using 
the DBN model by replacing the time variables with cost variables. This approach, which is 
used in many existing models, is however likely to oversimplify the reality. The costs, or at 
least a significant part of them (labour costs, machinery costs), are strongly time dependent. 
They should therefore be modelled as a function of the construction time. Further 
investigations in the field of construction costs are needed. However, this research might be 
hindered by the sensitivity of the cost information and by the complicated system of cost 
monitoring and control.  

 The presented DBN model neglects additional time (costs) needed when changing 
construction methods and the influence of this additional time on the decisions on changes 
(see Section 5.1.2). This omission is not critical in the presented applications, because ground 
classes and the corresponding construction methods do not change frequently. However, this 
factor should be included in the future.  

 In the present DBN model, the epistemic uncertainty is modelled by one random variable 
(called human factor), which is fully correlated through the whole construction process. The 
results of the last application example (Section 7.3.2) indicate that a more refined model, 
which allows for different values of the human factor for different construction methods, 
might be more accurate.  

 Performance data from three completed tunnels were analysed in this thesis. For making 
predictions in future tunnels, establishment of a much bigger database covering the whole 
variety of the tunnels is needed. The tunnels in the database should be categorized depending 
on the geotechnical conditions, type and geometry, construction technology and other factors, 
which influence the construction performance. Concurrently, it is necessary to make links 
between the geotechnical classification systems used in different projects.  

 The modelling of the extraordinary events during the construction process is a critical part in 
the probabilistic estimation of tunnelling performance. The failure rate has not been studied 
systematically in the past and cannot be assessed reliably from available data, as discussed in 
Section 7.2.2. At present, available databases collect detailed information on selected 
observed extraordinary events. However, for the purpose of estimating failure rates, records of 
all extraordinary events within a sample of tunnels would be needed. Such a sample could, 
e.g., be all tunnels of a certain type in a specific region and time period. Ideally, additional 
information on geotechnical conditions and construction method should also be available in 
such a database. When modelling a specific tunnel construction, the statistical estimate of the 
failure rate should be accompanied by expert estimates and/or structural reliability analysis. 

 The understanding of the benefits of probabilistic modelling among stakeholders should be 
raised which should lead them to more systematically manage and statistically analyse data 
from available projects.  

 Application of the proposed models to mechanized tunnelling eventually to other types of 
linear infrastructure (roads, railways etc.) should be investigated.  

 To make full use of the probabilistic estimates of construction time and costs in the project 
planning and management, the topic of decision making under uncertainty must be further 
developed. This thesis only briefly mentions the concept of utility theory (Section 3.3.7) and 
gives a simple example of the risk quantification and decision-making (Section 4.2). To 
realistically capture the whole complexity of the problem, the application of the utility theory 
in infrastructure projects should be further investigated. The decision concept should allow 
taking into account both measurable criteria, such as construction time and cost or 
maintenance costs, and soft criteria such as environmental or social impacts. 
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BN  Bayesian networks 

CBA Cost – Benefit analysis 

CDF Cumulative density function 

CPT Conditional probability table 

DAT Decision Aids for Tunneling model 

DBN Dynamic Bayesian networks 

EM Expectation maximization algorithm 

ETA Event tree analysis 

FA Frontier algorithm 

FMEA Failure Mode and Effect Analysis 

FTA Fault tree analysis 

IRR Internal rate of return 

MAUT  Multi-attribute utility theory 

MC Monte Carlo (simulation) 

MCA Multi-criteria analysis 

MCMC Markov chain Monte Carlo 

mFA modified Frontier algorithm 

MLE Maximum likelihood estimation 

NPV  Net present value 

PDF Probability density function 

PMBOK Project management body of knowledge (guidance) 

PMF Probability mass function 

QlRA Qualitative risk analysis 

QnRA Quantitative risk analysis 

RV Random variable 
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ANNEX 1: Basics of probability theory, notation 

 

SAMPLES AND EVENTS 

Sample space Collection of all possible outcomes of a random phenomenon, set of all 

sample points. 

Sample point One outcome of the random phenomenon 

Event,   Any subset of the sample space. Sometimes it is distinguished between 

the simple event (consisting of single sample point) and compound event 

(consisting of more sample points. The events are commonly denoted 

with capital letters.  

Complement,  ̅ Complement of an event   is a complementary event consisting of all 

sample points, which are not included in  . It is commonly denoted with 

a bar line. 

Intersection  ⋂  Intersection of events   and   is a set of sample points, which are 

common to both the events.  

Union  ⋃   Union of events   and   is a set of sample points, which belong to any of 

the events.   

Mutual exclusivity Mutually exclusive (disjoint) events are events, which contain no sample 

point in common, i.e. which have an empty intersection. An event and its 

complement are mutually exclusive from definition. 

Collective exhaustivity Collectively exhaustive events are events whose union includes the entire 

sample space. An event and its complement are collectively exhaustive 

from definition. 

