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1 Introduction

Learning models from visual exemplars proved to be a very successful strategy in
computer vision. Results of methods which learn from images clearly outperform
results achieved by using hand-crafted models. This is true in many areas including
object recognition, image retrieval, or object tracking to name just a few. Perhaps
even more surprisingly, some very successful methods actually do not only learn mod-
els from training data but also automatically select the most appropriate features.
With just a small exaggeration the only input required is a pile of positive exam-
ples. Discriminatively trained classifiers are often able to collect negative examples
automatically.

1.1 Thesis overview
The thesis is organized by topics and it is also approximately sorted by the time
the work has been performed. If not stated otherwise, a chapter corresponds to a
paper published in an international conference or in an impacted scientific journal.
Each chapter begins with a short paragraph explaining about its origin. The relevant
state of the art and conclusion sections are part of all chapters. The state of the
art parts have not been significantly updated and may thus not include some recent
contributions.
The part I of the thesis discusses approaches which use multiview data, assume ar-

ticulated object or both. The use of multiple cameras that see scene from convenient
viewpoints makes many computer vision problems conditioned better or generally
solvable at all. A typical example is the estimation and fitting of a human articulated
model. We define number of parts and the tree-like connectivity between them. The
probabilistic method we proposed estimates the dimensions of the parts and joint an-
gles. The input is a set of segmented multiview images. Neither learning on annotated
data nor manual input is needed. Having said this, we actually do propose a method
for estimating an articulated human model from a single image, which is described in
the subsequent chapter. The monocular method however requires intensive training
on annotated data. As the full depth cannot be estimated from a single image the
resulting model is more 2D than a full 3D model despite the fact that foreshortening
is modeled. In the closing chapter if the first part we show that multiple cameras
allow for visual modeling and gradient based tracking of a rigid object.
The part II is about predicting the object motion by learnable regressors. The term

prediction is a sort of product of its time. The term was coined in order to empha-
size the striking efficiency progress against the estimators usual at that time. Even a
non-optimal implementation in Matlab1 runs much faster than the real time–camera

1Matlab is sometimes considered as unacceptably slow for computer vision applications.
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Chapter 1: Introduction

frame rate. The main computation complexity is transferred to the learning phase
which learns decisive all possible object appearances ideally in advance and learns si-
multaneously the simplest possible predictor–estimator. The optimality criterion may
vary. Two main are discussed: maximal error on a training set and fixed complexity
of the resulting predictor.
The part III of the thesis describes some more recent progress of the learnable

regressors and their application to several computer vision problems. We step beyond
the static object model and introduce incremental learning. The algorithm allows for
updating the visual model as the prediction goes. The efficient predictor is coupled
with a simple detector and applied in mobile robotics in object localization in high-
resolution images.

1.2 What did not fit in
The thesis discussed work I did with my students at CTU in Prague during last
few years. Some work has not been included notably the work I did during my
post-doc stay at ETH Zürich. I list the non-included topics for sake of complete-
ness: the work on geometry and omnidirectional vision [21,89], automated video
editor [20], multicamera systems [86,22,36], image based object retrieval [78,79,77],
self-calibration [88,85], Kalman filter [17,105], and also a very recent work on recog-
nition of free-form 3D objects [69]. I also do not include the very recent progress on
predictors witch I still consider to be very much an ongoing work despite the starting
publication [100]. Our collaboration with the Honeywell Research on face association
problem for visual surveillance [44] has also been omitted.

1.3 The personal story and acknowledgments
I was introduced to the fascinating filed of computer vision by Václav Hlaváč in the
time I was pursuing my master degree. I learned a lot when I was a research student in
his lab. He also sent me abroad to the Delft University for gaining some international
experiences. I spent wonderful years in the Center for Machine Perception (CMP)
when pushing the limits in studying geometry in computer vision. My effort, co-
advised by Tomáš Pajdla and Václav Hlaváč eventually led to a PhD on Panoramic
vision geometry. During my PhD study I also spent four months at INRIA Rhône-
Alpes where I witnessed a very friendly environment of a top European research lab
headed by Roger Mohr. Finishing my PhD thesis would have been much harder
without staying three months at Walter Kropatsch’s group in TU Wien where I had
a privilege of writing and thinking without the usual interrupts. After PhD, I went
to ETH Zürich, a top world university where I spent three fruitful years as a post-
doc at Luc Van Gool’s lab. I switched also the research topic and did some work
on image based retrieval and tracking. Besides these topics I fell somehow in love
with multicamera systems which was enabled by the steep raise of digital cameras at
the beginning of 2000’s. I am indebted to Vladimír Mařík, head of the Department
of Cybernetics, who accepted me back to the department after my return from the
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Chapter 1: Introduction

post-doc. While working at CMP, I was lucky enough being advisor-specialist of PhD
study of Karel Zimmermann. Chapters 2, 4, 5, 6, and 7 stem from our joint work.
During the years, I collaborated with several bright master students. One of the most
successful series is presented in chapter 3. Chapters 8 and 9 represent joint work with
my PhD student David Hurych.
I have been recently participating on establishing a new computer science study

program Open Informatics2. I am honored to serve the board of the program.
I am truly indebted to Václav Hlaváč who stood near to me for most of my scientific

and teaching career. He also carefully read this thesis for which I am really thankful.
I am grateful he convinced me co-writing a book [87]. He is also my role model as
a team leader. Tomáš Pajdla was at the beginning of my scientific work. He has
been influencing me a lot. Later in my career, I have had the pleasure of having
many discussions with Jiří Matas. His unrelenting willingness to push the limits of
knowledge has been very stimulating.

2http://oi.fel.cvut.cz/
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Part I

Articulated models and multiple views
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2 Probabilistic Estimation of Articulated Body
Model from Multiview Data

The chapter describes our work on the estimating articulated human model
from segmented multiview sequences. The human body parts are modeled
as ellipsoids. Number of parts and their connectivity are the only inputs
specified. Physical dimensions and articulation parameters are estimated
from data. The work has been published as a conference paper [103].

An optimization algorithm and statistical description of articulated body model
estimation is proposed. The optimization algorithm fits the model into segmented
multiview images. The input of our algorithm is a sequence of segmented images
captured by several cameras and a structure of the articulated model. The output of
the optimization procedure is the shape and the motion of the articulated model. The
optimization runs over all cameras and all images in the sequence. We focus on the
description and optimization of probability distribution of the model parameters given
segmented multiview sequence. The performance of the algorithm is demonstrated
on real sequences of a walking human.

2.1 Introduction
The acquisition of articulated body model, often called motion capture, has numerous
applications. The gait analysis, computer animations or ergonomics study are only
few examples. The motion capture problem is often solved by using commercially
available marker-based systems. A set of markers is attached to important positions
on the human body. The 3D coordinates of the markers are computed via magnetic or
optical tracking. Such systems are expensive and using markers is uncomfortable for
patients and may affect their natural behaviour. Therefore computer vision researches
have studied markerless motion capture where no special hardware devices are needed.
A setup for markerless motion capture typically consists of several calibrated [88]

cameras encircling a working volume. A static background of the scene is modeled
from images of the empty scene. The position of a human body is found by the
background subtraction [84] which data allows efficient computation of a volumet-
ric model. Motion parameters of the human body are then found by fitting of an
articulated model to multiview observations or directly to the volumetric model.
Some methods fit model directly to the silhouettes [10,33]. The criterial function

describes correspondence of the model projection with silhouettes (e.g., Magnor and
Theobalt [57] uses simple XOR function). An alternative way is to reconstruct 3D
shape first and then fit the model to it. Mikic et al. [62] fit cylindrical model into the
carved voxel volume. The space carving requires a relatively high number of cameras.

— 8 —
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Figure 2.1: A setup for markerless motion capture consists of several cameras encir-
cling the working volume. Articulated ellipsoidal model is used for human
body approximation. The parameters are retrieved by optimization, in
which the coverage of the silhouettes by the model projection is max-
imized. All parameters are computed fully automatically without any
manual intervention. The dimensions are in meters.

Therefore Plankers and Fua [70] combine fitting to the silhouettes with the stereo
reconstruction.
All mentioned methods have a lot variations in complexity of the model or criterial

function, but the crucial problem is the non-linear, high-dimensional minimization.
Mikic et al. [62] solve the high-dimensional minimization by a hierarchical decompo-
sition. They fit head first, torso second, and limbs finally. This approach, of course,
does not assure that global minimum is found. Urtasun and Fua [91] reduce the di-
mension of the search-space by PCA. However, this limits the variety of movements
which can be tracked. Deutscher and Reid [19] propose the particle filter which is
efficient for non-linear search.
The current state-of-the-art approaches achieve good results for a human body

model tracking but require a careful model initialization. The initialization is often
done by assigning initial parameters by hand or by requiring a certain pose of the
captured human.
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Chapter 2: Articulated body from multiple segmented views

Moreover, the static parameters evaluation (e.g. the length of the arm) requires the
optimization over the whole sequence at once. In contrast with previous works, we
propose an approach with a weak model but we describe correctly the decomposition
of the criterial function over the time to obtain static parameters, which is close to
global minimum over the whole sequence. Hence, our approach needs no manual
initialization and exploits all available information since it optimizes over all data.

2.2 Human body model and parameters

We decided to use an articulated body model created from ellipsoids, see Figure 2.1.
The ellipsoidal model approximates the shape of the real human body and allows a
very fast projection to the images which is advantageous in the optimization. Each
rigid part is represented by one ellipsoid. The structure of the model follows the
anatomy of an average human. Movement of a joint causes movement of all succeeding
rigid parts. We apply the Hartenberg-Denavit notation [18] for open kinematic chains
which is a frequent solution in robotics.

We distinguish two main types of human body model parameters: shape (e.g. length
of the arm) and motion (e.g. angle between the upper and the lower arm). The motion
parameters are naturally different for each frame of the multiview sequence. However,
we assume the shape parameters to be constant. i.e. the person, remain the same
throughout the whole sequence. Parameters of the model given multiview sequence
Z = {Z1, . . . , Zn} are θ = {m1, . . . ,mn, s}, where n is the number of frames and Zi
is a particular multiview frame (i.e., the set of images from all cameras in time i). In
the case of ellipsoidal model, shape parameters are sizes of ellipsoids, and the motion
parameters are mutual positions and orientations of ellipsoids.

Let us consider for the moment that shape parameters s are known. The Estimation
of motion parameters mi in frame i is based on the posterior probability maximization.
The posterior is calculated from the projection of the ellipsoidal model to the cameras.
The probability of parameters, given images Zi, is inversely proportional to the sum
of distances between border of silhouettes (i.e. segmented images) and projected
ellipsoids. The probability is maximized by the standard Gauss-Newton method.

A problem arises when the shape parameters s are unknown. Clearly, the optimiza-
tion of all parameters θ over the whole sequence is technically intractable because the
number of variables of p(θ|Z) is proportional to the number of frames in the sequence
Z. Therefore we propose an algorithm which finds the maximum of p(θ|Z) with-
out the necessity to optimize over all of the parameters at once. The optimization
method is independent on the choice of the model structure (i.e. the derivations are
provided without any explicit knowledge of the criterial function). The ellipsoidal
model is used only for experimental results and can be replaced simply by a more
sophisticated model of an arbitrary articulated structure.

— 10 —



Chapter 2: Articulated body from multiple segmented views

2.3 Statistical framework
In our particular case, we are looking for the most probable shape s and motion
m1, . . . ,mn parameters, compactly called θ = {m1, . . . ,mn, s}, given a multiview
segmented sequence Z of the length n and also the structure of articulated model.
The multiview sequence Z = {Z1, . . . , Zn} consists of multiview frames Zi which are
set of images from all of the cameras in time i. The probability of parameters is given
by the sequence posterior probability p(θ|Z). The sequence posterior optimization over
all parameters at once is technically intractable. Therefore we decompose sequence
posterior into a multiplicative form which is suitable for optimization.
In order to split the optimization task into the particular subtasks we need to

accept a few constraints on parameters independence. We expect a human motion
to be a Markov process. The motion parameters mi in frame i are considered to be
dependent only on the multiview frame Zi, shape parameters s and preceding motion
parameters mi−1.
Under these constraints, the sequence posterior is decomposed to

p(θ|Z) = p(m1|s, Z1)p(mk, s|Zk)
∏
i 6=k

p(mi|mi−1, s, Zi), (2.1)

where k denotes a keyframe (which is an arbitrary frame of sequence). The full
derivation can be found in Appendix A. The sequence posterior is multiplication of
probabilities of parameters in the appropriate frames, which are called frame pos-
terior probabilities. The algorithm can optimize p(mk, s|Zk) to obtain the optimal
value of s with respect to the observation Zk. Given the shape parameters, we can
optimize motion parameters of the whole sequence frame by frame from p(m1|s, Z1)
to p(mn|mn−1, s, Zn). These shape parameters are optimal with respect to the frame
k, but it is not clear whether these parameters will be optimal for the sequence pos-
terior. Nevertheless, since the frame posterior is the probability of parameters in the
given frame, we would expect it to have the maximum near the optimal value of shape
parameters with respect to the sequence posterior.
Not all the frames provide the same information about the shape parameters. Two

examples of different frames of arm-like object projection to the camera are depicted
in Figure 2.2. The shape parameter s is the ratio of semi-axes of the two-ellipsoidal
model in this case. The first frame does not provide any information about the shape
parameter s because the frame posterior is uniformly distributed. In contrast, a
different image of the same object allows the estimation of the true value of shape
parameter s. It is hard to say in advance what is the most informative frame. We
propose trying the optimization of shape parameters in a several different frames.
Given individual hypothesis of shape parameters, we are able to evaluate the sequence
posterior and decide, which value is optimal. More formal description is provided in
the section 2.4.
Individual frame posteriors in the (2.1) are derived in Appendix B. There are two

different frame posterior:
with not given shape parameters

p(mi, s|Zi) ∝ p(Zi|mi, s)p(s), (2.2)
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Figure 2.2: Two views of an arm-like object which consists of two rigid parts. However,
the upper view provides no evidence of that fact. This non-usefulness is
reflected by the uniform distribution of the shape parameters. The bottom
row shows a much more useful frame which is reflected by the distribution.

and with given shape parameters

p(mi|mi−1, s, Zi) ∝ p(Zi|mi, s)p(mi|mi−1). (2.3)

If preceding motion parameters are unknown, then the prior p(mi|mi−1) has an uni-
form distribution and equation (2.3) reduces to the simpler form without this prior.
The p(Zi|mi, s), usually called likelihood, is proportional to the coverage of segmented
images Zi by model with given parameters (mi, s). The likelihood can accommodate
arbitrary appearance information like color histogram, edges, etc.
In this work, however, we do not use any appearance information and likelihood

is proportional to the distance between border of silhouettes (segmented images) and
projected ellipsoidal model1. The p(mi|mi−1) and p(s) are prior probabilities of mo-
tion mi and shape s parameters, respectively. The prior of motion parameters given
preceding motion parameters combines temporal coherence constraints with natural
motion limitations. The shape prior, which represents the probability of the shape,
is considered to have a Gaussian distribution with the mean and covariance matrix
proportional to the natural shapes.

2.4 Optimization
The sequence posterior is expressed as multiplication of the frame posterior prob-
abilities in (2.1), in which only one of them (no matter which) is not given shape

1More details about the model can be found in Appendix C.
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Chapter 2: Articulated body from multiple segmented views

parameters in advance. Theoretically, we could obtain shape parameters by opti-
mization p(mk, s|Zk) in a arbitrary frame k. However, as argued in the preceding
section, the approximation of true value is successful only in the most informative
frames.
The shape parameter optimization is performed by Algorithm 1. The vector of

shape parameters s is called hypothesis. Given the hypothesis, motion parameters
are evaluated frame by frame by maximizing the frame posteriors. The probability of
the hypothesis is calculated by (2.1).
First, the algorithm chooses the set of keyframes, frames in which it expects to

be the most informative. The selection follows the expected type of motion and the
sampling frequency (frames per second). The keyframes should (sparsely) cover one
period of the motion at least. The first shape hypothesis is the shape which maximize
the prior p(s). Next shape hypothesis is obtained by optimization in the keyframes
over the shape and motion parameters.
Second, the motion parameters, given each of hypothesized shape parameters, are

evaluated. Finally, the sequence posterior of each hypothesis (i.e. shape and appro-
priate motion parameters) is calculated and the most probable hypothesis is selected.

Algorithm 1 - the sequence posterior maximization.

1. K is set of keyframe indexes, H is the set of shape parameters hypothesis.

2. Set the shape parameters to the mean of the prior p(s) (i.e., the most apriori
probable values).

3. for each keyframe i ∈ K:

• optimize the shape and motion parameters (m∗, s∗) = arg max p(mi, s|Zi)
(2.2)
• save the s∗ as hypothesis H = H ∪ s∗.

4. for each shape hypothesis sj ∈ H and each frame i do:

• optimize only motion parameters m∗ = arg max p(mi|mi−1, s, Zi) (2.3).

5. Evaluate the sequence posterior (2.1) for each sj ∈ H with appropriate motion
parameters and choose the most probable hypothesis. k is the index of the
appropriate keyframe.

To make the proposed algorithm working, we must accept some constraints which
assure that we, at least asymptotically, reach the true value of shape parameters.
We have not yet mentioned any constraints on the character of the frame posterior
probability. Let us denote s true (unknown) shape parameters which maximize the
sequence posterior

s = arg max p(θ|Z).
Let us denote s∗k the shape parameters which maximize the frame posterior in a
frame k. Clearly, if the s∗k = s then the maximization of the frame posterior in an
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arbitrary frame provides the true value of shape parameters. However, this is too hard
constraint. Nevertheless, since the frame posterior is the probability of parameters in
the given frame, we should expect it to have the maximum near the s.
By the maximization of the second term p(mk, s|Zk) of (2.1), we can find the

maximum of the frame posterior probability s∗k. This value is not equal to the optimal
value of s but we expect to be close to it. By the optimization of the different frames
we obtain different values s∗k. We can evaluate the sequence posteriors given these
two different shape parameters by the optimization in the remaining frames. Now we
express the probability that after the maximization of shape parameters inK different
frames, we obtain at least one vector of shape parameters which is closer to the s then
some small ε.
More formally, the maxima of frame posteriors are considered to have a Gaussian

distribution with the mean s and a covariance σ. The covariance, which corresponds
to the model and the likelihood selection, is considered to be as small as possible.
Then

e = s− s∗k = N(0, σ)

is of Gaussian distribution too. Note, that we can find ML estimation of σ from
different values of s∗k.
The probability that the maximum s∗k of the frame posterior in frame k is closer

then ε to the true value s is

pε,σ =
∫ ε

−ε
N(e, 0, σ)de.

If we find the s∗k in theK frames independently then the probability that the maximum
s∗k of the frame posterior in at least one of these K frames is closer then ε to the true
value s is

pε,σ(K) = 1− (1− pε,σ)K .

This function rapidly goes to the 1 in K for reasonable values of ε and σ. At the
end of the Algorithm 1,we obtain K different values of s∗k k ∈ K which are used to
find a ML estimation of σ. One of shape parameters provides the maximal value of
the sequence posterior. The pε,σ(K) is the probability that this shape parameters are
closer than ε to the true value of s.

2.5 Experiments

Simulated data
We clarify basic principle in simple example shown in Figure 2.3 in the first experi-
ment. We fit a human arm model (i.e. open kinematic chain of two ellipsoids) into
an observation sequence (6 frames). We decided for parameters θi = (ϕi, a), where ϕi
(motion parameter) is an angle between two main axes and a (shape parameter) is the
length of the main semi-axis of the first ellipsoid. The length of the main semi-axis of
the second ellipsoid is 1− a and all of the other parameters are fixed. The unknown
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a
1−a

Figure 2.3: Human arm model, θi = (ϕi, a).

parameters of the model are a = 1 − a = 0.5, and the motion parameters changes
frame by frame ϕ1 = 0 rad, ϕ2 = 0.1 rad, ϕ2 = 0.2 rad, . . .
According to Algorithm 1,we obtain the shape parameter independently in each

keyframe (note, that all frames are keyframes in this simple example). A distribution
of shape parameter a and input sequence are depicted in Figure 2.4. Shape param-
eters computed for different frames are, of course, different. Each instance of shape
parameters is called hypothesis k. Given the hypothesis, we computes motion param-
eters of the model for whole sequence and probability of this hypothesis. Values of
normalized sequence probabilities for each hypothesis are depicted in Figure 2.5a.
We can see, that first frames do not provide any information about the shape

parameters because the posterior is equally distributed (see Figure 2.4). Thus, we
obtain a = 0.18 from the first frame and the corresponding incorrect vector of motion
parameters. Since the third frame shape starts appearing and the correct shape and
motion parameters are calculated. True and the most probable values of the angle ϕ∗
are in Figure 2.5b. The most probable shape parameter a = 0.53. The approximation
is inaccurate due to the simulated noise.

Real sequence

We used the multiview segmented sequence2 of human gait captured by seven cameras.
The length of the sequence is about 200 frames. We select each twentieth frame as

2Data have been provided by Lars Mündermann from Stanford University.
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Figure 2.4: The first row shows the observation sequence (silhouettes) in the frames
1,4,6. The second row shows the appropriate sequence probabilities
p(a, ϕ∗1|Z1), p(a, ϕ∗1 . . . ϕ∗4|Z1 . . . Z4), p(a, ϕ∗1 . . . ϕ∗6|Z1 . . . Z6).

a keyframe (i.e., the 10 keyframes were used). Parameters estimated by our method
matched well with the ground truth which was acquired by a complicated, manually
intervened, process. All of the shape parameters (length of limbs and sizes of body)
were calculated correctly. Motion parameters were computed correctly up to frames
about number 120 (see Figure 2.6). The ellipsoidal model is too weak to correctly
distinguish arm angles when arms are close to the body and therefore almost invisible
in segmented views. It should be noted however, that this is a problem of the weak
model not the method itself. Correct motion parameters produce higher (worse) value
of the criterial function. After the problematic frame, arms are distinguishable from
the body and the motion parameters return to the correct values.

2.6 Conclusions

We proposed a method of human body model fitting into segmented multiview data,
which optimizes both shape and motion parameters over the whole sequence. The
main contribution is the probabilistic description which, under reasonable constraint,
provides a solution near to global optimum. Moreover, we are able to quantify the
probability that we have actually reach the global minimum.

2.7 Appendix A

We will show how to decompose sequence probability into a multiplicative form, which
is usable for the optimization. The Bayes rule application on sequence posterior
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Figure 2.6: Frame 120 - incorrect motion parameters of the arm due to occlusion
of arms by the body. Human arm bends to the opposite side to cover
inaccuracy of the model.

probability p(θ|Z) provides

p(m1, . . . ,mn, s|Z1, . . . , Zn) =

p(mk, s|Z1, . . . , Zn)p(m1, . . . ,mk−1,mk+1, . . . ,mn|mk, s, Z1, . . . , Zn).

The motion and static parameters (mk, s) in the frame k are dependent only on the
multiview image Zk. Therefore the first term is reduced to

p(mk, s|Z1, . . . , Zn) = p(mk, s|Zk).

The Bayes rule is similarly applied for the second term to obtain similar decomposition

p(m1, . . . ,mk−1,mk+1, . . . ,mn|mk, s, Z1, . . . , Zn) =
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p(m1|s, Z1)p(m2, . . . ,mk−1,mk+1, . . . ,mn|mk, s, Z1, . . . , Zn)

This expression again consists of two terms, where the second is decomposed by similar
chain application of Bayes rule to the form

p(m2, . . . ,mk−1,mk+1, . . . ,mn|mk, s, Z1, . . . , Zn) =∏
i 6=k

p(mi|mi−1, s, Zi).

Substituting these results to the first equation we obtained the wanted decomposi-
tion of the sequence posterior

p(θ|Z) = p(m1|s, Z1)p(mk, s|Zk)
∏
i 6=k

p(mi|mi−1, s, Zi).

2.8 Appendix B
In preceding Appendix A, we express the sequence probability as the multiplication
of the frame posterior probability. Here, we derive how to compute different posterior
probabilities.
The frame posterior probability is derived from the generalized Bayesian rule. The

joint probability p(mi,mi−1, Zi, s) can be expressed in different forms based on a
different order of decompositions

p(mi,mi−1, Zi, s) = p(mi, s|mi−1, Zi)p(mi−1|Zi)p(Zi)

p(mi,mi−1, Zi, s) = p(Zi|mi,mi−1, s)p(mi, s|mi−1)p(mi−1).

Therefore

p(mi, s|mi−1, Zi) = p(Zi, s|mi,mi−1, s)p(mi, s|mi−1)p(mi−1)
p(mi−1|Zi)p(Zi)

.

We do not model any prior knowledge about the probability of the multiview im-
age Zi and expect it uniformly distributed, i.e. p(Zi) = const. The motion pa-
rameters mi−1 in the frame (i − 1) are independent on the image Zi in the frame
i, therefore p(mi−1|Zi) = p(mi−1). There are no explicit knowledge about the
shape and motion parameters and therefore are considered to be independent too
p(mi, s|mi−1) = p(mi|mi−1)p(s). By substituting these expressions and ignoring the
constant, we obtain exactly

p(mi, s|mi−1, Zi) ∝ p(Zi|mi, s)p(mi|mi−1)p(s).

Similarly, from different forms of the joint probability p(mi,mi−1, Zi, s), we derive
motion mi and shape s joint probability given preceding motion mi−1 and images Zi.
Comparison of equations

p(mi,mi−1, Zi, s) = p(mi|mi−1, Zi, s)p(s|mi−1, Zi)p(mi−1, Zi),
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Figure 2.7: The projection of ellipsoidal model to the individual cameras (blue color)
and the border of segmented image (red color)

p(mi,mi−1, Zi, s) = p(Zi|s,mi,mi−1)p(mi|s,mi−1)p(s,mi−1)

provides

p(mi|mi−1, Zi, s) = p(Zi|s,mi)p(mi|mi−1)p(s,mi−1)
p(s|mi−1, Zi)p(mi−1, Zi)

.

Considering independences mentioned above,

p(mi|mi−1, Zi, s) = p(Zi|s,mi)p(mi|mi−1)p(s)p(mi−1)
p(s)p(mi−1)p(Zi)

.

Simplification of this expression provides

p(mi|mi−1, s, Zi) ∝ p(Zi|mi, s)p(mi|mi−1).

2.9 Appendix C
The frame posterior probability (2.2), (2.3) consists of the likelihood and priors. The
priors are probabilities expressing knowledge given in advance and are considered to
have a simple distribution (i.e. uniform or Gaussian). The likelihood expresses the
probability that the image was induced by parameters (mi, s). Such probability can
be expressed in many ways. We chose it proportional to the coverage of borders
of silhouettes by model projection in the individual cameras. The model projection
and borders of silhouettes are depicted in the Figure 2.7. The sum of distances of
pixels from the model projection over all cameras is inversely proportional to the frame
posterior probability. The distance of the pixel from the model projection is considered
to be the distance of the pixel from the nearest ellipse. The Euclidean distance
between point x and ellipse requires solving of quartic equation which may have up
four solutions, requiring the one with the minimum distance to be determined [73].
To avoid the complexity of evaluating the true Euclidean distance, we proposed an
approximation measure [102].
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3 Pictorial structures

This chapter deals with learning and fitting an articulated model to single
images. I started the work with my master students [27], see also [61],
further evolved and combined with graph-cut for an unsupervised learning
of body part detectors [71]. The unsupervised learning was quite novel at
that time. We achieved promising results, however, the work has not been
published as we got overrun by contributions of V. Ferrari et al. [30], later
also [29].

