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Chapter 1

Introduction

This thesis is a collection of six selected research publications. Essentially, they
are part of three different subareas of Banach space theory: norm-attaining theory,
which is the study of functions defined in infinite-dimensional spaces and when they
attain their maxima; smoothness in Banach spaces, which is the study of when one
can replace a norm of a normed space by another one with some desired property;
and lineability, which is the study of finding finite or infinite linear vector spaces
inside non-linear subsets.

Let us describe the relevance of these subareas in the field.

It is well-known that in a Banach space X, the set of all continuous linear func-
tionals on X determines almost totally the structure of X as a Banach space. As
a matter of fact, by the Hahn-Banach theorem, the norm of any element x ∈ X
can be calculated as the supremum over all continuous functionals in the unit ball
BX∗ of the topological dual space X∗ of X. On the other hand, James theorem [56]
states that a Banach space is reflexive if and only if every functional in the dual
attains its norm. Moreover, Bishop and Phelps [11] proved that every functional can
be approximated by functionals which attain their norms. For these reasons, since
James and Bishop-Phelps, the theory of norm-attaining functionals was intensively
studied. In fact, it has been widely considered and extended to different contexts
besides linear functionals. For instance, there several relevant results on the topic for
bounded linear operators, homogeneous polynomials, holomorphic functions, Lips-
chitz functions, among others.

On the other hand, the existence of a smooth norm (by this we mean an equiv-
alent norm) has deep structural consequences for a given Banach space X. For
example, let us suppose that X has a C1-smooth renorming (or just a bump func-
tion). In this case, it must be an Asplund space, that is, the dual of every separable
subspace of X is also separable [38]. Furthermore, if X has a C2-smooth renorming
then X either contains a copy of c0 or it is superreflexive [41]. Also, it is known that
if X has a C∞-smooth renorming then it contains a copy of c0 or ℓp, where p is an
even integer [31].

Finally, finding a linear structure inside a non-linear subset might bring relevant
consequences for the space itself. In the last decade, there have been a large amount
of papers, books and monographs (see, for instance, [4]) related to lineability prop-
erties. In fact, this problem was considered within many different areas as Real
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Analysis, Operator Theory, Linear Dynamics, classical Functional Analysis, Linear
and Multilinear Algebra, or even Probability Theory.

Thesis outline

Let us briefly describe the contents of the dissertation. Chapter 2 provides the
necessary background and notation so that the reader can follow this thesis without
having to jump into many different references too often. Chapter 3 describes the
results of three different papers (papers 1, 2 and 3) on norm-attaining theory. We
start by considering the problem on the existence of bounded linear operators which
do not attain their norms. As the reader will realize, this problem is related to
the question on when the Banach space of all bounded linear operators is reflexive
and also when all the operators are compact. We also describe the Schur property
in terms of norm-attaining operators. Afterwards, we move to the study of norm-
attaining tensors and nuclear operators. As one can immediately realize, there exists
a deep connection between nuclear operators and tensor products, which allows us to
study both concepts (almost) simultaneously. We provide several examples of norm-
attaining tensors and nuclear operators as well as tensors and nuclear operators
which never attain their projective tensor norms and nuclear norms, respectively.
This opens the gate to study a Bishop-Phelp type theorem in this context. It turns
out that, for most of the classical Banach spaces, the set of all norm-attaining
tensors in dense in the projective tensor product. The same holds true for nuclear
operators . The delicate problem here is then to find Banach spaces X and Y
such that no tensor can be approximated by norm-attaining ones. We conclude this
chapter by considering the symmetric projective tensor products and its counterpart
results. In Chapter 4 we describe our main result in this line of research. We draw
a complete picture concerning smoothness in the sense that it implies the existence
of smooth norms, norm approximation by smooth norms, C1-smooth LUR norms
and the existence of partitions of unity. Finally, we expose our results concerning
lineability in Chapter 5. We study several different problems in Functional Analysis
concerning results that hold true for sequences but are not for nets and we wonder
about lineability properties in this context. We finally consider the problem of
embedding c0 isometrically inside the space of all Lipschitz functions which attain
their norms strongly. Appendix A contains all the attached publications we have
considered for this habilitation dissertation.
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Chapter 2

Preliminaries

Let X, Y , and Z be Banach spaces over the field K, which can be either R or C. We
denote by BX and SX the closed unit ball and the unit sphere, respectively, of the
Banach space X. We denote by L(X, Y ) the set of all bounded linear operators from
X into Y . If Y = K, then L(X,K) is denoted by X∗, the topological dual space of
X. We denote by B(X×Y, Z) the Banach space of bounded bilinear mappings from
X×Y into Z. When Z = K, we denote this space by B(X×Y ). It is well-known that
the space B(X × Y ) and L(X, Y ∗) are isometrically isomorphic as Banach spaces.
We denote by K(X, Y ) the set of all compact operators and by F(X, Y ) the space
of all operators of finite-rank from X into Y .

2.1 Basic notation

In this section, we provide the main tools we will be using throughout this thesis.
We slip it into different subsections so that the reader can go direct to topic they
consider more convenient.

2.1.1 Norm-attainment

We say that a bounded linear functional x∗ ∈ X∗ attains its norm or it is norm-
attaining if there exists x0 ∈ SX such that ∥x∗∥ = |x∗(x0)|. Analogously, we define
a norm-attaining operator and a norm-attaining bilinear mapping. The sets of all
norm-attaining functionals, norm-attaining operators and norm-attaining bilinear
mappings are defined, respectively, by NA(X), NA(X, Y ) and NA(X ×Y, Z). Here,
we understand that the functionals are of the form x∗ : X → K, the operators
are the form T : X → Y and the bilinear mappings of the form A : X × Y → Z,
where X, Y and Z are normed spaces (we will be clear when they are not necessarily
complete). The symbol τc denotes the topology of compact convergence and ∥ · ∥
denotes the norm topology in L(X, Y ).

2.1.2 Lipschitz functions

When we are considering Lipschitz functions in this thesis, all the vector spaces will
be considered to be real. Let (M,d) be a pointed metric space (that is, a metric
space with a distinguished point 0). We denote by Lip0(M) the Banach space of
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all Lipschitz functions f : M → R such that f(0) = 0, endowed with the Lipschitz
norm

∥f∥Lip0 := sup

{ |f(y)− f(x)|
d(x, y)

: x, y ∈ M, x ̸= y

}
.

We say that a Lipschitz function f ∈ Lip0(M) strongly attains its norm, or that it
is strongly norm-attaining, if there exist two different points p, q ∈ M such that

∥f∥Lip0 =
|f(p)− f(q)|

d(p, q)
.

The set of strongly norm-attaining Lipschitz functions on M will be denoted by
SNA(M). Let X be a separable Banach space with a Schauder basis denoted by
{xn}∞n=1. We say that a sequence {yn}∞n=1 in a Banach space Y is (isometrically)
equivalent to the basis {xn}∞n=1 if there exists a linear (isometric) isomorphism
T : span{yn : n ∈ N} → X such that T (yn) = xn for all n ∈ N. The following
facts will be used throughout the text without any explicit reference.

(i) A sequence {xn}∞n=1 is isometrically equivalent to the canonical basis of c0 if
and only if the equality

∥∥∑∞
n=1 λnxn

∥∥ = maxn |λn| holds for every sequence
{λn}∞n=1 ∈ c0.

(ii) If a sequence {xn}∞n=1 is isometrically equivalent to the canonical basis of c0,
then so is the sequence {εnxn}∞n=1, where εn ∈ {−1, 1} for every n ∈ N.

(iii) Any subsequence of a sequence which is isometrically equivalent to the canon-
ical basis of c0 is once again isometrically equivalent to the same basis.

2.1.3 Tensor products

We use essentially the notation from [83]. The projective tensor product of X and
Y , denoted by X⊗̂πY , is the completion of the space X⊗Y endowed with the norm
given by

∥z∥π = inf

{ ∞∑

n=1

∥xn∥∥yn∥ :
∞∑

n=1

∥xn∥∥yn∥ < ∞, z =
∞∑

n=1

xn ⊗ yn

}

= inf

{ ∞∑

n=1

|λn| : z =
∞∑

n=1

λnxn ⊗ yn,

∞∑

n=1

|λn| < ∞, ∥xn∥ = ∥yn∥ = 1

}
,

where the infimum is taken over all such representations of z. It is well-known that
∥x ⊗ y∥π = ∥x∥∥y∥ for every x ∈ X, y ∈ Y , and the closed unit ball of X⊗̂πY is
the closed convex hull of the set BX ⊗ BY = {x ⊗ y : x ∈ BX , y ∈ BY }. Let us
recall also that there is a canonical operator J : X∗⊗̂πY −→ L(X, Y ) with ∥J∥ = 1
defined by z =

∑∞
n=1 φn ⊗ yn 7→ Lz, where Lz : X −→ Y is given by

Lz(x) =
∞∑

n=1

φn(x)yn (x ∈ X). (2.1)
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The operators that arise in this way are called nuclear operators. We denote the set
of such operators by N (X, Y ) endowed with the nuclear norm

∥T∥N = inf

{ ∞∑

n=1

∥x∗
n∥∥yn∥ : T (x) =

∞∑

n=1

x∗
n(x)yn

}
,

where the infimum is taken over all representations of T of the form T (x) =∑∞
n=1 x

∗
n(x)yn for bounded sequences (x∗

n) ⊆ X∗ and (yn) ⊆ Y such that
∑∞

n=1 ∥x∗
n∥∥yn∥ <

∞. Notice that every nuclear operator is compact since it is the limit in the operator
norm of a sequence of finite-rank operators. Using the function J , we can identify
the space N (X, Y ) with X∗⊗̂πY/ ker J isometrically.

A Banach space is said to have the approximation property if for every compact
subset K of X and every ε > 0, there exists a finite-rank operator T : X −→ X
such that ∥T (x) − x∥ ≤ ε for every x ∈ K. Let us take into account that if X∗ or
Y has the approximation property, then X∗⊗̂πY = N (X, Y ) (see, for instance, [83,
Corollary 4.8]). For a complete background on tensor products in Banach spaces,
we refer the reader to the books [30, 83].