 

PROBABILITY THEORY 

Probability measure A number associated with each point of the sample space determining the 

(assessed, believed) relative frequency of selection of the sample point 

from the sample space. 

Axioms of probability 1) For probability of an event   it holds,      [ ]   . 

 2) If an event   contains all sample points in the sample space, then 

  [ ]   . 

 3) For union of mutually exclusive events   and   it holds:   [ ⋃ ]  
  [ ]     [ ], because   [ ⋂ ]    

Probability of complement   [ ̅]       [ ] 

Probability of union   [ ⋃ ]    [ ]    [ ]    [ ⋂ ] 
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Conditional probability  Conditional probability of event   given   occurs. It is defined as: 

  [ | ]  
  [ ⋂ ]

  [ ]
 

Independence Events   and   are independent if it holds   [ | ]    [ ], i.e. if it 

holds    [ ⋂ ]=Pr[A]Pr[B]. 

 

Bayes’ theorem A broadly applicable theorem relating the conditional and unconditional 

probabilities of two events: 

  [ | ]  
  [ | ]   [ ]

  [ ]
 

It is especially important for including new information.  

 

 

RANDOM VARIABLES (RVs) 

Random variable,   A function defined on the sample space assigning a numerical value to 

every possible outcome of a random phenomenon. 

 The random variables (RV) are denoted with capital letters, e.g.  , an 

outcome of the RV is denoted with the same letter in lower case,  . 

Discrete RV A RV with discrete (countable) number of sample points. 

Continuous RV A RV defined on an interval or on a collection of intervals. 

 

Probability mass function 

(PMF),      * PMF is a way to describe a discrete RV. The PMF of variable   is 

defined as         [   ]. Sum of all values in the PMF must equal 

to 1. In calculations,       is conveniently treated as a vector with 

number of elements equal to number of possible outcomes of  .  

Probability density  

function (PDF),       PDF is a way to describe a continuous RV. For the PDF of variable   it 

holds           [        ]. It must hold:         and 

∫          
 

  
. 

Cumulative distribution 

Function (CDF),       CDF is an alternative way to describe a discrete or continuous RV. It is 

defined as           [   ].  

 for discrete RV:       ∑               ;  

 for continuous RV:       ∫        
 

  
.  

 The CDF is a non-decreasing function between 0 and 1. 
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Joint PMF      
       

7
 The joint PMF is a way to describe a set of discrete RVs, here    and   . 

It is defined as      
          [       ⋂       ]. If    and    

are independent, it holds:      
                        In 

calculations, the joint PMF is conveniently treated as a multidimensional 

array. 

Joint PDF      
        The joint PDF is a way to describe a set of continuous RVs, here    and 

  . It is defined as: 

  ∫ ∫      
       

      

  

      

  
       

   [                             ] 
 

Mean    and expected  Also first moment or “average value” of the RV.  

value  [ ] for discrete RV:      [ ]  ∑               
  

 for continuous RV:      [ ]  ∫       
 

  
   

Variance    [ ]  Second moment of the RV:  

    [ ]   [      
 ]   [  ]    [ ] 

 for discrete RV:     [ ]  ∑        
              

  

 for continuous RV:     [ ]  ∫       
      

 

  
   

Standard deviation           √   [ ]  

Coefficient of variation             |  | 
 

 

 

DATA ANALYSIS 

Histogram Graphical representation of observed data (corresponding to PMF resp. 

PDF) 

Cumulative frequency 

distribution Graphical representation of observed data (corresponding to CDF) 

  

 

                                                 
7
 Because the notations for PMFs can become intricate, especially when working with joint PMFs 

of many RVs, it can be simplified as follows:  

      is used as the short notation for PMF        
                is used as the short notation for joint PMF             

               
     |        is used as the short notation of conditional PMF     |       

   |          
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ANNEX 2: Inputs for application example 2: Dolsan A tunnel 

Conditional probability table (CPT) for rock class   

 

1 Annex	2

Ri                                                Ri-1 = I Ri-1 = II Ri-1 = III Ri-1 = IV Ri-1 = V

I 0.082 0.243 0.243 1 1

II 0.606 0.287 0.471 0 0

III 0.312 0.471 0.287 0 0

IV 0 0 0 0 0

V 0 0 0 0 0

Ri                                                Ri-1 = I Ri-1 = II Ri-1 = III Ri-1 = IV Ri-1 = V

I 0.607 0.260 0.215 1 1

II 0.260 0.607 0.417 0 0

III 0.134 0.134 0.368 0 0

IV 0 0 0 0 0

V 0 0 0 0 0

Ri                                                Ri-1 = I Ri-1 = II Ri-1 = III Ri-1 = IV Ri-1 = V

I 0 1 0 0 1

II 0 0 0 0 0

III 0.500 0 0.607 0.393 0

IV 0.500 0 0.393 0.607 0

V 0 0 0 0 0

Ri                                                Ri-1 = I Ri-1 = II Ri-1 = III Ri-1 = IV Ri-1 = V

