
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Utilization of Transformer architecture for predicting financial

time series in the forex market

Radek Přibyl

Ing. Stanislav Kuznetsov, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2025/2026

Instructions

The Transformer is a deep neural network archetype widely utilized in applications such

as natural language processing, machine translation, and time series forecasting. This

thesis aims to implement and evaluate various Transformer architectures designed for

price forecasting in the foreign exchange market. The focus will be on detecting and

predicting dynamic price fluctuations to enhance decision-making in trading.

1. Explore and summarize advancements in the field of transformers and in time series

analysis. [1] [2] [3] [4]

2. Collect publicly available financial data from the forex market. Preprocess the data into

a format suitable for machine learning.

3. Implement the original transformer model as described in [5] and choose and

implement other models suitable for time series prediction, as discussed, e.g., in [1].

Select appropriate hyperparameters and train the models.

4. Verify the reliability of the models on historical data using relevant metrics. Compare,

visualize, and discuss the results.

5. Publish the code — including implementations of Transformer architectures, data

loading and preprocessing, and the training procedures — on a publicly available GitHub

repository.

[1] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun, “Transformers in time series:

A survey”, 2023 https://arxiv.org/abs/2202.07125

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 7 March 2024 in Prague.

[2] A. Zeng, M. Chen, L. Zhang, Q. Xu, “Are transformers effective for time series

forecasting?“, 2022, https://arxiv.org/abs/2205.13504

[3] T. Muhammad, A. B. Aftab, Md. Ahsan, Md. M. Ahsan, M. M. Muhu, M. Ibrahim, S. I. Khan,

M. S. Alam, “Transformer-based deep learning model for stock price prediction: A case

study on Bangladesh stock market.“, 2022, https://arxiv.org/abs/2208.08300

[4] Y. Li, S. Lv, X. Liu, Q. Zhang, ”Incorporating Transformers and Attention Networks for Stock

Movement Prediction”, 2022, https://www.researchgate.net/publication/

358897376_Incorporating_Transformers_and_Attention_Networks_for_Stock_Movement_Prediction

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, I. Polosukhin,

“Attention is all you need.“, 2017, https://arxiv.org/abs/1706.03762

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 7 March 2024 in Prague.

Bachelor’s thesis

UTILIZATION OF
TRANSFORMER
ARCHITECTURE FOR
PREDICTING
FINANCIAL TIME
SERIES IN THE FOREX
MARKET

Radek Přibyl

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Stanislav Kuznetsov, Ph.D.
October 24, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Radek Přibyl. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Přibyl Radek. Utilization of Transformer architecture for predicting financial
time series in the forex market. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2024.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of abbreviations ix

1 Introduction 1
1.1 Goals . 1

2 Background and Theory 2
2.1 Technical background . 2

2.1.1 Machine learning . 2
2.1.1.1 Binary classification . 3

2.1.2 Neural networks . 4
2.1.2.1 Perceptron . 5
2.1.2.2 Dense layer . 6
2.1.2.3 Activation function . 6
2.1.2.4 Loss function . 6
2.1.2.5 Optimization method . 7

2.1.3 Transformer . 8
2.1.3.1 Encoder . 8
2.1.3.2 Decoder . 8
2.1.3.3 Self-attention mechanism . 9
2.1.3.4 Input embedding . 11
2.1.3.5 Positional encoding . 11
2.1.3.6 Multi-head attention . 12
2.1.3.7 Masked multi-head attention . 13
2.1.3.8 Add&Norm . 14
2.1.3.9 Feed forward . 14
2.1.3.10 Additional information and summary 15

2.1.4 Time series . 15
2.1.4.1 Types of time series . 16
2.1.4.2 Components of time series . 16
2.1.4.3 Stationarity . 17
2.1.4.4 Time series forecasting . 18

2.2 Data . 19
2.2.1 Forex . 19

2.2.1.1 Technical indicators . 20
2.2.2 Signal processing . 21

2.2.2.1 Fourier Transform . 22
2.2.2.2 Fast Fourier transform . 23
2.2.2.3 Butterworth filter . 23

ii

Contents iii

2.3 Autoformer . 24
2.4 Related work . 25

2.4.1 Transformer-Based Deep Learning Model for Stock Price Prediction: A
Case Study on Bangladesh Stock Market 26

2.4.2 Predicting Forex Rates using Sentiment Analysis on Financial Articles . . 27
2.4.3 Predicting Stock Closing Prices in Emerging Markets with Transformer

Neural Networks: The Saudi Stock Exchange Case 29
2.4.4 Summary . 30

3 Experiments 31
3.1 Data . 31

3.1.1 Input datasets . 31
3.1.2 Data observation . 32

3.2 Models . 35
3.2.1 Transformer . 35

3.2.1.1 Training phase . 37
3.2.1.2 Inference phase . 38
3.2.1.3 Multi-head attention in decoder 38

3.2.2 Autoformer . 38
3.2.2.1 Encoder . 39
3.2.2.2 Decoder . 39
3.2.2.3 Auto-correlation mechanism . 40

3.2.3 Baseline models . 41
3.2.3.1 Random 50 % model . 41
3.2.3.2 Baseline model based on past value 41

3.3 Experiments overview . 42
3.4 Code overview . 44
3.5 Results . 44

3.5.0.1 The threshold method . 45

4 Conclusion 48

Attachments 54

List of Figures

2.1 Example of confusion matrix . 4
2.2 Neural network structure . 5
2.3 Transformer architecture . 9
2.4 Visualization of Positional encoding values . 12
2.5 BertViz visuzalizations . 13
2.6 Dropout: before application (left) and after (right) 15
2.7 Examples of univariate and multivariate time series 16
2.8 Visualization of US airline passengers dataset . 17
2.9 Example of stationary and non-stationary time series 18
2.10 Low and high frequencies in a signal . 21
2.11 Types of filters based on what frequencies they allow to pass through 22
2.12 Butterworth’s frequency response on different order values 24
2.13 Autoformer architecture . 25

3.1 Correlation matrices: stationary (left) and non-stationary (right) data 33
3.2 Closing price and Butterworth filter . 34
3.3 Different frequencies of Butterworth filter . 35
3.4 Transformer MHA mechanism . 37
3.5 Baseline model: correct (left) and incorrect (right) prediction 42
3.6 Input and target sequence . 43
3.7 Ternary classification; accuracy (left) and precision, recall, f1 score (right) 46
3.8 Binary classification; accuracy (left) and precision, recall, f1 score (right) 47

List of Tables

2.1 Xor function . 5
2.2 Attention weights matrix . 10
2.3 Masked atttention weights matrix . 14
2.4 Transformer hyperparameters . 15
2.5 Dhaka Stock Exchange: results on daily data . 27
2.6 Dhaka Stock Exchange: results on weekly data 27
2.7 Text classifier results on the financial phrase bank corpus 28
2.8 Closing price prediction MAPE values . 29
2.9 Hyperparameters overview . 29
2.10 Saudi Stock Exchange: loss functions values and batch sizes 30

3.1 Top 6 most traded currency pairs . 32

iv

List of Tables v

3.2 EUR/USD price data summary . 33
3.3 EUR/USD price data summary, subtracted prices 33
3.4 Parameters of Butterworth signal on input datasets 35
3.5 Amount of data in input datasets . 42
3.6 Transformer hyperparameters in experiments . 43
3.7 Transformer hyperparameters in experiments . 43
3.8 Autoformer hyperparameters in experiments . 44
3.9 Autoformer hyperparameters in experiments . 44
3.10 Results: Price . 44
3.11 Results: price change . 45
3.12 Results: varying input sequence length . 45
3.13 Results: varying output sequence length . 45
3.14 Results: varying output sequence length . 46

I would like to thank my supervisor Ing. Stanislav Kuznetsov Ph.D.
for his guidance and invaluable expertise throughout the writing of
this thesis. I am also deeply grateful to my family and friends for
their unwavering encouragement and support.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Czech Technical
University in Prague has the right to conclude a licence agreement on the utilization of this thesis
as a school work pursuant of Section 60 (1) of the Act.

In Prague on October 24, 2024

vii

Abstract

This thesis presents the implementation of two deep learning models–Transformer and Auto-
former—for time series forecasting, specifically predicting foreign exchange (Forex) prices. Both
models were developed from scratch using Python and TensorFlow. Part of the process was to
utilize time series properties and signal processing techniques to improve the accuracy of the pre-
dictions. Data from the Forex market served as the input datasets, and technical indicators, were
added to provide more information for the models to learn from. In addition, data smoothing
techniques from the signal processing field were applied to reduce noise in the time series.

The models were trained to predict prices, and their outputs were transformed into the binary
classification domain to determine how the price changed during the observed time period. The
performance of the models was compared to each other and to two basic baseline models.

All code with the techniques used in this work is publicly available on GitHub at
https://github.com/pribylr/bp/.

Keywords machine learning, neural networks, transformers, Python, Tensorflow, time series,
signal processing

Abstrakt

Tato bakalářská práce se zabývá implementaćı dvou model̊u hlubokého učeńı – Transformer
a Autoformer – pro predikci časových řad, konkrétně předpov́ıdáńı cen na trhu s devizami
(Forex). Oba modely byly vyvinuty ručně v programovaćım jazyku Python a knihovně Ten-
sorFlow. Součást́ı procesu bylo využit́ı vlastnost́ı časových řad a zpracováńı signálu. Data
z Forexového sloužila jako vstupńı datasety, ke kterým byly přidány technické indikátory, aby
modely źıskaly v́ıce informaćı, z nichž by se mohly učit. Nav́ıc byly použity techniky vyhlazováńı
z oblasti zpracováńı signálu, aby se v časových řadách sńıžil šum.

Modely byly trénovány na predikci cen, přičemž jejich výstupy byly transformovány do
domény binárńı klasifikace, aby se určilo, jak se cena změnila v pr̊uběhu sledovaného časového
obdob́ı. Výkonnost model̊u byla porovnána mezi sebou a také s dvěma základńımi modely.

Veškerý kód s technikami použitými v této práci je veřejně dostupný na GitHubu na adrese
https://github.com/pribylr/bp/.

Kĺıčová slova strojové učeńı, neuronové śıtě, transformery, Python, Tensorflow, časové řady,
zpracováńı signálu

viii

https://github.com/pribylr/bp/
https://github.com/pribylr/bp/

List of abbreviations

NLP Natural Language Processing
LSTM Long Short-Term Memory

NN Neural Network
ReLU Rectified Linear Unit
MSE Mean Squared Error

Adam Adaptive Moment Estimation
Forex Foreign Exchange Market

RSI Relative Strength Index
DFT Discrete Fourier Transform

IDFT Inverse Discrete Fourier Transform
FFT Fast Fourier Transform

IFFT Inverse Fast Fourier Transform

ix

Chapter 1

Introduction

Since its release in 2017, the paper ”Attention is All You Need” has led to significant advance-
ments in deep learning, especially in the field of natural language processing (NLP). The Trans-
former model, introduced in this paper, is a robust architecture designed to process sequential
data. Sequential data can be a sentence in the case of NLP or time-ordered numerical values,
like prices in financial markets, which is the focus of this thesis.

The original transformer has been widely used, and its performance has been documented
mainly on NLP tasks. Since structural similarities exist between natural language and time series
data, many transformer-based models have been proposed. These models include modifications
and upgrades to the original architecture to make the models more suitable for time series
forecasting.

Other models that are used for time series forecasting, such as AutoRegressive Integrated
Moving Average (ARIMA) or long short-term memory (LSTM) networks, have difficulties cap-
turing long-range dependencies and patterns in the data. The proposed mechanism in the trans-
former, the self-attention, is designed to capture these patterns more effectively, which is why it
has gained attention in time series forecasting.

Time series forecasting presents challenges to which the models need to adapt, such as (non)-
stationarity, seasonal or periodic patterns, or phenomenons occurring at irregular intervals.

This thesis presents the implementation of two models, the original transformer and Aut-
oformer, a model explicitly designed for time series forecasting. Both models are built from
scratch in Python with the use of the TensorFlow machine learning framework. The thesis also
includes an explanation of the code, explaining how the models are structured, trained, and
evaluated on time series data.

1.1 Goals
The theoretical chapter defines the research’s fundamental concepts: machine learning, neural
networks, transformers, time series, signal processing, and the foreign exchange market. It also
includes research on related works in similar fields – price prediction in financial markets.

The experimental chapter describes the machine learning models used and how they are
implemented. It explains where input data comes from and how it looks. It shows how the data
is analyzed, understood, and processed and how it is used to make predictions. In the end, the
results are discussed and compared to two simple baseline models, which are also described in
this part of the thesis.

1

Chapter 2

Background and Theory

This chapter contains theoretical information and concepts on which the practical part of the
work is based.

Section 2.1 provides the information necessary to comprehend the principles upon which this
thesis is based. It includes information such as what neural networks are, how transformers work,
and what time series are.

Section 2.2 describes the data on which the forecasts are made. The data used in this thesis
comes from the foreign exchange market, which is a market where currencies are traded in pairs.

Autoformer, one of the models implemented in this thesis, is introduced in section 2.3.
Section 2.4 describes three different works with similar goals to this thesis’s goal, which is

price prediction. It contains information about the data used, the methods used for predictions,
and the achieved results.

2.1 Technical background
Section 2.1.1 delivers a brief introduction to machine learning. The machine learning part con-
tains information about binary classification, which is used to represent the final results in the
experimental part of the thesis.

Sections 2.1.2 and 2.1.3 explain what neural networks and transformers are and how they
work.

Section 2.1.4 summarizes theoretical information regarding time series, their characteristics,
different types, and other features.

2.1.1 Machine learning
This section introduces and explains a few foundational machine-learning concepts used in this
thesis, providing an overview of key algorithms and techniques and their relevance to solving
specific problems within the research.

When dealing with a machine learning problem, a model is created to handle making predic-
tions. To make accurate predictions, this model needs to be ”trained.” Training a model means
supplying it with existing and harvested data, which helps the model learn patterns within the
data. The goal of the training process is to help the model make predictions as accurate as
possible on new and unseen data based on what it has learned from the existing data.

To ensure that a model makes accurate predictions on data that it has not seen yet, it is
convenient not to train the model on all available data but rather to split it into two subsets—train
and test sets.

2

Technical background 3

Predictions can be made in different domains. For example, we can predict temperature,
house price, or age. These examples have in common that the predicted variables, also called
target variables, are continuous, and in this case, it is called a regression problem. On the other
hand, classification problems map input data into a set of possible outcomes, such as recognizing
traffic signs in image recognition or classifying diseases. In these cases, the target variable is one
of the possible outcomes.

2.1.1.1 Binary classification
When a machine learning problem can result in only two possible outcomes, it is called binary
classification. It is used in various applications, such as spam detection, medical diagnosis,
sentiment analysis, and predicting whether the price of a financial asset will increase or decrease.

In binary classification, the two possible outcomes are denoted as positive (class 1) and
negative (class 0). Several metrics exist to evaluate the quality of predictions. For example,
commonly used metrics are:[1]

Accuracy,

Precision,

Recall,

F1 score,

which are the metrics used to represent results of the experimental part of this thesis. All four
mentioned metric values range from zero to one, and the higher the value, the better the model’s
performance. After the model is trained and predictions are made, the following four values can
be computed to calculate the mentioned metrics:[1]

1. true positive (TP) - number of correctly predicted data as positive,

2. false positive (FP) - number of incorrectly predicted data as positive,

3. true negative (TN) - number of correctly predicted data as negative,

4. false negative (FN) - number of incorrectly predicted data as negative.

