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Garrett Motion Czech Republic s.r.o.
V Parku 2326/18
148 00 Praha – Chodov
Czech Republic
Jaroslav.Pekar@garrettmotion.com

Copyright © September 2024 Ing. David Vošahĺık
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Abstract

This thesis investigates advancements in the control and safety of modern vehicles, focus-
ing on traction control allocation, tire-to-road interface estimation, and vehicle trajectory
planning, particularly within the context of electric and self-driving vehicles. First part
delves into traction control allocation in over-actuated systems where each wheel is in-
dependently powered. Traditional methods for traction allocation often rely on direct
force or slip ratio allocation via optimization. This thesis introduces a novel vehicle mo-
tion feedback allocation method, which uses vehicle motion references at a vehicle center
point (CP) to control wheel pivot points, offering a refined and responsive control mecha-
nism. This method addresses the complexities of traction control by transforming vehicle
motion references at the CP to wheel pivot points, enhancing both performance and ef-
ficiency. Moreover, it brings many benefits compared to the state-of-the-art methods,
such as improved robustness, adaptability, low complexity, etc. To further improve the
allocation algorithm performance the challenge of estimating the tire-to-road interface, is
addressed in this thesis. Traditional control systems often compromise performance for
robustness due to the nonlinear and uncertain nature of tire-to-road interactions. This
thesis presents two innovative methods for real-time estimation of the optimal slip ratio
(λopt), which corresponds to the maximum available traction force. The proposed meth-
ods include an Unscented Kalman Filter (UKF)-based estimator and a Recursive Least
Squares (RLS)-based estimator. These estimators are validated through simulations and
real-world experiments. Additionaly, the UKF-based algorithm is used as a labeling tool
for a self-supervised neural network training for surface slipperiness predictions use case.
Qualitative and quantitative results of the slipperiness estimator based on camera im-
ages are shown. Final part of the thesis explores vehicle trajectory planning, a critical
component not only for autonomous and self-driving vehicles. It compares two advanced
algorithms: Model Predictive Control (MPC) and Minimum Violation Planning (MVP).
MPC is known for its application in process control but faces challenges in non-convex en-
vironments typical of vehicle navigation. MVP, on the other hand, handles constraints as
logical statements transformed into cost functions, ensuring a planned trajectory even in
complex non-convex scenarios. This thesis also discusses modifications to MVP to reduce
calculation time and compares its performance with MPC in various test scenarios. The
results demonstrate MVP’s superiority in handling complex planning problems, making
it a promising approach for real-time autonomous vehicle operation. The thesis proposes
novel methods for traction control allocation, tire-to-road interface estimation, and tra-
jectory planning, addressing current limitations and enhancing the safety, efficiency, and
functionality of modern vehicles. These advancements pave the way for future develop-
ments in drive-by-wire technology and autonomous driving systems.
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Abstrakt

Tato disertačńı práce se zabývá pokroky v oblasti ř́ızeńı a bezpečnosti vozidel, zaměřuje
se na rozdělováńı momentu trakce, odhadováńı parametr̊u rozhrańı mezi pneumatikou a
vozovkou a plánováńı trajektorie vozidel, zejména v kontextu elektrických a autonomńıch
vozidel. Prvńı část se věnuje rozdělováńı momentu trakce v přeaktuovaných systémech,
kde je každé kolo poháněno nezávisle. Tradičńı metody rozdělováńı často spoléhaj́ı na
př́ımé rozdělováńı trakčńı śıly nebo podélného skluzu pomoćı optimalizace. Tato dis-
ertačńı práce představuje novou metodu rozdělováńı na základě zpětné vazby z pohybu
vozidla, která využ́ıvá referenćı pohybu vozidla v centrálńım bodě vozidla (CP) k ř́ızeńı
bod̊u zavěšeńı kol. Tato metoda nab́ıźı jemněǰśı a rychleǰśı mechanismus ř́ızeńı. Řeš́ı
problém rozdělováńı trakce transformaćı referenćı pohybu vozidla v CP na body zavěšeńı
kol, což zvyšuje jak výkon, tak i účinnost. Kromě toho přináš́ı mnoho výhod ve srovnáńı se
současnými metodami, jako je zlepšená robustnost, přizp̊usobivost, jednoduchost systému,
atd. Daľśı část práce se zabývá odhadem parametr̊u rozhrańı mezi pneumatikou a vo-
zovkou, které je kĺıčové pro ř́ızeńı dynamiky vozidla. Tradičńı ř́ıdićı systémy často snižuj́ı
výkon ve prospěch robustnosti, zejména kv̊uli nelinearitám a nejistotám v interakćıch
mezi pneumatikou a vozovkou. Tato kapitola představuje dvě inovativńı metody pro
odhad optimálńıho podélného skluzu (λopt), který odpov́ıdá maximálńı dostupné trakčńı
śıle, v reálném čase. Navrhované metody zahrnuj́ı odhadovač založený na Unscented
Kalmanově filtru (UKF) a odhadovač založený na metodě nejmenš́ıch čtverc̊u (RLS).
Tyto odhadovače byly ověřeny prostřednictv́ım simulaćı a reálných experiment̊u. Dále
je odhadovačc založený na UKF použit pro anotace při tréninku a validaci samo-uč́ıćı se
neuronové śıtě pro predikci kluzkosti povrchu. Jsou zde uvedeny kvalitativńı i kvantita-
tivńı výsledky prediktoru kluzkosti na základě obraz̊u z kamery. Závěrečná část disertačńı
práce se zabývá plánováńım trajektorie vozidla, což je kĺıčová součást nejen autonomńıch
vozidel. Porovnává dva algoritmy: modelově prediktivńı ř́ızeńı (MPC) a plánováńı s
minimálńım porušeńım (MVP). MPC je známé pro své využit́ı v ř́ızeńı proces̊u, ale je
pouze s obt́ıžemi použitelné pro nekonvexńı problémy, typické pro navigaci vozidla. MVP
naopak zpracovává omezeńı jako logické výrazy transformované do účelových funkćı, což
zajǐsťuje plánovanou trajektorii i ve složitých nekonvexńıch scénář́ıch. Tato práce také
diskutuje modifikace MVP za účelem sńıžeńı doby výpočtu a porovnává jeho výkon s
MPC v r̊uzných testovaćıch scénář́ıch. Výsledky ukazuj́ı, že MVP je vhodněǰśı pro řešeńı
dynamických a složitých plánovaćıch problémů, což z něj čińı slibný př́ıstup pro provoz
autonomńıch vozidel v reálném čase. Celkově tato disertačńı práce přináš́ı významné
př́ıspěvky do oblasti systémů ř́ızeńı vozidel. Navrhuje nové metody pro rozdělováńı mo-
ment̊u trakce, odhad parametr̊u rozhrańı mezi pneumatikou a vozovkou a plánováńı tra-
jektorie, které řeš́ı současné nedostatky a zvyšuj́ı bezpečnost, efektivitu a funkčnost mod-
erńıch vozidel. Tyto pokroky připravuj́ı p̊udu pro budoućı rozvoj technologíı drive-by-wire
a autonomńıch systémů ř́ızeńı.
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Chapter 1

Introduction

The introduction of this thesis delves into the extensive use of land vehicles such as

passenger cars, utility vehicles, trucks, and buses in modern society worldwide. In the

United States, where passenger vehicles are particularly prevalent, approximately 87% of

the passenger miles traveled in 2020 were in cars and trucks [4]. With the global number

of cars increasing alongside population growth, it becomes imperative to explore new

methods to enhance the convenience and safety of car usage.

1.1 Safety of the Vehicles

Despite more than a century of automobile history, vehicle safety remains a paramount

concern. For instance, in 2022, over 20,000 people lost their lives in road accidents within

the European Union (EU) [5]. Nearly half of these fatalities involved drivers or passen-

gers in passenger vehicles [5]. This persistent issue underscores the need for continual

improvements in vehicle safety technologies and regulations.

Over the years, authorities have introduced numerous measures to reduce road fatal-

ities, which can be broadly categorized into passive and active safety measures. Passive

safety systems are designed to mitigate the adverse effects of collisions, while active safety

systems aim to prevent collisions from occurring in the first place. Examples of passive

safety systems include seat belts, vehicle designs with deformation zones, and many oth-

ers. These measures are mandated by regulations and implemented by car manufacturers,

requiring drivers only to utilize them, such as fastening seat belts.

Active safety systems, on the other hand, encompass well-established technologies like

the Anti-lock Braking System (ABS) and Electronic Stability Control (ESC), as well as

newer innovations such as head-up displays, lane departure warnings, and lane-keeping

assistants. The contributions presented in this thesis might be categorized as active

safety systems. The thesis focuses on exploring the state-of-the art systems and proposes

1
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algorithms having potential to significantly improve road safety and economy, especially

for electric vehicles with recently emerging new powertrain architectures.

1.2 Electric Vehicles

In recent years, the shift towards e-mobility has gained momentum due to environmental

concerns and efforts to reduce transportation generated emissions. Between 2016 and

2022, the estimated number of electric vehicles (EVs) in use worldwide exceeded 25 900

000 units [6].

Electric vehicles (EVs) are characterized by various powertrain architectures, all shar-

ing the common component of an electric traction motor. The primary architectures of

EVs include:

• Battery Electric Vehicle (BEV) – powered solely by an electric motor with energy

stored in a battery.

• Hybrid Electric Vehicle (HEV) – powered by both an electric motor and another

power source, with energy stored in a battery. HEVs can be further classified into:

– Mild Hybrid Electric Vehicle (MHEV) – primarily powered by an internal com-

bustion engine, with an electric motor assisting and energy stored in a battery.

– Full Hybrid Electric Vehicle (FHEV) – powered by both an electric motor and

an internal combustion engine, with energy stored in a battery.

– Plug-in Hybrid Electric Vehicle (PHEV) – similar to FHEV but can be charged

from the grid.

– Extended Range Electric Vehicle (EREV) – an electric motor with an internal

combustion engine for extended range, rechargeable from the grid.

– Fuel Cell Electric Vehicle (FCEV) – powered by an electric motor with energy

stored in a hydrogen tank.

According to [6], there has been a notable shift towards Battery Electric Vehicles (BEVs)

compared to other types such as plug-in hybrid vehicles. Most modern EV cars are

equipped with a single electric motor, but new architectures featuring multiple traction

motors (e.g., one per axle or even per wheel) are emerging. These advanced configurations

enhance vehicle performance and offer new opportunities for control and optimization.

The Chapters 2 and 3 primarily address the control of vehicles with each wheel powered

by its own motor, with Chapter 2 focusing on this topic specifically.

The increasing demand for higher efficiency, safety, and advanced functionality in

modern vehicle traction systems necessitates complex solutions from both mechatronics
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Figure 1.1: Traditional vehicle control method.

Figure 1.2: Emerging drive-by-wire technology control system architecture.

and software engineering perspectives. The latter is becoming increasingly crucial as

vehicles incorporate more sophisticated and complex systems.

Vehicles have evolved significantly since their inception, but the fundamental control

mechanisms have largely remained the same: a steering wheel for directional control,

an accelerator pedal for torque actuation, and a brake pedal for braking torque (see

Fig. 1.1). However, this traditional control concept is being redefined with the advent

of drive-by-wire technology [7, 8, 9]. In drive-by-wire systems, the driver is removed

from the direct vehicle dynamics feedback loop, instead the driver is setting references

for vehicle movement rather than directly controlling the actuators (see Fig. 1.2). The

growing complexity and power of modern vehicles, especially electric vehicles (EVs) with

four-wheel independent drive, further necessitate the development of new control systems.

Drive-by-wire chassis offer numerous benefits over traditional systems. These sys-

tems are over-actuated, meaning they can achieve the same system behavior through

different input trajectories. This flexibility is beneficial especially for energy-optimizing

control strategies and enhancing vehicle stability and maneuverability. However, the over-

actuation also introduces design challenges that must be addressed.

1.3 Self-driving Vehicles

The introduction of new control systems is further driven by the emerging technology of

self-driving vehicles. Self-driving technology enables vehicles to operate without human

intervention, relying on integrated sensors, actuators, and control systems. Sensors detect
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Figure 1.3: Self-driving vehicle autonomy levels. Adopted from [1].

the environment, actuators control vehicle movement, and control systems process sensor

data to make movement decisions. Although still in its early stages, self-driving technology

holds the potential to revolutionize transportation.

Self-driving technology has been a focus of research and development for some time. In

2014, the Society of Automotive Engineers (SAE) defined six levels of autonomy [1], which

are summarized in Fig. 1.3. Further, emerging open-source autonomous driving stacks,

such as Autoware [10] and Apollo [11], are promissing platforms for further development

and innovation.

Currently, most vehicles in traffic are at best approaching level 3 autonomy under

certain conditions. Level 3 autonomy is defined as the vehicle being capable of driving

itself, but the driver must be ready to take control at any time. Tesla’s autopilot system

is one of the most well-known examples of this technology [12].

However, there remains significant room for improvement in self-driving technology.

One of the primary challenges lies in the decision-making and trajectory planning mod-

ules of the self-driving stack. These components are critical for ensuring the safety and
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Figure 1.4: Interaction and integration of the proposed components into the vehicle soft-
ware stack. The green dashed line represents higher-level systems like self-driving or
ADAS, the blue dashed line represents lower-level systems like motor and steering servos,
and the red dashed line represents the components proposed in this thesis.

efficiency of autonomous vehicles. Chapter 4 is focusing on this topic, comparing two

algorithms for trajectory planning and proposing modifications to improve efficiency.

1.4 Dissertation Contribution and Outline

This dissertation aims to contribute to the field of drive-by-wire technology, focusing on

three main topics:

• Motion control of vehicles with each wheel powered by its own electric motor, specif-

ically addressing the traction control allocation task with a novel approach.

• Tire-to-road estimation, which is crucial for vehicle control and involves estimating

the friction properties between the tire and the road.

• Vehicle trajectory planning, essential for the implementation of self-driving technol-

ogy.

These topics are interrelated, forming the control layer of modern vehicles. While each

component can be implemented independently, the greatest benefits are achieved by in-

tegrating all components. Fig. 1.4 illustrates the interaction between the proposed com-

ponents and their integration into the vehicle software stack. The green dashed line

encapsulates higher-level systems like self-driving or Advanced Driver Assistance Systems

(ADAS), the blue dashed line encapsulates lower-level systems like motor and steering

servos, and the red dashed line encapsulates the components proposed in this disserta-

tion.

Each topic is detailed in a separate chapter of this dissertation.
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Traction Control Allocation

The traction control allocation related content in this thesis was published in [13, 14]. The

over-actuated, independently driven vehicle faces the traction allocation problem, which

involves safely and economically distributing torque to individual wheels. This task is

complex due to the ambiguity in allocation, often addressed through direct optimization-

based methods like those in [3, 15, 16]. This dissertation proposes a novel vehicle motion

feedback controller that addresses the traction allocation task, offering significant advan-

tages over state-of-the-art methods. This controller is discussed in detail in Chapter 2.

Such a controller is essential for implementing self-driving systems and beneficial for

human-driven vehicles, helping drivers operate their vehicles more safely and economically.

Tire-to-road Interface Estimation

The vehicle motion feedback controller introduced in Chapter 2 leverages knowledge of

the optimal slip ratio for better performance and increased safety. Chapter 3 presents

two novel architectures for estimating the optimal slip ratio: an Unscented Kalman Filter

(UKF) based estimator and a Recursive Least Squares (RLS) based estimator. The tire-

to-road interface estimation related content in this thesis was published in [17, 18].

The UKF-based estimator is inherently capable of estimating the peak of the slip curve

(detailed in Section 2.1.4), which is also useful for training a Convolutional Neural Network

(CNN) for surface friction prediction. Both estimators and the CNN are validated on a

real-world subscale platform, with results presented in Chapter 3.

Vehicle Trajectory Planning

The final chapter, Chapter 4, focuses on self-driving technology and the trajectory plan-

ning module. The vehicle trajectory planning related content in this thesis was published

in [19, 20]. This chapter describes the interface between the path planning module, which

uses a simple model to plan the vehicle’s path. However, such a model often neglects

many vehicle dynamics, necessitating short-term vehicle state trajectory planning to ac-

curately track the planned path. The chapter compares Model Predictive Control (MPC)

and Minimum Violation Planning (MVP) algorithms for this purpose.

Additionally, Chapter 4 discusses modifications to the MVP algorithm that reduce

calculation time, demonstrating significant reductions without notable degradation in

the solution quality. This work contributes to the development of more efficient and reli-

able self-driving systems, addressing current limitations in decision-making and trajectory

planning.

Overall, this dissertation provides significant contributions to the field of vehicle con-
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trol systems, particularly in the context of drive-by-wire technology and self-driving ve-

hicles. By addressing key challenges in motion control, tire-to-road estimation, and tra-

jectory planning, this work aims to enhance the safety, efficiency, and functionality of

modern vehicles, paving the way for future advancements in automotive technology.



Chapter 2

Traction Control Allocation

The task of vehicle traction control is inherently complex due to the absence of directly

measured or detected wheel traction forces and the challenge of traction force allocation in

an over-actuated system, where up to four wheels are driven independently and typically

each is individually braked. The control allocation problem is often addressed by optimally

distributing traction force, torque, or slip ratio across the wheels, as detailed in the

traction control survey paper [21]. Various methods have been proposed to solve this

problem, each with its own optimization criteria and approach.

For instance, [15] suggests solving the control allocation through constrained minimiza-

tion of traction force. Similarly, [3] proposes a solution using a minimum least-squares

formulation to minimize the slip ratio for each wheel. Another approach, described in [16],

focuses on optimal traction force allocation with different optimization criteria. In [22],

the authors extend the method of [3] by incorporating lateral dynamics and lateral force

distribution, thus minimizing a combination of longitudinal and lateral forces. [23] offers

a different method where the reference traction force for each wheel is computed based

on vehicle and wheel parameters, commanded yaw rate, and longitudinal acceleration.

Other optimization-based approaches include [24], which uses a neural network and

sliding mode controller for control allocation, and [25], which neglects the tire model and

assumes wheel torque will be converted into traction force without loss. This assumption

is valid for low slip ratios but falls short during dynamic maneuvers with higher slip ratios

where the tire model’s influence is significant. Similar assumptions are made in [26] and

[27], where the ideal force is computed based on vehicle motion parameters.

The traction force of a particular wheel can be considered a monotonic function of

the wheel slip ratio within the stable operating range of the slip curve, given its typical

shape (see Fig. 2.3a). Therefore, both traction force and slip ratio allocation essentially

follow the same principle of traction force distribution. In contrast to these ”direct” al-

location methods, a novel motion feedback-based allocation method was introduced in

8
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[13], which will be described in this chapter. Environmental parameters such as wheel

normal force/load, tire-to-road interface friction coefficient, and the reduction of longi-

tudinal wheel capacity due to lateral forces can be represented as variations in the slip

curve scaling and its parameters (see [28]).

Novel Vehicle Motion Feedback Allocation Method

An innovative alternative to traditional control allocation methods is proposed in [13]. The

proposed method relies on the common assumption that either a self-driving algorithm

commands vehicle speed and yaw rate, or a driver commands vehicle acceleration and yaw

rate at the vehicle’s Center Point (CP). The CP is an arbitrarily chosen location where

vehicle motion references (e.g., velocity, acceleration, yaw rate) are tracked and respective

signals are measured.

The general motion of a rigid body in a plane is fully parameterized by its longitu-

dinal, lateral, and angular speed/acceleration at any arbitrary point on the rigid body.

Therefore, using CP variables for the driver-to-vehicle interface is general and lossless.

Although vehicle measurement points can be distributed across the vehicle, it is assumed

that all vehicle states are acquired (measured or estimated) at the CP. Vehicle veloc-

ity and acceleration state variables, references, and measurements can be directly and

unambiguously transformed from the vehicle CP to wheel pivot points (for details, see

eq. (2.25)).

The wheel-level control system can be designed in a centralized or distributed manner.

While this section primarily focuses on traction control allocation, the same control system

framework can also be applied to lateral dynamics. Unlike direct allocation schemes, this

approach controls the velocity at the wheel pivot point instead of the vehicle force.

This control structure offers several advantages over traditional traction systems based

on direct force or slip ratio allocation. These benefits are discussed in detail in Sec-

tion 2.7.1.

Assumptions

The proposed system assumes the availability of necessary signals, either measured or

estimated, generally at any arbitrary point. Specifically, the selected required signals are:

• At the vehicle center: Vehicle longitudinal velocity and acceleration, and vehicle

angular rates (e.g., yaw rate).

• At each wheel: Wheel RPM, wheel traction torque, brake torque, and wheel

steering angle.
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This chapter is structured as follows: First, a high-fidelity nonlinear vehicle twin-track

model implemented in Simulink is presented in Section 2.1. This model is transparent,

easy to analyze, open to modifications, and beneficial for demonstrating and verifying

the properties and functionalities of the proposed controller. Next, the control system is

described, including its application to braking systems with both friction and recupera-

tive brakes. Following this, an analysis and simulations demonstrating the performance

of the proposed control system using the Matlab & Simulink nonlinear model are pro-

vided. Further, the IPG CarMaker high-fidelity EFORCE formula validation model is

introduced to validate the control system and compare it to the state-of-the-art approach

described in [3]. The CarMaker model is parameterized using real CTU student EFORCE

formula measurements. Finally, the Hardware in the Loop (HiL) setup used for validat-

ing the brake torque blending mechanism is introduced, and the HiL-CarMaker-Simulink

co-simulation test scenarios and results are presented.