An articulated model of the human body is assembled from individual parts (head,
torso, limbs, etc). A human body model is represented as a collection of the parts ar-
ranged in a deformable configuration [28]. Single body parts are detected using color
characteristics that are gained from training examples. We advance the standard algo-
rithm by detecting shapes of multiple scales. The method is accelerated by assuming
vertical symmetry of a human body. A sliding-window human detector [16] is applied
in order to reduce the state space. We propose a method for unsupervised learning
of color appearance of the human body parts. This approach makes the detection
(using matching of the pictorial structures) more robust. The resulting method for
the human body modeling integrates the fast human detector, the pictorial structures
matching and image segmentation based on graph cuts.

3.1 Probability model of a pictorial structure
The human body is represented as a collection of parts which are arranged in a de-
formable configuration. Local visual properties are encoded in models for individual
parts, deformable configuration is represented by spring-like connections between cer-
tain pairs of parts. Parts correspond to significant rigid parts of the human body,
connections correspond to joints. Figure 3.1 shows the model of the human body.
The model is described as an undirected graph G = (V,E). The vertices V =
{v1, v2...vn} correspond to individual parts and (vi, vj) ∈ E only when a joint between
vertices vi and vj exists. An instance of the object is given with a configuration
L = {l1, l2, ...ln}, where li = (xi, yi, si, θi) specifies a location of a part vi. xi, yi are
coordinates of the center of the part in the picture, θi is the orientation of the part
and s means foreshortening of the part only for its longer side. It is caused with a
scaled orthographic projection.
The best match is found as the one which minimizes the energy function of observing

an object in the location L given image I:

L∗ = arg min
L

( n∑
i=1

mi(li) +
∑

(vi,vj)∈E
dij(li, lj)

)
, (3.1)
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Figure 3.1: The model of the human body. The body is assembled of rectangular
parts, which are connected with flexible joints in deformable configura-
tion. Size of the rectangles is deformed by the parameter scale and the
foreshortening.

where n is number of parts, mi(li) measures the degree of mismatch, when part vi is
placed the location li in the picture, dij(li, lj) measures degree of deformation of the
model, when a part vi is placed at location li and part vj is placed on location lj in
the image.
As suggested in [28], we do not minimise directly the function (3.1), but maximize

the posterior probability

p(L|I, θ) ∝

 n∏
i=1

p(I|li, ui)
∏

(vi,vj)∈E
p(li, lj |cij)

 , (3.2)

where p(I|li, ui) is the probability of observing picture, ui are learnable parameters,
and p(li, lj |cij) is the probability of the mutual position of two parts. The negative
logarithm of (3.2) is equal to the energy function (3.1)
The entire task can be divided into three independent partial tasks according to

equation (3.2):

1. Computing of probability p(I|li, ui) and learning of its parameters from training
examples.

2. Computing of probability p(li, lj |cij) and learning of its parameters from training
examples.

— 21 —



Chapter 3: Pictorial structures

3. Efficient searching of the state space and finding the match, which maximize
the probability (3.2). The MAP estimate is used.

3.2 Detector of parts, color based segmentation
The color based segmentation [72] suggests to segment individual parts using infor-
mation about their color. The projection of one part is approximated as a rectangle.
Width of the rectangle at a certain scale is fixed. The maximal length of the part
corresponds to a length of a limb seen in the picture, when it is oriented perpendicu-
larly to the optical axis. The length of the projection can vary and it is modeled by
foreshortening. A human body is modeled by the projection of a part as a rectangle
parametrized by parameters (x, y, s, θ), where (x, y) are coordinates of the centre in
an image, s ∈ 〈0, 1〉 is the amount of foreshortening and θ is an angle of an orientation
of the part. Color histograms of foreground and background are learned from training
examples. Histograms are three-dimensional in RGB space. Probability, that a pixel
of the given colour belongs to the given part, is evaluated with a quadratic logistic
regression classifier [51]. Number of foreground pixels in a given bin of a histogram
serves as the number of positive examples; number of background pixels in that bin
as negative examples. The quadratic logistic regression classifier is a special example
of generalised linear classifiers,

logit (p) = ln
(

p

1− p

)
= X> · β, (3.3)

where β = [β0, β1, ..., βn]> is a vector of n+1 parameters, which must be determined1,
and X =

[
1, r, g, b, r2, g2, b2, rg, rb, gb

]> are variables. r, g, b mean values of colors and
can obtain only values from a set {1, 2, . . . , 8} - it corresponds to the number of bins.
According to (3.3):

p = eX>·β

1 + eX>·β . (3.4)

Each pixel in the image has its probability, that it is a component of a given part.
To avoid thresholding of this data, we use directly probabilities for next processing,
because it can be difficult to determine threshold.
Parts are represented by rectangles consisting of a foreground rectangle and sur-

rounding area, which shows Figure 3.2. Each pixel in the image has its probability,
that it is a component of the given part. The probability of observing part in the
location li in the given image is computed:

p(I|li, ui) = e−[(area1−count1)+count2]/s, (3.5)

where count1 is the sum of pixels masked with a part weighted with probabilities, that
they belong to the foreground, count2 is the sum of pixels masked with a surrounding of
a part weighted with probabilities, that they belong to the foreground. In the smaller
rectangle, misclassified pixels are summed (area1 − count1) (probabilities that they

1We use the gmlfit function in Matlab.
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Figure 3.2: Model of one rectangular part with the surrounding area.

Figure 3.3: Some of interactively labelled training examples with multi-scale height
of a person. The person has a symmetric clothing, which is used to speed
up the algorithm. Note the shin/calf foreshortening at the mid image.

belong to the background). Division with the scale s is used because of normalisation
of results.

3.3 Learning process

The color model of parts and the human model are learned from labeled training
images. A height of a person is changed, when she or he moves from/to a camera.
Figure 3.3 shows some labeled training examples with various heights of a person.
We suppose that the foreshortening parameter of a human torso varies only gently,

because the persons stay only in an upright position in the training data. The scale
value of a training example is computed from the height of the torso. The foreshort-
ening of the human torso is set to 1. The proportions of other parts are recomputed
from the scale of the whole human body. The scale of one training example is com-
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torso head forearm

arm calf leg

Figure 3.4: Example of color based segmentation for each part. The color of a pixel
represents the probability that pixel belongs to each part. White corre-
sponds to the probability 1, black to probability 0.

puted as the nearest value to predefined scales values set. A color model is learned
for each scale.
To speed up the algorithm, we expect that the human body and the cloth color are

symmetric along the vertical axis. We also presume that the part location probabilities
are the same for left and right body part. It means that we compute probabilities for
6 body parts (torso, head, arm, forearm, calf, thigh) instead of 10 parts (torso, head,
left/right arm, left/right forearm, left/right calf, left/right thigh). Figure 3.4 shows
the probability of the fact that each pixel of image belongs to each part. Figure 3.5
shows the probability of the location of some parts in the position of the discretized
state space.
Sometimes it is impossible to distinguish parts only by their colours. Many false

detections are found. If the segmentation is wrong, it is almost impossible to find
parts like the head. Location of these parts can be located by using the pictorial
structures. A deformable human body model is learned from all training examples
over all scales, because the pose of the human body is the same when it is far or near
to the camera.
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Figure 3.5: Probabilities of parts location in a particular position of the discretized
state space. From left; torso, arm and forearm. The degree of red repre-
sents the probabilities.

Considering multiple scales slows down the computation. The probabilities must
be computed separately for each scale value. The maximum a posteriori estimate
(MAP) selects the best configuration from all the position and scales.

3.4 Unsupervised learning of the appearance
The articulated model represents a general human body. However, the human ap-
pearance may vary significantly. In order to make the pictorial modeling reasonably
applicable, we need an unsupervised learning of the appearance. We propose to
use an image segmentation using the minimal cut of a graph. The Graph Cut [9]
algorithm finds the optimal foreground and background labeling as an energy mini-
mization problem. The minimum cut can be computed very efficiently by max the
flow algorithms2.
Learning of appearance of body parts is divided into 4 steps:

1. A human body is detected in an image using the human detector based on the
HoG descriptors [98].

2. A selected area is segmented by the Graph Cut algorithm. The color appearance
of the whole body is learned from the segmentation result.

3. A configuration of a human body in the detection window (step 1) is found by
the pictorial structure matching.

4. A color appearance of each body part is learned using the results of the pictorial
structure matching.

2In our work we use the implementation of the Graph Cut available on http://www.csd.uwo.
ca/faculty/olga/code.html and the MATLAB wrapper available on http://www.wisdom.
weizmann.ac.il/~bagon/matlab.html.
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Figure 3.6: The human body detection. Left: The blue rectangle is the selected detec-
tion window. Middle: Blue depicts the original detection. Red is the re-
sized detection window. Forearms fit to the detection window now. Right:
Areas for computing color histogram of foreground and background. Red
pixels are used for learning of foreground color histogram. Green pixels
are for learning of background color histogram. Blue pixels are not used.
Black rectangle is the detection window.

The human body is detected by the fast human detector using HoG descriptors [98]
and the detection window is selected by the averaging of all detections. Figure 3.6
shows the detected human body in the image. Forearms may go outside the detection
window. Therefore the detection window is expanded by multiplying its height and
width by a constant greater than 1. We experimentally set the expansion to 1.2.
Figure 3.6 shows the original and resized detection window.
The probabilities that a pixel belongs either to the foreground or the background

are computed after the human body is detected in the image. A normalised color
histogram is used to estimate the probabilities that a pixel with RGB color belongs to
the foreground and the background. There are two computed color histograms, one
for the foreground and one for the background. The RGB color was discretized into
8× 8× 8 bins color histograms computation.
The image is divided into three areas. The color histogram of the foreground is

learned from the first area, the color histogram of the foreground is learned from the
second area and third area is not used to learn any color histogram. We suppose that
the foreground pixels are inside the detection window. However, background pixels
may be inside the detection window, too. Therefore we learn the color histogram of
foreground from the inside the detected area, but not from the inside area near to
the border of the detection window. We suppose that background pixels with similar
color values as background pixels inside of the detection window are near the border
of detection window. Therefore the color histogram of the background is computed
from pixels near the border of the detection window. Figure 3.6 (right) shows areas
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Figure 3.7: Initialization of the Graph Cut algorithm. Left: the original detection
window. Middle: the probabilities that pixels belong to the foreground.
Right: probabilities that pixels belong to the background. Black corre-
sponds to 0, white to the maximal value.

assigned to learn the color histogram.
Figure 3.7 shows the probabilities initialization that pixels belong to the foreground

and background in a detection window. The Graph Cut segmentation can start after
learning the color histograms. Each pixel outside the detection window is assigned to
the background.
New color histograms of the foreground and background pixels are computed from

the Graph Cut segmentation result. The Graph Cut refines the initial rectangular
segmentation. The quadratic logistic regression classifier is learned from the color
histograms. Contrary to the hand-labeled examples approach, only one classifier for
all the parts is learned. Figure 3.8 shows probabilities that pixels belong to the
foreground in the detection window computed by the quadratic logistic regression
classifier.
Next step to the unsupervised learning of the appearance of human body parts

is the search of a human body configuration in the detection window. The used
method based on the pictorial structures matching is very similar to the one used for
hand-labeled exemplars, however, with the following little differences:

• Only the deformable human body model is learned by labeling of training ex-
amples.

• The color model is learned from the Graph Cut segmentation of the actual
image. It is the same for all parts of human body. It means that each body
part does not have own color model. There is only one color model.

• The value of multiple scale is estimated from the size of the detection window.
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Figure 3.8: Probabilities of pixel belonging to the foreground. Left is the original
detection window, right is the probability of each pixel belong to the
foreground.

In practice we use 3 closest values of multiple scales, because the estimation of
high of human body does not be to precise.

• The posterior probability is sampled instead of using MAP.

Sampling from the posterior probability is used because MAP estimation could
miss Sometimes the probability distribution, which is computed with the matching
algorithm, has more than one peak. This can be caused by several reasons. For
example, the self-occlusion of a human body. The Graph Cut segmentation may not
be precise, because some parts of the human body can be segmented like background
pixels. A stochastic method is used and it is sampled from the posterior probability
according to the Monte Carlo method. That means that more probable locations in
the space are sampled more frequently. Some locations have a minimal chance that
they will be sampled. For more details about the sampling procedure refer to [27].
Figure 3.9 shows some selected samples from the posterior probability. One best
sample is not selected as opposed to [27]. For each pixel of the image the frequency of
the occurrence from the samples (of each part of the human body) is computed. The
result of this operation is a probability map (one for each part of human body), in
which each pixel matches the frequency of the occurrence of the part. The frequency
map is normalised to the interval from 0 to 1. Bottom row of Figure 3.9 shows the
frequency map for the torso and head. For other parts, the frequency map is similar.
The last step of the learning of a human body appearance is to learn the color models
of each part. A color histogram of the foreground and background is computed for each
part of a human body. The counts of color values are weighted by the frequency of the
occurrence map of each part, when foreground histograms are computed. The inverted
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Figure 3.9: Examples of sampling from the posterior probability. The torso is sampled
the same often in this case. The position of the head is different in each
sample. The bottom row shows Frequency of occurrence of the parts
normalised to the interval from 0 to 1. Left: original image. Middle:
frequency of the occurrence of the torso. Right: the head occurrence
frequency. The torso is sampled in a similar position in all the samples.
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frequency occurrence map is used for computing of histograms of the background. The
quadratic logistic regression classifiers are computed from the foreground as well as
the background histograms for each body part.
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4 Multiview 3D tracking with a 3D model
constructed incrementally

This chapter essentially derives an extension of a gradient based technique
used in 2D image onto 3D models. The work has been published as con-
ference paper [104].

We propose a multiview tracking method for rigid objects. Assuming that the part
of an object is visible in at least two cameras, a partial 3D model is reconstructed
in terms of a collection of small 3D planar patches of an arbitrary topology. The
3D representation, recovered fully automatically, allows to formulate tracking as the
gradient minimization in the pose space (translation, rotation). As the object moves,
the 3D model is incrementally updated. A virtuous circle emerges: tracking enables
composition of the partial 3D model; the 3D model facilitates and robustifies the
multiview tracking.
We demonstrate experimentally that the interleaved track-and-reconstruct ap-

proach tracks successfully a 360 degrees turn-around and a wide range of motions.
Monocular tracking is also possible after the model is constructed. Using more cam-
eras, however, increases stability in critical poses and moves significantly. We demon-
strate how to exploit the 3D model to increase stability in the presence of uneven
and/or changing illumination.

4.1 Introduction

Existing multiview approaches mostly represent objects as blobs. A blob representa-
tion assumes that the appearance of an object does not change significantly when the
object rotates. The global object position is sought and the methods do not attempt
to recover the orientation of the object [31,63].
Most model-based tracking methods use 3D models prepared offline. An overview

of such methods was published by Lepetit et al. [53]. Vacchetti et al. [92] propose
a tracker based on matching with keyframes. The method demonstrates impressive
results on out-of-plane rotation data. Still, it cannot track complete turn of the object
and needs the offline manual selection of keyframes which are essential for its stability.
Muñoz et al. [64] suggest a method that track even deformable objects. Their model
is composed of small textured planar patches, a set of shape bases, and a set of
texture bases. The tracking procedure needs a reference image and optimizes over
local shape deformations, color/texture changes and overall motion. Results on real
data show successful tracking only of small variations in object pose and negligible
local deformations.
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Several approaches build elaborated 3D models from multiple views. The methods
rely heavily on carefully constructed and expensive setup and require special scene ar-
rangement since they are based on scene/object segmentation [10,49,60,95]. Würmlin
et al. [95] propose dynamic 3D point samples for streaming 3D video. This point based
representation somehow resembles our model. However, the method does not track
object and needs many cameras and very precise pixel-wise motion segmentation.
We propose a combined method that tracks objects in 3D and constructs a point

based appearance model simultaneously. Our primary interest is in object tracking
and detection. Our model is rather simple, a set of 3D points associated with 3D
orientation and albedo. Despite its simplicity, the model is rich enough for recovering
orientation of the object. The tracking can follow a complete 360 degree turn of object.
Rothganger et al. [75] also compose a 3D model from small planar patches. The
patches are reconstructed from multiview correspondences. Objects are photographed
an object from several viewpoints, corresponding image patches are found by affine
covariant feature matching. Finally, patches are reconstructed in 3D. In fact, it would
be possible to use this model in our tracking. Any complete off-line built model [66]
could be used, too.
Cobzas and Jagersand [12] propose a monocular, registration-based, 3D camera

tracking of the planar 3D patches. The 3D planar patches are estimated from tracks.
Although the formulation of the tracking resembles our method, there are several
differences. The patch based model is initialized at the beginning of the sequence (in
about 100 frames) by using a standard 2D patch based tracker. Then the algorithm
switches to tracking and refines the model using 3D model-based tracking. Cobzas
et al estimate the camera pose, assuming a rigid scene. Unlike our method which
models illumination changes, Cobzas et al. assume constant illumination and intensity
of observed points. Our method builds the model from the very beginning of the
sequence. Tracked objects change their position and orientation w.r.t. to light sources.
In this case, constant pixel intensities cannot be assumed even for Lambertian surfaces
and our method reflects this.

4.2 3D tracking

An object O is modelled as a triplet (X,α,N) whereX is a set of 3D points, α : X → R
assigns albedo and N : X → S2 a normal to each point x ∈ X, where S2 is a sphere.
While tracking, intensity T (x) of point x in a given frame is predicted from its albedo
α(x) and an estimated illumination as detailed in section 4.3.
Assuming object rigidity, the motion of points x ∈ X between two time instances

t1 and t2 is
xt2 = Rxt1 + d,

where R represents rotation and d translation. When the rotation is small [40] (e.g. be-
tween two consecutive video frames), the motion equation simplifies to

xt = (I + D)xt−1 + d, (4.1)
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Figure 4.1: Model (template) T is projected by projection function f and compared
to the current observation I.

where the rotation matrix R is replaced by the antisymmetric matrix D and an identity
matrix I. The matrix D is defined by three parameters u = [D1, D2, D3]T ;

D =

 0 D3 −D2
−D3 0 D1
D2 −D1 0

 .
Tracking in 3D is defined as the process of finding motion parameters D,d minimizing
the following image dissimilarity

∑
x∈X

[
T
(
xt−1)− I(f(xt))]2, (4.2)

where I : R2 → R assigns intensity to each pixel, T : X → R assigns intensity to each
3D point. The projection function f : R3 → R2 maps 3D points to image coordinates
and depends on internal and external parameters of the camera, see Appendix A for
details.
Substituting from equation (4.1) for xt in the dissimilarity function (4.2) and sim-

plifying notation by setting xt−1 = x, a cost function in six unknowns is obtained
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J(u,d) =
∑[

T (x)− I
(
f (x + Dx + d)

)]2
, (4.3)

where the sum is over all x ∈ X as in (4.2); starting from (4.3) the summation
range is omitted for brevity. We seek motion parameters u and d that minimize
dissimilarity J(u,d). At the minimum, the partial derivatives with respect to all
variables must be zero:

∂J(u,d)
∂d

= 0, ∂J(u,d)
∂u

= 0,

which yields the following two vector equations∑[
T (x)− I

(
f(x + Dx + d)

)]∂I(f(x + Dx + d)
)

∂d
= 0, (4.4)

∑[
T (x)− I

(
f(x + Dx + d)

)]∂I(f(x + Dx + d)
)

∂u
= 0, (4.5)

There is no closed-form solution for (u,d). We therefore apply Newton-Raphson
minimization, approximating I

(
f(x + Dx + d)

)
by its first-order Taylor expansion

I
(
f(x + Dx + d)

)
≈ I

(
f(x)

)
+ gT (Dx + d), (4.6)

where
gT = I ′T

(
f(x)

)
f ′(x); (4.7)

I ′ : R2 → R2 is the gradient of image I and f ′ : R3 → R2×3 is the Jacobian of the
projection function f .
Differentiating the linear approximation (4.6) leads to

∂I
(
f(x + Dx + d)

)
∂d

≈ g, (4.8)

∂I
(
f(x + Dx + d)

)
∂u

≈ ∂gTDx
∂u

. (4.9)

Applying the approximations (4.8), (4.9), equations (4.4), (4.5) are simplified to∑[
T (x)− I

(
f(x)

)
− gT Dx− gTd

]
g = 0 . (4.10)∑[

T (x)− I
(
f(x)

)
− gT Dx− gTd

]∂gT Dx
∂u

= 0, (4.11)

Simple algebraic manipulations confirms that the following two identities hold

gTDx = (g× x)Tu,
∂gTDx
∂u

= (g× x) ,

where × is the cross product. Equations (4.11) and (4.10) can be compactly repre-
sented as a system of six linear equations A.

A

[
u
d

]
= b , (4.12)
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where

A =
∑[

(g× x)(g× x)T (g× x)gT
g(g× x)T ggT

]
, (4.13)

b =
∑[

T (x)− I
(
f(x)

)] [ (g× x)
g

]
. (4.14)

Assuming regular A, the solution approximately minimizing equation J(u,d) is[
u
d

]
= A−1b . (4.15)

The 6 × 6 matrix A consists of four 3 × 3 sub-matrices and is block-wise symmetric.
Unknown motion parameters d, u are both 3 × 1 column vectors and b is a 6 × 1
column vector.
At least six points are required for rank(A) = 6. In practice, many more points are

visible. If the object is weakly textured back-projected image derivatives g may get
close to zero and matrix A becomes nearly singular. Texture properties needed for
reliable tracking of the object are discussed in [80]. Unlike [80], we optimize over the
whole object not just over a small patch.
Newton-Raphson iterations are carried out until convergence or a maximum number

of steps N . Experiments showed the process converged usually in 8 − 10 iterations.
Convergence may require more iterations when the motion is fast, so N was set to 20.
The tracking method was derived for an intensity image and a single camera. Ex-

tension to RGB tracking is straightforward. The single sum in solution (4.13, 4.14) is
replaced by summations over all visible points, cameras and all RGB channels.

4.3 Compensation of illumination

Intensity recorded during the model acquisition depends, besides the object shape and
reflectance, on light sources. We treat the intensity as albedo. As the object moves,
the set of light sources visible from a point and their photometric angles change.
When modeling these effects we assume:

• cast shadows can be ignored,

• the light sources are distant,

• no specular reflectance.

Under these assumptions, intensities of all points with identical normals will be scaled
by a common matrix (for grayscale images only scalar is considered). We adopted
a simple method for estimation of the matrix, which performed well in experiments.
The method clusters the pointsX into n groups G1, . . . , Gn according to their normals
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and compensates for the illumination of i-th cluster in each optimization step (4.15)
by a color correction matrix

E∗i = arg min
Ei

∑
x∈Gi

‖EiI(f(x))− T (x)‖22. (4.16)

Let us denote
F (Ei) =

∑
x∈Gi

‖EiI(f(x))− T (x)‖22 =

∑
x∈Gi

IT (f(x))ETi EiI(f(x))− 2T T (x)EiI(f(x)) + T T (x)T (x) .

Minimization yields the following matrix equation
∂F (Ei)
∂Ei

=
∑

x∈Gi
−2T (x)IT (f(x)) + 2E∗i I(f(x))IT (f(x)) = 0 (4.17)

and its least square solution is

E∗i =

∑
x∈Gi

I(f(x))IT (f(x))

−1 ∑
x∈Gi

T (x)IT (f(x)). (4.18)

4.4 Tracking-modeling algorithm
The minimal configuration able to build the model must include at least one stereo
pair. For tracking, a single camera is sufficient.
If no model is available from a previous tracking-modeling session, the processing

starts with a stereo-based reconstruction [50] of the visible part of the object. Albedo
of each point is determined from the average of intensities at its projections onto im-
ages used for 3D reconstruction. The reconstructed points are clustered and replaced
by points on fish-scales [76]. Fish-scales are small oriented planar patches obtained by
local clustering of the cloud of points. Small clusters of points are replaced by ellipses
with half-axes corresponding to the two main eigenvectors of their covariance matrix.
The third eigenvector defines the surface normal. Note that the computation of fish-
scale representation is much simpler then a complete surface triangulation. Still the
fish-scales are experimentally shown to be sufficient representation for 3D tracking.
Knowledge of surface orientation at each points allows:

• Efficient visibility calculations for convex objects.

• Compensation of illumination effects.

Once the partial model is known, it can be used for pose estimation. If observed
motion in the image indicates that a part of the image moves consistently with points
currently in the model, stereo is invoked again and newly reconstructed patches are
merged into the model. The complete algorithm is summarized in Figure 4.2.
Note, that the system never knows when the model is completed, because another

consistently moving rigid part of the object can appear later. The system only detects
that no reconstruction is currently needed.
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1. Capture images

2. If needed, invoke stereo reconstruction and merge it to the model.

3. Estimate the pose of the object by iterating least square solution (4.15).

4. Update matrices E1, . . . , En and for all i and each x ∈ Gi recompute
object intensity T (x)← EiT (x). goto 1.

Figure 4.2: Tracking-Modeling Algorithm.

4.5 Experiments

The sequences were captured in an office. We used four firewire cameras with reso-
lution of 640 × 480 pixels connected to Linux operated computers. The acquisition
was TCP/IP synchronized and the setup was calibrated. The total cost of the setup
(without computers) is less than 500 dollars. Calibration is easy since a free software
for automatic (self)calibration exists [88].

Two different sequences were used. In the human sequence, a person makes a
variety of motions. The individual walks around, shakes and tilts his head. The
camera setup consists of two narrow-baseline cameras for stereo reconstruction and
two other cameras spanning approximately a half-circle.

The book sequence poses slightly different challenges. The book is a relatively thin
object and in some poses the dominant planes (front and back cover) are invisible.
The camera setup consists of three cameras located near each other. Two of them
are used for stereo, all of them are used for tracking. The model of the book is
incrementally constructed from a stereo pair and tracked in all cameras.

Objects are tracked successfully in both sequences and their shapes are correctly
reconstructed. We performed experiments to assess the accuracy and robustness of
multiview and monocular tracking. Section 4.5.1 shows that the accuracy of multiview
tracking is sufficient for incremental model construction without additional alignment.
Section 4.5.2 compares monocular and polynocular tracking. We show that monocular
tracking often estimates poses which are incorrect but look correct in the tracking
camera. Robustness is tested in section 4.5.3 on the book sequence where the tracking
survives even in frames where dominant planes are absent. Experiments showing
illumination compensation are described in section 4.5.4. Tracking speed is considered
in section 4.5.5. Experiments in sections 4.5.4,4.5.5 are conducted with illumination
compensation.

In Figures 3-5, projections of visible points are depicted in blue and invisible in
yellow. Readers are encouraged to zoom-in the Figures in the electronic version of
the document and watch the accompanying video sequences.
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4.5.1 Interleaved tracking and model construction
The first experiment demonstrates the interleaved tracking operation with the model
construction. The process starts with a partial reconstruction in the first frame,
see the left-most column of Figure 4.3. The tracker is initialized using this partial
model. As the human is turning around Fig.4.3(b), the model, is augmented by adding
further partial reconstructions Figs. 4.3(c,d). Once the 360 turn is finished, the model
is complete and further reconstruction are not required.
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a) Multiview tracking; blue points are visible, yellow invisible (occluded) projections.

b) Corresponding poses and path recorded.

c) Incremental construction of the model as seen from top.

d) Incremental construction of the model, a random view.

Figure 4.3: Incremental model construction from partial 3D reconstructions
and registered by 3D tracking. Rows 1-3: Different views with pro-
jected model. Row 4: Position and orientation in 3D space. Rows 5-6:
incrementally constructed 3D model. Columns correspond to frames 1,
100 and 310.
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The 3D model is only a side product of the tracking. Its visual appearance cannot
match models created with specialized stereo algorithms or visual-hull based algo-
rithms.

