
Bachelor’s thesis

DEVELOPMENT OF
REPORTING TOOL IN
THE EXPERTS.AI
PLATFORM

Lev Popov

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Stanislav Kuznetsov, Ph.D.
October 24, 2024

Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Development of Reporting Tool in the Experts.ai Platform

Lev Popov

Ing. Stanislav Kuznetsov, Ph.D.

Informatics

Web and Software Engineering, specialization Software

Engineering

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

The goal of this work is to create a reporting module for displaying user activity statistics

on widgets within the Experts.ai platform. The work will be divided into two parts and will

be developed in cooperation with Roman Chertishchev. This part will include

requirement analysis, UI/UX design, mockup testing, and will focus on the design and

implementation of the user interface using modern frontend technologies. The

development will take place directly in the Experts.ai platform and will be tested in a real

environment.

1. Familiarize yourself with the issue and define business requirements.

2. Conduct requirement analysis for displaying user activity statistics on widgets.

3. Design and implement the user interface using techniques typical for web applications.

4. Perform integration with the backend part and create a functional MVP.

5. Test your design with real data.

Electronically approved by Ing. Michal Valenta, Ph.D. on 8 February 2024 in Prague.

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Lev Popov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Information
Technology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Popov Lev. Development of Reporting Tool in the Experts.ai
Platform. Bachelor’s thesis. Czech Technical University in Prague, Faculty of Infor-
mation Technology, 2024.

First of all, I would like to thank my supervisor, Ing.
Stanislav Kuznetsov, Ph.D., for providing me with this
topic for my bachelor’s thesis and for his dedicated time
and consultations that helped me correct mistakes in my
work. Secondly, I want to express my deepest thanks to
my family and friends for their support throughout my
studies. I would also like to thank all the developers of
the Experts.ai platform who shared their knowledge of
implementation and architecture details.

iii

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis. I acknowledge
that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. I further declare that I
have concluded an agreement with the Czech Technical University in Prague,
on the basis of which the Czech Technical University in Prague has waived
the right to conclude a licence agreement on the utilization of this thesis as a
school work pursuant to Section 60(1) of the Copyright Act. This fact does not
affect the provisions of Section 47b of the Act No. 111/1998 Coll., on Higher
Education Act, as amended.

In Prague on October 24, 2024

iv

Abstract

The subject of this bachelor’s thesis is the design and implementation of the
Reporting Tool frontend. This module expands the Experts.ai web platform
by visualizing user activity on widgets in the form of charts and tables. The
module was implemented using the Angular framework and TypeScript pro-
gramming language as the rest of the platform frontend to extend its web
application with the new components and web pages. The main contribution
of this thesis was a thoroughly made user interface design with the most crucial
statistics to see valuable insights about user behavior that leads to data-driven
business decisions. This design was backed by the modern frontend libraries
applied in implementing the Reporting Tool, which significantly improved the
user experience and maintainability of the platform’s code base.

Keywords web application, frontend, UI, UX, Experts.ai, user interactions,
statistics, TypeScript, Angular

Abstrakt

Předmětem této bakalářské práce je návrh a implementace frontendu nástroje
pro reportování. Tento modul rozšiřuje webovou platformu Experts.ai vizual-
izací uživatelské aktivity na widgetech ve formě grafů a tabulek. Modul byl
implementován pomocí frameworku Angular a programovacího jazyka Type-
Script, stejně jako zbytek frontendu platformy, aby rozšířil webovou aplikaci o
nové komponenty a webové stránky. Hlavním přínosem této práce bylo pečlivě
navržené uživatelské rozhraní, které umožňuje zobrazit klíčové statistiky ve-
doucí k cenným poznatkům o chování uživatelů, co napomáhá k rozhodnutím
založeným na datech. Tento návrh byl podpořen moderními frontendovými
knihovnami použitými při implementaci nástroje pro reportování, a to výz-
namně zlepšilo uživatelský zážitek a udržovatelnost kódu platformy.

Klíčová slova webová aplikace, frontend, UI, UX, Experts.ai, uživatelské
interakce, statistika, TypeScript, Angular

v

Contents

Introduction 1

Goals 3

I Theoretical part 4

1 Experts.ai overview 5
1.1 User interface . 5

1.1.1 Widget . 5
1.1.2 Evidence portal . 8

1.1.2.1 Organization overview 8
1.1.2.2 Widget configuration 9
1.1.2.3 Portal administration 11

1.2 Technology analysis . 11
1.2.1 Database . 12
1.2.2 Backend . 12
1.2.3 REST API . 13
1.2.4 Frontend . 13

2 Angular framework 14
2.1 Architecture . 14
2.2 Routing . 15
2.3 Reactive programming . 17

3 Existing solutions 18
3.1 Google Analytics . 18
3.2 Mixpanel . 20
3.3 Amplitude . 22
3.4 Conclusion . 23

4 Charting libraries 24
4.1 ApexCharts . 24
4.2 Apache ECharts . 25
4.3 Chart.js . 25
4.4 Conclusion . 26

vi

Contents vii

II Practical part 27

5 Analysis 28
5.1 Requirements analysis . 28

5.1.1 Functional requirements 29
5.1.2 Non-functional requirements 30

5.2 Use case modeling . 32
5.2.1 Actors . 32
5.2.2 Use cases . 33
5.2.3 Functional requirements coverage 35

6 Design 37
6.1 Conceptual model . 37
6.2 Interface prototyping . 39

6.2.1 Statistics page header 40
6.2.2 Organization items statistics 41

6.2.2.1 Engagement section 42
6.2.2.2 Acquisition section 44
6.2.2.3 Prime time and item types engagement sections 45

6.2.3 Organization widgets statistics 47
6.2.3.1 Promotion section 47

6.2.4 Widget statistics . 48
6.2.5 Item statistics . 49
6.2.6 Platform global statistics 49
6.2.7 Widgets evidence . 49
6.2.8 Prototypes evaluation 50

6.3 REST API . 50
6.3.1 Endpoints . 51
6.3.2 Security . 53
6.3.3 API Mocking . 53

7 Implementation 55
7.1 Routing . 55
7.2 Components structure . 57
7.3 Angular Material . 60

7.3.1 Datepicker . 60
7.3.2 Table . 61
7.3.3 Sort header and paginator 63
7.3.4 Stepper . 63

7.4 Responsive design . 64
7.5 Chart.js plugins . 66

7.5.1 Datalabels . 66
7.5.2 Annotations . 69
7.5.3 Deferred . 69

Contents viii

7.6 PDF export . 69

8 Testing 72
8.1 Static code analysis . 72
8.2 User acceptance testing . 72

8.2.1 Testing results . 75

Conclusion 77
8.3 Future work . 78

Contents of the attachment 83

List of Figures

1.1 Widget item catalog . 6
1.2 Widget item details . 6
1.3 Evidence portal, organization overview [3] 9
1.4 Widget configurations page [3] 10
1.5 Three-tier architecture [4] . 11

3.1 Google Analytics dashboard [14] 19
3.2 Google Analytics table statistics [14] 20
3.3 Mixpanel dashboard [16] . 21
3.4 Amplitude dashboard [17] . 22

4.1 ApexCharts [18] . 24
4.2 Apache ECharts [19] . 25
4.3 Chart.js [20] . 26

5.1 UML Use Case Diagram . 33

6.1 Domain Model . 38
6.2 Statistics page header . 40
6.3 Organization items engagement statistics 42
6.4 Organization items engagement statistics, second layout 44
6.5 Organization items acquisition statistics 45
6.6 Organization items prime time and item types statistics 46
6.7 Organization widgets statistics 47
6.8 Organization widgets promotion statistics 48
6.9 Widgets constructor . 50

7.1 Components structure . 57
7.2 Datepicker interface . 60
7.3 Widgets promotion statistics 62
7.4 Stepper in widget constructor 64
7.5 Items engagement statistics, first layout 65
7.6 Items engagement statistics, second layout 65
7.7 Widgets engagement statistics 67
7.8 Prime time and item types engagement sections 69
7.9 PDF exported file example . 71

ix

List of Tables

4.1 Comparison of ApexCharts, ECharts, and Chart.js 26

5.1 Functional requirements coverage 36

6.1 Statistics filters query parameters 52
6.2 Ranking options query parameters 53

List of code listings

7.1 Adding routes . 56
7.2 Content projection example . 58
7.3 Collecting parameters and getting data from REST API example 59
7.4 Datepicker configuration with FormGroup 61
7.5 Clickable table rows implementation 62
7.6 Clickable table rows styling . 62
7.7 Responsive charts and tables 66
7.8 Funnel datalabels configuration 68
7.9 Composition datalabels configuration 68
7.10 Exporting visualization to PDF 70

x

List of abbreviations

API Application Programming Interface
CSS Cascading Style Sheets

DOM Document Object Model
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

JS JavaScript
JSON JavaScript Object Notation
REST Representational State Transfer

UI User Interface
URI Uniform Resource Identifier
URL Uniform Resource Locator

UX User Experience

xi

Introduction

In recent years, many web platforms have desired to enhance user experience by
collecting and analyzing how users interact with the product. Companies spe-
cializing in Software as a Service (next SaaS) products are continually looking
for the best solutions to track activity and improve the usability of their ap-
plications. The company EDUMATCH, developers of the product Experts.ai,
is no exception.

Experts.ai is a web platform designed to create connections between re-
search organizations and business companies. It allows universities to upload
their cooperation offers to the database and generate customizable web wid-
gets for integration into university websites. Potential partners and future
colleagues can then explore uploaded opportunities inside these widgets and
apply for collaboration within the widget. Collecting and visualizing statis-
tics on visitor activity in widgets was one of the most requested features, so
EDUMATCH decided to extend the web platform with the new Reporting
Tool to let customers and partners inspect what to improve in their offers or
which intellectual assets are the most popular among widget guests.

The result of this thesis is intended not only for the Experts.ai users to view
activity trends and make data-driven decisions based on them but also for the
Experts.ai platform administrators and developers to track system status and
sustainability if all the widgets are active and working correctly.

This topic was chosen because there is a great need to solve this problem.
Developing the Reporting Tool user interface is also an opportunity to apply
all the learned software engineering methodologies and deliver a valuable and
reliable product.

The Reporting Tool will be developed in cooperation with Roman
Chertishchev, whose bachelor thesis focuses on designing and implementing
the backend part of the module. This thesis aims to analyze business require-
ments, design user interface wireframes, implement the frontend part of the
new module using these designs, and test it with the end users.

This thesis is divided into two parts. In the theoretical part, firstly, the
current Experts.ai platform architecture and how it can be expanded with

1

Introduction 2

Reporting Tool functionalities will be reviewed. Possible features to inspire
and improve from already existing solutions in web traffic analytics will also
be researched in this part. Then, the most popular libraries for making web-
based charts will be compared, and the chosen one will be utilized in the
Reporting Tool implementation.

In the practical part, functional and non-functional requirements will be
stated for the frontend of the Reporting Tool. Then, interactive wireframes
of the user interface will be designed based on the resulting analysis. Finally,
development decisions made through the implementation phase will be thor-
oughly described, as well as the testing process of the finished product with
the end users.

Goals

The primary goal of this thesis is to design and implement the frontend part of
the Reporting Tool module in the Experts.ai platform. The following subgoals
must be completed to achieve this goal.

The theoretical part’s goals are to overview the current structure and tech-
nologies used in the Experts.ai project, research how existing reporting services
are solving the problem of visualizing user activity statistics, and choose the
best suitable web charting technology for the purposes of Reporting Tool im-
plementation.

The practical part’s goals are to define business requirements, analyze the
problem domain and to design prototypes of the planned new module according
to the UI/UX approaches and conducted research. The final goals of this thesis
are to implement the Reporting Tool module using the best modern practices
of frontend development, and to test the resulted module with the end users.
All of the stated goals will be controlled and approved in tight communication
with the EDUMATCH organization.

3

Part I

Theoretical part

4

Chapter 1

Experts.ai overview

This chapter provides an overview of the Experts.ai platform interface and
functionality, as well as an analysis of the technologies used in its devel-
opment. This research will allow for a better understanding of the current
state of the application, its internal processes, and the domain model of
the platform. It will also help identify a list of key performance indicators
(next KPI) that users will rely on for making business decisions. The tech-
nological analysis will explore possible ways to extend the platform with a
Reporting Tool.

First, the user interface of Experts.ai, the contents of the web pages, and
the operations that users can perform on them will be presented. Then, the
platform’s technology analysis will be examined, including the application’s
module architecture and how they communicate with each other.

1.1 User interface
Experts.ai consists of two user interfaces to interact with the system: individual
widgets at each university and an evidence platform. The individual widgets
are designed for visitors of organizations’ web pages to explore all uploaded
offers and submit collaboration requests regarding the offers they are interested
in. The evidence platform provides organization editors with an interface for
configuring and generating the described widgets, as well as managing the
intellectual assets they have uploaded.

1.1.1 Widget
A web widget is a small interactive third-party application embedded within a
Hypertext Markup Language (next HTML) document that extends the func-
tionality of a web page. Widgets simplify the integration of additional services

5

User interface 6

and can significantly improve the user experience by providing useful tools and
information in the user’s current context.

The Experts.ai platform utilizes inline frame widget technology using the
HTML element <iframe>, which allows rendering another web page in a box
within the parent web page by a given URL. [1] On the platform, users can
generate <iframe> code with the URL of an Experts.ai web page and embed
it into the HTML document of their website, making the Experts.ai platform’s
content available on the user’s page.

Figure 1.1 Widget item catalog

Figure 1.2 Widget item details

Integrating Experts.ai widgets on a web page allows the organization to
showcase intellectual assets to potential partners through an interactive visual
catalog. An example of such a catalog is presented in Figure 1.1. The catalog
consists of a search panel with keywords, an option select of the asset type to
be displayed in the list, and the list of offer cards, which are gradually loaded as
the widget is scrolled down. Experts.ai platform widgets are most commonly
utilized by current clients in the following use cases:

A university organization embeds a widget on its website with a catalog
of intellectual assets belonging to the university (for example, academic
papers and their outcomes).
Expected widget visitors: Business companies that want to order a
consultation or commercialize the research.

A university organization embeds a widget on its website with a catalog
of ongoing research projects conducted by laboratory organizations part-
ners.
Expected widget visitors: Business companies looking to sponsor re-
search or potential project partners.