This chapter including the figures is based on my previously published work in [13, 14].

In summary, this chapter will elaborate on a novel vehicle motion feedback alloca-

tion method that promises improved performance and efficiency over traditional traction

control methods. This approach is based on transforming vehicle motion references at

the CP to wheel pivot points, offering a more refined and responsive control mechanism.

The chapter will detail the theoretical foundations, practical implementation, and valida-

tion of this method, providing a comprehensive overview of its advantages and potential

applications in modern vehicle control systems.

2.1 High Fidelity Mathematical Twin-track Model

The nonlinear twin-track model has been adopted from [2, Chapter 11] and [29, Chapter 2]

for the purpose of validating and verifying the functionality of the proposed controller.

An implementation of this model is available in the Git repository [30]. The model uses

multiple coordinate systems (CS), which are indicated by superscripts in the expressions.

These coordinate systems, illustrated in Fig. 2.1, are described as follows:

• Vehicle body-fixed: Originates at the vehicle’s center point (CP). All vehicle

measurements and driver commands are assumed to be located at the CP without

loss of generality. Superscript v is used for this CS.

• Wheel pivot-fixed: Originates at the wheel pivot point and is oriented the same

as the vehicle body. Superscript bi is used, where i denotes the i-th wheel. This CS

is a translation of the vehicle body-fixed CS along vector ri.
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• Wheel-fixed: Originates at the center of the wheel and is bound to the wheel,

including its orientation. Superscript wi is used, where i denotes the i-th wheel.

This CS is rotated from the wheel pivot-fixed CS by the wheel steering angle δi.

The mathematical model consists of four fundamental parts:

• Vehicle nonlinear rigid body dynamics (Section 2.1.1)

• Suspension model for load transfer (Section 2.1.2)

• Drivetrain and brake model, including wheel dynamics (Section 2.1.3)

• Tire-to-road interface model (Section 2.1.4)

These parts will be briefly described here for clarity of the control systems derivation,

with further details available in [2, 30].

The model inputs are

u = [τ eref,1, . . . , τ
e
ref,4, τ

b
ref,1, . . . , τ

b
ref,4, δ1, δ2], (2.1)

where τ eref,i is the commanded e-motor torque for the i-th wheel (i ∈ {1, 2, 3, 4}), τ bref,i is
the commanded friction brake torque for the i-th wheel, and δ1, δ2 are the steering angles

of the front wheels.

The steering angles δi are constrained as follows:

δ1 = δ2
!
= δ, (2.2)

The Ackerman steering is neglected for the sake of mathematical clarity but is imple-

mented in the high fidelity CarMaker model for final validation of the control system.

The 12 twin-track model state variables are

x = [vv,Ωv, ϕ, θ, ψ, ω1, . . . , ω4], (2.3)

where vv is the vehicle velocity vector at CG (vehicle body-fixed CS), Ωv is the vehicle

body angular rates vector (roll rate, pitch rate, and yaw rate) at CG (vehicle body-fixed

CS), ϕ is the vehicle body roll angle, θ is the vehicle body pitch angle, ψ is the vehicle body

yaw angle, and ωi (i ∈ {1, 2, 3, 4}) are the angular velocities of the wheels (wheel-fixed

CS).
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Figure 2.1: Coordinate systems considered in the model – xy plane view.

2.1.1 Vehicle Body Nonlinear Dynamics Model

The CP is set to be at the vehicle’s center of gravity (CG) to simplify the model equations’

derivation, where the CG is rearward of the vehicle’s geometric center.

The dynamics of the twin-track rigid body is based on Newton-Euler equations:

mv (v̇
v +Ωv × vv) = Fv, (2.4a)

Θv · Ω̇v +Ωv × (Θv ·Ωv) = Tv, (2.4b)

where Fv is the resulting force at CG, Tv is the resulting torque at CG, mv is vehicle

mass, and Θv is the tensor of vehicle moment of inertia at CG.

The resulting force Fv and torque Tv are given by:

Fv =
4∑

i=1

Tbi
v · Fbi − Fres + Fv

g, (2.5)

Tv =
4∑

i=1

rvi × Fbi + rvres × Fres, (2.6)

Fres =
1

2
cresρA

√
(vvx)

2 +
(
vvy
)2

vvx

vvy

0

 , (2.7)

where Fbi is the force vector generated by the i-th wheel (wheel pivot-fixed CS), Fres is

the combination of all resistant and aerodynamic forces acting on the vehicle at the center

of pressure (CPr), Fv
g is gravitational force (vehicle body-fixed CS), rvi is the position of

the i-th wheel, rvres is the position vector of the CPr (vehicle body-fixed CS), cres is the

aerodynamic drag constant, ρ is air density, and A is the equivalent frontal area.
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2.1.2 Suspension Model

The suspension model is represented by a spring-damper system at each wheel, with

dynamics described as:

F bi
∆zi =

(
−ci∆li + di

d∆li
dt

)
, (2.8)

∆li = rvi ×Ωv, (2.9)

where di is damping rate, ci is spring stiffness, Ωv are Euler angles (pitch, roll, yaw),

∆li is spring compression, and F bi
∆zi is the normal force from suspension. The suspension

model is used to model the load transfer and the effect of the suspension on the wheel

normal force. The suspension model does not have any state and connected dynamics.

The needed state variables (∆li and
d∆li
dt

) are derived from the vehicle body state variables

(see Section 2.1.1)

2.1.3 Drivetrain and Wheel Model

The drivetrain and wheel model dynamics are characterized as:

Ji · ω̇i = τi + Fwi
x · rwi

+ τres,i (ωi) , (2.10)

τi = τ ei + τ bi , (2.11)

where Ji is the wheel moment of inertia along the wheel shaft (y) axis, ωi is the wheel

angular speed, τi is the wheel drive and brake torque, Fwi
x is the longitudinal traction

force generated by the wheel, τres,i (ωi) are all-wheel and e-motor losses, and rwi
is the

wheel effective radius.

The actuator model addresses the delays in the powertrain system, such as the CAN

bus communication delay and overlooked dynamics. The first-order actuator model defines

the actual e-motor torque τ ei utilized in wheel dynamics as:

τ̇ ei =
1

Te

(
τ eref,i − τ ei

)
. (2.12)

The system delays generally reach up to ten milliseconds [31], which is considered the

worst-case scenario time constant (Te = 10ms) for this study and is integrated into the

e-motor model.

The electro-mechanical friction brake system undergoes various torque-tracking delays

due to multiple factors. Firstly, the delay stemming from the electric motor and inverter
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used to generate hydraulic pressure is comparable to the delays mentioned in Equation

(2.12). Secondly, friction brakes need to close the gap between the brake disc and pads

and build the required pressure. Lastly, the hydraulic circuit introduces transportation

delay and nonlinearities. The combined effect of these factors results in a delay in torque

delivery ranging from 150 to 500 milliseconds according to [32]. The e-motor dynamics

are significantly faster, with the torque dynamics time constant being less than 20 mil-

liseconds, as per [33]. The friction brake dynamics are typically at least 2-5 times slower

than the e-motors. The dynamics are expressed as:

τ̇ bi =
1

Tb

(
τ bref,i − τ bi

)
, (2.13)

where the symbols carry the same meaning as in equation (2.12), with the distinction

that the superscript b denotes friction brakes. The worst-case time constant Tb = 100 ms

is employed in the mathematical model.

The reduction of the wheel longitudinal traction force Fwi
x is modeled by the wheel

longitudinal slip curve (Fig. 3.2) and traction ellipse shape (Fig. 2.4a). The dependency

is sketched as:

Fwi
x = f

(
λi, F

wi
z , µi, F

wi
y

)
. (2.14)

2.1.4 Tire-to-Road Interface

The forces at the tire-to-road interface are typically described using slip variables, specif-

ically the longitudinal slip ratio λ and the slip angle α (see eq. (2.15) and (2.18)). For

modeling tire force, the Pacejka magic formula is utilized for both the longitudinal and

lateral directions (refer to [2]). To combine the longitudinal and lateral traction properties

of the wheel, the traction ellipse is employed (see [28, 34] for more details).

The wheel’s longitudinal traction force is determined by the slip ratio λi, as defined

in eq. (2.15).

λi =
ωi · rwi

− vwi
x

max (|ωi| · rwi
, |vwi

x |)
, (2.15)

In this equation, vwi
x is the longitudinal speed of the i-th wheel hub (in the wheel-fixed

coordinate system), ωi is the angular speed of the i-th wheel, and rwi
is the effective radius

of the i-th wheel. The relationship between the longitudinal force generated by a specific

wheel Fwi
x and the wheel slip ratio and tire-interface variable is represented by the slip

curve and the simplified Pacejka magic formula (see [28]), given by:

Fwi
x = µiF

wi
z D sin (C arctan (Bλ− E (Bλ− arctan (Bλ)))) , (2.16)
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Figure 2.2: Longitudinal slip curve. Adapted from [2]. The same shape applies to negative
slip ratios generating negative/braking traction force.

Here, µi is the road friction coefficient, Fwi
z is the normal force on the wheel, and B,

C, D, E are Pacejka’s shaping coefficients. Fwi
x is the traction force generated by the

wheel in the x direction (see Fig. 3.2).

The slip curve can be divided into two regions based on the slope: stable with a positive

slope and unstable with a negative slope. Linearizing the wheel dynamics around a stable

Operating Point (OP) results in a stable system, and vice versa. Examples of various OP

linearizations are shown in Fig. 2.3a. The root locus of the minimum realization of the

entire vehicle model linearization at these points is depicted in Fig. 2.3b.

It is important to recognize the dependency of the resulting traction force on the nor-

mal load Fwi
z , Pacejka coefficient D, and the road friction coefficient µi. A new artificial

tire interface variable was introduced in [13] to unify these dependencies into a single,

convenient-to-use variable. This simplification neglects the shift in the slip curve max-

imum due to changes in the tire-to-road interface, combined loading changes, or lateral

slip effects (see Fig. 3.2).

The tire-interface variable ϵi for an i-th wheel is defined in [13] as:

Fwi
x = ϵi · Fwi

x , ϵi ∈ R+. (2.17)

Remark. If ϵi = 1 then equation (2.16) becomes the standard Pacejka magic formula

[28].

The wheel’s lateral traction force is determined by the slip angle αi, defined as:

αi = − arctan

(
vwi
y

|vwi
x |

)
, (2.18)
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Figure 2.3: The stable and unstable slip curve OPs.

where vwi
x is the longitudinal speed of the i-th wheel hub and vwi

y is the lateral speed

of the i-th wheel hub (in the wheel-fixed coordinate system).

The relationship between the lateral force generated by a specific wheel Fwi
y and the

wheel slip angle is represented by the slip curve and the Pacejka magic formula with

the same formulation as in eq. (2.16), but with the slip variable αi instead of λi, and a

different set of parameters representing lateral tire-to-road interface properties [35].

Finally, the traction ellipse is introduced to combine the longitudinal and lateral wheel

traction capacities. The traction ellipse represents the bounded friction force generated by

the tire-to-road contact patch during combined longitudinal and lateral motion. Combined

slip occurs when the vehicle accelerates or brakes while cornering. A tire cannot generate

a combined traction force (comprising lateral and longitudinal components) greater than

Fwi
z · µi, where F

wi
z is the normal force on the wheel. This restriction is expressed by the

friction ellipse (also known as Kamm’s circle):

Fwi
combined =

√
(Fwi

x )2

(Dx)
2 +

(Fwi
y )2

(Dy)
2 ≤ µiF

wi
z , (2.19)

whereDx andDy are the longitudinal and lateral Pacejka magic formulaD parameters.

Let us denote the forces calculated using the Pacejka Magic formula as Fx,max and

Fy,max. Then, the following algorithm (Eq. (2.20) - (2.24)) is applied to scale (if needed)

the resulting force:

β = arccos

(
|λ|√

λ2 + sin2 (α)

)
, (2.20)

µx,act =
Fx,max

Fz

, µy,act =
Fy,max

Fz

, (2.21)
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(a) Wheel traction ellipse. (b) Wheel model

Figure 2.4: Wheel model and traction ellipse.

µx,max = Dx, µy,max = Dy, (2.22)

µx =
1√(

1
µx,act

)2
+
(

tan(β)
µy,max

)2 , Fx =

∣∣∣∣ µx

µx,act

∣∣∣∣Fx,max, (2.23)

µy =
tan (β)√(

1
µx,max

)2
+
(

tan(β)
µy,act

)2 , Fy =

∣∣∣∣ µy

µy,act

∣∣∣∣Fy,max. (2.24)

The model implementation in MATLAB & Simulink involves detailed steps to ensure

the accuracy and reliability of simulations. Additionally, the vehicle model’s parameters

are meticulously tuned to reflect realistic conditions, ensuring the model’s applicability

in various scenarios. These steps underscore the robustness of the twin-track model in

capturing the dynamics of real-world vehicle behavior, making it an invaluable tool for

controller design and testing.

In conclusion, the twin-track model, with its comprehensive approach to vehicle dy-

namics, provides a detailed framework for understanding and simulating vehicle behavior

under various conditions. Its integration of multiple coordinate systems, suspension dy-

namics, drivetrain, and tire-road interface interactions offers a holistic view of vehicle

behavior. This model is not only essential for the vehicle dynamics control systems de-

velopment but also serves as a foundation for controller validation and verification.
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Figure 2.5: Proposed traction allocation control system architecture.

2.2 Vehicle Motion Feedback Control Allocation Ar-

chitecture

The primary contribution of this section (as published in [13]) is the proposed control

architecture, which offers a system-level design approach to controlling vehicle longitu-

dinal dynamics. The main concept involves using transformation (2.25) to map vehicle

states (speed or acceleration), including both references and measurements, to individual

wheels. Subsequently, vehicle-level state variables are managed at the wheel level using

any preferred control strategy. In contrast, the direct optimization-based methods uti-

lized in [3, 15, 16] determine the individual wheel slip ratio or traction force by solving

the control allocation task ambiguities via optimization.

The transformation of vehicle-level signals to the wheel level is defined as:

vbi
ref = T (vv

ref,Ω
v
ref) = vv

ref +Ωv
ref × rvi + γ (Ωv

ref) , (2.25)

where vv
ref is the commanded velocity vector at the vehicle center point (CP), Ωv

ref

represents the desired roll, pitch, and yaw rates at the CP, rvi denotes the position of the

i-th wheel, and vbi
ref is the velocity reference signal for the i-th wheel. Since this work

primarily focuses on wheel longitudinal dynamics, only the vbix ref

(
vvx, ψ̇

v
)
, as a function

of vehicle velocity vvx and yaw rate ψ̇v, is extracted from the transformation results for

further control. However, extending this to lateral speed vbiy ref tracking is possible following

the same principles.

The γ function augments the pure physical transformation (2.25) by introducing a

lateral vs. longitudinal dynamics preference feature. The γ function is derived from the

vector cross-product definition and is defined as:



CHAPTER 2. TRACTION CONTROL ALLOCATION 19

γ (Ωv) =
(
Γ ·
(
−ψ̇v · rvy i

)
, 0, 0

)
, (2.26)

where Γ ∈ IR+
0 is the tuning parameter. When Γ = 0, the transformation (2.25)

retains its original physics-based meaning. The value of Γ amplifies the effect of yaw rate

on the resulting vbix in (2.25), thereby preferring yaw rate ψ̇v over longitudinal velocity

vvx tracking. The designer can tune Γ to match specific vehicle lateral to longitudinal

dynamics control preferences. Physically, Γ can be interpreted as a parameter artificially

increasing the vehicle width.

The control laws at the wheel level – specifically, velocity, acceleration, and slip ratio

tracking – are presented here for completeness. However, it is important to note that

these can be replaced by any other suitable control mechanism to provide the desired

functionality.

2.2.1 Drive-by-human and self-driven controller hierarchy

The hierarchical structure of the wheel level control layer is depicted in Fig. 2.5. The

transformation (2.25) is general and applicable for both self-driving (automated) and

human-driven vehicles. Trajectory planning algorithms typically generate vehicle velocity

and yaw rate profiles to be tracked, which aligns perfectly with the presented transforma-

tion (2.25). In such cases, the transformation (2.25) is directly employed.

However, the proposed control system can also be used in human-driven vehicles,

where vehicle acceleration and yaw rate are more suitable variables for control. In this

scenario, the transformation (2.25) must be modified as:

vbi
ref = T (0,Ωv

ref) = 0 +Ωv
ref × rvi + γ (Ωv

ref) . (2.27)

The reference for the wheel acceleration controller abix ref is then determined as:

abix ref = avx ref + abilat, (2.28)

where abilat is the acceleration commanded by the wheel pivot point velocity controller,

representing the corrective action for Ωv
ref tracking, and a

v
x ref is the driver-generated CP

acceleration command.

2.2.2 Wheel controller hierarchy

The control layer at the wheel pivot point level can be replaced by any appropriate

control system and is presented here for completeness. The controller can be designed

either centrally or in a distributed manner.
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Figure 2.6: Wheel level individual control loops step responses. The step responses are
from left to right: Wheel pivot point velocity tracking, wheel pivot point acceleration
tracking, and slip ratio tracking.

The wheel level part of the control system consists of three hierarchically connected

controllers: the wheel longitudinal slip ratio λi, wheel pivot point acceleration abix , and

wheel pivot point velocity vbix controllers. The wheel pivot point velocity vbix is commanded

from the transformation (2.25) and uses the wheel pivot point acceleration abix ref command

as the manipulated variable. Then, the wheel pivot point acceleration abix is controlled via

the λi ref command. Finally, the wheel slip ratio λi is controlled by manipulating the wheel

torque τi ref. All controllers were designed using continuous-time design techniques and

then discretized with a frequency 100Hz. The frequency was chosen to ensure that the

proposed control system is easily deployable on the embedded hardware used in vehicles.

Measuring wheel-level acceleration and velocities is challenging and costly. Therefore,

only CP measurements (vehicle body state measurements) are used. The wheel-level

velocities and accelerations are computed via the transformation (2.25) (as illustrated in

Fig. 2.5). To summarize, the building blocks, from the inner to the outer loop, are:

• λi tracking - inner/core layer providing wheel slip ratio tracking functionality via

torque τi ref manipulation.

• abix tracking - middle layer providing wheel pivot point acceleration abix tracking

functionality via λi ref manipulation.

• vbix tracking - outermost layer controlling wheel pivot point velocity via abix ref ma-

nipulation.

Step responses of the individual loops are shown in Fig. 2.6.

λ tracking

The wheel slip ratio (assuming a stable OP) can be physically understood as a proportional

part of the available traction force. This is more evident when using the bilinear slip curve
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approximation and tire stiffness cλ as:

Fx = Fzcλλ. (2.29)

The control of the slip ratio and wheel angular speed has been addressed in numerous

studies. For instance, [36] proposes a piece-wise linear feedback controller that manages

the slip ratio λ and traction force for each wheel. A similar problem is tackled in [37].

The slip ratio is a prime candidate for the controlled variable in any traction system. The

concept of λ-control is not new and is common in railroad vehicles (see [38]) and current

automotive R&D projects such as [39]. Moreover, the proposed controller retains all the

necessary safety and economy functionality of the wheel-level controllers.

The τref,i value is generated based on the demanded λi ref value, wheel speed ωi, and

wheel hub longitudinal speed vwi
x . Initially, the measured values at the vehicle CP are

transformed using eq. (2.25) to the wheel pivot point. Then, the measured slip ratio is

computed using eq. (2.15). The slip ratio controller was designed using linear techniques,

specifically root locus, and fine-tuned on the nonlinear model presented in Section 2.1. A

full PID controller was designed on a linearized vehicle model with a nonzero slip ratio

stable OP (λOP = 0.05).

The linear stability analysis of the stable and unstable slip curve OPs (see Fig. 2.3a)

is shown in Fig. 2.7. The two OPs minimum realizations of controlled vehicle dynamics

linearization are depicted. The controller was designed for the stable OP (positive slip

curve slope). The unstable OP (negative slip curve slope) is stabilized with the very same

discrete-time (Ts = 0.01s) PID controller designed for the stable OP as shown in Fig. 2.7.

It is important to note that slip ratio λ control is possible only when the wheel pivot

point has a nonzero velocity vbix > ξ; ξ > 0 to enable slip ratio calculation (see eq. (2.15)).

Therefore, the control policy presented is applicable only for vehicle velocities exceeding

a certain threshold, e.g., |vv| > 3m/s.

Figure 2.7: Compensated stable and unstable OP linearized system root locus.
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abix tracking - ”λ-reference generation”

This layer is responsible for tracking the abix,ref setpoint (acceleration tracking at the i-th

wheel pivot point). Input-output linearization of the nonlinear model, including the λ

controller, was used for the continuous-time PI controller design. The PI controller was

discretized with 100Hz frequency. The λmax limit is an algorithm parameter and can be

selected based on slip curve estimation as the slip ratio value for maximal wheel traction

λopt (see [40, 17] and Chapter 3 for details). However, in this section, it is implemented

as a constant.