Accuracy represents the ratio of all correctly predicted values to the total number of values.
It is a pretty straightforward metric and convenient to use when the available samples are dis-
tributed somewhat evenly, meaning there are roughly 50 % samples of class 0 and roughly 50 %
samples of class 1 in the case of binary classification. In situations when the data is not evenly
distributed, a simple model constantly predicting 0 or 1 will achieve satisfactory results, even
though it has not learned anything about the nature of the data.[1] Following is how to compute
accuracy:[2]

Accuracy := TP + TN
TP + TN + FP + FN (2.1)

Precision and recall are more convenient metrics to consider when accuracy is unsuitable.
Precision is useful when an incorrectly predicted positive leads to significant consequences, and
recall is useful when the cost of false negatives is high.[1]. The following are equations for
precision and recall:[2]

Precision := TP
TP + FP (2.2)

Recall := TP
TP + FN (2.3)

Technical background 4

Precision and recall can be both reach high values if data is easily separable and the right
model is trained. However, sometimes, there is a trade-off between them, for example in spam
detection classification problems. It is important not to identify a legitimate message as spam. In
order to avoid doing this, the model will make few positive predictions, minimizing the number
of false positive predictions, which increases precision. On the other hand, it will make more
negative predictions, causing decrease in recall.[3]

The last metric considered in this thesis, in terms of binary classification, is the F1 score. It
is a harmonic mean of precision and recall:[3]

F1 score := 2 · Precision · Recall
Precision + Recall (2.4)

A confusion matrix is a way to visualize the number of true positives, true negatives, false
positives, and false negatives the model produced. Depending on how the confusion matrix is
created, it often uses different shades of a given color to better illustrate the number of values.
Below in figure 2.1 is an example of a confusion matrix[4], which is done in the scikit-learn[5]
library.

In the provided example, a binary classifier was trained on images of cars. Its task was to
predict whether a given image of a car was a sedan. After producing the predictions, numbers
of TP, FP, TN, and FN emerged and were put into a confusion matrix.

The correctly predicted data, TN and TP, are in the upper left and bottom right corners of
the matrix, respectively. False positives are in the upper right, and false negatives are in the
bottom left.

Figure 2.1 Example of confusion matrix

2.1.2 Neural networks
The main focus of this thesis is transformers, which are types of neural networks. Neural networks
(NN) are a widely used concept in the machine learning field. The design of a neural network is
inspired by the structure and functionality of the human brain, where neurons receive multiple
signals from other neurons and produce one output. In (artificial) NN, neurons are organized
into layers, with each layer producing output from input received from the previous layer.[6]
Figure 2.2 shows NN with its neurons and layers:

Technical background 5

Figure 2.2 Neural network structure

Input to the neural network can be any data the network is designed to process. It may be
images, sound, weather conditions, and more. Each input is transformed into a numerical rep-
resentation before being processed by the network. The neural network’s output is a prediction.
It is either a number representing the actual domain the network is trained on in the case of a
regression problem or a number representing a class in a classification problem.[7]

2.1.2.1 Perceptron
A perceptron is the first type of neural network introduced in 1958 by Frank Rosenblatt. It
consists of one neuron in a single layer, and it was designed to solve binary classification tasks.
It receives multiple inputs and each input is weighted with its own weight.[8]

The perceptron can correctly classify input data if its target variables are linearly separable.
On the other hand, if the data is not linearly separable, the perceptron never finds a solution
that would achieve 100 % accuracy. One of the problems the perceptron cannot solve is the XOR
function which is shown in the table 2.1. X1 and X2 are input variables, and Z is the target
variable:[6]

X1 X2 Z
0 0 0
0 1 1
1 0 1
1 1 0
Table 2.1 Xor function

The equation 2.5 below is an explanation of the mechanism by which a perceptron processes
input data and how it calculates output.

y = ϕ

(
n∑

i=1
wixi + b

)
, (2.5)

where x1, . . . , xn are input variables, w1, . . . , wn are weights and b is a bias, ϕ is an activation
function, typically step function.[8] In equation 2.6, there is how the step function computes
output for input x:[8]

ϕ(x) =
{

1 if x ≥ 0
0 if x < 0

(2.6)

Technical background 6

Non-linearly separable data can be better handled by multi-layer perceptrons, where multiple
perceptrons, or neurons, are put into various layers. How these layers work is explained in the
following section.

2.1.2.2 Dense layer
The dense layer, also known as the fully connected layer, connects every neuron in a layer to
every neuron in the next layer. The value of an i-th neuron in layer l is computed as:[9]

a
(l)
i := f

 n∑
j=1

Wija
(l−1)
j + b

(l)
i

 , (2.7)

where a
(l)
i ∈ R, m is a number of neurons in layer l, n is a number of neurons in layer previous

to l, W ∈ Rm,n is a matrix of weights, a(l−1) = (a(l−1)
0 , . . . , a

(l−1)
n−1)T ∈ Rn is a vector of neurons

in a layer previous to l, b(l) = (b0, . . . , bm−1)T ∈ Rm is a vector of biases for layer l, and f is an
activation function.

2.1.2.3 Activation function
The dense layer applies a linear transformation of its input, enabling the NN to learn linear
patterns in the input data. However, the data can also contain non-linearities that the linear
transformation may omit. An activation function is applied to help the NN learn non-linear
patterns within the data. The activation function applies a non-linear transformation to the
input value. One viable function is the Rectified Linear Unit (ReLU):[10][11]

ReLU(x) := max(0, x), (2.8)

where x represents the sum of weighted outputs of the previous layer and biases, in other words,
the output of one neuron, as detailed in equation 2.7.

There are several reasons for not using non-linear activation functions. When the task is
simple or patterns in the input data are prevalently of a linear nature, it can be better to omit
using non-linear functions. Another reason is that when the goal is to predict a continuous
variable, the non-linear function in the outer layer of an NN should not be used.[11] In such
cases, the identity function is a viable option:

Id(x) := x. (2.9)

The output of an activation function serves as an input to every neuron in the next layer.
ReLU and identity are the activation functions used in models implemented in this thesis.

2.1.2.4 Loss function
The models in this thesis are trained on past prices of forex currency pairs, and the prices are
handled as a continuous variable. This means the models are designed to solve a regression
problem.

In a regression problem, loss functions measure the quality of a model’s predictions. One
such function is the mean squared error (MSE):

MSE(Y, Ŷ) = 1
n

n∑
i=1

(yi − ŷi)2, (2.10)

where Y = (y0, . . . , yn−1) is a vector of real values and Ŷ = (ŷ0, . . . , ŷn−1) is a vector of predicted
values.

MSE is the loss function the models use in this thesis. There are many different loss functions
besides MSE, which include:

Technical background 7

mean absolute error,

root mean squared error,

mean squared logarithmic error,

mean absolute percentage error,

and many others. Each is calculated differently and reveals the model’s error from a slightly
different perspective. So, it matters what loss function is used for what problem. Various
loss functions yield distinct evaluations regarding the discrepancy between predicted values and
actual data in certain instances.[12]

The loss function is regularly calculated during the model’s training, and the goal is to
decrease its value.

2.1.2.5 Optimization method
Training a model aims to make its predictions as close to reality as possible. One way to do that
is to minimize a loss function during the training process. Optimization methods are algorithms
designed to adjust the NN’s weights by determining how much and in which direction each weight
should be updated to minimize the loss function.

Multiple optimization algorithms exist, such as:

stochastic gradient descent,

adaptive gradient algorithm,

root mean squared propagation,

adaptive moment estimation (Adam)

Adam is one of the most common methods, and it is the method used in this thesis.[13] The
following is an overview of how Adam works.

Compute gradient g of a loss function J for timestep t and model parameters w: gt = ∇wJ(w).
Information on gradients from past timesteps is retained like this:

mt = β1 ·mt−1 + (1− β1) · gt, (2.11)

vt = β2 · vt−1 + (1− β2) · g2
t , (2.12)

where β1, β2 ∈ [0, 1) are decay factors, mt, vt are first and second moments. At timestep 0 they
are initialized as m0 = θ, v0 = θ. Because of this initialization they need to be corrected like
this:

m̂t = mt

1− βt
1

(2.13)

v̂t = vt

1− βt
2

(2.14)

Finally weights of a model are updated:

wt+1 = wt −
η√

v̂t + ϵ
· m̂t, (2.15)

where η is a learning rate and ϵ is a small value preventing division by zero.[7, 14, 13]

Technical background 8

2.1.3 Transformer
A transformer is a type of neural network commonly used to solve sequence-to-sequence (seq2seq)
tasks. A seq2seq task is one where input and output are sequential data. It is common, for
example, in translating sentences from one language to another or converting speech to text.
Models designed to handle seq2seq tasks can generally process sequences of variable length.
Several models are commonly used for these tasks, such as recurrent neural networks (RNNs),
LSTMs, gated recurrent units (GRUs), or models utilizing the encoder-decoder framework. [15,
16]

The transformer’s architecture is displayed in figure 2.3. It utilizes self-attention mechanism,
which is a type of attention framework. The transformer model is built from the following
components, which will be described in more detail further: [17]

Input embedding,

Positional encoding,

Multi-head attention,

Masked multi-head attention,

Add&Norm,

Feed forward.

This thesis is about time series forecasting, but to clarify the concept, some of the essential
parts of the transformer are presented using examples from natural language processing. To
keep the terminology general and consistent, token and sequence are used instead of word and
sentence.

2.1.3.1 Encoder
The transformer is based on the encoder-decoder architecture. The encoder processes input
data, finds its essential features, explores data patterns, and converts them into a meaningful
representation. It can optionally consist of several layers, with each layer’s output being an input
to the next layer. The last layer’s output is then passed to the decoder. Each encoder’s layer
consists of the following sublayers: Multi-head attention, Add&Norm, Feed forward, followed by
another Add&Norm. [17, 18]

2.1.3.2 Decoder
The decoder functions in an autoregressive manner. It generates the output sequence in steps,
each step predicting one token based on the tokens it has generated up to this point. It receives
two different inputs: data received from the encoder and its own generated part of the output
sequence. The decoder can also contain multiple layers. It consists of the following sublay-
ers: Masked multi-head attention, Multi-head attention, Feed forward, all of them followed by
Add&Norm. [15, 17]

Technical background 9

Figure 2.3 Transformer architecture

2.1.3.3 Self-attention mechanism
The attention mechanism was first introduced in paper [19]. It was created to increase encoder-
decoder model performance in seq2seq tasks. Before this mechanism, the problem in seq2seq
tasks had been how the decoder used the encoder’s representation of the input sequence. The
encoder compressed the input sequence into a fixed-length vector, which remained the same size
regardless of the length of the input sequence. This caused a problem, especially with longer
sequences, because the information in a long sequence was more easily lost because the model
could not represent all critical information.

The attention mechanism allows the encoder to create a sequence of vectors, each representing
different parts of the input sequence. The decoder uses its learned weights and focuses on the
most relevant parts of the input sequence for each token it generates. The decoder’s partial
output, combined with the context it received from the encoder, helps it predict the next token.
[19]

Technical background 10

Self-attention is a specific type of attention mechanism that allows each position in the input
sequence to be attended to over every other position in the sequence. The transformer has a
self-attention mechanism called scaled dot product attention. Firstly, it transforms the input
sequence vector into three vectors: query, key, and value. The transformation is done by linearly
projecting the input sequence (seq) three times, using matrices with learned weights: Wq, Wk,
and Wv, and it works like this: [17]

Q = seq ·WQ, (2.16)
Q = seq ·WK , (2.17)
Q = seq ·WV . (2.18)

Linear transformation is effectively equivalent to passing data through a dense layer without
an activation function. Thus, every of the three transformations results in vectors of a predefined
dimension determined by the number of neurons in the layer. The dimensions of Q, K, and V
are dQ, dK , and dV respectively.

The operation qkT constructs attention weights between each pair of tokens from the se-
quence. The product creates a 2D matrix where each value displays the attention weight between
two tokens. The attention weights measure how much focus should each token give to every other
token. [20]

How self-attention works is in this section shown on a specific sequence: ”fear of a name
increases fear of the thing itself” The computation of attention weights and visualizations on
this example sequence is performed using BertViz[21], an interactive tool for visualizing atten-
tion in transformer language models. The model used to process the sequence is a pre-trained
transformer, DistilBERT [22], a simplified version of BERT [23] (Bidirectional Encoder Represen-
tations from Transformers), which is a transformer-based model designed for natural language
processing tasks. The following Table 2.2 shows what the attention weights can look like:

[CLS] fear of a name increases fear of the thing itself [SEP]
[CLS] .046 .05 .11 .075 .074 .037 .063 .12 .1 .043 .08 .2
fear .14 .058 .042 .012 .098 .099 .067 .047 .015 .17 .14 .1
of .21 .066 .056 .039 .076 .075 .067 .057 .053 .12 .094 .086
a .21 .074 .021 .063 .094 .11 .074 .021 .065 .091 .1 .075

name .26 .09 .029 .028 .04 .19 .083 .026 .035 .1 .075 .04
increases .15 .094 .09 .037 .066 .051 .09 .078 .052 .13 .11 .046

fear .17 .071 .054 .014 .072 .091 .067 .051 .017 .18 .12 .085
of .24 .072 .061 .05 .068 .067 .063 .054 .063 .11 .095 .06

the .3 .054 .059 .068 .052 .058 .05 .055 .1 .065 .079 .065
thing .17 .13 .039 .033 .077 .064 .014 .037 .036 .074 .12 .08
itself .086 .093 .069 .079 .059 .072 .095 .075 .09 .079 .047 .16
[SEP] .15 .049 .049 .11 .058 .031 .054 .057 .11 .042 .063 .22
Table 2.2 Attention weights matrix

After that, the product QKT is scaled by 1√
dk

and passed through the softmax function.
The scaling is important because for large values of dk, the product’s values can become large,
which leads to very small gradients in the softmax function. The softmax function is a function
that takes a vector of numbers as its input and returns a probability distribution. The resulting
values range from 0 to 1 and sum to 1. It is a function often used in classification tasks to predict
probabilities that a data point belongs to a category. Following is the mathematical definition
of the function:

σ(zi) = ezi∑n
j=1 ezj

, (2.19)

Technical background 11

where zi ∈ z = (z1, . . . , zn).[17, 20]
The result of the softmax function applied on the scaled QKT signals the attention weights

of each token relative to one another.
Each of the three vectors—query, key, and value—serves a different purpose. The transformer

uses multiple sets of these three vectors to analyze the sequence simultaneously, where each query,
key, and value focuses on a different aspect of the input. This is further explained in one of the
following section 2.1.3.6.

The query represents the information a token seeks from other tokens. The keys indicate
how relevant each token is to a given query; based on how well a key matches the query, the
mechanism determines how much focus to give to a token. The value vector contains each token’s
actual information, weighted by the attention scores from the queries and keys. [24, 17, 20]

In conclusion, the self-attention mechanism in transformer functions like this:

ScaledDotProductAttention(Q, K, V) = Softmax(QKT

√
dk

)V (2.20)

2.1.3.4 Input embedding
Input embedding is applied to the input tokens in both the encoder and the decoder. Each token
is mapped into a desired dimensional space through an embedding layer. The dimensionality of
the embedding is in the paper [17] determined by the parameter dmodel, which is set to 512.