User interface 7

A university organization embeds a widget on its website with a catalog
of current job opportunities posted by company organization partners of
the university.
Expected widget visitors: Students of the university who wish to col-
laborate with companies.

It is important to clarify that the functionality of the Experts.ai platform
is not limited to these types of collaborations between organizations. Organi-
zations can form any partnerships and install widgets regardless of the types of
organizations. From these collaborations, the main entities of the Experts.ai
domain can be identified:

Organization The owner of intellectual assets, collaboration offers, or an
organization capable of attracting a new audience for other asset holders
by embedding a widget on their web pages.

Organization type

University
Faculty
Laboratory
Company

Item An organization’s offer with detailed collaboration description, which
can be responded to by opening it on the widget and contacting the holder.

Item type

Expert Specialist in academic work and various scientific fields, who
can be contacted for consultation or collaboration.
Research outcome Result of experts’ work to be applied in commer-
cialization and business innovations.
Research project Collaboration of scientific experts to discover new
research outcomes.
Success story Case study of the research organizations’ collaboration
with business partners.
Equipment or Service Paid asset that business organizations can or-
der from a university for temporary use.
Opportunity Job position, internship, or thesis topic.

Widget An organization’s embedded catalog on a website, allowing the
promotion of both the organization’s own items and the items belonging
to partner organizations.

User interface 8

The following is a list of the main interactions that widget visitors can
perform on items displayed in widgets:

View Widget visitor scrolls through the list of items on a widget and sees the
newly shown item preview card.

View detail Widget visitor clicks on the preview card to open a new widget
page with more details about the offer.

Apply Widget visitor clicks the contact button, fills in a message with their
contact details, and sends it.

1.1.2 Evidence portal
The Evidence portal is available at the URL https://experts.ai/. To access
it, a registered profile in the Experts.ai system is needed. After logging in, the
user can navigate to the main page of their organization. Unlike the evidence
portal, viewing and interacting with widgets does not require authentication
and is available to any anonymous visitor of the web pages where the widgets
have been integrated.

1.1.2.1 Organization overview
The user interface of the evidence portal is presented in Figure 1.3. The
side navigation panel displays a list of all the organizations the current user
is a part of. With it, the user can navigate not only to the main pages of
each organization but also to the management pages for items categorized by
each item type available on the platform. The organization’s main page is a
dashboard that displays on its cards the number of items of each type, charts
showing the performance of research activities, and an interface for managing
the user roles and settings of the organization.

At the bottom of this page, there are charts that visualize the organiza-
tion’s performance according to the intellectual assets’ successes from the data
uploaded to the platform. These charts are implemented using the Google
Charts library [2]. The charts have visual errors and flickering when hovering
the cursor over their sections; some of the charts disrupt the layout of the page
and extend beyond their card, and the line chart’s tooltip does not follow the
user’s cursor unless the cursor is moved very carefully and precisely. All of
these issues negatively affect the user experience of using the portal, so these
interface shortcomings will be considered in the next chapters of this thesis.

https://experts.ai/

User interface 9

Figure 1.3 Evidence portal, organization overview [3]

1.1.2.2 Widget configuration
The organization overview page features a “Widget Configurations” button,
which directs the user to the widget configurations page. This page is divided
into two sections (see Figure 1.4): the upper section, where the organiza-
tion’s editor selects which components will be displayed on the widget, and
the lower section, which presents the final embeddable code, based on the
HTML <iframe> technology mentioned above. After the user reviews the
resulting widget visualization preview, this code can be integrated into the
organization’s website HTML document.

User interface 10

Figure 1.4 Widget configurations page [3]

Organizations usually generate several widgets with different configura-
tions, displaying various types of offers. The current solution does not distin-
guish widgets from each other or save organizations’ widgets and configurations
to the platform’s database. The widget configuration is embedded directly in
the URL that <iframe> accepts as a resource to render in another web page.
The example of the <iframe> URL is:
https://experts.ai/widgets/organizations/{organizationId}?experts=true&

projects=true&successStories=true}↪→

All the URLs that need to be accessed from the external websites in a form
of a <iframe> widget start with the path segment /widgets, while most of
the evidence portal pages start with the /evidence path segment:
https://experts.ai/evidence/organizations/{organizationId}

Technology analysis 11

The lack of widget instance management doesn’t allow the system to distin-
guish organization widgets from each other, which will complicate the analysis
of user interaction sources. This problem will be addressed later in this thesis.

1.1.2.3 Portal administration
The portal provides a web interface for managing the platform’s global data.
These private pages are available only to authorized users with an administra-
tor role. The administrator tools section lacks functionality that would enable
convenient monitoring of widget diagnostics and user activity, so it is necessary
to check the status of the widgets manually.

1.2 Technology analysis
The architecture of Experts.ai is structured around a three-tier design contain-
ing the database (data tier), backend (application tier), and frontend (presen-
tation tier). This division is intended to create a clear separation of each part’s
concerns, which enhances the platform’s scalability and maintainability.

Three-tier architecture is a widely used software application structure, and
it allows each tier to function independently while seamlessly interacting with
the others. One of the main advantages of three-tier architecture is allowing
developers to update or scale each tier simultaneously without impacting the
rest of the system. [4]

Figure 1.5 Three-tier architecture [4]

Technology analysis 12

1.2.1 Database
The data tier, also known as the database or storage tier, is the place where
the application’s processed information is stored and managed. Software and
systems designed to function as the data tier in the architecture have qualities
such as scalability, reliability, and security protection. [4]

In the context of the Experts.ai platform, PostgreSQL [5] is used as the
data tier technology, which utilizes the SQL relational data structure. Rela-
tional databases consist of a fixed schema that requires data to be organized
into predefined tables with columns and relationships between them. This
structure supports complex queries and maintains strong data integrity, but
its architecture must be well-designed in advance through detailed analysis. [6]

1.2.2 Backend
In the three-tier architecture, the application tier, often called the business
logic or server tier, serves the role of a communication channel between data
and presentation tiers. It functions as the core where business logic is pro-
cessed. This tier takes the user inputs from the presentation tier, processes
them through its business rules, and interacts with the data tier to add, up-
date, or delete the data as needed. [4]

Experts.ai’s backend server is written in Java, a powerful and widely used
programming language. Java offers many advantages for completing software
engineering tasks, such as its object-oriented nature for modular design and
reusable code or its platform independence for web applications that operate on
various devices and operating systems. [7] Platform’s backend is based on the
Spring framework, which incorporates Dependency Injection and Inversion of
Control principles. [8] Spring framework suits Experts.ai platform architecture
so that all new functionality requirements can be quickly fulfilled without
increasing the complexity of the backend server with each new development
iteration.

Another important responsibility of the application tier is authorization,
the process of verifying whether a user has the necessary permissions to access
private resources or data. The backend contains a role system, with which it
checks the roles of the current user interacting with it, and if the user does not
have the necessary role, access to the resource is denied, returning an error. On
the Experts.ai platform, the role system is structured so that in each organiza-
tion, its participant can have one of three roles: ORGANIZATION_VIEWER,
ORGANIZATION_EDITOR, or ORGANIZATION_ADMIN. Additionally,
the platform has the PORTAL_ADMIN role, which gives users access to
manage all organizations and resources through the interface described in Sec-
tion 1.1.2.3.

Technology analysis 13

1.2.3 REST API
Application Programming Interface (next API) is a collection of rules and pro-
tocols that enables one software application to interact with another. It speci-
fies the methods and data formats that applications utilize for communication
with one another. APIs allow developers to access features or information
from external systems without the need to comprehend the underlying code
or concepts. [9]

The data and presentation tiers in the three-tier architecture cannot com-
municate directly for security reasons. The backend serves all the connections
in the architecture, handling user input from the frontend and managing data
operations with the database. There are many different types of APIs, in-
corporating different protocols and data formats. Application tiers provide
a specification of API called REST API (also known as a RESTful API or
RESTful Web API) to act as an intermediary for the presentation tier to ac-
cess secured data in the data tier. REST API uses standard HTTP protocol
methods such as GET, POST, PUT, and DELETE to interact with resources
(identified by unique URI endpoints) on a server and returns standard HTTP
responses with status codes. REST APIs are stateless, meaning each request
from a client to the server must contain all the information needed to fulfill
that request. [9]

These qualities allow REST APIs to be highly scalable, which will be useful
for expanding the backend REST API with new endpoints for the Reporting
Tool module. New resources must be introduced, with which the presentation
tier will communicate to obtain aggregated user activity statistics, and an
interface for managing the resource of unified widget instances.

1.2.4 Frontend
The presentation tier serves as the user interface and the communication layer
of the application, allowing the user to interact with it. Its primary function
is to present information to users and gather information from them. [4]

In the Experts.ai platform, the presentation tier is represented by a web
application developed using the Angular framework. This framework allows
the development of dynamic web single-page applications (next SPA) that
users launch through a browser. Angular is built with TypeScript, a superset
of JavaScript developed by Microsoft that adds static typing to catch type-
related issues and must be compiled to JavaScript to run in the browser. [10]
Angular is based on a Component-Based Architecture (next CBA), which relies
on components — reusable and extensible pieces of the user interface. [11]
This architecture allows the code to remain modular, making it possible to
expand the application with a new Reporting Tool module by introducing new
components and utilizing other supporting Angular development tools without
significant changes to the system.

Chapter 2

Angular framework

This chapter is dedicated to a detailed analysis of Angular, a modern frame-
work for fast and efficient web application development. As mentioned in
the previous chapter (see Section 1.2.4), the frontend application of Ex-
perts.ai is built using this framework, so in order to describe the extension
of the platform with the Reporting Tool interface, it is necessary to present
the development structures and tools of Angular in more detail.

2.1 Architecture
In the past, web clients were actively developed based on the architectural pat-
terns Model-View-Controller and its extension Model-View-ViewModel, which
aimed to address the drawbacks of interface and data synchronization present
in its predecessor. These patterns strictly distribute responsibilities within the
application system, simplifying maintainability; however, unfortunately, the
tight coupling between the three main elements in both patterns caused issues
with extending applications with new features, testing, and performance. [12]

To address the increasing complexity in web applications, a fundamen-
tally different and innovative architectural pattern appeared — CBA. In this
pattern, applications consist of reusable and extendable components, each rep-
resenting a part of the user interface. The fragmentation of code has improved
its efficiency in responding to user input and changes, as well as its readability
and maintainability during team development. CBA is now widely applied in
all frameworks for developing web applications, including Angular. [12]

A reusable component in Angular consists of the following main parts: [11]

TypeScript class which contains the logic of the component, such as
handling events or managing data.

Template controls what is rendered in the HTML Document Object Model
(next DOM), the tree structure of HTML elements created by the browser
after loading a web page.

14

Routing 15

CSS selector that defines how the component is named in HTML to be
used in another components’ templates.

Optional list of CSS styles that control the look and layout of the com-
ponent.

Other foundational parts of the framework are as follows: [11]

Services are used to separate reusable business logic and data that can be
shared among multiple components simultaneously.

Directives are additional template instructions for manipulating the DOM.
In Angular, they are divided into two categories:

Structural directives modify the structure of the DOM by adding
or removing elements based on specified conditions (like *ngIf and
*ngFor).
Attribute directives are used to modify the appearance or behavior
of elements (like ngClass and ngStyle).

Forms are applied for handling and validating user input before sending
it to the backend.

2.2 Routing
As mentioned in Section 1.2.4, Angular is a framework for building SPA web
frontends. In the past, many applications were built on the MPA (Multi-Page
Application) architecture, a traditional web application model where any user
interaction or page content viewing resulted in a new request to the server and
a full page reload. In this architecture, web applications rely on server-side
rendering, where the server generates the full HTML document for each page
and sends it to the client, which has its drawbacks, such as slow transitions
between web pages and increased backend load.

SPAs, on the other hand, rely on JavaScript to dynamically change the
content of a single current page. The initial loading of a SPA page takes more
time, but afterward, interactions, page transitions, and user experience become
much smoother due to dynamic content changes with JavaScript rather than
full page reloads as in MPA. The load on the backend decreases, and page
transitions become faster because SPAs fetch only data from the API, not
entire HTML documents. SPAs are often implemented with asynchronous
data loading, which allows sending backend requests in parallel rather than
resource-intensive sequential requests as in MPA. [13]

SPAs implement client-side routing to simulate navigation between differ-
ent views or components within the same page for the following advantages:

Routing 16

Application state structurization Routing allows SPAs to manage and
maintain different application states using distinct URLs. Each route rep-
resents a specific view, making the structure of the application easier to
understand, manage, and scale. For example, URLs like /organizations,
/widgets, or /experts can map to different views of the frontend.

Nested routes A route hierarchy can be established in SPA routing, allowing
for navigation patterns within the app. This is valuable when there is a par-
ent and child components layout. Each child component can have its own
route, which gets displayed within the parent component’s router outlet.
The example of such URL is
organizations/:id/widgets/widget-constructor.

Simulating traditional MPAs Although SPAs only load one HTML page,
routing enables developers to modify the URL in the browser and dy-
namically update the view, creating the perception of navigating between
different pages. This approach maintains an experience similar to con-
ventional websites, where users anticipate a URL change as they explore
various sections.

Browser features SPA routing utilizes the browser’s native navigation tools,
such as the back and forward buttons, history, bookmarking, URL sharing,
or revisiting particular states of the application later on. These browser
capabilities are crucial for a seamless web experience.

Routing is one of Angular’s core features, and it can be implemented and
configured using the following framework tools: [11]

Router module is responsible for configuring and managing the routing
setup in Angular. It defines how different routes map to components and
can be imported into the root or feature modules using
RouterModule.forRoot() or RouterModule.forChild(), respectively.

Route configuration is a set of TypeScript Route objects defining the
paths for different views, and specifying which component should be ren-
dered when a certain path is visited. It supports dynamic parameters,
redirection, and nested routes.

Router outlet acts as a placeholder in the template where the routed
components are displayed. It is dynamically filled with the appropriate
component depending on the current route and allows for nested routing
by placing additional RouterOutlets within child components.

RouterLink is a directive used to create links for navigation within an
Angular application. It binds a path to an HTML element, which when
clicked, triggers the Angular Router to change the URL and render the
associated component, providing SPA behavior without page reloads.