The N-fold projective symmetric tensor product of X, denoted by ⊗̂π,s,NX, is
the completion of the linear space ⊗π,s,NX, generated by {zN : z ∈ X}, under the
norm given by

∥z∥π,s,N := inf

{
n∑

k=1

|λk| : z :=
n∑

k=1

λkx
N
k , n ∈ N, xk ∈ SX , λk ∈ K

}

where the infimum is taken over all the possible representations of z. Its topo-
logical dual

(
⊗̂π,s,NX

)∗
can be identified (there exists an isometric isomorphism)

with P(NX). Indeed, every polynomial P ∈ P(NX) acts as a linear functional on
⊗̂π,s,NX through its associated symmetric N -linear form P and satisfies

P (x) = P (x, . . . , x) = ⟨P, xN⟩

for every x ∈ X. We also have that B⊗̂π,s,NX = aco({xN : x ∈ SX}). To save

notation, by a symmetric tensor we will refer to a generic element of ⊗̂π,s,NX.
For more information about symmetric tensor products, we suggest [43] and also
[14, 16, 17].

2.1.4 Smoothness

Let X, Y be normed linear spaces. We say that the norm ∥ · ∥ of X is Ck-smooth
if its kth Fréchet derivative exists and is continuous at every point of X \ {0}. The
norm is said to be C∞-smooth if this holds for every k ∈ N. We denote by P(nX;Y )
the normed linear space of all n-homogeneous continuous polynomials from X into
Y . If U ⊂ X is an open subset, then we say that a function f : U → Y is analytic
if, for every a ∈ U , there exist Pn ∈ P(nX;Y ) (n ∈ N ∪ {0}) and δ > 0 such that,
for all x ∈ U(a, δ),

f(x) =
∞∑

n=0

Pn(x− a).
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2.1.5 Lineability

We will be using basic concepts and notations from Set Theory found, for instance,
in [15, 58]. Ordinal numbers will be identified with the set of their predecessors
and cardinal numbers with the initial ordinals. Given a set A, the cardinality of A
will be denoted by card(A). We denote by ℵ0, ℵ1 and co the first infinite cardinal,
the second infinite cardinal and the cardinality of the continuum, respectively. The
cofinality cof(α) of an ordinal α is the smallest ordinal β such that α = supγ<β αγ,
where {αγ}γ<β is an ordinal sequence of length β with αγ < α for all γ < β. We
say that a cardinal number κ is regular if cof(κ) = κ (see, for instance, [68]).

A set A is a directed set (also known as an index set) if A is a nonempty set that
is endowed with a preorder ≤ (a reflexive and transitive relation) such that every
pair of elements of A has an upper bound. A net in a set X is a function from a
directed set A to X which will be denoted by (xa)a∈A. We denote the set of nets in
X indexed by A as XA.

Given a topological space X and (xa)a∈A a net in X, we say that (xa)a∈A con-
verges to x ∈ X if for every neighborhood Ux of x, there exists an element a0 ∈ A
such that xa ∈ Ux for every a ≥ a0. Recall that if X is a topological vector space,
then a net (xa)a∈A in X weakly converges to x ∈ X (denoted by xa

w−→ x) if and
only if (x∗(xa))a∈A converges to x∗(x) for every x∗ ∈ X∗.

If a directed set A is in particular an ordinal number α, then we have the so-
called α-sequences instead of nets defined in a set. It is known that the convergence
of α-sequences in a topological space can be reduced to the convergence of cof(α)-
sequences (see, for instance, [81, Propositions 3.1 and 3.2]). Therefore, we simply
consider κ-sequences, where κ is a regular cardinal number. This notion of κ-
sequence was introduced in 1907 by J. Mollerup [76] and has been studied throughout
the 20th and 21st centuries by many mathematicians in several contexts (see [67,
87, 78, 82] and the references therein). Given a κ-sequence (xα)α<κ in X, we say
that (xβα)α<κ is a κ-subsequence of (xα)α<κ if there exists an increasing injective
function φ : κ → κ such that xβα = xφ(α) for every α < κ.

Recall that a topological vector space (TVS, for short) is a vector space endowed
with a topology such that vector addition and scalar multiplication are both con-
tinuous. In this case, we denote by X∗ its topological dual and σ(X,X∗) the weak
topology on X.

Our main definition in this section is the following. We say that a subset M of
a vector space X is lineable (respectively, κ-lineable, for a cardinal κ) if M ∪ {0}
contains a vector space of infinite-dimension (respectively, of dimension κ).
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Chapter 3

Norm-attainment

One of the most classical topics in the theory of Banach spaces is the study of norm-
attaining functions. In fact, one of the most famous characterizations of reflexivity,
due to R. James, is described in terms of linear functionals which attain their norms
(see, for instance, [40, Corollary 3.56]). In the same line of research, E. Bishop and
R. Phelps proved that the set of all norm-attaining linear functionals is dense in
X∗ (see [11]). This motivated J. Lindenstrauss to study the analogous problem for
bounded linear operators in his seminal paper [71], where it was obtained for the
first time an example of a Banach space such that the Bishop-Phelps theorem is
no longer true for this class of functions. Consequently, this opened the gate for a
crucial and vast research on the topic during the past fifty years in many different
directions. Indeed, J. Bourgain, R.E. Huff, J. Johnson, W. Schachermayer, J.J. Uhl,
J. Wolfe and V. Zizler continued the study about the set of all linear operators
which attain their norms ([13, 54, 61, 86, 90, 91]); M. Acosta, R. Aron, F.J. Aguirre,
Y.S. Choi, R. Payá ([1, 6, 22] tackled problems in the same line involving bilinear
mappings; D. Garćıa and M. Maestre considered it for homogeneous polynomials
(see [2, 7]); and more recently several problems on norm-attainment of Lipschitz
maps were considered (see [20, 21, 45, 65]).

In this section, we consider basically two problems on norm-attaining theory. We
will start by trying to reply the question on when there exists a non-norm-attaining
operator between Banach spaces. Our results improve some other results in the
literature and bring back some relevant questions in the theory. We then move to
the problem on finding norm-attaining and non-norm-attaining nuclear operators as
an attempt of giving one step further in the theory and trying to help to reply to
the question on whether every finite-rank operator can be approximated by norm-
attaining operators. The results described here can be found in Papers 1, 2 and
3.

3.1 Non-norm-attaining operators

One can check that if every bounded linear operator from a Banach space X into a
Banach space Y is norm-attaining, thenX must be reflexive, whereas the range space
Y is not forced to be reflexive in general. Indeed, every bounded linear operator from
a reflexive space into a Banach space which satisfies the Schur property is compact
(by the Šmulyan theorem) and any compact operator from a reflexive space into an
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arbitrary Banach space is norm-attaining. Therefore, it seems natural to wonder
whether it is possible to guarantee the existence of a non-norm-attaining operator
from the existence of a non-compact operator. This brings us back to the 70’s
when J.R. Holub proved that this is, in fact, true under approximation property
assumptions (see [54, Theorem 2]). Almost thirty years later, J. Mujica improved
Holub’s result by using the compact approximation property (see [77, Theorem 2.1]),
which is a weaker assumption than the approximation property. However, both
results require the reflexivity on both domain and range spaces, so the following
question arises naturally.

Given a reflexive space X and any Banach space Y , under which assumptions we
may guarantee the existence of non-norm-attaining operators in L(X, Y )?

In connection with the previous question, Holub and Mujica (in fact, Mujica’s
result is an improvement of Holub’s) proved the following result.

Theorem 3.1.1 ([53, Theorem 2] and [77, Theorem 2.1]). Let X and Y be both re-
flexive spaces.

(a) If L(X, Y ) is non-reflexive, there is a non-norm-attaining operator S ∈ L(X, Y ).

(b) If X or Y has the (compact) approximation property, then the following state-
ments are equivalent.

(i) There exists a non-norm-attaining operator S ∈ L(X, Y );

(ii) L(X, Y ) ̸= K(X, Y );

(iii) L(X, Y ) is non-reflexive;

(iv) (L(X, Y ), ∥ · ∥)∗ ̸= (L(X, Y ), τc)
∗.

The proof of the above result relies on the fact that if Y is a reflexive space,
then L(X, Y ) is the dual space of the projective tensor product X⊗̂πY

∗. However,
if the range space Y is non-reflexive, then L(X, Y ) is always non-reflexive (see, for
instance, [84]). As a way of extending the above results to the case of non-reflexive
range spaces, we borrow some of the techniques used by R.C. James (see [56, 57])
and we consider the following notion. We will prove that the James property is a
sufficient condition to guarantee the existence of an operator which never attains its
norm.

Definition 3.1.2. We say that a pair (X, Y ) of Banach spaces has the James prop-

erty if there exists a relatively WOT-compact set K ⊆ L(X, Y ) such that 0 ∈ K
WOT

and 0 ̸∈ co∥·∥(K).

We have the following existence result.

Theorem 3.1.3. Let X and Y be Banach spaces. If the pair (X, Y ) has the James
property, then there exists a non-norm-attaining operator in L(X, Y ).

In order to expose the new result, we need the following definitions.
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Definition 3.1.4. The pair (E,F ) of Banach spaces is said to have the compact
approximation property (CAP, for short) if every operator T ∈ L(E,F ) belongs to

K(E,F )
τc
. If λ ≥ 1 and every operator T ∈ L(E,F ) belongs to λ∥T∥BK(E,F )

τc
, then

(E,F ) is said to have the λ-BCAP or simply the BCAP. In the case when λ = 1, we
say that the pair (E,F ) has the metric compact approximation property (MCAP,
for short). Moreover, we say that the pair (E,F ) has the pointwise-BCAP if for
every operator T ∈ L(E,F ) there is a constant λT ≥ 1 such that T ∈ λTBK(E,F )

τc
.

We observe, for a reflexive space E and an arbitrary Banach space F , that
(1) the unit ball of K(E,F ) is closed in the strong operator topology if and only
if it is sequentially closed in this topology and (2) K(E,F ) = L(E,F ) implies
that (L(E,F ), ∥ · ∥)∗ = (L(E,F ), τc)

∗ by using the result [42, Theorem 1] due to
M. Feder and P. Saphar. Besides that, we consider the concept of the (bounded)
compact approximation property for a pair of Banach spaces in the way as it is
done in [12] (see Definition 3.1.4) and prove that K(E,F ) = L(E,F ) when either
(3) the norm-closed unit ball of K(E,F ) is closed in the strong operator topology
or (4) (L(E,F ), ∥ · ∥)∗ = (L(E,F ), τc)

∗ under the just mentioned approximation
property assumption. Combining (1)-(4) together with Theorem 3.1.3, we get a
generalization of Holub and Mujica’s results, where we no longer need reflexivity on
the target space F .

Theorem 3.1.5. Let E be a reflexive space and F be an arbitrary Banach space.
Consider the following conditions.

(a) K(E,F ) = L(E,F ).

(b) Every operator from E into F attains its norm.