2.1.3.5 Positional encoding
The self-attention mechanism does not provide the tokens with information about their position.
As was mentioned previously, it processes information using three vectors: keys, queries, and
values. It lets the vectors communicate, but it needs to be given information about each token’s
position. Unlike recurrence-based models (RNN), which process the information in order, thus
having information about the token’s position, the transformer needs to utilize a Positional
encoding component, which provides information about the relative position of tokens within the
input.[24, 20]

Positional encoding is applied after the Input embedding, both in the encoder and in the
decoder. It adds a vector of length dmodel to each embedded token’s vector. The value added
is determined by the token’s position in the sequence pos and by the position of elements in
the embedding vector i. The computation of the Positional encoding differs for even- and odd-
indexed positions in the embedding vector and is described by the following equations [17]:

PE(pos, 2i) = sin
(

pos
10000

2i
dmodel

)
, (2.21)

PE(pos, 2i + 1) = cos
(

pos
10000

2i
dmodel

)
, (2.22)

Figure 2.4 shows what the output of positional encoding looks like. The plots illustrate the
behavior of the positional encoding vectors across different positions in the embedding vector.
The left plot represents sine values for the even-indexed embedding dimensions. Each line belongs
to a particular embedding dimension, called feature in the plot. It is clear that the higher the
dimension index, the bigger the period of the sine function. The right plot shows cosine values
for the odd-indexed dimensions.

Technical background 12

Figure 2.4 Visualization of Positional encoding values

The output of the Positional encoding has the same dimension as the output of the Input
embedding so that it can be summed and passed on to the successive layers of the transformer.

2.1.3.6 Multi-head attention
Multi-head attention (MHA) utilizes the self-attention mechanism several times independently.
Each self-attention mechanism is executed in one head; the number of heads in the paper [17]
was set to eight. Each head allows the transformer to focus on different aspects and features of
the sequence. The vectors Wq, Wk, and Wv are different for each head. The calculation of i-th
head works as follows:

headi(Q, K, V) = ScaledDotProductAttention(Q, K, V) (2.23)

After each head is computed, every output is concatenated and passed to the following layers in
the transformer:

MHA(seq) = Concat(head1(Q1, K1, V1), . . . , headh(Qh, Kh, Vh)), (2.24)
Qi = seqW Q

i , (2.25)
Ki = seqW K

i , (2.26)
Vi = seqW V

i . (2.27)

Figure 2.5 shows three visualizations of the self-attention mechanism in the example sequence.
Subfigures 2.5a, 2.5b, and 2.5c show how tokens attend to other tokens in a sequence. This is
represented on the BertViz visualization. The first Subfigure, 2.5a, shows the attention dis-
tribution of a specific attention head; it represents how each token in the sequence attends to
every other token in the sequence. The Subfigure in the middle, 2.5b, represents what tokens
the token fear attends to. The last Subfigure at the right, 2.5c, displays what tokens attend to
the token increases. The DistilBERT model consists of 12 attention heads. Since each attention
head focuses on different features of the input sequence, the visualization looks different for each
head, and the same goes for each encoder or decoder layer. The visualization displayed on every
one of the Figures comes from the third DistilBERT layer, the middle graph comes from the 6th
attention head, and the right graph comes from the 9th attention head.

Technical background 13

(a) BertViz attention distribution (b) BertViz token fear (c) BertViz token increases

Figure 2.5 BertViz visuzalizations

2.1.3.7 Masked multi-head attention
The transformer is specialized to solve sequence generation tasks. The goal in sequence generation
is to correctly predict the next token based on the tokens the model has generated so far. As
mentioned previously, the decoder is the part of the transformer that functions in steps and
generates the output sequence. During training, the transformer has access to the whole target
sequence and it allows the model to learn its weights based on the correct output.[20]

The self-attention mechanism, explained in section 2.1.3.3, creates a risk in the decoder
because it could have access to tokens that should be generated in the future. Being able to
see future tokens can mean that the decoder would not learn meaningful patterns in the target
sequence but only what tokens will be generated. Alternatively, it would learn patterns that
occur in the distant part of the sequence, which would skew its current outputs the wrong way.
[20, 18]

The previous Table 2.2 demonstrates the problem where there are attention weight values
between a token and other tokens that come after it. The self-attention mechanism is upgraded
to a masked self-attention mechanism to prohibit the decoder from seeing the weights of ”future”
tokens. Table 2.3 presents how the attention weights look in the masked version of the mechanism.
The negative infinities will result in zeros after applying the softmax function, resulting in tokens
not paying attention to future tokens. The dot product attention value from equation 2.20 is
transformed by summing the QKT with a triangular matrix with zeros on and below the diagonal
and negative infinity above the diagonal. With the triangular matrix M the equation functions
as follows: [17]

DotProductAttention(Q, K, V) = Softmax(QKT + M√
dk

)V (2.28)

Technical background 14

[CLS] fear of a name increases fear of the thing itself [SEP]
[CLS] .046 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
fear .14 .058 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
of .21 .066 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
a .21 .074 .021 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞

name .26 .09 .029 .028 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
increases .15 .094 .09 .037 .066 −∞ −∞ −∞ −∞ −∞ −∞ −∞

fear .17 .071 .054 .014 .072 .091 −∞ −∞ −∞ −∞ −∞ −∞
of .24 .072 .061 .05 .068 .067 .063 −∞ −∞ −∞ −∞ −∞

the .3 .054 .059 .068 .052 .058 .05 .055 −∞ −∞ −∞ −∞
thing .17 .13 .039 .033 .077 .064 .014 .037 .036 .074 −∞ −∞
itself .086 .093 .069 .079 .059 .072 .095 .075 .09 .079 .047 −∞
[SEP] .15 .049 .049 .11 .058 .031 .054 .057 .11 .042 .063 .22
Table 2.3 Masked atttention weights matrix

2.1.3.8 Add&Norm
In sublayer Add&Norm, layer normalization is applied to the data. It stabilizes and acceler-
ates training. Unlike batch normalization, which normalizes input for every feature across the
batch dimension, layer normalization normalizes the data across the features for each data point.
The normalization is performed independently for each data point and is more appropriate for
sequence tasks. [25, 26, 17]

The following equations, 2.29, 2.30, 2.31, 2.31, show how layer normalization works. Firstly,
the mean and variance of the input data point x = (x1, . . . , xd) is computed:

µ = 1
d

d∑
i=1

xi (2.29)

σ2 = 1
d

d∑
i=1

(xi − µ)2 (2.30)

Then, every element of the data point is normalized:

x̂i = xi − µ√
σ2 + ϵ

. (2.31)

ϵ is a constant preventing division by zero. Finally, each element is transformed with parameter
γ and β, which are parameters that will be adjusted during training the model.

yi = γx̂i + β, (2.32)

After layer normalization is done, its output is summed with the original input to Add&Norm,
the operation is called residual connection and can function as follows:

y = f(x) + x, (2.33)

where f represents layer normalization.

2.1.3.9 Feed forward
In this sublayer, the data is passed through two dense layers. The first one had 2048 neu-
rons in paper [17]. The information about number of neurons was stored in the variable d ff.

Technical background 15

It also applies the ReLU activation function. The second dense layer has d model neurons and
no activation function. How this sublayer works can be summarized using the following equation:

FeedForward(x) = ReLU(xW1 + b1)W2 + b2, (2.34)

where W1, W2 are learned weight matrices and b1, b2 are learned biases.

2.1.3.10 Additional information and summary
The output of each sublayer, as well as the output of each layer in the Feed forward sublayer,
is followed by dropout. Dropout is a regularization technique that prevents overfitting. During
training, every NN neuron has some probability of being ”dropped,” meaning it will not par-
ticipate in the current training step. This technique forces the network not to rely on specific
neurons but instead use all its neurons for learning. [27]

The Figure 2.6 shows how a NN looks after dropout disables a set of neurons.

Figure 2.6 Dropout: before application (left) and after (right)

The following Table 2.4 summarizes the key hyperparameters of the transformer model. It
details the values of the hyperparameters used in the paper [17].

Hyperparameter Value
encoder layers 6
decoder layers 6

d model 512
d ff 2048

attention heads 8
d q 64
d k 64
d v 64

dropout rate 0.1
Table 2.4 Transformer hyperparameters

2.1.4 Time series
”A time series is a sequence of observations taken sequentially in time. Many sets of data appear
as time series: a monthly sequence of the quantity of goods shipped from a factory, a weekly

Technical background 16

series of the number of road accidents, daily rainfall amounts, hourly observations made on the
yield of a chemical process, and so on.”[28] In this thesis, time series can be thought of as a finite
n-tuple:

(f(ti) | i = 1, 2, . . . , n) , ti ∈ T, (2.35)
where T is a set of timestamps, for example ”24.10.2017 14:30” ∈ T , and f : T → R. In addition,
function f is not explicitly known, making forecasting challenging.

2.1.4.1 Types of time series
Each point in time can contain any number of variables depending on what is measured. From
this point of view, there are two types of time series:

1. univariate - each data point contains only one variable,

2. multivariate - each data point contains two or more variables.

For multivariate time series, the definition from equation 2.35 can be upgraded to:

(f1(ti), f2(ti), . . . , fm(ti) | i = 1, 2, . . . , n) , t ∈ T, (2.36)

where fj(t) represents the j-th variable of the series which has m variables.
Figure 2.7 shows two line plots created in the matplotlib library[29]: the left with a univariate

time series and the right with a multivariate time series. The data for both plots is not real
and is generated by ChatGPT[30], but they capture the meaning of univariate and multivariate
series well. The univariate time series represents a temperature measured in January 2020. The
plot with the multivariate time series captures temperature, humidity, and wind speed from the
same time frame.

Figure 2.7 Examples of univariate and multivariate time series

2.1.4.2 Components of time series
Many factors can influence the data that make up a time series, determining how a time series
looks and what its properties are. Each of these factors behaves differently and can be categorized
into specific groups. While not every factor is present in every single time series, the components
are:[31]

level - baseline value around which the data oscillates,

trend - long-term direction of the data,

seasonality - periodic fluctuations occurring at regular intervals,

noise - irregular, unpredictable and random property of the data.

Technical background 17

Figure 2.8 shows a plot of a known dataset, Air passengers, showing the number of passengers
of US airlines each month in the years 1949-1960. It is a suitable example of a time series to
showcase some of its components, especially trend and seasonality. Upon examining the plot,
an upward trend in the number of passengers can be seen over time. Besides the trend, the plot
goes up and down over time, with peaks in summer months when the number of passengers was
higher and a decline in passengers in winter months.

Figure 2.8 Visualization of US airline passengers dataset

There are approaches to decomposing a time series into components mentioned before. The
approaches are: additive model and multiplicative model. In the additive model, any data point
at a specific time is assumed to be a linear combination of its components. Thus, it can be
computed as a sum of the components at that time. In the multiplicative model, the components
are combined multiplicatively, and the relationship between the components of the time series
is expected to be non-linear. The following equations 2.37 and 2.38 show how a data point at a
time t is computed:

Yt = Lt + Tt + St + Nt, (2.37)

Yt = Lt · Tt · St ·Nt, (2.38)

where Yt is an element of a time series at time t, Lt is a level value at time t, Tt is a trend value
at time t, St is a seasonality value at time t and Nt is a noise value at time t.[31]

2.1.4.3 Stationarity
Data sorted in time provides information about the series. When considering the statistical
properties of time series over time, there are two types of series:

stationary,

non-stationary.

A time series (f(ti) | i = 1, 2, . . . , n) is stationary if:

1. E(f(ti)2) <∞,

2. E(f(ti)) is a constant, independent of t,

3. Cov(f(ti), f(ti+k)) is independent of t for each k, [32]

where E(X) =
∑

x x · P (X = x) is expected value of a discrete random variable, P (X = x) is
the probability that random variable X is equal to x, and Cov(X, Y) = E((X −EX)(Y −EY))

Technical background 18

is covariance. Stationary time series do not have trends or seasonality. Statistical tests can be
performed to check stationarity, for example Dickey-Fuller test.[31]

Figure 2.9 shows an example of stationary and non-stationary time series. The data comes
from the foreign exchange market (Forex) and it contains information about the EUR/USD
currency pair. Both plots show 96 data points from the same time frame, from 2024-07-10, 00:00
to 2024-07-11, 00:00. The prices were recorded every 15 minutes. The left plot displays price
of the currency pair, while the right plot shows how the price changed from one time step to
another.

Figure 2.9 Example of stationary and non-stationary time series

2.1.4.4 Time series forecasting
Information in time series can provide context for how the series will behave in the future.
Predicting the series’ next steps can be relatively simple if there is a clear trend or seasonality.
Even when it is not simple, forecasting methods can be utilized, and predictions can be made,
such as training a neural network, or any other model, on historical financial data and measuring
its performance, which will be done in the experiments in this thesis. Different fields where time
series forecasting makes sense include:

finance,

weather,

supply chain management,

hotel occupancy rate,

spread of an epidemic.

Forecasting can be categorized into two types based on the number of steps that need to be
predicted:

1. one-step forecasting,

2. multi-step forecasting: depending on how the predicted variables are constructed, there are
types:

a. iterated forecasting: essentially an one-step forecasting with the predicted values used as
additional input until the desired number of forecasts is reached,

b. multi-output forecasting: the whole output sequence is produced directly.

Data 19

Generally, there is a sequence of n elements sorted in time, (x1, x2, . . . , xn), and the goal is
to predict the following p elements, (xn+1, . . . , xn+p). If p is equal to one, then it is one-step
forecasting.[31]

The authors of the paper ”Transformers in Time Series: A Survey”[33] write about how
transformers are well-built for natural language processing tasks or computer vision and that
transformer-based models have been increasingly used for time series forecasting tasks due to
the ability to capture dependencies in sequential data. They also write about the limitations of
these models, such as problems with capturing seasonal patterns or computational complexity.
They give an overview of some transformer-based models: Autoformer[34], FEDformer[35], or
LogTrans[36], each with their adaptations and improvements.

Autoformer was the second model chosen to be implemented besides the original Transformer
for its ability to model short-term and long-term dependencies through its time series decomposi-
tion mechanism and auto-correlation attention, which also reduces the computational complexity
of the self-attention mechanism from the Transformer. The model will be introduced further in
section 2.3.

2.2 Data
This section offers more insight into the data and transformation techniques utilized in the
experiments. Section 2.2.1 explains the foreign exchange market (Forex). Then, it shows what the
data from this market looks like and how it can be further analyzed to extract more information.
Section 2.2.2 operates with time series as a signal and introduces the field of signal processing.
It shows how to work with signals and how they can be modified or filtered, and it presents and
explains one specific filter used in the experiments.

2.2.1 Forex
Forex may be the largest financial market in the world. There are multiple reasons to support
this statement:

This market trades a massive amount of value. Daily trading volume reached $7.5 trillion
in April 2022. In comparison, the National Association of Securities Dealers Automated
Quotations (NASDAQ, one of the largest stock exchanges) was at $260,867,444,019 on 2022-
12-04, about 28 times less.[37, 38]

It is a market with many users worldwide: governments, central banks, corporations, hedge
funds, and individuals.[39]

It is open 24 hours a day except for weekends, as opposed to, for example, the New York Stock
Exchange (NYSE), the largest stock exchange by market capitalization of listed companies,
which is open from 9:30 a.m. to 4:00 p.m. (eastern time) from Monday to Friday.[40, 41]

The asset traded in this market is called a currency pair. It consists of two different currencies
and it represents their values relative to each other. The currencies in a currency pair are called:

base currency,

quote currency.