Reactive programming 17

2.3 Reactive programming
Reactive programming in Angular is an asynchronous programming paradigm
centered around data streams and the propagation of changes. It allows devel-
opers to work conveniently and quickly with the flow of application data and
events as users interact with the interface. Angular utilizes the Reactive Ex-
tensions for JavaScript library (next RxJS) to represent this data as streams,
where some components can emit values (for example, those receiving user in-
put), while others subscribe to changes in that stream (interface components
that need to update based on the input). [11]

RxJS provides the type Observable, which acts as a data stream that emits
its value to everyone who is subscribed to its changes. If a subscription appears
after the Observable was emitted its value, the subscriber will not receive any
value until the stream emits the next one. In cases where it is necessary for
the subscriber to receive the last emitted value upon subscription, regardless
of the data stream’s behavior, the type BehaviorSubject is used. [11]

In addition to accepting user input, asynchronous handling is also actively
used in frontend communication with external REST APIs through HTTP pro-
tocol. Angular has a built-in service called HttpClient, designed for sending
such requests. Web applications communicate with APIs asynchronously, so
the methods for sending HTTP requests return a response of type Observable
after successful communication. Additionally, HttpClient automatically maps
the JSON responses returned from the REST API into TypeScript objects
using predefined interfaces, eliminating the need to implement additional re-
sponse parsers. [11]

Chapter 3

Existing solutions

This chapter examines existing solutions in web analytics and user behavior
tracking. Services will be researched from the perspective of user experience
and available functionalities for the end user, including which statistics
these platforms consider most important and which of them lead to valuable
data-driven decisions.

This analysis provides conclusions about what was already explored and de-
fined in the field of user activity tracking and highlights the pros and cons of
modern solutions that can be addressed during this thesis and discussed with
the EDUMATCH.

3.1 Google Analytics
Google Analytics is one of the most popular tools for web traffic analytics of
user behavior on websites and mobile applications. Its primary task is the
automatic collection of data about website visitors, such as which pages they
view and how their activity converts into key actions on the client’s website.
Then, on the analytics portal, visualized aggregations of user activity can be
thoroughly explored in an intuitive user interface. [14]

18

Google Analytics 19

Figure 3.1 Google Analytics dashboard [14]

The interface of the analytics portal in Figure 3.1 consists of a list of
premade reports as a template — dashboards made up of report cards with
aggregations of activity data. In the header of the portal, there is a time filter
that allows users to select a range for which the statistics will be displayed.
In Google Analytics, users can manually create custom dashboards from cards
according to their preferences. However, the default collection of reports has
a quality structure containing everything essential for useful statistics about
user behavior:

Acquisition report shows where new users come from so the organization
can identify the main sources of audience inflow and continue to work in
those areas.

Engagement report describes how the website’s content engages users.
It visualizes metrics on visitor interest trends, how they interact, and what
they like most about the analyzed product.

Retention report reflects how well the website maintains user interest
and how many users utilize the website on a regular basis.

The frontend of Google Analytics, like Experts.ai, is implemented using the
Angular framework. Therefore, the implementation details and styling can be
considered as inspiration for the Reporting Tool. For example, Google Ana-
lytics uses sortable tables from the Angular Material library (see Figure 3.2)
in addition to various charts and lists to display aggregations. [15] It is also
worth noting that the graphs on the platform are quite different from those in
the Google Charts library or are an extreme custom modification of it. From
this fact, it can be concluded that it is not advisable to use a library that even

Mixpanel 20

its creators do not utilize in the form it is provided to developers in the context
of the Experts.ai portal.

Figure 3.2 Google Analytics table statistics [14]

Strengths:

Great default template for reports, good categorization of statistics, and
only the most valuable visualizations for business decisions.
Provides a broad set of tools for tracking traffic sources, user behavior,
and conversion metrics.

Limitations:

Focuses only on high-level metrics, not many detailed statistics.
Difficult dashboard customization, requires good knowledge in data an-
alytics.

3.2 Mixpanel
Mixpanel is a service that tracks user behavior on web portals and platforms.
The Mixpanel solution consists of two main parts: a service for integrating
monitoring into a customer’s web application and an analytical portal where
customers can construct their own personalized dashboard from report charts.
Each report chart reflects various trends, compositions, or comparisons of user
activity metrics. [16]

Mixpanel 21

Figure 3.3 Mixpanel dashboard [16]

Mixpanel groups the report cards into the following main categories of
visualizations [16]:

Insights are a group of reports that display trends, rapid changes, com-
parisons and compositions of various metrics as a whole.

Time-segmented line chart
Time-segmented column chart
Comparison bar chart
Composition pie chart
Table chart

Funnels examine how users perform events in an interaction series. Fun-
nels evaluate the number of users who convert and drop-off from one in-
teraction to another and show these amounts as a vertical bar chart with
percentage values.

One of the features of the platform’s interface is the time filter selection
panel for displaying reports. This menu includes quick-select buttons for date
ranges, such as the last 7, 30, or 90 days, or the current week and month.
Additionally, by clicking on the time period, it can be manually set using
a pop-up calendar. Another noteworthy feature is the ability to export any
report card as a PDF or PNG file.

Strengths:

Amplitude 22

User-friendly interface, easier to use for the target audience of product
managers and marketers.
The quality categorization of statistics was thoroughly analyzed by the
development team within the business domain of analytical tools.

Limitations:

Limited free version and one of the most expensive paid plans from all
of the analyzed solutions.
Not many traditional metrics for user activity analysis.

3.3 Amplitude
Amplitude is another product analytics platform that helps teams understand
user behavior with digital products. Amplitude emphasizes event-based an-
alytics, providing insights into how users interact with various features of a
product. [17]

One of Amplitude’s starter templates provides visualizations of key KPIs
for web platforms. Platform developers define web KPIs as measurable values
that indicate how effectively a website achieves its objectives. Some of the
most commonly used indicators are page views, unique visitors, conversion
rates, and traffic sources. The platform also provides a filter that segregates
user interactions by their interaction type before displaying the KPIs report.

Figure 3.4 Amplitude dashboard [17]

Strengths:

Scalable for large data sets of user activities.

Conclusion 23

Useful reports that provide fundamental metrics for business decisions.
The switchable layout of the dashboard is immediately available when
viewing statistics, rather than during its configuration and building.

Limitations:

Requires a clear strategy on what events to track, can be steep for teams
unfamiliar with product analytics.
Poor performance on the report pages, long loading times, and lack of
smoothness when viewing the page.

3.4 Conclusion
The main reason why none of the ready-made solutions on the market were
chosen for the implementation of the Experts.ai analytics portal is that such
services are most often designed for large-scale applications with high traffic
volume and a wide range of interaction sequences users can perform. The
Experts.ai platform does not yet have a sufficiently large scope of user activities
on the widgets, so most statistics on ready-made services cannot even be filled
with data or visualized.

In addition to the fact that the cost of ready-made solutions is excessive for
the activity level of the Experts.ai platform, the pricing plans of such services
do not align with the vision of the Reporting Tool by EDUMATCH manage-
ment. Access to an organization’s statistics is planned for all its participants,
meaning there will be no limit on the number of Reporting Tool users depend-
ing on the number of active organizations on the platform. At the same time,
the pricing plans of all the analytics services listed in this research are designed
for a limited number of users with access to the analytics portal, typically only
for the data analysts or marketing department, and the statistics are provided
globally for the entire system, not for each organization individually.

Due to this mismatch with the wishes of the Experts.ai clients regarding
the final functionality of the statistics, and since EDUMATCH does not want
to transfer data about organizations and user activities to third parties, it
was approved that the Reporting Tool will become an extension of the cur-
rent platform rather than an external third-party service. However, many of
the advantages and designs of existing solutions will be adopted and serve as
inspiration for the design of the Reporting Tool user interface. The available
functionality will be considered when analyzing and drafting the requirements
for the internal solution.

Chapter 4

Charting libraries

As mentioned in Section 1.1.2.1, charts from the Google Charts library
cause numerous issues in the Experts.ai portal interface and do not meet
the client’s design requirements. This chapter contains an analysis and
comparison of other libraries for rendering charts on web pages, to select
one that will be actively applied in the development of the Reporting Tool
module.

4.1 ApexCharts
ApexCharts is a modern library designed for developers to make interactive
web visualizations with minimal configuration. It provides a variety of prede-
fined chart types and offers lots of powerful interactivity customization, like
chart zooming, time panning, and tooltip customization. ApexCharts has offi-
cial wrapper for Angular, making it easy to integrate with Experts.ai frontend.
ApexCharts has a feature for exporting charts to a PDF file but it requires a
commercial license. [18]

Figure 4.1 ApexCharts [18]

24

Apache ECharts 25

4.2 Apache ECharts
ECharts is a powerful library, especially for large-scale data visualizations.
It supports various advanced features such as heatmaps, tree diagrams, and
3D charts, making its primary use case for complex visualizations. [19] The
integration with Angular, while possible, is not as seamless as with other li-
braries. Charts customization can be difficult for simple use cases, where more
straightforward libraries might be more efficient.

Figure 4.2 Apache ECharts [19]

4.3 Chart.js
Chart.js is a popular open-source charting library known for its simplicity and
ease of use. This library is lightweight and performance-friendly, which are
important factors for the platform infrastructure and smoothness of user ex-
perience. Integration in Angular is performed by using the wrapper library
ng2-charts, which, in addition to providing convenient prebuilt chart com-
ponents, also utilizes RxJS reactivity, which is very important for modern
Angular applications. Additional advantages of Chart.js include extensive doc-
umentation and significant community support through contributions to the
repository and the development of plugins with additional functionality. [20]
Chart.js provides a wide range of fundamental chart types, making it suitable
for implementing a statistics dashboard.

Conclusion 26

Figure 4.3 Chart.js [20]

4.4 Conclusion
As a result of comparing chart visualization libraries in Table 4.1, Chart.js is
the library chosen for chart visualization of the Reporting Tool, which will be
added to the Experts.ai frontend project along with the ng2-charts wrapper.

Criteria ApexCharts ECharts Chart.js
Angular Integration + ~ +
Customization ~ + +
Performance + ~ +
Interactivity + + ~
Documentation ~ ~ +
Community support ~ ~ +
Responsive design + + +
Ease of use ~ — +
Licensing — + +

Table 4.1 Comparison of ApexCharts, ECharts, and Chart.js

Part II

Practical part

27

Chapter 5

Analysis

This chapter is dedicated to defining the requirements of the planned fron-
tend, following the needs of Experts.ai management. Analyzing customers’
requirements at the start of development is essential to preventing potential
issues and planning errors that may occur later.

To analyze the requirements, it was necessary to discuss the needs for the func-
tionality and technical specifications of the Reporting Tool’s frontend with
EDUMATCH’s management. Discussions were held in person at the com-
pany’s office and via online calls using Microsoft Teams.

During these discussions, the management was informed about the research
performed on existing solutions in Chapter 3 to explore ideas proven by ex-
perience that can be adapted to the context of the Experts.ai platform. Con-
clusions from each discussion were adjusted to fit the standard methods of
software engineering analysis, such as requirement analysis and use case mod-
eling.

5.1 Requirements analysis
Requirements analysis is a vital stage in the software development life cy-
cle, where the functional and non-functional requirements of the project are
identified, documented, and confirmed with the client. While functional re-
quirements define the specific tasks and features the system must perform,
non-functional requirements describe the system’s quality attributes, such as
performance, supportability, and usability. [21]

The documented requirements will later help to define the conditions un-
der which the project will be considered complete and at the Minimal Viable
Product (next MVP) state. In addition, this analysis will help determine the
list of functionalities for the final frontend, which will be agreed upon with the
client, represented by EDUMATCH.

28

Requirements analysis 29

5.1.1 Functional requirements
Based on the analysis of the platform’s functionality, the analysis of existing
solutions, and consultations with the client, the following functional require-
ments were defined for the Reporting Tool’s frontend application:

F1 — Item statistics overview
The reporting module must allow users to view visualized statistics on
widget visitors’ interactions with a specific item.
Priority: High
Complexity: High
Type: Functionality

F2 — Widget statistics overview
The module must allow users to view visualized statistics on how widget
visitors interact with items on a specific widget.
Priority: High
Complexity: High
Type: Functionality

F3 — Organization statistics overview
The module must allow users to view visualized statistics on how widget
visitors interact with the items or widgets of a specific organization.
Priority: High
Complexity: High
Type: Functionality

F4 — Platform global statistics overview
The module must allow users to view visualized statistics on how many
interactions visitors perform with the items or widgets of a specific orga-
nization.
Priority: High
Complexity: High
Type: Functionality

F5 — Navigation between statistics
The module will have a clear and intuitive navigation functionality between
the statistics pages of related entities (organizations, widgets, or items).
Users will also be able to switch between the evidence and statistics pages
of the current entity, allowing them to immediately make changes to the
entity after analyzing its statistics.
Priority: High
Complexity: Low
Type: Functionality

F6 — Statistics filtering
Users will have the ability to filter which interactions will be counted and

Requirements analysis 30

displayed in the statistics and which will not. Module will provide filters by
date range, interaction types, specified organization owners of interacted
items or widgets where the interaction occured. Both global filters for
the entire statistics page and individual filters for visualizations will be
available.
Priority: High
Complexity: Middle
Type: Functionality

F7 — Statistics resizing
On the statistics pages, users will be able to control the visualization cards
layout on the web page. Layouts will differ by resizing visualizations, hiding
less important ones, and expanding more detailed visualizations to full
screen.
Priority: Low
Complexity: Low
Type: Functionality

F8 — Exporting statistics
Users will have the ability to export visualized statistics in PDF format or
export statistical data in CSV format. It will be possible to export each
card individually or the entire statistics page.
Priority: Middle
Complexity: Middle
Type: Functionality

F9 — Widgets evidence
The Experts.ai platform will be expanded with new functionality for cre-
ating unified widgets, and each organization will have an administration
page for managing its widgets’ instances.
Priority: High
Complexity: Middle
Type: Functionality

5.1.2 Non-functional requirements
The EDUMATCH company, based on the conducted research, expected the
following non-functional requirements from the final Reporting Tool module:

NF1 — Extension of Experts.ai frontend
The resulting Reporting Tool module must be an extension of the current
Experts.ai web application, written in the TypeScript programming lan-
guage using Angular framework.
Priority: High
Complexity: High
Type: Supportability

Requirements analysis 31

NF2 — Visualization of charts using Chart.js
In the previous chapter (see Chapter 4), libraries for web-based chart ren-
dering were analyzed. Due to its advantages, the Chart.js library was
selected, and the Reporting Tool will primarily be implemented using this
library.
Priority: High
Complexity: Middle
Type: Usability

NF3 — Module extensibility
The module must have a structure that can easily be extended in the future
with new reports, visualizations, and filters.
Priority: High
Complexity: High
Type: Supportability

NF4 — REST API
The module should be integrated with the Experts.ai backend and receive
statistical data for rendering through REST API communication. The
implementation of new backend endpoints with business logic and data
aggregation was developed by Roman Chertishchev as part of his bachelor
thesis. [22]
Priority: High
Complexity: High
Type: Performance

NF5 — Responsiveness
The module’s interface must be responsive so that the visualizations and
content of the Reporting Tool are always displayed correctly and in proper
proportions, regardless of the user’s browser resolution.
Priority: Middle
Complexity: Low
Type: Usability

NF6 — User Experience
The graphical user interface of the module must be intuitive and self-
explanatory for users who are just starting to use the Reporting Tool.
No detailed instructions or explanations from Experts.ai developers should
be required for users to work with it.
Priority: High
Complexity: Middle
Type: Usability

NF7 — Testing
User Acceptance Testing must be conducted on the final solution to verify
the intuitiveness and user-friendliness of the interface. This testing will

Use case modeling 32

help identify design issues and confirm whether the module meets all the
stated requirements.
Priority: High
Complexity: High
Type: Reliability

5.2 Use case modeling
Unified Modeling Language (next UML) diagrams, an industry standard ac-
tively employed across development methodologies, are used to specify, visu-
alize, and document software systems. One of these types of diagrams was
created to affirm and describe the purposes for which end users will utilize the
Reporting Tool.