I 0 0 0 0 0

II 1 0.574 0.160 0.276 1

III 0 0.281 0.757 0.535 0

IV 0 0.145 0.082 0.189 0

V 0 0 0 0 0

Ri                                                Ri-1 = I Ri-1 = II Ri-1 = III Ri-1 = IV Ri-1 = V

I 0.189 0.243 0.102 0.193 0

II 0.406 0.189 0.255 0.289 1

III 0.243 0.406 0.490 0.482 0

IV 0.162 0.162 0.153 0.036 0

V 0 0 0 0 0

Ri                                                Ri-1 = I Ri-1 = II Ri-1 = III Ri-1 = IV Ri-1 = V

I 0.490 0.153 0.049 0.162 1

II 0.255 0.490 0.121 0.243 0

III 0.153 0.255 0.757 0.406 0

IV 0.102 0.102 0.073 0.189 0

V 0 0 0 0 0

Ri                                                Ri-1 = I Ri-1 = II Ri-1 = III Ri-1 = IV Ri-1 = V

I 0.535 0.373 0.312 1 1

II 0.307 0.435 0.606 0 0

III 0.158 0.192 0.082 0 0

IV 0 0 0 0 0

V 0 0 0 0 0

Ri                                                Ri-1 = I Ri-1 = II Ri-1 = III Ri-1 = IV Ri-1 = V

I 0.890 0.088 0.145 1 1

II 0.072 0.867 0.281 0 0

III 0.037 0.045 0.574 0 0

IV 0 0 0 0 0

V 0 0 0 0 0

zo
n

e
	Z

i	=
	7

zo
n

e
	Z

i	=
	8
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 Input for application example 2: Dolsan A tunnel
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Conditional probability table (CPT) for construction method    

 

 

3 Annex	2

Mi L_I L_II L_III L_IV L_V M_I M_II M_III M_IV M_V H_I H_II H_III H_IV H_V

P.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.4 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

P.5 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

P.6 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1

P.2-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.2-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.2-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.EPP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mi L_I L_II L_III L_IV L_V M_I M_II M_III M_IV M_V H_I H_II H_III H_IV H_V

P.1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0

P.2 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0

P.3 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1

P.4 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0

P.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.2-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.2-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.2-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.EPP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mi L_I L_II L_III L_IV L_V M_I M_II M_III M_IV M_V H_I H_II H_III H_IV H_V

P.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.2-1 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22 0.22

P.2-2 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

P.2-3 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46

P.EPP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Mi L_I L_II L_III L_IV L_V M_I M_II M_III M_IV M_V H_I H_II H_III H_IV H_V

P.1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.2-1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.2-2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.2-3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P.EPP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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ANNEX 3: Validation of the DBN model through comparison 

with the DAT model + sensitivity analysis  

In this annex, two simplified versions of the DBN model are presented. These DBN models are 

shown in Figure AN 1 and Figure AN 2. The variables of the models are described in Table AN 1.  

The first DBN (denoted as DBN-1) is constructed with the same assumptions as used in the 

DAT model presented in Min (2003). The DBN was established in order to validate the DBN model 

by comparing its results with those obtained from DAT. It should be remembered that the DAT 

does not use BN, yet every probabilistic model can be interpreted as a BN. 

The second DBN (denoted as DBN-2) displays an extended model including additional 

variables and dependences in the construction process. This model was used for performing some 

sensitivity analyses.  

The models were originally introduced in Špačková and Straub (2011) with a small difference: 

the variable “human factor” was denoted as “quality” in this application but its definition and 

purpose was the same. 

 

Figure AN 1. DBN-1: Model with original assumptions. (The variables are explained in Table AN 1.) 

 

Figure AN 2. DBN-2: Extended model - DBN-2. (The variables are explained in Table AN 1.) 
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Table AN 1. Overview of DBN model variables 

Id. Variable Type States of discrete/ type of continuous 

distribution 

R Rock class Random/Discrete I, II, III, IV, V 

O Overburden Determ./Discrete Low, Medium, High 

G Ground class Random/Discrete L-I, L-II, L-III, L-IV, L-V, M-I, M-II, M-III, 

M-IV, M-V, H-I, H-II, H-III, H-IV, H-V 

E Geometry Determ./Discrete 1 (begin/end), 2 (typical), 4 (chem.plant) , 5 

(EPP) 

M Construction 

method 

Random/Discrete P.1, P.2, P.3, P.4, P.5, P.6,P.2-1,P.2-2,P.2-

3,P.EPP 

T Unit time Random/Cont. Triangular  

H Human factor Random/Discrete Favourable, neutral, unfavourable 

Z Zone Random/ Discrete 1,2,…,17 

 

The DBN models are applied to compute the total excavation time      for the Dolsan A tunnel. The 

definition of nodes follows the description of Section 5.2 with three differences: (1) Unlike in the 

application examples in the thesis, the calculations are performed with segment length      . (2) 

The probability distribution of human factor is assigned as                ,       
             and                  . (3) The conditional distribution of unit time    is 

obtained from a reference time     .      is the time for construction of tunnel segment with length 

        . Following Min (2003),      is assumed to have a triangular distribution. Correlations 

are not considered, therefore    
         

 and    
         

 – for reasoning, see Section 

7.1.1. 