4.5.2 Monocular model-based 3D tracking
In the case of monocular tracking, a 3D model and its initial position are considered
to be known in advance (e.g. we use the model from previous experiment). The head
was successfully tracked over 630 frames, despite the fact that both 3D translation and
out-of-plane rotation were present in the sequence. Tracking results are shown in The
projected model poses seem correct in images from the tracking camera. However,
since only a single camera was used, the recovered 3D position is inaccurate, see row
2 in Figure 4.4. Naturally, the more cameras are used for the optimization, the more
accurate 3D pose becomes. Results from the same sequence with the object tracked
by all cameras are depicted in the last row of Figure 4.4.

4.5.3 Robustness against critical poses
A thin object like a book used in the experiment, may easily appear in poses which
are inherently challenging for the tracking algorithm. If only the book back is visible,
the tracking may get unstable. Even during multiview tracking it may happen that
most of the object is visible only in a single camera. We call such poses critical.
In a critical pose, the book has to be tracked virtually from the single view. The

position of the model does not correspond to the projection in the cameras, in which
only a small fraction of the book is observable. After the object leaves the critical
pose, the model converges to the true position, see Figure 4.5.

4.5.4 Compensation of illuminance effects
The model points are clustered in 14 equally distributed clusters according to their
normals. Each cluster is associated with illuminance constant Ei which changes during
the tracking to best fit the observed data.
Figure 4.7-left shows a view with a projected model. Gray levels of particular fish-

scales correspond to the values of illuminance constants. Higher values corresponds
to the recently illuminated points and vice versa. One can see that in this case light
sources were located on the left side of the object which corresponds to the reality.
The office has several light sources placed on opposite walls and oriented to the

irregularly arched ceiling. Corresponding changes of the illuminance constant E6
during 360 turn are shown at Figure 4.7-right. Two significant changes during the
turn corresponding the light sources are clearly visible. The function of illumination
changes is not smooth because during the turn, fish-scales visibility in particular
cameras changes and in different times different sets of fish-scales are used for the
compensation of illumination effects. Another reason is local inaccuracy of tracking
caused by image discretization. Tracking trajectories as well as illumination changes
could be smoothed using a motion model, but in our experiments only the output of
the optimization is used.
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Tracking camera, in monocular tracking, this is the only one used for optimization. Results
of monocular tracking projected.

Monocular tracking results as projected to a camera which is approximately orthogonal to
the tracking one.

Polynocular tracking. The same camera as above. Note the essentially more consistent 3D
pose.

Figure 4.4: Comparison of monocular (rows 1-2) and polynocular (row 3)
tracking. Monocular: Row 1: view from the tracking camera, Row 2:
observing camera (shows that, accuracy in orthogonal direction is low).
Polynocular: Row 3: The same camera with the projected model from
multiview tracking.

4.5.5 Speed evaluation

The speed of the algorithm shown in Figure 4.2 was tested on the sequence intro-
duced in the first two experiments (i.e. 4 cameras, RGB images). Slightly-optimized
implementation in Matlab runs cca 1.8 s/frame on an AMD-64b Linux running ma-
chine. We show experimentally that the tracking of the same sequences in grayscale
is successful as well as in RGB. Since one of the most important property of the
tracking is the framerate, we increase it three times by considering only a grayscale
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Figure 4.5: Book tracking: Rows 1-2: different cameras with projected model, row 3:
shows the position and orientation in a 3D space; columns correspond to
frames 55, 205 and 265. The second column shows the book in a critical
position in which the dominant plane is visible only in one camera.

model/sequence.
Tracking of a grayscale sequence takes approximately 800ms/frame. Typically,

multiple cameras are connected to different computers. Hence, all the contributions
to the A,b from equation (4.13, 4.14) can be computed independently on the particular
computers. Using such a system, a frame rate of 5 frames per second can be achieved
with the current Matlab implementation.

4.6 Conclusions

We proposed a fully automatic approach of multiview/monocular 3D object tracking
interleaved with incremental model construction. Neither the model nor the initializa-
tion are needed to be known in advance. We formulated tracking as a gradient-based
method minimizing dissimilarity of the observed image and projected 3D point inten-
sities. We showed that the fish-scale 3D model [76] is accurate enough to support the
stable 3D tracking.
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Figure 4.6: Book Model: Different views of the book model. Small non-planarity in
one corner is the reconstructed hand holding the book.

We experimentally demonstrated that the proposed interleaved approach, success-
fully tracks a complete 360 turn and a wide range of motion without a need for
pre-prepared 3D model. A 3D model is delivered as a side product. We demonstrated
the robustness of our method on a sequence with a thin object where the dominant
plane was often tracked only from one view.
We showed that the monocular tracking is possible if the model is available. The

model projection to the tracking camera often looks correct, projections to other
cameras reveals 3D inaccuracies. Still, the monocular tracking can provide results
acceptable for some applications. Using more cameras significantly increases stabil-
ity and accuracy in critical poses and moves. Exact 3D pose may be necessary in
many application ranging from virtual reality, human computer interfaces to visual
surveillance.

Appendix A
A 3D point x is projected to 2D image (pixel) coordinates p as[

λp
λ

]
= P

[
x
1

]
,

where P is 3×4 camera matrix [40] and λ ∈ R. Let the camera matrix be parametrized
as

P =

 mT
1 t1

mT
2 t2

mT
3 t3

 (4.19)

the function f : R3 → R2 projecting 3D point to the camera coordinates is

f(x) =

 mT1 x+t1
mT3 x+t3
mT2 x+t2
mT3 x+t3

 . (4.20)
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Figure 4.7: Left: The image with projected model. Colors correspond to the com-
puted illuminance Ei of each particular cluster. Right: Values of E6 during
the the 360 turn.

Differentiating f with respect to x we obtain f ′ : R3 → R2×3 Jacobian matrix func-
tion, which consists of elements

f ′pq = mpq(mT
3 x + t3)−m3q(mT

1 x + tp)
(mT

3 x + t3)2
(4.21)

where mpq, p = 1 . . . 2, q = 1 . . . 3 is q-th elements of mT
p .
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Part II

Learnable regressors for motion prediction
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5 Tracking by the optimal sequence of linear
predictors

This chapter represents one of the main contribution of the thesis. We
propose to learn a sequence of linear regressors on artificially distorted
variants of a sample image. The learning minimizes the worst case er-
ror on training data. The work has been published in a major scientific
journal [101].

We propose a learning approach to tracking explicitly minimizing the computational
complexity of the tracking process subject to user-defined probability of failure (loss-
of-lock) and precision. The tracker is formed by a Number of Sequences of Learned
Linear Predictors (NoSLLiP).
Robustness of NoSLLiP is achieved by modeling the object as a collection of local

motion predictors — the object motion is estimated by the outlier-tolerant Ransac
algorithm from local predictions.
Efficiency of the NoSLLiP tracker stems from (i) the simplicity of the local predic-

tors and (ii) from the fact that all design decisions - the number of local predictors
used by the tracker, their computational complexity (i.e., the number of observations
the prediction is based on), locations as well as the number of Ransac iterations
are all subject to the optimization (learning) process. All time-consuming operations
are performed during the learning stage - tracking is reduced to only a few hundreds
integer multiplications in each step. On PC with 1xK8 3200+, a predictor evaluation
requires about 30 microseconds.
The proposed approach is verified on publicly-available sequences with approxi-

mately 12000 frames with ground-truth. Experiments demonstrates, superiority in
frame rates and robustness with respect to the SIFT detector, Lucas-Kanade tracker
and other trackers.

5.1 Introduction
Visual tracking is the process of repeated estimation of the pose of an object (e.g.,
position) in an image given its pose(s) in previous frame(s). Tracking has many
applications such as surveillance, 3D object modeling, augmented reality, medical
imaging and others. Since many applications have real-time requirements, very low
computational complexity is a highly desirable property. Our primary objective is to
find a very fast tracking method with defined precision and robustness.
A natural formulation of tracking is a search for a pose which optimizes a similarity

criterion function. For example, Lucas and Kanade [56,3] use the steepest descent
optimization to minimize the sum of square differences between the template and
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Current imageTemplate

Motion

Observation

Figure 5.1: Tracking: We define visual tracking as the process of repeated estimation
of pose of an object given an image and pose(s) in previous frame(s).

image data, see Figure 5.1. Other approaches [68,2,35] scan the image by a learned
classifier, which evaluates the similarity criterion. Regression-based methods [48,14,
94], which do not require any criterion function, estimate the object pose directly
from the observed intensities by a learned regression mapping. Methods proceed by
collecting training examples—pairs of observed intensities and corresponding poses—
and use machine learning techniques to learn the regression function. In tracking,
the regression method is initialized by the previous pose or, if available, by the pose
derived from a dynamic model. Learned regression function estimates actual object
pose directly from the intensities observed around the initial location.
The more complex the regression function, the more precise pose estimation is

achievable. Increasing the complexity, however, often suffers from diminishing returns
and very complex functions are prone to overfitting. We follow a simple assumption
that it is easier to estimate the actual state if the method is initialized in the close
neighbourhood of searched pose. Accepting this assumption, it is better to exploit a
less complex regression function for coarse state estimation and use the newly obtained
state for the initialization of another function. The coarse estimate of the state allows
the consecutive regression functions to operate within a smaller range of poses and to
achieve a higher precision with reasonable complexity. Hence, instead of the learning
sophisticated predictor, we use a sequence of simple regression functions concatenated
so that each of the functions compensate only errors of its predecessor and thus refines
the previous estimations. While a single regression function operates on a fixed set
of intensities (features), the sequence of functions allows for higher precision because
the set of the intensities is updated successively as the actual pose accuracy increases.
We learn the optimal sequence of regression functions.
Since the computational time of tracking (i.e., the overall complexity of the used

regression method) is usually an issue, the learning is formulated as a minimization
of the complexity subject to a user predefined accuracy and robustness. Note that a
single regression function is a special case of a sequence. Since the globally optimal
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solution is found, the sequence is superior to a single regression function. Any ar-
bitrary regression function allows concatenating, but we observed that the sequence
of linear functions achieves high precision with a low computational cost. Focusing
on sequences of linear functions we achieved an algorithm which estimates the object
pose using only a fraction of processing power of an ordinary computer.

5.2 The State-of-the-art
The most common approach to tracking is repeated optimization of some criterion
function f(t; I, t0) over the space of object poses t ∈ S, given image I and previous
pose t0

t∗ = argmin
t∈S

f(t; I, t0), (5.1)

where t∗ is the estimate of the current pose of the object. Criterion f(t; I, t0) includes
some implicit or explicit model of possible object appearances and optionally some
relation to t0. Criterion f could be e.g. obtained as a similarity function or a classifier
or foreground/background probability ratio learned from training examples. We call
these methods optimization-based tracking.
Optimization-based tracking is an online optimization process solving prob-

lem (5.1). While some approaches [68,2,35,4] exhaustively scan a subset of object
poses S with a classifier approximating f(t; I, t0), another approaches [56,3,92,80] use
a gradient optimization of a criterion approximating f(t).
Unlike optimization-based tracking, regression-based tracking methods attempt to

model explicitly a relationship between observations and state t∗ without any neces-
sity of defining f(t; I, t0). They learn a mapping ϕ(I, t0) in a supervised way from
synthesized training data [48,14,94].
Tracking methods based on exhaustive scanning can operate within a small range

of poses or over the whole image. On the other hand, tracking methods based on
the gradient optimization or regression estimate the object pose only locally within
a certain range of poses. We understand these local methods as complementary to
the scanning based methods, since every pose in a scanned grid can be optionally
preprocessed by such local method.
Tracking based on the gradient optimization does not require any learning proce-

dure, however, it suffers from problems of local optimization: convergence to a local
minimum, unknown number of required iterations and unknown basin of convergence.
In the state-of-the-art, we further focus on regression-based tracking.
Regression-based tracking approaches [14,48,94] estimate location t directly from

locally observed intensities. Such approach requires a learning stage, where pairs of
motions t and corresponding observed intensities I(t◦X) are collected and a mapping
ϕ : I→ t minimizing the error on these examples is estimated, see Figure 5.2,

ϕ∗ = argmin
ϕ

∑
t
‖ϕ
(
I
(
t ◦X

))
− t‖. (5.2)

In the tracking stage, the learned mapping ϕ∗(I) directly estimates motion parameters
without necessity of online optimization of any criterion function.
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Noticing that Lucas-Kanade tracker [56] solves a similar optimization task in each
frame, one can replace the pseudo-inverse operation by matrix H learned on a set of
synthesized examples. Mapping ϕ then transforms to the linear function between
intensities I(X ◦ t) and motion t,

t = ϕ
(
I(X)

)
= H

(
I(X)− J(X)

)
, (5.3)

where H is the matrix of some learned coefficients. In the tracking procedure, motion
parameters t are simply computed as a linear function H(I(X)− J(X)) of the object
intensities. We call such method learned linear predictor (LLiP). In the following, the
learning of LLiP is described.
Let us suppose we are given an image template J = J(X) and collected training

pairs (Ii, ti) (i = 1 . . . d) of observed intensities Ii and corresponding motion parame-
ters ti, which align the object with current frame. Then the training set is an ordered
pair (I, T), such that I = [I1 − J, I2 − J, . . . Id − J] and T = [t1, t2, . . . td]. Given the
training set, LLiP coefficients minimizing the square of Euclidean error on the train-
ing set are found as follows:
First the learning task is formulated and rewritten to more convenient form:

H∗ = argmin
H

d∑
i=1
‖H(Ii − J)− ti‖22 = argmin

H
‖HI− T‖2F =

= argmin
H

trace(HI− T)(HI− T)> =

= argmin
H

trace(HII>H> − 2HIT> + TT>).

Next its derivative is set equal to zero:

2H∗II> − 2TI> = 0
H∗II> = TI>

H∗ = T I>(II>)−1︸ ︷︷ ︸
I+

= TI+. (5.4)

Since the method is very fast and simple, it has various applications in tracking
approaches. In particular, Cootes et al. [13,14,15] estimate the parameters of Active
Appearance Model (AAM) — i.e., deformable model with the shape and appearance
parameters projected into a lower dimensional space by the PCA. They use a linear
predictor (5.3) learned by the LS method (5.4) to estimate all parameters of the AAM.
Since the linearity holds only for a small range of parameters, the solution is iterated.
Iterations are computed with the same matrix but the length of the optimization step
is locally optimized.
This approach was later adapted by Jurie et al. [48] for tracking of rigid objects.

Unlike Cootes et al. [14], Jurie’s linear predictors estimate the local 2D translations
only. The global motion is estimated from local motions by the Ransac algorithm,
showing the method to be very efficient and robust. Williams et al. [94] extended
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Figure 5.2: Learning linear mapping between intensities and motion in advance. The
mapping is learned by a LS method from a set of synthetically perturbed
examples.

the approach to the non-linear translation predictors learned by Relevance Vector
Machine [90] (RVM). Agarwal and Triggs [1] used RVM to learn the linear and non-
linear mapping for tracking of 3D human poses from silhouettes.
Drucker et al. [24] search for the regression function that has at most ε deviation

from the actually obtained poses ti. Their method, called Support Vector Regression
Machine, is similar to the Support Vector Machine [93] and allows also the extension
for nonlinear kernels. Detailed description may be found in [82].
Zhou et al. [97] proposed greedy learning for additive regression function:

ϕ(I(X)) =
c∑
i=1

ϕi(Ii(X)), (5.5)

where I(X) are some image features. The learning consists of c-steps, within each of
them weak regressor ϕi(I(X)) minimizing the training error is estimated.
Zhou et al. [97] use the weak regressor formed of a linear combination of binary

functions. They constrained the coefficients of the linear combination to have the
same absolute values. Such constraint allows to find a closed-form solution in each
of c learning greedy steps. Bissacco et al. [6] extended the learning technique for the
L-nary regression trees and showed that it outperforms [97].

5.3 Contribution

We contribute to the regression-based methods. Rather than proposing a special
learning procedure for a special type of the regression function, we present an optimal

— 50 —



Chapter 5: Tracking by the optimal sequence of linear predictors

way to concatenate different regression functions into a sequence. Our main idea
follows the fact that the intensities (features) of pixels located close to the searched
pose are usually more convenient for the precise pose estimation than some other
intensities.
Let us suppose, we are given a class of regression functions. Each of the functions

operates within a different range of poses and has different precisions and compu-
tational complexities. Given predefined range and precision, we want to design a
regression-based tracking method. The simplest thing one can do is to select a func-
tion with sufficient range and precision. Of course, such function need not even exists
and if so, it could have a very high computational complexity. The other possibility
is to select a sequence functions. The first function provides a coarse estimate of
the pose. The following function is consequently allowed to operate within a smaller
range of poses. If it is true that the intensities of pixels located close to the searched
pose are more convenient for the pose estimation, such function naturally achieves
a higher precision with a reasonable complexity. Similarly, another ancestors again
refines from the precision of previously estimated poses.
In continuation of that, we define learning as a searching for a sequence with the

lowest computational complexity subject to predefined precision and range. We learn
the optimal sequence of regression functions, which is in general superior to a sin-
gle function. Since LLiPs are easy to operate and allow for good precision on low
computational complexity, we demonstrate the method on the Sequences of LLiPs
(SLLiP). Note, that the linear predictor can be naturally extended to an arbitrary
linear combination of non-linear mappings by data lifting, therefore the linearity is
not too much restricting condition.
We further extend the method for tracking of the objects modeled by a set of

sequential predictors. While each predictor estimates local motion independently,
object motion is determined by the Ransac from these local motions. We optimize
the ratio between the number of Ransac iterations and the number of used predictors
subject to a user predefined frame-rate. Since we do not make any assumptions about
the object pose, visibility and suitability of the predictors, the set of used predictors
must be optimized online. Therefore we learn a set of predictors equally distributed
on the object and select an active subset which optimize trade-off between coverage
and quality in each frame separately.

5.4 Method overview

Because of robustness, the object is locally represented as a set of compact regions.
Position of each compact region is determined by its reference point, e.g., the geo-
metrical mean of pixels in the region. Since we do not make any apriori assumptions,
which positions are the most suitable for the motion estimation, we learn the SLLiPs
for evenly distributed reference points on the object. During the learning stage, which
is outlined in Algorithm 2, the globally optimal SLLiPs are estimated for all reference
points.
Sections 5.5-5.7 describe learning of the individual optimal SLLiP. Section 5.5 intro-
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duces definitions. Section 5.6 formulates the learning task as an optimization problem.
In this section, we also show that an optimal SLLiP can be created exclusively from
LLiPs learned by a minimax method. Hence, the learning is compound: firstly a
set of LLiPs is learned by minimax optimization (Section 5.6.1) and then a sequence
of LLiPs creating an optimal SLLiP is selected (Section 5.6.2). An efficient heuris-
tic for support set selection which minimizes error on training data is described in
Section 5.7.

1. Select a set of reference points.

2. For each reference point on the object:
a) For some discretized values of parameters (ranges and complexities):

• Generate examples of (observation, motion) pairs.
• Learn a set of LLiPs by the minimax method (Section 5.6.1).

b) Select LLiPs creating an optimal SLLiP, (Section 5.6.2).

3. Compute the optimal balance between a number of SLLiPs and Ransac
iterations (Section 5.8.2).

Algorithm 1 NoSLLiP learning

NoSLLiP tracker, summarized in Algorithm 1, first selects a set of SLLiPs consid-
ering the trade-off between the quality and coverage of a visible part of the object
(Section 5.8.1). These SLLiPs are used for local motion estimation in the particular
frame. The global motion is determined by Ransac, given the set of local motions.
The trade-off between time spent with the local and global motion estimation is also
considered and optimized in Section 5.8.2. The proposed method is experimentally
verified on synthetic and real data with ground truth in Section 5.9.

1. Select a set of active SLLiPs (Section 5.8.1).

2. Estimate local motions by the selected SLLiPs.

3. Estimate object motion from the local motions by Ransac (Section 5.8.2).

4. Capture the next frame and goto 1.

Algorithm 2 NoSLLiP tracking

5.5 Predictors, properties and terminology
In this chapter, we define the predictor and the sequential predictor and show their
fundamental properties, which are further used for learning. Let us suppose that
the object state is given by object pose parameters (e.g., position)1. In each frame,

1In general, object could be represented by more than one predictor. Such representation allows for
robust object pose estimation by Ransac and we discuss this extension in Section 5.8. For now,
let us suppose that only one predictor is associated with the object.

— 52 —



Chapter 5: Tracking by the optimal sequence of linear predictors

we update the object state by current motion parameters estimated by the predictor
from a subset of object pixels. The subset of the object pixels is called the support
set X = {x1, . . . ,xc}. The intensities observed on the support set X are collected in
the observation vector I(X).
Ideally, a predictor would use a support set minimizing the prediction error. How-

ever, the problem has combinatorial complexity and we discuss it later in Section 5.7;
let us assume for now that a support set has been selected.
We denote (t ◦ X) the support set transformed by a motion with parameters t.

For example, if the considered motion is a 2D translation, then (t ◦X) = (X + t) =
{(x1+t), . . . , (xc+t)}. There is a mapping from parameters t to observations I(t◦X),
which is usually not invertible. We therefore search for a mapping approximating a
set of motions t which could have generated the observation I(t ◦X). This mapping,
called a regressor, assigns a p-vector of motion parameters to a c-vector of observation.
Regressors ϕ̂ are completely characterized by their complexity, range and uncertainty
region:

Definition 1 Complexity c(ϕ̂) of regressor ϕ̂ is a value proportional to the computa-
tional cost of the regressor. It is equal to the size of a support set for linear regressor.

Definition 2 Range R(ϕ̂) of the regressor ϕ̂ is a set of motion parameters2.

Definition 3 Uncertainty region of the regressor ϕ̂ is the smallest region

Λ(ϕ̂) =
{
∆t | ∆t = t ◦ ϕ̂

(
I(t ◦X)

)
, ∀t ∈ R(ϕ̂)

}
. (5.6)

The uncertainty region is the smallest region within which all the prediction errors
from the range R(ϕ̂) lie, see Figure 5.3.
In order to simplify the learning procedure, we select only the class (e.g., circles or

squares) {Λλ}λ∈R parametrizable by one scalar parameter λ ∈ R such that

∀ λ1, λ2 ∈ R : λ1 < λ2 ⇒ Λλ1 ⊂ Λλ2 . (5.7)

Ranges Rr are selected from the same class of regions and parametrized by the same
parameter r ∈ R. According to equation (5.7), parameter λ (and r) are proportional
to the area of the region, therefore we sometimes refer to it as an area of the region
and use notation λ(ϕ̂) (and r(ϕ̂)) to denote corresponding values of Λ(ϕ̂) and R(ϕ̂)
respectively. An extension to regions parametrizable by more than one parameter is
discussed later.

5.5.1 Predictors

Definition 4 Predictor ϕ(c, r, λ) is an ordered 4-tuple (ϕ̂,X,Rr,Λλ), where X is the
support set, c ≈ |X| is complexity (for linear case |X| = c), ϕ̂ is the regressor, Rr is
range and Λλ is the uncertainty region.

2Note, that this is not the range in its usual mathematical meaning.
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Range

Complexity

Uncertainty
region

Figure 5.3: Definitions: Range, accuracy and complexity. An example with 2D trans-
lations.

Even though we defined the predictor as a 4-tuple, we parametrize all predictors by
the three parameters: complexity c, range r and uncertainty region λ, the regressor ϕ̂
is omitted. It actually says, that two predictors with the same (c, r, λ) and different
regressors ϕ̂1, ϕ̂2 are equivalent.
In order to assure that increase in complexity does not reduce the prediction abil-

ities, we further restrict ourselves to the class of support sets satisfying that every
support set contains all support sets with lower complexity. This is assured by the
successive support set construction algorithm described in Section 5.7. This is, how-
ever, still insufficient assumption. It is also required that regressors must be able to
ignore values of some input pixels. In the following definition, we define the class of
such regressors.

Definition 5 Let denote Fc some class of regressors ϕ̂ : Rc → Rp with the same
support set X. Let

F =
{
F1 ∪ F2 ∪ · · · ∪ Fc . . .

}
.

F is called domain independent class if:

∀ c ∀ ϕ̂1 ∈ Fc ∃ϕ̂2 ∈ Fc+1 such that

∀ I ∈ Rc ∀u ∈ R ϕ̂2([I, u]) = ϕ̂1(I).

This is for example satisfied for the following class of regressors

F1 = {a1 · x1 | a1 ∈ R} ,

F2 = {a1 · x1 + a2 · x2 | a1, a2 ∈ R} ,

Fc = {
c∑
i=1

ai · xi | ai ∈ R, i = 1 . . . c}
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parametrized by coefficients ai ∈ R, because it can ignore an arbitrary input xi by
setting the corresponding coefficient to zero. On the contrary, the class following is
not domain independent class

F1 = {a · x1 | a ∈ R} ,

F2 = {a · (x1 + x2) | a ∈ R} ,

Fc = {a ·
c∑
i=1

xi | a ∈ R}

parametrized only by one coefficient a ∈ R. In general, the class of polynomials of an
arbitrary order parametrized by all of their coefficients is an example of the domain
independent class.
Note that not all good properties of the predictors are simultaneously achievable.

It is clear that there is no ideal predictor which would simultaneously have (very) low
complexity, (very) large range and (very) small error. We denote the achievable subset
of predictors in (c, r, λ) space by ω, see Figure 5.4 for an example. Predictors lying
on the border of ω are very important, because it will be shown later that optimal
sequential predictors are exclusively formed from these predictors.

Definition 6 λ-minimal predictors ϕ+(c, r) are predictors having the minimal
achievable λ for a given range r and complexity c.

ϕ+(c, r) ∈ argmin
ϕ
{λ | ϕ(c, r, λ) ∈ ω} . (5.8)

Note that λ-minimal predictors are the predictors lying on the boundary of ω, see
Figure 5.4c.
Simple consequence of Definition 5 is that more complex predictors can do ev-

erything that the simpler can. This is shown in two following propositions which
summarize properties of λ-minimal predictors. The propositions are not crucial for
the understanding of the learning procedure however, we later use them to prove that
the learning algorithm can be simplified.

Proposition 1 The uncertainty region of a λ-minimal predictor is a nonincreasing
function of the complexity c.

Proof: We prove that the uncertainty region cannot increase with complexity (see
for example Figure 5.4a). Let us suppose, we are given two λ-minimal predictors
with regressors ϕ̂+

1 ∈ Fc, ϕ̂
+
2 ∈ Fc+1. Since λ-minimal predictors are predictors with

minimum uncertainty region, their regressors have to satisfy:

ϕ̂+
1 ∈ argmin

ϕ̂1∈Fc
λ(ϕ̂1) , (5.9)

ϕ̂+
2 ∈ argmin

ϕ̂2∈Fc+1
λ(ϕ̂2) . (5.10)
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Figure 5.4: Set of achievable predictors. Color codes the size of uncertainty region.

We prove that regressor with higher complexity ϕ̂+
2 has the uncertainty region smaller

or equal to the uncertainty region of regressor with smaller complexity ϕ̂+
1 , i.e.,

λ(ϕ̂+
1 ) ≥ λ(ϕ̂+

2 ). This fact is shown by contradiction, therefore we assume that

λ(ϕ̂+
1 ) < λ(ϕ̂+

2 ). (5.11)

Since we know that ϕ̂+
1 ∈ Fc, then according to the Definition 5, there exists some

ϕ̂+
3 ∈ Fc+1 such that

∀ I ∈ Rc ∀u ∈ R , ϕ̂+
3 (I) = ϕ̂∗1([I, u]).