Traction limits

When a vehicle approaches its traction limits, ensuring precise yaw rate tracking becomes

more critical than focusing on acceleration or deceleration. This principle is commonly

embedded in Electronic Stability Program (ESP) controllers. If the commanded slip ratio

λi, ref nears its maximum threshold λmax, the reference for the wheel acceleration controller

abix ref is recalculated as follows:

abix ref = (avx ref − alat,max) + abilat, (2.30)

alat,max = max
(
abilat
)
, i ∈ (1, 2, 3, 4) . (2.31)

This method ensures that the acceleration needed for accurate yaw rate tracking is

prioritized over longitudinal acceleration in conditions where traction is limited, such as

on icy roads. This strategy is applied similarly in both self-driven and human-driven

vehicle controllers.

vbix tracking - ”abix -reference generation”

The velocity at the wheel pivot point vbix , which represents the vehicle’s state, is derived

from the vehicle’s longitudinal speed vvx, lateral speed v
v
y , and yaw rate ψ̇v measurements

at the vehicle’s CP, transforming these into the wheel pivot point coordinate system

(see eq. (2.25)). The reference speed for each wheel, derived from this transformation,

is tracked using a proportional (P) controller that generates the required wheel pivot

point acceleration abix,ref. The P controller design involves input-output linearization of

the nonlinear model, incorporating the acceleration controller.
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Figure 2.8: Proposed brake blending scheme.

2.3 Brake Torque Blending

Brake torque blending is a critical issue in contemporary vehicle braking systems, par-

ticularly in hybrid and electric vehicles. While regenerative brakes offer advantages such

as energy recovery, simpler control, and quicker torque build-up compared to traditional

friction-based brakes, they also have certain limitations. The primary constraints in-

clude lower brake torque magnitudes compared to friction brakes, the motor speed-torque

characteristics, and the brake torque limitation by the state of charge (SOC) of the ve-

hicle battery. To ensure effective brake performance, a combination of regenerative and

friction-based brake systems is necessary, leading to the development of a brake torque

blending algorithm as detailed in [14].

The primary goal of the proposed blending algorithm is to allocate the brake torque

references from the superior control system (see Section 2.2) between the regenerative

and friction-based brake systems. The algorithm aims to maximize the utilization of

regenerative braking without compromising overall braking performance. The schematic

representation of the proposed brake torque combination is shown in Fig. 2.8. The

solution involves using friction brakes to generate torques for steady-state and slowly

varying reference signals. Conversely, the torques for dynamically and rapidly changing

reference signals are produced by the regenerative brakes (using the electric motor). To

maintain optimal brake performance and system response time, only a portion of the

currently available regenerative brake torque is used for low-frequency torque generation

to prevent actuator saturation. The proportion of electric motor torque allocated for low-

frequency tasks is a design parameter ξ defined following equation (2.32). The remaining

portion is then available to handle rapid changes as needed. The amount of regenerative
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torque allocated for rapid changes can vary based on the battery SOC, i.e., ξ (SOC).

When the SOC is low, the allocation is limited only by the e-motor saturation limits

and the performance requirements mentioned earlier. For instance, it is advisable to use

80% of the available regenerative torque for low-frequency torque (ξ = 0.8). However,

when the SOC is high, such as above 80%, a smaller portion of the available regenerative

torque should be used for low-frequency changes to ensure some battery storage capacity

is available for storing regenerated energy from braking, e.g., ξ = 0.2.

Thus, the proposed blending mechanism can automatically adjust the brake blending

strategy to achieve optimal performance at various levels of battery SOC. Along with

SOC-dependent electric motor torque limits, this approach maximizes both brake system

performance and energy efficiency. The friction torque reference is calculated using the

equation:

τ bref,i = LP (τref,i)−max (LP (τref,i) , ξ · τm,lim) , (2.32)

where τ bref,i is the friction brake torque reference1, τref,i is the overall brake torque

reference1, τ elim is the e-motor torque limit1, and LP denotes the low-pass filter.

The electric motor brake reference is computed using the equation:

τ eref,i = max
(
τref,i − τ bi , τm,lim

)
, (2.33)

where τref,i is the brake torque reference, and τ bi is the measured brake torque. This

ensures that the commanded brake torque reference is always tracked unless the actuators

reach their saturation limits.

2.4 Simulation Results of the Motion Feedback Con-

troller

The simulation-based experiments were conducted to demonstrate the system’s perfor-

mance. First, Matlab & Simulink simulations utilizing the nonlinear model described in

Section 2.1 are presented to provide a detailed understanding of the controller features.

Subsequently, simulations and analyses using a high-fidelity validation student formula

model from the IPG CarMaker environment co-simulation with Simulink are shown.

1Note: The brake torques are negative during braking.
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Figure 2.9: Vehicle body-fixed variables (vvx, ψ̇
v, β and avx) are shown here for the straight

ride with ϵi variation (described in section Section 2.4.1). Simulation experiment is eval-
uated using the Matlab & Simulink model (see Section 2.1).

2.4.1 Description of MATLAB & Simulink Based Experiment

This section details the experiment performed using the model introduced in Section 2.1.

The effect of different surface types on the slip curve shape is approximated by scaling the

slip curve for the Matlab & Simulink experiments. The slip curve shape is preserved but

scaled down by an appropriate factor. This simplification does not introduce significant

error, as the slip curve is relatively flat around λopt, which is often assumed constant in

related works [3, 41, 36]. Moreover, the control strategy presented is robust concerning

the position of λopt. The estimation of the optimal slip ratio is discussed in [17] and

described in Chapter 3. Once the λopt estimate is obtained, its integration into the

proposed controller is straightforward, although the integration evaluation is not discussed

in this work and will be conducted in future research. The self-driven vehicle controller

hierarchy (see Section 2.2.1) was utilized in this experiment.

The results are presented in graphs comprising:

• Vehicle body-fixed variables - the response of vehicle-fixed body variables such

as vvx, ψ̇
v, β, and avx (acceleration of the vehicle in the x direction in the vehicle

body-fixed coordinate system).

• Wheel variables - variables for each wheel such as τi, λi, ϵi, and a
wi
x (acceleration

of the wheel in the x direction in the wheel coordinate system).

The following experiment was carried out.

Straight Ride - Road Condition Variation

An artificial variation of the tire-to-road interface ϵi with constant vehicle acceleration

while driving straight is simulated in this experiment.
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Figure 2.10: Wheels variables (awi
x , τi, λi and ϵi for each wheel) are shown here for the

straight ride with ϵi variation (described in Section 2.4.1). Simulation experiment is
evaluated using the Matlab & Simulink model (see Section 2.1).
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Figure 2.11: Detail of wheel torques τi and tire-interface variables ϵi for each wheel are
shown here for the Simulink model (see Section 2.1) simulation experiment (see Sec-
tion 2.4.1). The torque allocation based on µi, Fzwi, and ϵi can be seen.
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The variations in ϵi are different for each wheel throughout the experiment. The

conditions during this experiment are:

• A steering angle δ = 0 rad is maintained throughout the experiment.

• ϵi remains piecewise constant and varies during the simulation as follows:

– ϵi = 1 for times t < t1, t2 < t < t3, and t > t4

– ϵi is constant but different for each wheel otherwise (ϵi ̸= 1 and ϵi ̸= ϵj, i ̸= j)

• The velocity reference is:

– vvx,ref (t < 1) = 15m/s

– d
dt
vvx,ref (t > 1) = 1m/s2

The vehicle body-fixed variables are shown in Fig. 2.9. The wheel variables are

presented in Fig. 2.10. The wheel torques τi and tire-to-road interface variables ϵi for

each wheel are detailed in Fig. 2.11. The results demonstrate that the vehicle tracks the

velocity reference well, despite the challenging conditions. The different ϵi for each wheel

simulate different surfaces encountered by each wheel. Although this scenario is somewhat

artificial and unrealistic, it validates the proposed controller’s functionality. The torque

distribution for each wheel is clearly observable in Fig. 2.11. The experiment’s summary

and results are further discussed in detail in Section 2.7.1, along with the CarMaker

experiment outcomes.

2.4.2 EFORCE Formula CarMaker High Fidelity Validation Ex-

periment

The effectiveness and functionality of the proposed hierarchical control system were vali-

dated using the IPG CarMaker environment with a high-fidelity model from FEE CTU in

Prague, representing the EFORCE student formula. This model incorporates various dy-

namic phenomena such as tire models, Ackermann steering, and load transfer effects, and

can be accessed at [42]. The formula model used is depicted in Fig. 2.12. For validation,

the CarMaker formula model was calibrated with real parameters. The drive-by-human

controller hierarchy was utilized in the CarMaker experiments (see Section 2.2.1).

The measured values of the Pacejka magic formula, which are employed in the Car-

Maker model, are shown in Fig. 2.16.

Two experiments were carried out to evaluate the controller’s performance. The first

experiment involved acceleration combined with an ISO 3888-1 double lane change ma-

neuver, while the second focused on torque vectoring. Detailed descriptions of both ex-

periments are provided below.
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Figure 2.12: EFORCE student formula used for the CarMaker model.

Figure 2.13: Acceleration and double lane change maneuver including the friction bump
used in Section 2.4.2.

The IPG driver model generates control system references using the accelerator and

brake pedals. These pedal positions were converted into a vehicle acceleration reference

avx ref. The driver also controlled the steering wheel angle δ, which was translated into a

vehicle yaw rate reference ψ̇v
ref. The experiment consisted of two parts: acceleration and

an ISO 3888-1 double lane change maneuver illustrated in Fig. 2.13. The experiment

began with the vehicle maintaining a speed of 20 km/h. At approximately t ≈ 2s, the

vehicle began to accelerate. During acceleration, the vehicle encountered a friction bump

with the left side wheels (approximately t ∈ (4, 6)). Finally, upon reaching 95 km/h, an

ISO double lane change maneuver was executed (approximately t ∈ (15, 20)).

The comparison between Γ = 0 and Γ = 10 is shown in Fig. 2.14. It is evident that

the Γ = 0 setting was unable to complete the double lane change at high speed (vehicle

velocity vvx = 95km/h) and experienced greater yaw rate tracking disturbance due to the

friction bump compared to the Γ = 10 setting. A comparison of the proposed control
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Figure 2.14: Comparison of two lateral preference Γ values for the CarMaker experiment
described in Section 2.4.2. The figures are from left to right in the first row: wheel torques
and vehicle velocity. Next, in the second row: vehicle acceleration with its reference and
vehicle yaw rate with its reference.

system with Γ = 10 tuning and the implementation of [3] is shown in Fig. 2.15 for the

wheel-level variables. It is clear that [3] could not handle the friction bump, primarily due

to a lack of traction limit handling compared to the proposed solution (see Section 2.2.2).

Additionally, the solution in [3] requires numerous additional signals to be estimated or

measured (e.g., wheel traction force, wheel normal force, etc.).

An analysis of the experiment described above under various condition variations is

presented:

• Comparison of lateral preference Γ variables

• Inaccurate λopt estimation

• Different friction bump values

Various Friction Bump Friction Coefficient Values

This section discusses varying the friction coefficient values µi ∈ {0.15, 0.25, 0.4, 0.8} of

the friction bump encountered during acceleration. The experiment includes both the

acceleration and the ISO 3888-1 double lane change maneuver, as depicted in Fig. 2.13.

First, the optimization-based solution [3] is compared for all friction coefficient varia-

tions in Fig. 2.17. With the optimization-based solution, the driver could not handle the

lowest friction surface µ1 = 0.15. Several factors could explain this behavior. The IPG

driver attempts to counteract the yaw rate disturbance caused by different surfaces on

the left side wheels, potentially leading to driver-induced oscillations. Additionally, the

left-side wheels may fail to provide the required force due to force saturation, which are

not addressed in the optimization-based solution. Lastly, the optimization-based solution

tracks the yaw rate reference ψ̇v
ref in an open-loop manner without feedback. The yaw
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Figure 2.15: Comparison of wheel acceleration awi
x and slip ratio λi tracking between

the proposed allocation scheme (veh superscript) and the optimization-based allocation
scheme from [3] (opt superscript). Details are described in Section 2.4.2.

rate reference is converted into the required vehicle body torque Mz, which is then used

to determine individual wheel force references as described in [3].

Next, the same comparison for all surface types employing the proposed control system

is shown in Fig. 2.18. The proposed control system enables the driver to handle all friction

coefficient values, unlike the optimization-based solution [3] shown in Fig. 2.17. The

proposed control system provides a vehicle-level motion feedback control law, ensuring

accurate vehicle reference tracking even under extreme conditions.

The comparison for the lowest friction coefficient µ1 of both the optimization-based

and the proposed solution at the wheel level is shown in Fig. 2.15. Detailed moments when

the vehicle enters the friction bump are presented in Figures 2.19 and 2.20. The details

of the control allocation are shown in Fig. 2.21. It can be seen that the optimization-

based system from [3] performs well on nominal surfaces. However, the disturbance in

yaw rate tracking is significant when the vehicle encounters the low friction surface with

the left wheels. This issue is not present in the proposed system, which respects traction

limits. The vehicle cannot track the acceleration reference due to physical constraints

on the friction bump. In this case, the second and fourth wheels apply a maximum slip

ratio, which is still insufficient to meet the requested vehicle acceleration (see Fig. 2.19).

Therefore, the proposed system maintains the highest possible acceleration while tracking

the driver’s yaw rate reference given through the steering wheel. This behavior can be

clearly seen in Fig. 2.21. The disturbance rejection of the optimization-based solution of

[3] is having much worse performance than the proposed system. Experiment video can

be found at [43].



CHAPTER 2. TRACTION CONTROL ALLOCATION 31

0 5 10 15 20 25 30 35 40

Slip ratio  [%]

0

200

400

600

800

T
ra

c
ti
o

n
 f

o
rc

e
 F

x
 [

N
]

Pacejka CarMaker model

Controller limits correct

Controller limits extended

Figure 2.16: Pacejka magic formula measured values used in the CarMaker model. The
limit value used as λmax in the control system is selected correctly once and extended
beyond the true λopt to simulate an incorrect λopt estimation.

Figure 2.17: Comparison of the optimization-based solution [3] for various friction coeffi-
cients µi of the friction bump, driven over with the left side wheels during acceleration.
Details are explained in Section 2.4.2.

Figure 2.18: Comparison of the proposed control system for various friction coefficients
µi of the friction bump, driven over with the left side wheels during acceleration. Details
are explained in Section 2.4.2.
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Figure 2.19: Detailed comparison of the proposed allocation scheme (veh superscript) and
the optimization-based allocation scheme from [3] (opt superscript) for the lowest friction
coefficient µ1 = 0.15 of the friction bump. Wheel variables (awi

x and λi for each wheel)
are shown. Details are described in Section 2.4.2.

Figure 2.20: Detailed comparison of the proposed allocation scheme (veh superscript) and
the optimization-based allocation scheme from [3] (opt superscript) for the lowest friction
coefficient µ1 = 0.15 of the friction bump. Wheel torques τi, driver’s steering wheel
command δ, and vehicle yaw rate ψ̇v are shown. Details are described in Section 2.4.2.
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Figure 2.21: Details of the proposed allocation scheme are shown. Wheel torques τi,
vehicle yaw rate ψ̇v, vehicle acceleration avx, and vehicle velocity vvx are depicted for the
friction bump’s lowest friction coefficient µ1 = 0.15. Details are described in Section 2.4.2.
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Inaccurate λopt Estimate

The Pacejka magic formula slip curve utilized in the IPG CarMaker model is displayed in

Fig. 2.16. The proposed control system was calibrated for the stable portion of the slip

curve, where |λ| < λopt = 12% (see Fig. 2.16). However, determining the λopt parameter

accurately can be difficult, resulting in potential misestimations. The second experiment

emulates an incorrect λopt estimate. In this experiment, the controller limit λmax was set

to the erroneous value of λopt = 15%, which exceeds the slip curve maximum and falls

into the unstable region (see Fig. 2.16). According to local linearization analysis at this

operating point, the controlled system maintains stability (refer to Section 2.2.2). The

performance of the system with the inaccurately estimated λopt is illustrated in Fig. 2.22.

It is evident that the system continues to track effectively even when slip ratio values

extend into the unstable slip curve region.

Lateral Stability Functionality

The final experiment showcases the vehicle’s ability to track yaw rate using the proposed

control system’s wheel torques, essentially demonstrating a torque vectoring functionality.

The wheels are not steered (δ1 = δ2 = 0) to highlight the steering capability of the

proposed solution. The performance of the proposed system, based on the vehicle motion

feedback controller, is presented in Fig. 2.23. For comparison, the torque vectoring

performance of the optimization-based solution is shown in Fig. 2.24. Both systems are

capable of tracking the requested yaw rate references effectively on a nominal surface (the

surface for which the control is designed).

2.4.3 Vehicle Models’ Parameters

The specific parameters for both the CarMaker model and the Matlab & Simulink-based

model are detailed in this section. The model parameters are provided in Table Table 2.1.

Additionally, the parameters for the simplified Pacejka magic formula are shown in Table

Table 2.2.

Table 2.1: Selected parameters of the models.

Parameter CarMaker Simulink
Nominal wheel radius [m] 0.205 0.33
Vehicle mass [kg] 155.5 1300
Distance from CG to rear wheels [m] 0.83 1.63
Max Front Motors power [kW ] 8 150
Max Rear Motors power [kW ] 35 200
Distance from CG to front wheels [m] 1.18 1.74
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Figure 2.22: Details of the proposed allocation scheme are shown. Wheel variables (awi
x

and λi for each wheel) are depicted for the friction bump’s lowest friction coefficient
µ1 = 0.15. The maximum slip ratio λmax was set to 15%, simulating an incorrect λopt
parameter estimation. Details are described in Section 2.4.2.

Figure 2.23: Torque vectoring experiment described in Section 2.4.2. The proposed control
allocation performance is shown. Vehicle acceleration avx, velocity v

v
x, yaw rate ψ̇v, and

wheel torques τi; i ∈ 1, 2, 3, 4.

Figure 2.24: Torque vectoring experiment described in Section 2.4.2. The optimization-
based control allocation proposed in [3] is shown. Vehicle acceleration avx, velocity v

v
x, yaw

rate ψ̇v, and wheel torques τi; i ∈ 1, 2, 3, 4.
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Table 2.2: Pacejka parameters of the models.

Model B C D E
Simulink model 7 1.6 1 -0.5
CarMaker model 0.1 1.8 1 -0.95

2.5 HiL Validation of Brake Blending

A friction brake Hardware-in-the-Loop (HiL) stand was developed to evaluate the pro-

posed approach in a real world. The HiL stand is depicted in Fig. 2.25. It consists of a

brake-by-wire unit, a PC, and a brake caliper.

The PC runs the simulation environment (Simulink and CarMaker) and connects to the

brake-by-wire unit via a USB to CAN PEAK device converter. The brake-by-wire unit is a

mechatronic device that regulates mechanical brake pressure using digital communication

over the CAN bus. The brake-by-wire unit includes actuators, sensors, and a control unit

that communicates with the PC over CAN. It controls the motor controllers responsible

for generating brake pressure and measures the resulting brake pressure. The hydraulic

system comprises a master cylinder actuated by the brake-by-wire unit and a brake caliper.

For a more detailed description of the brake-by-wire unit and HiL test stand, refer to [44].

The mechanical torque acting on the wheels is calculated from the generated pressure

using a measured static look-up table.

2.6 Proposed Brake Torque Blending Validation

The proposed control system, incorporating CP point motion feedback and a brake torque

blending mechanism as detailed in Section 2.2 and Section 2.3, was validated through

selected test scenarios. Additionally, the friction brake HiL setup (refer to Section 2.5)

was integrated with both simulation environments (Simulink and CarMaker) to assess the

approach using actual hardware. In these experiments, it was assumed that the battery’s

SOC exceeded 80%, leading to a setting of ξ = 0.2.

2.6.1 Mathematical Model Experiment

Initially, the non-linear mathematical model described in section Section 2.1 was employed

to validate the control system in a scenario involving ϵ transition, as shown in Fig. 2.26.

The variable ϵ represents the tire-to-road interface, accounting for various factors such as

changes in friction coefficient µ, tire wear, dynamic load transfer, shifts in the center of

gravity, and alterations in vehicle weight.

Understanding how these changes impact the tire-to-road interface model, specifically
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Figure 2.25: Hardware-in-the-loop setup for validating friction brakes.

Figure 2.26: Validation scenario with ϵ transition used in the mathematical model (refer
to Section 2.1).
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Figure 2.27: Selected variables for the mathematical model experiment described in Sec-
tion 2.6.1. The top left figure shows the brake torque blending result employing the HiL
unit. The other figures depict the vehicle-level variables.
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Figure 2.28: Wheels’ acceleration awi
x and slip ratio λi tracking using the motion feedback

controller in the Simulink validation environment. Experiment details are provided in
Section 2.6.1.

the Pacejka magic formula (2.16), is crucial. Surface changes are modeled by variations

in the friction coefficient µ, represented by changes in the tire-to-road interface variable ϵ.

Changes in tire properties are reflected by the parameters A,B,C,D, with ϵ approximat-

ing the change in parameter D. Additionally, changes in ϵ can also represent variations

in the normal force F bi
z , encompassing changes in the vehicle’s center of gravity, dynamic

load transfer or different loading conditions.

The figures Fig. 2.27 and Fig. 2.28 illustrate this experiment. Initially, the vehicle

travels at approximately 100 km/h until time t1, where it begins braking. At time t2, the

ϵ drops to 0.3, simulating the surface change. The experiment demonstrates the vehicle’s

ability to stop despite a significant change at the tire-to-road interface (a 70% change in

ϵ).