(c) The unit ball BK(E,F ) is closed in the strong operator topology.

(d) (L(E,F ), τc)
∗ = (L(E,F ), ∥ · ∥)∗.

Then, we always have (a) =⇒ (b) =⇒ (c) and (a) =⇒ (d) =⇒ (c). Additionally, if
the pair (E,F ) has the bounded compact approximation property, then (c) =⇒ (a)
and therefore all the statements are equivalent.

The following diagram summarizes most of the results included in this work. In
what follows, E is supposed to be any reflexive space and F is any arbitrary Banach
space. See Definition 3.1.4 in Section 2 below for the definition of the pointwise-
BCAP.

BK(E,F )
SOT ̸=BK(E,F )

(E,F ) has the James property

L(E,F )̸=NA(E,F )L(E,F )̸=K(E,F )

(L(E,F ),∥·∥)∗ ̸=(L(E,F ),τc)∗

L(E,F ) is non-reflexive

If (E,F ) has the pointwise-BCAP

If F is reflexive

9



As an application of Theorem 3.1.5, we provide a characterization of the Schur
property in terms of norm-attaining operators.

Theorem 3.1.6. Let Y be a Banach space. The following statements are equivalent.

(a) Y has the Schur property.

(b) K(X, Y ) = L(X, Y ) for every reflexive space E.

(c) NA(X, Y ) = L(X, Y ) for every reflexive space X.

(d) K(Z, Y ) = L(Z, Y ) for every reflexive space Z with basis.

(e) NA(Z, Y ) = L(Z, Y ) for every reflexive space Z with basis.

3.2 Tensor products and nuclear operators

M. Mart́ın solved negatively a problem from the 1970s (posed explicitly by J. Diestel
and J. Uhl in [35] and J. Johnson and J. Wolfe in [61]) on whether or not every com-
pact operator can be approximated by norm-attaining operators (see [74, Theorem
1]). On the other hand, the main open problem in the theory of norm-attaining
operators nowadays seems to be if every finite-rank operator can be approximated
by norm-attaining operators (see [74, Question 9]). Since every nuclear operator
is a limit of a sequence of finite-rank operators, we were motivated to try to take
one step further in the theory by studying the set of all nuclear operators which
attain their (nuclear) norms systematically. On account of clear relations between
nuclear operators and projective tensor products, we focus also on a concept of
norm-attainment in projective tensor products. We also consider the problem for
symmetric tensor products and homogeneous polynomials.

3.2.1 Projective tensor products

Definition 3.2.1. We say that

(1) z ∈ X⊗̂πY attains its projective norm if there is a bounded sequence (xn, yn) ⊆
X × Y with

∑∞
n=1 ∥xn∥∥yn∥ < ∞ such that z =

∑∞
n=1 xn ⊗ yn and that

∥z∥π =
∑∞

n=1 ∥xn∥∥yn∥. In this case, we say that z is a norm-attaining tensor.

(2) T ∈ N (X, Y ) attains its nuclear norm if there is a bounded sequence (x∗
n, yn) ⊆

X∗ × Y with
∑∞

n=1 ∥x∗
n∥∥yn∥ < ∞ such that T =

∑∞
n=1 x

∗
n ⊗ yn and that

∥T∥N =
∑∞

n=1 ∥x∗
n∥∥yn∥. In this case, we say that T is a norm-attaining

nuclear operator.

We will be using the classical notation NA(X, Y ) for the subset {T ∈ L(X, Y ) :
T attains its norm} and NA(X × Y, Z) for the subset of all B ∈ B(X × Y, Z) such
that B attains its norm. If Z = K, then we simply denote it as NA(X × Y ). For
our new concepts, we use the following notations:

(1) NAπ(X⊗̂πY ) = {z ∈ X⊗̂πY : z attains its projective norm}.

(2) NAN (X, Y ) = {T ∈ N (X, Y ) : T attains its nuclear norm}.
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Theorem 3.2.2. Let X, Y be Banach spaces. Let z ∈ X⊗̂πY with

z =
∞∑

n=1

λnxn ⊗ yn,

where λn ∈ R+, xn ∈ SX , and yn ∈ SY for every n ∈ N. Then, the following
assertions are equivalent:

1. ∥z∥π =
∑∞

n=1 λn; in other words, z ∈ NAπ(X⊗̂πY ).

2. There is G ∈ L(X, Y ∗) with ∥G∥ = 1 such that G(xn)(yn) = 1 for every n ∈ N.

3. Every norm one G ∈ L(X, Y ∗) such that G(z) = ∥z∥π satisfies that G(xn)(yn) =
1 for every n ∈ N.

Remark 3.2.3. Taking into account the explanation just before (2.1), we call that we
have an isometric isomorphism between N (X, Y ) and X∗⊗̂πY/ ker(J). Therefore,
it is natural to think that there is also a nuclear operator version of Theorem 3.2.2.
We will not highlight it in this thesis. In fact, we will be focusing on the tensor
products versions of our results rather than the nuclear operators versions. Let us
observe that every time we consider the nuclear operator versions of these results,
the subset ker J)⊥ plays a relevant role there.

Let us see a simple example on how to apply Theorem 3.2.2.

Example 3.2.4. LetX, Y be two reflexive Banach spaces such thatX∗ or Y has the
approximation property (in this case, we have X∗⊗̂πY = N (X, Y )). Assume further
that X∗ is isometrically isomorphic to a subspace of Y ∗. Take G : X∗ −→ Y ∗ to
be a linear isometry and pick (x∗

n)n ⊆ SX∗ . Now, for any n ∈ N, notice that
∥G(x∗

n)∥ = ∥x∗
n∥ = 1. Since Y is reflexive, by using the James Theorem, we have that

G(x∗
n) ∈ SY ∗ attains its norm, so there exists yn ∈ SY so that G(x∗

n)(yn) = 1. Now,
Theorem 3.2.2 implies that, given any sequence (λn)n ⊆ (0, 1] with

∑∞
n=1 λn < ∞,

the nuclear operator

T :=
∞∑

n=1

λnx
∗
n ⊗ yn ∈ N (X, Y )

attains its nuclear norm.

In finite-dimensional spaces, every tensor is norm-attaining. This is so because
of the compactness of the unit ball as, in this case, we have co(BX ⊗BY ) =
co (BX ⊗BY ), which is a consequence of Minkowski-Carathéodory theorem (see,
for instance, [40, Exercises 1.57 and 1.58]).

Proposition 3.2.5. Let X, Y be finite dimensional Banach spaces. Then, we have
that NAπ(X⊗̂πY ) = X⊗̂πY.

It turns out that the classical norm-attainment concept for operators has nothing
to do with the norm-attainment for tensor products and nuclear operators. This can
be justified by using the next result. Indeed, let us observe that one can construct a
Banach space Y and operator T : c0 → Y such that T does not attain its (classical)
norm (see [74, Lemma 2.2] or the proof of [71, Proposition 4]). Nevertheless, we
have the following result.
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Proposition 3.2.6. Let Y be a Banach space. Then,

1. every T ∈ N (c0, Y ) attains its nuclear norm. Equivalently,

2. every element in ℓ1⊗̂πY attains its projective norm.

Complex Hilbert spaces also satisfy a similar statement as in Proposition 3.2.6
(as Hilbert space satisfy the approximation property, we can write the result in
terms of nuclear operators).

Proposition 3.2.7. Let H be a complex Hilbert space. Then, every nuclear operator
T ∈ N (H,H) attains its nuclear norm.

At this point, it is natural to ask whether the equality NAN (X, Y ) = N (X, Y )
(or NAπ(X⊗̂πY ) = X⊗̂πY ) holds for all (infinite-dimensional) Banach spaces X
and Y . It turns out that this is not the case as we can see in the next result.

Proposition 3.2.8. Let X, Y be Banach spaces. If every element in X⊗̂πY attains
its projective norm, then the set of all bilinear forms on X × Y which attain their
norms is dense in B(X × Y ). Equivalently, under the same hypothesis, the set of
norm-attaining operators from X into Y ∗ is dense in L(X, Y ∗). In particular, there
exist elements z ∈ X⊗̂πY such that z /∈ NAπ(X⊗̂πY ) in the following cases.

1. When X = L1(T), where the unit circle T is equipped with the Haar measure
m, and Y is the two-dimensional Hilbert space [45, Remark 5.7.(2)].

2. When X is L1[0, 1] and Y ∗ is a strictly convex Banach space without the Radon-
Nikodým property [90, Theorem 3].

3. When Y = ℓp for 1 < p < ∞ and X is the Banach space constructed by
Gowers (see [47, Theorem, page 149]).

4. When X and Y are both L1[0, 1] [22, Theorem 3].

So far we have seen that there are many norm-attaining tensors, that there is a
direct connection between this new theory and the classical norm-attaining theory
and finally that there are non-norm-attaining tensors (and nuclear operators). Thus,
the natural question we would like to tackle is whether one can find a Bishop-
Phelps type theorem for this class. It turns out that this is true for all the classical
Banach spaces. For this, we take advantage of the finite dimensional case (where we
know that every tensor is norm-attaining) to obtain a general result on denseness
of norm-attaining tensors. The only problem here is the fact that in general the
projective norm does not respect subspaces, but it does respect 1-complemented
subspaces. For this reason, we need a property that guarantees the existence of
many 1-complemented subspaces. This is the case for the metric π-property (see.
for instance, [19, Definition 5.1]).

Definition 3.2.9. Let X be a Banach space. We will say that X has the metric
π-property if given ε > 0 and {x1, . . . , xn} ⊆ SX a finite collection in the sphere,
then we can find a finite dimensional 1-complemented subspace M ⊆ X such that
for each i ∈ {1, . . . , n} there exists x′

i ∈ M with ∥xi − x′
i∥ < ε.
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The following Banach spaces satisfy the metric π-property.

(a) Banach spaces with a finite dimensional decomposition with the decomposition
constant 1 (consequently, every Banach space with Schauder basis can be
renormed to have the metric π-property).

(b) Lp(µ)-spaces for any 1 ≤ p < ∞ and any measure µ.

(c) L1-predual spaces.

(d) X ⊕a Y , whenever X, Y satisfy the metric π-property and | · |a is an absolute
norm.

(e) X =
[⊕

n∈NXn

]
c0

or
[⊕

n∈N Xn

]
ℓp
, ∀ 1 ≤ p < ∞, Xn satisfying the metric

π-property, ∀n.

(f) X⊗̂πY , whenever X, Y satisfy the metric π-property.

Coming back to norm-attaining tensors, we have the following density result.
For the second part of the result we need a property defined in [27] (see also [29]).