It also implies that λ(ϕ̂+
3 ) = λ(ϕ̂+

1 ). Hence according to the assumed inequality (5.11)

λ(ϕ̂+
1 ) = λ(ϕ̂+

3 ) < λ(ϕ̂+
2 ).

This leads us to the contradiction, because there exists regressor ϕ̂+
3 , which has smaller

uncertainty region than ϕ̂+
2 and therefore ϕ̂+

2 could not be the optimal solution of
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problem (5.10) and consequently ϕ̂+
2 could not be the regressor of any λ-minimal

predictor with complexity c+ 1.

Note, that Proposition 1 is valid for arbitrary predictors which are optimal with
respect to the some criterion. For example, if we had been dealing with predictors
minimizing mean Euclidean prediction error, say e, then the minimal e would have
been a nonincreasing function of the complexity, as well.

Proposition 2 Uncertainty region of λ-minimal predictor is a nondecreasing func-
tion of the range.

Proof: Given two λ-minimal predictors:

ϕ+
1 = ϕ+(c, r1) = argmin

ϕ
{λ | ϕ(c, r1, λ) ∈ ω} ,

ϕ+
2 = ϕ+(c, r2) = argmin

ϕ
{λ | ϕ(c, r2, λ) ∈ ω} ,

such that r2 > r1, we prove that the predictor with larger range r2 has larger or at
most the same uncertainty region as a predictor with smaller range r1,
ie r2 > r1 ⇒ λ(ϕ+

2 ) ≥ λ(ϕ+
1 ).

The implication is proved by contradiction. We assume r2 > r1 and λ(ϕ+
2 ) <

λ(ϕ+
1 ). Since Rr1 ⊂ Rr2 , the predictor ϕ2 can also predict every motion from range r1.

Consequently, we can define a new predictor ϕ′1 = (ϕ̂+
2 , X,Rr1 ,Λλ2) operating on

range r1 with
λ(ϕ′1) = λ(ϕ+

2 ) < λ(ϕ+
1 ). (5.12)

This is in contradiction with the fact that ϕ+
1 is λ-minimal predictor, because we have

just found another predictor ϕ′1, which has a smaller uncertainty region.

5.5.2 Sequential predictor
It directly follows from the Proposition 1 that the higher is the complexity the better
is the prediction. However, increasing the complexity has diminishing returns, see for
example Figure 5.4. For large ranges, it is usually very difficult to achieve a good
prediction even with the complexity corresponding to the cardinality of the complete
template. In order to overcome this limitation, we develop a sequential predictor
Φ = (ϕ1 . . . ϕm), see Figure 5.5, which estimates vector of motion parameter t in m
steps as follows:

t1 = ϕ̂1
(
I(X1)

)
,

t2 = ϕ̂2
(
I(t1 ◦X2)

)
,

t3 = ϕ̂3
(
I(t2 ◦ t1 ◦X3)

)
,

...

tm = ϕ̂m
(
I
(
(
m−1
©
i=1

ti) ◦Xm
))
,

t =
m
©
i=1

ti.
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t =1 ϕ

Motion

t =3 ϕ
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1

Φ=(ϕ,ϕ,ϕ)
1 2 3

Figure 5.5: Sequential predictor Φ = (ϕ1 . . . ϕm) estimates the vector of motion pa-
rameters t (denoted by the red arrow) inm steps by m different predictors
ϕ1 . . . ϕm. Particular predictors and the number of steps is the subject of
the learning.

The first vector of motion parameters t1 is estimated directly by predictor ϕ1 from
the intensities observed in support set X1 . This predictor has a known uncertainty
region λ1 within which all its predictions lie. Therefore the successive predictor ϕ2 is
learned only on the range r2 ≈ λ1 corresponding to this uncertainty region, which is
usually significantly smaller than range r1 of the first predictor. The smaller range
yields the smaller uncertainty region. The advantage is that the predictors in the
sequence are more and more specific, which consequently allows the prediction to be
very accurate for reasonably textured regions. It is experimentally shown that the
sequential predictor, which is superior to the single predictor, yields significantly lower
complexity and a higher precision.
Obviously, we consider only those sequential predictors which satisfy R(ϕ̂i+1) ⊇

Λ(ϕ̂i), i = 1 . . .m− 1. The range of each particular predictor must accommodate the
uncertainty region of its predecessor at least. The uncertainty region of the sequential
predictor is understood as the uncertainty region of the last predictor and its range
as the range of the first predictor.

Definition 7 Sequential predictor of order m is an m-tuple Φ =
(ϕ1(c1, r1, λ1), . . . , ϕm(cm, rm, λm)) of predictors ϕi ∈ ω such that R(ri+1) ⊇
Λ(λi), i = 1 . . .m− 1. Uncertainty region of the sequential predictor Φ is λm and its
range is r1.
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[       ]
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Figure 5.6: Image is perturbed by the motion parameters included in the range r,
creating the set of synthesized examples of observed intensities Ii and
motions ti.

5.6 Learning optimal sequential predictors
In the previous section, we defined the predictor and the sequential predictor. In
this section, we first define the optimal sequential predictor and show that it can
be created exclusively from the λ-minimal predictors (Definition 6). Section 5.6.1
describes learning of the λ-minimal predictor, given a training set. In Section 5.6.2, a
set of λ-minimal predictors with different complexities a ranges is learned; selection
of an optimal sequence of the predictors from the set is formulated as a search for the
cheapest path in a graph.

Definition 8 The Optimal sequential predictor is

Φ∗ = argmin
Φ∈Ω,m∈N+

{
m∑
i=1

ci | r1 ≥ r0, λm ≤ λ0

}
, (5.13)

where Ω is the set of all sequential predictors, r0 is predefined range and λ0 is prede-
fined uncertainty region and N+ is the set of positive integral numbers.

Proposition 3 There is one optimal sequential predictor at least created exclusively
from the λ-minimal predictors.

Proof: The proposition is proved by showing that any non-λ-minimal predictor
can be replaced by a λ-minimal predictor of the same complexity. It is then clear, for
every non λ-minimal predictor ϕi from the optimal sequence, there exists a λ-minimal
predictor ϕ+

i with the same complexity, such that the following holds:

Λ(ϕ+
i ) ⊂ Λ(ϕi) ⊂ R(ϕi) ⊂ R(ϕ+

i ).

— 59 —



Chapter 5: Tracking by the optimal sequence of linear predictors

Therefore ϕ+
i can replace ϕi.

We consider only predictors with the smallest uncertainty region λ, i.e., predictors
lying on the λ-lower bound defined by (5.8). In that way, the λ-lower bound, 2D
manifold in (c, r, λ)-space (Figure 5.4c), is rolled out to the (c, r)-space (Figure 5.4d).
Task (5.13) reduces to

Φ∗ = argmin
Φ∈Ω+,m∈N+

{
m∑
i=1

ci | r1 ≥ r0, λm ≤ λ0

}
, (5.14)

where Ω+ is the set of sequential predictors created only by the λ-minimal predictors,
equation (5.8).
The procedure of linear λ-minimal predictor learning is carried out by linear pro-

gramming in Section 5.6.1. In Section 5.6.2, a sequence of the λ-minimal predictors
creating the optimal sequential predictor Φ∗, equation (5.14), is selected from a set
of learned λ-minimal predictors. The problem is formulated as seeking he cheapest
path in a graph.

5.6.1 Learning linear λ-minimal predictor ϕ̂+
Linear predictor

In order to estimate a predictor satisfying equation (5.8), the regressor ϕ̂ needs to be
specified in detail. We restrict ourselves to Learned Linear Predictors (LLiP), i.e.,
predictors with the linear regressor:
The linear regressor ϕ̂L is a linear mapping defined as

t = ϕ̂L(I) = HI, (5.15)

where H is a 2×c matrix. Similarly to this, sequential linear predictor is the Sequence
of LLiPs (SLLiP). Note, that the time required for motion estimation by LLiP is
determined by the size of its support set, therefore c = |X|.
Although we will further work with linear predictors, the method allows a natural

extension to an arbitrary class of functions formed of a linear combination of kernel
functions by data lifting. A polynomial mapping of a given order is an example. In
that case, all monomials are considered as further observed intensities. It allows the
learning procedure to deal with non-linear mappings via linear mappings in a higher
dimension.

Training set construction

Let us suppose we are given a reference point, a support set and a predefined range
of motion, within which the regressor is assumed to operate. We perturb the support
set by the motion with parameters qi randomly (uniformly) generated inside the
range. Each motion qi warps the support set X to a set Xi, where a vector of
intensities Ii is observed, see Figure 5.6. Given the observed intensity, we search for
a mapping assigning motion ti = −(qi), which warps the support set Xi back to the
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original support set X. These examples are stored in matrices I =
[
I1 . . . Id

]
and

T =
[
t1 . . . td

]
. The ordered triple (I, T,X ) of such matrices and ordered d-tuple of

support sets X =
{
X1 . . . Xd

}
is called a training set.

Learning linear regressor given a training set

Let us suppose, we are given a training set (I, T, X). While Jurie and Dhome [48]
obtain H by the least squares method H = TI+ = TI>(II>)−1, we search for λ-
minimal predictor (Definition 6), i.e., the predictor with the smallest uncertainty
region, equation (5.8). As we mentioned before, the uncertainty region is assumed to
be from a class parametrizable by one scalar parameter λ. In the following, we show
how to find λ-minimal predictor for the class of squares and rectangles. See appendix
for other uncertainty region classes (e.g., circles or ellipses).

Figure 5.7: Different classes of uncertainty regions: Points correspond to predic-
tion errors ∆t of 2D translation on a training set. Errors of the predictor
learned by LS method are in blue and by the minimax method in red. Un-
certainty regions and ranges are black. Only a), b) and e) are described
in the paper, see [99] for detailed description of the other classes.

Restricting to the square-shaped uncertainty regions centered in the origin of the
coordinate system (see figure 5.7-a) and parametrized by parameter λ, equation (5.8),

— 61 —



Chapter 5: Tracking by the optimal sequence of linear predictors

defining the λ-minimal predictor, simplifies as follows

H∗ = argmin
H

(max
i
‖HIi − ti‖∞) =

= argmin
H,λ

{λ | ∀i|HIi − ti| < 1λ} =

= argmin
H,λ

λ (5.16)

subject to : − λ ≤ (HIi)k − tik ≤ λ,
i = 1 . . . d, k = 1, 2.

We reformulate problem (5.16) as a linear program

min
x
{c>x | Ax ≤ b}, (5.17)

where

x =


h1
...

hp
λ

 , c =


0
...
0
1

 , A =



I> 0 . . . 0 −1
0 I> . . . 0 −1
... . . . ...
0 . . . 0 I> −1

−I> 0 . . . 0 −1
0 −I>. . . 0 −1
... . . . ...
0 . . . 0 −I>−1


, b =



t1
...

tp

−t1
...
−tp


,

where hi is column vector corresponding to the i-th row of matrix H.
Since the computation of each component of the predicted parameters can be con-

sidered as an independent task, estimation of each row of H is solved separately3.
Hence, the task splits into p independent linear problems, where each of them deter-
mines one row hT∗j of matrix H. The problem is solved as follows:

hT∗j = argmin
hj

max
i

{
‖h>j Ii − tij‖∞

}
=

= argmin
h>j ,λj

{λj | ∀i |h>j Ii − tij | < λj}.

Denoting

xj =
[
hj
λj

]
, c =


0
...
0
1

 , A =
[

I> 0 −1
−I>−1 0

]
, bj =

[
tj
]
,

the linear programming problem (5.17) is obtained. The shape of such uncertainty
region is a rectangle, which is in 2D space parametrized by two parameters - length of

3This is significantly faster than computation of one larger problem.
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its sides, see Figure 5.7c. Since we want to work with uncertainty regions parametriz-
able by one parameter, it could be considered as a square with the side equal to the
longer rectangle side. Result is the same as if the square shape is assumed in advance
and the learning is significantly faster.
If L∞ in problem (5.16) is replaced by L1 the uncertainty region is L2 hyper-cube

(square in 2D) rotated by 45o and the problem is solved alike, see Figure 5.7b. The
combination of L∞ and L1 norms allows to work also with L2 circle approximation, see
Figure 5.7d. Note that we can also work with elliptic regions as shown in Figure 5.7d-
g. In order to adjust a trade-off between robustness of minimax solution and accuracy
of LS solution, it is also possible to formulate the criterion as a weighted sum of LS
error and minimax error, which can be shown to be a semi-definite problem, see
Figure 5.7h. Detailed description of such uncertainty region extensions can be found
in [99].

5.6.2 Learning optimal sequential predictor Φ∗

In this section, we describe selection of the optimal sequence of predictors from a
set of learned λ-minimal predictors. We assume that we are able to estimate the
λ-minimal predictors (5.8), e.g., the linear predictors as shown in previous section.
Set of λ-minimal predictors ϕ+(c, r) for some discretized values of complexities c ∈ C
and ranges r ∈ R is denoted by ω+. Note, that ω+ is actually a subset of the set
of all possible λ-minimal predictors however, for the sake of simplicity we use the
same notation. Figure 5.8a shows uncertainty region λ(c, r) (size coded by color) of
the λ-minimal predictors as a function of complexity c ∈ C (vertical axis) and range
r ∈ R (horizontal axis).
Given the set ω+, predefined range r0 and uncertainty region λ0, we seek the ordered

subset of ω+ that forms the optimal sequential predictor Φ∗, which minimizes the
complexity. Since the predefined range r0 of the sequential predictor is the range
r1 = r0 of the first predictor in the sequence, the first predictor must lie in the
corresponding (usually the most right) column. For this range, the predictors with
the different complexities are available in that column. The higher the complexity is,
the smaller the uncertainty region, see Figure 5.8a, where the size of uncertainty region
decreases with the complexity for each particular range. The selection of a particular
complexity c1 determines the first λ-minimal predictor ϕ+(c1, r1) in the sequence. The
size of corresponding uncertainty region λ(ϕ+(c1, r1)) determines an admissible range
r2 of the following predictor, which has to be as large as the uncertainty region at
least according to its definition, i.e., r2 ≥ λ(c1, r1). The following proposition shows
that it is sufficient to consider only the smallest possible range.

Proposition 4 Range ri of a λ-minimal predictor ϕ+(ci, ri) in an optimal sequence
of λ-minimal predictors has to be as tight as possible to the uncertainty region λi−1 of
its predecessor, i.e., asymptotically, in a continuous case ri = λi−1.

Proof: The uncertainty region is a nonincreasing function of complexity, according
to Proposition 1

c2 > c1 ⇒ λ(ϕ+(c2, r)) ≤ λ(ϕ+(c1, r)).
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However, a λ-minimal predictor the complexity of which can be decreased without
uncertainty region increase, cannot be part of the optimal sequence. We therefore
consider only a λ-minimal predictor, whose uncertainty region is a decreasing function
of complexity, i.e., for which the following holds:

c2 > c1 ⇒ λ(ϕ+(c2, r)) < λ(ϕ+(c1, r))

and consequently:

λ(ϕ+(c2, r)) ≥ λ(ϕ+(c1, r))⇒ c2 ≤ c1. (5.18)

Hence, the uncertainty region is strictly decreasing function of the complexity. Putting
this together with Proposition 2, which claims that the uncertainty region is a nonde-
creasing function of range, we prove that the complexity is a nondecreasing function
of the range for every fixed λ0 = λ(ϕ+(c1, r1)) = λ(ϕ+(c2, r2)), because:

r2 > r1 ⇒
Prop.2

λ(ϕ+(c1, r2)) ≥ λ(ϕ+(c1, r1))
λ(ϕ+(c2, r2)) ≥ λ(ϕ+(c2, r1))
λ(ϕ+(c1, r1)) = λ(ϕ+(c2, r2))

⇒

⇒ λ(ϕ+(c1, r2)) ≥ λ(ϕ+(c2, r2))
λ(ϕ+(c1, r1)) ≥ λ(ϕ+(c2, r1))

⇒
Eq.(5.18)

c2 ≤ c1

Since the complexity is a nondecreasing function of the range, considering larger range
ri > λi−1 than necessarily leads only to increasing of the complexity ci. Taking into
account that this would necessarily increased the complexity of the resulting sequential
predictor, the smallest possible range ri = λi−1 must be used.

Note, that if only the smallest possible ranges are considered, then the constructed
graph has at most |C| · |R| edges. On the contrary, without the Proposition 4 the
constructed graph would have |C| · |R|2 edges.
Arrows in Figure 5.8a show the smallest possible ranges for the predictors with

different complexities. A sequence with the last predictor with uncertainty region λm
smaller than λ0 can be constructed, see for example the two sequences in Figure 5.8b.
Furthermore, we search for the sequence consisting of predictors converging to the
sufficiently small uncertainty regions with the lowest complexity.
We formulate the previous problem as the search for the cheapest path in the graph
G = (V ≡ R,E ⊆ R × R,α : E → C), where R is the set of considered ranges and
C is the set of considered complexities and operator α assigns a cost to each edge,
see Figure 5.8. It means, each range is associated with a vertex and a set of edges
starting from this range, which stand for predictors with different complexities. Edge
cost equals its complexity. We construct the graph by adding forward edges for each
particular range. Dĳkstra algorithm [8] searches for the cheapest path to the ranges
with predictors with sufficiently small uncertainty regions, depicted by red circles in
Figure 5.9. These predictors are called target predictors and their ranges are called
target ranges. The solution is a sequence of predictors associated with edges on the
cheapest path to a target range plus its cheapest target predictor. If more than one
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Figure 5.8: (a) Construction of a graph G from a set of λ-minimal predictors ω+.
Different complexities of the first predictor lead to different uncertainty
regions and therefore different ranges of the second predictor. Edges from
the range r0 of the first predictor, depicted by black arrows, show the
ranges of the second predictor corresponding to the complexities of the
first predictor. The cost of edges corresponds to the complexities. (b)
Two paths to the target ranges (solid line denotes the optimal path).

target range exists then there are more possible solutions and the cheapest solution
is selected. The solution is the optimal sequential predictor (5.14). The method is
summarized in Algorithm 3.

The optimal path is depicted in Figure 5.9a. For instance, the optimal se-
quence for the example in Figure 5.9a, where r0 = 100, λ0 = 2 is created as
Φ∗ =

(
ϕ+(140, 25), ϕ+(100, 12), ϕ+(100, 5)

)
and corresponding uncertainty regions

are (10, 4.5, 2).

Note that due to simplicity, we focus on the one-variable parametrized uncer-
tainty regions. Extension of the proposed method to the more than one-variable
parametrized uncertainty regions is straightforward. The uncertainty region shape is
ω+ w + 1-dimensional for w-dimensional parametrization.
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Figure 5.9: (a) size of uncertainty regions (coded by colors) as a function of com-
plexity c (vertical axis) and range r (horizontal axis) and the optimal
path from the initial r0 to a predictor with sufficiently small uncertainty
region (red circles). (b) size of uncertainty region after each iteration
(number of LLiPs = 0 corresponds to the range r0 = 25).

1. Estimate set of λ-minimal predictors ω+ = {ϕ+(c, r) | c ∈ C, r ∈ R}.

2. Construct graph G = (V ≡ R,E ⊆ R×R,α : E → C):
for each r ∈ R and each c ∈ C,

a) Find the smallest possible following range v∗ achievable by
ϕ+(c, r):

v∗ = argminv∈R {v |λ(c, r) < v}
b) E = E ∪ (r, v∗) and α(r, v∗) = c

end

3. Dĳkstra(G, r0) ⇒ Compute the cheapest paths from r0 to each range
r ∈ R by Dĳkstra algorithm.

4. ρ(r) denotes complexity of the cheapest path to range r. Consequently,
ϕ+
t (ct, rt) = argminϕ+(c,r)∈ωT {ρ(r) + c} is the last predictor.

5. The optimal sequential predictor is created from the sequence of predictors
associated with the edges of the cheapest path to rt and the last predictor
ϕ+
t (ct, rt).

Algorithm 3 Estimation of the optimal sequence from a set of λ-minimal LLiPs.
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5.7 Selection of support set for efficient tracking
Until now, we have assumed that the support set was given. Since the support set
selection, which minimize an error on a training set has combinatorial complexity,
we propose a heuristic method. The only condition on the proposed heuristic is that
every selected support set of complexity c contains also support set of complexity c−1,
which consequently assures monotonicity of the λ-bound as shown in Section 5.5.
Let us suppose we are given training set (I, T,X ) with the support set covering the

whole object. We define a support set selection vector u ∈ {0, 1}b, which determines
the support set selected from a b-pixel template; used pixels marked by ones, unused
pixels marked by zeros, respectively. The prediction error of a predictor operating on
the support set selected by u is

e(u) =
∥∥∥T− T (I(u, :))+ I(u, :)

∥∥∥2

F
, (5.19)

where I(u, :) is a submatrix of I with rows selected by u. Given a desired complexity c,
the optimal solution of problem,

u∗ = argmin
u ∈ {0, 1}b,
‖u‖1 = c

e(u), (5.20)

is usually intractable because the problem has combinatorial complexity. Therefore
we propose the following greedy LS algorithm for the support set selection problem,
which searches for a solution convenient for efficient tracking.

1. Let u = 0 is the selection and L, T are given training examples.

2. Repeat c-times:
j∗ = argmin

j=1...b
{e(u + δj)},

u(j∗) = 1

where δj is b-vector of zeros with “1” at the position j.

Algorithm 4 Greedy LS support set selection algorithm.

Recently, an extension to LK tracker has been published by Benhimane et al. [5],
where the most convenient (w.r.t. gradient optimization method) subset of pixels
is selected during a training stage. According to the published experimental data,
such improvement decreases error rate of no more than 20%. While Benhimane et
al. optimize only the subset of pixels and preserves the gradient-based tracking, we
optimize both the set of pixels and the motion estimation method.

5.8 Tracking objects with a known geometrical model
If the object is represented only by a single SLLiP, the robustness to partial occlu-
sions/noise and the dimensionality of predicted motions are limited. Therefore we
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Figure 5.10: Object coverage by predictors for different weightings. Blue circles corre-
spond to the all learned predictors, red crosses to the selected predictors.
Size of crosses corresponds proportionally to the complexity.

represent the object by Number of SLLiPs (NoSLLiP tracker). Such a representation
requires a geometrical model of the object. Since the geometrical model estimation
is beyond the scope of this work, we mainly work with planar or piece-wise planar
objects, the accurate geometrical model of which could be manually estimated with
negligible effort.
Besides of the geometrical model estimation, many other questions must be an-

swered: In particular, how many SLLiPs should be used, where should be attached
to the model and how should be particular motion contributions combined. In our
approach, we follow the most common way of robust motion estimation based on the
Ransac. Since we do not make any assumptions about the object pose, we learn
SLLiPs equally distributed on the object. During the tracking stage a set of active
SLLiPs, maximizing a trade-off between coverage and quality, is automatically se-
lected and used for motion estimation. This method is introduced in Section 5.8.1.
It is also not clear, how many SLLiPs should be used and how many Ransac’s it-
erations should be computed. Section 5.8.2 describes method estimating the ratio
between number of SLLiPs and number of Ransac’s iterations, which maximize a
probability of successful tracking.

5.8.1 Online selection of active predictor set

Let us suppose, that a set of SLLiPs evenly distributed on the object is available.
In the following, we describe how to select a subset of SLLiPs, which assures both
a reasonable coverage of the object and quality of SLLiPs. It is not possible to find
the set of regions suitable for object tracking independently on the object position,
because if the object changes its pose some points can disappear and the global motion
estimation can easily become ill-conditioned. In this section, we present an online
method which automatically selects a subset of n predictors, called active predictor
set, from all visible predictors. To optimize the distribution of SLLiPs across the
surface, we define coverage measure r(Z) and quality measure q(Z) of the set of
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SLLiP’s reference points Z. Note, that we have no theoretical justification for these
definitions and we do not claim, that this is the only right way how to define it.
We provide only one possible definitions which might not be convenient for some
applications.

Definition 9 Coverage measure is

r(Z) =
∑
z∈Z

d(z, Z \ z), (5.21)

where distance between point z and set Z is defined as the distance from the closest
element of the set

d(z, Z) = min
y∈Z
‖z− y‖. (5.22)

Ideally, for optimal robustness to occlusion the coverage measure would be max-
imized. In practice, particular SLLiPs differ by their complexities. Complexity
corresponds to the suitability of SLLiP neighbourhood for motion estimation. We
have experimentally shown that: the lower the complexity, the higher the robustness.
Therefore, we derive the quality measure from complexity c(z).

Definition 10 Quality measure is

q(z) = |c(z)−max
y∈Z

c(y)|. (5.23)

To find a suitable subset Z of predictors from all visible predictors Z̃ we seek to
optimize the weighted sum of the coverage r and quality q:

f(Z) = w
r(Z)
r(Z̃)

+ (1− w)q(Z)
q(Z̃)

, (5.24)

where w ∈ [0; 1] is the coverage weight. Algorithm 5 selects a set of active SLLiPs,
given predefined number of SLLiPs n.

1. Let Z̃ be the set of visible predictors and Z = ∅ a subset of selected
reference points.

2. Select z∗ = arg maxz∈Z̃\Z f(z ∪ Z)

3. Z = z∗ ∪ Z and Z̃ = Z̃ \ z∗

4. if |Z| = n end, else goto 2

Algorithm 5 Selection of active set of SLLiPs.

Figure 5.10 shows results obtained for w = {0, 0.1, 0.5, 1}. If w = 0, n predictors
with the highest quality are selected and SLLiPs are stacked in one corner. Conversely,
w = 1 causes that SLLiPs are equally spread across the object.
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5.8.2 Object motion estimation

Objects are modeled as a spatial constellation of optimal SLLiPs (henceforward just
predictors), which estimates 2D translation. Object motion is estimated from these
local translations by Ransac algorithm. We understand tracking as a time-limited
task, where the object pose needs to be estimated from a camera image before the
next image comes. There is a trade-off between the time spent with the local mo-
tion estimation and the global motion estimation. While there are n local motions
estimated by n predictors, the global motion is estimated by h iterations of Ransac.
The longer the time spent with each particular step the higher the probability of
successful tracking. We address the following question: Given the frame-rate and the
computational costs of different operations at a specific computer, how many predic-
tors should be used and how many Ransac’s iterations should be performed in order
to maximize the probability of successful tracking?
The probability of a successful pose estimation in h-iterations of the Ransac

method is

PR(k, h) = 1−
(

1−
(
k

n

)v)h
, (5.25)

where n is the number of tracked points, k is the number of successfully tracked
points, and v is the minimal number of the points needed for the pose estimation.
Note, that k

n is the percentage of the successfully tracked points (inliers). The number
of successfully tracked points k in not known in advance, it is a random quantity with
binomial distribution,

Pk(k) = Pbin(n, k) =
(
n

k

)
pk(1− p)n−k, (5.26)

where p is the probability of the successful tracking of each particular reference point.
Hence, the probability of successful tracking is

Psuccess(n, p, h) =
n∑
k=1

PR(k, h)Pk(k) =
n∑
k=1

PR(k, h)Pbin(n, k)

=
n∑
k=1

[
1− (1−

(k
n

)m
)h
](n
k

)
pk(1− p)n−k.