In the most traded EUR/USD currency pair, the euro is the base currency, and the US dollar is
the quote currency. The pair’s value indicates how much of the quote currency it takes to buy
one unit of the base currency. If the pair’s value increases, the base currency strengthens relative
to the quote currency.[42]

Data 20

Buying the pair means purchasing the base currency and selling the quote currency. Buying
the pair might be worth it when the value of the base currency is assumed to rise relative to the
quote currency. This process of assuming and buying the pair is called a long position. On the
other hand, expecting the value of the base currency to fall relative to the quote currency means
selling the currency pair, which means taking a short position.

Forex data is available in various forms depending on the time intervals in which it is col-
lected. There are, for example, 1-minute, 5-minute, daily, monthly data. Each data point can
be represented as a candlestick, which illustrates four currency pair prices at an exact time. The
prices are:[43]

opening price - the price of a currency pair at the first trade carried out in the trading period.

high price - the maximum price of all executed trades during the period.

low price - the minimum price of all executed trades during the period.

closing price - the price of a currency pair at the last trade carried out in the period.

Forex data often comes with an additional feature, volume, which is the total amount of an asset
traded during the period.

Knowing how a price changes from one time step to another is handy when working with
prices. This is deducted from subtracting the prices at the two time stamps and transforming the
subtracted value into pips, or price interest points. A pip is the slightest possible price movement,
and for most currency pairs, including the EUR/USD, it is set to 0.0001. For example, if a price
changes by $0.0001 in the EUR/USD currency pair, it is said to have changed by one pip.

2.2.1.1 Technical indicators
Technical indicators are mathematical calculations based on historical prices or volumes used
to analyze and predict possible future market movements. The following explains two technical
indicators that are used in the experiments, the relative strength index (RSI) and Williams
percent range. RSI measures the speed and change of price movements. It ranges from 0 to 100
and defines overbought and oversold assets. When it is above 70, it suggests an asset is overbought,
while below 30, it indicates oversold. The RSI can help predict potential price changes in near
future by signaling whether an asset is gaining or losing strength. RSI is calculated as:

RSI(n) = 100− 100
1 + RS(n) ,

RS(n) = average gain(n)
average loss(n) ,

average gain(n) = 1
n

n∑
i=1

max(Ci − Ci−1, 0),

average loss(n) = 1
n

n∑
i=1

max(Ci−1 − Ci, 0),

(2.39)

where n is the number of previous time steps to be considered, C i is the close price at time step
i, average gain is a sum of price increases timestep-to-timestep, average loss is a sum of price
declines timestep-to-timestep.[44]

The Williams percent range index also uses overbought and oversold terms to describe whether
the price will likely rise or fall. It ranges from -100 to 0. Values above -20 indicate an overbought
condition, and values below -80 indicate an oversold condition:[44]

WILL%R(n) =
max(Hi, Hi−1, . . . , Hi−(n−1) − Ci

max(Hi, Hi−1, . . . , Hi−(n−1))−min(Li, Li−1, . . . , Li−(n−1))
· (−100). (2.40)

Data 21

There are many other technical indicators; using them together is convenient for getting more
information from past prices and volumes.

2.2.2 Signal processing
When trading on the financial market, a financial instrument’s price can be considered a signal.

When a person speaks, their vocal cords vibrate and produce sound waves. These sound
waves are a type of signal. They travel through the air into another person’s ears, where they
are processed and delivered into the brain, where they are interpreted. When a person looks
at a (2D) image, they see a signal - in this case, as a function of two variables, one for each
dimension.[45]

A signal is a piece of information represented quantitatively across various domains. The
domain can be time, space, frequency, or other parameters. For the previous examples, the
quantitative manner can be the loudness of the sound or color. The domain can be time or
space. In the context of this thesis, the quantitative manner is the price of a currency pair, and
the domain is time. Two basic types of signals are continuous and discrete. Continuous signals
are defined for every instant of time, and discrete signals are defined at specific points in time.
Although a sequence of prices is often visualized as a plot line so it appears continuous, in reality,
the prices are measured at specified intervals. Therefore, the signal will be considered discrete
in this thesis.

The price of any financial asset fluctuates over time. Price changes happen daily, and yet, in
many cases, there is a clear long-term trend. Figure 2.10 shows the closing price of the EUR/USD
currency pair during May 2022. The line shows a gradual increase in price from roughly half the
month to its end. At the same time, many fluctuations occur hourly, daily, and weekly. This
behavior highlights the concept of frequency in a signal. Low frequencies are represented in the
long-term trend in the price; in this example, it would be the price increase during the second
half of the month. On the other hand, the daily fluctuations reflect higher frequencies present
in the signal. A signal’s frequencies can be analyzed through techniques like Fourier analysis,
which is explained in the following section 2.2.2.1.

Figure 2.10 Low and high frequencies in a signal

Signals can be received, analyzed, and transformed to extract useful information. For exam-
ple, sound can be made to be better quality or to lose unwanted noise. Transformation applied to
an image can find sharp edges or locations with high and low brightness. These transformations
can be performed using signal filters. There are four types of filters, categorized by whether they
retain or strengthen specific frequencies or attenuate them:

low-pass,

high-pass,

Data 22

band-pass,

band-stop.
A low-pass filter has a specified cutoff frequency, which indicates that frequencies below this
threshold should be kept and higher frequencies should be attenuated. A high-pass filter performs
the opposite of a low-pass filter. A band-pass filter needs a specified range of frequencies it passes
through, while a band-stop filter keeps the frequencies outside this range.[45] Figure 2.11 shows
how the filters work. On the x-axis, there are frequencies; on the y-axis, there is a frequency
response, or gain, which signals how much information from a frequency is allowed to pass through
the filter.[46]

Figure 2.11 Types of filters based on what frequencies they allow to pass through

In the experiments in this thesis, a low-pass filter will be used to retain longer-term informa-
tion while attenuating unwanted noise in the time series.

2.2.2.1 Fourier Transform
Generally, Fourier transform is a mathematical technique to transform data from one domain
to another. It is used in numerical analysis or signal processing. When working with signals,
specifically in the time domain, the information in the signal can be represented in two ways: as
a function of time or frequency. The Fourier transform allows a signal to be converted from the
time domain to the frequency domain, and the inverse Fourier transform converts the frequency
function back to the function of time. How to switch between the two representations is depicted
in the following equations: 2.41, 2.42:

H(f) =
∫ ∞

−∞
h(t)e−2πift dt, (2.41)

h(t) =
∫ ∞

−∞
H(f)e2πift df, (2.42)

where f is frequency, t is time, i is an imaginary unit, h is the function of time and H is the
function of frequency. When t is measured in seconds, the frequency is measured in cycles per
second. Besides frequency, angular frequency is often used, for which the units are radians per
second[47]:

ω = 2πf. (2.43)
In the case of discrete signals, discrete Fourier transform (DFT) and inverse discrete Fourier

transform (IDFT) are utilized:

Hn =
N−1∑
k=0

hk · e−2πikn/N , (2.44)

hk = 1
N

N−1∑
n=0

Hn · e2πikn/N , (2.45)

where hk represents the discrete signal at time k, Hn is the discrete signal in the frequency
domain, N is the number of values in the discrete signal.[47]

Data 23

2.2.2.2 Fast Fourier transform
The Fast Fourier transform (FFT) is a set of algorithms for faster computing the DFT. The
DFT has time complexity N2, while the FFT can be calculated in N · logN operations. One
of the better-known algorithms for computing FFT is the Cooley-Tukey algorithm, which uses
the divide-and-conquer algorithm that breaks the problem into several smaller subproblems and
solves each subproblem recursively. The idea behind the Cooley-Tukey algorithm is as follows:
equation 2.44 can be rewritten as a sum of two DFTs, each consisting of only even and odd
elements of the original DFT and each of length N

2 :

Hn =
N
2 −1∑
k=0

(h2k · e−2πink/(N
2)) + e

−2πin
N ·

N
2 −1∑
k=0

(h2k+1 · e−2πink/(N
2)) = He

n + e
−2πin

N ·Ho
n (2.46)

This method can be used recursively on each He
n and Ho

n, which creates Hee
n , Heo

n , Hoe
n , Hoo

n

and so on. It is convenient to have N equal to the power of two because, after several operations,
each sum will contain only one element.[47, 48]

After the smaller DFT parts are calculated, they are combined in a structure called a butterfly
diagram, where the smaller parts are combined in pairs and weighted by twiddle factors, computed
during the dividing part of the algorithm, e

−2πik
N .[47, 48]

The inverse Fast Fourier transform (IFFT) shown in equation 2.45 can be calculated similarly
since the equation is very similar to the FFT, apart from the exponent and multiplication by 1

N .
The FFT and IFFT are used in one of the models implemented in this thesis, the Autoformer.

2.2.2.3 Butterworth filter
The Butterworth filter will be used to filter signals in experiments in this thesis. Depending on
its configuration, it can function as a low-pass, high-pass, band-pass, or band-stop filter. The
following text and the experiments will work with the filter in its low-pass version. It has two
input parameters:

order,

cutoff frequency.

The cutoff frequency separates the lower frequencies that are to be retained from the higher
frequencies that are to be filtered out. The order is an integer that controls how sharply the
frequencies above the cutoff frequency are attenuated.[45]

Figure 2.12 shows a plot similar to the low-pass filter in Figure 2.11. It illustrates how
different values of the order influence the filter’s frequency response. The higher the order, the
less the high frequencies appear in the output.

Autoformer 24

Figure 2.12 Butterworth’s frequency response on different order values

The Butterworth filter is designed to have a maximally flat frequency response in the pass-
band, meaning the filter maintains a frequency response close to one for frequencies below the
cutoff. Another feature of this filter is a smooth transition, which means the response curve
gradually decreases as the frequencies pass through the cutoff frequency. The following equation
2.47 explains how the order and cutoff frequency influence what frequencies are allowed to pass
through the filter:

|H(ω)| = 1√
1 +

(
ω
ωc

)2N
. (2.47)

ω is the angular frequency of a signal, the |H(ω)| is the frequency response, ωc is the cutoff
frequency, and N is the order.[45]

In the case of discrete signals, the Butterworth filter transforms each signal element, as shown
in the following equation:

y[t] =
N∑

i=0
bix[t− i]−

N∑
j=1

ajy[t− j]. (2.48)

y[t] is the filtered output at time step t, x[t] is the input signal at time step t, N is the order, and
bi and aj are filter coefficients. Initial conditions for this equation can be handled in multiple
ways, such as setting zeros, or padding. The scipy library, which will be used in the experiments,
uses the padding method.[49]

2.3 Autoformer
The Autoformer was introduced in paper Autoformer: Decomposition Transformers with Auto-
Correlation for Long-Term Series Forecasting [34]. It is a type of deep learning model designed
specifically for time series forecasting. The researchers who introduced him created it with the
following upgrades from the transformer model:

The self-attention mechanism’s computational complexity is quadratic with respect to the
input sequence’s length, making it more challenging to work with longer time series. The Aut-
oformer model does not utilize the self-attention mechanism but the Auto-Correlation mech-
anism, which has computational complexity O(L*logL), where L is the sequence length.[34]

The self-attention mechanism has difficulty analyzing long-term time series because it tends
to focus on local interactions rather than the overall structure of the time series. To check

Related work 25

the global properties of the series, the Autoformer uses series decomposition, which finds the
trend and seasonality components of the series. [34]

Like the transformer, the Autoformer uses an encoder-decoder architecture. Unlike the trans-
former, which does the iterated forecast, the Autoformer performs the multi-output forecast and
yields the output sequence at once. In the following Figure 2.13 is an overall structure of the
model: [34]

Figure 2.13 Autoformer architecture

The encoder and decoder layers contain the following sublayers:

Auto-Correlation,

Series Decomp,

Feed Forward.

The Auto-correlation mechanism finds periodic relationships and dependencies across different
data points in a time series. It finds sub-series with similar patterns by calculating autocorrelation
between different time steps in the series. When it finds them, it aggregates them using time
delay aggregation, which combines the information from them. [34, 31]

The autocorrelation is computed using the convolution theorem[50], which states that the
Fourier transform of the convolution of two functions is the product of their Fourier transform.
In other words, convolution in the time domain corresponds to multiplication in the frequency
domain. The convolution theorem can be applied since autocorrelation is closely related to con-
volution. A significant advantage of calculating the autocorrelation using the Fourier transform
is the reduced time complexity of the mechanism.[51, 52]

The Series Decomp sublayer separates time series into trend-cyclical and seasonal parts. It is
performed using ”moving average to smooth out periodic fluctuations and highlight the long-term
trends”.[34].

The Feed Forward works similarly to the one from the Transformer, introduced in section
2.1.3.9.

2.4 Related work
This section summarizes three works related to this thesis’s topic, price prediction. The following
works predicted prices of either forex assets or stocks. Each subsection contains information
about the exact goal of each work, the methods and models used for predictions, the data used,
how it was processed, and the results achieved.

Related work 26

2.4.1 Transformer-Based Deep Learning Model for Stock
Price Prediction: A Case Study on Bangladesh Stock
Market

The researchers of paper [53] used the transformer-based model to predict stock prices in the
Bangladesh Stock Market, specifically on the Dhaka Stock Exchange.

The work was done with daily and weekly data. For the daily data, the goal was to predict
the following day’s closing price based on the previous day’s values. For weekly data, the goal
was to predict the following week’s closing price based on the values from previous weeks. Data
contained these seven features:

1. the trading code (a unique identifier assigned to each company listed on the Dhaka Stock
Exchange),

2. date,

3. opening price,

4. high price,

5. low price,

6. closing price,

7. volume.

Data from eight companies were considered, each with its own trained model, so 16 models were
created, eight for daily data and eight for weekly data.

During data processing, the authors deemed it crucial to make the data stationary. This
was done by extracting each feature’s previous time step value from the current time step value.
Then, the values were replaced with the mean average of window size ten. Then, values were
normalized with min-max normalization. Ultimately, the data was split into train, validation,
and test sets.

The model used was a transformer-based model consisting of just an encoder. It received
sequences of length eight, with each time step containing five features:

1. open price,

2. high price,

3. low price,

4. close price,

5. volume.

The data is augmented with Time2Vec encoding[54] to encode the information about time. The
model’s output is a single continuous variable (a price return).

Since the model’s output is a continuous variable, the authors solved a regression problem
and chose mean absolute error (MAE) and root mean squared error (RMSE), which is the square
root of the MSE value, to estimate the models’ performance. In table 2.5 and table 2.6, there
are MAE and RMSE for both the daily and weekly data for training, validation, and testing sets
for each of the eight companies, respectively.