Theorem 3.2.10. Let X be a Banach space satisfying the metric π-property.

(a) If Y satisfies the metric π-property, then NAπ(X⊗̂πY )
∥·∥π

= X⊗̂πY .

(b) If Y is uniformly convex, then NAπ(X⊗̂πY )
∥·∥π

= X⊗̂πY .

Consequently, we also have the following result.

Corollary 3.2.11. Let N ∈ N be given. Let X1, . . . , XN be Banach spaces with the
metric π-property, and Y be a Banach space. Then,

NAπ(X1⊗̂π · · · ⊗̂πXN⊗̂πY )
∥·∥π

= X1⊗̂π · · · ⊗̂πXN⊗̂πY.

Recall from Theorem 3.2.8 that when X = L1(T), where the unit circle T is
equipped with the Haar measure, and Y is the two-dimensional Hilbert space ℓ22,
we have that NAπ(X⊗̂πY ) ̸= X⊗̂πY . This shows that finite dimensionality on
just one of the factors is not enough to guarantee that every tensor in X⊗̂πY is
norm-attaining. Nevertheless, we have the following result.

Theorem 3.2.12. Let X be a Banach space with BX = co ({x1, . . . , xn}) for some
x1, . . . , xn ∈ SX and assume that Y is a dual space. Then, every tensor in X⊗̂πY
attains its projective tensor norm.

In fact, we can use Theorem 3.2.12 to get the following denseness result. Let
us recall a Banach space X is said to be polyhedral if the unit ball of every finite-
dimensional subspace is a polytope, that is, the convex hull of a finite set.

Theorem 3.2.13. Let X be a Banach which is polyhedral and satisfies the metric
π-property. Assume that Y is a dual space. Then, every tensor in X⊗̂πY can be
approximated by tensors that attain their norms.
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We have that (c0, ∥ · ∥∞) is the canonical example of a polyhedral space. We,
have the following immediate consequence of Theorem 3.2.13.

Corollary 3.2.14. Let Y be a dual space. Then, NAπ(c0⊗̂πY ) is dense in c0⊗̂πY .

Next, we can prove the following result on the denseness of nuclear operators
which attain their nuclear norms under the RNP assumption.

Theorem 3.2.15. Let X, Y be Banach spaces such that X∗ and Y ∗ have the RNP.
Then, every nuclear operator from X into Y ∗ can be approximated by norm-attaining
nuclear operators.

After seeing Theorems 3.2.10, 3.2.12 and 3.2.13, we can think that the Bishop-
Phelps always holds true in the setting of norm-attaining tensors. This is not true
in general as we can see in the next result. For this, we will use Read’s space R
(see [62, 63, 81] for all the details on this space). Read’s space is a renorming of
the Banach space c0, R = (c0, |||·|||), which has bidual R∗∗ strictly convex (see [62,
Theorem 4]).

Theorem 3.2.16. Let R be Read’s space. There exist subspaces X of c0 and Y of
R such that the set of tensors in X⊗̂πY

∗ which attain their projective norms is not
dense in X⊗̂πY

∗.

Considering X and Y ∗ as in Theorem 3.2.16, we can see that there exist α > 0
and z ∈ X⊗̂πY

∗ such that dist (z,NAπ(X⊗̂πY
∗)) ≥ α. If one takes u a finite-rank

tensor such that ∥z−u∥π < α
2
. Then, this element cannot attain its projective norm.

In other words, being finite-rank is not enough for being norm-attaining.

Corollary 3.2.17. There are tensors of finite-rank which do not attain their pro-
jective norm.

We do not know whether Theorem 3.2.16 holds for nuclear operators.

3.2.2 Symmetric tensor products

Analogously to what we have done in the previous section, we have the following def-
inition. We say that z ∈ ⊗̂π,s,NX attains its projective symmetric norm if there are
bounded sequences (λn)

∞
n=1 ⊂ K and (xn)

∞
n=1 ⊆ BX such that ∥z∥π,s,N =

∑∞
n=1 |λn|

for z =
∑∞

n=1 λnx
N
n . In this case, we say that z is a norm-attaining symmetric

tensor. We then denote

NAπ,s,N(X) :=
{
z ∈ ⊗̂π,s,NX : z attains its symmetric norm

}
.

As a counterpart of Proposition 3.2.8, we have the following result.

Proposition 3.2.18. Let X be a Banach space and suppose that every element
in ⊗̂π,s,NX attains its norm. Then the set of all N-homogeneous polynomials that
attain their norms is dense in the space of all N-homogeneous polynomials.
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With Proposition 3.2.18 in mind, we are able to present some examples where
there exist symmetric tensors z which do not attain their norms. It is known (see [3,
60]) that if X = d∗(w, 1) with w ∈ ℓ2 \ℓ1, the predual of the Lorentz sequence space,
then the set P(NX), for N ≥ 2, of all norm-attaining N -homogeneous polynomials
on X, is not dense in P(NX). Thus, Theorem 3.2.18 implies that there exists an
element z in ⊗̂π,s,NX which does not attain its norm.

At the same way as Proposition 3.2.5, we have that if X is a finite dimensional
Banach space, then every symmetric tensor attains its projective symmetric tensor
norm. And at the same way as Theorem 3.2.10, we have the following.

Theorem 3.2.19. Let X be a Banach space with the metric π-property. Then,
every symmetric tensor can be approximated by symmetric tensors which attain their
norms.

We also have the following result on the denseness of norm-attaining elements in
⊗̂π,s,NX

∗ under the hypothesis of Radon-Nikodým property (for short, RNP), which
is not covered by Theorem 3.2.19.

Theorem 3.2.20. Let X be a Banach space. Suppose that X∗ has the RNP and the
AP. Then, every symmetric tensor in ⊗̂π,s,NX

∗ can be approximated by symmetric
tensors that attain their norms.

As one can see (after Theorems 3.2.19 and 3.2.20)we only have positive results
about the denseness of norn-attaining symmetric tensors. In fact, we do not know
whether Theorem 3.2.16 holds for symmetric projective tensor products. In other
words, we do not know if the set of norm-attaining symmetric tensors is always
dense for every Banach space X.
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Chapter 4

Smoothness

In this chapter, we present the result of paper 4.

It is well-known that the existence of a smooth norm on a Banach space X has
several deep structural consequences. For instance, the presence of a C1-smooth
bump implies that the space is Asplund [38]; the presence of an LFC bump yields
that the space is a c0-saturated Asplund space [39, 80]. If X admits a C2-smooth
bump, then either it contains a copy of c0, or it is super-reflexive with type 2 [41].
Finally, if X admits a C∞-smooth bump and it contains no copy of c0, then it has
exact cotype 2k, for some k ∈ N, and it contains ℓ2k [34]. Each of these results in-
volves at some point the completeness of the space X, most frequently via the appeal
to some form of variational principles, such as the Ekeland variational principle [37],
Stegall’s variational principle [88], the Borwein–Preiss smooth variational principle
[11], or the compact variational principle [30]. It is therefore unclear whether any,
possibly weaker, form of the above results could be valid for general normed spaces.
In this direction, it was pointed out in [10, p. 96] that it is not known whether X is
an Asplund space provided the set where its norm fails to be Fréchet differentiable
is ‘small’ in some sense (also see [48, Problem 148]). For example, it is unknown
if there is a norm on ℓ1 that is Fréchet differentiable outside a countable union of
hyperplanes.

Nevertheless, some scattered results concerning normed spaces are present in
the literature. Vanderwerff [89] proved that every normed space with a countable
algebraic basis admits a C1-smooth norm; this result was later improved to obtain
a C∞-smooth norm [49], a polyhedral norm [32], and an analytic one [28]. These
results and the previous discussion motivated [48, Problem 149], [51], and recent
research of our paper [28], where the following problem was posed.

Problem 4.0.1. Let X be a Banach space and k ∈ N ∪ {∞, ω}. Is there a dense
subspace Y of X that admits a Ck-smooth norm?

This problem seems to be very general and ambitious. However, [28] answers it
in the positive for X separable and k = ω. Moreover, also in [28] it was solved in
the positive for ℓ∞ and k = ω, ℓ1(c) and k = ω, and spaces with long unconditional
bases and k = ∞.
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4.1 Main Result

The main result we have in this line of research can be summed up in only one
theorem. It is a vast generalization of the previous results mentioned before.

Theorem 4.1.1. Let X be a Banach space with a fundamental biorthogonal system
{eα;φα}α∈Γ. Consider the dense subspace Y of X given by Y := span{eα}α∈Γ. Then:

1. Y admits a polyhedral and LFC norm,

2. Y admits a C∞-smooth and LFC norm,

3. Y admits a C∞-smooth and LFC bump,

4. Y admits locally finite, σ-uniformly discrete C∞-smooth and LFC partitions
of unity,

5. Y admits a C1-smooth LUR norm.

Moreover, norms as in (1), (2), and (5) are dense in the set of all equivalent norms
on Y .

We would like to point out that Theorem 4.1.1 draws a complete picture con-
cerning smoothness in the sense that it implies the existence of smooth norms, norm
approximation by smooth norms, C1-smooth LUR norms, and the existence of par-
titions of unity, which are instrumental for the smooth approximation of continuous
or Lipschitz functions (see, for instance, [33, §VIII.3] or [50, Chapter 7]).

18



Chapter 5

Lineability

In this section, we present the results of papers 6 and 5. The first one concerns a
contribution about the study of “pathological” nets in Functional Analysis in the
sense of lineability. These families of nets arise from well-known results and we will
detail our results in a minute. On the other hand, in the second section, as the
main result, we construct an infinite metric space M such that the set SNA(M)
of strongly norm-attaining Lipschitz functions on M does not contain a subspace
which is linearly isometric to c0.

5.1 Lineability properties in Functional Analysis

In Functional Analysis, certain results hold only when one considers sequences. In
other words, they are not longer true when we consider the context of nets. In this
section, we study lineability properties of families of

1. nets that are weakly convergent and unbounded,

2. nets that fail the Banach-Steinhaus theorem,

3. nets indexed by a regular cardinal κ that are weakly dense and norm-unbounded
and finally

4. convergent series which have associated nets that are divergent.

We start with the following result. Theorem 5.1.1 improves and generalizes
[18]Theorem 2.1 by considering arbitrary infinite-dimensional TVS over R or C and
decreasing the size of the index set to make it ≤ c while still having the property of
being co-lineable.

Theorem 5.1.1. Let ℵ0 ≤ κ ≤ c be a cardinal number. Let X be a real or complex
infinite-dimensional TVS. There exists a directed set A of cardinality κ such that
the family of nets in X indexed by A that are unbounded and weakly convergent is
2κ-lineable.