In the rest of this chapter, we assume that p is a constant value that has been
estimated, e.g., online as a mean number of inliers or measured on training data.
Psuccess(n, p, h) is therefore replaced by P̂success(n, h). The case where p is not fixed is
discussed later. Given

• the maximum time t we are allowed to spend in pose estimation,

• time t0 of one Ransac iteration and

• times t1, . . . , tn required for local motion estimation or reference points 1, . . . n,
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we formulate the following constrained optimization task

(n∗, h∗) = {arg max
n,h

P̂success(n, h) | ht0 +
n∑
i=1

ti ≤ t} (5.27)

Since, the probability P̂success(n, h) is a monotonously increasing function in all vari-
ables, the maximum has to be located on the boundary {[n, h]| ht0+

∑n
i=1 ti = t} of the

constrained set. Consequently, problem (5.27) can be rewritten as the unconstrained
one-dimensional problem as follows

n∗ = arg max
n

P̂success(n,
t−

∑n
i=1 ti
t0

) = arg max
n

P success(n). (5.28)

We are not able to proof analytically concavity of this function but it is experimentally
shown that P success(n) is a concave function. If interested in a real-time application,
Golden mean optimization is a natural choice. The probability evaluation is very
simple and the computational time can be practically neglected.

5.9 Experiments

Properties of SLLiP tracking and learning algorithms are experimentally verified. In
Section 5.9.1 some preliminary results on challenging sequences are demonstrated. In
Section 5.9.2 robustness and accuracy is evaluated on ground truthed sequences. In
particular, Section 5.9.2 describes ground truthed data and Section 5.9.2 compares
SLLiP to the state-of-the-art approaches. In Section 5.9.3 additional properties such
as relation between robustness and speed relation between predefined and achieved
accuracy are summarized.

5.9.1 Preliminary qualitative evaluation

In the first experiment NoSLLiP tracker is qualitatively evaluated on real sequences
with planar and 3D rigid objects, which exhibit oblique views, motion blur, partial
occlusions and significant scale changes4. Tracking of various objects with partial
occlusions and motion blur is shown in Figure 5.11. Green/blue circles outline in-
liers/outliers, red arrows show the local motion estimated by SLLiPs. In some images,
also the support set is outlined by blue points. Tracking of objects with variable set of
active predictors is demonstrated in Figure 5.12 and 5.13. Active set of visible SLLiPs
is estimated by Algorithm 4. Yellow numbers denotes IDs of particular SLLiPs. Al-
though we mainly work with planar objects in order to avoid problems arising from
the inaccurate 3D reconstruction, SLLiPs are attachable to the arbitrary 3D model,
see for example Figure 5.13.

4We encourage the reader to look also at video-sequences available at http://cmp.felk.cvut.cz/
demos/Tracking/linTrack.
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Figure 5.11: Robustness to partial occlusions and fast motion: Green/blue
circles outline inliers/outliers, red arrows shows local motion estimated
by SLLiPs. Support set outlined by blue points.

5.9.2 Quantitative evaluation of the robustness and accuracy

Ground truthed data

The quantitative evaluation of the robustness and accuracy of SLLiPs is conducted on
sequences with 3 different objects: mousepad (mp), towel and phone, where ground
truth positions of the object corners in total number 11963 frames were manually
labeled5, see Figure 5.14 for some examples. Accuracy is measured by the average
error in object corners. The error is expressed in percentage and normalized by the
actual size of the object upper edge, in order to make the measure independent to the
actual scale. The robustness is measured by the number of loss-of-locks, defined as
the cases where the error was higher than 25% in one of the corners at least. In loss-
of-lock frames, the tracker was reinitialized from the ground truth and the accuracy
did not contribute to the total accuracy statistics.

5These ground truthed sequences are available at ftp://cmp.felk.cvut.cz/pub/cmp/data/
lintrack
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Figure 5.12: Tracking with variable set of active predictors: Yellow numbers
denote ID of particular SLLiPs. Blue points represent the support set,
green circles highlight inliers, red arrows outline a local motion estimated
by SLLiPs.

Figure 5.13: 3D tracking: Variable set of active predictors and motion blur.

Comparison of SLLiPs to the state-of-the-art

Table 5.1 compares the NoSLLiP tracker to the state-of-the-art Lowe’s SIFT detec-
tor [55] (method: SIFT)6, Lucas-Kanade tracker [56] (method: LK tracker) and Jurie’s
LLiP tracker learned by the Least Squares method [48] (method: LLiP LS). All these
local motion estimators were combined with Ransac, to keep test conditions as sim-
ilar as possible. SIFT mainly fails in frames with strong motion blur or in frames
where the object was very far from the camera. LK tracker, which estimates the local
motion at Harris corners, provided quite good results on the frames where the object
was far from the camera, but its basin of attraction was insufficient in many frames

6We use implementation of the SIFT detector downloaded from http://www.cs.ubc.ca/~lowe/
keypoints/
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Figure 5.14: Ground truthed sequences: Left column shows images used for
training. The middle and right columns demonstrate some successfully
tracked frames with a strong motion blur from the testing sequences.
The blue rectangle delineates the object. Percentage values in corners
are current corner speeds related to the current size of the object upper
edge.
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Method Object Frame-rate Loss-of-locks Error
[fps] [-/-] [%]

NoSLLiP mp 18.9 13/6935 1.5
SIFT [55] mp 0.5 281/6935 1.4
LK (IC) tracker [56] mp 2.6 (25) 398/6935 2.4
LLiP LS [48] mp 24.4 1083/6935 6.3
LLiP LS [48] 1/2 mp 24.2 93/6935 3.0
NoSLLiP towel 21.8 5/3229 2.1
NoSLLiP phone 16.8 20/1799 1.8

Table 5.1: Comparison of robustness and accuracy of SLLiP, LK, LLiP trackers
(Matlab implementation) and SIFT detector (C++ implementation) on
mp sequence. Frame-rate of IC algorithm is estimated based on comparison
published in [3].

for the correct motion estimation. The tracking failed for fast motions, too.
According to the detailed speed comparison published in [3], 6-parameter optimiza-

tion by Inverse Compositional (IC) algorithm implemented in Matlab runs approx-
imately ten times faster than the optimization by Forward Additive algorithm used
in LK tracker. However, the basin of attraction and sensitivity to noise are the same.
Since SLLiP tracker is also implemented in Matlab, the achieved frame-rates of LK,
IC and SLLiP are comparable. Concerning computational complexity of LK, IC, and
SLLiP: Computational complexity of one iteration computed on n-pixel template and
p-vector of pose parameters by LK is O(p2n + p3) and by IC is O(pn + p3). SLLiPs
exploit only a small subset of pixels. Since we verified experimentally that approxi-
mately

√
n pixels is used from n-pixel template, the computational complexity of one

iteration of SLLiP (i.e., LLiP) is O(
√
np).

Jurie’s tracker is a LLiP tracker with the support set equal to the whole template
learned by LS method for the same reference points and ranges as optimal SLLiPs.
Since a single LLiP tracker does not allow a sufficient accuracy on the same range, a
very high loss-of-lock ratio and low accuracy are reported. If the half-range is used,
the higher accuracy is achieved, but the number of loss-of-locks is still significantly
higher than with NoSLLiP tracker, mainly due to long inter-frame motions.

5.9.3 Additional experiments

Robustness analysis

We defined SLLiP as a sequence of LLiPs satisfying that the range of every predictor
is as large as the uncertainty region of its predecessor at least, i.e., ∀ ri+1 ≥ λi, i =
1 . . .m − 1. We showed in Proposition 4, that the complexity minimization in the
learning stage results in equality ∀ ri+1 = λi, i = 1 . . .m − 1. As a result, whenever
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(a) Loss-of-locks (b) Complexity of SLLiPs.
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Figure 5.15: Robustness analysis: The higher the margin, the higher the robustness
to noise but also the higher the complexity of SLLiPs.

the testing data are corrupted by noise, the prediction might not be within the range
of the following predictor, which might consequently cause a divergence of the SLLiP.
For practical applications, a margin assuring robustness to the noise, is required. We
require ∀ ri+1 ≥ λi(1+γ), i = 1 . . .m− 1, for a non-negative number γ. We claim the
higher is the margin γ the higher is the robustness against noise but simultaneously
also the higher the complexity of the optimal SLLiPs.
A quantitative robustness evaluation is performed by computing the average num-

ber of loss-of-locks as a function of the margin (Figure 5.15a), the average complexity
of SLLiPs as a function of the margin (Figure 5.15b) and average frame-rate as a func-
tion of the margin (Figure 5.15c). The test sequence based on the ground truthed
sequence was intentionally made more challenging. The experiment is conducted on
a selected mousepad sub-sequence (frames 3500–6000), where only the each second
frame is processed in order to increase the inter-frame motion and, consequently, to
achieve a statistically important number of loss-of-locks. The sequence is processed
with SLLiPs learned for 6 different margins [0, 0.05, 0.1, 0.2, 0.3, 0.5]. The number
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Figure 5.16: Comparison of desired and real accuracy.

of loss-of-locks (Figure 5.15a) and the frame-rate (Figure 5.15c) are evaluated as an
average over 20 processing of the sequence with the different starting frame. The com-
plexity (Figure 5.15b) and the length of LLiP sequence (Figure 5.15d) are computed
as an average over the set of 48 learned SLLiPs.

Accuracy analysis of minimax learning

In this experiment we compare the uncertainty region λ0 required in learning and the
real distribution of SLLiP errors. We learned 48 SLLiPs covering the mousepad with
desired accuracy 5% of the range size. The accuracy is evaluated on those frames, in
which the inter-frame motion is smaller than the learning range of SLLiPs. Figure 5.16
shows histogram of displacement errors with λ0 denoted by the red line at 0.05. In
approximately 10% of cases, the errors are higher. This is presumably caused mainly
by the limited ground truth accuracy and partly by the image noise. Note, that the
optimal SLLiP is guaranteed to converge into λ0 for all training examples,

Support set selection by greedy LS algorithm evaluation

We compare the mean square error (MSE) achieved by the greedy LS support set
selection algorithm (Algorithm 4) and the MSE achievable by a random support set
selection. Figure 5.17a shows the MSE histogram of predictors operating on a ran-
domly selected support sets of the size of 20 pixels. The 99% left quantile of the
histogram is depicted by empty green circle. It shows that usage of a randomized
sampling instead of the Algorithm 4 would require a prohibitively high number of
iterations to achieve at least comparable results with the proposed greedy LS algo-
rithm.
Figure 5.17b shows MSE as a function of the complexity during the incremental

construction of the support set. It demonstrates that 99% left quantile of randomly
selected support sets is achieved with less than one-half of the support set size. The
mean is achievable with less than one-quarter of the support set size.
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Figure 5.17: Histogram of MSEs of predictors with the randomly constructed sup-
port sets. (a) C = 20, E99 = 0.0789 (green empty circle denotes 99%-
quantile), Ê = 0.0684 (red filled circle denotes MSE of the proposed
method), (b) MSE as a function of the complexity during the incremen-
tal construction of the support set.

5.10 Discussion

Tracking for detection

Due to the very high performance of the proposed predictor, there is a possibility
coupling it with a detector. The detection performed in a pose-grid [2,35,68] could
be replaced by the prediction followed by detection performed in a sparser pose-grid.
The efficiency of the method depends on the ratio of detectability and predictability
radii and times needed for the detection and prediction, respectively.

Tracking in feature space

Instead of the intensities the arbitrary set of features can be used. There is a large set
of linear features, i.e. the features computed as a linear combination of the observed
intensities. Since the linear prediction from linear features would be only a linear
combination of a linear combination, which is again the linear combination, there is
almost no reason use the linear features. In the other words, if any linear combination
of the intensities is necessary, it is automatically included in the regressor coefficients
during the learning stage in the optimal manner. The particular counter example
are Haar features [37], which allow for a faster direct computation from the integral
image.

Non-linear regression

If the linear mapping is insufficient, the method allows a natural extension to an
arbitrary class of mappings formed as a linear combination of kernel functions by data
lifting. For example, in the polynomial mapping particular monomials are considered
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as further observed intensities. It allows the learning procedure to deal with higher-
dimensional linear mappings instead of the non-linear ones. The prediction by a non-
linear predictor is in general computationally more complex than by a linear predictor.
We have experimentally shown that no substantial improvement is achievable with
the non-linear one. We use only the linear predictor.

Confidence measure

We do not propose any confidence measure for tracking with a single sequential pre-
dictor. In general, every standard confidence measure can be used, e.g., SSD or a
learned classifier. If an object is modeled by a set of predictors, Ransac determines
the number of outliers as a side product of the pose estimation. The number of outliers
provides a measure of confidence of the estimated pose. Since we did not investigate
this issue in detail, the tracker failure is reported if 50% of outliers is reached.

5.11 Conclusions
We proposed a learning approach to tracking that explicitly minimizes computational
complexity of the tracking process subject to user-defined probability of failure (loss-
of-lock) and precision. In our approach, the object is modeled by a set of local
motion predictors estimating translations. Object motion is estimated from these
translations by Ransac. Local motion predictors, their locations and number as well
as the number of Ransac iterations are subject of the optimization. Since the tracker
is formed by a Number of Sequences of Learned Linear Predictors, we refer to it as
NoSLLiP tracker.
In experiments, the NoSLLiP tracker was tested on approximately 12 thousands

frames with a labeled ground truth, showing that the NoSLLiP tracker achieves a
significantly smaller number of loss-of-locks than SIFT detector, LK tracker or Jurie’s
tracker. Since all the time-consuming computations are performed in the off-line stage
the NoSLLiP tracking requires only a few hundreds multiplications yielding extremely
efficient motion estimation. Note that, a non-optimized C++ implementation of an
average sequential predictor takes only 30µs.
We encourage the reader to download a Matlab implementation of the proposed

methods of learning and tracking and an additional material from http://cmp.felk.
cvut.cz/demos/Tracking/linTrack/.
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6 Anytime learning for sequential predictors

This part corresponds to journal article [107]. It is, like the previous
chapter about sequential predictors. It essentially provides an alternative
to the min-max estimation presented in the previous chapter.

We propose an anytime learning procedure for the Sequence of Learned Linear Pre-
dictors (SLLiP) tracker. Since learning might be time-consuming for large problems,
we present an anytime learning algorithm which, after a very short initialization pe-
riod, provides a solution with defined precision. As SLLiP tracking requires only a
fraction of the processing power of an ordinary PC, the learning can continue in a
parallel background thread continuously delivering improved, i.e. faster, SLLiPs with
lower computational complexity and the same precision.
The proposed approach is verified on publicly-available sequences with approxi-

mately 12 thousands ground-truthed frames. The learning time is shown to be twenty
times smaller than standard SLLiP learning based on linear programming, yet its ro-
bustness and accuracy is similar. Superiority in the frame-rate and robustness in
comparison with the SIFT detector, Lucas-Kanade tracker and Jurie’s tracker is also
demonstrated.

6.1 Introduction
The main contribution of this chapter is a new anytime learning approach which, after
a very short initialization period, provides a solution with predefined precision. The
solution is continuously improved, i.e. the SLLiPs with lower complexity and defined
precision allowing for faster tracking are continuously delivered. The anytime learning
searches through the space of SLLiPs and successively constructs SLLiPs from LLiPs
of different complexities. In order to make the searching process efficient, the branch
a bound [52] searching approach is used.
If no constraint on the learning time is imposed, the anytime learning algorithm

finds a globally optimal solution with respect to a certain class of predictors. If time
consuming learning is not acceptable, the tracking can start immediately after a short
initialization period. Since the SLLiP tracking requires only a fraction of processing
power of an ordinary PC, the learning can continue in a parallel background thread.
We consider only linear predictors, nevertheless, the method is easily extended to

an arbitrary polynomial class by the data lifting. For instance, particular monomials
can be considered as additional features.
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Abbreviation Meaning
LK Lucas-Kanade tracker [56]
LS Least Squares
MM Minimax
LLiP Learned Linear Predictor
SLLiP Sequential LLiP
NoSLLiP Number of SLLiPs
MM SLLiP SLLiP learned by [101]
LS SLLiP SLLiP anytime learning

Complexity

Range

Error

(a) Table of used abbreviations. (b) Definitions.

Figure 6.1: (a) Table of used abbreviations. (b) Definitions: The range, complexity
and prediction error of a learned linear predictor.

6.2 Problem formulation
In this section, we introduce formal definitions of LLiP and SLLiP and formulate
their learning as a constrained optimization problem. Let us suppose we are given an
image I of an object to be tracked. Object motion is robustly determined by Ransac
from local motions of some points on the object. These points are called reference
points and their motion is estimated from their neighbourhoods. For motion predic-
tors, it is not necessary to use all neighbourhood pixels, because sufficient precision
is achievable even with smaller number of pixels. Therefore only a selected subset
of pixels X = {x1 . . .xc}, called support set, is used. LLiP estimates motion of the
reference point from the intensities observed on the support set. These intensities are
stored in the observation vector denoted I(X).
We denote (t ◦ X) the support set warped by a motion with parameters t. For

example, if the considered motion is a 2D translation, then (t ◦ X) = (X + t) =
{(x1 + t), . . . , (xc + t)}. There is a mapping (rendering) from parameters t to obser-
vations I(t ◦X), which is usually not invertible. We therefore search for a mapping
approximating a the set of motions t which could have generated the observation
I(t ◦X). This mapping assigns a p-vector of motion parameters to a c-vector of the
observation.

Definition 11 Linear predictor (LLiP) is an ordered pair ϕ = (H, X), which assigns
p-vector of motion parameters t = HI(X) to c-vector of observations I(X), where
H ∈ Rp×c.

All predictors ϕ are characterized by the following parameters, see also Figure 6.1:

Definition 12 Complexity c(ϕ) = |X| of predictor ϕ is the cardinality of the predic-
tor’s support set X.
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Definition 13 Range R(ϕ) of the predictor ϕ is a set of motion parameters.

Definition 14 Error of predictor ϕ = (H, X) for range R(ϕ) is λ(ϕ) = E
(
‖t− HI(t ◦

X)‖22
)
, ∀t ∈ R(ϕ), where E(.) denotes the expectation value with respect to t uniformly

distributed on R(ϕ)1.

The predictor complexity approximately corresponds to the number of multipli-
cations and sums necessary for motion estimation. It is clear that there is no ideal
predictor which would simultaneously have a (very) low complexity, (very) large range
and (very) small error. It is easy to see that the higher the complexity, the better the
prediction. However, as the complexity increases towards the complete template, the
improvements become less and less significant. In general, for large ranges it is very
difficult to achieve a good prediction with any complexity. In order to overcome this
limitation, we developed a sequential predictor Φ = (ϕ1 . . . ϕm). Since the sequential
predictor is provably superior to a single monolithic predictor, it allows a lower com-
plexity for the higher precision. A vector of motion parameters t is predicted in m
steps as follows:

t1 = H1
(
I(X1)

)
, t2 = H2

(
I(t1 ◦X2)

)
,

t3 = H3
(
I(t2 ◦ t1 ◦X3)

)
, . . . , tm = Hm

(
I
(
(
m−1
©
i=1

ti) ◦Xm
))
, (6.1)

t =
m
©
i=1

ti,

The first vector of motion parameters t1 is directly predicted from intensities ob-
served at locations defined by the support set X1. The second predictor estimates
motion parameters t2 from intensities I(t1 ◦ X2) observed on the its support set
warped by t1, and so on. The advantage is that each predictor in a sequence is more
and more specific, using a smaller range which corresponds to the accuracy of the
preceding predictor.

Definition 15 Sequential predictor (SLLiP) is an m-tuple Φ = (ϕ1, . . . , ϕm) of pre-
dictors ϕi ∈ ω, i = 1 . . .m, where ω is a set of predictors.

The set of predictors ω can include all possible predictors, or its convenient subset.
Because of the computational complexity of the learning process, only the predictors
with H minimizing their prediction error for a given support set and training set, will
be considered further.

Definition 16 The optimal sequential predictor is a sequential predictor

Φ∗ = arg min
Φ∈ωm

{
m∑
i=1

c(ϕi) | λ(ϕm) ≤ λ∗
}
, (6.2)

where λ∗ is predefined prediction error, c is predictor complexity, ω is a set of predic-
tors and ωm = ω × ω · · · × ω is a set of sequential predictors of length m.

1In practice, the error is the mean value of square Euclidean error of all predictions from the range.
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6.3 Anytime learning of SLLiP
We define learning as a search for the optimal SLLiP subject to a predefined predic-
tion error (Definition 16). In general, the learning procedure consists of two steps:
support set selection and SLLiP optimization. The support set selection is a combi-
natorial problem, the solution of which might be time consuming [58,97]. Since we
are interested in applications where the learning time is an issue, a randomly selected
support set is used instead. The SLLiP optimization is also simplified by restricting ω
to be a class of LLiPs with the minimal prediction error (Definition 14). Neverthe-
less, the proposed learning algorithm can be used to find the globally optimal solution
with respect to arbitrary ω. For example, ω could be a set of LLiPs learned by the
minimax method, then the result of learning would be the same as of the algorithm
proposed in [101] (previous chapter).
Note that the globally optimal solution found with respect to the restricted ω is not

guaranteed to provide globally optimal solution with respect to the set of all possible
LLiPs. In Section 6.3.1, a training set construction from a single image is described.
Section 6.3.2 presents SLLiP learning.

6.3.1 Training set construction

Given a predefined range of motions, within which the tracker is assumed to oper-
ate, we perturb the support set by motion with parameters qi randomly (uniformly)
generated inside the range. Each motion qi warps the support set X to a set Xi,
where a vector of intensities Ii is observed, see Figure 6.2. Given the observed in-
tensities, we search for a mapping assigning motion ti = (qi)−1, which warps Xi as
close as possible to the original support set X. These examples are stored in matrices
I =

[
I1 . . . Id

]
and T =

[
t1 . . . td

]
. The ordered triple (I, T, X) of such matrices and

ordered d-tuple of support sets X =
{
X1 . . . Xd

}
composes a training set.

6.3.2 Learning algorithm

In this section, we describe the method searching for the optimal sequential predictor
given a training set (I, T,X ) generated on image I. Since we restricted the set of
considered LLiPs ω to the set of LLiPs minimizing prediction error λ, the LLiP
learned from the training set is ϕ = (H∗, X), where

H∗ = arg min
H∈Rp×c

‖HI− T‖2F = TI+ (6.3)

and X is the support set aligned with the object.
Ideally, the predictor learned according to Equation (6.3) would transform inten-

sities I to motions T. However, such predictor usually does not exist. Therefore the
observed intensities are transformed into motion parameters T(1) which are as close
as possible to the desired motions T. We warp each support set Xi ∈ X by motion
parameters Ti,(1) obtaining the new support set Xi,(1) = Ti,(1) ◦ Xi. Denoting Ii,(1)

the intensities observed on these newly obtained support sets Xi,(1), we form the new
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Figure 6.2: An image patch is perturbed by the motion parameters within a prede-
fined range in order to create a set of synthesized examples of observed
intensities Ii and motions ti.

training set (I1, T,X 1). We refer to it as to training set invoked by predictor ϕ1 and
denote it T (ϕ1, c), where c denotes the size of support set used in the training set.
Similarly, we define training set invoked by sequential predictor as T (Φ, c).
As already mentioned, the size of the support set influences the prediction error.

Removing some pixels from the support set necessarily results in error increase2.
Given a training set T (Φ, c1) we can simply generate a training set T (Φ, c2), c2 < c1
for the predictor with a lower complexity c2 by removing corresponding number of
pixels from X and corresponding number of rows from matrix I. We refer to this
process as training set restriction3.
In order to simplify the problem, we further work with a discretized set of com-

plexities C. The optimal sequence of predictors is found by searching through the
set of all SLLiPs, which involve

∑m
i=1 |C|i elements, where |C| denotes the size of C

and m is maximum length of SLLiP. In order to make the searching process efficient,
the branch and bound [52] searching approach is used. Sequential predictors are suc-
cessively constructed from the LLiPs of different complexities. In the first level, we
learn LLiPs for all complexities in C according to Equation (6.3). They correspond
to the SLLiPs of the length equal to one. One of these SLLiPs, Φ, is expanded in the
next iteration. The expansion means that Φ is successively extended by LLiPs with
different complexities learned on training set invoked by itself T i(Φ, c). This process
creates |C| new SLLiPs, which could be expanded in further iterations. Once a SLLiP
with a sufficiently small prediction error (feasible solution) is found, all other partially

2Proof of this claim is detailed in [101] (previous chapter).
3Since the support set is selected randomly, its restriction is random as well. If, for instance, the
greedy construction [58,97,101] had been used, then the order of the selection would have provided
the importance measure of the support pixels. The lastly selected pixels would have been removed
firstly in the restriction.
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constructed SLLiPs with a higher complexity are terminated, i.e., they will never be
expanded. The smallest complexity c∗ of the feasible solution is saved and once any
SLLiP reaches a higher complexity it is automatically terminated.

The learning process is summarized in Algorithm 1; see also Figure 6.3, which
demonstrates six iterations of the algorithm on a toy example with C = {20, 300},
range equal to 40% of the object size and the predefined error set to 10% of the
object size. In the first iteration, two LLiPs with complexities 20 and 300 are learned,
denoted ϕ1 and ϕ2. Obviously, the LLiP with the higher complexity achieves lower
prediction error λ(ϕ2) = 0.15. Since no solution has been found, ϕ2 is expanded in
the second iteration, i.e. we learn two further LLiPs, denoted ϕ21 and ϕ22, on the
training set invoked by ϕ2. Since both newly constructed SLLiPs Φ1 = (ϕ2, ϕ21) and
Φ2 = (ϕ2, ϕ22) achieve sufficiently low prediction error, i.e. smaller than λ∗ = 0.1,
the one with the lower complexity, i.e., c(Φ1) = 300 + 20 = 320, is selected and
the other one, Φ2, is terminated. Φ1 could be immediately used for tracking, while
the learning can continue: in the third iteration, ϕ1 is expanded. Since c(ϕ1ϕ12) =
300+300 = 600 > c(Φ2) = 320, this SLLiP is terminated. In the remaining iterations
the not terminated SLLiP is further expanded till the solution, SLLiP Φ3 consisting
of 5 LLiPs, is reached. Since the complexity c(Φ3) = 5 × 20 = 100 is smaller than
c(Φ1) = 320, Φ1 is replaced by Φ3. And since there are no more SLLiPs to expand,
Φ3 is accepted as the final solution.

Of course, it is likely that better solution exist, consisting from the LLiPs with
complexities not constrained to C = {20, 300}, but this is just a toy example demon-
strating the learning process. In practice we work with |C| ∈ {10 . . . 15}.

Note that the selection strategy S which selects a SLLiP from Ω (step 4), may
influence the learning behavior. However, if Algorithm 1 satisfies condition Ω = ∅ in
step 6, Φ∗ is an optimal SLLiP with respect to the set of considered LLiPs ω. In our
implementation, we first use the strategy which expands the SLLiP with the highest
complexity. This strategy usually finds a solution Φ∗ in a few iterations. This solution
is of a high complexity, but the prediction error is guaranteed and the tracking can
start. Then the strategy is switched and the SLLiPs with the average complexity
are preferably expanded. Once a solution is reached, it can be immediately used for
tracking with a lower performance. If the learning continues, the SLLiP can be in
future replaced by better solutions.

The stopping condition (step 6) could be also optionally replaced for example by
a maximum number of iterations, maximum running time, maximum depth of the
constructed graph or an arbitrary intersection of these conditions. However, such
replacement might influence the optimality of the found Φ∗.
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Input:
• Range R within which SLLiP is expected to operate.
• Set of considered complexities C.
• Predefined accuracy λ∗.
• Training image I.
• Support set X.

1. Set:
c∗ =∞ (complexity of the simplest admissible SLLiP found) and
i = 0 (number of current iteration).

2. Generate training sets T 0(c), ∀c ∈ C on the predefined range Ra.

3. Initialize set Ω of learned active SLLiPs as a set of LLiPs learned on
T 0(c), ∀c ∈ C according Equation (6.3).

4. Φ = S(Ω), Ω = Ω \ Φ (Select and remove Φ according to a strategy S.)