UML Use Case Diagrams illustrate how users (referred to as actors) interact
with the system by engaging in specific functions or use cases. Each use case
represents a particular functionality or task the system performs in response
to an actor’s actions. The main objective of a use case diagram is to capture
how a system interacts with external entities, providing a high-level view of
the system’s functionality. [23] An Additional way to document use cases is to
write scenarios of user actions for each use case.

5.2.1 Actors
An actor represents the role of a user who interacts with the modeled sys-
tem. The list of actors for this use case diagram is based on the role and
authorization system of the Experts.ai backend, described in Section 1.2.2.

Organization viewer A participant of an organization who can view its
statistics as well as the statistics of its widgets and items. Additionally,
they can access the organization’s widget section and copy the HTML
iframe code to embed the widget catalog on their website.

Organization editor Can perform all the same actions on the entities of
their organization as the Organization viewer. In addition, they are granted
permission to create, edit, and delete instances of widgets belonging to the
organization in which they hold this role.

Portal administrator Has access rights to all organizations on the platform,
and can therefore perform any action that a viewer or editor can for any
organization. Moreover, in the portal administration menu, the adminis-
trator can access global statistics for the entire platform rather than for
each organization individually.

Use case modeling 33

5.2.2 Use cases
The final UML Use Case model is presented in Figure 5.1, and below is the
textual documentation of all the use cases scenarios for this project.

Figure 5.1 UML Use Case Diagram

UC1: View organization widgets

1. Viewer enters the overview page of the organization by the portal’s side-
bar.

2. Viewer clicks the “Widgets” button to access the evidence page of the
organization’s widgets.

UC2: Create organization widget

1. On the organization’s widgets page, the editor clicks the button for new
widget creation to access the widget constructor page.

2. Editor selects a subset of item type components that will be available
in the widget and moves to the next constructor step.

3. Editor chooses whether the widget will have an organization header or
not and moves to the next step.

4. Editor sets the name of the widget and then saves it to generate the
HTML code for it.

UC3: Edit organization widget

Use case modeling 34

1. On the organization’s widgets page, the editor clicks the “Edit” button
on the card of the desired widget instance.

2. System shows the modal screen with the form of widget configurations.
3. Editor changes the options in the modal screen and clicks the “Save”

button.
4. System edits the widget’s configuration.

UC4: Delete organization widget

1. On the organization’s widgets page, the editor clicks the “Delete” button
on the card of the desired widget.

2. System erase the widget instance from the platform’sdatabase and de-
activate all its <iframe> codes.

UC5: View widget statistics

1. On the organization’s widgets page, the viewer clicks the “Statistics”
button on the card of the desired widget to access the widget’s statistics.

Alternative scenario:

1. On the related entity’s statistics page, the viewer clicks on the desired
widget’s name to access its statistics.

UC6: View item statistics

1. Viewer enters the evidence page of the desired item type belonging to
the organization that owns the desired item by the portal’s sidebar.

2. Viewer finds the desired item in the list of items (including using the
search filter).

3. Viewer opens the item’s evidence window.
4. Viewer clicks the button in the lower right corner of the screen to access

the item’s statistics.

Alternative scenario:

1. On the related entity’s statistics page, the viewer clicks on the desired
widget’s name to access its statistics.

UC7: View organization statistics

1. Viewer enters the organization overview page by the portal’s sidebar.
2. Viewer clicks the button in the lower right corner of the screen to access

the organization’s statistics.

Use case modeling 35

UC8: View platform global statistics

1. Administrator enters the portal administration page by the portal’s side-
bar.

2. Administrator clicks the “Platform global statistics” option to access the
platform’s statistics.

UC9: Apply filters

1. Viewer on the report page sets the desired filters for the statistics report.
2. System updates all the visualizations in the report according to the new

filter.

UC10: Resize statistics layout

1. Viewer on the report page chooses one of the layout options for the
report section.

2. System resizes and rearranges report cards according to the user’s chosen
layout.

UC11: Export statistics

1. Viewer on the report page clicks the “Export” icon on the report card
header.

2. Viewer chooses a file format to export statistics, if the chosen format
was:
a. PDF: system lets the viewer download a file with saved visualization

as an image
b. CSV: system lets the viewer download a file with plain data of the

statistics before visualization.

5.2.3 Functional requirements coverage
When analyzing the planned system, it is important to ensure that, upon
full implementation, the final solution will meet all requirements established
with the client. For this purpose, Table 5.1 was created, reflecting that each
functional requirement is covered by at least one use case of the Reporting Tool.
So, it can be said that if the Reporting Tool allows end users to complete all the
listed use cases, then the final solution will meet all functional requirements.

Use case modeling 36

F1 F2 F3 F4 F5 F6 F7 F8 F9
UC1 + +
UC2 + +
UC3 + +
UC4 + +
UC5 +
UC6 +
UC7 +
UC8 +
UC9 +
UC10 +
UC11 +

Table 5.1 Functional requirements coverage

Chapter 6

Design

This chapter contains all activities aimed at describing the structure of the
future application. First, it establishes a conceptual model of the problem
domain according to the research of the Experts.ai platform. Then, it out-
lines the design of the interface, with a strong emphasis on user experience.
Lastly, the chapter contains details of the REST API documentation, which
the frontend will communicate with.

6.1 Conceptual model
The main entities with which the platform’s end users interact were described
in Section 1.1.1, and the technologies for their storage and administration
in Section 1.2.1. During the analysis of the Experts.ai challenges and the
design of the Reporting Tool module for collecting user activity on widgets, a
conceptualization was created using the domain model.

The domain model is a visual representation of the problem domain, its
purpose in this project was to accurately depict the main entities, their at-
tributes, and relationships between them. [24] The final version of the domain
model is presented in Figure 6.1.

This domain model was subsequently applied in the architectural design
to extend the Experts.ai database as part of Roman Chertishchev’s bachelor
thesis. The data storage structure for interactions on widgets was considered in
the further design of all available visualizations and statistics of the Reporting
Tool frontend, to assess how aggregable and possible they are only from the
data that will be available from the backend part.

37

Conceptual model 38

Figure 6.1 Domain Model

It was agreed with the EDUMATCH organization that, as part of the col-
laborative work for the MVP project state, it will be sufficient for the Report-
ing Tool module only to monitor three types of user interactions with widgets,
that were stated in Section 1.1.1. These interaction types are “View”, “View
detail” and “Apply”.

That said, the following information about user interaction is available in
the project database: [22]

Interaction id for identifying interactions from each other.

Timestamp when the interaction was performed.

Interaction type enumeration value according to the abovementioned
description (can be “View”, “View detail” or “Apply”).

Item type enumeration value as one of the intellectual assets’ categories
provided on the platform (can be “Expert”, “Research outcome”, “Research
project”, “Success story”, “Equipment/Service” or “Opportunity”).

Interface prototyping 39

Item id with which the user interacted. The set of organizations that own
this item can be found through this value in the platform’s database.

Widget id on which the interaction occurred. An organization that owns
this widget can be found through this value in the platform’s database.

On the backend part of the Reporting Tool module, these interaction
records must be aggregated and transformed into values that can be conve-
niently visualized on various charts and tables.

6.2 Interface prototyping
The next important part of frontend software development is user interface
design (UI). UI design focuses on the visual aspect (appearance and styling)
and interactive elements (ease of use) of the final product. A related but
broader concept is user experience design (UX), which aims to understand the
needs and behaviors of the end user. The main tools of UX design are user
research, information architecture, and product prototyping. [25]

UI/UX prototyping is the process of creating simplified digital mockups
of the product or application being developed. Application prototypes do not
include the final functionality required for the planned product nor reflect the
final design. Prototyping allows for feedback from end users and testing of the
application’s design intuitiveness before beginning the full implementation of
the interface. [26]

Prototypes are divided into two main types:

Low-fidelity (lo-fi) These prototypes, also known as wireframes, only gen-
erally reflect the design and visual aspects of the final application, focusing
on functionality and the approximate layout of the future interface. Lo-fi
prototypes are styled as sketches and consist of text, buttons, and black-
and-white rectangles that show the approximate content placement in the
interface. These prototypes are very quick to create and help identify in-
terface issues early in the design phase of the future application.

High-fidelity (hi-fi) More detailed and colored representations that closely
resemble the final look of the interface. The goal of a hi-fi prototype is
to provide a realistic preview of the interface and evaluate the design’s
appearance, appeal, and branding.

Both types of prototypes can be interactive or not. Interactive prototypes
simulate working with the final interface, for example, by adding navigation
between interface screens when clicking on interactive buttons. Interactive
prototypes allow usability testing with end users, who can then provide feed-
back on any interactions they find confusing or unclear.

The goal of this section is to provide a textual description of the completed
UI design of the Reporting Tool. The final design of the user interface must

Interface prototyping 40

meet all the documented requirements in Section 5.1, including being intuitive
enough for first-time users, in line with requirement NF6. All visualizations
set on the statistics pages must be verified to ensure they can be aggregated
from user interaction records in the Reporting Tool database (see Section 6.1).

To support the textual documentation, low-fidelity interactive prototypes
of the interface were designed using Balsamiq [27], a tool for sketching and
simplistic visualizing of user interfaces. This application contains not only
a large library of pre-made interface elements in lo-fi style (buttons, labels,
input fields, menus, option selectors, layout elements) but also functionality
to switch interface screens when clicking on hyperlinks (buttons, menu items),
making these wireframes interactive. This will allow for interactive UI testing
with end users to validate the design with EDUMATCH management. All
created wireframes can be viewed in the attachment of this thesis.

6.2.1 Statistics page header
Each statistics page in the Reporting Tool module starts with a header con-
taining the name of the current entity and a menu for configuring filters. The
header can be seen in Figure 6.2 and allows managing several display options
for statistics, which cover the functional requirement F6 from documentation
in Section 5.1.1.

Figure 6.2 Statistics page header

Filters are located on the left side of the menu bar. They are designed
to calculate statistics by only considering interactions corresponding to the
user-defined properties.

Interface prototyping 41

Date range filter allows selecting a time range for which interaction
records in the database will be considered. The interval’s start and end
dates can be set manually or by using quick selection buttons. The quick
selection buttons are divided into two types: options to select the last
number of days from the current day (1, 7, 30, 90, or 365 days) or options
to select the period in which the current day falls (week, month, quarter or
year). Navigation between intervals is possible using the “Previous” and
“Next” buttons, which move the current date range by its length back or
forth. The filter is mandatory for use, with the default selection being the
last 30 days from the current day.

Item types filter is a dropdown list of checkbox elements, allowing the
user to select a subset of intellectual asset types from the platform that have
been interacted with. The filter is mandatory for use, and by default, if no
checkbox is selected in the list, it is the same as considering interactions
for all item types in the resulting statistics. The filter is not available
on the item statistics page, as all interactions displayed in this report are
obviously performed on a single item type — the type of the current item.

Partnership filter is a text input field for the organization’s name, which
allows filtering interactions that occurred with the assistance of the speci-
fied organization. For example, in widget statistics, partners are organiza-
tions that provide items on the widget, and for item statistics, partners are
the organizations owning widgets where interactions with the item occur.
This filtering can help evaluate the development of business relationships
with a collaborating organization. As the name is entered, auto-complete
suggestions help the user avoid typing the entire organization name. The
filter is optional for use.

6.2.2 Organization items statistics
When a user is on any page of the Evidence portal, a round Floating Ac-
tion Button (next FAB) with a chart icon appears and hovers in the bottom
right corner of the screen. Upon clicking it, the user is taken from the cur-
rent organization’s evidence page to the statistics page, which is presented in
Figure 6.2. The FAB changes icon and clicking it again will redirect to the
evidence page of the current entity (if the user is on the organization statistics
page, by clicking it again he will redirect back to the organization evidence
page). The page consists of the described header and a tab selection for view-
ing either the statistics of the organization’s items or widgets. Depending on
the selected tab, a long scrollable dashboard report follows, consisting of report
cards grouped by named sections.

In the statistics tab selection, the organization items tab is set as the de-
fault option because the vast majority of organizations on the platform have
uploaded items but no widgets, and organizations with widgets are likely to

Interface prototyping 42

have their own items as well. Therefore, the primary view of the organiza-
tion statistics page initially displays the statistics of its items, while promoter
organizations can use the tab to switch to the widget statistics they need.

6.2.2.1 Engagement section
From the research of available interactions on widgets in Section 1.1.1, the
following KPIs were identified by which organizations will assess performance
in terms of how effectively they are achieving certain business objectives:

Numeric amount of “View” interactions.