In order to prove Theorem 5.1.1, we apply the Fichtenholz-Kantorovich-Hausdorff
theorem [44, 52], which says that, for Γ a set of infinite cardinality κ, there exists
always a family of independent subsets Y of Γ of cardinality 2κ. Let us recall that a
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family Y of subsets of Γ is independent if for any pairwise distinct sets Y1, . . . , Yn ∈ Y
and any ε1, . . . , εn ∈ {0, 1} we have that Y ε1

1 ∩ · · · ∩ Y εn
n ̸= ∅, where Y 1 and Y 0

denote Y and Γ \ Y , respectively.
Recall that the Banach-Steinhaus theorem states the following (see, for instance,

[26, Chapter 3, Theorem 14.6]): let X be Banach space and Y be a normed space;
denote by L(X, Y ) the Banach space of all continuous linear operators from X into
Y ; if a sequence (Tn)n∈N ⊆ L(X, Y ) strongly converges pointwise, then there is a
T ∈ L(X, Y ) such that (Tn)n∈N strongly converges pointwise to T and {∥Tn∥ : n ∈
N} is uniformly bounded. Let us recall that this theorem is a result only about
sequences, not nets (for an easy example, see [26, page 97] just after its proof as
a consequence of the Principle of Uniform Boundedness). In terms of lineability of
the nets which do not satisfy the Banach-Steinhaus theorem, we have the following
result.

Proposition 5.1.2. Let ℵ0 ≤ κ ≤ c be a cardinal number. If X and Y are
nonzero real or complex normed spaces, then there exists a directed set A with
card(A) = κ such that the set of nets of continuous linear operators (Ta)a∈A in
L(X, Y ) that converge pointwise and also strongly converge pointwise to an operator
but {∥Ta∥ : a ∈ A} is not bounded is 2κ-lineable.

In [5, Corollary 5] (see also [9, 64, 66] for more general results in this line),
the authors show that, in a separable Banach space X, there exists a sequence
(xn)n∈N ⊆ X such that {xn : n ∈ N} is weakly dense in X and ∥xn∥ −→ ∞
as n → ∞. As an immediate consequence of Theorem 5.1.4 below, we obtain
Corollary 5.1.3 below which is related to the existence of norm divergent sequences
that are weakly dense.

Corollary 5.1.3. Let X be real or complex separable Banach space. The set of all
sequences (xn)n∈N ⊆ X such that

(a) {∥xn∥ : n ∈ N} is unbounded and

(b) {xn : n ∈ N}σ(X,X∗)
= X

is c-lineable.

Theorem 5.1.4 reads as follows.

Theorem 5.1.4. Let X be a real or complex normed space with dens(X) = κ ≥ ℵ0,
where κ is a regular cardinal. Denote by UWDκ the set of all κ-sequences (xα)α<κ

such that

(i) {∥xα∥ : α < κ} is unbounded and

(ii) {xα : α < κ}σ(X,X∗)
= X.

Then, the set UWDκ is κ
+-lineable. Moreover, if 2<κ = κ, then UWDκ is 2

κ-lineable.

Let X be a normed space and I an infinite set. We can give meaning to the
convergence of the (possibly) “uncountable sum” in X, denoted by

∑
i∈I xi, where

each xi belongs to X, as follows: consider F to be the set of all finite subsets of I
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endowed with the inclusion ⊆. Bearing this in mind, we have that F is a directed
set. Now, for every F ∈ F , we define

xF :=
∑

i∈F
xi.

Each xF is then a well-defined vector of X (since F is finite) and (xF )F∈F is a net.
In the same line, we have the following definition. Given xi ∈ X for all i ∈ I, we say
that

∑
i∈I xi converges to x ∈ X whenever limF∈F xF = x. Recall that in Hilbert

spaces, the latter definition can be used to obtain some relevant characterization in
the non-separable case (see, for instance, [26, Chapter 1, Theorem 4.13]). We have
the following result.

Theorem 5.1.5. Let X be a normed space defined over K ∈ {R,C} and F the
family of finite subsets of N endowed with the order ⊆. The set of all sequences
(xn)n∈N ⊆ X such that

∑∞
n=1 xn is convergent and (xF )F∈F diverges is c-lineable.

5.2 Embeddings into the sets of Lipschitz func-

tions

In this short section, we will discuss the possibility of finding a linear space isomet-
rically isomorphic to c0 in the set SNA(M). This situation can be reduced only to
infinite metric spaces. Note also that the choice of the distinguished point 0 in the
pointed metric space M is irrelevant in our context. Indeed, if 0 and 0′ are two
distinguished points in M , then the mapping from Lip0(M) to Lip0′(M) defined
as f 7→ f − f(0′) is a linear isometry that completely preserves the strong norm-
attainment behaviour of the mappings, so we do not need to worry about the choice
of the distinguished point.

We start by guarantying the existence of an infinite complete metric space M
such that the set SNA(M) of strongly norm-attaining Lipschitz functions does not
contain a linearly isometric copy of c0, answering a question posed in [8, Remark
3.6]. See also [24, 25] for more relevant and important results/references regarding
spaceability in certain sets of Lipschitz functions.

Theorem 5.2.1. There exists an infinite bounded uniformly discrete metric space
M such that c0 is not isometrically contained in SNA(M) and for which no point in
M attains its separation radius.

Going in the opposite direction of Theorem 5.2.1, next we show that we can
always embed c0 isometrically in SNA(M) whenever M is infinite but not uniformly
discrete by using Ramsey’s theorem.

Theorem 5.2.2. Let M be an infinite non uniformly discrete metric space. Then,
the set SNA(M) contains a linearly isometric copy of c0.

From [8, Theorem 3.3] we have that if M is any infinite compact metric space,
then c0 is isomorphically embedded into SNA(M) (for countable compact metric
spaces this was achieved non constructively using the little Lipschitz space). Our

21



previous theorem provides a constructive proof that for any infinite compact met-
ric space M with a finite amount of cluster points, SNA(M) actually contains c0
isometrically.

Corollary 5.2.3. Let M be an infinite compact metric space. Then, the subset
SNA(M) contains a linearly isometric copy of c0.

It turns out that Corollary 5.2.3 cannot be improved to include all proper metric
spaces. Indeed, we have the following result.

Theorem 5.2.4. There exists an infinite proper uniformly discrete metric space M
such that c0 is not isometrically contained in SNA(M) and for which every point in
M attains its separation radius.

We tackle the problem of embedding c0(Γ) in SNA(M) isometrically, where Γ
is an arbitrary set of large cardinality. The next result is essentially based on the
proof of [55, Proposition 3].

Theorem 5.2.5. Let M be a metric space with dens(M) = Γ for some cardinal Γ.
Then, there exists a discrete set L ⊆ M with card(L) = Γ. Moreover, if cof(Γ) > ℵ0,
then L can be chosen to be uniformly discrete.
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Sepúlveda, Lineability: the search for linearity in mathematics, Monographs
and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2016.
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Abstract In this article, we provide necessary and sufficient conditions for the existence of non-norm-
attaining operators in L(E,F ). By using a theorem due to Pfitzner on James boundaries, we show that
if there exists a relatively compact set K of L(E,F ) (in the weak operator topology) such that 0 is an
element of its closure (in the weak operator topology) but it is not in its norm-closed convex hull, then
we can guarantee the existence of an operator that does not attain its norm. This allows us to provide
the following generalisation of results due to Holub and Mujica. If E is a reflexive space, F is an arbitrary
Banach space and the pair (E,F ) has the (pointwise-)bounded compact approximation property, then
the following are equivalent:

(i) K(E,F ) = L(E,F );

(ii) Every operator from E into F attains its norm;

(iii) (L(E,F ),τc)∗ = (L(E,F ), ‖·‖)∗,

where τc denotes the topology of compact convergence. We conclude the article by presenting a
characterisation of the Schur property in terms of norm-attaining operators.

Keywords and phrases: James theorem, norm-attaining operators, compact approximation property

2020 Mathematics Subject Classification: 46B20, 46B10, 46B28

1. Introduction

The famous James theorem states that a Banach space E is reflexive if and only if every

bounded linear functional on E attains its norm. By using this characterisation, one can

check that if every bounded linear operator from a Banach space E into a Banach space
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2 S. Dantas et al.

F is norm-attaining, then E must be reflexive, whereas the range space F is not forced to
be reflexive in general. Indeed, every bounded linear operator from a reflexive space into

a Banach space that satisfies the Schur property is compact (by the Eberlein-Šmulian

theorem) and any compact operator from a reflexive space into an arbitrary Banach
space is norm-attaining. Therefore, it seems natural to wonder whether it is possible

to guarantee the existence of a non-norm-attaining operator from the existence of a

noncompact operator. This brings us back to the 1970s when J.R. Holub proved that this

is, in fact, true under approximation property assumptions (see [16, Theorem 2]). Almost
30 years later, J. Mujica improved Holub’s result by using the compact approximation

property (see [25, Theorem 2.1]), which is a weaker assumption than the approximation

property. However, both results require the reflexivity on both domain and range spaces,
so the following question arises naturally:

Given a reflexive space E and an arbitrary Banach space F, under which assumptions

may we guarantee the existence of non-norm-attaining operators in L(E,F )?

Coming back to Holub and Mujica’s results, we would like to highlight what they

proved in the direction of the above question. For a background on necessary definitions

and notations, we refer the reader to Section 2. In what follows, τc denotes the topology
of compact convergence and ‖ · ‖ denotes the norm topology in L(E,F ).

Theorem ([16, Theorem 2] and [25, Theorem 2.1]). Let E and F be both reflexive spaces.

(a) If L(E,F ) is nonreflexive, there is a non-norm-attaining operator S ∈ L(E,F ).

(b) If E or F has the (compact) approximation property, then the following statements

are equivalent:
(i) There exists a non-norm-attaining operator S ∈ L(E,F );

(ii) L(E,F ) 6= K(E,F );

(iii) L(E,F ) is nonreflexive;

(iv) (L(E,F ),‖ · ‖)∗ 6= (L(E,F ),τc)∗.