Related work 27

Daily
Training Validation Testing

Trading Code RMSE MAE RMSE MAE RMSE MAE
1JANATAMF 3.94E-02 3.07E-02 4.68E-02 3.77E-02 6.59E-02 4.76E-02
AAMRANET 6.69E-02 5.45E-02 7.71E-02 6.45E-02 1.02E-01 8.43E-02

ABBANK 4.90E-02 3.94E-02 4.84E-02 3.90E-02 6.96E-02 5.20E-02
ACI 1.62E-02 1.25E-02 1.95E-02 1.55E-02 1.93E-02 1.55E-02

ACIFORMULA 3.18E-02 2.54E-02 3.48E-02 2.79E-02 4.06E-02 3.23E-02
AGRANINS 3.39E-02 2.66E-02 6.09E-02 4.67E-02 8.39E-02 6.25E-02

ALLTEX 2.31E-02 1.71E-02 2.11E-02 1.62E-02 2.23E-02 1.74E-02
DELTALIFE 2.05E-02 1.61E-02 1.33E-02 1.08E-02 2.54E-02 1.94E-02

Table 2.5 Dhaka Stock Exchange: results on daily data

Weekly
Training Validation Testing

Trading Code RMSE MAE RMSE MAE RMSE MAE
1JANATAMF 5.78E-02 4.33E-02 7.54E-02 5.49E-02 7.70E-02 5.53E-02
AAMRANET 1.30E-01 1.06E-01 3.19E-01 3.00E-01 1.72E-01 1.42E-01

ABBANK 8.35E-02 6.32E-02 5.90E-02 4.65E-02 1.98E-01 1.59E-01
ACI 5.83E-02 4.73E-02 5.90E-02 3.98E-02 7.79E-02 6.55E-02

ACIFORMULA 6.82E-02 5.39E-02 9.13E-02 8.24E-02 9.31E-02 7.64E-02
AGRANINS 5.78E-02 4.54E-02 1.07E-01 8.79E-02 1.21E-01 9.09E-02

ALLTEX 5.05E-02 3.52E-02 2.38E-02 2.00E-02 3.87E-02 2.98E-02
DELTALIFE 5.46E-02 4.05E-02 2.27E-02 1.79E-02 6.95E-02 4.80E-02

Table 2.6 Dhaka Stock Exchange: results on weekly data

2.4.2 Predicting Forex Rates using Sentiment Analysis on
Financial Articles

The researchers of this paper[55] focused on mood extracted from financial articles in combination
with historical prices and technical indicators. The goal was to predict the closing prices of the
EUR/USD currency pair in the forex market. They performed the task with regard to the
Efficient Market Hypothesis, which was influenced by Eugene Fama and his research, Efficient
Capital Markets: A Review of Theory and Empirical Work[56], from 1970. The Efficient Market
Hypothesis says that financial markets process information efficiently, making prices of financial
assets reflect all available information about themselves. Thus, it is very difficult to time or
predict the market consistently.

They worked with two kinds of data, one containing financial data and the other texts. The
first data set contains historical financial forex data. It is from September 2018 to May 2021
for the EUR/USD currency pair. The historical data were measured every hour, with roughly
16,000 data points. Each data point contains the following features:

opening price,

high price,

low price,

Related work 28

closing price,

volume.

During data processing, they discarded features low, high and open and added 10 technical
indicators, having 14 features in total.

The second kind of data is financial texts. The training data was acquired from the financial
phrase bank[57] corpus, consisting of 5000 financial texts. These texts provide an opportunity
to influence the price of the EUR/USD currency pair based on their sentiment. Thus, the data
presents a classification problem with categories:

positive,

neutral,

negative,

where neutral sentiment occurs roughly 60 % of the time. This created a challenge that their
model needed to achieve higher than 60 % accuracy in this classification problem to accomplish
improvement.

The financial articles they used for predictions come from the financial news websites
fxstreet.com and investing.com, from the same time frame as the historical forex prices. Together,
there are 7413 articles.

Their model is created to predict the closing price of the EUR/USD currency pair one hour
into the future. The basis of the model is a FinBERT, which is a pre-trained natural language
processing model to analyze the sentiment of the financial text. There is an upgrade of
FinBERT, FinBERT-SIMF, which can analyze the sentiment of financial articles’ titles, as well as
forex or cryptocurrency data. The researchers created their own model, building another upgrade
to FinBERT-SIMF, FinBERT-LSIMF, named Financial Bidirectional Encoder Representations
from Transformers based Long Sentiment and Informative Market Feature. To analyze not only
the articles’ titles but also the bodies, they built a Longformer-based model[58], to analyze long
text sequences.

As for data, the results are of two types. One for the text classification and one for the price
prediction. Table 2.7 displays the cross-entropy loss and accuracy for the dataset the Longformer-
based model was trained on to classify sentiment in financial articles. The dummy classifier is
a model that always predicts neutral. The table 2.8 shows the performance in predicting the
closing price. The researchers measured performance on four models:

FinBERT-LSIMF - able to analyze titles and bodies of articles,

FinBERT-SIMF (researchers’ version) - able to analyze titles of articles,

FinBERT-SIMF [59] (original) - able to analyze titles of articles,

FinBERT-IMF [59] - not able to analyze text, only historical forex data

Cross-entropy loss Accuracy
Training set 0.72 0.69

Validation set 0.67 0.72
Test set 0.67 0.72

Dummy classifier - 0.61
Table 2.7 Text classifier results on the financial phrase bank corpus

Related work 29

Validation MAPE Test MAPE
FinBERT-LSIMF 0.102 0.161
FinBERT-SIMF 0.124 0.399

FinBERT-SIMF (original) 0.121 0.291
FinBERT-IMF 3.623 6.695

Table 2.8 Closing price prediction MAPE values

2.4.3 Predicting Stock Closing Prices in Emerging Mar-
kets with Transformer Neural Networks: The Saudi
Stock Exchange Case

The goal of paper[60] is to predict the next day’s closing price. The researchers discussed the
usability of deep learning in several fields, such as computer vision, natural language processing,
and medicine. They aimed to use it for financial data, specifically on stocks on the Saudi Stock
Exchange. They aspired to use the self-attention mechanism to learn nonlinear patterns in
(highly volatile) time-series data while discussing the limitations of other approaches, such as
multi-layer perceptrons, long short-term memory networks, and recurrent neural networks.

The Saudi Stock Exchange, also known as Tadawul, divides its listed companies into cate-
gories based on their sector. The researchers used data from the Banks Index, Materials Index,
Telecommunication Services Index, and Tadawul All Share Index, which they downloaded from
1993-01-02 to 2021-06-17. The data was treated as time series with each data point containing
features:

opening price,

high price,

low price,

closing price,

volume,

stock name.

The stock name feature was removed, the data was normalized using MinMaxScaler of the scikit-
learn library[5], and missing values were removed. Table 2.9 represents what hyperparameters
were considered and their values.

Hyperparameter Value
Learning rate 0.001

Optimizer AdamW
Batch size 256

Epochs 500
Early stopping (epochs) 70

Early stopping (monitoring parameter) validation loss
Loss Function MSE

Table 2.9 Hyperparameters overview

The model they used was a vision transformer [61], the main elements of which are a linear
layer for embedding, a stack of transformer blocks with multi-head self-attention, feed-forward
layers, and an output linear layer.

Related work 30

The model was evaluated on multiple metrics and for different batch sizes, as demonstrated
in the tabular structures below:

Loss function MAE MSE RMSE MAPE
Batch size 2 4 8 16 32 64 128 256 512

In table 2.10, each row represents a data category, and each column is a loss function. For
each loss function, there is a batch size that resulted in the lowest value of the loss function,
along with the value of the loss function for that batch size.

Loss metric
MAE MSE RMSE MAPE

Sector b size value b size value b size value b size value
TASI 8 0.0001 8 0.0001 8 0.154 8 1.681
TBNI 2 0.0012 2 0.0013 2 0.1697 2 0.696
TTSI 4 0.0020 4 0.0101 4 0.1885 4 1.712
TMTI 4 0.0198 4 0.0021 4 0.2361 4 1.727

Table 2.10 Saudi Stock Exchange: loss functions values and batch sizes

2.4.4 Summary
The first paper[53] reviewed was the Transformer-Based Deep Learning Model for Stock Price
Prediction: A Case Study on Bangladesh Stock Market in subsection 2.4.1. Advanced Chemical
Industries Limited, with the trading code ACI, achieved the best daily data results regarding
both RMSE and MAE. It got 1.93 · 10−2 RMSE and 1.55 · 10−2 MAE. The company Alltex
Industries Limited, with the trading code ALLTEX, achieved the best results on weekly data
and both metrics. It got 3.87 · 10−2 RMSE and 2.98 · 10−2 MAE. The results presented in this
paragraph are from the testing set of the data. The authors of this paper also mentioned the
option to solve a classification problem instead of a regression problem: ”Although the proposed
model addresses the price prediction problem as a regression problem, it can be easily modified to
deal with classification problems. For example, a model can be designed to predict whether the
price will rise or fall in the upcoming days (thereby dealing with a binary classification problem).”

The paper[55], Predicting Forex Rates using Sentiment Analysis on Financial Articles focused
on predicting a forex EUR/USD currency pair one hour into the future based on historical
data. The historical data included prices and financial articles from the same time. Taking the
sentiment of the articles into account on the specific data they worked with helped the predictions.
They also warned that there is no guarantee that it will help in general and suggested ways of
improvement.

Chapter 3

Experiments

This chapter explains the implemented models and the data they were trained on. Section 3.1
introduces the source financial data used to train and evaluate the models. Section 3.2 shows
how the implemented models work, using pseudocode to explain the algorithms they are based
on better. Section 3.3 describes in detail the fundamental approach to the experiments. Section
3.4 presents the available code. Finally, section 3.5 provides the results of the experiments.

All the code is written in Python, and the models are built, trained, and evaluated using
the TensorFlow framework. For a comfortable working environment, some of the code is written
into Jupyter notebooks, and the initial operations with the source data are performed using the
pandas library. The visualizations inside the notebooks and in the following sections are done
using the matplotlib library. The code is available at https://github.com/pribylr/bp.

3.1 Data
This part presents the datasets that served as input for the experiments. Section 3.1.1 shows
how the original data looks, where it was downloaded, and why it was selected. The following
section, 3.1.2, explains and visualizes the data to give more insight into its structure. It also
explains how the input data was transformed, what information was derived from the data, and
what information was omitted to better understand the processes executed in the experiments.
Finally, it explains how the target variable looks like.

3.1.1 Input datasets
The focus was placed on the more popular currency pairs during the experiments in this thesis.
Table 3.1 shows the five most traded pairs in the world[42]. The experiments were built on data
from three currency pairs, all in the top 6. The following pairs were used:

EUR/USD,

GBP/USD,

USD/CAD.

The data intervals differ slightly to include a little variety. The data with the EUR/USD
pair was measured every 15 minutes; the GBP/USD pair had five-minute intervals, and the
USD/CAD pair had one-minute intervals.

The experimental part of the thesis was built with the assumption that higher-interval data
would be harder to predict because the more extended period would contain more information

31

https://github.com/pribylr/bp

Data 32

Currency pair Volume (%)
EUR/USD 27.95
USD/JPY 13.34
GBP/USD 11.27
AUD/USD 6.37
USD/CAD 5.22
USD/CHF 4.63

Table 3.1 Top 6 most traded currency pairs

that would be harder to learn and make predictions from. To be more specific, in the case of
daily intervals, there are around 260 data points in one year, taking into account the market’s
opening hours. That is a relatively small amount of data points distributed across a wide time
interval. During this one year, a lot can happen, for example, a shift in politics, interest rate
change, the start of a pandemic, or war. Model trained on such data will learn patterns that
these events created. Such a model may become a liability for future data, where such events
will not occur or influence the price in different ways.

On the other hand, the experiments in this thesis were performed over shorter intervals,
focusing only on short-term price fluctuations. The datasets were downloaded from [62] as csv
files.

3.1.2 Data observation
After downloading the datasets, they were loaded into Jupyter notebooks as a Pandas DataFrame.
Each dataset contains the following features:

date – date including year, month, day and exact time,

open – the price of the first trade during period,

high – the highest price of all trades during period,

low – the lowest price of all trades during period,

close – the price of the last trade during period,

volume – the amount of asset traded.

The first step of data observation was looking for missing values in the datasets. Since no
missing values were found, no approach to dealing with them needed to be applied.

Following the text on (non)stationarity in time series in section 2.1.4.3, the original data
was copied, and the second dataset was used to represent stationary time series. To help achieve
stationarity, each data point was subtracted from the preceding one. Table 3.2 shows the original
data. Table 3.3 shows the subtracted data. It shows changes in the price from one time step to
the next. Values in both tables are depicted on one of the three datasets used in the experiments,
the currency pair EUR/USD at a 15-minute interval, as is every observation demonstrated in
this section.

Data 33

date open high low close volume
2020-10-08 12:45 1.17593 1.17625 1.17542 1.17551 16392
2020-10-08 13:00 1.17553 1.17562 1.17326 1.17388 28294
2020-10-08 13:15 1.17388 1.17447 1.17377 1.17442 21323
2020-10-08 13:30 1.17444 1.17446 1.17364 1.17407 20293
2020-10-08 13:45 1.17408 1.17471 1.17386 1.17446 23214

Table 3.2 EUR/USD price data summary

date open high low close volume
2020-10-08 12:45 -0.00055 -0.00038 -0.00023 -0.00040 -2660
2020-10-08 13:00 -0.00040 -0.00063 -0.00216 -0.00163 11902
2020-10-08 13:15 -0.00165 -0.00115 0.00051 0.00054 -6971
2020-10-08 13:30 0.00056 -0.00001 -0.00013 -0.00035 -1030
2020-10-08 13:45 -0.00036 0.00025 0.00022 0.00039 2921

Table 3.3 EUR/USD price data summary, subtracted prices

Values in columns open, high, low, and close seem very similar to each other. This raises
the question of what relationships exist between these features. Figure 3.1 contains correlation
matrices between all five features on the original and the subtracted data. The correlation
coefficient is of the type Pearson, which measures the linear relationship between data.

Figure 3.1 Correlation matrices: stationary (left) and non-stationary (right) data

The original and subtracted data contain essentially the same information. One exact price
value from any time step is enough to reconstruct the original data from the subtracted data.
And yet, there is a big difference in the correlation coefficients. In the case of the original data,
where there are highly correlated features, there is a possibility of discarding all of these features,
except the closing price, since the closing price is the target variable. This possibility may come
with a trade-off:

Keeping open, high, low:

+ provides more context.

– contains redundant information.

Data 34

The experiments are performed while keeping the opening, high, and low prices. There may
also be a risk of overfitting, but thanks to dropout, neural networks are generally more resistant
to it. In addition, the extra context provided by all of the prices can be valuable in short-term
scenarios.

Next, the Butterworth filter is applied to each feature open, high, low, and close price. Figure
3.2 a plot of 50 data points of the original and subtracted closing price and its filtered version
from 2020-10-08, 15:15 to 2020-10-09, 03:30. Models can be trained on the actual or the filtered
prices. Both options came with another set of advantages and disadvantages. From observing
and comparing the plot, following conclusion could be made:

Replacing price with its filtered version:

+ removes noise, thus makes learning easier.

– deletes the actual information from the dataset.

Since noise can be attributed to any source and it is very challenging to learn its pattern,
the filtering was done to extract relevant information from the data. So, the filtered open, high,
low, and close prices replaced the original prices.

Figure 3.2 Closing price and Butterworth filter

Then, the Butterworth filter’s parameters were chosen: the order and the cutoff frequency.
Figure 3.3 shows how different values of the cutoff frequency influence the filter’s output. Four
plots display the same 50 data points from 2020-10-08, 15:15 to 2020-10-09, 03:30, but each with
a different version of the filtered signal. The examples show a problem similar to the previous
one, where there was a choice between retaining the original data and simplifying the signal. In
the experiments, the order ’s value was chosen to be 5 for each case, while the cutoff frequency
varied depending on the currency pair and its time interval. Table 3.4 shows the values of the
order and cutoff frequency used on the input datasets.