Validation of the DBN - DBN-1 

DBN-1 reproduces the DAT model presented in Min (2003) with few differences: The DAT model 

is based on continuous Markov process models. In the DBN model, the Markov process is 

discretized into a Markov chain (i.e. transformed to a discrete space represented by slices of the 

DBN). Unlike in DAT, the delay between excavation of heading and bench was not considered in 

the DBN as it has little impact on total construction time. Additionally, the excavation of the tunnel 

portal was not modelled because necessary data were not available.  

Even with these differences, the calculated mean value of      is within 3% of the value given in 

Min (2003) and the standard deviation of      is within 10% of the value given in Min (2003), as 

seen from Table AN 2.  

Table AN 2..Comparison of results from DAT and DBN-1 model 

Simulation type 

DOLSAN A 

Total constr. time (days) 

Mean St.dev. 

DAT acc. to Min (2003) 195 3.39 

DBN-1 191 3.06 

Sensitivity analysis - DBN-2 

In the extended DBN, variables human factor    and zone    are introduced. The probability 

distributions of the excavation times    are now defined conditional on the human factor; for 
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            , the distributions from the DAT model used above are applied. For projects with 

           and               , distributions with higher variances are used. The 

conditional distributions of     , from which the distributions of    are calculated, are shown 

exemplarily for a particular construction method in Figure AN 3. The calculations were performed 

under two different assumptions: (a) the mean value of the excavation times    is not dependent on 

the human factor and is as in Min (2003)  and (b) the mean value of the excavation times    is 

increased by a factor of 1.07 in the case of            and by a factor of 1.15 in the case of 

               .  

 

Figure AN 3. PDF of unit time per 1 m of the tunnel tube,     , for construction  method 4 under assumption 

(a) - same means for all qualities. 

The comparison of the total excavation time      as calculated by means of the DBN-1 model with 

the original assumptions and the extended DBN-2 model is displayed in Figure AN 4. The variance 

of the      is significantly higher with the DBN-2, in particular when including a dependence of the 

mean excavation time on the quality (case b).  

 

 

Figure AN 4. PDF of total time      for excavation of Dolsan A tunnel – influence of human factor and 

selected probabilistic distributions of unit time.  

Figure AN 5 displays the results of the sensitivity analysis to other model parameters. In Figure AN 

5a, the influence of the spatial discretization is shown. With increasing slice length   , the variance 

of      slightly increases. This is due to the assumption that the construction method can be freely 
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selected for each slice. With the choice of a large   , a limited flexibility of the construction 

technology is assumed, which leads to a higher variance of     . Figure AN 5b shows the influence 

of including the human factor    in the model. If              , the variance of      is smaller 

than in the case of uncertain   . Finally, Figure AN 5c illustrates the effect of including the 

variables   , which allow the position of the geotechnical zones to be modelled as random, in the 

DBN model. For this application, it is found that the consideration of this randomness has a 

negligible effect on the estimate of     . However, this effect might be larger if the excavation times 

   would vary more strongly between different construction methods. 

 

Figure AN 5. PDF of total time      for excavation of Dolsan A tunnel – influence of other parameters.  
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ANNEX 4: Validation of the modified Frontier algorithm, 

comparison of computational efficiency  

In this annex, a simple DBN is evaluated using the original Frontier algorithm (FA) and the 

modified Frontier algorithm (mFA). The example is applied in order to validate the proposed mFA 

and to compare its computational performance with that of the original FA. The utilized sample 

DBN is depicted in Figure AN 6. 

 

Figure AN 6. Sample DBN calculated with FA and MFA. 

Each slice of the DBN consists of three random variables. Variable     has two states,     , and 

is defined conditionally on     . The conditional probability table (CPT) of this random variable is 

shown in Table AN 3.  

Table AN 3. Conditional probability table (CPT) of random variable   . 

Vi                                                  Vi-1 = I Vi-1 = II 

I 0.3 0.6 

II 0.7 0.4 

 

The variable    is defined as a Normal distributed random variable conditional on    with 

parameters as given in Table AN 4. For the application of the FA and mFA, the variable    must be 

discretized according to the procedure described in Section 6.1.3. Here, the variable is discretized 

into       states:        . 