The CP motion feedback controller generates reference brake torques for each wheel,

tracked by the brake blending mechanism described in Section 2.3. Wheel slips are con-

trolled and maintained below predefined limits (15%), ensuring safety and maximum brake

torque derived from the Pacejka slip curve (see Fig. 2.16). The tracking and blending of

brake torques are depicted in Fig. 2.27. The friction brakes deliver the low-frequency por-

tion of the brake torque, while the electronic motor handles the dynamic portion. This

arrangement ensures proper execution of dynamic maneuvers with the e-motor’s assis-

tance, while providing high-power braking with friction brakes. The dynamic changes are

managed by the e-motor, highlighting the importance of reserving some e-motor torque

for fast dynamic changes. The tuning parameter ξ determines how much torque should

be reserved, balancing performance (low ξ) and economy (high ξ). The ξ value can also

be adjusted based on the battery’s SOC.
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Figure 2.29: Validation scenario with friction coefficient µ split used with the CarMaker
model.

2.6.2 CarMaker Model Experiment

The CarMaker experiment was conducted using the CarMaker validation environment and

the CarMaker formula model described in Section 2.4.2. The CarMaker driver controlled

the vehicle, operating the steering wheel, accelerator, and brake pedal. The experiment

scenario is outlined in Fig. 2.29, with corresponding signals shown in Fig. 2.30 and

Fig. 2.31. The vehicle maintains a constant speed of 100 km/h until time t1, then starts

braking while passing a friction transition on one side of the vehicle (the µ split scenario

with µ = 0.15 representing an icy road). The vehicle encounters the icy patch with its

first wheel at approximately time t2 and exits the patch at time t3.

The significant reduction in traction force and brake torque on one side, due to the

slip ratio controller, is compensated by the CP motion feedback controller by reducing the

torque on the other side to prevent the vehicle from rotating. This reduction needs to be

rapid to counteract the vehicle yaw rate disturbance, with the e-motor torque managing

the dynamic change and the friction torque handling steady-state brake torques. This

experiment confirms the CP motion control system’s ability to track the vehicle yaw rate

reference (as shown in Fig. 2.30). Slip ratios λi and wheel pivot point accelerations abix

are not tracked due to the limited brake power of the CarMaker formula model.
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Figure 2.30: Selected variables for the CarMaker experiment described in Section 2.6.2.
The top left figure shows the brake torque blending result using the HiL unit. The other
figures display vehicle-level variables.
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Figure 2.31: Wheels’ acceleration awi
x and slip ratio λi tracking using the motion feedback

controller in the CarMaker validation environment. Experiment details are described in
Section 2.6.2.
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2.7 Summary

An innovative alternative to traditional control allocation methods is proposed in [13, 14],

and is elaborated upon in this section. The suggested control system fundamentally

changes the existing control paradigm, which typically allocates torques (slip ratios, or

forces) directly to the wheels in an open-loop manner. Instead, the proposed system

translates the vehicle’s velocity or acceleration tracking problem to the wheel pivot points,

inherently solving the control allocation task. This approach is detailed in Section 2.2.

The validation of this system using the Matlab & Simulink model (Section 2.1) is presented

in Section 2.4.1. Further validation and in-depth analysis using the CarMaker model are

discussed in Section 2.4.2. The application of this system to the brake system is described

in Section 2.3, and the HiL stand used for validating the brake torque blending mechanism

is introduced in Section 2.5. The results of the HiL-CarMaker-Simulink co-simulation test

scenarios are presented in Section 2.6.

The proposed control system offers numerous advantages over traditional traction

systems based on direct force/slip ratio allocation. These benefits are explored in the

following section.

2.7.1 Benefits of the Proposed Control System

Among the various benefits of the proposed control system are:

Inherent Control Allocation

The transformation from the vehicle Center Point (CP) to any wheel pivot point is un-

ambiguous for vehicle state variables. This ensures that the set of wheel-level reference

signals is unique for any vehicle motion. The combination of this transformation with

feedback control of the vehicle/wheel state variables inherently resolves the control allo-

cation problem, unlike systems based on traction force control [3, 15, 22, 24, 26, 45, 41],

where control allocation must be explicitly managed. The inherent adjustment of applied

traction torque for each wheel is demonstrated in the experiment with variations in ϵi

values (see Section 2.4.1) in Fig. 2.10 and Fig. 2.11 (at times t1 and t3). The control law

automatically adjusts the torque to track the velocity reference signal and reflect changes

in road conditions and traction capabilities. This inherent allocation is also shown in the

CarMaker experiment (see Fig. 2.14).
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Robustness to Center of Gravity (CG) Location and/or Wheels’ Steady-State

Normal Loading

The velocity control is robust to variations in wheel normal force/load. Moreover, the

proposed method can inherently provide the distribution ratio of the wheel’s normal force

(assuming uniform road friction properties). The impact of CG position and overall

vehicle mass on traction torque allocation is illustrated in Fig. 2.11. Initially, the vehicle

accelerates with the CG positioned rearwards of the vehicle CP, resulting in higher torques

on the rear axle (τ4 and τ3) compared to the front axle (τ2 and τ1). Changes in ϵi at time

stamps t1 to t4 can represent sudden shifts in CG location and overall vehicle mass. The

value of ϵi scales the µiF
wi
z D term (see eq. (2.16)), where the normal force Fwi

z depends

on CG location and vehicle mass during steady-state driving.

Robustness to Dynamic Load Transfer

During maneuvers, the normal force on the wheels dynamically changes. The control

system’s invariance to CG location implies robustness to dynamic load transfer. Road

grade and vehicle roll changes, interpreted as variations in normal force, are handled

similarly to dynamic load transfer. Moreover, the nonlinear simulation model includes

load transfer effects via the suspension model (see Section 2.1 and [30]).

Robustness to Tire-to-Road Interface Variation

The feedback control of vehicle velocity and wheel angular speed ensures robustness

against road condition uncertainty. The ϵi value scales the µiF
wi
z D term, modeling road

condition variations. Figures mentioned earlier demonstrate this point, particularly Fig.

2.11.

Standard Instrumentation

The proposed system does not require advanced instrumentation beyond what is standard

in modern vehicles. The instrumentation level is comparable to that of vehicles equipped

with four e-motors, ABS, and ESP systems.

Inherent Wheel Safety Limits Preservation

Wheel traction is considered lost when the slip ratio exceeds the range where the slip curve

derivative is positive (|λ| ≥ λopt in Fig. 3.2, eq. (2.16)). The λopt parameter is a direct

limitation in the wheel-level control law. It is assumed that the λopt parameter is known

or estimated, a challenging problem discussed in [40, 17] and Chapter 3. The proposed

control system maintains the slip ratio λ within prescribed boundaries (defined by the
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λopt parameter), ensuring maximum brake torque delivery, derived from the Pacejka slip

curve. This is achieved by bounding the maximum λi,ref value in the abix,ref acceleration

controller to λopt.

Unifying Traction System Design

The control strategy integrates the functionality of all conventional wheel-level ADAS

traction components, such as ABS, ESC, and ASR.

System/Vehicle-Level Design

The proposed traction control strategy is designed at the vehicle system level, provid-

ing higher integration of traction functionality, improved performance, and robustness.

The algorithm’s low complexity enhances functionality while reducing development and

deployment time and costs.

Yaw Rate Tracking and Preference Over Longitudinal Dynamics Tracking

The proposed transformation introduces a tunable parameter that influences the prefer-

ence between yaw rate and longitudinal dynamics tracking. This functionality is demon-

strated in the EFORCE formula CarMaker experiment (see Fig. 2.14 and Fig. 2.15). The

anti-symmetric action of the slip ratio generating yaw rate ψ̇v is evident between the 15th

and 20th seconds in Fig. 2.14, inherently implementing Torque Vectoring functionality.

The preference for yaw rate over longitudinal dynamics was tested in the double lane

change maneuver, with the difference between Γ = 10 and Γ = 0 clearly visible in Fig.

2.14 (yaw rate tracking).

Enhanced Integration and Coordination

The proposed control system enhances the integration and coordination of various vehicle

control systems. By unifying the control of traction, braking, and stability functions,

the system ensures seamless operation across different driving scenarios. This holistic

approach not only improves performance but also simplifies the overall vehicle control

architecture, making it easier to implement and maintain.

Scalability and Adaptability

The control system is designed to be scalable and adaptable to different vehicle types and

configurations. Whether it is a passenger car, a sports vehicle, or a heavy-duty truck, the

system can be tuned to meet specific performance requirements. This adaptability ensures

that the benefits of the proposed control strategy can be realized across a wide range of
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vehicles, providing manufacturers with a flexible solution to enhance vehicle safety and

performance.

Cost-Effectiveness

The low complexity of the proposed control algorithm translates to reduced computational

requirements and lower costs associated with hardware and software development. Ad-

ditionally, the system’s ability to integrate with existing vehicle control systems without

requiring significant modifications further enhances its cost-effectiveness. This makes it

an attractive solution for manufacturers looking to improve vehicle performance without

incurring high costs.



Chapter 3

Tire-to-road Interface Estimation

Vehicle dynamics control and assistance systems such as anti-lock brake system (ABS),

traction control (TC), electronic stability program (ESP), and many other systems are

defined by the tire-to-road interface properties. Unfortunately, the variability in these

interface properties is described by a highly nonlinear and uncertain model. Therefore,

conventional control solutions (such as the ones mentioned) are usually designed to be

robust to ensure vehicle safety and stability even in such varying environment. However,

this robustness often comes at the cost of vehicle performance.

A very illustrative example of this robustness-for-performance trade-off is the on-off

behavior of the ABS algorithm. Braking performance could be significantly increased if

the maximum tire traction force was utilized for the entire braking period, without the

relaxation phase typical of ABS. A sketch illustrating how ABS works is shown in Fig. 3.1.

The actual ABS torque pattern is depicted in red, while the optimal brake torque pattern

is shown in dashed blue. The ABS algorithm reduces the braking torque to prevent wheel

lock-up, but this relaxation phase, although necessary to prevent lock-up, reduces overall

braking performance. The figure also shows the ideal braking torque in the dashed blue

line.

The vehicle traction force Fx is derived from the tires and their model. There are

numerous tire models, such as the Burckhardt model, Brush model, and Pacejka magic

formula model, among others. The wheel traction force (in the x direction) in these

models is defined similarly to the dry friction force as:

Fx = Fz µ (λ) , (3.1)

where Fz represents the wheel’s normal loading, and µ the friction coefficient. The friction

coefficient µ is usually modeled as a function of the wheel longitudinal slip ratio λ in a tire

model. The topic of slip ratio λ estimation is well-covered in studies such as [46, 47, 48].

This chapter, however, focuses on the estimation of the optimal slip ratio λopt, which

45
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Figure 3.1: Anti-lock brake system (ABS) operation. Red lines represent the ABS oper-
ation, the blue line represents the ideal braking torque.

provides the maximum traction force in contrast to the slip ratio estimation, which is not

covered here.

This chapter including the figures is based on my previously published work in [17, 18].

Most tire models have a unique maximum friction coefficient µmax, achieved at a unique

optimal slip ratio λopt. This relationship is sketched as:

µmax = µ (λopt) , (3.2)

where µ (λ) represents the tire model (in this chapter, the Pacejka magic formula is used

– details are described in Section 3.2).

Knowledge of µmax is usually crucial for vehicle dynamics control and is commonly uti-

lized in many advanced driver assistance systems (ADAS), particularly in vehicle traction

systems such as anti-skid regulation (ASR), ABS, ESP, and TC [49, 50]. Estimating the

maximum friction coefficient µmax is a widely studied problem [51, 52, 53, 54, 55]. How-

ever, environmental changes (wet concrete, snow, ice, etc.) or variations in tire properties

(wear, different types, etc.) cause the maximum friction coefficient µmax to be obtained at

slightly different λopt values. The shift in λopt is often neglected in many studies because

its estimation is considered very challenging. As a result, many studies assume λopt to

be constant [3, 36, 41, 56]. However, assuming a constant λopt may lead to performance

losses of several percent in the worst-case scenarios of λopt shift (see Fig. 3.2). The effect

of estimation errors in λopt is analyzed in Section 3.5.2. It is important to note that for

given conditions (weather, tires, etc.), λopt is a constant that physically corresponds to
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Figure 3.2: Longitudinal slip curve. Adopted from [2].

the highest possible traction force of the wheel.

3.1 Optimal Slip Ratio Estimation

This chapter employs the well-known Pacejka magic formula as defined in [35]. While it

may seem insufficient to estimate only λopt without knowing the friction coefficient µmax,

this assumption is not valid for many systems.

Knowing just the value of λopt is sufficient and critically important not only in conven-

tional systems like ABS or TC but also in cutting-edge works such as [3, 13]. Studies like

[3, 13, 36, 41] require only the slip ratio λopt that corresponds to the maximum available

friction µmax, not µmax itself. In many control systems, the estimated value of λopt is not

even safety-critical as it is used merely as a limit or reference (in a slip ratio controller

[13, 57, 58] and Chapter 2) or as an initial value (for ABS systems [50]). Improved knowl-

edge of λopt can significantly enhance these systems’ performance. Furthermore, knowing

λopt is not only valuable for cars but also for other land vehicles such as trains [59] or

planes [47]. In [59], the authors set λopt to a constant value for a railway vehicle, where

performance can be improved in the same manner as discussed in this chapter. Addition-

ally, the µmax can be derived as a by-product of the proposed UKF-based estimator. The

estimated µmax from the UKF-based estimator was used to automatically label camera

images in [18]. This use case, where the slipperiness of the road is estimated from camera
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images, is presented in Section 3.6 and previously published in [18]. The work presented

in [18] is multidisciplinary. My specific contribution was preparing the dataset used for

neural network training and validation. The actual training and validation of the neural

network were conducted by the other authors of the paper.

3.1.1 Main Contributions

The main contributions of this chapter are as follows:

• A novel real-time estimation method of λopt addressing the simplification of λopt

shifts. This chapter does not focus on slip ratio λ estimation (published in [17]).

• A novel architecture for a UKF-based λopt estimator using traction force estimation

(published in [17]).

• A novel RLS-based algorithm for estimating λopt using force estimation (published

in [17]).

• Comparison of the proposed methods in real-world experiments (published in [17]).

• The UKF-based maximum friction coefficient estimator for automatic labeling of

camera images used in neural network-based predictor of surface slipperiness (pub-

lished in [18]).

3.1.2 Related Research

Estimating the properties of the road surface is challenging due to the nonlinear nature of

tire-to-road interactions and the significant levels of uncertainty and variability. Numerous

papers have tackled this challenge, and estimation algorithms can generally be categorized

into two main branches:

• Estimation based on direct surface measurements.

• Estimation based on responses of wheel and vehicle dynamics.

Estimation Based on Surface Measurements

Various measurement methods can be used to infer the friction properties of the road sur-

face. Common methods include optical cameras, infrared thermometers, and temperature

sensors. In [60], F. Holzmann proposed a predictive method for road friction estimation

using measurements from cameras and microphones. This method involves matching the

measurements to pre-stored reference samples. Another example of surface measurement
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is presented in [61], where a thermometer detects the heat energy emitted during freezing.

Ultrasonic measurements are used in [62], while optical position detection is employed in

[63].

However, these methods have several disadvantages, such as challenges in sensor place-

ment and cost. Additionally, they only capture certain aspects of the complex force calcu-

lation chain (refer to Section 3.2.2 for details on force calculations). Most studies focus on

measuring road surface conditions, neglecting important tire properties such as newness,

wear, and aging. In contrast, dynamics-based estimation naturally considers all these

effects.

Estimation Based on Wheel and Vehicle Dynamics

The majority of state-of-the-art studies primarily focus on estimating the maximum fric-

tion coefficient µmax [51, 52, 53, 54, 55], often neglecting the shift in λopt. However, this

chapter emphasizes estimating the optimal slip ratio λopt that corresponds to the maxi-

mum traction force (or friction coefficient µmax). Some existing studies specifically focus

on estimating λopt. In [40], the authors use the sign of the slip curve slope to estimate λopt.

Another method is presented in [64], where an adaptive neuro-fuzzy inference system is

used for estimating λopt.

In [65], the slope of the slip curve is estimated based on vehicle dynamics response,

and λopt is determined from the change in the slope’s sign. A similar idea is presented

in [66], where the slip curve slope at the origin (zero slip ratios) is used for estimating

µmax. In [67], the authors propose a peak slip line for estimating the lateral optimal slip

angle αpeak, relying on the brush tire model properties. Generally, the majority of the

previous works techniques for λopt estimation are rule-based. For instance, in [58], the slip

curve slope is observed, and the optimal slip ratio λopt estimate is updated by a step δ

(a parameter of the estimation algorithm) based on the curve’s sign. Notably, this study

focuses on railway vehicles rather than road vehicles. Another rule-based estimation is

presented in [57], where the slip curve is divided into regions based on the slope value,

and the update step for λopt estimation is selected accordingly. The estimated λopt is then

used as a reference for the slip ratio controller.

In general, estimators based on vehicle dynamics response can estimate not only the

net force but also its maximum and the corresponding slip ratio λopt. Both proposed

methods for λopt estimation in this chapter fall into this category. An advantage of both

proposed estimators is their decentralized nature. They are based on the dynamics of a

single wheel and require no additional parameters beyond those in the wheel dynamics

equation (details in Section 3.2). This provides an advantage over estimators based on the

entire vehicle system [68], which may require additional parameters such as vehicle mass.
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The proposed estimators are also less complex than the one in [68] and easier to adapt to

various vehicles and powertrain architectures. Additionally, the UKF-based estimator can

provide the maximum friction coefficient µmax as a by-product. Extending the RLS-based

estimator to provide µmax is also possible, though not shown here.

3.1.3 Validation of the Estimators

The proposed estimators were validated through simulations using the model from Sec-

tion 3.2 and real-world experiments using a subscale radio-controlled validation platform

(refer to Section 3.4). For simulation validation, a nonlinear high-fidelity twin-track model

with an implemented traction ellipse (refer to [2]) was used. The model implementation

can be found in [30]. Moreover, the estimators were used to train and validate the sur-

face slipperiness predictor (refer to Section 3.6 and [18]) using the platform described in

Section 3.4.

3.1.4 Chapter Structure

The structure of this chapter is organized as follows. First, the models employed for

the development and validation of the estimators are presented in Section 3.2. The two

proposed estimators are described in Section 3.3. Next, the remotely controlled subscale

platform is introduced in Section 3.4. Further, the estimators are validated through

simulations and experiments, and the results are presented in Section 3.5. Finally, a

neural network-based predictor of surface slipperiness is presented in Section 3.6. The

UKF-based maximum friction coefficient estimator is used for automatic labeling of the

camera images to train and validate the predictor.

3.2 Mathematical Simulation Models

As the derivation of the estimators depends solely on the wheel dynamics equation, the

complete twin-track model will not be reiterated here. However, the full twin-track model

is employed for validating the estimators. For comprehensive information, please refer to

[2] and Section 2.1.

Twin Track Model

The full twin-track model is implemented in MATLAB & Simulink (see [30]). This model

is later used to validate the proposed estimators through simulations. To provide more

realistic data, measurement noise is added to the model outputs.

The twin-track model includes:
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Figure 3.3: Wheel Coordinate system.

• Nonlinear vehicle dynamics with suspension inspired by [2] and implemented in [30].

• The model consists of four wheels, where each wheel encompasses:

– Wheel dynamics.

– Pacejka magic formula tire model.

– Friction ellipse/circle, also known as Kamm’s circle.

The mathematical model is designed for an all-wheel-independent-drive vehicle, meaning

a vehicle with an e-motor for each wheel. However, the estimators are general and can

be applied to other architectures as long as the underlying assumptions are met (see

Section 3.3).

3.2.1 Wheel Nonlinear Dynamics Model

This section revisits the wheel-level model (see Section 2.1.3). The wheel model is as-

sociated with the wheel coordinate system presented in Fig. 3.3. Wheel dynamics are

characterized as follows:

Ji · ω̇i = τ ti − F i
x · rwi

− τ resi , (3.3)

where Ji [kg · m2] is the wheel’s moment of inertia along the wheel shaft (y) axis

(including driveline rotational inertia), ωi [rad/s] is the wheel’s angular speed along the

wheel shaft axis, τ ti [Nm] is the wheel’s traction torque, F i
x [N ] is the longitudinal traction

force generated by the particular wheel, τ resi [Nm] represents torques combining wheel

and e-motor resistance effects, and rwi
[m] is the wheel’s effective radius. The subscript

i = 1, 2, 3, 4 denotes the i-th wheel.

The specific variables and parameters of the wheel model are illustrated in Fig. 2.4b.

The road condition, wheel normal force/load, and the effect of the wheel’s lateral force
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are modeled by modifying the wheel’s longitudinal traction force F i
x based on the wheel’s

longitudinal slip curve (see Fig. 3.2) and traction ellipse (see Fig. 2.4a), as described in

Section 3.2.2.

3.2.2 Tire-to-Road Interface

The tire-to-road interface model is implemented similarly to the tire-to-road interface

model presented in Section 2.1.4. Traction forces on the wheel result from the interaction

between the tire and the road surface, commonly described using slip variables and slip

curves for both longitudinal and lateral directions. The widely used Pacejka magic formula

is employed for tire modeling in both longitudinal and lateral directions (refer to [35, 2]).