Models 35

Figure 3.3 Different frequencies of Butterworth filter

Currency pair Time interval Order Cutoff frequency
EUR/USD 15 minutes 5 1

8

USD/CAD 1 minute 5 1
12

GBP/USD 5 minutes 5 1
6

Table 3.4 Parameters of Butterworth signal on input datasets

3.2 Models
Two models were implemented in this thesis, and the following sections explain how they work.
The models are the Transformer, introduced in paper [17], and the Autoformer [34].

3.2.1 Transformer
The transformer model implementation can be found in the file bp/src/vannila transformer.py.
The whole model consists of the following classes:

Transformer,

Decoder,

DecoderLayer,

Encoder,

EncoderLayer,

bp/src/vannila_transformer.py

Models 36

MultiHeadAttention,

ScaledDotProductAttention,

FeedForward,

with an additional function PositionalEncoding. All the mentioned classes are subclasses of the
tensorflow.keras.Layer[63] class since they contain learnable weights.

The model is trained using data that is split into batches. Each batch has a shape of (B, L, F),
where B represents the batch size, L is the sequence length, and F is the number of features for
each token in the sequence. During training, each batch is passed through the model. Firstly,
it goes into the encoder. Before passing the data into encoder layers, Input embedding and
Positional encoding are applied. The Input embedding transforms the data into a shape of
(B, L, d model), where d model is the dimensionality of the embedding space; it is a fixed size
representing each token. This process is shown in the following algorithm 1:

Algorithm 1 Encoder algorithm
Input: x
x ← InputEmbedding(x)
x ← PositionalEncoding(x)
for each i in 1, . . . , encoder layers num do

x ← EncoderLayer(x)
end for
Output: x

Inside each encoder layer, the data is passed through its sublayers: Multi-head attention, Feed
forward, and Add&Norm. The layer normalization is performed directly using a library function
[64] and the residual connections inside the Add&Norm are implemented as in the following
algorithm:

Algorithm 2 Encoder layer algorithm
Input: x, x, x
y ← MultiHeadAttention(x, x, x)
y ← LayerNormalization(x+y)
z ← FeedForward(y)
z ← LayerNormalization(y+z)
Output: z

The following Figure 3.4 shows how the MHA is implemented. Firstly, the MHA sublayer co-
sists of multiple heads with each head performing the attention mechanism and the computation
happens independently for each head. Each head creates three matrices, query, key, and value,
as is explained by equations 2.18. The matrices are used to calculate the ScaledDotProductAt-
tention. At the end of the MHA mechanism, the output of each head is concatenated back to
the original size of the data so the subsequent sublayers can operate with the data.

Models 37

Figure 3.4 Transformer MHA mechanism

The output of the last encoder’s layer is passed to the decoder. The behavior of the decoder
depends on whether it is being trained or makes predictions.

Algorithm 3 Decoder algorithm
Input: last token, encoder output, target sequence
if training == True then

x ← Decoder.train(encoder output, target sequence)
else

x ← Decoder.infer(last token, encoder output)
end if
Output: x

3.2.1.1 Training phase
When the model is trained, the decoder works with the encoder output and the whole target
sequence, manipulating its weights to minimize training loss. The decoder in the training phase
works similarly to the encoder from algorithm 1, apart from one dense layer at the end, which
projects the data into a desired dimension, one for all models in this thesis since the target
variable is always only the closing price:

Algorithm 4 Decoder train algorithm
Input: last token, encoder output, target sequence
x ← InputEmbedding(target sequence)
x ← PositionalEncoding(x)
for each i in 1, . . . , decoder layers num do

x ← DecoderLayer(x, encoder output)
end for
x ← linear out(x)
Output: x

Models 38

3.2.1.2 Inference phase
When it makes predictions, it works in the inference mode. In the inference mode, the decoder
works in steps, and during each step, it works with the encoder output and its generated sequence.
There are several methods [65] for determining the input the decoder should use at its first step,
such as a zeros-filled token or the last several tokens from the input sequence. In this experiment,
the decoder received one token, the most recent one, the last token in the input sequence. Since
the last token of the input sequence is part of the output sequence during this phase, it is
discarded at the end:

Algorithm 5 Decoder inference algorithm
Input: last token, encoder output, target sequence
generated sequence ← last token
while generating output do

x ← generated sequence
x ← InputEmbedding(x)
x ← PositionalEncoding(x)
for each i in 1, . . . , decoder layers num do

x ← DecoderLayer(x, encoder output)
end for
x ← linear out(x)
generated sequence.append(x)

end while
Output: generated sequence[1:]

3.2.1.3 Multi-head attention in decoder
The following algorithm 6 for the decoder layer works similarly in the training and inference
phases. The first difference is the sequence length during the inference phase, which gets pro-
gressively longer as the decoder generates the output step by step. The decoder layer executes
two MHA sublayers. The first one is the masked MHA mechanism, and the second is an MHA
mechanism, which receives the output of the encoder in the form of the key and value and the
output of the previous masked MHA as query.

Algorithm 6 Decoder layer algorithm
Input: encoder output, decoder input
x ← MaskedMultiHeadAttention(decoder input, decoder input, decoder input)
x ← LayerNormalization(x+decoder input)
y ← MultiHeadAttention(x, encoder output, encoder output)
y ← LayerNormalization(x+y)
z ← FeedForward(y)
z ← LayerNormalization(y+z)
Output: z

3.2.2 Autoformer
The Autoformer model is implemented in the file https://github.com/pribylr/bp/blob/master/
src/autoformer.py and it consists of the following classes:

Autoformer,

Encoder,

https://github.com/pribylr/bp/blob/master/src/autoformer.py
https://github.com/pribylr/bp/blob/master/src/autoformer.py

Models 39

EncoderLayer,

Decoder,

DecoderLayer,

Autocorrelation,

FeedForward,

Series decomp.

In the algorithm 7 is the Series Decomp. The smoothing method used in the experiments is
the TensorFlow’s AvgPool1D.[66] The output of this sublayer is the seasonal and trend extracted
information from the input data:

Algorithm 7 Series Decomp algorithm
Input: x
xt ← AvgPool(x)
xs ← x - xt

Output: xs, xt

3.2.2.1 Encoder
The following algorithms, 8 and 9, explain how the encoder works. The encoder is responsible
for handling the seasonal component of the input sequence; it discards the trend output of the
Series Decomp sublayer. Each Series Decomp sublayer utilizes the residual connections:

Algorithm 8 Autoformer encoder algorithm
Input: x
for each i in 1, . . . , encoder layers num do

x ← EncoderLayer(x)
end for
Output: x

Algorithm 9 Autoformer encoder layer algorithm
Input: x
y ← Auto-Correlation(x,x,x)
y, ← Series Decomp(x+y)
z ← Feed Forward(y)
z, ← Series Decomp(y+z)
Output: z

3.2.2.2 Decoder
The encoder’s output contains past seasonal information. This information is used as cross-
information to help the decoder, which also processes the trend property of the input data and
model prediction results.

Models 40

Algorithm 10 Autoformer decoder algorithm
Input: x s, x t, encoder output
S ← x s
T ← x t
for each i in 1, . . . , decoder layers num do

S, T ← DecoderLayer(S, T, encoder output)
end for
out ← linear out(S+T)
Output: out

Algorithm 11 Autoformer decoder layer algorithm
Input: x s, x t, encoder output
x ← Auto-Correlation(x s, x s, x s)
S, T1 ← Series Decomp(x+x s)
x ← Auto-Correlation(S, encoder output, encoder output)
S, T2 ← Series Decomp(x+S)
x ← FeedForward(S)
S, T3 ← Series Decomp(x+S)
T ← x t+T1+T2+T3
Output: S, T

3.2.2.3 Auto-correlation mechanism
The following algorithm 12 shows how the Auto-correlation mechanism works in the Autoformer.
As in the MHA sublayer in the transformer, the Auto-correlation mechanism uses queries, keys,
and values. The FFT is applied to the query and the key, converting the data from the time
domain to the frequency domain. Then, the key is conjugated. Since the values in the frequency
domain are complex numbers, the complex conjugate of a complex number a + bi is a− bi, where
a is the real part and b is the imaginary part of the number, and i is the imaginary unit. Then,
the result of the multiplication of the query and key is processed by the IFFT to transform the
data back to the time domain.

The convolution theorem states that convolution in the time domain can be performed as
multiplication in the frequency domain. That is why the query and the conjugated key are
multiplicated, and the result is passed to the IFFT. The result of the IFFT operation stores
the autocorrelation values between the query and the key for different lags (time shifts). For
example, suppose the result shows a strong autocorrelation at lag 5. In that case, it means that
the behavior of the query strongly correlates with the behavior of the key shifted by 5 time steps.
This fact will be reflected in the time domain aggregation mechanism, which will use the behavior
of the series at lag 5 to model predictions. Then, the Top k[67] function is applied to select the
most relevant time lags based on the autocorrelation values. Only these top k most relevant lags
are considered in the time delay aggregation mechanism, so the predictions are based only on
the parts of the series that correlate the most. The Top k function returns the highest values
from the input and their indices.

Models 41

Algorithm 12 Autoformer Auto-correlation mechanism
Input: x, x, x
Q, K, V ← createQKV(x, x, x)
Q, K ← FFT(Q), FFT(K)
Corr ← IFFT(Q · Conjugate(K))
values, indices ← Topk k(Corr)
out ← time delay aggregation(values, indices, V)
Output: out

3.2.3 Baseline models
The models predict a sequence of outputs, which are combined to determine whether the price
increased or decreased during the output sequence compared to the price at the end of the input
sequence. Therefore, the models were evaluated using binary classification. To be aware of the
quality of the predictions, two simple baseline models are presented in the following sections, and
the results from the Transformer and the Autoformer are compared with these baseline models.

3.2.3.1 Random 50 % model
Since the price can change in two ways, one of the baseline models is a random model predicting
each category with 50 % probability. This model’s expected value of accuracy is 0.5. The models
should achieve more than 0.5 accuracy when dealing with binary classification tasks. If they do
not, the models are insufficient.

3.2.3.2 Baseline model based on past value
The second simple model works with the assumption that if the price rose or declined from the
start to the end of the input sequence, it is likely to increase or decrease from the beginning to
the end of the output sequence.

The following Figure 3.5 shows two plots: the left one with correct prediction based on this
model and the right one with incorrect prediction. Both plots contain three vertical lines: the
first line represents the start of the input sequence, the middle one represents the end of the
input sequence and the start of the output sequence, and the last line represents the end of the
output sequence. On the right plot, it is clear that the price is lower at the end of the input
sequence than at the beginning, which indicates further price decline based on this model, which
did not happen. Thus, this prediction is considered wrong. The performance of this model is
available at https://github.com/pribylr/bp/blob/master/simple baseline.ipynb

https://github.com/pribylr/bp/blob/master/simple_baseline.ipynb

Experiments overview 42

Figure 3.5 Baseline model: correct (left) and incorrect (right) prediction

3.3 Experiments overview
After the data is preprocessed, including filtering its signals and computing technical indicators,
it is split into sequences. Each data point consists of an input sequence and a target sequence,
which follows right after the input. The lengths of the sequences are pre-defined and differ for
each of the experiments in the project. Creating the input and output sequences is called a
sliding window method. A fixed-size window slides over the data and takes the time steps inside
the window. Then, the window shifts by one step, repeating the process. After this method is
finished, there are two 3D objects, in the notebooks called Xdata and ydata. The shape of these
objects is (N, Lin, F) and (N, Lout, 1), where N is the number of sequences, Lin is the length of
the input sequence, Lout is the length of the output sequence, and F is number of features.

After the input and target sequences were created, they were split into training, validation,
and test sets in a ratio of 60:20:20. The following Table 3.5 show how much data contains each
dataset:

Currency pair rows in dataset amount: training set amount: test set
EUR/USD 99,999 59,931 19,978
USD/CAD 80,000 47,889 15,963
GBP/USD 60,000 35,969 11,990

Table 3.5 Amount of data in input datasets

Essentially, every model in the experiments is trained to predict a sequence of numerical
values. There are two types of these sequences:

Price prediction – in this case, the models the output of the models is treated as a raw price
of a currency pair. Table 3.2 presents how the prices on historical data look, and Figure 3.2
(on the left) presents a plot of the prices.

Change in price prediction – examples of how data representing changes in a price are in the
Table 3.3 and Figure 3.2 (on the right).

The next step is to clarify what the models were trained to predict. Figure 3.6 shows the input
and target sequence, separated by a red vertical line. The input data lacks other features to
simplify the image, and only the filtered closing price is displayed.

Experiments overview 43

Figure 3.6 Input and target sequence

The models are trained to predict several future time steps. Depending on whether the data
was non-stationary, a currency pair’s closing prices are predicted. If it was stationary, a series
of currency pair price changes is predicted. From the predicted sequence, it is derived whether
the price increased during the predicted time steps or decreased, turning the task into a binary
classification problem. The model evaluation results, which contain the classification metrics
accuracy, precision, recall, and f1 score, are presented in the following section 3.5.

Table 3.6 shows the values of Transformer hyperparameters used in notebooks 1, 2, and 3.
Table 3.7 shows hyperparameter values of Transformer model in notebook 4

Hyperparameter Value
encoder layers 1
decoder layers 1

d model 32
d ff 32

attention heads 4
d q 32
d k 32
d v 32

dropout rate 0.1
batch size 32

Table 3.6 Transformer hyperparameters in
experiments

Hyperparameter Value
encoder layers 1
decoder layers 1

d model 32
d ff 32

attention heads 8
d q 32
d k 32
d v 32

dropout rate 0.1
batch size 32

Table 3.7 Transformer hyperparameters in
experiments

Table 3.8 displays hyperparameters of the Autoformer model used in notebook 5. Table 3.9
shows the values from notebook 6.

1https://github.com/pribylr/bp/blob/master/transformer in seq.ipynb
2https://github.com/pribylr/bp/blob/master/transformer out seq.ipynb
3https://github.com/pribylr/bp/blob/master/thesis showcase.ipynb
4https://github.com/pribylr/bp/blob/master/transformer predict price.ipynb
5https://github.com/pribylr/bp/blob/master/autoformer predict price.ipynb
6https://github.com/pribylr/bp/blob/master/autoformer predict price move.ipynb

https://github.com/pribylr/bp/blob/master/transformer_in_seq.ipynb
https://github.com/pribylr/bp/blob/master/transformer_out_seq.ipynb
https://github.com/pribylr/bp/blob/master/thesis_showcase.ipynb
https://github.com/pribylr/bp/blob/master/transformer_predict_price.ipynb
https://github.com/pribylr/bp/blob/master/autoformer_predict_price.ipynb
https://github.com/pribylr/bp/blob/master/autoformer_predict_price_move.ipynb

Code overview 44

Hyperparameter Value
pool size 64

autocorrelation heads 4
c 4

d model 32
d ff 32

encoder layers 1
decoder layers 1
dropout rate 0.1

batch size 32
Table 3.8 Autoformer hyperparameters in

experiments

Hyperparameter Value
pool size 64

autocorrelation heads 4
c 4

d model 32
d ff 32

encoder layers 2
decoder layers 1
dropout rate 0.1

batch size 32
Table 3.9 Autoformer hyperparameters in

experiments

3.4 Code overview
The experiments consist of several Jupyter notebooks. Each notebook contains data loading,
pre-processing, model training, and evaluation. The notebooks predicting prices are:

autoformer predict price.ipynb – The file contains an Autoformer model trained on data
regarding the USD/CAD currency pair.

transformer predict price.ipynb – Transformer model, trained on USD/CAD currency pair.