Table AN 4. Parameters of the Normal distributed variable    for given    

Wi                                                  Vi-1 = I Vi-1 = II 

Mean 4 6 

St. dev. 1.5 2.5 

 

The variable    is defined as the sum of      and   . The interest is in calculating the PDF of 

variable    ∑   
   
   , where   is the number of slices in the DBN.  

Frontier algorithm (FA) 

Prior to the application of the FA, we eliminate the variables   , since they do not have links to 

nodes in neighbouring slices. Elimination of these nodes can be understood as a pre-processing of 
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the DBN, reducing the computational demand during application of the FA. The elimination of    

is performed for the whole DBN at once, variable    is then defined directly on    and on     : 

    |         ∑     |       |          
, (1)     . 

where     |    is known from the discretization process of    and 

    |                 |                 takes value 1 for            and value 0 

otherwise. The number of states of    is             . 

One cycle of the FA, i.e. moving the Frontier from slice     to slice  , is shown in the 

following. First, the variable    is added and      removed from the Frontier: 

           ∑     |                     
, (2)     . 

where     |      is defined in Table AN 5 and              is the joint PMF known from previous 

cycle of the FA. 

Second, the variable    is added and      removed from the Frontier: 

         ∑     |                      
, (3)     . 

where     |         and            are known from Eq. (1) and (2), respectively. Eq. (3) 

represents the most demanding computational step in the algorithm. The computation of this 

equation of the DBN requires     
      time in the  th slice. The evaluation the whole DBN 

with   slices therefore requires       
          [         ]      time. It is 

evident that the computation time increases exponentially with the number of states of the variable 

 ,   , and with the number of slices of the DBN,  . 

Modified Frontier algorithm (mFA) 

One cycle of the mFA is presented in the following. First, variable    is added and      is removed 

from the Frontier according to Eq. (2). Second, the PMF of    is calculated using convolution 

(analogously to Eq. (6.19) and (6.20) from Section 6.2.3): 

   |  
         |  

    |  
    ∑      |  

        |  
    , (4)     . 

where      |  
       |                    ,     |    is known from the discretization of 

variable    and the summation is over all states   of   . Finally, the joint PMF describing the 

Frontier in slice   is calculated as                  |        . 
The number of states of    is increasing in each slice of the DBN; it is              for 

        . The most demanding computational step of the mFA is the calculation of Eq. (4), 

which in the  th slice of the DBN requires              time.  For computation of the 

convolution, the Fast Fourier Transform (FFT) is commonly used (Walker, 1996). With FFT, the 

calculation of the  th slice of the DBN requires                    time and evaluation of the 

whole DBN with   slices requires     ∑                   ∑            [      
   

 
   

  ]  time (Walker, 1996). 
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Analytical solution  

Because the continuous variables in the DBN have conditional Normal distribution, the DBN can be 

solved analytically by evaluating the moments of the variables. The evaluation proceeds slice by 

slice, analogously with the previous algorithms. One cycle of the calculations is presented in the 

following. The expected value and variance of the    conditionally on    is calculated as: 

 [  |  ]   [    |  ]   [  |  ], (5)     . 

   [  |  ]     [    |  ]     [  |  ], (6)     . 

where  [  |  ] and    [  |  ] can be obtained from Table AN 6 and  

 [    |  ]  ∑   [      |  ]  [    |      ]
    
   , (7)     . 

   [    |  ]  ∑   [      |  ]  [    
 |      ]

    
      [    |  ]. (8)     . 

 [    |    ] and  [    |    ] are known from the previous cycle of the calculation and the 

conditional probability       |        |                  .  
The expected value and variance of the unconditional    is calculated as:  

 [  ]  ∑   [    ]  [  |    ]
    
   , (9)     . 

   [  ]  ∑   [    ]  [  
 |    ]

    
      [  ], (10)  

   . 

where 

 [  
 |  ]     [  |  ]    [  |  ]. (11)  

   . 

Eqs. (8) and (11) utilize an alternative calculation of variance using expression:    [ ]   [  ]  
  [ ] - see Annex 1. 

Results 

Computations are performed for the DBN with varying number of slices  . The computation times 

depicted in Figure AN 7 show the theoretical computation time estimated based on the number of 

performed operations as presented above and the observed time of computations performed in 

Matlab on the computer specified in Section 6.3. The time needed for evaluation of the DBN with 

only       slices is almost 1000 times higher with the original FA than with the mFA. The 

observed increase in computation time with the number of cycles is lower than the one estimated 

above. The likely reason for this is that the FFT algorithm implemented in Matlab is more efficient 

than the estimate given above (which represents a general upper bound). 
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Figure AN 7. Computation time for evaluation of the sample DBN with different number of slices,  : 
comparison of FA and MFA.  

A comparison of the mean and standard deviation of    computed with FA and mFA with the exact 

analytical solution is given in Table AN 7. FA and mFA give exactly the same results, which differ 

slightly from the analytical results due to the small discretization errors. 

Table AN 7. Comparison of    for      and       computed with FA and MFA with exact analytical 

solution. 