The proof of the above result relies on the fact that if F is a reflexive space, then

L(E,F ) is the dual space of the projective tensor product E⊗̂πF ∗. However, if the range

space F is nonreflexive, then L(E,F ) is always nonreflexive (see, for instance, [30]).
As a way of extending the above results to the case of nonreflexive range spaces, we

borrow some of the techniques used by R.C. James (see [17, 18]). As a matter of fact, one

of his results [18, Theorem 1] implies that a separable Banach space E is nonreflexive if

and only if given 0 < θ < 1, there exists a sequence (x∗
n) in BE∗ such that x∗

n
w∗
−→ 0 and

dist (0, co{x∗
n : n ∈ N}) > θ, which in turn is equivalent to the existence of a relatively

weak-star compact set K ⊆ BE∗ such that 0 ∈ K
w∗

and 0 6∈ co‖·‖(K). This motivates us
to define the following property.

Definition 1.1. We say that a pair (E,F ) of Banach spaces has the James property if

there exists a relatively weak operator topology (WOT)-compact set K ⊆ L(E,F ) such

that 0 ∈ K
WOT

and 0 6∈ co‖·‖(K).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748021000311
Downloaded from https://www.cambridge.org/core. Universitat Jaume I, on 09 Jul 2021 at 05:34:13, subject to the Cambridge Core terms of use, available at



On the Existence of Non-Norm-Attaining Operators 3

We will prove that the James property is a sufficient condition to guarantee the existence
of an operator that does not attain its norm, which is our first aim in the present

article.

Theorem A. Let E and F be Banach spaces. If the pair (E,F ) has the James property,

then there exists a non-norm-attaining operator in L(E,F ).

Next, we prove that (L(E,F ),‖ · ‖)∗ does not coincide with (L(E,F ),τc)∗ whenever a
pair (E,F ) satisfies the James property (see Proposition 3.1). From this, we can see that

whenever the pair (E,F ) has the James property, the Banach space L(E,F ) cannot be

reflexive due to [25, Lemma 2.3].

We observe, for a reflexive space E and an arbitrary Banach space F, that (1) the
unit ball of K(E,F ) is closed in the strong operator topology if and only if it is

sequentially closed in this topology (see Lemma 3.4) and (2) K(E,F ) = L(E,F ) implies

that (L(E,F ),‖ · ‖)∗ = (L(E,F ),τc)∗ by using the result [12, Theorem 1] due to M.
Feder and P. Saphar. In addition, we consider the concept of the pointwise-bounded

compact approximation property for a pair of Banach spaces in the way it is done in [3]

(see Definition 2.1) and prove that K(E,F ) = L(E,F ) when either (3) the norm-closed
unit ball of K(E,F ) is closed in the strong operator topology or (4) (L(E,F ),‖ · ‖)∗ =

(L(E,F ),τc)∗ under the just mentioned approximation property assumption (see Lemma

3.7). Combining (1)–(4) together with Theorem A, we get a generalisation of Holub

and Mujica’s results, where we no longer need reflexivity on the target space F and
E and F might not have the bounded compact approximation property (CAP) (see

Example 2.2).

Theorem B. Let E be a reflexive space and F be an arbitrary Banach space. Consider

the following conditions:

(a) K(E,F ) = L(E,F ).

(b) Every operator from E into F attains its norm.

(c) The unit ball BK(E,F ) is closed in the strong operator topology.

(d) (L(E,F ),τc)∗ = (L(E,F ), ‖·‖)∗.

Then, we always have (a) =⇒ (b) =⇒ (c) and (a) =⇒ (d) =⇒ (c). Additionally, if

the pair (E,F ) has the bounded compact approximation property, then (c) =⇒ (a) and

therefore all of the statements are equivalent.

The following diagram summarises most of the results included in this article. In
what follows, E is supposed to be any reflexive space and F is any arbitrary Banach

space. See Definition 2.1 in Section 2 for the definition of the pointwise-bounded compact

approximation property (BCAP).
Finally, as an application of Theorem B, we connect the Schur property with the case

where every operator attains its norm and obtain the following characterisation, which

follows from Theorem 3.10.
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BK(E,F )
SOT 6=BK(E,F )

(E,F ) has the James property

L(E,F ) 6=NA(E,F )L(E,F ) 6=K(E,F )

(L(E,F ),‖·‖)∗ 6=(L(E,F ),τc)
∗

L(E,F ) is non-reflexive

If (E,F ) has the pointwise-BCAP

If F is reflexive

Theorem C. Let F be a Banach space. The following statements are equivalent:

(a) F has the Schur property.

(b) K(E,F ) = L(E,F ) for every reflexive space E.

(c) NA(E,F ) = L(E,F ) for every reflexive space E.

(d) K(G,F ) = L(G,F ) for every reflexive space G with basis.

(e) NA(G,F ) = L(G,F ) for every reflexive space G with basis.

2. Preliminaries

Throughout the article, E and F will be Banach spaces over a field K, which can be either

real or complex numbers. We denote by BE and SE the closed unit ball and the unit sphere
of the Banach space E, respectively. For a subset K of E, co(K) (respectively, co(K))

denotes the convex hull (respectively, closed convex hull) of K. The space of all bounded

linear operators from E into F is denoted by L(E,F ). The symbol K(E,F ) (respectively,
W(E,F )) stands for the space of all compact operators (respectively, weakly compact

operators) from E into F, whereas the symbol F(E,F ) is used to denote the space of

all finite-rank operators. Finally, let us recall that an operator T ∈ L(E,F ) attains its
norm or is norm-attaining if there exists x ∈ BE such that ‖T (x)‖ = ‖T‖. By NA(E,F )

we mean the set of all norm-attaining operators from E into F. If E = F , then we simply

write NA(E) instead of NA(E,E) and we do the same with the above classes of operators.

We will be using different topologies in L(E,F ). We denote by τc the topology of compact
convergence; that is, the topology of uniform convergence on compact subsets of E. The

WOT is defined by the basic neighbourhoods

N(T ;A,B,ε) :=
{
S ∈ L(E,F ) : |y∗(T −S)(x)| < ε, for every y∗ ∈ B,x ∈ A

}
,

where A and B are arbitrary finite sets in E and F ∗, respectively, and ε > 0. Thus, in

the WOT, a net (Tα) converges to T if and only if (y∗(Tα(x))) converges to y∗(T (x)) for

every x ∈ E and y∗ ∈ F ∗. Analogously, the strong operator topology (SOT) is defined by
the basic neighbourhoods

N(T ;A,ε) :=
{
S ∈ L(E,F ) : ‖(T −S)(x)‖ < ε, for every x ∈ A

}
,
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On the Existence of Non-Norm-Attaining Operators 5

where A is an arbitrary finite set in E and ε > 0. Thus, a net (Tα) converges in the SOT

to T if and only if (Tα(x)) converges in norm to T (x) for every x ∈ E. We will deal

with SOT and WOT closures of bounded sets in L(E,F ). It is worth mentioning that for
a bounded convex set in L(E,F ), the WOT closure and the SOT closure coincide [10,

Corollary VI.1.5]. Thus, the SOT and the WOT in some results in this article can be

interchanged. For a more detailed exposition on topologies in L(E,F ), we refer the reader
to [8, 10].

Let us present now the necessary definitions on approximation properties we will need.

A Banach space E is said to have the approximation property (AP) if the identity

operator IdE in L(E) belongs to F(E)
τc

. Given λ > 1, E is said to have the λ-bounded
approximation property (λ-BAP) when IdE belongs to λBF(E)

τc
. A Banach space is said

to have the bounded approximation property (BAP) if it has the λ-BAP for some λ > 1. In

the special case when λ = 1, we say that E has the metric approximation property (MAP).

Also, recall that E is said to have the CAP if the identity operator IdE in L(E) belongs to

K(E)
τc

. The λ-bounded compact approximation property (λ-BCAP), BCAP and metric
compact approximation property (MCAP) for a Banach space E can be defined in an

analogous way. It is known that a reflexive space has the AP if and only if it has the

MAP (see [14]). Analogously, every reflexive space with the CAP also has the MCAP (see
[5, Proposition 1 and Remark 1]). We refer the reader to [22, 23] and [4] for background.

On the other hand, E. Bonde introduced in [3] the AP and λ-BAP for pairs of Banach

spaces in the following way: a pair (E,F ) of Banach spaces is said to have the AP if

any operator T ∈ L(E,F ) belongs to F(E,F )
τc

. If λ > 1 and every operator T ∈ L(E,F )
belongs to λ‖T‖BF(E,F )

τc
, then (E,F ) is said to have the λ-BAP or simply the BAP.

It is clear that if E or F has the AP (respectively, BAP), then the pair (E,F ) has the

AP (respectively, BAP). It is observed in [3, Section 4] that there are pairs of Banach

spaces (E,F ) with the BAP such that E and F do not have the BAP. Similarly, we have
the following.

Definition 2.1. The pair (E,F ) of Banach spaces is said to have the compact

approximation property (CAP) if every operator T ∈ L(E,F ) belongs to K(E,F )
τc

. If

λ > 1 and every operator T ∈ L(E,F ) belongs to λ‖T‖BK(E,F )
τc

, then (E,F ) is said to
have the λ-BCAP or simply the BCAP. In the case when λ = 1, we say that the pair

(E,F ) has the MCAP.

Moreover, as one of the anonymous referees and Miguel Mart́ın suggested, we say that
the pair (E,F ) has the pointwise-BCAP if for every operator T ∈ L(E,F ) there is a

constant λT > 1 such that T ∈ λT BK(E,F )
τc

.

Let us note that the BCAP implies the pointwise-BCAP and the pointwise-BCAP
implies the CAP. In addition, for a Banach space E, the pair (E,E) has the BCAP if and

only if it has the pointwise-BCAP (just take λ := λI with I the identity on E from the

definition of the pointwise-BCAP and note that T = T ◦I ⊆ {T ◦K : K ∈ λIBK(E,E)}
τc ⊆

λ‖T‖BK(E,E)
τc

for every T ∈ L(E,E)). However, we do not know whether the pointwise-

BCAP of a pair (E,F ) is equivalent to the BCAP or the CAP for an arbitrary Banach
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6 S. Dantas et al.

space F even if E is assumed to be reflexive. The next example shows that a pair (E,F )

might have the BCAP even if E and F do not have the CAP.

Example 2.2. In [3, Example 4.2], it is shown that whenever E is a subspace of ℓp1

and F is a subspace of ℓp2
with 1 6 p2 < 2 < p1 < ∞, the pair (E,F ) has the BAP and

therefore the BCAP. Nevertheless, for every 1 < p < ∞ with p 6= 2 there is a subspace of ℓp

failing the CAP (see [6] and [22, Theorem 1.g.4 and Remark 2 in pg. 111]). In particular,

there are Banach spaces E and F such that (E,F ) has the BCAP and E and F do not
have the CAP. Therefore, assuming that a pair (E,F ) of Banach spaces has the BCAP

is more general than E or F having the CAP.