Additionally, the traction ellipse is used to capture the relationship between the lon-

gitudinal and lateral traction properties of the wheels (for more details, see [35, 34] and

Section 2.1.4). This ellipse represents the maximum friction force generated by the tire-

to-road contact patch under combined longitudinal and lateral loading, ensuring that the

combined force from acceleration or braking during cornering maneuvers does not exceed

the vertical force µiF
i
z applied to the wheel by the vehicle (see Fig. 2.4a). The friction

ellipse is also known as Kamm’s circle. For more details, refer to Section 2.1.

The parameters of the Pacejka magic formula can be measured, e.g., on a chassis

dynamometer, or estimated using different approaches as stated in Section 3.1. The

Pacejka magic formula parameters for the longitudinal direction used for the simulation

are shown in Table 3.1.

3.3 Estimators

The objective of the estimator is to characterize the tire-to-road traction properties of the

wheel in the longitudinal direction, with a focus on estimating λopt. A moderate error in

the estimate of λ̂opt around the maximum does not result in significant deviations in the

maximum traction force, as illustrated in Fig. 3.5. This is one of the main reasons why

the λopt shift is often disregarded in many studies (see Section 3.1 for details). However,

the consequences of neglecting the λopt shift are explored in Section 3.5.2.

The estimators described in this section are designed for individual wheels rather than

the entire vehicle, reducing the complexity of the estimation problem. Each wheel of the

vehicle has then an estimator implemented as shown in Fig. 3.4.

With this architecture, the estimators can be easily adapted to any type of wheeled

vehicle, such as cars, trucks, or even trains, as long as the following assumptions are met:

• Known wheel inertia J and radius rw.
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Figure 3.4: Each wheel is equipped with its own estimator.

• Measured or estimated wheel torque τi, wheel speed ωi, and wheel pivot point

longitudinal speed vix.

• Optionally, for improved performance, measured or estimated wheel traction force

F i
x and wheel normal force F i

z .

Two estimator structures are presented and compared. Both algorithms rely on the

measurement or estimation of traction force Fx, which is also detailed here. The compo-

nents presented include:

• Traction force Fx estimation algorithm.

• Recursive Least Squares (RLS) based algorithm for λopt estimation.

• Unscented Kalman Filter (UKF) based algorithm for λopt estimation.

All components are based on wheel dynamics (see eq. (2.10)) and are individually

implemented for each wheel. Both estimation algorithms (UKF- and RLS-based) use the

wheel longitudinal traction force and wheel normal loading/force as inputs. The longitudi-

nal force Fx estimation serves as the input to the UKF- and RLS-based estimators. Force

estimation is discussed in Section 3.3.1. If a force sensor is available in the application,

the force estimator can be omitted or replaced with direct measurements.

Additionally, knowledge of the wheel normal force Fz is assumed to improve estima-

tion results. However, if Fz is not accessible (neither measured nor estimated), it can be

set to one as Fz = 1. This approach is applied to the validation platform described in

Section 3.4, and results indicate that this approximation performs well (see Section 3.5.2).

This approximation introduces another limitation: Fz should remain approximately con-

stant, meaning that either braking or acceleration conditions must be selected to ignore

dynamic load transfer effects.
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Figure 3.5: Illustration of traction force error caused by an imperfect maximum slip ratio
estimate.

All blocks are represented using discrete time. The sampling time should be less than

or equal to 10ms, as this period is generally sufficient for the discretization of the wheel

dynamics equation (3.3). For the validation platform (see Section 3.4) and simulations,

the sampling time Ts = 10ms was chosen. The validation platform (see Section 3.4) is

also running with a sampling time of 10ms.

3.3.1 Force Estimation

The force estimation is based on wheel dynamics (see eq. (2.10)) and can be implemented

individually for each wheel. Euler’s method is used to discretize the dynamics to align

with the discrete nature of the UKF and RLS. The time-discrete system model used in

the estimation algorithm is:

ω[t+ 1] = ω[t] +
Ts · rw
J

Fx[t] +
Ts
J
τ [t]. (3.4)

The traction force Fx[t] is then defined as:

Fx[t] =
J

Ts · rw
κ[t]− 1

rw
τ [t], (3.5)

κ[t+ 1] = a κ[t] + (1− a) (ω[t]− ω[t− 1]) ≈ dω

dt
, (3.6)

a = e−ωcTs , (3.7)

where Ts is the sampling time and ωc is the filter crossover frequency. The variable κ

represents the filtered (first-order low pass) difference in wheel angular velocity ω. To
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compute the force from this equation, the required parameters (J , rw) and the applied

traction torque τ = τ t − τ res are assumed to be known. The resistance torque τ res effects

(rolling resistance, friction, other losses) are assumed to be included in the torque τ . A

similar force estimation algorithm (in continuous time) was previously introduced and

validated in [3].

3.3.2 RLS-based Estimation Algorithm

The core idea of the RLS-based estimator is to approximate the derivative of the Pacejka

slip curve (see eq. (2.16)) with a first-order polynomial (Taylor expansion) near the current

slip ratio value. The slope of this polynomial is then interpreted as the derivative of the slip

curve. Next, the slip curve is approximated by a quadratic function, where the coefficients

of the quadratic polynomial are obtained through constrained least squares minimization.

The maximum of this quadratic approximation is used to estimate the optimal slip ratio

λopt. The slip curve slope is typically high in the linear region, decreases to zero in the

region of maximum traction slip ratio λopt, and becomes negative beyond λopt.

The RLS algorithm computes the parameters of the affine function approximation

(first-order polynomial), which is useful for further processing. A similar technical ap-

proach was used in [65], where a linear function (without a constant term) was used in

the small slip ratio region (linear region) to estimate the maximum friction coefficient.

The first-order polynomial approximation parameters are estimated using the RLS

algorithm following equation

µ (λ) =
Fx

Fz

(λ (t) , . . . ) ≈ a1 (t) · λ (t) + a0 (t) + e (t) , (3.8)

where Fx is the traction force, Fz is the wheel normal loading, λ is the slip ratio, e

is measurement noise, and a = [a1, a0]
T are parameters to be estimated by the RLS

algorithm. The wheel slip ratio λ and the longitudinal traction force Fx are assumed

to be estimated or measured (see Section 3.3.1). Optionally, F i
z – i-th wheel normal

force/loading – can be estimated or measured (see Section 3.3.1). If it is not available,

set it to 1, as mentioned in Section 3.3 (as was done for the validation platform – see

Section 3.4).

For the RLS parameter estimation, eq. (3.8) can be rewritten as:

µ (t) = zT (t) a (t) + e (t) , (3.9)

where zT (t) = [λ (t) , 1] is the measurement data (regression vector). The algorithm is

then executed iteratively, where each loop consists of:
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a. Regression vector – Measure and build regression vector z (t) for the current time

step.

b. Prediction error – Compute the prediction error e (t) from the previous time step

parameter estimates as follows:

e (t) =
Fx

Fz

(t)− zT (t) a (t− 1) . (3.10)

c. Update gain – Calculate the update gain as follows:

K (t) =
P (t− 1) z (t)

1 + zT (t)P (t− 1) z (t)
, (3.11)

and reduce the covariance matrix according to:

P̂ (t) = P (t− 1)−K (t) zT (t)P (t− 1) . (3.12)

d. Forgetting – Exponential forgetting was selected for use in this thesis, but it can be

easily extended to other forms of forgetting (e.g., restricted exponential forgetting):

P (t) =
1

φ
P̂ (t) , φ ∈ (0, 1) . (3.13)

e. Parameter update – Update the parameter estimate as follows:

a (t) = a (t− 1) +K (t) e (t) . (3.14)

The RLS algorithm itself is computationally efficient and suitable for embedded applica-

tions. Numerically stable methods are recommended for embedded targets. For instance,

the lower diagonal (LD) factorization with LD factor updates using dyadic reduction for

restricted exponential forgetting (see [69]) is a stable and numerically efficient algorithm

with high potential for embedded applications.

RLS-based λopt Estimation

The objective of the λopt estimator is to determine the current λ̂opt (t) estimate based on

the parameters a (t). By understanding the slip curve slope a1 for a given λ, one can

estimate λ̂opt as described in Algorithm 1.

Updates to the λ̂opt estimate occur only when the absolute slip ratio is non-zero (no

updates are made while the vehicle is coasting) and when the vehicle is moving in a
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straight line or nearly so (minimizing the influence of the wheel slip angle α on the slip

curve). This threshold is labeled as λcoast in Algorithm 1.

Because the slip curve is symmetric for both positive and negative slip ratios, we

describe only the positive slip ratio region for simplicity. Extending to the negative slip

ratio region is straightforward. The slip curve is approximated with a quadratic function

q (λ):

q (λ) = b2λ
2 + b1λ+ b0. (3.15)

The function q is concave (not convex) if and only if b2 is negative. Thus, b2 must be

negative to reflect the concave nature of the slip curve (see Fig. 3.2). The maximum of

this quadratic approximation q is used as the current time step’s λ̄opt estimate, determined

by setting the derivative to zero:

∂µi

∂λ
=
∂q

∂λ
= 2b2λ+ b1

!
= 0, (3.16)

λ̄opt = −
b1
2b2

(3.17)

The coefficients bi for the quadratic slip curve approximation are calculated using a

constrained linear least squares problem, minimizing the differences between the deriva-

tives of the linear (parameters ai) and quadratic (parameters bi) approximations:

min
b1,b2

1

2

∥∥∥∥∂q∂λ − a1
∥∥∥∥2
2

(3.18)

s.t. b2 < 0 (3.19)

− b1
2b2

< λ̂ub (3.20)

− b1
2b2

> λ̂lb, (3.21)

where λ̂ub and λ̂lb are upper and lower bounds on the λ̄opt estimate, for example, λ̂lb =

0.05 and λ̂ub = 0.5. A history of recent slip curve slope values a1 and corresponding slip

ratios λ are used for estimating the bi coefficients, e.g., the last 50 samples corresponding

to approximately 500 ms. This means only the data from the last 500 ms is used for the

λopt estimation, which corresponds to approximately 7 m of road surface at 50 km/h.

The final λ̂opt[t] estimate is filtered as follows:

λ̂opt[t] = cf λ̂opt[t− 1] + (1− cf ) λ̄opt, (3.22)
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where cf is the filtering constant. The algorithm for estimating the optimal slip ratio

λ̂opt is detailed in Algorithm 1.

Algorithm 1: RLS-based λopt estimation

Output: λ̂opt[t]

Input: a1, λ, λ̂opt[t− 1], α

Parameters: [cf , λ̂ub, λ̂lb, λcoast] ∈ (0, 1)
if |λ| > λcoast and |α| ≈ 0 then

[b1, b2]← lsqlin(a1, λ, λ̂ub, λ̂lb)
// lsqlin is defined in Equations (3.18) to (3.21)

λ̄opt = − b1
2b2

λ̂opt[t] = cf λ̂opt[t− 1] + (1− cf ) λ̄opt
else

λ̂opt[t] = λ̂opt[t− 1]

3.3.3 UKF-based Estimation Algorithm

The UKF-based estimator is based on the wheel dynamics equation (3.3). Inputs to the

estimator include the longitudinal traction force Fx, which can be measured or estimated

as described in Section 3.3.1, the wheel normal force Fz, wheel torque τ , and wheel slip

ratio λ. The estimator’s state vector, containing the wheel’s angular velocity, is expanded

with the Pacejka magic formula parameters (see (2.16)). This state vector includes states

xi (i = 2, 3) representing the Pacejka magic formula parameters B and D, as elaborated

later in this section.

The decision to use only two Pacejka magic formula parameters is based on the fact

that the other parameters do not vary significantly (the E parameter) and do not signif-

icantly influence the slip curve shape (see [70]), thereby simplifying the UKF filter com-

plexity. This approach has been validated through simulations, with results presented in

Section 3.5.2.

These parameter states have constant zero dynamics, similar to the Schmidt-Kalman

algorithm (see [71]). The UKF model is described as follows:

f (x[t], τi[t]) =


Ts
J

(τi[t] + rwi
· Fx (x[t])) + x1[t]

min (max (x2[t], Bmin) , Bmax)

min (max (x3[t], Dmin) , Dmax)

 , (3.23a)

g (x[t]) =

(
x1[t]

Fx (x[t], Fz[t])

)
(3.23b)

Fx (x, λ) = Fzx3 sin (C arctan (x2λ− E (x2λ− arctan (x2λ)))) , (3.23c)
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where x[t+ 1] = f (x[t], τi[t]), y[t] = g (x[t]), λ is the longitudinal slip ratio, Ts is the

sampling time, Fx is the traction force, and Fz is the wheel normal force. The state x1

corresponds to the wheel angular speed, and the states xi (i = 2, 3) relate to the Pacejka

magic formula, as described above. These coefficients are bounded within a reasonable

range using the min and max functions. The designer should determine the min and

max bounds. The B parameter (state x2) according to [70] ranges from 4 to 12, so the

bounds could be set from 3 to 14. The µiD (state x3) parameter product ranges from

0.1 to 1. The UKF algorithm benefits from being a derivative-free method, which means

it can handle almost any nonlinearity easily without needing to calculate the derivatives

of the model functions (Jacobian matrices). Therefore, the use of max functions is not

deteriorating the UKF performance (in contrast to other Kalman Filter algorithms like

Extended Kalman Filter).

To use the estimation algorithm, the following UKF input signals must be measured

or estimated:

• vix - i-th wheel’s pivot point longitudinal speed (in wheel CS) needed for the slip

ratio λi computation (see eq. (2.15)) - assumed measured/estimated.

• τi - i-th wheel’s traction torque (input of the system) - assumed measured.

• ωi - i-th wheel’s angular speed - assumed measured.

• F i
x - traction force generated by i-th wheel - estimated or measured (see Sec-

tion 3.3.1).

• Optionally, F i
z - i-th wheel normal force/loading - estimated or measured (see Sec-

tion 3.3.1). If not available, it is advised to set it to 1, as explained in Section 3.3

(as was done for the validation platform – see Section 3.4). In this case, the state

x3 has a different meaning, representing the maximum force ϕi = F i
x,max = F i

zµiD
i.

This approximation introduces another limit on the operating conditions of the es-

timator. Fz should be approximately constant, which means that either braking or

acceleration conditions must be selected to neglect the dynamic load transfer effects.

Updates to the estimator are driven by information about the system contained in the

innovation ϵ (t) = y (t)−g (x̂ (t)). The sensitivity of the innovation to the parameters was

implemented similarly to [68]. This approach computes the sensitivity of innovation (es-

timation error) on the parameters and marks all the measurements where the parameter

sensitivity is low. Low-sensitivity measurements are not used in the UKF measurement

update phase for the estimation of the Pacejka magic formula parameters. The measure-

ment update phase is also conditioned by coasting (|λ| > λcoast) and straight rides (wheel
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slip angle α effect is small). The update is not performed for zero (and almost zero)

torque τ applied to the wheel and significant steering wheel angle δ.

UKF-based λopt Estimation

From the estimated coefficients, the slip curve is reconstructed following the Pacejka

magic formula (2.16). The maximum value of the curve is determined using an optimiza-

tion method based on the SQP algorithm that seeks the maximum value of the Fx (λ)

manipulating λ. For safety reasons, the optimization is bounded to seek only within a

defined region, e.g., λ̂opt ∈ (0.05, 0.5) as the true λopt should be located within these

boundaries.

3.4 Experimental Platform for Real-World Data Col-

lection

Real-world data, including both camera and vehicle traction system data, were collected

using an experimental subscale platform depicted in Fig. 3.6. For this purpose, a 1:5 scale

LOSI buggy Radio Controlled car was modified. The vehicle’s dimensions are: length 844

mm, width 501 mm, height 308 mm, with a ground clearance of 69 mm and a wheelbase

of 552 mm. The bare platform, excluding data acquisition equipment, weighs 13.8 kg,

including traction batteries.

The total weight of the platform is approximately 20 kg, and it can achieve a maximum

speed of 70 km/h. This setup is ideal for proof-of-concept testing due to its simplicity and

ease of use. Compared to full-scale vehicles, this platform reduces test overhead, team

workload, and testing time. Moreover, it does not require special test tracks and offers

other advantages. However, it presents some challenges, such as limited space for sensors

and actuators.

The entire platform is equipped with four Electronic Control Units (ECUs) that handle

vehicle motion control, camera and vehicle data acquisition, and essential safety features.

The primary ECU hardware is an Intel NUC7i7BNK mini PC running Matlab & Simulink.

Additionally, a Raspberry Pi 4, an Arduino Nano, and STM32 Nucleo (STM32L432 )

microcontrollers manage the traction control system, data acquisition, and safety func-

tionalities. The platform operates at a sampling rate of 100 Hz.

Actuators

The model is powered by a central BLDC e-motor with Li-Po batteries, configurable for

either 4WD or rear 2WD. For this study, rear 2WD was used to measure vx from the
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Figure 3.6: RC platform used for validation of the estimators.

Figure 3.7: RC platform architecture used for validation of the estimators.
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front wheels’ speed. The model features independently actuated steering for each wheel,

utilizing four servos. All actuators are remotely controlled by the human operator of the

subscale platform.

Sensors

Each wheel is equipped with a speed sensor implemented using a Hall-effect sensor and

magnetic markers distributed around the wheel sensor disk. The BLDC motor’s current

is measured in two phases (the third is calculated) to compute motor torque using the

motor torque constant kp[Nm/A], where τ = kp · i. An ideal operation of the differential

is assumed, splitting torques equally between the rear wheels. The vehicle also includes

a GPS & IMU unit for location measurements, and surface images are captured with a

ZED stereo camera, using one camera of the rig.

Accurate vehicle translation speed measurements, required for the slip ratio in the

Pacejka magic formula (see (2.16)), are achieved by calculating vx = ω1+ω2

2
· r, where ω1

and ω2 are the nondriven front wheels’ speeds, and r is the wheel radius. The normal

force Fz is set to 1 as it is neither measured nor estimated on this platform.

The necessary signals for the estimators are obtained in this manner. The resistance

torque τres is approximated as a function of the wheel speed τres (ω). This resistance

torque is subtracted from the measured motor torque to determine the net torque acting

on the wheel.

The RC subscale platform used for validation is shown in Fig. 3.6 and the component

block diagram is illustrated in Fig. 3.7.

The friction torque of the wheels was identified as a function of wheel angular speed

τdrag = τdrag (ω). Parameters of the wheel dynamics equation were also identified from

dynamic responses.

3.5 Simulation and Experimental Validation

This section presents the simulation and real-world experimental validation of the pro-

posed estimation schemes. Initially, the simulation results for the force estimator are

shown. Subsequently, the integrated RLS-based and UKF-based estimators are validated

through simulations (using the model described in Section 3.2) and real-world experiments

using the subscale platform discussed in Section 3.4.
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Figure 3.8: Comparison of estimated and true traction forces with torque, speed, and slip
ratio at the wheel. Simulations using the nonlinear model (see Section 3.2).
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Figure 3.9: Vehicle body variables during the force estimation experiment. Simulations
using the nonlinear twin-track model.

3.5.1 Traction Force Estimator - Simulation Results

The traction force estimation algorithm was validated using simulations with the high-

fidelity nonlinear twin-track model described in Section 3.2. A comparison of the esti-

mated and true values is shown in Fig. 3.8 (the vehicle body signals of the experiment

are presented in Fig. 3.9). The middle plot of Fig. 3.8 displays the added measurement

noise, which also affects the force estimation. Noise was introduced to the simulation

model output to produce more realistic data. The overall performance appears satisfac-

tory. Validation of the force estimator on the experimental platform is not feasible due

to the absence of a force sensor for validation. However, the approach has been validated

in real-world experiments by the authors of [3].
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B C D E t
Original Pacejka coefficients 7 2.5 1 1 t < 8.5
Modified Pacejka coefficients 3 2.3 0.7 1 t > 8.5

Table 3.1: Pacejka magic formula parameters for simulation experiment shown in Fig-
ures 3.10 to 3.12.

3.5.2 RLS and UKF Estimators - Simulations

This section presents a selected simulation experiment. Initially, the starting values for

both RLS- and UKF-based estimators are set to an initial value, which is typically inac-

curate. This setup demonstrates the convergence of the initial value. Following this idea,

the slip curve changes abruptly, simulating a surface change at time 8.5s. The values

of the Pacejka magic formula parameters are listed in Table 3.1. A comparison of the

estimated and true λopt for both estimators is shown in Fig. 3.10.

Two plots are provided: the first shows the convergence of the initial value for both

the RLS and UKF estimators’ λ̂opt estimate and the estimators’ response to the slip

curve change. The second plot illustrates the ∆Fx error resulting from the incorrect λopt

estimate. The error ∆Fx is calculated as:

∆Fx = |Fx (λopt)− Fx

(
λ̂opt

)
|, (3.24)

where Fx (λ) represents the true traction force with the true Pacejka simulation parame-

ters. The λopt value denotes the true simulation optimal slip ratio, while λ̂opt is the esti-

mated optimal slip ratio. An illustration of the maximum traction force error is shown in

Fig. 3.5. The evaluated traction force error is displayed in the bottom plot of Fig. 3.10.

The comparison indicates that the UKF estimator is noisier, whereas the RLS estimator

is less noisy but exhibits slower convergence.