5. For each c ∈ C: (expand Φ)
a) Generate training set T i(Φ, c) invoked by Φ.
b) Learn LLiP ϕ for T i(Φ, c) according to Equation (6.3).
c) Φ′ = (Φ, ϕ), Ω = Ω ∪ Φ′ (add the new SLLiP to Ω)
d) If c(Φ′) < c∗ then Φ∗ = Φ′ and c∗ = c(Φ′) (replace solution)
e) For ∀Φ′′ ∈ Ω with c(Φ′′) > c∗, do Ω = Ω \Φ′′ (terminate the SLLiPs with

higher complexity)

end

6. If Ω = ∅ stop otherwise i = i+ 1 and goto 4.

Output:
• Optimal SLLiP Φ∗

aWe generate only T 0(cmax) where cmax = maxC is maximum complexity of C, the other training
sets with the lower complexity are constructed by its restriction.

Algorithm 1 - anytime learning of SLLiP.

6.4 Experiments

The proposed method is verified on real sequences with planar objects. The object
is represented as a Number of SLLiPs (NoSLLiP), which estimates local translations
at a few points on the object. Object motion, i.e. a homography, is determined from
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object SLLiP learning∗ processing loss-of-locks mean-error
learning time [sec] [fps] [%]

mp LS 11 27.6 17/6935 [1.4, 1.3, 1.1, 1.1]
mp MM [101] 310 18.9 13/6935 [1.3, 1.8, 1.5, 1.6]
towel LS 16 33.3 2/3229 [1.6, 1.8, 1.1, 1.5]
towel MM [101] 310 21.8 5/3229 [3.0, 2.2, 1.4, 1.9]
phone LS 21 25.6 55/1799 [7.3, 7.1, 10.6, 6.5]
phone MM [101] 310 16.8 20/1799 [1.2, 1.8, 2.6, 1.9]

Table 6.1: Comparison of robustness and accuracy of NoSLLiP learned by anytime
algorithm (LS) and minimax algorithm (MM) proposed in [101].
∗Learning time is an average time required per one SLLiP.

these local translations by the Ransac. Note that although we work with planar
objects in order to avoid problems of 3D reconstruction, the proposed trackers could
be attached to a 3D model with a reasonable texture, as was shown in [101].
The quantitative evaluation of the robustness and accuracy of SLLiPs is conducted

on sequences with 3 different objects (mousepad-mp, towel and phone), where
ground truth positions of the object corners in total number 11963 frames were man-
ually labeled4. Accuracy is measured in each corner as a percentage; the displacement
error is related to the current size of the object upper edge. Robustness is measured
by the number of loss-of-locks, defined as the cases where the accuracy was worse than
25%. In loss-of-lock frames, the tracker was reinitialized from the ground truth and
the accuracy did not contribute to the total accuracy statistic. Some of the success-
fully tracked frames, which include oblique views, motion blur and significant scale
changes, are presented in Figure 6.4. The results are summarized in Table 6.1.
In the first row, results of NoSLLiP tracker with SLLiPs learned by Algorithm 1

with no time constraint (method LS) are presented. Second row contains results for
SLLiPs learned by minimax [101] (method MM). The minimax learning minimize the
size of a compact region within which all predictions lie (uncertainty region) instead of
the square of Euclidean error, therefore higher robustness is achieved, but the learning
is 10-20 times longer. Tracking accuracy of MM and LS methods varies with data; the
accuracy is similar for mp and towel sequences, but phone object contains similar
repetitive structure (buttons) which make the LS accuracy significantly worse.
Robustness of the predictor is given by the shape of the error distribution, because

the higher the probability of large errors the higher the probability of the predictor
failure in the next frame due to its initialization out of its range. Shape of MM SLLiP
distribution (blue solid line) and LS SLLiP distribution (red solid line) are shown
in Figure 6.5. We observe that LS SLLiPs are more likely to have higher errors in
difficult cases however, the accuracy in easier cases is higher. In addition to this we can
also compare predefined uncertainty region λ0 of MM SLLiP, predefined prediction

4These sequences in conjunction with the ground truth are available at ftp://cmp.felk.cvut.cz/
pub/cmp/data/lintrack/index.html
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method processing loss-of-locks mean-error
[fps] [%]

SLLiP LS 27.6 17/6935 [1.4, 1.3, 1.1, 1.1]
SLLiP MM [101] 18.9 13/6935 [1.3, 1.8, 1.5, 1.6]
SIFT [55] 0.5 281/6935 [1.6, 1.2, 1.5, 1.4]
LK tracker [56] 2.6 398/6935 [2.3, 2.2, 2.5, 2.5]
LLiP LS [48] 24.4 1083/6935 [5.9, 6.0, 6.7, 6.7]
LLiP LS [48] half-range 24.2 93/6935 [3.1, 2.3, 2.7, 4.0]

Table 6.2: Comparison of robustness and accuracy of SLLiP, LK, SIFT and LLiP
tracker on mp sequence.

error ε0 of LS SLLiP and true error distribution on ground truthed data (mousepad
sequence). In this experiment we learned 35 SLLiPs with different ranges covering
the mousepad. MM SLLiPs are learned to achieve uncertainty region λ0 = 5% (blue
dot-dashed line), LS SLLiPs are learned for prediction error ε0 = 3% (red dot-dashed
line). Both the uncertainty region and the prediction error are relative to SLLiPs
range. λ0, ε0 were chosen experimentally in order achieve the best performance of
SLLiPs. Lower values result in a higher complexity and a consequent over-fitting.
The error is evaluated on those frames, in which the inter-frame motion is smaller
than the learning range of SLLiPs.
Table 6.2 compares the NoSLLiP tracker to the state-of-the-art Lowe’s SIFT de-

tector [55] (method: SIFT)5, Lucas-Kanade tracker [56] (method: LK tracker) and
Jurie’s LS LLiP tracker [48] (method: LLiP LS). All these local motion estimators
were combined with the Ransac, to keep test conditions as similar as possible. SIFT
tracking mainly fails in frames with strong motion blur or in frames where the object
was very far from the camera. LK tracker, which estimates the local motion at Harris
corners, provided quite good results on the frames where the object was far from the
camera, but its basin of attraction was in many frames insufficient for correct motion
estimation, failing for fast motions.
Since we work with a non-optimized implementation of the LK tracker, the pre-

sented frame-rate in this experiment could not serve for a speed comparison. Nonethe-
less the SLLiP computational complexity is clearly smaller than the complexity of the
LK tracker. Jurie’s tracker is a LLiP tracker with the support set equal to the whole
template learned by LS method for the same reference points and ranges as optimal
SLLiPs. Since a single LLiP tracker does not allow sufficient accuracy on the same
range, very high loss-of-lock ratio and low accuracy are reported. If the half-range is
used, the higher accuracy is achieved, but the number of loss-of-locks is still signifi-
cantly higher than with NoSLLiP tracker, mainly due to long inter-frame motions.
The learning procedure proposed in Algorithm 1 might be time consuming if the set

of considered LLiPs is too large. Since a long learning time might not be acceptable for

5We use implementation of the SIFT detector downloaded from http://www.cs.ubc.ca/~lowe/
keypoints/
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some types of applications, either the set of considered LLiPs or the maximum number
of iterations have to be restricted. However, the constraint on maximum number of
iterations affects the optimality of the found SLLiP, and therefore we show average
complexity of the best found solution as a function of iterations in Algorithm 1.
Figure 6.6 presents this function for different sets of considered LLiPs. One can see
that the learning time could be decreased 2-3 times without a significant increase of
the solution complexity.
Note that there is also another option besides premature interruption of the learning

procedure. The anytime learning algorithm, after a short initialization procedure,
provides a solution - SLLiP with higher complexity but predefined precision. Having
this SLLiP the tracking can immediately start. Since the tracking requires only a
fraction of the processing power of an ordinary PC, the learning need not to be
necessarily terminated and it might be allowed to run in a parallel background thread
continuously providing better and better SLLiPs. This principle theoretically allows
to start the tracking procedure immediately without any learning using for example
Lucas-Kanade tracker and collect training examples automatically. Once a training
set is constructed, the learning procedure can run in a parallel thread providing the
SLLiPs which continuously replace worse LK trackers. Similar idea based in simple
LLiPs was demonstrated in [26].

6.5 Conclusions
We proposed a fast learning algorithm for the SLLiP learnable tracker. Unlike the
minimax learning procedure, the new algorithm has the anytime property and out-
puts progressively faster SLLiPs satisfying a user defined accuracy and range. The
learning process very quickly returns a SLLiP which is slow, but satisfies the user-
defined conditions on accuracy and range. During tracking, the learning is run in a
background thread and gradually improves the SLLiP tracker.
The method was quantitatively evaluated on approximately 12 thousands labeled

frames with three different planar objects. The performance and robustness superi-
ority of the SLLiP tracker in comparison with Lucas-Kanade tracker [56], SIFT de-
tector [55] and Jurie’s LLiP tracker [48] was demonstrated. We encourage the reader
to download sequences, ground-truth data and a Matlab implementation which is
available at http://cmp.felk.cvut.cz/demos/Tracking/linTrack.
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Figure 6.3: Demonstration of progress of Algorithm 1 for a toy example with C =
{20, 300}, |C| = 2, R = 0.4 and λ∗ = 0.1. Blue denotes a set of current
SLLiPs Ω, black denotes terminated SLLiPs and red delineates solution
Φ∗ with the lowest complexity so far.
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Figure 6.4: The left column shows images used for training. The middle and right
columns demonstrate some successfully tracked frames with a strong mo-
tion blur from the testing sequences. The blue rectangle delineates the
object. Percentage values in corners are current corner speeds related to
the current size of the object upper edge.
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Figure 6.6: Average SLLiP complexity as a function of iterations of Algorithm 1. (a)
and (b) differ by the size of the set of considered complexities |C|. The
higher the value of |C|, the larger the space of considered LLiPs.

— 92 —



7 Simultaneous learning of motion and appearance

This part corresponds to [106] and describes an attempt to accommodate
varying appearance of an object.

A new learning method for motion estimation of objects with a significantly vary-
ing appearance is proposed. The varying object appearance is represented by a low
dimensional space of appearance parameters. The appearance mapping and motion
estimation method are optimized simultaneously. Appearance parameters are esti-
mated by unsupervised learning. The method is experimentally verified by a tracking
application on sequences which exhibit a strong varying illumination, non-rigid defor-
mations and self-occlusions.

7.1 Introduction

Visual tracking is often formulated as iterative motion estimation with possible up-
dates of the object appearance. The optional online appearance update may allow for
longer tracks but also makes the procedure prone to failure. We propose an algorithm
that learns both motion prediction and appearance changes from training data.
The most natural approach to tracking is alignment of a template image J with

image data I by an online optimization of a criterion function like the sum of square
errors [56] ‖I − J‖2 or mutual information [23], see Figure 7.1a. Since the tracker
has usually no prior information about the possible changes of the object appearance,
the template is either not updated at all or updated from the last known position in
terms of a partial or a whole template replacement by the aligned image [23,26,59].
However, such hard appearance update often results in drifting and consequently to
the loss-of-lock.
If the changes of the object appearance could be explained by a reasonably small

number of parameters θ, e.g. affine transformation [80], than the template is updated
by another online optimization, which searches for the best template warp, see for
example Figure 7.1b. If such appearance parametrization describes well all possible
appearance variations and the motions are slow enough to initialize the optimization
within the basin of attraction, the system works usually well. However, the appearance
changes are often caused by a non-rigid deformation or non-trivial illumination change,
which do not allow a simple parametrization.
Facing these problems, many authors [7,11,14,38,48] propose a learning stage, where

the motions and/or possible object appearances are learned. Jurie and Dhome [48]
suggest to learn a linear mapping between observed image intensities and correspond-
ing motion t. During the learning stage, a training image is perturbed by random mo-
tion parameters and the least square method estimates coefficients H of the searched
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a) [56,23]

argmint‖I(t)− J‖2argmint‖I(t)− J‖2image I alignment t

J← I(t)

optional template update
Lucas–Kanade

b) [80]

argmint‖I(t)− J(θ)‖2argmint‖I(t)− J(θ)‖2

argminθ‖J− J(θ)‖2argminθ‖J− J(θ)‖2

image I alignment t

J← I(t)
θ affine warp

Shi–Tomasi

c) [48]

H(I− J)H(I− J)
image I alignment t

J← I(t)

optional template updateJurie–Dhome

d) [14]

H(I− J(θ))H(I− J(θ)) PCAtPCAtH(I− J(θ))H(I− J(θ)) PCAtPCAt

PCAJPCAJ

t

linear mapping

image I θ pars

J(θ) PCA reconstr. image

Cootes–Edwards

e)

ϕ(I;θ)ϕ(I;θ)

γ(I(t))γ(I(t))

image I alignment t

I(t) image
θ appearance parameters

Our algorithm

Figure 7.1: State-of-the-art summary and the proposed approach.

linear mapping. During the tracking stage, the motion is estimated as the linear
function of the difference image (I − J) between the image data and template, see
Figure 7.1c. Jurie’s approach avoids the problems of the basin of attraction, but it
allows only the hard template update.
Cootes et al. [14] realized that once a training set is available, it is reasonable to use

it also for the learning of the appearance. They proposed a paradigm where both the
motion and appearance are projected by the PCA [32] to the lower dimensional space
of some parameters. Given an image the learned linear mapping with coefficients H
estimates the parameters which are used for both the template update and motion
estimation by PCA back-projection, see Figure 7.1d.
Observing that

• the mapping between the input image I and the output motion parameters t is
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linear, see dashed line in Figure 7.1d denoting the direct route, and

• the mapping between input image I and appearance parameters θ is also linear,

we generalized the tracking approach to Figure 7.1e. While the tracker ϕ aligns the
model with the current image, the appearance encoder γ encodes a current appear-
ance into parameters θ, which adjust the tracker for the current object appearance.
Since the learning process estimates both mappings simultaneously, the learned ap-
pearance encoder γ projects, in contrast to the PCA, the current object appearance
to a manifold, the coordinates of which are the most convenient for the tracker adjust-
ment. In the rest we describe tracking and learning of the tracking system depicted
in Figure 7.1e.
Section 7.2 describes acquisition of a training set, i.e., the set of the examples

consisting of the intensities incoming into the tracker, the motion parameters to be
estimated by the tracker and the intensities incoming into the appearance encoder.
In Section 7.3, we define the criterion function to be minimized as the squared Eu-
clidean distance (i.e. L2-norm). In Section 7.4 the learning of ϕ and γ minimizing
the criterion is described. Roughly speaking, the learning is the least squares bilinear
function fitting problem, the minimum of which is searched by an exact line-search
algorithm [34]. Section 7.5 presents experiments demonstrating an improvement to
the state-of-the-art. The conclusions are in Section 7.6.

7.2 Training set construction
Let the object position be represented by a reference point (e.g., center of gravity of
object pixels). Let us suppose that we are given a ground truthed sequence of images,
in which the position of the object reference point is denoted. Given a predefined
range of motions R within which the tracker is assumed to operate (e.g., radius of the
desired basin of attraction), the training set consists of:

• tracker input images Ii, randomly (uniformly) generated within R,

• corresponding tracker output motion parameters ti (e.g., translations),

• and appearance encoder input images Ji, i.e., the images aligned by the tracker
with a limited accuracy.

We perturb neighborhood of reference point in each particular frame of the sequence
by motion parameters ti randomly generated inside the range, creating the set of
synthesized examples of intensities Ii, see Figure 7.2. These examples are column-
wise stored in matrices I =

[
I1 . . . Id

]
and T =

[
t1 . . . td

]
.

The alignment estimated by the tracker is never perfect. Let us assume for a
moment that the accuracy of the alignment provided by the tracker is known in
advance1. We perturb neighborhood of reference points within the range determined

1In practice, the accuracy has to be estimated by iterating the learning process. However, for the
sake of simplicity, it is assumed to be known.
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ϕ( ;θ1)= (0, 0)> ϕ( ;θ2)= (0, 0)>

ϕ( ;θ1)= (15,−25)> ϕ( ;θ2)= (15,−25)>

ϕ( ;θ1)= (−25, 10)> ϕ( ;θ2)= (−25, 10)>

ϕ( ;θ1)= (0, 25)> ϕ( ;θ2)= (0, 25)>

Figure 7.2: Image is perturbed by the motion parameters within a predefined range in
order to create a set of synthesized examples of observed intensities Ii and
motions ti. Red dashed square denotes image data observed at translation
t = (0, 0)>, blue square denotes image data observed at translation t =
(15,−25)>. Reference point is the tip of the nose. Different appearances
are encoded by different appearance parameters θ1,θ2.

by the tracker accuracy creating the set of images J =
[
J1 . . .Jd

]
entering to the

appearance encoder. Ordered triple (I, J, T) of such matrices is called a training set.

7.3 Optimization problem definition
In this section the following notation is used:
Given a matrix H:

- h>j is row vector corresponding to j-th row,

- hi is column vector denoting its i-th column,

- hij = [H]i,j denotes element at coordinates [i, j],

- Hk is the approximation of H in k-th iteration,

- ‖H‖2F =
∑
i,j |hij |2 is the squared Frobenius norm of H,

- 1m = [1 . . . 1]> is m× 1 unit vector,

- ⊗ is Kronecker product,
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- • is entry-wise product, sometimes called Hadamard product.

Because of simplicity, we restrict ϕ and γ to be from a class of linear mappings.
Note that data lifting makes the same method work for any mapping formed as the
linear combination of arbitrary intensity functions. For example, arbitrary polynomial
mapping is equivalent to the linear mapping on the embedded space of monomials.
It means, that we just transform the training set to the space of monomials and the
rest of the learning process is the same.

Definition 17 Learned Linear Predictor (LLiP) is ordered pair (H, X) which com-
putes motion parameters t from the vector of image intensities observed on the set of
pixels X as follows:

t = HI(X).

We further refer to the set of pixels as to the support set and the linear mapping is
called regressor.

Note that the support set selection problem is beyond the scope of this text and we
select it randomly.
We extend the LLiP to the form allowing parametrization by the appearance pa-

rameters, therefore Parameter Sensitive LLiP (PLLiP) is defined as follows:

Definition 18 Parameter sensitive Learned Linear Predictor (PLLiP) is LLiP with
the regressor H = (H0, . . . , Hm), which computes motion parameters t from the observed
image I given current appearance parameters θ = (θ1 . . . θm)> as follows

t = (H0 + θ1H1 + · · ·+ θmHm) I, (7.1)

Referring to Figure 7.1e, we define appearance encoder to be the LLiP with regressor

θ = γ(J) = GJ, (7.2)

which encodes current object appearance from previously aligned image J into pa-
rameters θ.
Tracker is PLLiP with the regressor

t = ϕ(I;θ) = (H0 + θ1H1 + · · ·+ θmHm)I

parametrized by the appearance parameters θ.

Definition 19 Tracking system is the ordered pair (H, G) corresponding to tracker
(PLLiP) and appearance encoder (LLiP) connected according to Figure 7.1e.

Definition 20 Prediction error e(H, G) of the tracking system (H, G) on the training
set (I, J, T) is

e(H, G) =
d∑
i=1

∥∥∥(H0 + (g>1 Ji)︸ ︷︷ ︸
θ1

H1 + · · ·+ (g>mJi)︸ ︷︷ ︸
θm

Hm
)
I− ti

∥∥∥2

2
. (7.3)
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Definition 21 The optimal tracking system with respect to training set (I, J, T) is
the tracking system

(H∗, G∗) = argmin
H,G

e(H, G). (7.4)

The matrices H, G, I, J, T have dimensions (p(m+1)×n), (m×n), (n×d), (n×d), (n×
p), respectively, where

- p is the number of tracked motion parameters (e.g., 2D-translation ⇒ p = 2),

- n is the number of used pixels,

- m is the number of appearance parameters,

- d is number of training examples.

Computational complexity of the tracking procedure corresponds to the number
of all elements in the matrices (H, G) since the motion in particular frame requires
approximately such number of multiplications and additions.

Definition 22 Complexity C(H, G) ∈ R of the tracking system (H, G) is

C(H, G) = p(m+ 1)n+mn. (7.5)

7.4 Learning the tracking system

In this section, we propose an iterative algorithm, which seeks the optimal tracking
system with respect to a training set, i.e., it solves problem (7.4). This is an un-
constrained optimization problem, where the bilinear function is fitted into a high
dimensional data in the least squares sense. We show later that problem (7.4) has
a closed-form solution in H (respectively G) if G (respectively H) is fixed. Therefore
the solution is sought by an exact line-search method2, which successively minimizes
criterion (7.4) along the direction H and G.
In the very beginning of the learning process, the appearance encoder G is randomly

initialized. Naturally, it does not provide any reasonable appearance parameters and
its influence is negligible. Given a random matrix G0, the minimum of the criterion
function (7.3) over H has a closed-form solution H0. Given H0, the minimum over G
has also a closed-form solution G1. The error is iteratively minimized in that manner,
until a stopping condition is satisfied. The learning stops in our implementation if a
relative error difference is smaller than some threshold ε. The number of appearance
parameters m, the desired complexity C (or equivalently number of pixels n), the
learning threshold ε and the training set (I, J, T) (the range of the tracker, optionally)
are the only inputs to the learning procedure, which is summarized in Algorithm 7.4.

2An exact line-search method finds the length of step which minimizes a criterion in a descent
direction, see [34] for details.
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Exact line-search algorithm for problem (7.4)

1. Randomly initialize matrix G0 and set the number of current iteration k = 1.

2. Find Hk = argminH e(H, Gk−1).

3. Find Gk = argminG e(Hk, G).

4. Recompute error ek = e(Hk, Gk).

5. If ek−ek−1

ek
< ε stop, otherwise k = k + 1 and goto step 2.

In order to derive the closed-form solution of step 2 (Algorithm 7.4), we rewrite
criterion function (7.3) as follows:

e(H, G) =
∥∥∥H0I + [H1 . . . Hm]

(
(1m ⊗ I) • (GJ⊗ 1n)

)
− T
∥∥∥2

F

=
∥∥∥H
[
(1m+1 ⊗ I) •

([
1>d
GJ

]
⊗ 1n

)]
− T
∥∥∥2

F
=
∥∥∥HA− T

∥∥∥2

F
, (7.6)

where

A = (1m+1 ⊗ I) •
([

1>d
GJ

]
⊗ 1n

)
(7.7)

is (m+ 1)n× d matrix. If the training set has

d ≥ (m+ 1)n (7.8)

independent samples. The closed-form solution of step 2 (Algorithm 7.4) is

Hk = TA+, (7.9)

where A+ denotes the pseudo-inverse of A. Note, that condition (7.8) may not assure
a reasonable behavior on testing data. It sets the lower bound. However, we usually
generate five or ten times more training examples to make the tracker robust.
In order to derive the closed-form solution of the step 3 (Algorithm 7.4), we rewrite

the criterion function (7.3) as follows:

e(H, G) =
∥∥∥g>B− C

∥∥∥2

F
, (7.10)

where

g> = [g>1 . . .g>m],

B =


I • h>11J⊗ 1n . . . I • h>1pJ⊗ 1n

... . . . ...
I • h>m1J⊗ 1n . . . I • h>mpJ⊗ 1n

 ,
C =

[
t>1 − h>01J . . . t>p − h>0pJ

]
,
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where h>mp denotes a p-th row of Hm. The closed-form solution of step 3 (Algorithm ??)
is

g> = CB+ reshaped to Gk. (7.11)

Since the matrix B has the dimension mn× dp, its pseudo-inverse requires

dp ≥ mn (7.12)

Notice, that this condition is clearly weaker than the condition (7.8) for every p ≥ 1.
Thus it need not be considered any further.
We observed, that the proposed algorithm converges to the solutions, which has the

same criterion value. If the criterion (7.4) was a convex or quasi-convex function it
would be simple to prove that Algorithm 7.4 converges to a global minimum. However,
the criterion is neither convex nor quasi-convex. We propose a conjecture that every
local minimum of the criterion is simultaneously global. Using Maple, we analytically
proved that the conjecture is true, but we were not able to generalize it for arbitrary
number of variables. In this proof, we equaled the criterion gradient to zero and
symbolically solved the algebraic system. The solution consists of a few manifolds
but only one of them has a semidefinite Hessian, i.e., it creates local minima. This
solution is substituted to the criterion showing that the criterion is constant along it.
In Section 7.5.3 the convergence is verified experimentally. It is shown that every

local minima of criterion (7.4) within which the algorithm converges is the global one,
i.e., the same criterion value is achieved every time and the solution is independent
of the algorithm initialization.

7.5 Experiments
Three experiments are presented in this section. The first experiment (Section 7.5.1)
compares the simple tracking system, which consists only from a single LLiP and the
proposed parameter sensitive tracking system. It shows that the parameter sensitive
system achieves a significantly smaller prediction error if the nature of the appear-
ance changes allows some reasonable parametrization. The second experiment (Sec-
tion 7.5.2) demonstrates some interesting properties of the appearance encoder. The
third experiment (Section 7.5.3) shows the convergence properties of Algorithm 7.4.

7.5.1 Results on real sequences
In this experiment, we compare the prediction error of the simple tracking system
and the parameter sensitive tracking system of the same complexity. Note, that the
simple tracking system is the special case of the parameter sensitive tracking system.
We state that the simple tracking system estimates the motion parameters by LLiP
with regressor Hs. It is learned given a training set (Is, Ts) as follows:

Hs = TsI+
s (7.13)

and its complexity
Cs = psns (7.14)
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Figure 7.3: Objects with variable appearance caused by the illumination, non-
rigid deformations and self-occlusions. Medical data presented in the last
row are provided by Dr. Utz Kappert, Department of Cardiac Surgery,
Heart Center Dresden University Hospital at the University of Technology
Dresden.

— 101 —



Chapter 7: Simultaneous learning of motion and appearance

is the number of elements of Hs.
Training/testing errors and complexities for different objects are presented in Ta-

ble 7.1. The first three objects cup, basil and sibil are taken from a British sitcom
Fawlty Towers, see the first three rows in Figure 7.3. The other three object demon-
strate variability of the appearance changes which can be coped by the tracker. In
particular, the fourth object head 1 is a human head, where different expressions and
illuminations influence its appearance, see fourth and fifth row in Figure 7.3. The fifth
object head 2 is a human head, the appearance of which changes due to out-of-plane
rotations, see third row of Figure 7.4. The object flower is a flower with the appear-
ance strongly affected by non-trivial variable illumination and non-rigid deformations,
see sixth row in Figure 7.3.
Notice that the prediction error of PLLiP was in all cases significantly smaller than

the error LLiP despite of its lower complexity. Loss-of-lock events are denoted by "X".
We used 5000-20000 training examples generated from 5-50 training images. Testing
was performed on the sequences with 100-400 frames. The tracker estimated only
the translation (p = 2) in the range within the radius of 20 pixels, other degrees of
freedom were represented by 1-5 appearance parameters. The non-optimized Matlab
implementation of the learning procedure performing 10-40 iterations required about
20-300 seconds on an average machine (1xK8 3200+ MHz). Note, that the learning
time depends mainly on the number of training examples and on the number of
appearance parameters. The motion estimation time in the tracking procedure is
negligible (say smaller than 1ms) in contrast to the time required for the image
capturing and its visualization.
We first discuss results from the Fawlty Towers sequences, where only one appear-

ance parameter is used and the complexity of the parameter sensitive tracking system
is two times smaller than the complexity of the simple tracking system. Despite the
lower complexity, the error is smaller approximately about 30%. In the cup experi-
ment (first row in Table 7.1), the simple tracker lost the target during the fast motion
(see the blurred image in Figure 7.3 1st row, 3rd column). In the basil experiment
(second row in Table 7.1 and in Figure 7.3), both trackers succeeded in tracking.
However, the parameter sensitive tracker was more accurate. In the third experiment
(third row in Table 7.1 and in Figure 7.3), the trackers learned on basil were used
for tracking of sibil. While the simple tracker lost basil in the very beginning of the
testing sequence, the parameter sensitive tracker succeeded in tracking. Of course,
the achieved error was higher.
The other three experiments demonstrated the appearance changes which can be

efficiently compensated by the appearance encoder. While in the head 1 experiment
(fourth row in Table 7.1), the error achieved by the proposed tracker is more than
two times smaller, in the remaining experiments the improvement is not as signifi-
cant. In the head 2 experiment (fifth and sixth row in Table 7.1), small out-of-plane
rotations are presumably interchangeable with translations, which consequently do
not allow a unique interpretation of the observed image data. The rotation may be
misinterpreted as a translation, and the image entering to the appearance encoder
is not correctly aligned. Incorrect alignment yields incorrect appearance parameters
and the error increases. Still, even in the worst case, the adaptive tracker did not
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Object Parameter sensitive Simple
Errortrain Errortest C m Errortrain Errortest Cs

cup 5.1 5.3 605 1 7.2 X 1352
basil 4.9 5.0 605 1 7.0 7.8 1352
sibil 4.9 7.4 605 1 7.0 X 1352

head 1 2.7 3.4 1859 2 6.4 8.0 1922
head 2 5.0 5.5 1248 2 7.5 8.5 1300
head 2 4.3 4.5 1716 3 7.3 8.2 1860
flower 3.3 3.6 2873 5 4.0 4.3 3362

Table 7.1: Comparison of PLLiPs and LLiPs: The prediction error is presented
in pixels and the complexity follows definitions (7.5) and (7.14).

produce worse results than the static one. In the flower experiment (seventh row
in Table 7.1), the difference between the parameter sensitive and static tracker is
the smallest (about 20%) because the appearance changes are chaotic. Many mutual
self-occlusions and shadows are casted by waving leaves, which does not allow for a
reasonable parametrization.