Numeric amount of “View detail” interactions.

Numeric amount of “Apply” interactions.

Conversion percentage rate from “View” to “View detail” interaction.

Conversion percentage rate from “View detail” to “Apply” interaction.

Using these indicators, Experts.ai clients can determine the results of their
cooperation with EDUMATCH, the benefits they gain from uploading their
offers to the platform, and how changes in offers or widgets affect activity
growth.

Figure 6.3 Organization items engagement statistics

All these metrics are visualized primarily in the first section called “En-
gagement”, which is presented in Figure 6.3 and consists of four report cards.

Interface prototyping 43

The structure of each report card includes the report card title, personal op-
tions that only affect the report card itself, and an export button (covering
functional requirement F8). The engagement section consists of the following
report cards:

Items engagement over time displays the totals of three interaction
types over a given date range and a line over time chart, reflecting trends
in how the number of earned interactions changed over each unit of time.
This report card has its own option allowing the selection of the chart’s
granularity, which determines the time step unit on the line chart. Possible
granularity options are: “Hour”, “Day”, and “Month” (with “Day” selected
by default).

Items engagement funnel uses a vertical bar chart to show the totals of
interaction types, but it also displays the percentage of users who convert
from one interaction stage with the item to the next, and the percentage of
drop-offs. This visualization allows organizations to identify at which stage
of conversion most difficulties arise. For example, if “Apply” interaction
rarely follows “View detail”, the organization can identify and address this
problem.

Items engagement ranking sorts all the organization’s items by a user-
specified type of sorting (by default, sorting by the total sum of interactions
in descending order is selected; sorting can only be done by numeric values)
and displays their KPIs in table form. The ranking does not display all the
organization’s items at once but shows them in a scrollable window, divided
into pages that can be navigated using a paginator in the upper right cor-
ner. Using this report card, organization representatives can identify their
best and worst items to make data-driven decisions for their improvement.
In addition to the ranking functionality, all rows in the table are clickable
and redirect to the page of the item that was clicked.

Items composition by conversions uses a pie/doughnut chart and di-
vides all the organization’s items into 4 categories: items with conversion
rates to View detail and to Apply below 10%, only to View detail above
10%, only to Apply above 10%, and both conversions above 10%. The
totals of these categories are then presented as a composition of a whole to
determine which item categories dominate and which are in the minority.
This visualization provides an overview of all the organization’s items’ con-
versions, showing how many items have reasonable user conversion rates
and how many need improvement to get users to the most important “Ap-
ply” interaction.

In this same section, the functionality covering functional requirement F7
regarding resizing statistics for user convenience is demonstrated. To achieve

Interface prototyping 44

this, at the beginning of each section, a button toggle group is provided, allow-
ing the user to select one of several layout settings for the section. Each layout
changes the sizes of the cards, increasing the size of important cards that bene-
fit from more space and hiding secondary cards. Figure 6.4 presents the second
layout configuration for the section, which hides the secondary “Funnel” and
“Composition” statistics in favor of “Over time” and “Ranking”.

Figure 6.4 Organization items engagement statistics, second layout

6.2.2.2 Acquisition section
This section is dedicated to visualizing the sources from which the organization
acquires traffic and interactions with its items and is depicted in Figure 6.5.
Since interactions with the items occur through widgets, these sources are the
active widgets of promoting organizations. It is important to clarify that in this
section, the organization to which this report belongs may also be displayed, as
organizations can promote their own items on their widgets as well as those of
others. These statistics will help organizations compare which of their partners
brings the most traffic and user activity, with whom it is worth strengthening
partnerships and establishing new campaigns to attract an audience.

Interface prototyping 45

Figure 6.5 Organization items acquisition statistics

In this section, the following reports are provided:

Items promoters over time on the line over time chart displays trends
on how organizations, through widgets, generate interactions with items
over a unit of time. Each promoting organization is assigned its own color
line, and the report card has the same grain selection option as “Items
engagement over time”.

Promoters composition collects the number of interactions provided by
organizations and displays each promoting organization as part of a whole
on a pie/doughnut chart.

Promoting widgets ranking sorts all widgets that bring interactions
with the current organization’s items in a table. Since the ranking may
include widgets from different organizations, a column for “Organization”
is added for each item, unlike the “Items engagement ranking” table. The
rows are also clickable and link to the selected widget’s statistics page.

6.2.2.3 Prime time and item types engagement sections
The organization items report concludes with two sections presented in Fig-
ure 6.6.

Interface prototyping 46

Figure 6.6 Organization items prime time and item types statistics

The concluding report cards on the organization items include:

User activity averages for a time period is the only report card in
the ”Prime time” section, which uses a line over time chart to show the
average user activity over a unit of time for a specific time period. The
time period is a personal option of this report card, with available options
including “Day”, “Week”, and “Month”. For example, when the “Week”
period is selected, the most popular day of the week and hour within the
week are also displayed at the top of the chart. This statistic will allow
organizational representatives to choose the time frame during the day,
week, or month when they can reach the most users, such as scheduling a
weekly newsletter or a monthly upload of new items.

Item types engagement comparison consists of a vertical bar chart
made up of six pairs of bars, with each pair representing one of the types
of items provided on the platform. The left bar in each pair shows the
number of interactions for that type of item, while the right bar displays
the number of items of that type. The left bar corresponds to the metrics
on the left vertical axis, and the right bar corresponds to the right vertical
axis. The chart allows for a clear comparison of which types of items get
the most activity based on the quantity provided by the organization on
the platform.

Item types composition shows the number of interactions for each type
of item relative to the whole on a pie/doughnut chart.

Interface prototyping 47

6.2.3 Organization widgets statistics
The second tab of organization statistics is presented in Figure 6.7 and dis-
plays a report on the interactions that occurred on all widgets created by the
organization. Its structure mirrors that of the organization items statistics,
with a few changes listed below:

All visualizations related to the three types of interactions are colored in
three different colors so that users can intuitively distinguish between inter-
actions conducted on the item and interactions conducted on the widget.

The “Engagement” section consists of the same four report cards, but the
statistics now reflect interactions with all widgets of the organization. The
ranking table displays a sorted list of the organization’s widgets rather than
items.

The “Item types” filter and the “Item types engagement” section reflect
which types of offers attract users most on the organization’s widgets.

The “Acquisition” section was replaced by the “Promotion” section.

Figure 6.7 Organization widgets statistics

6.2.3.1 Promotion section
This section reflects how the organization’s widgets fulfill their role in pro-
moting the offers of the organization or partner organizations. It allows for
identifying which partners and offers are in greater demand among the audi-
ence of the current organization, and which partners the organization promotes

Interface prototyping 48

more effectively through its widgets. Similarly to the “Acquisition” section
and serving as its replacement in the widget report, this section is designed for
the organization to highlight potential partners in advertising and strengthen
business relationships.

Promoted organizations over time shows how widgets provide partner
organizations with user activity on a line over time chart, to highlight how
trends and demand for partners change over time among the audience of
the organization. Each partner organization has its own line on the graph,
displaying the total of all types of interactions with that partner’s offers
for each unit of time. This chart has an option for selecting granularity.

Promoted composition on the pie/doughnut chart provides statistics on
which organizations dominate demand among widget visitors and collec-
tively receive the most interactions, and which do not earn enough inter-
actions relative to the whole.

Promoted items ranking sorts all items displayed on the organization’s
widgets by activity and presents them in a table. Similar to the “Promoting
widgets ranking,” an additional column labeled “Organization” appears in
the table.

Figure 6.8 Organization widgets promotion statistics

6.2.4 Widget statistics
The page with the statistics report for a specific widget can be accessed through
the widgets evidence menu or by clicking on the line with that widget in the

Interface prototyping 49

widget ranking table. This page, in addition to the changed header name
and entity type, differs from the organization’s widget statistics only in that
the data aggregations are presented for a single widget rather than multiple
widgets, and that in the “Engagement” section, there are only two report cards
out of four displaying the main KPIs of the current widget —“Engagement over
time” and “Engagement funnel”. The report cards ”Engagement ranking” and
”Engagement composition” are not relevant in the context of a single entity
rather than a collection of entities. All other sections remain unchanged.

6.2.5 Item statistics
The page with the report for a specific item is accessible just like the orga-
nization by pressing the FAB button while on the item evidence URL, and
similarly, from the statistics page, you can return to the item evidence page
by pressing the button again. Another option to access the item statistics page
is to click on its row in the item rankings. The structure of this report does not
differ from the organization items report except for two points — the report
cards “Engagement ranking” and “Engagement composition” are absent for
the same reason as in the specific widget report, and the section “Item types
engagement” is absent because interactions with the specific item occur only
with its type.

6.2.6 Platform global statistics
The statistics of all organizations and all widgets are only accessible to platform
administrators through the portal administration page. The structure of this
statistics dashboard mirrors the layout of the organization statistics with two
tabs, but the context of aggregations is now not limited to items and widgets
of a single organization, but includes all items or all widgets available on the
platform. This report allows for assessing the overall success and productivity
of the platform, as well as tracking sudden drops in activity in case there is an
error with access to resources or widgets on the platform.

6.2.7 Widgets evidence
As described in Section 1.1.2.2, the platform needs to be enhanced by unifying
widgets so that each has its own identifier for tracking statistics. To achieve
this, a new user interface for creating instances of widgets with different con-
figurations is required. A new solution was designed consisting of two pages:
one displays a list of the organization’s active widgets and control buttons for
them, while the second presents a visual flow for creating a new instance in
which the user goes through several configuration steps. The final step allows
the user to save the instance on the server, copy the <iframe> code, and insert
it on their website.

REST API 50

Figure 6.9 Widgets constructor

6.2.8 Prototypes evaluation
The user interface prototypes were provided to the EDUMATCH manage-
ment, who also shared them with several end users of the evidence portal to
gather user feedback on the intuitiveness and usefulness of the interface. The
testers were representatives from partner organizations that are interested in
the statistics of their entities. Additionally, the lo-fi prototypes were tested by
the Experts.ai development team, specifically the global statistics page of the
platform that is only available to portal administrators.

Testers feedback was positive; the interface was clear in terms of user ex-
perience and did not lead to misunderstandings, despite the fact that the lo-fi
prototypes lacked detailed self-explanatory visualizations of the charts. The
EDUMATCH management approved this interface design and the implemen-
tation will proceed according to this documentation.

6.3 REST API
The final phase in the design of the Reporting Tool frontend application is close
collaboration with Roman Chertishchev, who is working on the backend part
of the module. The primary task during this stage is to create comprehensive
and well-structured documentation for the REST API that connects the client-
side application with the server. This documentation will ensure stable parallel
development of both parts of the module so that sudden, frequent changes in
the frontend or backend do not become necessary due to corrections in the

REST API 51

API. This part of the application design was completed in accordance with
the NF4 requirement.

6.3.1 Endpoints
During several design revisions, the final solution arranged the endpoints as
nested resources. This is a hierarchical structure where each statistics page
resource has sub-resources for sections, and each section resource has sub-
resources for report cards. Each endpoint returns the aggregated data needed
for a specific report card to ensure its visualization displays the required statis-
tics.

URIs of report pages:

Organization items statistics:
/stats/organizations/{organizationId}/items
Organization widgets statistics:
/stats/organizations/{organizationId}/widgets
Widget statistics:
/stats/organizations/{organizationId}/widgets/{widgetId}
Item statistics:
/stats/{itemType}/{itemId}
Platform global statistics:
/stats/platform

URIs of report sections:

“Engagement” section: /engagement
“Acquisition” or “Promotion” section: /promotion
“Prime time” section: /prime-time
“Item types engagement” section: /item-types

URIs of report cards:

Line over time chart: /over-time
Funnel vertical bar chart: /funnel
Pie/doughnut composition chart: /composition
Comparison vertical bar chart: /comparison
Sortable table with KPIs: /ranking

REST API 52

In such a structure, only those endpoints are available that correspond to
the layout of sections and report cards described earlier in Section 6.2. For
example, a group of URIs is presented to which the frontend will send requests
to gather aggregated data for visualizing the section ”Items engagement statis-
tics” according to wireframe Figure 6.3:

GET /stats/organizations/{organizationId}/items/engagement/over-time

GET /stats/organizations/{organizationId}/items/engagement/funnel

GET /stats/organizations/{organizationId}/items/engagement/ranking

GET /stats/organizations/{organizationId}/items/engagement/composition

This structure will allow adding optional personal parameters to each in-
dividual visualization that apply only to it. Each endpoint for retrieving ag-
gregated data for the report card requires specifying query parameters in the
request with the structure presented in Table 6.1. These parameters are ap-
pended to the end of each request URI and correspond to the options in the
filter header described in Section 6.2.1.

Name Type Description
startDate ISO 8601

Timestamp
The initial time point from which interactions
are considered in the report

endDate ISO 8601
Timestamp

The final time point after which interactions
are not considered in the report

itemTypes String
array

Types of items for which interactions will be
counted in the report (not available in the item
report)

partnerId Integer Identifier of the organization; only those in-
teractions that benefit the current entity (pro-
mote or provide items) will be counted

Table 6.1 Statistics filters query parameters

To these mandatory query parameters, optional ones are added depending
on the report card, for example grain or timePeriod. “Ranking” report
cards have the largest number of personal parameters in order to implement
server-side pagination and sorting. Organizations on the Experts.ai platform
have a large number of items, and if the frontend manages pagination and
sorting, it will affect the performance of the Reporting Tool web pages and the
user experience. Introducing the parameters described in Table 6.2 allows the
backend to sort and paginate the data instead of the frontend, returning only
the prepared short page by the REST API.

REST API 53

Name Type Description
column String The value by which the elements will be sorted
direction asc/desc Selection of sorting in ascending or descending

order
pageIndex Integer The current page of the table
pageSize Integer The maximum number of elements that the

server will return

Table 6.2 Ranking options query parameters

The REST API backend of the server was also expanded with endpoints
for constructing and managing widget instances, a new functionality that al-
lows creating, reading, updating, and deleting unique widget records in the
Experts.ai database.