The values of the Pacejka coefficients are not as intuitive as the λ̂opt estimates. To

compare the UKF estimated slip curve shape with the true one, a measure of slip curve

error e (t) is introduced as follows:

e
(
F̂x (λ) , Fx (λ) , λmax, λmin

)
=

∫ λmax

λmin

|Fx (ξ)− F̂x (ξ) |dξ, (3.25)

where Fx is defined via the Pacejka magic formula with true simulation parameters and

F̂x is the same formula but with estimated parameters. The measure (3.25) integrates the

force estimation error for a range of the slip curve between λmin = −0.3 and λmax = 0.3.

The normalized error e (t) is shown in the top plots of Figures 3.11 and 3.12. The bottom

plots of Figures 3.11 and 3.12 show the convergence of the slip curve estimates and the

true slip curves. The estimation convergence speed is illustrated in Fig. 3.11, while the



CHAPTER 3. TIRE-TO-ROAD INTERFACE ESTIMATION 65

0 5 10 15

Time [s]

0.1

0.15

0.2

s
lip

 r
a
ti
o
 [
-]

True 
opt

RLS 
opt

UKF 
opt

0 5 10 15

Time [s]

0

200

400

 F
x
 [
N

]

RLS max. F
x
 estimation error

UKF max. F
x
 estimation error

Figure 3.10: Estimation performance comparison of the RLS- and UKF-based estimators.
Estimated values are compared with true values. The experiment was performed on the
nonlinear model in the simulations (see Section 3.2).
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Figure 3.12: Pacejka slip curve estimation error for the slip curve change experiment
at time 8.5s. The top figure presents the slip curve estimation error with the slip ratio.
Sample slip curves and corresponding slip curve estimates are plotted in the second figure.

abrupt change in the slip curve representing the surface change is depicted in Fig. 3.12. It

is evident that the estimation error decreases significantly once the slip ratio rises above

a certain level. This behavior is expected because without system dynamics excitation,

no information about the slip curve is available in the data. This theoretical limitation

affects all dynamics-based estimators. Consequently, vehicle coasting does not provide

any information, and data from coasting intervals are excluded from the update phase,

as proposed in Section 3.3.

Optimal Slip Ratio Estimation Error Effect

To illustrate the effect of optimal slip ratio estimation error, a simple use case is presented.

Assume a vehicle with a slip curve shape representing a slippery surface, as shown in

Section 3.5.2 at the beginning of the scenario (refer to Fig. 3.12). The true optimal slip

ratio value for the considered case is λopt = 0.09 as shown in Fig. 3.10.

Assume the vehicle travels at an initial speed of v0 = 50 km/h and can theoretically

perfectly control the wheel slip ratio to be equal to the optimal slip ratio estimate, i.e., λ =

λ̂opt. Neglecting many other effects, the vehicle braking distance x is roughly determined
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Figure 3.13: The theoretical braking distance increase as a function of the estimated λ̂opt
for the initial slip curve, as described in Section 3.5.2. The braking distance increase is
shown for three initial vehicle speeds v0 = 50, 90, 130 km/h. See Section 3.5.2 for details.

by Newton’s second law as follows:

Fx = max, (3.26)

t =
v0
ax
, (3.27)

x =
1

2
axt

2, (3.28)

where the vehicle mass is m = 1300 kg. Assuming the constant λ̂opt estimate as proposed

in state-of-the-art studies focusing on traction control [3, 36, 41, 50], e.g., λ̂opt = 0.15

as in [36], one wheel generates Fw
x

(
λ̂opt

)
= 707 N, resulting in a vehicle braking force

Fx = 707 · 4 = 2, 828 N, and thus a braking distance x1 ≈ 44 m. However, the true

λopt = 0.09 generates a wheel traction force Fw
x

(
λ̂opt

)
= 765 N, resulting in a vehicle

braking force Fx = 765 · 4 = 3, 060 N, which results in a braking distance x2 ≈ 41 m.

Perfect knowledge of the true λopt reduces the braking distance theoretically by 3 m,

which is a 7% reduction in braking distance. The theoretical braking distance increase

as a function of the estimated λ̂opt is shown in Fig. 3.13 for three initial vehicle speeds

v0 = 50, 90, 130 km/h.
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3.5.3 Experimental Validation - Real World Experiments

Three test rides were conducted, each on a different surface: tarmac, gravel, and snow.

All rides were performed using the platform described in Section 3.4 for both nondriven

wheels. A wheel is selected, and the results are presented for clarity, as the results do not

significantly differ between wheels. Time ranges with no update phase of the UKF, such

as coasting and wheel side slips, are clipped from the data because only constant estimates

are observable. Unfortunately, the platform measurements have high measurement noise

for the slip ratio, as seen in Fig. 3.14. Subsequently, as the entire product ϕ is estimated,

the bounds for UKF x3 should be set accordingly. For the experimental platform (see

Section 3.4), a range of 0.3 to 10 was used.

The measurement noise is mainly caused by wheel rotation velocity measurement noise

and low traveling speeds. Once higher speeds (above 5 m/s) are achieved, the noise will

be much less significant. Therefore, the UKF filter was tuned robustly, resulting in longer

convergence times. However, it has been shown that both estimators work even with such

noisy data. The noise level in a full-scale vehicle is expected to be lower than that in the

validation platform, where the raw slip ratio measurement is employed.

A comparison of applied torques can be seen in Fig. 3.14. The separation of the three

surfaces is already slightly visible in this comparison, but it is not as clear as in Fig. 3.15.

Tarmac shows the highest torques, while gravel and snow exhibit medium to low torques

with similar slip ratio values. The measured motor torque dependence on the measured

slip ratio is shown in the figure. The mean torque for a particular slip ratio and surface

type is also shown.

The λ̂opt estimate for both UKF-based and RLS-based estimators is shown in Fig.

3.16 for a selected part of the tarmac surface ride. Both estimators have approximately

the same estimate of the optimal slip ratio λopt.

The actual Pacejka slip curve with the measured slip ratio λi data and the correspond-

ing force estimates are shown in Fig. 3.17 for the UKF-based estimator. The estimation

of both parameters with UKF (B and ϕ) is shown in Fig. 3.18. These slip curves are

shown together in Fig. 3.15 for better comparison. Finally, the maximum slip ratio λ̂opt

estimate comparison for the three surfaces is presented in Fig. 3.19. The tuning of the

UKF-based estimator is shown in Table 3.2, and that of the RLS-based one is in Table 3.3.

As seen in Fig. 3.19, both estimators approximately match for the tarmac and snow cases

after initial convergence. It was demonstrated that despite the different initial conditions

of the RLS- and UKF-based estimators, they converge to the same slip ratio λopt value.

This supports the applicability of the RLS- and UKF-based estimators to real full-scale

vehicles. The gravel optimal slip ratio λopt diverges the most among the three surface

types. This discrepancy could stem from multiple sources, but the most probable cause
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Figure 3.14: Comparison of traction motor torque and slip ratio for the first driven wheel.
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described in Section 3.4.
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Figure 3.17: Measured data with the corresponding force estimate (see Section 3.3.1) and
the UKF estimated slip curve (see Section 3.3.3). Test rides were performed using the
experimental platform described in Section 3.4.
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Test rides were performed using the experimental platform described in Section 3.4.
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is the noise in the slip ratio λ measurements (see Fig. 3.14). The noise disrupts the RLS

slip curve slope measurement, affecting the optimal slip ratio λopt estimation. Due to the

relatively slow vehicle speed in all experiments (up to 10m/s with mean velocity less than

5m/s), the velocity measurement noise significantly influences the slip ratio measurement

(see Fig. 3.14). Assuming a constant vehicle velocity/wheel speed noise level, the signal-

to-noise ratio is high for low traveling speeds, which propagates to high slip ratio noise

(see (2.15)). It is expected that the slip ratio measurement noise will be less significant

for full-scale vehicle applications, where typically higher traveling speeds are assumed;

hence, the estimators’ performance is anticipated to improve.

Experiment Q R
Real world diag([0.001, 0.1, 0.1]) diag([1, 1])
Simulation diag([0.001, 0.09, 0.08]) diag([0.1, 8000])

Table 3.2: UKF-based estimator matrices tuning.

Experiment cf λ̂ub λ̂lb λcoast φ
Real world 0.999 0.41 0.04 0.03 0.75
Simulation 0.992 0.3 0.04 0.03 0.75

Table 3.3: RLS-based estimator parameters tuning.

3.6 Experimental results of usage in the NN predic-

tor

The UKF-based estimator intrinsically estimates the product of the Pacejka parameter

D and the friction coefficient µi, represented as Dµi, or the maximum traction force

(interpreted as surface friction) ϕ = F i
zµiD

i, as part of its estimation process. For the

experimental subscale platform, ϕ is estimated since Fz is neither measured nor estimated

on the platform (refer to Section 3.5.3 and Section 3.4 for further details). This estimate

serves as the ground truth for training a visual predictor. The visual predictor utilizes a

Convolutional Neural Network (CNN) to forecast surface slipperiness ahead of the vehicle.

The sections that follow elaborate on the visual predictor, its training, and its evaluation.

The methodology for the visual predictor, as outlined here, was published in [18]. The

work presented in [18] is multidisciplinary. My specific contribution was preparing the

dataset, i.e., collection of the camera data and their labels using the UKF-based estimator

used for neural network training and validation. The actual training and validation of

the neural network were conducted by the other authors of the paper. Their results are

presented in this Section 3.6 for the sake of completeness.
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Figure 3.20: Visual predictor overview. An input image from the vehicle camera is rectified
and cropped to capture a 1.5m × 1.5m rectangular area in front of the vehicle (highlighted
in yellow). The image is then input to a CNN to predict friction at a measurement distance
of d, set to 0.75m (marked by the red horizontal line).

3.6.1 Visual Predictor Training

The method described in [18] focuses on training a visual-only predictor using a CNN.

This network processes images captured by a front-facing camera to estimate the corre-

sponding surface friction ϕ. To train the CNN, data is collected by driving and recording

both the camera feed and the vehicle’s response signals. The training images are auto-

matically labeled by correlating them with the surface friction estimates ϕ obtained using

the method outlined in Section 3.3.

3.6.2 Image Labeling

An overview of the visual predictor process is illustrated in Fig. 3.20. Initially, a raw image

from a camera is orthographically rectified to a bird’s-eye view. Homography mapping

transforms the raw image of a scene rectangle on the ground plane in front of the vehicle

into a rectified image, ensuring the alignment of the rectangle’s corners with the rectified

image corners. This rectified image is then input into a CNN.

For training the CNN, images need appropriate labeling. To label an image captured

at time t, the corresponding surface friction ϕ (t) is identified. A fixed measurement

distance d in the middle of the scene rectangle is selected for all experiments. The time t

when the vehicle travels over the measurement distance d is calculated using the vehicle

velocity as t = d/v (t), assuming a straight vehicle trajectory.

The optimal size of the input image for the CNN was determined experimentally. A
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smaller region around the measurement distance provides insufficient context, while a

larger region captures irrelevant background details.

Rectification of images, while not essential, serves as an efficient way to normalize

images and potentially integrate different cameras with varying viewpoints without ne-

cessitating retraining of the CNN. In all experiments, the homography is estimated offline.

Deviations from the estimated mapping, due to camera tilt from mounting on the vehicle

body, are generally ignored since it does not introduce significant errors to the training

process.

3.6.3 Convolutional Neural Network

Following the aforementioned process, a labeled dataset {(I1, ϕ1) , . . . , (In, ϕn)} was com-

piled.

RESNET-50 [72] was employed as the backbone network. The input is the rectified

RGB image I resized to a 224 × 224 px receptive field. The network outputs a single

scalar, after applying ReLU, representing the estimated surface friction CNN (I; Θ) = ϕ̂.

The vector Θ encompasses all the network weights.

An L2-regression loss function L (Θ) =
∑(

ϕi − ϕ̂i

)2
was used to penalize differences

between the ground truth and predicted surface friction labels. Batch-normalization layers

were included, and network weights Θ were optimized using the ADAM optimizer [73].

Data augmentation techniques such as color jitter (adjustments in contrast, brightness,

and hue) and random horizontal flipping were employed. Small image rotations of ±4◦

were also applied, considering the importance of texture orientation for perceiving surface

friction. The training process converged after approximately 50 epochs, demonstrating the

network’s ability to learn the mapping from images to surface friction estimates effectively.

3.6.4 Experimental Platform Estimation Results

The estimation algorithm was experimentally validated using the platform described in

Section 3.4. The sampling time for the estimator matches the platform’s sampling rate of

10 ms.

Since lateral velocity is not measured or estimated on this platform, only straight

driving maneuvers were considered in the UKF’s measurement update phase, excluding

the wheel side slip angle. This simplification aids in measuring the wheel pivot point

velocity in the x direction, which is equated to the velocity measured by the nondriven

wheels (as detailed in Section 3.4).

The estimation algorithm was executed offline following the rides, but it is designed

for real-time application as follows from the nature of UKF filtering. Results from three
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Figure 3.21: Comparison of estimated friction for different surfaces using subscale platform
data.

experiments on different surfaces are presented in Fig. 3.21. The tested surfaces include

snow, gravel, and asphalt, with asphalt exhibiting the highest adhesion among the surfaces

tested. For each surface, two estimated values of x̂3 (for two driven wheels) are shown in

Fig. 3.21. The x̂3 corresponds to the friction ϕ. The maximum of the friction estimates

from both wheels was used as the surface label for training the neural network. The

segmentation of friction estimates for different surfaces is clearly visible in Fig. 3.21.

The estimation algorithm requires sufficient excitation of the vehicle dynamics to pro-

vide accurate estimates, as discussed in Section 3.3. To ensure reliable neural network

friction estimates that are unaffected by initial value convergence and poor dynamics ex-

citation, two runs of the UKF algorithm were executed. The second run initializes with

the average value from the last 30 seconds of the first run. This approach enhances results

for surfaces with piecewise constant parameters.

3.6.5 Dataset

Data was collected by driving on various surfaces, including acceleration and deceleration

phases, with the slip ratio typically ranging between [-0.4, 0.4]. During extreme maneu-

vers, the slip ratio reached values up to 0.9. Approximately 2.5 hours of synchronous

raw recordings from all vehicle sensors and control signals, including the camera, were

acquired. Test rides were conducted at 5 different locations, each featuring a variety of
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Figure 3.22: Distribution of surface friction ϕ in the acquired datasets. Samples sorted
from the lowest to highest friction.

MAE RMSE Corr P95 e0.5
0.36755 0.56746 0.9824 1.34325 78.17%

Table 3.4: Error statistics

surfaces such as dry/wet tarmac, snow, pavement, and gravel. Recordings were made on

different days and times to capture the effects of varying illumination conditions.

Both the friction estimation method for the subscale platform and the image labeling

process assume a straight vehicle trajectory. Consequently, data with significant devia-

tions from a straight path were excluded during post-processing.

Images were captured every 0.5 seconds to maintain a manageable dataset size with

sufficient diversity. The resulting dataset, which was automatically labeled, includes about

4,000 samples. This dataset was divided into disjoint subsets: 70% for training, 10% for

validation (to select the best training epoch), and 20% for testing. Location and temporal

metadata ensured no overlap between the training and test sets.

A sample of the dataset and the distribution of ground-truth friction labels is shown

in Fig. 3.22.

3.6.6 Evaluation and Results

The testing was conducted on an independent test split of the dataset. The results are

summarized in Table 3.4. The statistics include Mean Absolute Error (MAE), Root Mean

Square Error (RMSE), Correlation coefficient (Corr), Percentile-95 (P95) indicating the

prediction error lower or equal for 95% of test samples, and Error-0.5 (e0.5) showing the

percentage of samples with a prediction error lower than or equal to 0.5.
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Figure 3.23: Scatter plots for the proposed CNN visual prediction. Ideal predictions lie
on the red diagonal line. Correlation coefficients are shown in the title of the plots.

Figure 3.24: Cumulative histograms of absolute error.

In addition to the statistics, a scatter plot is presented in Fig. 3.23, visualizing the

correlation between the ground truth and the predicted surface friction labels. Fig. 3.24

shows the cumulative histograms of absolute errors, providing insight into the error dis-

tributions. Statistics P95 and e0.5 are easily seen in the plots. All statistics corroborate

the high accuracy of the visual prediction.

3.6.7 Friction Maps – Qualitative Results

The following experiment demonstrates that the trained model generalizes to a slightly

different problem: predicting a coarse map of surface friction.

The proposed CNN model was trained to predict the local surface friction in the center
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Figure 3.25: Color-coded surface friction maps calculated by the trained CNN executed
in a scanning window over the input image rectified to bird’s-eye view, colorized by the
estimated friction, and finally back-projected to the raw camera image.

of the given image, i.e., a single scalar for an image. The input to the CNN represents a

square of 1.5m × 1.5m in the scene. Therefore, a larger area of the surface seen by the

camera is scanned with the CNN evaluated at many locations. Specifically, the scanning

is done in the rectified bird’s-eye view, with partially overlapping images of 1.5m× 1.5m

windows fed to the CNN one by one. The outputs are stored, the center window locations

are colorized based on the surface friction, and finally back-projected to the raw camera

image.

Results are shown in Fig. 3.25. The boundary between surfaces of different frictions

is visible. This experiment is presented as a qualitative result since ground-truth data for

other locations than the measurement point (0.75m in front of the vehicle for an image)

are not available. The CNN was not trained for other locations, making it surprising that

it generalizes well for distant locations (up to 5 meters), where loss of resolution degrades

image quality. This experiment demonstrates the accuracy and spatial consistency of the

predictor.
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3.7 Summary

This chapter presents two novel approaches for estimating the optimal slip ratio λopt.

Both methods aim to solve the estimation problem of λopt efficiently. The estimators

were rigorously tested in simulations using a high-fidelity nonlinear twin-track model and

subsequently validated in real-world experiments across three different surface types using

a subscale validation platform.

The RLS-based estimator is noted for its simplicity and ease of implementation, mak-

ing it relatively straightforward to tune. In contrast, the UKF-based algorithm is more

sophisticated and complex, offering a higher level of advancement. Simulation results

demonstrated that both algorithms can estimate the optimal slip ratio λopt with remark-

able accuracy. The UKF-based estimator, however, exhibited a faster convergence rate

and higher precision in terms of estimation error. Despite this, the RLS algorithm proved

to be more robust regarding individual tuning parameters, as observed during the author’s

tuning experiences.

Real-world experiments corroborated the high accuracy of both algorithms in estimat-

ing the optimal slip ratio λopt.

Additionally, the UKF-based estimator naturally provides an estimate of surface fric-

tion ϕ, which was utilized to predict surface slipperiness ahead of the vehicle using camera

images and ResNet-based CNN [18].

The expectation is that both the RLS- and UKF-based estimators will perform even

better in full-scale vehicle applications. This anticipation is based on the availability

of more accurate sensors in full-scale vehicles, coupled with the fact that slip ratio λ

measurement noise is less significant at higher speeds. At higher velocities, the absolute

velocity measurement noise becomes less significant, improving the overall accuracy.

Given the easier implementation and robustness of the RLS-based estimator, its ap-

plication to full-scale vehicles might be more straightforward. However, the UKF-based

estimator’s superior accuracy makes it more suitable for applications requiring higher

precision in full-scale vehicles. Both algorithms demonstrate strong potential for deploy-

ment in real-time estimation of the optimal slip ratio λopt in full-scale vehicle applications.

This λopt estimation can be used to initialize or otherwise inform traction control systems,

thereby enhancing vehicle dynamics control performance.

It is important to note that both estimators are focused on longitudinal dynamics.

Therefore, they may exhibit reduced accuracy in the presence of lateral slip (αi ̸= 0).

Addressing this systematic inaccuracy remains a challenge for future research.

Overall, the proposed estimation algorithms represent significant advancements in ve-

hicle dynamics control, with practical applications in real-world scenarios. The successful

implementation and validation of these algorithms pave the way for improved traction
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control and vehicle stability, contributing to safer and more efficient vehicle operations.

Future work will focus on refining these estimators to handle lateral dynamics and further

enhance their robustness and accuracy in various driving conditions.



Chapter 4

Vehicle Trajectory Planning

Developing a fast online state trajectory (or path) planning algorithm for autonomous or

self-driving vehicles is a well-recognized challenge. Self-driving vehicles are complex sys-

tems that encompass numerous subtasks such as environment sensing, prediction, safety

features, and more.

Based on the sensed environment and the vehicle’s target state, the autonomous vehi-

cle makes decisions and executes them. Decision-making is a critical component of vehicle

autonomy, implemented through a trajectory/path planning algorithm embedded within

the navigation system’s middleware and vehicle dynamics controller. The primary objec-

tive of this decision-making module is to plan a safe, collision-free trajectory towards the

destination, considering factors like vehicle dynamics, static and dynamic obstacles, road

boundaries, and numerous other constraints. Given the variability of real-world scenar-

ios, the trajectory planning problem is inherently complex and often demands substantial

computational and memory resources.

Trajectory/path planning for vehicles can typically be divided into several stages.

The entire trip path planning, which considers the longest planning horizon (e.g., tens of

kilometers), primarily falls within the domain of navigation planning and is not covered in

this chapter. The output of such high-level planning might be a list of streets or general

directions. This chapter focuses on state trajectory planning for shorter horizons (a few

hundreds of meters at most), which directly feeds into the trajectory tracking controller.

It is important to note that trajectory tracking is outside the scope of this chapter.