            

                                                FA/MFA Anal. FA/MFA Anal. 

Mean 50.78 50.77 507.76 507.69 

St.dev. 7.04 7.05 22.19 22.23 
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ANNEX 5: Overview of tunnels constructed in the Czech Rep. 

after 1989 and database of tunnel construction failures  

1 Annex 5

No. Ty

pe

Name Urban 

tunnel

Locatio

n (road 

No.)

Total 

length 

[m]

Technol

ogy*

Begin 

of 

constr.

Begin of 

oper.

No. 

Of 

tubes

No.of 

lanes 

per 

tube

Length 

of tube1 - 

mined

Length of 

all mined 

tubes (m)

Failure 

ID

1 Blansko (Novohrady) No 557 - - 1992 1 1 0

2 Vepřek (Mlčechvosty) No 390 conv. 2000 2002 1 2 272 272

3 Tatenice No 143 conv. 2003 2004 1 2 85 85

4 Krasikov No 1101 conv. 2003 2004 1 2 1035 1035

5 Trebovice No 95 c&c - 2005 1 2 0

6 Malá Huba No 324 conv. 2004 2005 1 2 300 300

7 Hněvkov I No 180 conv. 2004 2006 1 2 132 132

8 Hněvkov II No 462 conv. 2004 2006 1 2 432 432

9 Březno No 1758 prevault 2000 2007 1 1 1478 1478 9-1,2,3

10 Vítkov Yes Prague 1364 conv. 2004 2008 2 2 1224 2400

11 Jablunkov Y/N** 612 conv. 2007 ? 2013 1 2 588 588 11-1,2

12 Olbramovický No 480 conv. 2009 ? 2013 1 2 360 360

13 Votický No 590 c&c 2009 ? 2013 1 2 0

14 Tomický I No 324 conv. 2009 ? 2013 1 2 216 216

15 Tomický II No 252 conv. 2009 ? 2013 1 2 204 204

16 Zahradnický No 1044 conv. 2009 ? 2013 1 2 936 936

17 Osek No 324 c&c 2009 2011 1 2 0

18 Liberec Yes Liberec 280 - - 1993 2 2 0

19 Strahov Yes Prague 2004 other 1985 1997 2 2 1544 3088

20 Hřebeč No E442 355 conv. 1994 1997 1 3 270 270 20-1

21 Pisárky Yes Brno 511 conv. 1995 1998 2 2 286 581

22 Husovice Yes Brno 585 c&c 1996 1998 2 2 0

23 Dolní Újezd No R35 93 c&c 1997 1999 2 2 0

24 Zlíchov Yes Prague 195 c&c - 2002 2 2-3 0

25 Jihlava Y/N** E59 304 c&c 2003 2004 1 2 0

26 Mrázovka Yes Prague 1486 conv. 1998 2004 4 1-3 1167 2130 26-1,2..

27 Valík No D5 390 conv. 2004 2006 2 2-3 330 630 27-1

28 Panenská No D8 2168 conv. 2003 2006 2 2 1994.1 3972

29 Libouchec No D8 520 conv. 2004 2006 2 2 480 868

30 Klimkovice No D1 1088 conv. 2004 2008 2 2 865 1740

31 Komořany Y/N** E50 1937 conv. 2006 2010 2 2-3 1677 3351

32 Lochkov Y/N** E50 1662 conv. 2006 2008 2 2-3 1295 2557 32-1

33 Blanka Yes Prague 5503 conv. 2005 ? 2014 2 2-3 2766 5540 33-1,2,3

34 Dobrovského Yes Brno 1261 conv. 2006 ? 2012 2 2 1053 2113 34-1

35 Prackovice No D8 270 conv. 2008 ? 2012 2 2 138 293

36 Radejčín No D8 20 conv. 2011 - 2 2 446 892

37 IV.C1 Yes Prague 3981 conv. 2000 2004 1-2 1-2 1548 1548

38 IV.C2 Yes Prague 4602 conv. 2004 2008 1-2 1-2 2325 2325

39 A-Skal.-D.Host. Yes Prague 700 conv. - 2006 700 700

40 A-Dejvická-Motol Yes Prague 1000 mech. 2010 ? 2014 6134 6134

41 IV.B-Vys.-Kolb. Yes Prague 6447 conv. 1991 1998 2832 2832

42 V.B Yes Prague 3000 c&c 1988 1994 0

43 Červený vrch Yes Prague 711 - - 1998 711 711

44 Štvanice Yes Prague 585 - 1999 2001 585 585

45 Brno-PhaseI collectors Yes Brno 1790 - 2001 - 1790 1790

46 Brno-PhaseII coll. Yes Brno 1651 - 2005 - 1651 1651

47 Brno-PhaseIII coll. Yes Brno - - - - 0

48 coll.Ostrava I Yes Ostrava 2360 - 1997 2005 2360 2360

49 coll.Ostrava II Yes Ostrava - - - - 0

50 coll. Jihlava Yes Jihlava 1700 - - - 1700 1700

51 Jelení příkop Yes Prague 84 - 2001 2002 84 84

52 collectors Prague Yes Prague 14732 - 1990 2011 14732 14732 52-1

TOTAL 73973.9 58725 73614

* construction technology: conv. conventional tunnelling

c&c cut & cover

mech. mechanized (TBM)