3. The Results

In this section, we shall prove Theorems A, B, C and their consequences. We start by

proving Theorem A. To do so, let us recall that a set B ⊆ BE∗ is called a James boundary
of a Banach space E if for every x ∈ SE there exists f ∈ B such that f(x) = 1. For a

subset G of E∗, we shall denote by w(E,G) the weak topology of X induced by G.

Proof of Theorem A. Let us assume by contradiction that every operator from E into

F attains its norm. Then, the family

B :=
{

x⊗y∗ : x ∈ SE,y∗ ∈ SF ∗

}

is a James boundary of L(E,F ). Indeed, for an arbitrary operator T ∈ L(E,F ) = NA(E,F ),

take x ∈ SE to be such that ‖T (x)‖ = ‖T‖ and then y∗ ∈ SF ∗ to be such that
|y∗(T (x))| = ‖T (x)‖ = ‖T‖. Now, because (E,F ) has the James property, there exists

a relatively WOT-compact set K ⊆ L(E,F ) such that 0 ∈ K
WOT

and 0 6∈ co‖·‖(K). By

the uniform boundedness principle, the set K
WOT

is norm-bounded. Note that the WOT-

topology is the topology of pointwise convergence on B, so it coincides with w(L(E,F ),B).

By hypothesis, K
WOT

is WOT-compact or, equivalently, w(L(E,F ),B)-compact. By a

theorem of Pfitzner (see [27] or [11, Theorem 3.121]), we have that K
WOT

is weakly

compact. Therefore, 0 ∈ K
WOT

= K
w

, which in particular gives that 0 ∈ cow(K) =

co‖·‖(K). This contradiction yields a non-norm-attaining operator T ∈ L(E,F ) as

desired.
Let us observe that if a pair (E,F ) of Banach spaces has the James property, then

the dual of L(E,F ) endowed with the norm topology does not coincide with the dual

of L(E,F ) endowed with the topology τc of compact convergence. As a matter of fact,

if K is a subset of E given as in Definition 1.1, then there exists ϕ ∈ (L(E,F ),‖ · ‖)∗

such that 0 = Reϕ(0) > sup{Reϕ(T ) : T ∈ co(K)} thanks to the Hahn-Banach separation

theorem. This implies that ϕ cannot be in (L(E,F ),τc)∗ because 0 ∈ coWOT (K) = coτc(K).

Moreover, using [25, Lemma 2.3], we see that if (L(E,F ),‖ · ‖)∗ 6= (L(E,F ),τc)∗, then the
space L(E,F ) cannot be reflexive. Summarising, we obtain the following result.

Proposition 3.1. Let E and F be Banach spaces. If the pair (E,F ) has the James

property, then
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On the Existence of Non-Norm-Attaining Operators 7

(i) (L(E,F ),‖ · ‖)∗ 6= (L(E,F ),τc)∗.

(ii) L(E,F ) is nonreflexive.

One easy consequence of Theorem A is that if E is reflexive and a pair (E,F ) has the
James property, then K(E,F ) cannot be equal to the whole space L(E,F ). As a matter

of fact, the following result gives us a rather general observation.

Proposition 3.2. Let E be a reflexive space and F be an arbitrary Banach space. If
K(E,F ) = L(E,F ), then (L(E,F ),‖ · ‖)∗ = (L(E,F ),τc)∗.

Proof. Let D : E⊗̂πF ∗ −→ (L(E,F ),τc)∗ be defined by D(z)(T ) :=
∑∞

n=1 y∗
n(T (xn)) for

every z ∈ E⊗̂πF ∗ with z =
∑∞

n=1 xn ⊗ y∗
n and T ∈ L(E,F ). It is well known that D is

a surjective map (see, for example, [8, Section 5.5, pg. 62]). Therefore, we have that
(L(E,F ),τc)∗ = (E⊗̂πF ∗)/kerD. On the other hand, from the result [12, Theorem 1], we

have that the map V : E⊗̂πF ∗ −→ (K(E,F ),‖·‖)∗ defined by V (z)(T ) :=
∑∞

n=1 y∗
n(T (xn))

for z =
∑∞

n=1 xn ⊗y∗
n and T ∈ K(E,F ) satisfies the following: for every ϕ ∈ (K(E,F ),‖·‖)∗,

there exists v ∈ E⊗̂πF ∗ such that ϕ = V (v) and ‖ϕ‖ = ‖v‖. In particular, we have that

(K(E,F ),‖ · ‖)∗ = (E⊗̂πF ∗)/kerV . Thus, if K(E,F ) = L(E,F ), then D(z)(T ) = V (z)(T )

for every z ∈ E⊗̂πF ∗ and every T ∈ K(E,F ); hence, kerD = kerV and (L(E,F ),‖ · ‖)∗ =

(L(E,F ),τc)∗.

Let us now go towards the proof of Theorem B. We show the following result, which

will help us to prove that if (E,F ) does not satisfy the James property, then BK(E,F )
SOT

coincides with BK(E,F ). Recall that the sequential closure of a set in a topological space

is the family of all limit points of sequences on the set in consideration.

Lemma 3.3. Let E and F be Banach spaces. Suppose that there exists a norm-closed
convex set C ⊆ L(E,F ) that is not sequentially closed in the strong operator topology.

Then (E,F ) has the James property.

Proof. Suppose that C ⊆ L(E,F ) is norm-closed but not SOT-sequentially closed. This
implies that there exists a sequence of operators (Rn) ⊆ C such that (Rn) converges in

the SOT (and therefore in the WOT) to an operator R /∈ C. We may (and we do) suppose

that R = 0. Set K := {Rn : n ∈ N} ⊆ L(E,F ). Therefore, K is relatively WOT-compact,

0 ∈ K
WOT

but 0 cannot be in co(K) by hypothesis. Therefore, (E,F ) has the James

property.

It is not difficult to check that for a bounded subset C of L(E,F ), with E separable,

the SOT-closure of C coincides with the SOT-sequential closure of C. Namely, if D =
{xn : n ∈ N} is a countable norm-dense subset of E and C is a bounded subset of L(E,F )

with T ∈ C
SOT

, then for each n ∈ N we can pick Tn ∈ C such that ‖Tn(xm)−T (xm)‖ 6 1
n

for every m 6 n. Because (Tn) is a uniformly bounded sequence of operators converging

in norm on a dense set, it follows from a routine computation that Tn(x) converges in
norm to T (x) for every x ∈ E, so T is in the SOT-sequential closure of C.

Furthermore, the following result shows that the unit ball of K(E,F ) is SOT-

closed if it is SOT-sequentially closed under the assumption that E has the separable
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8 S. Dantas et al.

complementation property. Recall that a Banach space E is said to have the separable
complementation property if for every separable subspace Y in E there is a separable

subspace Z with Y ⊆ Z ⊆ E and Z is complemented in E. It is worth mentioning that D.

Amir and J. Lindenstrauss proved in [2] that every weakly compactly generated Banach
space (and therefore every reflexive space) has the separable complementation property.

Lemma 3.4. Let E be a Banach space with the separable complementation property and
F be an arbitrary Banach space. Then, the unit ball BK(E,F ) is SOT-closed if and only if

it is SOT-sequentially closed.

Proof. It is enough to check that if BK(E,F ) is not SOT-closed then it is not SOT-

sequentially closed. Suppose that T is an operator that belongs to the SOT-closure of

BK(E,F ) but not to BK(E,F ). Note that T is noncompact; hence, there exists a separable
subspace E0 of E such that T |E0

is noncompact. Choose a separable subspace Z of E such

that E0 ⊆ Z ⊆ E and Z is complemented in E. Note that T |Z is noncompact and belongs

to the SOT-closure of BK(Z,F ). Because Z is separable, we have that T |Z is indeed in
the SOT-sequential closure of BK(Z,F ). Let (Kn) be a sequence in BK(Z,F ) converging to

T |Z in the SOT. Letting P be a projection from E onto Z, it is immediate that T |Z ◦P

is noncompact and Kn ◦P is SOT-convergent to T |Z ◦P . This proves that BK(E,F ) is not

SOT-sequentially closed.

It is worth mentioning, however, that the SOT-closure and SOT-sequential closure are

different in general, as the following remark shows.

Remark 3.5. In general, it is not true that the SOT-sequential closure of a bounded

convex set C in L(E,F ) coincides with the SOT-closure of C. An example is given by

C :=
{

T ∈ BL(ℓ2(ω1)) : there is α < ω1 such that (T (x))β = 0 for every

β > α, x ∈ ℓ2(ω1)
}

.

It is immediate that C is SOT-sequentially closed. Nevertheless, because the canonical

projections Pα ∈ L(ℓ2(ω1)) with α < ω1, defined by (Pα(x))β = xβ if β 6 α and 0 otherwise
are in C and satisfy that {Pα}α<ω1

SOT-converges to the identity, which is not in C, it

follows that C is not SOT-closed.

Notice that if E is reflexive, then it has the separable complementation property. By

Lemma 3.4, BK(E,F ) is SOT-closed if and only if it is SOT-sequentially closed. Therefore,

if we assume that BK(E,F )
SOT 6= BK(E,F ), then (E,F ) has the James property by Lemma

3.3. Therefore, we have the following result.

Proposition 3.6. Let E and F be Banach spaces. If BK(E,F )
SOT 6= BK(E,F ), then (E,F )

has the James property.

In order to prove Theorem B, we also need the following lemma. We thank Miguel

Mart́ın and one of the anonymous referees for suggesting the use of the pointwise-BCAP

instead of the BCAP in the following lemma.
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Lemma 3.7. Let E and F be Banach spaces. Suppose that the pair (E,F ) has the

pointwise-BCAP. Then K(E,F ) = L(E,F ) if and only if the unit ball BK(E,F ) is SOT-

closed.

Proof. First, note that because the pair (E,F ) has the pointwise-BCAP, we have

L(E,F ) =
⋃

λ>0 λBK(E,F )
τc

. Because BK(E,F )
τc ⊆ BK(E,F )

SOT
, we have that L(E,F ) =

⋃
λ>0 λBK(E,F )

SOT
. So, if we assume BK(E,F ) to be SOT-closed, then

L(E,F ) =
⋃

λ>0

λBK(E,F )
SOT

=
⋃

λ>0

λBK(E,F ) = K(E,F ).

The other implication is immediate.

Let us finally recall the following conditions and prove Theorem B as a consequence of
Theorem A, Proposition 3.1, Proposition 3.2, Proposition 3.6 and Lemma 3.7.

(a) K(E,F ) = L(E,F ).