Most traditional planning methods assume a binary feasibility for the computed tra-

jectory: feasible or not feasible (e.g., encountering an obstacle on the path). However,

complex rules for determining trajectory feasibility can sometimes lead to contradictions,

resulting in no feasible trajectory being planned. This limitation is addressed by the Min-

imum Violation Planning (MVP) framework [74], which introduces a continuous measure

of trajectory feasibility with respect to safety, economics, and other constraints. This

81
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makes MVP particularly interesting for this research, as it handles constraints (other

than model dynamics) as logical statements that are transformed into cost functions with

varying priorities.

The MVP framework guarantees a planned trajectory for every input scenario. For

instance, it can provide a solution for scenarios where traversing a restricted area (e.g.,

a grassy patch instead of a road) is necessary to reach the goal. Traditional planning

algorithms often fail in such scenarios. An example discussed in [75] involves an au-

tonomous vehicle needing to overtake a stationary vehicle to reach its destination, even

though overtaking is prohibited in that area. MVP always yields a trajectory, unlike many

conventional algorithms like Rapidly-exploring Random Tree (RRT) and its variants.

Numerous studies have proposed fast planning algorithms, such as motion primitives

in RRT [76, 77]. However, these methods lack MVP’s features, such as multi-level cost

function optimization and logical constraint handling, as provided by MVP [75].

The second algorithm examined in this chapter is Model Predictive Control (MPC),

part of the optimization-based state trajectory planning family. Originally developed

for process control, MPC has recently been applied to planning tasks [78, 79]. MPC is

designed for convex minimization problems, which is a restrictive assumption for self-

driving car trajectory planning, where many constraints create a non-convex space, such

as navigating around obstacles.

This chapter first presents modifications and comparisons of Model Predictive Control

(an optimization-based approach) and Minimum Violation Planning (a sampling-based

approach) to address dynamic state trajectory planning. Similar ideas have been proposed

in [80, 19].

Next, an integration of fast steering algorithms and the MVP framework is discussed,

as proposed in [20]. A comparison between the original RRT* used in the MVP framework

and the modified approach suggested in [20] is provided. This integration is crucial because

traditional algorithms mentioned in [75] are inadequate for more complex dynamic models

that consider additional factors beyond vehicle speed.

The MVP framework and the proposed modifications are evaluated using a selected

benchmark scenario to plan a vehicle state trajectory encompassing vehicle velocity,

north/east position, yaw, yaw rate, and battery state of charge.

MVP relies on sampling-based methods and can utilize various algorithms such as

RRT#, RRG, RRT*, and others [75]. These methods provide performance benefits from

the planned trajectory’s optimality perspective, with all mentioned methods being asymp-

totically optimal. However, a fast steering function is crucial for real-time applications,

especially when complex model dynamics are considered, necessitating dynamic state

connection and state trajectory computation (i.e., solving a boundary value problem).
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Minimum Violation Planning, introduced in [74] and extended in [75], serves as the

foundation for this chapter’s further study of MVP.

This chapter including the figures is based on my previously published work in [19, 20].

This chapter is organized as follows: First, the related work is reviewed. Next, the

simulation environment used for validating the trajectory planning algorithms is intro-

duced. Following this, the problem statement for minimum violation planning and model

predictive control trajectory planning is presented. Subsequently, simulation results are

compared and discussed. Finally, modifications to MVP that enhance calculation time

without significantly compromising performance are presented and evaluated in a selected

test scenario.

4.1 Related work

Path planning algorithms have their roots in the field of mobile robotics. This task is

generally computationally intensive and memory demanding, necessitating simplifications

in the mathematical models used. In robotics, vehicle dynamics are often considered less

critical, leading to plans that are typically constrained to kinematic models (see [81,

82, 83]). Over time, the trajectory planning community has incorporated full trajectory

planning, including differential equation constraints, to better suit autonomous driving

applications.

Trajectory planning algorithms can be broadly classified into three main categories:

sampling-based methods, search-based methods, and optimization-based methods. Below

is a brief overview of each category.

Sampling-based Methods

Sampling-based methods can be further divided into probabilistic and deterministic sam-

pling. Probabilistic methods include probabilistic roadmaps [84] and rapidly exploring

random trees (RRT) [85, 86, 87]. In [85], the authors introduced a closed-loop controller

for the vehicle model, allowing only the controller reference to be planned while simulating

the entire vehicle state trajectory. [86] proposed different biased sampling strategies for

generating the tree. A fast local steering algorithm based on half-car dynamics and RRT*

was introduced in [87], although this strategy compromises the optimality of the resulting

trajectory. In [88], the authors proposed RRT*, a variation of the RRT algorithm that

asymptotically converges to the optimal solution.

Minimum Violation Planning (MVP) was introduced in [74] and relies on sampling-

based methods. MVP employs RRT, RRT*, and RRG methods as mentioned in [75]. For

more comprehensive details on sampling-based methods, readers are referred to [89].
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Deterministic sampling-based methods are exemplified by control space sampling [90]

and state-space sampling [91, 92]. [90] utilized discrete control inputs over a specific time

to solve the initial value problem and compute the state. [91, 92] chose a goal state

from the reference path and solved boundary value problems using predefined curves

(polynomials) to derive a trajectory.

Optimization-based Methods

Optimization methods typically address trajectory planning problems by solving nonlinear

two-point boundary value problems using optimization techniques [93, 94, 95, 96]. These

methods often parameterize the trajectory/path using specific curve types, such as spirals

[94], polynomials [95, 96], or piecewise constant functions [97]. Optimization methods are

prevalent in control problems due to their fast convergence to local optima and high-

quality solutions. However, they are most effective with convex problems, as local solvers

are typically employed. Consequently, optimization can get stuck in local optima when

dealing with more complex non-convex problems.

Obstacle handling, in particular, leads to non-convex problems, necessitating heuristics

or good initial guesses to initialize the optimization process close to the global optimum,

e.g., [98] proposed cost-to-go heuristics to address this issue. Model Predictive Control

(MPC), studied in this chapter, falls under optimization-based methods.

Search-based Methods

Search-based methods utilize graph search algorithms such as A* [99] or Dijkstra [100].

These methods typically sample the configuration space uniformly and construct a di-

rected graph, which is then searched for a solution. While these methods perform well

for smaller problems, they suffer from the curse of dimensionality as the problem size

increases.

4.2 High-Fidelity Nonlinear Single-track Model and

Test Scenario

In this section, a high-fidelity nonlinear validation model and a specific test scenario

for validating both Model Predictive Control (MPC) and Minimum Violation Planning

(MVP) trajectory planning algorithms are introduced.
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Figure 4.1: High-fidelity single-track model.

4.2.1 Nonlinear High-Fidelity Single-Track Model

The single-track model functions as the nonlinear mathematical framework essential for

validating the proposed trajectory planning algorithms. This model, implemented in

Matlab & Simulink and illustrated in Fig. 4.1, comprises four principal components:

• Rigid body

• Battery

• Electric Motor Generator Unit (MGU)

• Wheel

Rigid Body

The dynamics of the rigid body are represented by the following differential equations

(refer to [2]):

β̇

v̇

ṙ

 =


1
mv 0 0

0 1
m 0

0 0 1
I


− sinβ cosβ 0

cosβ sinβ 0

0 0 1

+

 cos δ − sin δ 1 0

sin δ cos δ 0 1

lf sin δ lf cos δ 0 −lr



Fxf

Fyf

Fxr

Fyr

−
r

0

0

 ,

(4.1)

where β [−] denotes the vehicle sideslip angle, m [kg] represents the vehicle mass, v [m/s]

is the vehicle velocity, I [kg/m2] is the vehicle’s moment of inertia, r [rad/s] denotes the

vehicle yaw rate, and δ [rad] is the steering wheel angle. The variables lf [m] and lr [m]

denote the distances from the center of gravity to the front and rear wheels, respectively,
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while Fij [N] represents the traction forces, with i = x, y indicating the direction and

j = f, r specifying whether the force acts on the front or rear wheels.

The traction force Fij incorporates the traction force generated by the wheel, alongside

all drag and resistance effects, such as wheel friction, air drag, road grade, and rolling

resistance. The yaw angle ψ [rad], along with the vehicle’s east and north positions e [m]

and n [m], are modeled as follows:

ψ̇ = r, (4.2)

ė = v cos (ψ) , (4.3)

ṅ = v sin (ψ) . (4.4)

Wheel

The wheel model includes both wheel dynamics and the tire-to-road interface, described

by the Pacejka magic formula (refer to [28]) with the implementation of the friction ellipse

(Kamm’s circle) adopted from [34] (refer to Section 2.1.4 for more details). The wheel

dynamics are governed by:

Jω̇ = τ + τb − τres − Fxrwhl, (4.5)

where ω [rad/s] denotes the wheel angular speed, τ [Nm] represents the e-motor drive

torque, τb [Nm] indicates the mechanical brake torque, τres [Nm] encompasses all resistive

effects (friction, rolling resistance, etc.), J [kg/m2] signifies the wheel’s moment of inertia,

Fx [N] represents the traction force calculated via the Pacejka magic formula and friction

ellipse, and rwhl [m] denotes the wheel’s effective radius.

Battery

The battery is modeled as a 2 RC model (refer to [101]). Thermal dynamics are neglected

under the assumption of a battery thermal management system. The battery model

equations are:

v̇1 = −
1

R1C1

v1 +
1

C1

i, (4.6)

v̇2 = −
1

R2C2

v2 +
1

C2

i, (4.7)

˙SOC = − 100

3600C
i, (4.8)

i =
Ptrm

Vtrm
, (4.9)

Vtrm = Voc (SOC)− v1 − v2 −R0 (SOC) i, (4.10)
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where i [A] represents the battery current, R1, R2 [Ω] and C1, C2 [F] are the resistances

and capacitances of the RC circuits, respectively. Additionally, v1, v2 [V] denote the

voltages of the RC circuits, C [Ah] indicates the battery capacity, SOC [%] stands for

the state of charge, Ptrm [W] represents the battery terminal power (input to the battery

system), Vtrm [V] denotes the battery terminal voltage, Voc (SOC) [V] is the open circuit

voltage as a function of SOC, and R0 (SOC) [Ω] represents the internal resistance, also

as a function of SOC.

Motor Generator Unit

The Motor Generator Unit (MGU) is modeled with dynamics equations, assuming a rigid

connection to the wheels, which determine the revolutions fed to the MGU model:

τ̇int = −
1

tτ
(τint −min (max (τreq, τmin) , τmax)) , (4.11)

ω̇em = − 1

tω
(ωem − ωin) , (4.12)

τ = τintrω − Jemr2ω
(
− 1

tω
(ωem − ωin)

)
, (4.13)

Pem = τintωinrωη (τint, ωinrω) , (4.14)

where τ [Nm] is the MGU mechanical torque, τint [Nm] is the MGU internal torque, tτ [s]

is the torque time constant, τreq [s] is the requested mechanical torque, ωin [rad/s] is

the wheel angular speed, ωem [rad/s] is the MGU angular speed, tω [s] is the speed time

constant, rω [1] is the MGU to wheel gear ratio, Jem [kg/m2] is the MGU inertia, Pem [W]

is the MGU power consumed or regenerated, and η (τint, ωin) [1] is the MGU efficiency

map as a function of torque and MGU speed. The MGU speed state is used to filter

out the input speed that is assumed to be given by the wheel speed measurement, which

might be noisy.

4.2.2 Test Scenario for MVP and MPC Comparison

A scenario is selected to evaluate both the MVP and MPC approaches. This scenario

includes the initial state of the vehicle, the desired goal state, and various static and

dynamic obstacles. The primary objective is to reach the destination while minimizing the

state of charge (SOC) consumption and travel time, without colliding with any obstacles.

The scenario is illustrated in Fig. 4.2, showcasing both static obstacles (such as

buildings) and dynamic obstacles (like another moving vehicle).
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Figure 4.2: Validation scenario featuring static and dynamic obstacles.

4.3 Model used for planning

To streamline the computational demands for both MVP and MPC, the high-fidelity

single-track model detailed in Section 4.2.1 is simplified.

The dynamics of the Motor Generator Unit (MGU) are disregarded, treating the MGU

model as static, represented by:

τint = min (max (τreq, τmin) , τmax) , (4.15)

τ = τintrω, (4.16)

Pem = τintωinrωη (τint, ωinrω) . (4.17)

The battery dynamics are reduced to a single state variable:

˙SOC = − 100

3600C
i, (4.18)

i =
Ptrm

Vtrm
, (4.19)

Vtrm = Voc (SOC)−R0 (SOC) i, (4.20)

Both the lateral and longitudinal directions of the Pacejka magic formula are neglected,

simplifying the traction force calculation to:

Fwhl
x = min

(
Fmax,

τ + τb
rwhl

)
, (4.21)
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where Fwhl
x [N] is the traction force generated by the wheel and Fmax [N] represents the

wheel’s maximum traction force, incorporating saturation due to the tire-to-road interface.

The vehicle dynamics are also simplified as follows:

Fx = Fwhl
x cos (δ)− Fres, (4.22)

r =
1

k
vδ, (4.23)

v̇ =
Fx

m
, (4.24)

where k [m] represents the minimum turning radius constant, and Fres [N] encapsulates

all resistive forces such as air drag, road grade, and various frictions.

The vehicle position is modeled consistently with the high-fidelity model, as given by

Equations (4.2), (4.3), and (4.4).

In the simplified planning model, the manipulated variables include the MGU torque

τ , mechanical brake torque τb, and wheel steering angle δ.

4.4 Minimum violation planning (MVP)

The MVP algorithm, as detailed in [75], provides a structured approach to managing

logically defined safety and performance criteria. This framework allows for prioritiz-

ing various criteria, such as placing safety above economic considerations. One significant

advantage of MVP is its ability to consistently generate a trajectory, which can be asymp-

totically optimal depending on the steering function employed (see Section 4.7 and [75]

for further details). The dynamics model used within the MVP framework for trajectory

planning is described in Section 4.3.

Initially, the steer function is revisited. The authors in [75] do not provide a specific

implementation for this function. The primary requirement is that the steer function must

generate a trajectory from an initial state xi to a goal state xg (the function’s arguments).

This requirement naturally involves solving a Boundary Value Problem (BVP) due to the

nonlinear differential equations describing the model dynamics (see Section 4.3). However,

solving BVPs can be complex and computationally intensive. To simplify the calculations,

an approach using input sampling instead of state sampling in the MVP algorithm is

proposed. Later, in the section Section 4.7 the proposed MVP modifications are detailed

and discussed.
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MVP modifications

In certain cases, particularly at the start of the algorithm, the randomly sampled state

might not have a nearby node to which it can be connected. To address this, a modification

is introduced to reduce the unnecessary overhead when the sampled state cannot be

connected.

Rather than sampling a state that should be connected, a new control input value is

randomly sampled and applied to a random state from the structure of already connected

states. This modification helps reduce the number of iterations where the initially sampled

state remains unused due to the lack of a nearby node for connection. This significantly

reduces computational effort, especially during the initial phase of the algorithm.

Furthermore, only a set of input values (discretized input space) is considered. The

states are also discretized in space, allowing precomputation of trajectories for all combi-

nations of discretized input and state values. Instead of solving an Initial Value Problem

(IVP – integrating system inputs), a precomputed trajectory is selected from the set of

precomputed trajectories. Although these modifications lead to the loss of asymptotic

optimality (inherited from RRT*), they substantially reduce computational complexity

while experimental results indicate no significant performance degradation (see Section 4.9

for further details).

MVP Problem Statement

The MVP framework accommodates multiple cost functions with different priorities (see

[75]). For the validation scenario, the problem is stated as follows. The highest priority

cost function for MVP states is defined by an LTL logic statement: the vehicle must avoid

colliding with any obstacles.

Additionally, a lower-priority trajectory cost function that penalizes travel time and

maximizes the state of charge (SOC) of the battery is defined as:

JMVP (SOC, t) = −wSOCSOC + wtt, (4.25)

where w [−] are the penalizing weights, and t [s] is the travel time. The MVP cost

functions, prioritized by order (highest priority first), are:

• Collision avoidance cost function.

• Time minimization and SOC maximization cost function – JMVP (SOC, t).
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Figure 4.3: MPC cost-to-go heuristics evaluation for the validation scenario.

4.5 Model predictive control (MPC)

MPC is an optimization-based algorithm widely known in the control field [102]. How-

ever, most MPC solvers require a convex model, as discussed in Section 4.1. There are

various approaches for addressing non-convex problems, with mixed integer programming

being notable. Nevertheless, these approaches are computationally intensive and are often

restricted to simpler problems.

In the validation scenario, non-convexity was managed using a heuristic approach

with the cost-to-go cg (xs, xg) (see [98]), where the Euclidean distance to the goal state

was chosen as:

cg (xs, xg) = ||xs − xg||2, (4.26)

where xs represents the initial state and xg the goal state.

The goal state is not always directly visible from the current state, necessitating the

construction of a tree that encompasses all possible visible paths, as illustrated in Fig.

4.3. The trajectory with the smallest Euclidean distance is selected, and state constraints

are constructed as shown in Fig. 4.4. These constraints are introduced as soft constraints

(with slack variables) into the MPC cost function. Given that the system (see Section 4.3)

and the resulting optimization problem are nonlinear, a nonlinear MPC is employed.

The cost function is then presented. Unlike in MVP, it is not possible to directly use

logically stated constraints in MPC, so the constraints were reformulated to fit the MPC

framework. A penalty on the distance to the goal is introduced to minimize arrival time,

as direct time penalization is not feasible using a fixed prediction horizon MPC (with

a time-domain-based design model). Additionally, penalties for control input increments

and SOC state maximization are included. The overall MPC cost function to be minimized
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Figure 4.4: MPC constraints calculation based on the cost-to-go heuristics.

is:

JMPC = −wSOCSOC + wdstcg (x0, xcg) + w∆∆u
2, (4.27)

where w are the penalizing weights, xcg is the current goal of the MPC, ∆u are the input

increments (motor torque, mechanical brake torque), and other symbols are as previously

defined. The prediction and control horizon of the MPC is 3 seconds with a sampling

time of 0.1 seconds. The current goal xcg is set so that the MPC can reach it within the

prediction horizon only when applying full traction torque (see Fig. 4.4). The xcg lies on

the path derived from the cost-to-go (see Fig. 4.3).

4.6 Comparison results of MVP and MPC

A comparison of the MPC and MVP approaches was conducted using the simulation

scenario outlined in Section 4.2.2. This simulation utilized the high-fidelity nonlinear

single-track model detailed in Section 4.2.1 in a closed-loop format. The trajectory was

replanned iteratively, with the model being fed the manipulated variables of the planned

trajectory, and no trajectory tracking controller was assumed that could enhance trajec-

tory tracking.

Initially, a single step of trajectory planning is illustrated in Fig. 4.5. The MVP

planning was halted after 2000 nodes were connected and evaluated, from which the

optimal trajectory was selected (red path). The plan was computed for all the states

considered (vehicle yaw ψ, yaw rate r, vehicle east and north positions e and n, velocity

v, battery state of charge SOC), but for better readability, only the east and north

coordinates are displayed to clearly observe the performance of both algorithms.
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Figure 4.5: Planned trajectory using the MVP approach for the entire scenario. The
moving obstacle is omitted for clarity.

Subsequently, the results of the closed-loop simulation are compared. The comparison

of the east and north positions is shown in Fig. 4.6, where both planning algorithms

reached approximately the same final position. The comparison of other selected inputs

and states is displayed in Fig. 4.7. The MVP approach provides a slightly better final

SOC, while the arrival time is roughly 1 second longer compared to the MPC.

Differences between both algorithms are anticipated due to the variations in their cost

functions and structures. MPC incorporates a single cost function that must encompass

all constraints, potentially leading to conflicting terms, such as collision avoidance and

minimization of arrival time. Conversely, the MVP approach addresses this issue by

prioritizing safety constraints (e.g., collision avoidance) first. Once safety is ensured, the

MVP shifts focus to minimizing arrival time and optimizing SOC.
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Figure 4.6: Comparison of vehicle paths in feedback loop simulation for both MPC and
MVP algorithms in the validation scenario.
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Figure 4.7: Comparison of other selected states and manipulated variables for MPC and
MVP algorithms in feedback simulation of the validation scenario.
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4.7 Modifications of MVP algorithm

This section will analyze the computational complexity of the MVP algorithm and sys-

tematically introduce the modifications mentioned earlier in Section 4.4. MVP is an

iterative algorithm that outputs a trajectory typically as a sequence of discrete-time in-

puts and continuous-time dynamic states (since a continuous-time model is used). The

steer function implementation can vary, with inputs being either continuous or discrete,

as in multiple shooting or single shooting methods.

Trajectories are created by sampling states from the state space, forming a tree with

trajectories that define the connections between tree nodes, known as the weighted Kripke

structure. The primary requirement for connecting states is to adhere to trajectory dy-

namics (model equations) and input ranges, without considering other constraints at

this stage. The state or trajectory itself does not need to be on a feasible path (e.g.,

collision-free), but states in constrained areas are penalized heavily. This feature of MVP

is advantageous as it provides trajectories for all inputs and can handle scenarios where

the trajectory is feasible but not ideal, such as choosing a gravel path where no asphalt

one exists.

4.7.1 Overview of the Original MVP

Below is a summary of the original MVP algorithm (refer to Algorithm 1 from [75] for

more details).

• Initialize the algorithm.

• Continue looping until a sufficient number of nodes is explored.