7.5.2 Properties of the appearance encoder

This experiment demonstrates relationship between the current object appearance
and appearance parameters estimated by the learned appearance encoder. First and
second rows of Figure 7.4 show four frames from the basil sequence and the corre-
sponding values of the one-dimensional appearance parameter. The lowest values are
associated with the head profile, middle values correspond to the front view and the
highest values correspond to the partial head occlusion by the white cup. Third row
of Figure 7.4 shows a sequence, in which the human head turns around. Appear-
ance parameters obtained by the parameter encoder are depicted in the second row
of Figure 7.4. Notice, that these parameters correspond naturally to the out-of-plane
rotation almost exactly, without any explicit knowledge about that evidence.

7.5.3 Convergence of Algorithm 7.4

We study the convergence of Algorithm 7.4 in this section. In order to demonstrate the
convergence, we experimentally show that every local minima of criterion (7.4) within
which the algorithm is stopped is global, i.e., the same criterion value is achieved every
time.
In the experiment, Algorithm 7.4 was one thousand times randomly initialized from

the uniform distribution and 150 iterations on 5000 training examples generated from
sequence Head 1 were computed. The covariance of achieved values of the criterion
function (7.3), i.e., Mean Square prediction Errors (MSE) is 3.4×10−3. See Figure 7.5
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Figure 7.4: Values of appearance parameters: Pose parameters are only transla-
tions, the other degrees of freedom are modeled as appearance changes.
Selected frames from sequences (first row) and the corresponding output
of one-dimensional (second row) appearance encoder. The blue line shows
the course of the value, the red dot denotes the current value correspond-
ing to the image (tracking state) above.
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Figure 7.5: Convergence analysis of the learning procedure: Twenty conver-
gence examples of randomly initialized algorithm.

for twenty convergence examples. From the detail depicted in Figure 7.5b, we conclude
that 20 iterations are for most of the initializations sufficient.

7.6 Conclusions
We proposed a learnable tracking procedure suitable for objects with a significantly
varying appearance. The method was experimentally verified on the challenging se-
quences, which exhibit strong variable illumination, non-rigid deformations and self-
occlusions. The results were compared to the parameter insensitive tracking system,
which was shown to be a special case of our approach. We demonstrated that on the
same or lower complexity a smaller prediction error is achieved.
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8 Incremental learning

This part mainly corresponds to [43] but some ideas appeared already
in [106]. It advances the sequential linear predictors proposed in the pre-
vious part II in several ways. It introduces a more complex motion model,
proposes a validation procedure and applies the on-line incremental learn-
ing in order to accommodate drifting appearance. It also discusses a pos-
sible method for the automatic selection of suitable training examples for
the incremental learning by introducing a stability measure. The advanced
predictor is combined with an object detector and it is applied in fast object-
driven videobrowsing.

8.1 Introduction

Learnable visual trackers have recently proved their wide applicability in object track-
ing in video. The tracking poses essentially two main challenges: i) adapting to
changing appearance, ii) detecting the tracker failure – the loss of track. This chapter
addresses both issues but contributes mainly to the adaptation problem. We propose
to solve the adaptation problem by the incremental learning, which accommodates a
changing appearance while tracking. We also suggest a fast method for tracking val-
idation (i.e., loss-of-track detection), which uses the same model as for tracking and
does not need any additional object model. The predictor needs only a very short
(seconds) off-line learning stage before the tracking starts. The tracking itself is then
tremendously efficient, much faster than real-time.
Tracker adaptation and loss-of-track detection have been active research topics for

many years. Jepson et al. [46] proposed WSL tracker (3 components - Wandering,
Stable and Lost) - an adaptive appearance model which deals with partial occlu-
sion and change in object appearance. It is a wavelet-based model, which allows to
maintain a natural measure of the stability of the observed image structure during
tracking. This approach is robust and works well with slowly changing object ap-
pearance. However, a high computational overhead precludes real-time applications.
Ross et al. [74] propose an algorithm for incremental learning and adaptation of low
dimensional eigenspace object representation with update of the sample mean and
eigenbasis. Their approach appears to be robust to sudden illumination changes and
does not need off-line learning phase before tracking however. The algorithm speed
is lower than our needs.
For template-based trackers the, adaptation means continuous update of the tracked

template. Tracking systems with naive updates modify the template after every track-
ing step [80]. Sub-pixel errors inherent to each match are stored in each update. These
errors gradually accumulate resulting in the template drifting off the feature. Despite
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Figure 8.1: Video browsing procedure.

this drawback, the naive update is usually a better choice than no update at all.
Matthews et al. in [3] propose a strategic update approach, which trades off mismatch
error and drift. It is a simple but effective extension of the naive update. There are
two template models kept during the tracking. The updating template is used for an
initial alignment and the template from the first frame is then used in the error cor-
rection phase after the alignment. If the size of correction is too large, the algorithm
acts conservatively by preventing the template to be updated from the current frame.

Recently, some authors wanted to bypass the exhaustive off-line learning stage. A
purely on-line learning has been proposed by Ellis et al. in [25], where a bank of
local linear predictors (LLiPs), spatially disposed over the object, are on-line learned.
The appearance model of the object is learnt on-the-fly by clustering the sub-sampled
image templates. The templates are clustered using the medoidshift algorithm. The
clusters of appearance templates allow to identify different views or aspects of the
target and also allow to choose the bank of LLiPs most suitable for current appear-
ance. The algorithm also evaluates the performance of particular LLiPs. When the
performance of some predictor is too low, it is discarded and a new predictor is learned
on-line as a replacement. In comparison to our work, we do not throw away the pre-
dictors in sequence, but we incrementally train them with new object appearances in
order to improve their performance.

Our learnable and adaptive tracking method, coupled with a sparsely applied
SIFT [55] or SURF [4] based detector, is applied for the faster than real-time lin-
ear video browsing. The goal is to find all object occurrences in a movie. One of
possible solutions of video browsing task would be to use a general object detector
in every frame. As it appears [96], [65], it is preferable to use a combination of an
object detector and a tracker in order to speed up the browsing algorithm and also to
increase the true positive detections. We indeed aim at processing rates higher than
real-time which would allow almost interactive processing of lengthy videos. Our yet
preliminary Matlab implementation can search through videos up to eight times faster
than the real video frame rate.
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Figure 8.2: A typical video scan process. Vertical red lines depict frames, where the
object detection was run. The red cross means negative detection or the
tracking failure. The green line shows backward and forward object track-
ing. Green circle means positive object detection and yellow circle depicts
successful validation.

8.2 Learning, tracking, validation and incremental learning
The user initiates the whole process by selecting a rectangular patch with the object
of interest in one image. This sample patch is artificially perturbed and a sequential
predictor is learned [107]. Computation of a few SIFT or SURF object descriptors
completes the initial phase of the algorithm, see Figure 8.1. The scanning phase of
algorithm combines predictor based tracking, its validation, and a sparse object detec-
tion. The predictor is incrementally re-trained for new object appearances. Examples
for the incremental learning are selected automatically with no user interaction.
The scanning phase starts with the object detection running every n−th frame

(typically with the step of 20 frames) until the first object location is found. The
tracker starts from this frame on the detected position both in backward and forward
directions. Backward tracking scans frames which were skipped during the detection
phase and runs until the loss-of-track or until it reaches the frame with last found
occurrence of the object. Forward tracking runs until the loss-of-track or end of
sequence. The detector starts again once the track is lost. Tracking itself is validated
every m−th frame (typically every 10 frames). The scanning procedure is depicted
on Figure 8.2.
One object sample represents only one object appearance. The predictor is incre-

mentally re-trained as more examples become available from the scanning procedure.
The next iteration naturally scans only images where the object was not tracked in
the preceding iterations.
Training examples for incremental learning are selected automatically. The most

problematic images-examples are actually the most useful for incremental training of
the predictor. In order to evaluate the usefulness of a particular example, we suggest
a stability measure. The measure is based on few extra predictions of the predictor
on a single frame. It means, that we let the sequential predictor track the object in
a single static image and we observe the predictors’ behavior. See Section 8.2.3 for
more details.
The sequential linear predictor validates itself. Naturally, the object detector may

be also used to validate the tracking. For example, a well trained face detector will
perform the same or better job when used to validate human face tracking. The mo-
tivation for using the sequential predictor for validation is its extreme efficiency, and
robust performance. For more details about the tracking validation, see section 8.2.2.
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8.2.1 Incremental learning of sequential learnable linear predictor

We extend the min-max learning of the Sequential learnable linear predictors (SLLiP)
by Zimmermann et al. [107] in order to predict not only translation but also the affine
deformation of the object. Next extension is the incremental learning of new object
appearances. The predictor essentially estimates motion and deformation parame-
ters directly from image intensities. It requires an off-line learning stage before the
tracking starts. The learning stage consists of generating exemplars and estimation of
regression functions. We use 2 SLLiPs - first for 2D motion estimation (2 parameters)
and second for affine warp estimation (4 parameters). We have experimentally veri-
fied that, especially for a low number of training examples, this configuration is more
stable than using just one SLLiP to predict all 6 parameters at once. Using smaller
training set decreases the necessary learning time which is important for the foreseen
applications. Because of speed, we opted for least squares learning of SLLiPs similarly,
as suggested by Zimmermann et al. in their any-time learning algorithm [107].
Let denote the translation parameters vector tt = [∆x,∆y]T estimated by the

first SLLiP, and the affine warp is parametrized by the parameters vector ta =
[α, β,∆sx,∆sy]T which is estimated by the second SLLiP. The 2 × 2 affine warp
matrix A is computed as

A = RαR−βSRβ , (8.1)

where R are standard 2D rotation matrices parametrized by the angles α, β and S is
the scale matrix

S =
[

1 + ∆sx 0
0 1 + ∆sy

]
. (8.2)

The image point x = [x, y]T is transformed between two consecutive images using
estimated parameters accordingly

x′ = Ax + tt (8.3)
= RαR−βSRβx + tt,

Tracking, learning and incremental learning will be explained for SLLiP with the
general parameters vector t. Equations are valid for both SLLiPs, which we use.
SLLiP is simply a sequence of linear predictors. Predictors in this sequence estimate
the parameters one after each other (see equation 8.4), thus each improving the result
of previous predictor estimation and lowering the error of estimation. SLLiP tracks
according to

t1 = H1I (X1) (8.4)
t2 = H2I (t1 ◦X2)
t3 = H3I (t2 ◦X3)

...
t = ©(i=1,...,k)ti,
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where I is the current image and X is a set of 2D coordinates spread over the the
object patch—it is called support set. I (X) is a vector of image intensities collected
at image coordinates X. The operation ◦ means transformation of support set points
using Equation 8.3, i.e. aligning the support set to fit the object using parameters
estimated by the previous predictor in the sequence. Final result of the prediction is
vector t which combines results of all predictions in the sequence. The model θs for
SLLiP is formed by the sequence of predictors θs = |{H1, X1} , {H2, X2} , . . . , {Hk, Xk}|.
Matrices H1, H2, . . . , Hk are linear regression matrices which are learned from training
data.
In our algorithm, the SLLiP is learned from one image only and it is incrementally

(re-)learned after each video scan. A few thousands training examples are artificially
generated from the first image using random perturbations of parameters in vector t,
warping the support set accordingly and collecting the image intensities. The column
vectors of collected image intensities are stored in matrix Di and perturbed parameters
in matrix Ti columnwise. Each regression matrix in SLLiP is trained using the least
squares method Hi = TiDTi

(
DiDTi

)−1
. The initial learning phase takes 5 or 6 seconds

on a standard PC.
More images (around 400) are selected for incremental learning from all images

gathered during the last scanning iteration. From each of the additional exemplars,
10 training examples are generated. This procedure provides additional 4000 training
examples after each particular video scan. It is worth to note that this process is
completely automatic, no user interaction is required. Incremental learning comprises
update of regression matrices Hi, i = 1, . . . , k. An efficient way of updating regression
matrices was proposed by Hinterstoisser et al. in [41]. Each regression matrix Hi may
be computed alternatively

Hi = YiZi, (8.5)

where Yi = TiD
T
i and Zi =

(
DiD

T
i

)−1
. Let denote Yji , Z

j
i , where j indexes the training

examples. New training example d = I (X) with parameters t is incorporated into
the predictor as follows

Yj+1
i = Yji + tdT (8.6)

Zj+1
i = Zji −

ZjiddTZji
1 + dTZjid

. (8.7)

After updating matrices Yi and Zi, we may also update the regression matrices Hi
using equation 8.5.

8.2.2 Validation by voting
To validate the tracking (i.e. detecting loss-of-track), we use the same sequential
linear predictor as for the tracking. We utilize the fact that the predictor is trained
to point to the center of this object when initialized in a close neighborhood. On the
contrary, when initialized on the background, the estimation of 2D motion is expected
to be random.
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Figure 8.3: The example of predictor validation. The first row shows successful valida-
tion of the clock tracking. The second row shows the loss-of-track caused
by a sudden scene change just after a video cut. Red crosses depict pixels,
where the predictor was initialized - a validation grid. The right column
of pictures illustrates the idea of validation using linear predictors and the
middle column shows the collected votes for the center of the object in a
normalized space.

We initialize the predictor several times on a regular grid (a validation grid - de-
picted by red crosses in Figure 8.3) in the close neighborhood of current position of the
tracker. The close neighborhood is defined as a 2D motion range, for which the predic-
tor was trained. In our case, the range is ± (patch_width/4) and ± (patch_height/4).
The validation grid is deformed according to estimated parameters. Then we observe
the 2D vectors, which should point to the center of the object, i.e. the current tracker
position in the image. When all (or sufficient number of) the vectors point to the
same pixel, which is also the current tracker position, we consider the tracker to be
on its track. Otherwise, when the 2D vectors are pointing to some random directions,
we say that the track is lost, see Figure 8.3.
A threshold value is needed in order to recognize if the sum of votes, which point

to the center of object, is big enough to pass the validation. The threshold is set
automatically from examples collected during the video scan. At first iteration, when
no threshold is available, first few (tens) validations are performed by the object
detector and SLLiP simultaneously. When the detector votes for positive validation,
also the current sum of votes is taken as the positive example. Negative examples
(sums of votes) are collected by placing the validation grid on other parts of the image,
where the object does not appear. Gaussian distributions are fitted into positive and
negative examples and the classical Bayes threshold is found. Both negative and
positive cases are considered to appear equally likely. In subsequent iterations, the
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Figure 8.4: Blue bars depict sorted stability numbers. The left most clock image
was used for predictor training. The other occurrences obtained during
tracking were automatically evaluated as more difficult examples for the
tracker. Clearly, the the higher stability measure, the more difficult case
for the predictor.

additional training examples are also used for threshold update.

8.2.3 Stability measure and examples selection for the incremental
learning

Selecting only relevant examples for training may speed up the learning as well as
improve the performance. Clearly relevant examples are those which contain the
object but were not included in the previous training examples. The predictor has,
of course, problems to handle new object appearances and it is likely, that it will
loose the track. It is reasonable to presume, that these new difficult (and useful)
examples should appear near frames, where the loss-of-track was detected. We need
to examine the object occurrences, which appeared near loss-of-track frames, in order
to capture the most interesting examples for incremental learning. We propose the
stability measure for evaluation of these object occurrences.
When we let the predictor track object on a single frame, we would expect the

tracker to stay still in objects’ position with no additional change of parameters.
However, due to inherent noise in the data the predictor predicts non-zero parameters
even when initiated on the correct position. The parameters changes are accumulated
and their sum-of-squares is computed after 10 tracking steps. Let t be the vector
of parameters estimated during tracking and pi vector of parameters obtained in
i−th step of this single frame tracking. The stability number s for current frame
is computed as s =

∑10
i=1 ‖ t − pi ‖2 . Clearly, the higher value the more difficult

example, see Figure 8.4. Parameters changes in both vectors are made relative to
particular ranges, in order to obtain the stability number, which is not dependent on
different parameters units. Using this stability number we may evaluate how useful
(difficult) is the examined object occurrence.
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Figure 8.5: Illustration of examples selection for incremental learning. The green line
depicts one interval - a subsequence of video frames, where the object was
found during scanning procedure. Only few images near the beginning and
end of the interval are examined. Yellow circles mean successful validation.
The black curve depicts computed stability measure on particular frames.
The examples with stability number above the blue line are considered
as useful for incremental learning. Selected examples are marked by red
arrows.

We use this stability number to select a fixed number of additional training examples
from each interval obtained during one video scan. Each interval is a continuous
subsequence of images from the whole video sequence (one interval is depicted as a
green line in Figure 8.2).
We search for the best additional training examples near the borders of each interval.

We go through fixed number of images from the start of the interval forwards and
backwards from the end of the interval, while computing the stability number on
tracker positions. Finally, the algorithm selects the examples with the high stability
number for incremental learning. Tracker positions in these images have also passed
validation and we expect them to be well aligned to the object. The procedure of
examples selection is depicted in Figure 8.5.

8.3 Experiments

Real sequences used in experiments include an episode from Fawlty Towers series (33
minutes, 720×576 pixels), and Groundhog Day movie (1 hour 37 minutes, 640×384).
Several objects were tested, see Figure 8.6. The ground truth data for the Groundhog
Day were kindly provided by Josef Šivic and they are the same as in [81]. We have
manually labeled ground truth for two tested objects in Fawlty Towers. The third
tested sequence captures a human moving in front of a camera (2 minutes 50 seconds,
640 × 480 pixels), see Figure 8.7. Matlab implementation of the algorithm was used
for all experiments. SIFT and SURF object detectors are publicly available MEX
implementations [4,55]. Mostly, the standard precision and recall are used to evaluate
the results. Let TP denote the true positives, FP denote the false positives and FN
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Figure 8.6: Tested objects are marked with the red rectangle.

denote the false negatives. Then the precision and recall are computed as:

precision = TP
TP + FP , (8.8)

recall = TP
TP + FN . (8.9)

The experiments are organized as follows. The first experiment (Section 8.3.1)
shows the effect of the incremental learning on the resulting precision and recall. In
Section 8.3.2, we evaluate the overall performance of the algorithm. Next we compare
tracking validation by SIFT and by SLLiP. Finally, Table 8.3, Table 8.4, and Table 8.5,
show comparison of SIFT detection in every frame with one iteration of our algorithm.

8.3.1 Incremental learning evaluation

This experiment shows the improvement gained by the automatic incremental learn-
ing. At first, we run one iteration of video scan using sequential predictor trained on
one image only (in Table 8.1 denoted as iter_0. Next, we evaluate results after the
first and the second incremental learning iteration (iter_1 and iter_2). Two objects
were tested. First was the picture object in Fawlty Towers video (see Figure 8.6 top
right image). The SURF based detector was used for the picture detection with the
step n = 20 and the sequential predictor for the validation with step m = 10. Incre-
mental learning improves the recall while preserving a high precision, see Table 8.1.
The second tested object was a human face (see Figure 8.7). In this case, the

object was difficult to track with SLLiP learned only from one image, because the
appearance of the face changed significantly during the sequence. The lighting con-
ditions were challenging and the human face underwent various rotations and scale
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Figure 8.7: Few examples of the human face data used in experiment. All images are
extracted from one video sequence. Note the significant deformations and
variations in illumination.

precision recall cumulative time
iter_0 0.86 0.61 13 min 42 sec
iter_1 0.81 0.63 23 min 18 sec
iter_2 0.81 0.64 32 min 21 sec

Table 8.1: Incremental learning evaluation for the clock object from the Fawlty towers
episode. The video scan was running 76 frames per second in average.

changes. We have chosen this sequence in combination with the face detector (instead
of SIFT/SURF) to see how the incremental learning helps to improve tracking results
on a complex non-rigid object. In this case incremental learning also improved the
performance of the tracker. See Table 8.2 for results.

The high precision obtained in the face experiment was caused by flawless face
detection, which did not return any false positive. A few images of SLLiP tracker
aligned on human face can be seen on Figure 8.8.

precision recall cumulative time
iter_0 0.99 0.70 4 min 5 sec
iter_1 0.98 0.79 5 min 2 sec
iter_2 0.98 0.81 5 min 27 sec

Table 8.2: Incremental learning evaluation for the human face. The first iteration of
video scan was running 21 frames per second in average. The browsing
time was increased using the face detector instead of SURF.
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Figure 8.8: Examples of face tracking results. The red rectangle depicts SLLiP tracker
aligned on human face.

8.3.2 Results of detection and tracking

One iteration of the algorithm in Fawlty Towers series runs 3 times faster than real-
time and more than 8times faster for the Groundhog Day movie. The detector was
run every n = 20 frames and validation every m = 10 frames while tracking. In
the sequence with human face the browsing time was almost twice slower than the
real-time, even for detection step n = 40. It was caused by the face detector which
runs much slower than SURF. The difference in browsing times in Fawlty Towers
and Groundhog Day is caused mainly by the different video resolution. Processing
of higher resolution images and more complex scenes is slowed down by the object
detector. Even shorter browsing times may be achieved by increasing the detection
interval n. Selecting the right interval depends on our expectation of the shortest
time interval, where the object may appear. Reasonable values for detection interval
are between 20 and 60 frames. Increasing the validation interval m to more than
10 generates more false positives and, since the validation runs very fast, it is not
necessary to validate with a bigger step.
Next we compare the performance of the predictor validation with SIFT validation.

The average time of one SIFT validation was 179 milliseconds and the average time of
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clock (FT) picture
SIFT detector on every frame - without tracking
browsing time 32 h. 56 m. 33 h. 29 m.
scanning speed (fps) 0.4 0.4
obtained occurrences 2440 2140
true positives 2411 1996
false positives 29 144
precision 0.99 0.93
recall 0.43 0.89
SURF detect., SLLiP track. and valid.
browsing time 13 m. 42 s. 11 m. 40 s.
scanning speed (fps) 61 71
obtained occurrences 4026 2520
true positives 3462 2131
false positives 564 389
precision 0.86 0.85
recall 0.61 0.95

Table 8.3: Comparison of SIFT object detection only and one iteration of our algo-
rithm on Fawlty Towers—clock and picture.

one predictor validation was 33 milliseconds. The resulting recall of the video browsing
for the clock object was 0.58 with SIFT and 0.61 with the predictor validation, while
the precision was 0.9 for SIFT validation and 0.86 for SLLiP validation. The recall for
the picture object was 0.94 with SIFT validation and 0.95 with the predictor, while
the precision was 0.84 for both. The predictor validation gives comparable precision
and the recall in much shorter time, which also saves time in the whole scanning
iteration. Tables 8.3, 8.4 and 8.5 show the results for 5 tested objects obtained in one
scanning iteration. The results of the video browsing algorithm are compared to the
results produced by the SIFT detector only.
SURF detection on every frame was tested too, but the results contained a large

number of false positives. The recall was comparable to SIFT detector, but the
precision was very low. We are using the SURF detector because it runs much faster
than SIFT, but we need to use the predictor validation after every positive detection
because of the large number of false positives. The results show that the algorithm
gives results comparable with SIFT detection even after a single iteration only.

8.4 Conclusion

We have shown that the incremental learning of the sequential predictor significantly
improves its robustness. It increases the recall while keeping the high precision. The
proposed method for collecting additional training examples is completely automatic
and requires no user interaction. The stability number well describes the condition of
the tracker on a particular image and proves to be a good criterion for the training
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alarm clock clock (GhD)
SIFT detector on every frame - without tracking
browsing time 48 h. 43 m. 48 h. 13 m.
scanning speed (fps) 0.8 0.8
obtained occurrences 1888 855
true positives 1811 801
false positives 77 54
precision 0.96 0.94
recall 0.37 0.29
SURF detect., SLLiP track. and valid.
browsing time 16 m. 46 s. 12 m. 48 s.
scanning speed (fps) 144 189
obtained occurrences 1345 2034
true positives 1125 1520
false positives 220 514
precision 0.84 0.75
recall 0.23 0.55

Table 8.4: Comparison of SIFT object detection only and one iteration of our algo-
rithm on Groundhog Day - alarm clock and clock.

PHIL sign
SIFT detector on every frame - without tracking
browsing time 48 h. 7 m.
scanning speed (fps) 0.8
obtained occurrences 2597
true positives 2293
false positives 304
precision 0.88
recall 0.72
SURF detect., SLLiP track. and valid.
browsing time 15 m. 15 s.
scanning speed (fps) 159
obtained occurrences 4038
true positives 2361
false positives 1677
precision 0.58
recall 0.74

Table 8.5: Comparison of SIFT object detection only and one iteration of our algo-
rithm on Groundhog Day - PHIL sign.
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examples selection. Validation by clustering SLLiP responses works reliably and very
fast.
When coupled with a sparsely applied object detector, the system can seek ob-

jects through videos several times faster than real time despite the current rather
preliminary Matlab implementation. The complete system for video browsing works
very well with simple objects. Performance for more complex 3D objects (when using
SIFT/SURF for detection) have not been entirely satisfactory yet. It is mainly the
detector that hinders the recognition rate. The tracker itself may be incrementally
learned for new appearances of the object and it works better with every iteration.
This was verified on the face tracking where a robust face detector was applied. We
plan to extend the sequential predictor in a way that would allow its application as a
detector.
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9 Application – object localization in
high-resolution image sequences

This chapter advances further the ideas proposed in the previous chap-
ter. It introduces the full homography motion model which was dictated
by larger objects. It also improves the detection phase by applying a fern
based detector. Work has been published as [45].