POST /internal/organizations/{organizationId}/widgets

GET /internal/organizations/{organizationId}/widgets

PUT /internal/organizations/{organizationId}/widgets/{widgetId}

DELETE /internal/organizations/{organizationId}/widgets/{widgetId}

And to obtain the configuration of the current widget from the backend to
render it, a new endpoint was allocated:

GET /common/widget-instances/{widgetId}

6.3.2 Security
During communication, the REST API returns responses with HTTP status
codes; for example, any successful request is followed by a response with the
code 200 OK. If a user attempts to navigate to the organization’s statistics
page on the frontend without having the necessary roles to view the reports
(as described in Section 5.2.1), the frontend will send REST API requests
to a forbidden resource and receive an error in response with the code 403
Forbidden. The frontend will handle these errors by displaying to the user an
already existing modal window in the project code that informs them they are
trying to access a page for which the external organization has not granted
access, with an option to contact the organization’s administrators to request
access.

6.3.3 API Mocking
Since the frontend part of the Reporting Tool was developed in parallel with
the backend part in Roman Chertishchev’s bachelor’s thesis, at the time of

REST API 54

frontend application development, the documented API endpoints with statis-
tics aggregations were not yet developed and available on the backend. In
such cases, developers resort to a software development technique called API
Mocking when backend functionality is not yet available. This approach al-
lows developers to simulate the behavior of a future planned API by returning
example service responses via HTTP communication with a mock server at
specified endpoints with request bodies. [28]

The REST API of the Reporting Tool was documented with all the nec-
essary endpoints, query params, path variables, request bodies and example
responses, after which this documentation was uploaded to Postman, an API
platform with tools for building, documenting, and using APIs. [29] Postman
has native support for API mocking. For this, it was necessary to fill in a
collection of requests with expected responses, after which the collection could
easily be used to launch a mock server that runs on the Postman service host
and is accessible via an internet connection at a dedicated URL (i.e., this is
not a local solution). During development, the Reporting Tool interface com-
municated with the Postman mock API. However, over time, as the Experts.ai
backend was extended with newly implemented endpoints, the Postman mock
URL in the frontend source code was gradually replaced with the Experts.ai
backend host URL. This way, the Reporting Tool frontend was integrated with
the backend part.

Chapter 7

Implementation

This chapter is dedicated to the details of implementing the Reporting Tool
frontend application. It includes descriptions of the Angular framework tools
and libraries and the decisions made to implement the frontend according
to the interface design described in Section 6.2. Code snippets of crucial
parts of the implementation will support all these points. The screenshots
of the implemented frontend can be viewed in the attachment of this thesis.

7.1 Routing
The routing of the Experts.ai application is implemented using Angular con-
figuration methods described in Section 2.2. The configuration of the frontend
application was expanded with the following views and URLs:

/statistics/organizations/{organizationId}: Organization statistics

/statistics/organizations/{organizationId}/widgets/{widgetId}:
Widget statistics

/statistics/{itemType}/{itemId}: Item statistics

/statistics/platform: Platform global statistics

/evidence/organizations/{organizationId}/widgets:
Widgets evidence

/evidence/organizations/{organizationId}/widgets/constructor:
Multistep widget creation

Additionally, the routing in the widget module was also changed so that
access to widget pages is now by its instance identifier. Now the URL for
<iframe> looks as follows:

https://experts.ai/widgets/organizations/{organizationId}/{widgetId}

55

Routing 56

These URLs were added to the router module’s route configuration in List-
ing 7.1. Navigation to the new views was implemented using routerLink
directive attribute or Router.navigate() method.

this.router.navigate([`/statistics/organizations/\${baseId}`]);

<a class="btn btn--light-blue me-3" [routerLink]="'widgetEvidence' |
path: (organizationId\$ | async)">↪→

Code listing 7.1 Adding routes

{
path: PathFragment.STATISTICS,
children: [
{
path: PathFragment.ORGANIZATIONS + '/:' +

UrlParams.ORGANIZATION_ID,↪→

component: OrganizationStatisticsComponent,
children: [
{
path: PathFragment.WIDGETS + '/:' + UrlParams.WIDGET_ID,
component: WidgetStatisticsComponent,

}
]

}, {
path: ':' + UrlParams.ITEM_TYPE_STATISTICS + '/:' +

UrlParams.ITEM_ID,↪→

component: ItemStatisticsComponent,
}, {
path: PathFragment.PLATFORM,
component: PlatformStatisticsComponent,

}]
},{
path: PathFragment.EVIDENCE,
children: [{
path: PathFragment.ORGANIZATIONS,
children: [{
path: ':' + UrlParams.ORGANIZATION_ID,
children: [
...
}, {
path: PathFragment.WIDGETS,
component: EvidenceWidgetComponent,
children: [
{
path: PathFragment.CONSTRUCTOR,
component: WidgetConstructorComponent

Components structure 57

7.2 Components structure
The future extensibility of the module in accordance with the non-functional
requirement NF3 and the minimization of code duplication were among the im-
portant factors in development. The placement of Reporting Tool components
in the Experts.ai frontend files is presented in Figure 7.1.

/components
/reporting-tool

report-card.component
/report-card-contents

chart-engage-over-time.component
chart-promo-over-time.component
chart-prime-over-time.component
chart-funnel.component
chart-composition.component
chart-comparison.component
table-ranking.component

report-filters.component
organization-statistics.component
widget-statistics.component
item-statistics.component
platform-statistics.component

evidence-widget.component
widget-edit-modal.component
evidence-widget-constructor.component
· · ·

/services
report-statistics.service.ts
evidence-widget.service.ts
· · ·

Figure 7.1 Components structure

To minimize code repetition for each report card, a unified interface was
created for use in the component of each page. This component was imple-
mented using the Content projection pattern [30] in Angular, which allows for
the creation of complex components capable of accepting DOM elements as
input. The area where the component accepts content is marked with the
<ng-content> placeholder, and if it is necessary to add several such insertion
points for content, the placeholders can be unified using the select attributes
with different labels.

For example, in the Reporting Tool, the report-card.component consists
of two placeholders, report-card-options and report-card-content. The
first placeholder optionally contains personal options for each visualization

Components structure 58

in the report card header, while the second placeholder contains one of the
visualizations stored in the /report-card-contents folder. An example of
using this pattern is presented in Listing 7.2.

Code listing 7.2 Content projection example

<app-report-card [name]="'Items engagement over time'" class="col-12
mb-4">↪→

<div report-card-options class="d-flex align-items-center">
<div class="me-2">Grain:</div>
<mat-button-toggle-group hideSingleSelectionIndicator=true

(change)="updateEngagementGrain($event.value)">↪→

<mat-button-toggle [value]="Grain.HOUR">Hour</mat-button-toggle>
<mat-button-toggle [value]="Grain.DAY">Day</mat-button-toggle>
<mat-button-toggle

[value]="Grain.MONTH">Month</mat-button-toggle>↪→

</mat-button-toggle-group>
</div>

<app-chart-engage-over-time report-card-content style="display:
contents" [pathVariables]="pathVariables"
[grain$]="itemsEngagementGrain$"></app-chart-engage-over-time>

↪→

↪→

</app-report-card>

<app-report-card [name]="'Items engagement funnel'" class="col-12
mb-4">↪→

<app-chart-funnel report-card-content style="display: contents"
[pathVariables]="pathVariables"></app-chart-funnel>↪→

</app-report-card>

In the structure of the report cards, it was also decided that each visualiza-
tion calls the communication service method with the backend independently
to obtain the data that it needs to visualize (in accordance with the single
responsibility principle for each component). To call this method, the compo-
nent must gather all parameters for sending a REST API request according to
the user’s input.

The architectural solution was to implement all personal request param-
eters as component inputs using @Input() decorator, while the parameters
for global filters would be obtained by each component through a common in-
jectable service. In most cases, personal options will represent a single commu-
nication format of Parent-Child components or Siblings components, for which
the @Input() decorator is applicable. The header component
report-filters.component will update the service’s BehaviorSubject from
the report filters after each user activity, to which every report-card-content
will be subscribed. This approach will help avoid large networks of @Input()

Components structure 59

and @Output() decorators between components and simplify the report com-
ponent templates because all visualizations require the values of the main
filters.

Code listing 7.3 Collecting parameters and getting data from REST API example

@Input() grain$: BehaviorSubject<Grain>;

engagementOverTimeStatistics$: Observable<EngagementOverTimeResponse>;

constructor(private reportStatisticsService: ReportStatisticsService)
{↪→

}

ngOnInit(): void {
const filtersParams$ =

this.reportStatisticsService.filtersParams$;↪→

this.engagementOverTimeStatistics$ =
combineLatest([filtersParams$, this.grain$]).pipe(↪→

tap(() => this.loading = true),
switchMap(([filtersParams, grain]) =>

this.reportStatisticsService.
getEngagementOverTimeStatistics(this.pathVariables,

filtersParams, grain)),↪→

tap(() => this.loading = false),
);

this.engagementOverTimeStatistics$
.pipe(
map(data => this.transformEngagementData(data))

)
.subscribe(transformedData => {

this.updateLineChartData(transformedData);
});

}

Thanks to the use of BehaviorSubjects as data streams, all report cards
are subscribed to events in the interface that the user will interact with. At
the moment of changes, all components will immediately start asynchronously
sending multiple requests to the backend module to retrieve new data and
visualize it right away. This application of RxJs classes corresponds to the use
of the reactive programming paradigm described in Section 2.3.

Angular Material 60

7.3 Angular Material
During the development of the frontend, the UI component library Angular
Material [15] was actively utilized. The Angular team at Google and the
community actively support this library. Its distinctive features include close
integration with the architecture of the Angular framework and adherence
to Material Design guidelines. Thanks to this library, the Reporting Tool
interface is consistent in its design and aligns with the design of other pages
on the Experts.ai portal. The pre-built UI components allowed for not having
to implement many controls from scratch.

Some complex components of this library used in the Reporting Tool and
details of their configuration will be described next.

7.3.1 Datepicker
The mat-date-range-input is located in the main filters header as shown in
Figure 7.2 and allows for manual selection of the time period for which the
report will be generated. In the date picker, dates can be entered both as
text input from the keyboard and via a pop-up calendar where the start and
end dates can be selected. This component can be used together with the
FormGroup directive, collecting both dates into a form and in the component
code, subscribing to the Observable data stream FormGroup.valueChanges
to update service filters value on changes.

Figure 7.2 Datepicker interface

Angular Material 61

Code listing 7.4 Datepicker configuration with FormGroup

<form [formGroup]="filtersFormGroup" class="col-12 col-lg-3">

<mat-form-field appearance="outline" subscriptSizing="dynamic"
class="col-12 mb-2">↪→

<mat-label class="pe-1">Pick a date range</mat-label>
<mat-date-range-input [rangePicker]="picker">
<input matStartDate formControlName="startDate" placeholder="Start

date">↪→

<input matEndDate formControlName="endDate" placeholder="End
date">↪→

</mat-date-range-input>
<mat-datepicker-toggle matIconSuffix

[for]="picker"></mat-datepicker-toggle>↪→

<mat-date-range-picker #picker></mat-date-range-picker>

@if
(filtersFormGroup.controls.startDate.hasError('matStartDateInvalid'))
{

↪→

↪→

<mat-error>Invalid start date</mat-error>
}
@if

(filtersFormGroup.controls.endDate.hasError('matEndDateInvalid'))
{

↪→

↪→

<mat-error>Invalid end date</mat-error>
}

</mat-form-field>
...

7.3.2 Table
Component mat-table was used as the foundation for the “ranking” report
cards. Data is provided to the table through the dataSource input, and all
possible columns are defined in the template, while the active columns to be
rendered are supplied through the row definitions in the template using an
array of column names. The total number of possible columns in the table
may exceed the current number of columns displayed, which was applied to
differentiate rankings in the reports (in the “acquisition/promotion” sections,
each row indicates the organization, while there is no such column in the
“engagement” section). Instead of stretching the table across the entire report
page, the tables were designed to be limited in height and scrollable. While
scrolling, it was important for the table header to remain visible to the user,
which was achieved by adding the property sticky: true; to the header row.

For the F5 requirement, each row of the table is clickable and directs to
the page of the selected entity. This functionality was implemented using the

Angular Material 62

routerLink directive on all rows, as demonstrated in Listing 7.5 and List-
ing 7.6. The application of this configuration is demonstrated in Figure 7.3 in
the ”Promoted items ranking” report card, where hovering over a table row
changes its color and clicking redirects to the statistics page for that entity.

Figure 7.3 Widgets promotion statistics

Code listing 7.5 Clickable table rows implementation

<tr mat-header-row *matHeaderRowDef="displayedColumns; sticky:
true"></tr>↪→

<tr mat-row *matRowDef="let element; columns: displayedColumns;"
[routerLink]="'itemStatistics' | path: element.type :

element.id"></tr>↪→

Code listing 7.6 Clickable table rows styling

.mat-mdc-row .mat-mdc-cell {
transition: background-color 0.2s ease;
cursor: pointer;

}

.mat-mdc-row:hover .mat-mdc-cell {
background-color: #f0f0f0;

}

Angular Material 63

7.3.3 Sort header and paginator
Each ranking table has its personal options for page navigation and sorting,
described in Section 6.3.1. The implementation of this interface utilized the
mat-paginator component and the following sorting directives applied to col-
umn definitions.

matSort matSortDisableClear are directives for the table element that
add sorting behavior and ensure that there is always at least one sorting
option selected (one sorting method is always strictly active).

matSortActive="total" matSortDirection="desc"
matSortStart="desc" are directives for the entire table, which specify
that the default option is ”Total” in descending order, and when clicking
on any other column, the first direction will be descending.

mat-sort-header disableClear are added to each column definition that
can be manipulated for sorting. These directives are not applied to columns
such as “Name”, “Type”, “Organization”.

An important detail was to return the paginator to the first page when the
sorting method or global filter is changed, which was also considered in the
implementation of the “ranking” report card.

this.sort.sortChange.subscribe(() => (this.paginator.pageIndex = 0));

7.3.4 Stepper
The multistep interface for creating a new widget instance to match the pro-
totype from Section 6.2.7 utilizes the mat-stepper component. In the context
of the widget constructor, it is configured to be vertical and linear (steps can-
not be skipped until all previous ones are completed), and it also features a
convenient template and flexible configuration for each step. This meets the
NF3 requirement for application extensibility, anticipating future custom wid-
get options beyond those approved with EDUMATCH during this thesis. An
example of the implementation is presented in Figure 7.4.