** -  small town or edge of a bigger town/city (passing small settlements is clasified as No)

for more details see: http://www.ita-aites.cz/cz/podzemni_stavby/

Barták, J., 2007. Underground construction in the Czech Republic. SATRA.

magazine "Tunel" (also in English): http://www.ita-aites.cz/cz/casopis/casopis_pdf/
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Aldorf, J., 2010. Underground construction projects in the Czech Republic: Completed, under 

construction and planned from 2004. Tunel 19, 83–99.
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2 Annex 5

Failure 

ID

Type of failure Date Geotechnical conditions Other factors Damages Measures Delay Sources

9-1 cave-in collapse  

with crater

May 

2003

Plastic clay and 

claystone,discontinuities, 

previous mining activities, 

overburden:30m

No previous 

experiance with 

"prevault" 

construction method

77 m of the tube collapsed, 

progresive deformations 

(>2months),  machine 

blocked

access shafts, 

transverse pile walls, 

conventional method for 

the rest of the tunnel

17 

months

Hilar, M., John, V., 2007. Recovery 

of the collapsed section of the 

B!ezno tunnel. Tunel 16, 64–69.

9-2 cave-in collapse  

with crater

~2005/2

006

see 9-1 - smaller cave-in collapse grout injections, pipe 

umbrellas

- He!t, J., 2007. B!ezno tunnel 

construction. Tunel 16, 51–60.

9-3 cave-in collapse  

with crater

~2005/2

006

see 9-1 - smaller cave-in collapse grout injections, pipe 

umbrellas

- -

9-4 cave-in collapse  

with crater

~2005/2

006

see 9-1 - smaller cave-in collapse grout injections, pipe 

umbrellas

- -

11-1 portal instability ~2008 sandstone, claystone, located 

in pass between mountains - 

water, previous mining 

activities, overburden <24 m

- - - - -

11-2 cave-in collapse  

with crater

May 

2008

see 11-1 collapse during 

excavation of the old 

tunnel

crater with 10 diameter - - Mára, J., Korej" ík, J., 2009. New 

Jablunkov tunnel - design and 

construction. Tunel 18, 21–26.

11-3 cave-in collapse  

with crater

Nov. 

2009

see 11-1 - c. 100 m of tube collapsed, 

operation in the old paralel 

railway tunnel stopped (10 

days + later monitored)

- >1year Vesel#, V., Jandejsek, O., 2010. 

Tunnels in flysch environment - 

geotechnical risks, practical 

experience. Tunel 19, 24–30.

20-1 portal instability April 

1995

?clays, claystone, shallow 

overburden (5-17m)

- - - - http://www.ita-

aites.cz/files/Seminare/2011_04_to/

salac_bartak-tunel_hrebec-

havarie_portalu.pdf

26-1 extensive 

deformation (20 

cm)

summer 

2001

shales - thretening buildings above 

the tunnel (no damages at 

the end)

vertical sequencing, 

grouting

? no 

delay

Bucek, R., 2003. Solution of 

stability problems at the northern 

portal of the Mrazovka tunnel. Tunel 

12, 18–21.

26-2... cave-in 

collapses 

see 26-1 - smaller cave-in collapses - - -

Overview of tunnel construction failures
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Failure 

ID

Type of failure Date Geotechnical conditions Other factors Damages Measures Delay Sources

Overview of tunnel construction failures

27-1 extensive 

deformation

metamorphosed shale, heavily 

fractured and slightly 

weathered, overburden <16 m

small distance of 

tubes - central 

reinforced concrete 

pillar 

- micropiles - Svoboda, J., 2006. The Valík tunnel 

- D5 highway Plzeň by-pass. Tunel 

15, 28–31.

32-1 cave-in collapse 

without crater

early 

2008

tectonic fault, overburden 

11.5m, slope loams containing 

rock debris,  clayey shales

- 30 m before the end, 

volume 160m3

- ?5 days -

33-1 cave-in collapse  

with crater

May 

2008

shales, highly weathered, in 

location of collapses very low 

overburden, water

- collapse occured under a 

popular park, crater 

diameter c. 30 m

grouting, slower 

progress, 

replacing/reducing of 

emergency parking 

bays, 

2 

months

Kvaš, J., Zelenka, M., Salač, M., 

2010. Mined tunnels on the Blanka 

complex of tunnels. Tunel 19, 

12–18.

33-2 cave-in collapse  

with crater

Oct. 