– Sample a random node.

– Find nodes near the sampled node.

– Iterate through all near nodes and connect the sampled node with the cheapest

available connection.

– Iterate through all near nodes and reconnect them if a cheaper connection

exists from the sampled node.

– Check if the sampled node is within the goal state set.

– Add the sampled node to the set of visited states.

The connect method from RRT*, which manages edge creation and reconnection, is

detailed in Algorithm 2.
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Algorithm 2: connect(s, snew) for RRT*

Output: RK

Input: s, snew, RK

/* Check if a cheaper connection exists */

1 if cost(s) + cost(s, snew) < cost(snew) then
/* Remove the more expensive and add the cheaper connection to

the set of edges RK */

2 RK ← (RK\{(s1, s2) ∈ RK |s2 = snew}) ∪ {(s, snew)};
/* Assign corresponding cost to the snew */

3 cost(snew) = cost(s) + cost(s, snew);

Naive Implementation of the Steer Function

In the original MVP algorithm in [75] no specific steer function is provided. However, the

steer function has a significant impact on the algorithm’s performance and computational

complexity. The steer function, as defined in [75], returns a state trajectory x (t0, t) ∈ S
given states s, snew ∈ S (where S is the state space set). Its implementation is highly

application-specific. Calculating the dynamic system state trajectory, generally described

as

ẋ (t) = f (x (t) ,u (t)) , (4.28)

can be particularly time-consuming, especially when dynamic constraints are considered.

Methods that solve the Boundary Value Problem (BVP), such as single or multiple shoot-

ing methods, are naturally suggested for connecting two states under dynamic constraints.

However, these methods are often computationally intensive and the randomly sampled

state might be infeasible to connect given model dynamics and input constraints.

4.7.2 MVP with Input Sampling

A new modification to the MVP algorithm is proposed here, based on the original de-

scribed in [75]. Algorithms 3 and 5 follow the same nomenclature. The main idea is to

eliminate the first iteration loop (lines 7 - 9 in Algorithm 1 of [75]) and replace it with

input integration on an already visited state. This modified approach is presented in

Algorithm 3.

Instead of sampling a state, the input space U is used to sample a random input

unew. Then, a state s′ is randomly sampled (as in the original algorithm). Subsequently,

the sampleNear function samples a node s ∈ SK , one of the near nodes of s′. A biased

sampling is used in sampleNear, where near nodes with low cost function values are more

likely to be sampled. Finally, the IVP function integrates the input unew over a randomly

chosen time t using the state s.
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Algorithm 3: MVP with Input Sampling – IVP Variant

Output: K̄n, Sgoal,K

Input: sinit, Sgoal, U, time, S
1 SK ← ∅; RK ← ∅; Sgoal,K ← ∅;
2 add(sinit, SK);
3 foreach i ∈ N≤n do
4 unew ← sample(U);
5 s′ ← sample(S);
6 s← sampleNear(SK , s

′);
7 t← sample(time);
8 snew ← IVP(s, unew, t);
9 connect(s, snew, RK);

10 Snear = near(snew);
11 foreach s ∈ Snear do
12 if steer(snew, s) ̸= ∅ then
13 connect(snew, s, RK);

14 if snew ∈ Sgoal then
15 Sgoal,K = Sgoal,K ∪ {snew};
16 add(snew, SK);

17 return K̄n = (SK , sinit, RK ,Π,L,WK) , Sgoal,K

The proposed modification maintains probabilistic completeness, ensuring the entire

reachable state space is eventually included as the number of nodes increases. Every

sampled state s ∈ SK and every input u ∈ U has a nonzero probability of being selected

and integrated over an infinitely small time value. This ensures the entire reachable state

space is eventually added to SK .

This modification reduces unnecessary iterations by replacing them with input space

sampling and solving a single IVP (instead of multiple BVPs in the naive steer implemen-

tation). Another significant benefit is that the original MVP’s random new node sample

might not connect to the tree of already explored states due to restrictive dynamics and

inputs. Additionally, solving IVPs is often less computationally demanding than solving

BVPs.

4.7.3 MVP with Precomputed Trajectories

This section presents another modification aimed at further speeding up computation.

The primary idea is to eliminate IVP/BVP solving by introducing an offline precomputed

trajectory. This precomputation occurs before the actual trajectory planning – a set of

motion primitives is precomputed. Thus, the keyword offline is used. The main idea is to

precompute trajectories initiating in the state space origin for a discretized set of inputs,

which is used to calculate the trajectory set.
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Furthermore, the dynamics model symmetry is leveraged to reduce the computation

burden during the online phase. The state space subset that does not affect the state

derivatives function f (x,u) (see eq. (4.28)) is denoted as Xd ⊆ X, where X is the entire

state space. It is defined as

f (x1,u) = f (x2,u) ; ∀x1,x2 ∈ Xd. (4.29)

The trajectories for states x ∈ Xd can be shifted and rotated without precomputation.

An example of such states is the north/east position (assuming a flat road), where the

precomputed trajectory is not dependent on the absolute north/east position and can

be rotated and shifted from the origin where the offline trajectory is precomputed. For

other states x ̸∈ Xd, the space is discretized (in space) within a particular range for

which the trajectories are precomputed. The discretization is also done for the input

space U. Finally, trajectories are precomputed for a grid of all possible combinations

of the discretized state space, specified time range, and input space as shown in the

Algorithm 4.

Algorithm 4: Trajectory Precomputation

Output: T
Input: X/Xd, U, time

1 T← ∅;
2 xvect ← discretize (X/Xd);
3 uvect ← discretize (U);
4 tvect ← discretize (time);
5 foreach x ∈ xvect do
6 foreach u ∈ uvect do
7 foreach t ∈ tvect do
8 T ← T ∪ IV P (x, u, t)

9 return T;

The MVP for precomputed trajectories is proposed in Algorithm 5. The Append

function used in the algorithm takes the applicable trajectory (depending on the input

unew) from the set of precomputed trajectories T and applies it to the state s. The steer

function needs to be redefined for precomputed trajectories.

Steer Function – Precomputed Trajectories

Given two states s, snew ∈ S and the set of trajectories T, the steer function returns

a trajectory ϕ ∈ T from state s if a trajectory ϕ starting in state s using any input

u ∈ uvect ends in state s′ such that ||s′− snew||2 < ϵ, where ϵ is a sufficiently small number

(designer’s choice). Setting ϵ > 0 allows easier connection of two trajectories accounting
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for numerical solution existence of the trajectory calculation. Continuity of the planned

trajectory is not crucial since the planning model is always an approximation, and the

planned trajectory is assumed to be tracked with a controller. If continuity is required, ϵ

can be set to zero.

Algorithm 5: MVP with Precomputed Trajectories

Output: K̄n, Sgoal,K

Input: sinit, Sgoal, T, uvect, S
1 SK ← ∅; RK ← ∅; Sgoal,K ← ∅;
2 add(sinit, SK);
3 foreach i ∈ N≤n do
4 unew ← sample(uvect);
5 s′ ← sample(S);
6 s← sampleNear(SK , s

′);
7 snew ← append(s, unew, T);
8 connect(s, snew, RK);
9 Snear = near(snew);

10 foreach s ∈ Snear do
11 if steer(snew, s,T) ̸= ∅ then
12 connect(snew, s, RK);

13 if snew ∈ Sgoal then
14 Sgoal,K = Sgoal,K ∪ {snew};
15 add(snew, SK);

16 return K̄n = (SK , sinit, RK ,Π,L,WK) , Sgoal,K;

4.8 MVP modifications: Model and test scenario

The MVP algorithm used for the trajectory planning encapsulates the dynamic model

presented in this section. Choosing such complex model as benchmark model for trajec-

tory planning is intentional to show the reduction of the computation time for such level

of complexity. The model is based on the vehicle dynamics and the battery state of charge

(SOC) dynamics. The model is presented in Section 4.3

4.8.1 Test scenario

A scenario was selected to test the original MVP and both modifications. The scenario

comprises the initial vehicle state, the goal state, and various static obstacles. There are

two types of obstacles – a lawn and a building. The goal is to arrive at the destination

while minimizing SOC consumption and travel time. At the same time, the vehicle is
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Figure 4.8: Validation scenario - environment with static obstacles.

not allowed to collide with building. It also shouldn’t go over the lawn, but with lower

priority then collision with building.

The scenario layout is shown in Fig. 4.8, where both types of obstacles – buildings

and lawn – are present.

4.9 MVP modifications: Trajectory planning and re-

sults

Initially, the MVP cost function is proposed for trajectory planning across the three

variants. Following this, both the original MVP algorithm and the proposed modifications

were evaluated using the planning model detailed in Section 4.3 to plan the vehicle’s state

trajectory.

MVP Problem Statement

The MVP framework allows for the definition of multiple cost functions with varying

priorities (refer to [75]). In the validation scenario, the hierarchy of the cost functions is

defined as follows:

• The highest priority cost function for MVP states is articulated via an LTL logic

statement: The vehicle must avoid colliding with any buildings.

• The second level of priority specifies: The vehicle should not traverse over lawn

areas.

• The lowest priority cost function penalizes time of arrival and aims to maximize the
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Figure 4.9: MVP planned trajectory using the MVP variant with precomputed trajectories
in the validation scenario. 4000 nodes were connected to obtain the trajectory.

battery’s state of charge (SOC) as:

J (SOC, t) = −wSOCSOC + wtt, (4.30)

where w represents the penalizing weights, and t is the travel time. The MVP prioritizes

minimizing higher priority cost functions before addressing lower priority ones. For the

precomputed trajectories variant, inputs were discretized into 22 values for δ ranging

between 25 and -25 degrees, and 52 values for τ ranging between -1000 and 1000 Nm.

Results

The performance of the MVP algorithm variants was evaluated on a PC equipped with a

10th generation Intel CORE i9 CPU running at 3.7 GHz. The MVP algorithm variants

were implemented in Python. The computation time and cost function values for each

MVP variant were recorded over 10 runs, as summarized in Table 4.1. A total of 161,721

trajectories were precomputed offline and utilized by the precomputed trajectories MVP

variant. Search through this set was optimized using a KD tree, and the offline trajectory

computation time was not included in the evaluation.

The computation time and cost function values for the test scenario (detailed in Sec-

tion 4.8.1) with 6000 nodes forming the tree of trajectories are presented in Table 4.1. The

prolonged calculation time of the BVP variant is attributed to the complexity of comput-

ing trajectories to nodes where no feasible trajectory exists due to model constraints and

limited inputs. This limitation is not present in the IVP and precomputed trajectories

MVP variants (refer to Section 4.7), resulting in significantly reduced computation times

for these variants.

The performance degradation of the new variants is minimal, as evidenced by the cost

function values for each variant’s planned trajectory in Table 4.1.
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Table 4.1: Comparison of MVP variants. Computations were performed on a laptop using
the model described in Section 4.3. Values represent the mean and standard deviation of
trajectory computation time using 6000 nodes.

MVP Variant BVP IVP Precomputed
trajectories

calculation time
N(µ, σ) [s]

(31850, 0) (235, 14) (20, 1)

calculation time
reduction [%]

100 0.7 0.07

cost function value
N(µ, σ) [-]

highest priorityµ
σ

middle priorityµ
σ

low priorityµ
σ
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Figure 4.10: Vehicle path plan comparison for the original and the two newly proposed
MVP variants.
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Figure 4.11: Vehicle trajectory plan comparison for selected states and inputs. The
comparison is shown for the original and the two proposed MVP variants.
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The tree of trajectories for the north/east position is illustrated in Fig. 4.9 using

the MVP variant with precomputed trajectories (detailed in Section 4.7.3). The optimal

trajectory is highlighted in red. The planning was conducted for all states in the model

(vehicle yaw ψ, yaw rate r, velocity v, east and north positions e and n, and battery

SOC), but only east and north coordinates are shown for clarity. It can be observed that

the state space is not fully covered due to the limited number of nodes. This mirrors

real-world scenarios where planning must be stopped after a certain time limit, resulting

in potential variations between individual runs of the probabilistic planner. Therefore,

statistics based on 10 runs are presented in Table 4.1.

A comparison of the north/east path plans for all three variants is shown in Fig. 4.10.

Note that the MVP BVP plan is not continuous due to imperfections in node reconnec-

tions, where a trajectory ending in the near vicinity (||s′ − snew||2 < ϵ) of the state is

sufficient for reconnection – strict continuity is not enforced (see Section 4.7.3 for details).

Selected states and inputs from the trajectory plan are compared in Fig. 4.11. The

BVP variant takes significantly more time to reach the destination, potentially due to its

higher cost function minimization capability or finding a narrow local optimum. Despite

the BVP’s superior overall cost function performance, the performance degradation of the

other variants is not significant.

4.10 Summary

This chapter delves into the comparison of two distinct trajectory planning algorithms,

each stemming from different algorithmic families. The Minimum Violation Planning

(MVP) and Model Predictive Control (MPC) algorithms were rigorously tested within

a simulated environment using an identical test scenario and closely matched cost func-

tion tuning. The results from these tests indicate that both algorithms achieve roughly

comparable outcomes, exhibiting only minimal differences in performance.

The MVP algorithm, however, appears particularly well-suited for more complex and

logically constrained problems. Its ability to directly incorporate logical constraints and

operate effectively in non-convex problem spaces offers significant advantages. This flex-

ibility is especially beneficial in scenarios where traditional optimization methods may

struggle due to their reliance on convex problem formulations.

The chapter further explores enhancements to the MVP algorithm aimed at reducing

computation time while maintaining its inherent strengths. The proposed MVP modifica-

tions were evaluated against the original algorithm, focusing on their ability to maintain

performance levels while improving computation efficiency. The benchmark tests, which

concentrated on vehicle trajectory planning, revealed that the variant employing the Ini-
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tial Value Problem (IVP) solution significantly reduced calculation time compared to the

original MVP variant utilizing the Boundary Value Problem (BVP) approach. This re-

duction in computation time did not come at the expense of performance, highlighting

the efficiency of the IVP-based modification.

Moreover, the variant utilizing precomputed trajectories demonstrated even greater

efficiency. This approach not only maintained performance levels but also achieved an

approximate tenfold increase in speed compared to the IVP-based variant. The precom-

puted trajectory method simplifies the online computation process by leveraging offline

precomputed paths, which significantly accelerates the planning process during runtime.

This method’s efficacy underscores the potential for substantial performance gains through

strategic algorithm modifications.

In summary, the comparison between MVP andMPC algorithms highlights the strengths

and weaknesses of each approach. While both algorithms perform similarly in terms of tra-

jectory planning under the tested conditions, the MVP’s flexibility and ability to handle

complex logical constraints make it particularly advantageous for intricate planning prob-

lems. The enhancements introduced to the MVP algorithm further bolster its suitability

for real-time applications by drastically reducing computation times without compromis-

ing on performance. For a detailed discussion on the performance and computation time

comparisons, please refer to Section 4.9.

The insights gained from this chapter emphasize the importance of selecting the ap-

propriate algorithm based on the specific requirements of the application. For scenarios

demanding high flexibility and the incorporation of logical constraints, the MVP algo-

rithm stands out as a robust choice. Conversely, for applications where the problem space

is more structured and computational efficiency is paramount, the MPC algorithm offer

a compelling solution. The continued refinement of these algorithms holds promise for

advancing the capabilities of autonomous vehicle trajectory planning, paving the way for

more efficient and reliable autonomous systems.
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Conclusion

In this thesis three main topics were studied – control allocation problem, optimal slip

ratio estimation, and trajectory planning algorithms.

Firstly, an innovative control system was proposed that fundamentally changes tradi-

tional control allocation methods. Instead of directly allocating torques or forces to the

wheels, the system translates the vehicle’s velocity or acceleration tracking problem to the

wheel pivot points. This approach was published in the IEEE Transactions on Intelligent

Transportation Systems journal. This architecture provides inherent control allocation

and offers several benefits: unique wheel-level reference signals, robustness to variations

in tire-to-road interface, robustness to variations in vehicle system parameters like CoG

location, etc., adaptability to different vehicle configurations, ease of implementation,

etc. Additionally, it maintains wheel safety limits, integrates seamlessly with existing ve-

hicle systems, and simplifies vehicle control architecture. The system’s validation through

simulations experiments demonstrated its robustness, scalability, and cost-effectiveness,

making it a promising alternative to traditional traction control systems.

Secondly, two novel approaches for estimating the optimal slip ratio (λopt) were in-

troduced, using Recursive Least Squares (RLS) and Unscented Kalman Filter (UKF)

algorithms. This approach was published in the Control Engineering Practice journal.

Both methods exhibit high accuracy in simulations and real-world experiments, with the

UKF-based estimator providing faster convergence and higher precision. These algorithms

show significant potential for real-time application in full-scale vehicles, improving vehicle

stability and safety. These algorithms estimate variations in tire-to-road interface prop-

erties and thus potentially enhancing traction control systems’ performance, particularly

in challenging conditions.

Finally, a comparison of two trajectory planning algorithms—Minimum Violation

Planning (MVP) and Model Predictive Control (MPC) was presented. Both algorithms

perform comparably in trajectory planning tasks, but MVP excels in handling complex,
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logically constrained problems. Enhancements to the MVP algorithm, including the use

of Initial Value Problem (IVP) and precomputed trajectories, notably reduce computation

time without significantly compromising performance. These modifications make MVP

particularly suitable for real-time applications. The insights from this comparison high-

light the importance of algorithm selection based on application requirements, with MVP

being advantageous for flexible, complex planning scenarios, and MPC for structured,

efficiency-focused applications.

In summary, the proposed traction allocation control system, the optimal slip ratio

estimators, and trajectory planning algorithms provide significant improvements in vehicle

dynamics control and autonomous systems. These advancements pave the way for safer,

more efficient, and reliable vehicle operations.

5.1 Future Work

The thesis proposed a solution for the traction allocation problem by allocating torques to

each wheel. Similar architecture and results might also be drawn for the lateral dynamics

of the wheel, where individual steering of each wheel can be employed. Such an archi-

tecture needs to be rigorously introduced in future work. Furthermore, the integration of

the traction allocation and steering allocation systems requires development and analysis,

which will be addressed in future research.

Next, the integration of the proposed optimal slip ratio λopt estimation with the trac-

tion allocation control system needs to be validated and analyzed in future work. The

proposed estimators can be further improved by incorporating additional sensors and

data sources, such as cameras, LiDAR, or radar, to enhance estimation accuracy and

robustness.

Finally, the trajectory planning algorithms can be validated on the test platform pre-

sented in Section 3.4. Currently, the work is ongoing to validate these algorithms in

real-world scenarios using the test platform. The results of this validation will be pub-

lished in the IEEE Transactions on Intelligent Transportation Systems.
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[44] T. Veselý, “Brake-by-Wire System Development,” Master’s thesis, Czech Technical
University in Prague, 2022.

[45] H. Peng, W. Wang, C. Xiang, L. Li, and X. Wang, “Torque Coordinated Control of
Four In-Wheel Motor Independent-Drive Vehicles with Consideration of the Safety
and Economy,” IEEE Transactions on Vehicular Technology, vol. 68, no. 10, pp.
9604–9618, 2019.

[46] V. Rodrigo Marco, J. Kalkkuhl, J. Raisch, W. J. Scholte, H. Nijmeijer, and T. Seel,
“Multi-modal sensor fusion for highly accurate vehicle motion state estimation,”
Control Engineering Practice, vol. 100, jul 2020.

https://docplayer.net/54206752-Using-the-pac2002tire-model.html
https://docplayer.net/54206752-Using-the-pac2002tire-model.html
https://www.ebook.de/de/product/18341528/hans{_}pacejka{_}tire{_}and{_}vehicle{_}dynamics.html
https://www.ebook.de/de/product/18341528/hans{_}pacejka{_}tire{_}and{_}vehicle{_}dynamics.html
http://ieeexplore.ieee.org/document/6044472/
http://www.evc1000.eu/en
https://doi.org/00051144.2019.1637053
http://ieeexplore.ieee.org/document/7404035/
https://github.com/SDS-RC-FEE-CTU-in-Prague/FormulaCarMaker
https://www.youtube.com/watch?v=9BoSNcziuhw


BIBLIOGRAPHY 112

[47] G. Papa, M. Tanelli, G. Panzani, and S. M. Savaresi, “Wheel-slip estimation for
advanced braking controllers in aircraft: Model based vs. black-box approaches,”
Control Engineering Practice, vol. 117, dec 2021.

[48] F. Sun, X. Huang, J. Rudolph, and K. Lolenko, “Vehicle state estimation for anti-
lock control with nonlinear observer,” Control Engineering Practice, vol. 43, pp.
69–84, oct 2015.

[49] The MathWorks, “Modeling an Anti-Lock Braking System,”
2020. [Online]. Available: https://www.mathworks.com/help/simulink/slref/
modeling-an-anti-lock-braking-system.html

[50] S. Stefano, M. Luca, D. Daniele, and T. Marco, “Antilock braking systems, devices,
and methods using sensorized brake pads,” U.S. Granted Patent US 10 227 064 B2,
2019. [Online]. Available: https://lens.org/046-284-213-667-359

[51] E. Ono, K. Asano, M. Sugai, S. Ito, M. Yamamoto, M. Sawada, and Y. Yasui,
“Estimation of automotive tire force characteristics using wheel velocity,” Control
Engineering Practice, vol. 11, no. 12, pp. 1361–1370, 2003.
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