Responsive design 64

Figure 7.4 Stepper in widget constructor

7.4 Responsive design
The frontend of the Experts.ai platform is built on the Bootstrap CSS frame-
work for creating responsive application designs that adapt to any user reso-
lution. [31] It provides a set of pre-designed classes for HTML elements that
manipulate their dimensions based on the current viewport size.

The most utilized feature of this framework in the frontend of Experts.ai is
the layout toolkit, consisting of a responsive grid system made up of rows and
12 columns. The number of columns an HTML element occupies is determined
by its col class, and the amount of columns may change depending on the
width of the viewport, so that in the case of a small screen, the cells on the
page adjust their positions and sizes to remain visible and readable. Another
framework utility is easy access to flexbox, padding and margin styles using
predefined CSS classes. This feature allows many components not even to have
their own defined CSS file, as Bootstrap classes cover all necessary styles.

Using this library, the requirement F7 was implemented. A
mat-toggle-button-group option selector from Angular Material was added
to each statistics section, which switches the layout of the Bootstrap grid el-
ements, their col class values and height style to change dimensions, and a
hidden input component to hide or unhide the report card. This functionality
is presented in Figure 7.5 and Figure 7.6.

Responsive design 65

Figure 7.5 Items engagement statistics, first layout

Figure 7.6 Items engagement statistics, second layout

The Chart.js charts and Angular Material tables often encountered issues
with responsive settings. The content extended beyond the grid system, did
not stretch to the full width or height of the parent element, or expanded
infinitely beyond the screen. The final responsive configuration, which does not
cause issues and conflicts between these libraries and Bootstrap, is presented
in Listing 7.7.

Chart.js plugins 66

Code listing 7.7 Responsive charts and tables

<div class="row">
<div class="col-12 col-lg-8 mb-4">

<article class="card d-flex flex-column align-items-stretch">
<div class="flex-grow-1 position-relative">

<canvas class="chartjs-render-monitor"
baseChart
[data]="lineChartData"
[options]="lineChartOptions"

[type]="lineChartType">
</canvas>

</div>
</article>

</div>
...

</div>

<div class="row">
<div class="col-12 col-lg-8 mb-4">

<article class="card d-flex flex-column align-items-stretch">
<div class="flex-grow-1 overflow-auto">

<table mat-table ...
</div>

</article>
</div>
...

</div>

7.5 Chart.js plugins
As stated in Chapter 4, the Chart.js library was chosen for the implementation
of the Reporting Tool to render charts with statistics on the frontend, and one
of the reasons for its selection was the active community support with a large
ecosystem of plugins and extensions. The plugins used and their applications
will be described in the following subsections.

7.5.1 Datalabels
The chartjs-plugin-datalabels plugin was one of the most important in the
implementation, as it displays labels on chart data without the user needing
to hover over them. This was a crucial feature for implementing all funnel and
composition report cards, as the percentage values in them are much more
important than the visualization itself. Additionally, Chart.js by default does
not calculate percentage ratios of data values, which was added through this
plugin. This functionality will also be necessary for exporting to PDF, as

Chart.js plugins 67

visualizations in PDF format lose their interactivity when the mouse cursor
is hovered over them. Therefore, thanks to data labels, the export of such
statistics will be clearer and more useful. An example of data labels can be
seen on the funnel and composition charts in Figure 7.7.

Figure 7.7 Widgets engagement statistics

Chart.js plugins 68

Code listing 7.8 Funnel datalabels configuration

plugins: {
legend: {
display: false

},
datalabels: {
display: 'auto',
textStrokeColor: 'rgba(0,0,0,0.6)',
textStrokeWidth: 4,
color: 'white',
align: 'bottom',
anchor: 'end',
textAlign: 'center',
font: {
size: 14,

},
formatter: (value, context) => {

if (context.dataIndex === 0) {
return value + '\n' + `100%`;

} else {
const previousValue =

context.chart.data.datasets[0].data[context.dataIndex - 1]
as number;

↪→

↪→

const percentage = Number(((value / previousValue) *
100).toFixed(2));↪→

return value + '\n' + `${percentage}%`;
}

},
}

},

Code listing 7.9 Composition datalabels configuration

formatter: (value, context) => {
let sum = 0;
const dataArr = context.chart.data.datasets[0].data;
dataArr.map(data => {
sum += data as number;

});
const percentage = Number((value * 100 / sum).toFixed(2));
return `${percentage}%`;

},

PDF export 69

7.5.2 Annotations
The chartjs-plugin-annotation plugin allows drawing lines, boxes, labels, points,
and other shapes on the chart area. This plugin was used for prime time statis-
tics to display the most active areas on average during the selected time period.
The most active intervals longer than the grain of the chart are represented on
the plot using box annotations, while the intervals of the same length as the
grain are represented using line annotations. An example of the plugin usage
can be seen in Figure 7.8 on the “User activity averages for a time period”
report card.

Figure 7.8 Prime time and item types engagement sections

7.5.3 Deferred
Since the statistics pages are presented as long scrollable reports, users often
miss all the animations of the charts initialized at the bottom of the screen.
The chartjs-plugin-deferred plugin was configured so that the animation of each
visualization plays only when the user reaches the chart within their viewport.
A global setting was implemented on the frontend to ensure that any chart
starts playing its information only when half of the chart area is reached with
the option yOffset: '50%'.

7.6 PDF export
To implement the exporting feature under functional requirement F8, estab-
lished libraries among developers, html2canvas [32] and jsPDF [33], were ap-
plied. The first library is designed to take a screenshot of a DOM element in

PDF export 70

any of the available image formats. The html2canvas function captures the
HTML content and converts it to a canvas. The canvas is then converted into
a selected image format. To capture a visualization DOM element, the deco-
rator @ViewChild was used, which allows finding an element with a specified
reference in the HTML document structure, for example, #contentWrapper
reference.

Afterward, the final image file of the visualization can be inserted into a
PDF document created using the jsPDF library (pdf.addImage). In addition,
the library was used to create a small template with the context of the report
card, including which filter was applied and which entity the visualization was
obtained from, so that the final PDF document could be shared with those
who did not use the Reporting Tool.

Code listing 7.10 Exporting visualization to PDF

export class ReportCardComponent {

@Input() name: string;

@ViewChild('contentWrapper') content: ElementRef;

exportAsPdf(): void {
this.reportStatisticsService.filtersParams$.pipe(take(1)).subscribe(

filtersParams => {
const startDateFormatted =

moment(filtersParams.startDate).format('DD MMM YYYY');↪→

const endDateFormatted =
moment(filtersParams.endDate).format('DD MMM YYYY');↪→

const dateRangeText = `${startDateFormatted} -
${endDateFormatted}`;↪→

const organizationName = filtersParams.name;
const reportType = filtersParams.reportType;
const reportCardTitle = this.name;

html2canvas(this.content.nativeElement).then(canvas => {
const fileName =

${organizationName}_${reportCardTitle}_${startDateSimple}_${endDateSimple}`
.replace(/\s+/g, '_')
.replace(/[^\w\-]+/g, '');

const contentDataURL = canvas.toDataURL('image/png');
const pdf = new jsPDF('l', 'mm', 'a4');

...

pdf.save(fileName);

PDF export 71

The code presented in Listing 7.10 renders a new PDF file on the client
side (an example of the file is presented in Figure 7.9), which the user can
download and save to their computer. The method’s code saves the PDF files
with names that allow the exported visualizations to be distinguished from
one another. An example of the exported file name looks like this:

FIT_CTU_Items_engagement_over_time_07-30-2024_08-28-2024.pdf

Figure 7.9 PDF exported file example

Chapter 8

Testing

This chapter describes the methodologies used to test the implementation
of the Reporting Tool’s frontend. The testing allows for evaluating the
product’s readiness and characteristics that define its quality, highlighting
deficiencies for correction and suggestions on how to expand the project
beyond the established requirements for the final product.

8.1 Static code analysis
Static analysis is the automated scanning and testing of the source code for
programmatic and stylistic errors. This check is performed by linters, tools
that help developers ensure that their code adheres to a set of coding standards
and follows best practices, which improves the readability, maintainability, and
overall quality of the code. Linting is performed without executing or running
the code, which is why this analysis is called static. [34]

There are many language-specific and general linters, but for the Report-
ing Tool, ESLint [35] was chosen, a linter for JavaScript and TypeScript that
is supported by most Integrated Development Environments, including the
one used to develop the module’s frontend. Thanks to the static detection
of issues and warnings in the module’s implementation, the resulted code has
maintained its consistency across the entire Experts.ai project, does not con-
tain duplicates and formatting errors, and does not accumulate technical debt
that could lead to future rework or breakdown of the frontend.

8.2 User acceptance testing
User acceptance testing (next UAT) is the verification that the final application
meets all requirements and needs of the client, which occurs as the final stage
of software development. During this manual testing, actual end users test
the software to determine if it performs as intended in a real-life context, and

72

User acceptance testing 73

testers do not encounter difficulties or obstacles when using the product as
intended. The main purpose of acceptance testing is to validate a flawless
end-to-end user flow. [36]

Before conducting UAT, it is necessary to prepare test scenarios in advance
that cover all requirements and use cases of the project. Then, based on the
developed scenarios, testers from user groups involved in these scenarios are
invited. These participants are provided with a testing environment in which
they perform actions according to the user flow outlined in the scenarios. The
test organizer monitors how the end users navigate the new functionality and
notes any problematic areas where testers encounter issues. At the end of the
testing, participants leave their feedback on what they liked and what was
lacking in the final solution. [36]

Five potential users of the Reporting Tool participated in this testing.
Two users represented a group of organization administrators who upload their
offers to the portal, configure widgets, and are interested in understanding how
their entities perform and how much new audience their organizations attract.
Three users represented a group of portal administrators or developers of the
Experts.ai platform, who have access to the “Portal administration” menu and
can monitor the status of the entire platform, including the level of activity
occurring on it and whether any widgets or items were stopped working.

The testing was conducted in person at the EDUMATCH company office
on a separate personal computer with the operating system Windows 10 Edu-
cation 22H2 and through the browser Google Chrome version 129.0.6668.101.
Testing was conducted in a local testing environment to ensure that the testers’
actions did not alter important real data from the production server. End users
tested the functionality of the new module according to the following test sce-
narios:

Managing widgets by user activity
Covered use cases: UC3, UC8, UC9, UC10

1. Open your organization’s overview page.

2. Click on the button to go to the organization’s statistics.

3. Specify the statistics date range manually from March 5, 2024, to May 5,
2024.

4. Switch to the organization’s widgets statistics tab.

5. Determine which item type is the most popular on the organization’s wid-
gets.

6. Enable the filter so that the statistics display only for interactions with
this item type.

User acceptance testing 74

7. Identify which widget of the organization brings the highest conversion to
the “Apply” interaction and remember its name.

8. Click on the button to go back to the organization evidence page.

9. Click on the “Widgets” button.

10. Create a new widget with any name that includes only the component with
the most popular item type.

11. Edit the widget with the highest conversion of this item type to “Apply”,
turn off the component responsible for the most popular item type.

12. Copy the HTML code of the new widget with one component of the most
popular item type.

Data-driven improvement of organization items by statistics
Covered use cases: UC1, UC3, UC5, UC7

1. Open your organization’s overview page.

2. Click on the button to go to the organization’s statistics.

3. Specify the statistics date range for the last 90 days.

4. Find the item in the organization that earned the fewest “Apply” interac-
tions in that time period.

5. Go to the statistics page for that item.

6. Set the “Item promoters over time” chart grain as “Month”.

7. Export “Item promoters over time” as PDF file.

8. Click on the button to go to the evidence page for that item.

9. Edit its content to engage better the audience of organizations represented
in the exported chart.

Removing redundant widgets
Covered use cases: UC2, UC3, UC6, UC11

1. Open your organization’s overview page.

2. Click on the button to go to the organization’s statistics.

3. Switch to the organization’s widgets statistics tab.

4. Choose the layout of the report section so that the widgets’ ranking is the
biggest possible size of the screen.

User acceptance testing 75

5. Find the widget with the fewest “View” interactions of all the widgets and
remember its name.

6. Click on the button to go back to the organization evidence page.

7. Click on the “Widgets” button.

8. Delete the widget found in the statistics.

Viewing platform’s conversion changes
(only for portal administrators)
Covered use cases: UC4, UC5, UC7

1. Open portal administration page.

2. Choose “Platform global statistics” menu.

3. Specify the statistics date range for this month.

4. Export conversion rates from items funnel statistics as CSV file.

5. Move the statistics date range one month back.

6. Export items funnel statistics as CSV file again.

Viewing platform’s growth evaluation
(only for portal administrators)
Covered use cases: UC4, UC5, UC6

1. Open portal administration page.

2. Choose “Platform global statistics” menu.

3. Specify the statistics range for this year.

4. Switch to the platform’s widgets statistics tab.

5. Choose the layout of the report section so that the widgets’ engagement
over time chart is the biggest possible size of the screen.

6. Set the chart grain as “Month”.

8.2.1 Testing results
During the testing, the Reporting Tool functioned properly and in accordance
with the expectations of EDUMATCH. Participants quickly familiarized them-
selves with the interface and even in complex steps of the scenarios, they in-
stinctively understood what action needed to be taken next. Positive feedback
was received from the testers regarding the functionality of the module. It

User acceptance testing 76

was suggested to add visual icons for selecting the layout of the report cards,
and to implement that the filter header remains at the top of the screen while
scrolling down the report, so that it does not require returning to the beginning
of the report.

In Section 5.2.3 it was stated that use cases cover all functional require-
ments. The test scenarios cover all established use cases, and based on the
fact that end users successfully passed all scenarios, it can be concluded that
all planned functionality of the Reporting Tool was implemented and require-
ments were met.

Conclusion

The main goal of this thesis was to design and implement the Reporting Tool
module for the Experts.ai platform that visualizes user activity statistics in
widgets. To achieve this goal, it was necessary to accomplish several sub-goals
in each part of this thesis.

In the theoretical part, research was conducted on the Experts.ai platform,
including an overview of its user interface structure and technological archi-
tecture. Then, several of the most popular existing solutions for viewing web
traffic statistics were analyzed, highlighting their advantages and key concepts
in the field of user activity reports. In the end, after the comparison of web
visualization libraries was made, the Chart.js library was chosen, which was
later used to implement all the charts on the frontend of the module.