The following notebook include models trained to predict changes in currency pair’s price:

autoformer predict price move.ipynb – In this file, an Autoformer model was trained on data
on the EUR/USD currency pair.

transformer in seq.ipynb – This file contains three Transformer models, all trained on the
same data, but each worked with a different input sequence length. The currency pair on
which this experiment was conducted was the GBP/USD pair.

transformer out seq.ipynb – Similar to the previous notebook, this one contains three Trans-
former models. They were trained to output varying-length sequences. The pair used was
the EUR/USD pair.

3.5 Results
In the case of working with non-stationary data, both models achieved overall worse results. The
Transformer and Autoformer model used the USD/CAD currency pair with a 1-minute interval
for this task. The prediction period was set to 30 steps, or half an hour. The following table 3.10
displays the metrics. The first observation that can be derived from this is that the Transformer
achieved worse than 50 % on all four metrics, making it worse than a random model:

Accuracy Precision Recall F1 score
Autoformer 0.513 0.513 0.570 0.540
Transformer 0.482 0.477 0.349 0.403
base model 1 0.500 0.500 0.500 0.500
base model 2 0.494 0.486 0.482 0.484

Table 3.10 Results: Price

https://github.com/pribylr/bp/blob/master/autoformer_predict_price.ipynb
https://github.com/pribylr/bp/blob/master/transformer_predict_price.ipynb
https://github.com/pribylr/bp/blob/master/autoformer_predict_price_move.ipynb
https://github.com/pribylr/bp/blob/master/transformer_in_seq.ipynb
https://github.com/pribylr/bp/blob/master/transformer_out_seq.ipynb

Results 45

The models trained to predict closing price changes did so on the currency pair EUR/USD
with 15-minute intervals. On this data, the Transformer achieved significantly better results
than in the previous task, with all four metrics above 70 %:

Accuracy Precision Recall F1 score
Autoformer 0.507 0.516 0.533 0.524
Transformer 0.756 0.786 0.716 0.749
base model 1 0.500 0.500 0.500 0.500
base model 2 0.489 0.498 0.495 0.496

Table 3.11 Results: price change

The following two tables, 3.12 and 3.13, present the results of experiments that focused on
comparing different lengths of input and output sequences. In the first case, the aim was to
discover if a longer input sequence could provide more context for how the series will look in the
feature. In the second case,

Input sequence length Accuracy Precision Recall F1 score
32 (160 minutes) 0.783 0.791 0.781 0.786
16 (80 minutes) 0.761 0.778 0.737 0.757
8 (40 minutes) 0.764 0.736 0.835 0.782

Table 3.12 Results: varying input sequence length

Output sequence length Accuracy Precision Recall F1 score
4 (60 minutes) 0.713 0.732 0.695 0.713
8 (120 minutes) 0.756 0.786 0.716 0.749
16 (240 minutes) 0.576 0.728 0.274 0.398

Table 3.13 Results: varying output sequence length

3.5.0.1 The threshold method
Since the experiments are performed on historical data, the price of each currency pair is known.
Even when predicting the change of the pair’s price, the predicted changes can be cumulatively
summed, and the final price at the end of the output sequence can be constructed and compared
to the actual value.

This part of the experiment aims to get better results by only predicting an increase or
decrease if it predicts that the price at the end of the output sequence is significantly higher than
its value at the beginning. With this method, the task transforms into a ternary classification
with the following classes:

1 – the price is predicted to increase significantly,

0 – the price is predicted to change by very little, so it is risky to predict an increase or
decrease,

-1 – the price is predicted to decrease significantly.

The code uses the parameter threshold to measure a significant change in a price. If the price
changes above the threshold, the classification belongs to category 1 or -1; otherwise, it is clas-
sified as 0.

Results 46

This method was used on the Transformer model, which was trained on data regarding the
EUR/USD pair. Table 3.14 shows the model’s performance in a standard way. The results from
the following two tables come from the file https://github.com/pribylr/bp/blob/master/ the-
sis showcase.ipynb.

Accuracy Precision Recall F1 score
Transformer 0.75 0.78 0.72 0.75
base model 1 0.50 0.50 0.50 0.50
base model 2 0.49 0.50 0.50 0.50

Table 3.14 Results: varying output sequence length

The following two Figures, 3.7 and 3.8, show how the values of the four metrics change
depending on the value of the threshold parameter. Firstly, the original task was transformed to
solve a ternary classification with the three categories mentioned at the start of this section. The
left plot in Figure 2.1 shows that the accuracy approaches 100 % as the value of the threshold
increases. This is because the higher the threshold the price change has to overcome, the fewer
data points will overcome it, so most of the data points will be classified as 0. At the same
time, the higher the threshold, the more the actual data points will be of category 0 because the
market is not so volatile that the price would change by tens or hundreds of percent every several
minutes or hours. With most of the actual data points belonging to the ”neutral” category and
most of the predictions belonging to the same category, it is clear why accuracy would approach
value 1.

Figure 3.7 Ternary classification; accuracy (left) and precision, recall, f1 score (right)

To compare results using this threshold method with the task where this method was not
used, the problem was transferred back to binary classification. This was done by discarding the
data points the model classified as category 0. With only categories 1 and -1 left, Figure 3.8
shows the values of the metrics based on different threshold values. The plots also contain the
results from the same task that did not utilize this method, which results are in the previous
Table 3.14, to compare if this method helps achieve any improvement.

https://github.com/pribylr/bp/blob/master/thesis_showcase.ipynb
https://github.com/pribylr/bp/blob/master/thesis_showcase.ipynb

Results 47

Figure 3.8 Binary classification; accuracy (left) and precision, recall, f1 score (right)

Even though the metrics approach 100 % as the threshold value increases, it is not wise to
consider the highest threshold values. This essentially means that no action should be taken
because the prediction falls into the category 0. Since the ultimate goal of the task is to help
decide whether to buy or sell currencies, the models should be able to signal a clear increase or
decrease prediction.

Chapter 4

Conclusion

This thesis aimed to implement and evaluate the performance of Transformer architectures for
predicting short-term financial time series in the Forex market. Specifically, two models were
tested: the original Transformer and the Autoformer. Both models were built from scratch in
Python using the TensorFlow framework and evaluated on historical Forex data.

The goal of creating a custom implementation of transformer models was achieved; the models
were successfully implemented, trained, and evaluated.

After the training, the models were evaluated. The Transformer model yielded better overall
results than the Autoformer on stationary data but did not beat the two baseline models when
it worked with non-stationary data.

The performed experiment shows that the Autoformer is better suited for non-stationary
data, possibly due to its Auto-correlation mechanism and its series decomposition method.

The transformer model achieved the best results when it predicted changes in currency
pair prices. It achieved an accuracy of over 75 %, suggesting that the Transformer, or other
transformer-based models, can solve time series forecasting tasks.

Additional experiments with the predictions performed at the end of the experiments suggest
that more creative methods can be tried to achieve better results, which recommends further
research. Additionally, different pre-processing approaches can be utilized to improve the models’
performance, such as smoothing techniques or more combinations of technical indicators, to
provide the models with more information to work with.

The next steps could also lead to enhanced experimentation with models’ hyperparameters
to make them more or less robust, balancing a trade-off between computational needs and the
quality of the predictions. Another new approach could also involve using language models on
news from the financial world, capturing sentiment from them, thus adding new information to
the models.

48

Bibliography

1. KLU.AI. Glossary: Accuracy, Precision, Recall, F1 [https://klu.ai/glossary/accuracy-
precision-recall-f1]. 2024. Accessed: 2024-09-29.

2. PROJECTPRO. Explain Accuracy, Precision, Recall, and F-beta Score. 2022. Available also
from: https://www.projectpro.io/recipes/explain-accuracy-precision-recall-
and-f-beta-score. Accessed: 2024-09-29.

3. KUNDU, Rohit. F1 Score in Machine Learning: Intro & Calculation. 2022. Available also
from: https://www.v7labs.com/blog/f1-score-guide. Accessed: 2024-09-29.

4. WISDOM, Banso D. Understanding the Confusion Matrix. 2019. Available also from: https:
//dev.to/overrideveloper/understanding-the-confusion-matrix-2dk8. Accessed:
2024-10-02.

5. scikit-learn: Machine Learning in Python [https://scikit-learn.org/stable/]. 2024.
Accessed: 2024-09-30.

6. VAŠATA, Daniel. BI-ML2.21 přednáška 7, [lecture]. Prague, 2023-05-04; accessed 2024-10-
04. Available also from: https://online.fit.cvut.cz/zaznam/B222/bi-ml2.21_pre_
2023-04-05.html.

7. GOODFELLOW, Ian; BENGIO, Yoshua; COURVILLE, Aaron. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

8. DU, Ke-Lin; LEUNG, Chi-Sing; MOW, Wai Ho; SWAMY, M. N. S. Perceptron: Learning,
Generalization, Model Selection, Fault Tolerance, and Role in the Deep Learning Era. Math-
ematics. 2022, vol. 10, no. 24. issn 2227-7390. Available from doi: 10.3390/math10244730.

9. NIELSEN, Michael A. Neural Networks and Deep Learning, [online]. Determination Press,
2018. Available also from: http://neuralnetworksanddeeplearning.com/.

10. LIANG, XingLong; XU, Jun. Biased ReLU neural networks. Neurocomputing. 2021, vol. 423,
pp. 71–79. issn 0925-2312. Available from doi: https://doi.org/10.1016/j.neucom.
2020.09.050.

11. TESMA. ACTIVATION FUNCTIONS IN NEURAL NETWORKS. International Journal
of Engineering Applied Sciences and Technology (IJEAST). 2020, pp. 310–316. Available
also from: https://www.ijeast.com/papers/310-316,Tesma412,IJEAST.pdf. Accessed:
2024-09-30.

12. RINK, Towards Data Science Konstantin. Time Series Forecast Error Metrics You Should
Know [https://towardsdatascience.com/time-series-forecast-error-metrics-
you-should-know-cc88b8c67f27]. 2021. Accessed: 2024-09-30.

13. VAŠATA, Daniel. BI-ML2.21 přednáška 9. 2023. Available also from: https://courses.
fit.cvut.cz/BI-ML2/@B222/lectures/files/BI-ML2-09-cs-slides.pdf.

49

https://klu.ai/glossary/accuracy-precision-recall-f1
https://klu.ai/glossary/accuracy-precision-recall-f1
https://www.projectpro.io/recipes/explain-accuracy-precision-recall-and-f-beta-score
https://www.projectpro.io/recipes/explain-accuracy-precision-recall-and-f-beta-score
https://www.v7labs.com/blog/f1-score-guide
https://dev.to/overrideveloper/understanding-the-confusion-matrix-2dk8
https://dev.to/overrideveloper/understanding-the-confusion-matrix-2dk8
https://scikit-learn.org/stable/
https://online.fit.cvut.cz/zaznam/B222/bi-ml2.21_pre_2023-04-05.html
https://online.fit.cvut.cz/zaznam/B222/bi-ml2.21_pre_2023-04-05.html
http://www.deeplearningbook.org
https://doi.org/10.3390/math10244730
http://neuralnetworksanddeeplearning.com/
https://doi.org/https://doi.org/10.1016/j.neucom.2020.09.050
https://doi.org/https://doi.org/10.1016/j.neucom.2020.09.050
https://www.ijeast.com/papers/310-316,Tesma412,IJEAST.pdf
https://towardsdatascience.com/time-series-forecast-error-metrics-you-should-know-cc88b8c67f27
https://towardsdatascience.com/time-series-forecast-error-metrics-you-should-know-cc88b8c67f27
https://courses.fit.cvut.cz/BI-ML2/@B222/lectures/files/BI-ML2-09-cs-slides.pdf
https://courses.fit.cvut.cz/BI-ML2/@B222/lectures/files/BI-ML2-09-cs-slides.pdf

Bibliography 50

14. KINGMA, Diederik P.; BA, Jimmy. Adam: A Method for Stochastic Optimization. 2017.
Available from arXiv: 1412.6980 [cs.LG].

15. GRAVES, Alex. Generating Sequences With Recurrent Neural Networks. 2014. Available
from arXiv: 1308.0850 [cs.NE].

16. WU, Neo; GREEN, Bradley; BEN, Xue; O’BANION, Shawn. Deep Transformer Models
for Time Series Forecasting: The Influenza Prevalence Case. 2020. Available from arXiv:
2001.08317 [cs.LG].

17. VASWANI, Ashish; SHAZEER, Noam; PARMAR, Niki; USZKOREIT, Jakob; JONES,
Llion; GOMEZ, Aidan N.; KAISER, Lukasz; POLOSUKHIN, Illia. Attention Is All You
Need. 2023. Available from arXiv: 1706.03762 [cs.CL].

18. ALAMMAR, Jay. The Illustrated Transformer. 2018. Available also from: https://jalammar.
github.io/illustrated-transformer/. Accessed: 2024-10-20.

19. BAHDANAU, Dzmitry; CHO, Kyunghyun; BENGIO, Yoshua. Neural Machine Translation
by Jointly Learning to Align and Translate. 2016. Available from arXiv: 1409.0473 [cs.CL].

20. WANG, Zian (Andy). Visualizing and Explaining Transformer Models From the Ground
Up. Deepgram. 2023. Available also from: https://deepgram.com/learn/visualizing-
and-explaining-transformer-models-from-the-ground-up. Published January 19,
2023, Updated June 13, 2024.

21. VIG, Jesse. BertViz: Visualize Attention in NLP Models (BERT, GPT2, BART, etc.) 2024.
Available also from: https://github.com/jessevig/bertviz. Accessed: October 19, 2024.

22. SANH, Victor; DEBUT, Lysandre; CHAUMOND, Julien; WOLF, Thomas. DistilBERT, a
distilled version of BERT: smaller, faster, cheaper and lighter. 2020. Available from arXiv:
1910.01108 [cs.CL].

23. DEVLIN, Jacob; CHANG, Ming-Wei; LEE, Kenton; TOUTANOVA, Kristina. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding. 2019. Available
from arXiv: 1810.04805 [cs.CL].

24. KARPATHY, Andrej. Let’s build GPT: from scratch, in code, spelled out. [video]. Youtube
[online], 2023 [accessed 2024-10-04]. Available also from: https://www.youtube.com/
watch?v=kCc8FmEb1nY.

25. BA, Jimmy Lei; KIROS, Jamie Ryan; HINTON, Geoffrey E. Layer Normalization. 2016.
Available from arXiv: 1607.06450 [stat.ML].

26. IOFFE, Sergey; SZEGEDY, Christian. Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift. 2015. Available from arXiv: 1502.03167
[cs.LG].

27. SRIVASTAVA, Nitish; HINTON, Geoffrey; KRIZHEVSKY, Alex; SUTSKEVER, Ilya; SALAKHUT-
DINOV, Ruslan. Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning Research. 2014, vol. 15, no. 56, pp. 1929–1958. Available also
from: http://jmlr.org/papers/v15/srivastava14a.html.

28. BOX, George E. P.; JENKINS, Gwilym M.; REINSEL, Gregory C. Time series analysis:
forecasting and control. 4th. Englewood Cliffs: Prentice Hall, 2008. isbn 9780470272848;0470272848;

29. TEAM, The Matplotlib Development. Matplotlib: Visualization with Python [https://
matplotlib.org/]. 2024. Accessed: 2024-10-02.