9.1 Introduction

This chapter focuses on the problem of the real-time object detection and tracking in a
sequence of high-resolution omnidirectional images. The idea of combining a detector
and a fast alignment by a tracker has been already used in several approaches [41,54].
The frame rate of commonly used detectors naturally depends on both the scene
complexity and image resolution. For example, the speed of ferns [67], SURF [4] and
SIFT [55] detectors depends on the number of evaluated features, which is generally
proportional to the scene complexity (e.g., the number of Harris corners) and the
image resolution. The speed of Waldboost [83] (or any cascade detector) depends on

Figure 9.1: Omnidirectional high resolution image (12 Mpx) captured by Ladybug 3
camera (left). Three objects are marked.

the number of computations performed in each evaluated sub-window. In contrast,
most of the trackers are independent of both the scene complexity and image reso-
lution. This guarantees a stable frame rate however, once the tracker is lost it may
never recover the object position again. Adaptive trackers can follow an object which
is far from the training set and cannot be detected by the detector. We propose to
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combine the detector and the tracker to benefit from both robustness (ability to find
an object) of detectors and from locality (efficiency) of trackers.
The ferns-based detector (also used by [41] for 10 fps tracking-by-detection) is one

of the fastest object detectors because of the low number of evaluated binary features
on detected Harris corners. The speed makes the ferns detector ideal for the purpose
of object detection in large images.
Recently, it has been shown [67], [41], that taking advantage of the learning phase,

greatly improves the tracking speed and makes the tracker more robust with respect
to large perspective deformations. A learned tracker is able to run with a fragment
of the processing power and it estimates the object position in complicated or not
yet seen poses. However, once the tracker gets lost, it may not recover the object
position.
To fulfill the real-time requirements, we propose a combination of a robust detector

and a very efficient tracker. Both, the detector and the tracker, are trained from
image data. The tracker gets updated during the tracking. The tracker performance
is extremely fast and as a result of that, faster than real-time tracking allows for
multiple object tracking.
We use a similar approach to [41], which also uses the fern object detector and the

linear predictor with incremental learning for homography estimation. The detector
is used for the object localization and also for the rough estimation of patch trans-
formation. The initial transformation is further refined by the linear predictor, which
predicts the full 2D homography. The precision of the method is validated by the
inverse warping of the object patch and by the correlation-based verification with the
initial patch. The detector is run in every frame of the sequence of 0.3 Mpx images
processing 10 frames per second (fps). This approach however, would not be able
to perform in real-time on 12 Mpx images. We use the fern detector to determine
tentative correspondences and we run RANSAC on detected points to estimate the
affine transformation. After a positive detection, we apply the learned predictor in
order to track the object for as many frames as possible. The approach [41] uses the
iterative version of linear predictor similar to the one proposed by [47], while we use
SLLiP version. The SLLiP proved [101] to be faster than the iterative version, while
keeping the high precision of the estimation. Our tracker is incrementally updated
during tracking [41,54]. We validate the tracking by the updated tracker itself (see
Section 9.2.2), which is more precise, than correlation-based verification by a single
template in case of varying object appearance.
Recently, [42] used adaptive linear predictors for real-time tracking. Adaptation

is performed by growth or reduction of the tracked patch during tracking and by
the regression matrices. However, this approach is not suitable for our task, because
it needs to keep the large matrix with training examples in the update memory,
which is needed for computation of the template reduction and growth. This training
matrix grows with additional training examples collected for on-line learning, which
is undesirable for long-term tracking.
Li et al. [54] use linear predictors in the form of locally weighted projection re-

gressors (LWPR) as a part of self-tuning particle filtering (ISPF) framework. They
approximate a non-linear regression by a piece-wise linear models. In contrast we
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use a sequence of learnable linear predictors (SLLiP) similar to [107], which uses the
result of previous predictors in sequence as a starting point for another predictor in
a row. The partial least-squares is used for data dimension reduction in [54]. We
use a subset of template pixels spread over the object in a regular grid, which proved
to be sufficient for dimensionality reduction, while keeping the high precision and
robustness of tracking.
The rest of this chapter is organized as follows. In Section 9.2 the formal descriptions

of used ferns detector and sequential predictor tracker and the outline of our algorithm
are described. In Section 9.3 we present the general evaluation of our algorithm. A
detailed evaluation of the detector and the tracker are given in Sections 9.3.1 and
9.3.2. In the last two sections we discuss, the computational times of the algorithm.

9.2 Detector and 2D homography predictor
The method combines a fern-based detector and a tracker based on sequential linear
predictors. Both the detector and the tracker are trained from the image data. The
tracker has its own validation and is incrementally re-learned as the tracking goes.
The detector locates the object in case the tracker gets lost.

9.2.1 Ferns-based detector
The object is modeled as a spatial constellation of detected Harris corners on one
representative image. In a nutshell: the fern detector first estimates similarity between
Harris corners detected in the current frame and Harris corners on the model. The
thresholded similarity determines tentative correspondences, which are further refined
by RANSAC selecting the largest geometrically consistent subset (i.e. set of inliers).
In our approach, the object was modeled as a plane. The estimation of the full
homography transformation was often ill-conditioned, because of both insufficient
number of detected corners and non-planarity of the object. This ill-conditioning was
overcome by RANSAC searches for the affine transformation, which showed to be
more robust.
A detailed description of the similarity measure is in [67]. In the following, we

provide just short description for the sake of completeness. The similarity measures
probability p(V(v),w) that the observed appearance of the neighbourhood V(v) of
the detected corner v corresponds to the model corner w. The appearance is repre-
sented as a sequence of randomly selected binary tests, i.e. given the corner v and
the sequence of n point pairs {(x1,y1), (x2,y2), . . . (xn,yn)}. The appearance of the
v is encoded as the binary code Vk(v) = I(v + xk) > I(v + yk), where I(v + xk) is
the image intensity.
On one hand, it is insufficient to model probabilities of binary tests independently,

i.e. assuming that p(V(v),w) =
∏n
k=1 pk(Vk(v),w). On the other hand, modeling

p(V(v),w) = p(V1(v), . . . , Vn(v),w) is ill-conditioned, since we would have to esti-
mate probability in 2n bins, where n is usually equal to several hundreds. Therefore,
we divide the sequence of n binary tests into N = n/m subsequences with length
m ≈ 8− 11. Subsequences are selected by N membership functions I(1) . . . I(N) and
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we denote hk = card(Ik), k = 1 . . . N . Finally, we consider these subsequences to be
statistically independent and model the probability as:

p(V(v),w) =
N∏
k=1

pk(VIk(1)(v), . . . , VIk(hk)(v),w) . (9.1)

The proposed detector requires an off-line training phase, within which the sub-
sequent probabilities are estimated. Once the probabilities are pre-computed, we
use them to determine the tentative correspondences on-line. In the following, both
phases are detailed.
Offline training phase: First n binary tests are randomly selected and divided

into N subsequences. The model is estimated from one sample image, where Harris
corners are detected within delineated object border. The appearance of each corner
neighbourhood is modeled by N hk-dimensional binary hyper-cubes, with 2hk bins,
representing the joint probability pk(VIk(1)(v), . . . , VIk(hk)(v),w). To estimate values
of the probability, each corner neighbourhood is L-times perturbed within the range
of local deformations, we want to cope with. For each perturbed training sample and
each subsequence, binary tests are evaluated and corresponding bin is increased by
1/L. Note that different Harris corners are modeled via different probabilities but
the same binary tests, which allows significant improvement in the online running
phase, since the computational complexity of the similarity computation is almost
independent of the number of Harris corners in the model.
Online running phase: Given an input image, Harris corners are detected. For

each corner v, binary tests are evaluated and the similarity to each model corner is
computed using Equation 9.1. Similarities higher than a chosen threshold determine
tentative correspondences. Eventually, RANSAC estimates affine transformation be-
tween the model and the given image. Confidence of the detection is equal to the
number of inliers.

9.2.2 Sequential linear predictors for homography
We extend the anytime learning of the Sequential Learnable Linear Predictors (SLLiP)
by [107] in order to predict not only translation but also the full homography trans-
formation. The next extension is the incremental learning of new object appearances,
also used by [41]. The predictor essentially estimates deformation parameters from
image intensities directly. It requires a short offline learning stage before the track-
ing starts. The learning stage consists of generating exemplars and estimation of
regression functions. We use a simple cascade of 2 SLLiPs - the first for 2D motion
estimation (2 parameters) and the second for the homography estimation (8 parame-
ters). The homography is parametrized by the position of 4 patch corners. Knowing
the corners position and having the reference coordinates, we compute the homogra-
phy transformation for the whole patch. We have experimentally verified that this
2-SLLiP configuration is more stable than using just one SLLiP to predict homog-
raphy. The translation is roughly estimated by the first SLLiP and then a precise
homography refinement is done. Because of speed, we opted for least squares learning
of SLLiPs similarly, as suggested in [107].
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Let denote the translation parameters vector tt = [∆x,∆y]T , estimated by the
first SLLiP, and the homography parameters vector ta = [∆x1,∆y1, . . . ,∆x4,∆y4]T ,
estimated by the second SLLiP, which represents the motion of 4 object corners
ci = [xi, yi]T , i = 1, . . . , 4. The object point x = [x, y]T from the previous image
is transformed to the corresponding point x′ in the current image accordingly

p = A

([
x
1

]
+
[

tt
0

])
, (9.2)

x′ = [px/pz, py/pz]T , (9.3)

where p are homogeneous coordinates. The homography matrix A is computed from
4-point correspondences, between shifted object corners ci + tt from previous image
and current corners positions ci + tt +

[
ta2i−1, ta2i

]T
, i = 1, . . . , 4 estimated by the

2-SLLiP tracker. The parameters tt and ta are estimated by the same way as in the
previous chapter for the affine model.
In our algorithm, the 2 SLLiPs are learned from one image only and they are

incrementally learned during tracking. A few thousands of training examples are arti-
ficially generated from the training image using random perturbations of parameters
in vector t, warping the support set accordingly and collecting the image intensities.
The column vectors of collected image intensities I (X) are stored in matrix Di and
perturbed parameters in matrix Ti columnwise. Each regression matrix in SLLiP is
trained using the least squares method Hi = TiDTi

(
DiDTi

)−1
.

The tracking procedure needs to be validated in order to detect the loss-of-track.
When the loss-of-track occurs, the object detector is started instead of tracking. To
validate the tracking we use the first SLLiP, which estimates 2D motion of the object.
We utilize the fact that the predictor is trained to point to the center of learned
object when initialized in a close neighborhood. On the contrary, when initialized
on the background, the estimation of 2D motion is expected to be random. We
initialize the predictor several times on a regular grid (validation grid - depicted by
red crosses in Fig. 9.2) in the close neighborhood of the tracker current position. The
close neighborhood is defined as a 2D motion range (of the same size as the maximal
parameters perturbation used for learning), for which the predictor was trained. In
our case, the range is ± (patch_width/4) and ± (patch_height/4). We let the SLLiP
vote for the object center from each position of the validation grid and observe the 2D
vectors, which should point to the center of the object, in the case, when the tracker
is well aligned on the object. When all (or sufficient number of) the vectors point to
the same pixel, which is also the current tracker position, we consider the tracker to
be on its track. Otherwise, when the vectors point to some random directions, we
say that the track is lost, see Fig. 9.2. The same approach for tracking validation was
suggested in [43].
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Figure 9.2: Validation procedure demonstrated in two situations. The first row shows
successful validation of tracked blue_door, the second row shows loss of
track caused by a bad tracker initialization. The first column shows the
tracker position marked by green. The third column depicts the idea of
validation, i.e., a few initializations of the tracker (marked by red crosses)
around its current position and the collection of votes for the object cen-
ter. When the votes point to one pixel, which is also the current tracker
position (or close enough to the center), the tracker is considered to be
well aligned on the object. When the votes for center are random and far
from current position, the loss-of-track is detected. In the second column,
we see the collected votes (blue dots), the object center (red cross) and
the motion range (red rectangle) normalized to < −1, 1 >, for which was
the SLLiP trained.
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Algorithm 2 In order to achieve real-time performance, we need to run the detector
only when absolutely necessary. The detection runs when the object is not present in
the image or the tracker loses its track. As soon as the object is detected, the algorithm
starts tracking and follows the target as long as possible. Since tracking requires only
fragment of computational power, computational time is spared for other tasks. The
on-line incremental update of the regressors helps to keep longer tracks. When the
validator decides that the track is lost, the detector is started again until next positive
detection is achieved. To lower the number of false detections to minimum, we run
the validation after each positive response of the detector.

Select object
model_fern← learn fern detector
model_tracker ← learn 2− SLLiP tracker
lost← true
i← 0
while next image is available do

get next image
i← i+ 1
if lost then
detected← detect object
if detected then

initialize tracker
estimate homography
valid← validate position
if valid then
lost← false
continue

end if
end if

else
track object
if i mod 5 == 0 then
valid← validate position
if valid then
model_tracker ← update tracker

else
lost← true
continue

end if
end if

end if
end while

— 126 —



Chapter 9: Application – object localization in high-resolution image sequences

9.3 Experiments
The foreseen scenario for the use of our method is a visual part of a mobile rescue
robot navigation system. The operator selects one or more objects in the scene. The
robot (carrying a digital camera) should navigate itself through some space while
avoiding tracked obstacles to localized object of interest. The experiments simulate
the foreseen use. Several objects were selected in one frame of a particular sequence
and from this starting frame they were tracked and detected.
Three types of experiments were performed. First, we run the ferns detector it-

self in every frame without tracking. Second, we run the 2-SLLiP tracker with the
validation without the recovery by detector. And finally, we run the combination of
both. In all experiments both the detector and the tracker were trained from a single
image. The detector and the tracker perform best on planar objects, because of the
modeled 2D homography transformation. We tested our algorithm also on non-planar
objects (lying human, crashed car) to see the performance limits and robustness of our
solution, see Section 9.3.3. Algorithm was tested on 8 objects in 4 video sequences.
The Ladybug camera provides 8 fps of panoramic images captured from 6 cameras
simultaneously. Five cameras are set horizontally in a circle and the sixth camera
looks upwards, see Fig. 9.1. The panoramic image is a composition of these 6 images
and has a resolution of 5400×2248 pixels (12 Mpx). Fig. 9.1 and Fig. 9.3 show exam-
ples of the composed scenes and tested objects. Appearance changes for few selected
objects are depicted in Fig. 9.4. Notice the amount of non-linear distorsion caused by
the cylindrical projection. The objects of interest are relatively small in comparison
to the image size. In average the object size was 400× 300 pixels. The ground-truth
homography for each object was manually labeled in each frame. We provide ROC
curves for each tested object for evaluation of the detection/tracking performance.
The ROC curve illustrates false positive rate versus false negative rate.

• False positive (FP) is a positive vote for an object presence in some position,
but the object was not there.

• False negative (FN) is a negative vote for an object presence in some position,
where the object actually was present.

In ROC diagrams, we want to get as close to the point (0, 0) as possible. Each point
in the curve of ROC diagram is evaluated for one particular confidence threshold c.
In our system, the confidence r for one detection is given by the number of affine
RANSAC inliers after positive detection. The tracker keeps the confidence from the
last detection until the loss-of-track. We get less false positives with a growing confi-
dence, but also more false negatives (we may miss some positive detections). For one
particular c we compute the diagram coordinates as follows:

FP (c) =
n∑
j=1

(FP,where rj > c) /n (9.4)

FN (c) =
n∑
j=1

(FN,where rj > c) /n, (9.5)
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Figure 9.3: Example images with tracked objects marked by red rectangles.
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Figure 9.4: Four of eight tested objects under different view angles and appearances.
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Figure 9.5: Each curve corresponds to results of one method computed as mean ROC
curve over all objects.

where n is a number of frames in sequence. To draw the whole ROC curve we compute
the coordinates for a discrete number of confidences from interval 〈0, 1〉 and use the
linear interpolation for the rest of the values.

In Fig. 9.5, we show three different ROC curves. Each curve corresponds to one
method used to search for the object position in sequences. In order to make the
evaluation less dependent on a particular object, we computed mean ROC curves
over all tested objects for different methods. The green curve depicts the performance
of the tracker itself, run on every object from the first frame until the loss-of-track
without the recovery by the detector. The blue curve shows results obtained by the
fern detector itself run on every frame of all sequences. And finally, the red curve
shows results, when our algorithm was used. We may observe, that our algorithm
performance is better (the curve is the closest to point (0, 0)) than both individual
methods. The separate ROC curves for individual objects may be seen in Fig. 9.6
and Fig. 9.8.

The experiments are organised as follows. The ferns detector is evaluated in Sec-
tion 9.3.1, the performance of tracker is examined in Section 9.3.2. The algorithm 1,
which combines both is evaluated in Section 9.3.3. And finally in Section 9.3.4, we
provide computation times of all main parts of the algorithm.
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Figure 9.6: Each curve corresponds to detection results for one object.

9.3.1 Detector evaluation

Using only the detector (tracking by detection) would be too slow for desired real-time
performance in a sequence of large images. Nevertheless, we evaluate the performance
of the detector itself to see how the addition of SLLiP tracker lowers the false positive
and the false negative rate (see Section 9.3.3).
In this experiment, the detector was run with slightly different set of parameters

than in the experiment, which combines it with the tracker. This was necessary
in order to achieve the best detection performance. For example, here it was not
possible to validate additionally the positive detection by the validator. So we needed
to increase the threshold for number of RANSAC inliers necessary for the positive
detection to lower the number of false positives.
It was also necessary to adjust the detector parameters according to the expected

object scale and rotation changes. In average, the detector was searching for the
object in 3 scales and it was able to detect objects under ±20 rotation degrees. In
Fig. 9.6, the ROC curves are depicted for the detector run in every frame for different
objects. The results show that some objects were detected in almost all cases correctly.
However some other objects, like the door, were detected with poor results. The Door
was the most complicated object for Harris corners-based detector, since only 21
keypoints were detected over the object, which were spread mainly in the central part
of the door. That is why there was almost always a low number of inliers provided by
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the RANSAC algorithm. This object was successfully tracked by the tracker lately.
Another complicated object was the car, due to its reflective surface and vast visual
angle changes. Finally, the human lying on the floor was also a challenging object
due to its non-planarity. As can be seen in Section 9.3.3, the integration of tracking
to the algorithm lowers the number of FP and FN and significantly speeds up the
algorithm, see Section 9.3.4.

9.3.2 Tracker evaluation

This experiment shows performance of the tracker without the recovery by the detec-
tor. The tracker is composed of 2 SLLiPs (for translation and homography). Each
SLLiP has 3 predictors in a sequence with support the set sizes |X1| = 225, |X2| = 324
and |X3| = 441. The support set coordinates were spread over the object in a regular
grid. The tracker was incrementally learned and validated during tracking until it
lost its track or until the end of sequence was reached. The tracking was manually
initialized always in the first image of a sequence (different from the training image),
where the object appeared. Some objects were tracked through the whole sequence.
Some objects were lost after few frames, when there was a fast motion right in the
beginning. In Fig. 9.7, you may see the lengths of successful tracking until the first
loss-of-track. In case of partial occlusion, the tracker sometimes jitters or even fails.
Nevertheless, when it is incrementally learned, it is able to handle the occlusion as a
new object appearance. Incremental learning itself is very helpful for increasing the
robustness of the tracker [41], [43]. The estimation of the homography is very precise
for planar objects.
Tracked objects appear in images as patches in the resolutions varying from 211×157

(33 127 pixels) to 253× 919 (232 507 pixels). Both SLLiPs work only with the subset
of all patch pixels (same subset size for all objects). While tracking, each SLLiP needs
to read only 990 intensity values, which is given by the sum of support set sizes of
predictors in sequence. This brings another significant speed-up to the learning and
tracking process.

9.3.3 Detector + tracker evaluation

The final experiment evaluates the performance of algorithm described in Section 9.2.
The combination of the detector and the tracker improves the performance of the
algorithm (lowers FP and FN), as may be seen in Fig. 9.8 and Fig. 9.5. This is caused
by their complementarity in failure cases. Tracker is very robust even under extreme
perspective deformations, while the detector is not able to recognize these difficult
object poses. On the other hand the detector is robust to partial occlusion, where the
tracker usually fails and needs to be recovered and re-learned. In comparison with
the detector (see Fig. 9.6), our algorithm significantly improves the results in average.
Only few objects, which were perfectly detected by the detector (e.g. white blocks
and blue door) have a little worse results with our algorithm. This was caused by the
tracking validation, which was running not every frame, but only every 5 frames. This
means, that the tracker was lost just a few frames before loss-of-track detection by
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Figure 9.7: Each horizontal line depicts the length of the track for one object until the
first loss-of-track. Red vertical lines show the last frame of a particular
subsequence, in which the object was fully or partially visible.

validation and received a few FPs and FNs. This small error could be eliminated by
running the validation in every frame. The extreme efficiency of sequential predictors
allows tracking much faster than real-time, which provides enough computational
time for validation and incremental learning of the tracker. Running validation after
each positives detection allows to make the ferns detector more sensitive. We lower
the threshold which specifies the number of necessary inliers, which allows more true
positive, but also more false positive detections. After each detection, which has a
small number of inliers, we initialize the tracker in the detected pose, let the tracker
vote for homography and run the validation. Validation eliminates possible false
positive detections and let the true positives pass.
The most difficult object for our algorithm was the crashed car, the appearance of

which was changing significantly in the sequence, due to its reflective surface, non-
planar shape and vast changes in visual angle. Detection and tracking of lying human
was successful in a high percentage of detected occurrences and low FP and FN.
But the precision of homography estimation was quite poor as expected, because
of its non-planar geometry. Nevertheless the incremental learning kept the tracker
from loosing its track too often. The robust detector and incremental learning of the
tracker allows for tracking of more complex (non-planar) objects, but high precision
homography estimation can not be expected. Planar or semi-planar objects were
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Figure 9.8: Each curve corresponds to results of one object detection and tracking.
The ROC curves fit more to the left side of the diagram. This is caused
by the high confidence of detections and tracking. The high confidence is
actually valid, because of the very low number of false positives.

detected and tracked with the high accuracy.

9.3.4 Computation times
The algorithm was run on standard PC with 64 bit, 2.66 GHz CPU. The object
detector was implemented in language C and run in the system as MATLAB MEX.
The RANSAC, 2-SLLiP tracker and the rest of the algorithm were implemented in
Matlab. The computation times for 12 Mpx image sequences are following:

(implementation in language C)

• detector learning: 2 sec for 200 classes, i.e. 10 ms per class (50 ferns with depth
11 and 500 training samples per class).

• detection: 0.13 ms for evaluation of 1 Harris point with 50 ferns and 200 classes.
The computational time changes linearly with the number of classes. For one
image with 5350 Harrises, which passed the quality threshold, it took 0.7 sec.
Usually we run the detector in 3 scales.

(implementation in Matlab)
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• learning SLLiP trackers: 6 sec for the translation SLLiP with 1500 training
samples and 9 sec for the homography SLLiP with 3500 training samples.

• tracking: 4 ms per image. This computational time is summed for both SLLiP
trackers.

• validation: 72 ms per one validation. In our experiments, the validation was
run every 5 frames while tracking.

• incremental learning: 470 ms together for 10 samples for the translation SLLiP
and 10 samples for the homography SLLiP. Incremental learning was triggered
every 5 frames after the successful validation.

The average amount of Harris points was around 50000 in one image, from which
around 5300 passed the Harris quality and were evaluated by ferns detector. The use
of object detector is necessary, but its runtime needs to be reduced to a minimum
because of the high computational time. The tracker runs very fast, which allows for
multiple object tracking, incremental learning and tracking validation.

9.4 Conclusion and future work
In this work, we combined ferns-based object detector and 2-SLLiP tracker into the
efficient algorithm suitable for real-time processing of high resolution images. The
amount of streamed data is huge and we need to avoid running the detector too
often. That is why we focused on updating the 2-SLLiP model during tracking, which
helped to keep the track even when the object appeared under serious slope angles
and with changing appearance. In comparison with the detector run on every frame,
our algorithm runs not only much faster, but also lowers the number of false positives
and false negatives.
In our future work, we want to focus on incremental learning of both the detector

and the tracker. The detector is robust to partial occlusion, since it works with Harris
corners [39] sparsely placed around the object unlike the patch-based tracker. On
the other hand, the tracker is more robust to object appearance changes and keeps
tracking even the significantly distorted objects, which the detector fails to detect.
This gives the opportunity to deliver the training examples for the detector in cases
where it fails, while the tracker holds and vice-versa. We would like to develop a
suitable strategy for mutual incremental learning.
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10.1 Contributions of the thesis

Chapter 2 describes our work on estimating the articulated human model from seg-
mented multiview sequences. The human body parts are modeled as ellipsoids. Num-
ber of parts and their connectivity are the only inputs specified. Physical dimensions
and articulation parameters are estimated from data. Our work on the multiview
approach though relatively successful has been mostly suspended after the Dagstuhl
seminar in 20061 where I met several scientists from biomechanics. We achieved rea-
sonable accuracy when using very simple and cheap digital cameras. However, most
of biomechanics applications require significantly higher accuracy achievable by using
costly high-speed cameras which we did not possess at the time.
Chapter 3 reports our contribution on learning and fitting an articulated model

to single images. We proposed a graph-cut based step for unsupervised learning of
appearance. The work was actually quite novel at that time. We achieved promising
results however, the work has not been published as we got overrun by contributions
of V. Ferrari et al. [30].
Chapter 4 proposes a multiview tracking and modeling method for rigid objects.

Assuming that a part of the object is visible in at least two cameras, a partial 3D model
is reconstructed in terms of a collection of small 3D planar patches of an arbitrary
topology. The 3D representation, recovered fully automatically, allows to formulate
tracking as a gradient minimization in the pose (translation, rotation) space. As the
object moves, the 3D model is incrementally updated. A virtuous circle emerges:
tracking enables composition of the partial 3D model; the 3D model facilitates and
robustifies the multiview tracking. We demonstrated experimentally that the inter-
leaved track-and-reconstruct approach tracks successfully a 360 degrees turn-around
and a wide range of motions. Monocular tracking is also possible after the model
is constructed. Using more cameras, however, increases significantly the stability in
critical poses and moves. We demonstrated how to exploit the 3D model to increase
stability in the presence of uneven and/or changing illumination.
Chapter 5 proposes an algorithm for learning a sequence of linear regressors on

artificially distorted variants of sample data. The learning procedure minimizes the
worst error on training data. An object is modeled by a set of sequential predictors.
The motion of the object is estimated by a RANSAC based procedure. The number
of RANSAC iterations and number of used predictors is optimized subject to required
frame rate.
Chapter 6 addresses the problem of computationally expensive min-max learning

and suggests a branch and bound method based on least square estimation. It is
1Human Motion, http://www.dagstuhl.de/en/program/calendar/semhp/?semnr=06241
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an any time method which, after a very short initialization period, it can provide a
solution at any time of learning.
Chapter 7 proposes a learning method for motion estimation of objects with sig-

nificantly varying appearance. Varying object appearance is represented by a low
dimensional space of appearance parameters. The appearance mapping and motion
estimation method are optimized simultaneously. Appearance parameters are esti-
mated by unsupervised learning.
Chapter 8 advances the sequential linear predictors–regressors in several ways. It

introduces a more complex motion model, suggests a validation procedure and applies
an on-line incremental learning in order to accommodate drifting appearance. It also
discusses a possible method for automatic selection of suitable training examples for
the incremental learning by introducing a stability measure. The advanced predictor
is combined with an object detector and applied in fast object-driven video browsing.
The final Chapter 9 introduces a full homography motion model and combined

with an object detector applies the combination on finding images in high resolution
cameras.

10.2 Future plans
In the future, I would like to continue doing research in machine learning for visual
processing. Though being already popularized be recent advancements, I believe the
area of weakly supervised learning from large data is still largely unexplored. The
machine perception of the unstructured world is still in an early stage.
I plan to be very active in teaching as I have always been. I will strive introducing

recent developments in computer science into the teaching process. I consider teaching
and research as tightly connected.
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