In the practical part, functional and non-functional requirements for the
module’s frontend were established with the EDUMATCH, which served as
the foundation for all subsequent stages of software development. After that,
prototypes of the user interface were designed, focusing on smooth and intu-
itive user experience, which were tested with end users before the beginning
of the implementation. The final completed sub-goals were the finished imple-
mentation of the reporting tool and an accomplished user acceptance testing,
where end users did not encounter difficulties in its usage.

Since all the sub-goals of the thesis were completed, it can be stated that
the resulting frontend was successfully developed to an MVP status. The final
solution fulfilled all the stated EDUMATCH requirements and offers a robust
interface for visualizing user activities in widgets, enhancing the overall func-
tionality of the Experts.ai platform. The application allows Experts.ai clients
to understand user engagement with their offers better. It provides valuable
insights into user behavior patterns and trends, making it a significant contri-
bution to the platform’s collection of tools. Representatives of organizations
that upload their offers to the platform but do not have their own widgets can
now use the new module to identify which partners bring them more activity
and new users. This can lead to new collaborations and growth opportunities
for both organizations inside the platform’s context. Testing with end-users

77

Future work 78

confirmed the new module’s effectiveness and user-friendliness while also high-
lighting new potential desired features to expand the Reporting Tool.

8.3 Future work
Visualizations for A/B Testing To validate results of A/B testing, two
items or two widgets with different configurations (for example, variant A
and variant B) are provided to different user groups for interaction. Then, a
difference in engagement arises between one variation of the tested object
and the other. In A/B testing, analytical tools are used to make data-
driven conclusions from visualizations of user activity about which object
configuration leads to higher user conversions. The final Reporting Tool is
one of those solutions for analyzing A/B test results. Currently, this can
be done by opening reports of different variations of a tested object in two
separate web pages. In the future, it is planned to extend the reporting
tool with functionality that allows comparing statistics directly on one web
page with specified A/B test filters, which will also improve the visibility
of the difference in user behavior depending on the object variant.

Discord bot statistics One of the platform’s new features, currently
under development, will allow students to view job opportunities uploaded
to the platform through Discord chatbots. Discord bots will perform the
same function of displaying and distributing offers in a user-friendly format,
just like the widgets, so that the Reporting Tool can be expanded with new
statistics pages for the chatbots as well. Organization editors will be able
to conduct data-driven analysis on which tools better promote items and
generate more interactions: widgets or Discord bots.

Data personalization All collected statistics in the final Reporting Tool
Module are anonymized, and no unified information is stored in the database
about which user performed the recorded interaction. If a legislative anal-
ysis of personal data retention is conducted, and the option to request user
permission to unify their session in the widget is introduced, then the mod-
ule can be expanded with new user data statistics (For example, average
session time, average time spent between certain interactions, or statistics
on which cities or countries generate the most interactions).

Report dashboard builder The structure of statistics dashboards in
the Reporting Tool is currently easily extendable for Experts.ai frontend
developers. In the future, the module’s functionality can be expanded
by allowing platform users to select aggregations independently, configure
visualizations, and customize the structure of the report dashboard from
cards with visualizations. User-configured dashboards will be stored in
the platform’s database, but template dashboards, including the current

Future work 79

configuration in the final module of this thesis, will remain available on the
platform.

Bibliography

1. BANERJEE, Shubrodeep. HTML Iframes [online]. GeeksforGeeks, 2024
[visited on 2024-10-13]. Available from: https://www.geeksforgeeks.o
rg/html-iframes/.

2. Google Charts [online]. Google, 2024 [visited on 2024-10-13]. Available
from: https://developers.google.com/chart.

3. Experts.ai [online]. Unico, 2024 [visited on 2024-10-13]. Available from:
https://experts.ai/.

4. What is three-tier architecture [online]. IBM Corporation, 2024 [visited
on 2024-10-13]. Available from: https://www.ibm.com/topics/three-
tier-architecture.

5. About [online]. The PostgreSQL Global Development Group, 2024 [visited
on 2024-10-13]. Available from: https://www.postgresql.org/about/.

6. What is a relational database? [online]. IBM Corporation, 2024 [visited
on 2024-10-13]. Available from: https://www.ibm.com/topics/relati
onal-databases.

7. What is Java? [online]. IBM Corporation, 2024 [visited on 2024-10-13].
Available from: https://www.ibm.com/topics/java.

8. Introduction to Spring Framework [online]. Broadcom, 2024 [visited on
2024-10-13]. Available from: https://docs.spring.io/spring-framew
ork/docs/3.2.x/spring-framework-reference/html/overview.html
.

9. What is a REST API? [online]. IBM, 2020 [visited on 2024-10-13]. Avail-
able from: https://www.ibm.com/topics/rest-apis.

10. What is TypeScript? [online]. Microsoft, 2024 [visited on 2024-10-13].
Available from: https://www.typescriptlang.org/.

11. Angular Docs [online]. Google, 2024 [visited on 2024-10-13]. Available
from: https://v17.angular.io/docs.

80

https://www.geeksforgeeks.org/html-iframes/
https://www.geeksforgeeks.org/html-iframes/
https://developers.google.com/chart
https://experts.ai/
https://www.ibm.com/topics/three-tier-architecture
https://www.ibm.com/topics/three-tier-architecture
https://www.postgresql.org/about/
https://www.ibm.com/topics/relational-databases
https://www.ibm.com/topics/relational-databases
https://www.ibm.com/topics/java
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/overview.html
https://docs.spring.io/spring-framework/docs/3.2.x/spring-framework-reference/html/overview.html
https://www.ibm.com/topics/rest-apis
https://www.typescriptlang.org/
https://v17.angular.io/docs

Bibliography 81

12. ŻURAWSKI, Paweł. Angular MVVM, MVC, CBA – A look at different
approaches to application architecture [online]. Pretius Ltd., 2024 [visited
on 2024-10-13]. Available from: https://www.panaya.com/blog/testi
ng/what-is-uat-testing/.

13. SPA vs MPA: Which Web Architecture is Right for You? [online]. Ramo-
tion, 2024 [visited on 2024-10-13]. Available from: https://www.ramoti
on.com/blog/spa-vs-mpa/.

14. Google Analytics [online]. Google, 2024 [visited on 2024-10-13]. Available
from: https://marketingplatform.google.com/about/analytics/.

15. Angular Material [online]. Google LLC, 2024 [visited on 2024-10-13].
Available from: https://material.angular.io/.

16. What is Mixpanel [online]. Mixpanel, 2024 [visited on 2024-10-13]. Avail-
able from: https://docs.mixpanel.com/docs/what-is-mixpanel.

17. Amplitude [online]. Amplitude, Inc., 2024 [visited on 2024-10-13]. Avail-
able from: https://amplitude.com/.

18. ApexCharts [online]. ApexCharts, 2024 [visited on 2024-10-13]. Available
from: https://apexcharts.com/.

19. Apache ECharts [online]. The Apache Software Foundation, 2024 [visited
on 2024-10-13]. Available from: https://echarts.apache.org/en/ind
ex.html/.

20. Chart.js [online]. Chart.js Contributors, 2024 [visited on 2024-10-13].
Available from: https://www.chartjs.org/.

21. Functional and Nonfunctional Requirements: Specification and Types [on-
line]. AltexSoft, 2023 [visited on 2024-10-13]. Available from: https://w
ww.altexsoft.com/blog/functional-and-non-functional-require
ments-specification-and-types/.

22. CHERTISHCHEV, Roman. Vývoj reportovacího nástroje v platformě Ex-
perts.ai [Development of Reporting Tool in the Experts.ai Platform]. 2024.
Available also from: https://dspace.cvut.cz/handle/10467/115867.
Bachelor’s thesis. České vysoké učení technické v Praze, Fakulta infor-
mačních technologií.

23. Use-case diagrams [online]. IBM Corporation, 2023 [visited on 2024-10-
13]. Available from: https://www.ibm.com/docs/en/rational-soft-a
rch/9.7.0?topic=diagrams-use-case.

24. Domain Modeling: What you need to know before coding [online]. Thought-
works, Inc., 2021 [visited on 2024-10-13]. Available from: https://www.t
houghtworks.com/insights/blog/agile-project-management/domai
n-modeling-what-you-need-to-know-before-coding.

https://www.panaya.com/blog/testing/what-is-uat-testing/
https://www.panaya.com/blog/testing/what-is-uat-testing/
https://www.ramotion.com/blog/spa-vs-mpa/
https://www.ramotion.com/blog/spa-vs-mpa/
https://marketingplatform.google.com/about/analytics/
https://material.angular.io/
https://docs.mixpanel.com/docs/what-is-mixpanel
https://amplitude.com/
https://apexcharts.com/
https://echarts.apache.org/en/index.html/
https://echarts.apache.org/en/index.html/
https://www.chartjs.org/
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://dspace.cvut.cz/handle/10467/115867
https://www.ibm.com/docs/en/rational-soft-arch/9.7.0?topic=diagrams-use-case
https://www.ibm.com/docs/en/rational-soft-arch/9.7.0?topic=diagrams-use-case
https://www.thoughtworks.com/insights/blog/agile-project-management/domain-modeling-what-you-need-to-know-before-coding
https://www.thoughtworks.com/insights/blog/agile-project-management/domain-modeling-what-you-need-to-know-before-coding
https://www.thoughtworks.com/insights/blog/agile-project-management/domain-modeling-what-you-need-to-know-before-coding

Bibliography 82

25. LAMPRECHT, Emil. The Difference Between UX and UI Design: A
Beginner’s Guide [online]. CareerFoundry, 2023 [visited on 2024-10-13].
Available from: https://careerfoundry.com/en/blog/ux-design/the
-difference-between-ux-and-ui-design-a-laymans-guide/.

26. An introduction to UI prototyping [online]. Hotjar Ltd., 2023 [visited on
2024-10-13]. Available from: https://www.hotjar.com/ui-design/glo
ssary/prototype/.

27. Balsamiq [online]. Balsamiq Studios, LLC, 2024 [visited on 2024-10-13].
Available from: https://balsamiq.com/.

28. HELTON, Allen. What is API mocking? [online]. Postman, Inc., 2024
[visited on 2024-10-13]. Available from: https://blog.postman.com/wh
at-is-api-mocking/.

29. What is Postman? [online]. Postman, Inc., 2024 [visited on 2024-10-13].
Available from: https://www.postman.com/product/what-is-postma
n/.

30. Content projection with ng-content [online]. Google, 2024 [visited on 2024-
10-13]. Available from: https://v17.angular.io/guide/content-pro
jection.

31. Bootstrap [online]. The Bootstrap Authors, 2024 [visited on 2024-10-13].
Available from: https://getbootstrap.com/.

32. html2canvas [online]. Niklas von Hertzen, 2024 [visited on 2024-10-13].
Available from: https://html2canvas.hertzen.com/.

33. jsPDF [online]. npm, Inc., 2024 [visited on 2024-10-13]. Available from:
https://www.npmjs.com/package/jspdf.

34. What is Static Analysis & How Does it Work? [online]. Datadog, 2024
[visited on 2024-10-13]. Available from: https://www.datadoghq.com/k
nowledge-center/static-analysis/.

35. ESLint [online]. OpenJS Foundation and ESLint contributors, 2024 [vis-
ited on 2024-10-13]. Available from: https://eslint.org/.

36. User Acceptance Testing (UAT) Process Explained [online]. Panaya, 2018
[visited on 2024-10-13]. Available from: https://www.panaya.com/blog
/testing/what-is-uat-testing/.

https://careerfoundry.com/en/blog/ux-design/the-difference-between-ux-and-ui-design-a-laymans-guide/
https://careerfoundry.com/en/blog/ux-design/the-difference-between-ux-and-ui-design-a-laymans-guide/
https://www.hotjar.com/ui-design/glossary/prototype/
https://www.hotjar.com/ui-design/glossary/prototype/
https://balsamiq.com/
https://blog.postman.com/what-is-api-mocking/
https://blog.postman.com/what-is-api-mocking/
https://www.postman.com/product/what-is-postman/
https://www.postman.com/product/what-is-postman/
https://v17.angular.io/guide/content-projection
https://v17.angular.io/guide/content-projection
https://getbootstrap.com/
https://html2canvas.hertzen.com/
https://www.npmjs.com/package/jspdf
https://www.datadoghq.com/knowledge-center/static-analysis/
https://www.datadoghq.com/knowledge-center/static-analysis/
https://eslint.org/
https://www.panaya.com/blog/testing/what-is-uat-testing/
https://www.panaya.com/blog/testing/what-is-uat-testing/

Contents of the attachment

readme.txt........................contents of the attachment description
examples

screenshots....................images demonstrating the application
wireframes...........................designed application wireframes

src
thesis.zip archive with LATEX source code of the thesis

text
thesis.pdf................................ thesis text in PDF format

83

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Goals
	I Theoretical part
	Experts.ai overview
	User interface
	Widget
	Evidence portal
	Organization overview
	Widget configuration
	Portal administration

	Technology analysis
	Database
	Backend
	REST API
	Frontend

	Angular framework
	Architecture
	Routing
	Reactive programming

	Existing solutions
	Google Analytics
	Mixpanel
	Amplitude
	Conclusion

	Charting libraries
	ApexCharts
	Apache ECharts
	Chart.js
	Conclusion

	II Practical part
	Analysis
	Requirements analysis
	Functional requirements
	Non-functional requirements

	Use case modeling
	Actors
	Use cases
	Functional requirements coverage

	Design
	Conceptual model
	Interface prototyping
	Statistics page header
	Organization items statistics
	Engagement section
	Acquisition section
	Prime time and item types engagement sections

	Organization widgets statistics
	Promotion section

	Widget statistics
	Item statistics
	Platform global statistics
	Widgets evidence
	Prototypes evaluation

	REST API
	Endpoints
	Security
	API Mocking

	Implementation
	Routing
	Components structure
	Angular Material
	Datepicker
	Table
	Sort header and paginator
	Stepper

	Responsive design
	Chart.js plugins
	Datalabels
	Annotations
	Deferred

	PDF export

	Testing
	Static code analysis
	User acceptance testing
	Testing results

	Conclusion
	Future work

	Contents of the attachment