2008

see 33-1 during side 

construciton of the 

emergency parking  

bay

crater with diameter of c. 

20 m, very close to the 

previous collapse

grouting, slower 

progress, 

replacing/reducing of 

emergency parking 

bays, 

6 

months

-

33-3 cave-in collapse  

with crater

July 

2010

- (other section of the tunnel 

complex)

mistakes in 

technological 

procedure

crater 20x35m in garden of 

a office building, 1 worker 

affected without injury

- > 2 

months

-

34-1 extensive 

deformation

~2009 higly plastic, heavily squeezing 

clays, 6-21 m overburden

- thretening of residential 

buildings above the tunnel 

(no damages at the end)

- ? no 

delay

-

52-1 cave-in collapse  

with crater

Jan. 

2005

sand-gravel terrace, 

overburden c. 7 m

many exiting 

structures, highly 

rebuild environment

occured in the centre - 

fruquent street, traffic 

disruption

- - http://www.ita-

aites.cz/files/Seminare/2010_03_T

D/Bartak-

Havarie_kol.Vodickova.pdf

for more info see: http://www.ita-aites.cz/files/Seminare/2010_03_TD/Bartak-Havarie_kol.Vodickova.pdf
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ANNEX 6: Statistical analysis of performance data  

This annex summarizes the results of analysis of performance data from three tunnels constructed in 

the Czech Republic, which is presented in Section 7.1. 

CONSTRUCTION PROGRESS 

 

Figure AN 8. Construction progress in tunnel TUN1: (a) 1st tube, (b) 2nd tube. 

 

Figure AN 9. Construction progress in tunnel TUN2: (a) 1st tube, (b) 2nd tube. 

 

Figure AN 10. Construction progress in tunnel TUN3. 
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OBSERVED UNIT TIME AFTER EXCLUDING EXTRAORDINARY EVENTS 

 

Figure AN 11. Observed unit time  ̂per 5 m in different positions of tunnel TUN1: (a) 1st tube, (b) 2nd tube. 

 

Figure AN 12. Observed unit time  ̂per 5 m in different positions of tunnel TUN2: (a) 1st tube, (b) 2nd tube. 

 

Figure AN 13. Observed unit time  ̂per 5 m in different positions of tunnel TUN3. 
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FITTED PDFs and CDFs OF UNIT TIME FOR DIFFERENT CONSTRUCTION 

METHODS (COMBINATIONS OF GROUND CLASS AND EXC. SEQUENCING) 

 

Figure AN 14. TUN1, ground class 3: PDFs and CDFs of unit time   per 5 m. 
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Figure AN 15. TUN1, ground class 4: PDFs and CDFs of unit time   per 5 m. 

 

Figure AN 16. TUN1, ground class 5: PDFs and CDFs of unit time   per 5 m. 
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Figure AN 17. TUN2, ground class 4: PDFs and CDFs of unit time   per 5 m. 

 

Figure AN 18. TUN2, ground class 5: PDFs and CDFs of unit time   per 5 m. 



156 Annex 6 

 

 

Figure AN 19. TUN3, ground class 3: PDFs and CDFs of unit time   per 5 m. 
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Figure AN 20. TUN3, ground class 4: PDFs and CDFs of unit time   per 5 m. 

 

Figure AN 21. TUN3, ground class 5: PDFs and CDFs of unit time   per 5 m. 
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ANNEX 7: Updating parameters of unit time  

This annex summarizes results of the updating of the parameters of unit time with observations 

from the construction process. The Figures show the prior and updated PMFs of unit time for 

different human factors and construction methods. The results belong to the application example 3, 

Section 7.3, where the construction process in tunnel TUN3 is modelled.  

UPDATING PMF OF UNIT TIME WITH OBSERVATIONS FROM 

CONSTRUCTION OF 150 M OF THE TUNNEL  

 

Figure AN 22. Prior and updated PMF of unit time for tunnel TUN3 for different construction methods (CM) 

and human factor                  – observations from 150 m. 
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Figure AN 23. Prior and updated PMF of unit time for tunnel TUN3 for different construction methods (CM) 

and human factor             - observations from 150 m. 
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Figure AN 24. Prior and updated PMF of unit time for tunnel TUN3 for different construction methods (CM) 

and human factor                - observations from 150 m. 
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UPDATING PMF OF UNIT TIME WITH OBSERVATIONS FROM 

CONSTRUCTION OF THE WHOLE TUNNEL  

 

Figure AN 25. Prior and updated PMF of unit time for tunnel TUN3 for different construction methods (CM) 

and human factor                   – observations from the whole tunnel. 
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Figure AN 26. Prior and updated PMF of unit time for tunnel TUN3 for different construction methods (CM) 

and human factor             – observations from the whole tunnel. 
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Figure AN 27. Prior and updated PMF of unit time for tunnel TUN3 for different construction methods (CM) 

and human factor                – observations from the whole tunnel. 
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