30. OPENAI. ChatGPT Official Website [https://chatgpt.com/]. 2024. Accessed: 2024-10-02.
31. BROWNLEE, Jason. Introduction to time series forecasting with python: how to prepare

data and develop models to predict the future. Machine Learning Mastery, 2017.

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/2001.08317
https://arxiv.org/abs/1706.03762
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1409.0473
https://deepgram.com/learn/visualizing-and-explaining-transformer-models-from-the-ground-up
https://deepgram.com/learn/visualizing-and-explaining-transformer-models-from-the-ground-up
https://github.com/jessevig/bertviz
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1810.04805
https://www.youtube.com/watch?v=kCc8FmEb1nY
https://www.youtube.com/watch?v=kCc8FmEb1nY
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
http://jmlr.org/papers/v15/srivastava14a.html
https://matplotlib.org/
https://matplotlib.org/
https://chatgpt.com/

Bibliography 51

32. FAN, Jianqing.; YAO, Qiwei. Nonlinear time series : nonparametric and parametric meth-
ods. Nonlinear time series : nonparametric and parametric methods. New York: Springer,
2003. Springer series in statistics. isbn 0387951709.

33. WEN, Qingsong; ZHOU, Tian; ZHANG, Chaoli; CHEN, Weiqi; MA, Ziqing; YAN, Junchi;
SUN, Liang. Transformers in Time Series: A Survey. 2023. Available from arXiv: 2202.
07125 [cs.LG].

34. WU, Haixu; XU, Jiehui; WANG, Jianmin; LONG, Mingsheng. Autoformer: Decomposition
Transformers with Auto-Correlation for Long-Term Series Forecasting. 2022. Available from
arXiv: 2106.13008 [cs.LG].

35. ZHOU, Tian; MA, Ziqing; WEN, Qingsong; WANG, Xue; SUN, Liang; JIN, Rong. FED-
former: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting.
2022. Available from arXiv: 2201.12740 [cs.LG].

36. NIE, Xingqing; XIAOGEN, Zhou; LI, Zhiqiang; WANG, Luoyan; LIN, Xingtao; TONG,
Tong. LogTrans: Providing Efficient Local-Global Fusion with Transformer and CNN Par-
allel Network for Biomedical Image Segmentation. 2022. Available from doi: 10.1109/HPCC-
DSS-SmartCity-DependSys57074.2022.00128.

37. Daily Market Summary [https://www.nasdaqtrader.com/Trader.aspx?id=DailyMarketSummary].
2024. Accessed: 2024-10-14.

38. INTERNATIONAL SETTLEMENTS, Bank for. OTC foreign exchange turnover in April
2022 [https://www.bis.org/statistics/rpfx22_fx.htm]. 2022. Accessed: 2024-10-14.

39. GANTI, Akhilesh. Foreign Exchange Market: How It Works, History, and Pros and Cons.
2024. Available also from: https://www.investopedia.com/terms/forex/f/foreign-
exchange-markets.asp. Accessed: 2024-10-17.

40. SCOTT, Gordon. Forex Market Hours: Can You Trade 7 Days a Week? [https://www.
investopedia.com/terms/forex/f/forex- market- trading- hours.asp]. 2024. Ac-
cessed: 2024-04-15.

41. SCOTT, Gordon. Largest stock exchange operators worldwide as of December 2023, by mar-
ket capitalization of listed companies [https://www.statista.com/statistics/270126/
largest - stock - exchange - operators - by - market - capitalization - of - listed -
companies/]. 2024. Accessed: 2024-10-14.

42. SLAVA LOZA. The Most Traded Currency Pairs in Forex (2024 Edition). 2024. Available
also from: https://fxssi.com/the-most-traded-currency-pairs. Accessed: 2024-10-
10.

43. SECURITIES, Ventura. OHLC Meaning: How Does It Help You Trade? 2024. Available
also from: https://www.venturasecurities.com/blog/ohlc-meaning-how-does-it-
help-you-trade/. Accessed: 2024-10-17.

44. KAUFMAN, Perry J. Trading Systems and Methods. 6;6th;Sixth; Newark: Wiley, 2019.
isbn 9781119605393;1119605393;1119605350;9781119605355;

45. OPPENHEIM, A.V.; WILLSKY, A.S.; NAWAB, S.H. Signals & Systems. 2nd ed. Prentice-
Hall International, 1997. isbn 9780136511755.

46. AASVIK, Mads. Arduino Tutorial: Simple High-pass, Band-pass and Band-stop Filtering.
2016. Available also from: https://www.norwegiancreations.com/2016/03/arduino-
tutorial - simple - high - pass - band - pass - and - band - stop - filtering/. Accessed:
2024-10-13.

https://arxiv.org/abs/2202.07125
https://arxiv.org/abs/2202.07125
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2201.12740
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00128
https://doi.org/10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00128
https://www.nasdaqtrader.com/Trader.aspx?id=DailyMarketSummary
https://www.bis.org/statistics/rpfx22_fx.htm
https://www.investopedia.com/terms/forex/f/foreign-exchange-markets.asp
https://www.investopedia.com/terms/forex/f/foreign-exchange-markets.asp
https://www.investopedia.com/terms/forex/f/forex-market-trading-hours.asp
https://www.investopedia.com/terms/forex/f/forex-market-trading-hours.asp
https://www.statista.com/statistics/270126/largest-stock-exchange-operators-by-market-capitalization-of-listed-companies/
https://www.statista.com/statistics/270126/largest-stock-exchange-operators-by-market-capitalization-of-listed-companies/
https://www.statista.com/statistics/270126/largest-stock-exchange-operators-by-market-capitalization-of-listed-companies/
https://fxssi.com/the-most-traded-currency-pairs
https://www.venturasecurities.com/blog/ohlc-meaning-how-does-it-help-you-trade/
https://www.venturasecurities.com/blog/ohlc-meaning-how-does-it-help-you-trade/
https://www.norwegiancreations.com/2016/03/arduino-tutorial-simple-high-pass-band-pass-and-band-stop-filtering/
https://www.norwegiancreations.com/2016/03/arduino-tutorial-simple-high-pass-band-pass-and-band-stop-filtering/

Bibliography 52

47. PRESS, William H.; TEUKOLSKY, Saul A.; VETTERLING, William T.; FLANNERY,
Brian P. Numerical Recipes 3rd Edition: The Art of Scientific Computing. 3rd ed. Cambridge
University Press, 2007. isbn 0521880688. Available also from: http://www.amazon.com/
Numerical-Recipes-3rd-Scientific-Computing/dp/0521880688/ref=sr_1_1?ie=
UTF8&s=books&qid=1280322496&sr=8-1.

48. COOLEY, James; TUKEY, John. An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation. 1965, vol. 19, no. 90, pp. 297–301.

49. SCIPY DEVELOPERS. scipy.signal.filtfilt [https : / / docs . scipy . org / doc / scipy /
reference/generated/scipy.signal.filtfilt.html]. 2024. Available also from: https:
//docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html.
Accessed: 2024-10-17.

50. GWINN, C. R.; JOHNSON, M. D. Noise and Signal for Spectra of Intermittent Noiselike
Emission. The Astrophysical journal. 2011, vol. 733, no. 1, 51–jQuery1323908476286=’48’.
isbn 0004-637X.

51. JENSEN, G. Part 2: Convolution and Cross-Correlation [YouTube video]. 2023. Available
also from: https://www.youtube.com/watch?v=MQm6ZP1F6ms. Accessed: 2024-10-23.

52. SMITH, Steven W. The scientist and engineer’s guide to digital signal processing. USA:
California Technical Publishing, 1997. isbn 0966017633.

53. MUHAMMAD, Tashreef; AFTAB, Anika Bintee; IBRAHIM, Muhammad; AHSAN, Md. Mainul;
MUHU, Maishameem Meherin; KHAN, Shahidul Islam; ALAM, Mohammad Shafiul. Transformer-
Based Deep Learning Model for Stock Price Prediction: A Case Study on Bangladesh Stock
Market. International Journal of Computational Intelligence and Applications. 2023, vol. 22,
no. 03. issn 1757-5885. Available from doi: 10.1142/s146902682350013x.

54. KAZEMI, Seyed Mehran; GOEL, Rishab; EGHBALI, Sepehr; RAMANAN, Janahan; SA-
HOTA, Jaspreet; THAKUR, Sanjay; WU, Stella; SMYTH, Cathal; POUPART, Pascal;
BRUBAKER, Marcus. Time2Vec: Learning a Vector Representation of Time. 2019. Avail-
able from arXiv: 1907.05321 [cs.LG].

55. GRAMER, ARVID AND DANIELSSON, SIMON. Predicting Forex Rates using Sentiment
Analysis on Financial Articles. 2023. Student Paper.

56. FAMA, Eugene F. Efficient capital markets: A review of theory and empirical work. The
Journal of Finance. 1970, vol. 25, no. 2, pp. 383–417. Available from doi: 10.2307/2325486.

57. MALO, Pekka; SINHA, Ankur; TAKALA, Pyry; KORHONEN, Pekka; WALLENIUS,
Jyrki. Good Debt or Bad Debt: Detecting Semantic Orientations in Economic Texts. 2013.
Available from arXiv: 1307.5336 [cs.CL].

58. BELTAGY, Iz; PETERS, Matthew E.; COHAN, Arman. Longformer: The Long-Document
Transformer. 2020. Available from arXiv: 2004.05150 [cs.CL].

59. ANBAEE FARIMANI, Saeede; VAFAEI JAHAN, Majid; MILANI FARD, Amin; TAB-
BAKH, Seyed Reza Kamel. Investigating the informativeness of technical indicators and
news sentiment in financial market price prediction. Knowledge-Based Systems. 2022, vol. 247,
p. 108742. issn 0950-7051. Available from doi: https://doi.org/10.1016/j.knosys.
2022.108742.

60. MALIBARI, Nadeem; KATIB, Iyad; MEHMOOD, Rashid. Predicting Stock Closing Prices
in Emerging Markets with Transformer Neural Networks: The Saudi Stock Exchange Case.
International Journal of Advanced Computer Science and Applications. 2021, vol. 12, no.
12. Available from doi: 10.14569/IJACSA.2021.01212106.

http://www.amazon.com/Numerical-Recipes-3rd-Scientific-Computing/dp/0521880688/ref=sr_1_1?ie=UTF8&s=books&qid=1280322496&sr=8-1
http://www.amazon.com/Numerical-Recipes-3rd-Scientific-Computing/dp/0521880688/ref=sr_1_1?ie=UTF8&s=books&qid=1280322496&sr=8-1
http://www.amazon.com/Numerical-Recipes-3rd-Scientific-Computing/dp/0521880688/ref=sr_1_1?ie=UTF8&s=books&qid=1280322496&sr=8-1
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.filtfilt.html
https://www.youtube.com/watch?v=MQm6ZP1F6ms
https://doi.org/10.1142/s146902682350013x
https://arxiv.org/abs/1907.05321
https://doi.org/10.2307/2325486
https://arxiv.org/abs/1307.5336
https://arxiv.org/abs/2004.05150
https://doi.org/https://doi.org/10.1016/j.knosys.2022.108742
https://doi.org/https://doi.org/10.1016/j.knosys.2022.108742
https://doi.org/10.14569/IJACSA.2021.01212106

Bibliography 53

61. DOSOVITSKIY, Alexey; BEYER, Lucas; KOLESNIKOV, Alexander; WEISSENBORN,
Dirk; ZHAI, Xiaohua; UNTERTHINER, Thomas; DEHGHANI, Mostafa; MINDERER,
Matthias; HEIGOLD, Georg; GELLY, Sylvain; USZKOREIT, Jakob; HOULSBY, Neil. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 2021. Available
from arXiv: 2010.11929 [cs.CV].

62. LTD., Forex Software. Historical Forex Data. 2024. Available also from: https://forexsb.
com/historical-forex-data. Accessed: October 19, 2024.

63. TENSORFLOW. tf.keras.Layer. 2024. Available also from: https://www.tensorflow.
org/api_docs/python/tf/keras/Layer. Accessed: 2024-10-21.

64. TENSORFLOW. tf.keras.layers.LayerNormalization. 2024. Available also from: https://
www.tensorflow.org/api_docs/python/tf/keras/layers/LayerNormalization. Ac-
cessed: 2024-10-21.

65. ALDOSARI, Mohammed; MILLER, John. On Transformer Autoregressive Decoding for
Multivariate Time Series Forecasting. In: 2023, pp. 423–428. Available from doi: 10.14428/
esann/2023.ES2023-171.

66. TENSORFLOW. tf.keras.layers.AveragePooling1D. 2024. Available also from: https://
www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling1D. Ac-
cessed: 2024-10-22.

67. TENSORFLOW. tf.math.top k. 2023. Available also from: https://www.tensorflow.org/
api_docs/python/tf/math/top_k. Accessed: 2024-10-23.

https://arxiv.org/abs/2010.11929
https://forexsb.com/historical-forex-data
https://forexsb.com/historical-forex-data
https://www.tensorflow.org/api_docs/python/tf/keras/Layer
https://www.tensorflow.org/api_docs/python/tf/keras/Layer
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LayerNormalization
https://www.tensorflow.org/api_docs/python/tf/keras/layers/LayerNormalization
https://doi.org/10.14428/esann/2023.ES2023-171
https://doi.org/10.14428/esann/2023.ES2023-171
https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling1D
https://www.tensorflow.org/api_docs/python/tf/keras/layers/AveragePooling1D
https://www.tensorflow.org/api_docs/python/tf/math/top_k
https://www.tensorflow.org/api_docs/python/tf/math/top_k

Attachments

readme.md...medium description
thesis showcase.ipynb commented solution procedure
autoformer predict price move.ipynb model training
autoformer predict price.ipynb..model training
transformer in seq.ipynb .. model training
transformer out seq.ipynb ... model training
transformer predict price.ipynb.......................................model training
simple baseline.ipynb..................................baseline model implementation
src

autoformer.py ... autoformer implementation
vanilla transformer.py.................................transformer implementation
load data.py .. class for loading data
train model.py... class for training models
visualize data.py..class for data visualization

imports.py...imported libraries

54

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Goals

	Background and Theory
	Technical background
	Machine learning
	Binary classification

	Neural networks
	Perceptron
	Dense layer
	Activation function
	Loss function
	Optimization method

	Transformer
	Encoder
	Decoder
	Self-attention mechanism
	Input embedding
	Positional encoding
	Multi-head attention
	Masked multi-head attention
	Add&Norm
	Feed forward
	Additional information and summary

	Time series
	Types of time series
	Components of time series
	Stationarity
	Time series forecasting

	Data
	Forex
	Technical indicators

	Signal processing
	Fourier Transform
	Fast Fourier transform
	Butterworth filter

	Autoformer
	Related work
	Transformer-Based Deep Learning Model for Stock Price Prediction: A Case Study on Bangladesh Stock Market
	Predicting Forex Rates using Sentiment Analysis on Financial Articles
	Predicting Stock Closing Prices in Emerging Markets with Transformer Neural Networks: The Saudi Stock Exchange Case
	Summary

	Experiments
	Data
	Input datasets
	Data observation

	Models
	Transformer
	Training phase
	Inference phase
	Multi-head attention in decoder

	Autoformer
	Encoder
	Decoder
	Auto-correlation mechanism

	Baseline models
	Random 50 % model
	Baseline model based on past value

	Experiments overview
	Code overview
	Results
	The threshold method

	Conclusion
	Attachments