(b) Every operator from E into F attains its norm.

(c) The unit ball BK(E,F ) is closed in the strong operator topology.

(d) (L(E,F ),τc)∗ = (L(E,F ), ‖·‖)∗.

Proof of Theorem B. Let E be reflexive and F be an arbitrary Banach space. It was

noted in the Introduction that (a) =⇒ (b) holds. Moreover, (b) implies that (E,F ) does

not have the James property (by applying Theorem A), which in turn implies (c) (by
applying Proposition 3.6). On the other hand, Proposition 3.2 shows (a) =⇒ (d). By

Proposition 3.1, (d) implies that (E,F ) does not have the James Property and, therefore,

it implies (c) (by applying Proposition 3.6). Finally, if the pair (E,F ) has the BCAP,
then the implication (c) =⇒ (a) follows from Lemma 3.7 and all statements (a)–(d) are

equivalent.

M.I. Ostrovskii asked in [24, §12, pg. 65] whether there exist infinite-dimensional Banach

spaces on which every operator attains its norm (this question is also asked in [20, Problem
8] and [15, Problem 217]). By Holub’s theorem [16], if such an infinite-dimensional Banach

space exists, it cannot have the AP. Theorem 3.8 is a generalisation of this fact. Let us

recall that given a (norm-closed) operator ideal A and λ > 1, a Banach space E is said to

have the λ-A-approximation property (λ-A-AP) if the identity operator IdE belongs to

{T ∈ A(E,E) : ‖T‖ 6 λ}τc
. We say that E has the bounded-A-AP if it has the λ-A-AP

for some λ > 1. This general approximation property has been studied, for instance, in

[13, 21, 26, 29].

Theorem 3.8. If there is an infinite-dimensional Banach space E such that every
operator on L(E) attains its norm, then E does not have the bounded A-approximation

property for any nontrivial ideal A (i.e., for any ideal A 6= L(E)).

Proof. As highlighted in [24, §12, pg. 66], due to a result of N.J. Kalton, if such a

Banach space E exists, then it must be separable. Therefore, the SOT-closure of the set

B := {T ∈ A(E,E) : ‖T‖ 6 1} in L(E) coincides with its SOT-sequential closure. Thus, if
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every operator on L(E) attains its norm, then B is SOT-closed by Lemma 3.3. Suppose

that E has the bounded A-approximation property. Then, because B
τc ⊆ B

SOT
= B, we

have that B contains a multiple of the identity and therefore A contains the identity on

E, so A = L(E).

We finally present the proof of Theorem C as a direct consequence of Theorem B and
Proposition 3.9. Recall that a Banach space E has the Schur property if every weakly

convergent sequence is norm convergent. It is known that a Banach space F has the

Schur property if and only if every weakly compact operator from E into F is compact
for any Banach space E (see, for example, [28, Section 3.2, pg. 61]). Also, it is proved

in [9, Theorem 1] that a Banach space F has the Schur property if and only if the weak

Grothendieck compactness principle holds in F ; that is, every weakly compact subset of F
is contained in the closed convex hull of a weakly null sequence. Then W.B. Johnson et al.

gave an alternative proof in [19, Theorem 1.1] for this result by using the Davis-Figiel-

Johnson-Pe lczyński factorisation theorem [7]. Moreover, it was observed in [19, Theorem

3.3] that a Banach space F has the Schur property if and only if W∞(E,F ) ⊆ W(E,F ) for
every Banach space E (see the precise definition of these sets just after Proposition 3.9).

The following result will be used as an important tool in the proof of Theorem 3.10.

Proposition 3.9. Let F be a Banach space. If F fails to have the Schur property, then

there exists a reflexive space with basis E such that K(E,F ) 6= L(E,F ).

Proof. Take (xn) ⊆ SF to be a weakly null sequence in F, which is not norm null.

Because the absolute closed convex hull of {xn : n ∈ N} is weakly compact, the operator

T ∈ L(ℓ1,F ) given by T (en) := xn for each n ∈ N defines a weakly compact operator (which
is not compact). By the Davis-Figiel-Johnson-Pe lczyński factorisation theorem [7], there

exists a reflexive space E0 such that T = S ◦R, where R ∈ L(ℓ1,E0) and S ∈ L(E0,F ). In

particular, note that S cannot be a compact operator. Now, pick a weakly null sequence
(vn) ⊆ E0 so that S(vn) does not admit a convergent subsequence. Because (vn) is weakly

null, consider a subsequence that is a basic sequence of E0 (see [1, Proposition 1.5.4]) and

denote it again by (vn). Let E := span{vn}n∈N. Then, E is a closed reflexive space with

basis and S(vn) does not admit a convergent subsequence. Therefore, we conclude that
K(E,F ) 6= L(E,F ).

Compared to the previously known results in [19], Theorem 3.10 not only provides

a new characterisation of the Schur property in terms of norm-attaining operators but

also shows that we can restrict the possible candidates for a domain space as in the
below items (f)–(i) by considering only reflexive Banach spaces with basis. Recall that

T ∈ L(E,F ) is completely continuous if T sends weakly null sequences in E to norm null

sequences in F. We denote by V(E,F ) the space of all completely continuous operators
from E into F. Let us denote by W∞(E,F ) the space of all weakly ∞-compact operators

from E into F, which are introduced in [31]. A subset C of a Banach space E is called

relatively weakly ∞-compact if there exists a weakly null sequence (xn) in E such that
C ⊆ {∑∞

n=1 anxn : (an) ∈ Bℓ1} and an operator T ∈ L(E,F ) is said to be weakly ∞-compact

if T (BE) is a relatively weakly ∞-compact subset of F.

It is immediate to notice that Theorem C follows from Theorem 3.10.
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Theorem 3.10. Let F be an arbitrary Banach space. The following are equivalent:

(a) F has the Schur property.

(b) K(E,F ) = L(E,F ) for every reflexive space E.

(c) W∞(E,F ) = L(E,F ) for every reflexive space E.

(d) V(E,F ) = L(E,F ) for every reflexive space E.

(e) NA(E,F ) = L(E,F ) for every reflexive space E.

(f) K(G,F ) = L(G,F ) for every reflexive space G with basis.

(g) NA(G,F ) = L(G,F ) for every reflexive space G with basis.

(h) W∞(G,F ) = L(G,F ) for every reflexive space G with basis.

(i) V(G,F ) = L(G,F ) for every reflexive space G with basis.

Proof. The following diagram holds.

(c)

(b) (d) (h)

(a) (e) (i)

(f) (g)

Indeed, by definition we have that K(E,F ) ⊆ W∞(E,F ) ⊆ W(E,F ) for any Banach space
E and F, and it is also known that K(E,F ) ⊆ W∞(E,F ) ⊆ V(E,F ) (see [19, Proposition

3.1]). Moreover, if T is an element of V(E,F ) with E reflexive, then T ∈ NA(E,F ) thanks

to the weak sequential compactness of BE . Thus, it is immediate that (a) =⇒ (b) =⇒ (c)
=⇒ (d) =⇒ (e) =⇒ (g) and (c) =⇒ (h) =⇒ (i) =⇒ (g) hold. Because a reflexive Banach

space with basis has the MAP, (f) ⇐⇒ (g) follows from Theorem B. Finally, (f) =⇒ (a)

is already obtained by Proposition 3.9.

Questions and comments. Let us conclude the article by recalling some open
problems. In [16], Holub conjectured that if E and F are both reflexive, then L(E,F )

is reflexive if and only if L(E,F ) = K(E,F ) = NA(E,F ). We do not know whether, in

general, when E and F are both reflexive spaces all of the implications in the diagram
of the Introduction are indeed equivalences. A similar open question posed by Miguel

Mart́ın and one of the anonymous referees asks whether Theorem A is in general an

equivalence; that is, whether a pair (E,F ) has the James property whenever there exists

a non-norm-attaining operator in L(E,F ). Note that James proved that this implication
holds when E is separable and F = R (recall the paragraph preceding Definition 1.1).

Acknowledgements We thank José Rodŕıguez for suggesting Definition 1.1 and the

use of Pfitzner’s theorem to strengthen and simplify part of the content of the article.

We are also grateful to Miguel Mart́ın and anonymous referees for pointing out that

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1474748021000311
Downloaded from https://www.cambridge.org/core. Universitat Jaume I, on 09 Jul 2021 at 05:34:13, subject to the Cambridge Core terms of use, available at



12 S. Dantas et al.

only the pointwise-BCAP is needed in the proof of Lemma 3.7 and for several helpful
suggestions. Finally, we thank Richard Aron, Gilles Godefroy and Manuel Maestre for

fruitful conversations on the topic of the present article.

S. Dantas was supported by the Spanish AEI Project PID2019-106529GB-
I00/AEI/10.13039/501100011033, by PGC2018-093794-B-I00 (MCIU/AEI/FEDER,

UE), by the project OPVVV CAAS CZ.02.1.01/0.0/0.0/16 019/0000778 and by the

Estonian Research Council grant PRG877. The second author was supported by the

NRF (NRF-2019R1A2C1003857). The third author was partially supported by Fundación
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1. Introduction

One of the most classical topics in the theory of Banach spaces is the study
of norm-attaining functions. As a matter of fact, one of the most famous
characterizations of reflexivity, due to James, is described in terms of linear
functionals which attain their norms (see, for instance, [17, Corollary 3.56]).
In the same direction, Bishop and Phelps proved that the set of all norm-
attaining linear functionals is dense in X∗ (see [5]). This motivated Linden-
strauss to study the analogous problem for bounded linear operators in his
seminal paper [29], where it was obtained for the first time an example of a
Banach space such that the Bishop–Phelps theorem is no longer true for this
class of functions. Consequently, this opened the gate for a crucial and vast
research on the topic during the past 50 years in many different directions.
Indeed, just to name a few, J. Bourgain, R.E. Huff, J. Johnson, W. Schacher-
mayer, J.J. Uhl, J. Wolfe, and V. Zizler continued the study about the set of
all linear operators which attain their norms ([6,21,23,38–40]); M. Acosta,
R. Aron, F.J. Aguirre, Y.S. Choi, R. Payá ([1,3,10] tackled problems in the
same line involving bilinear mappings; Garćıa and Maestre considered it for
homogeneous polynomials (see [2,4]); and more recently several problems on
norm-attainment of Lipschitz maps were considered (see [8,9,18,26]).

Six years ago, Mart́ın solved negatively a problem from the 1970s
(posed explicitly by Diestel and Uhl in [15] and Johnson and Wolfe in [23])
on whether every compact operator can be approximated or not by norm-
attaining operators (see [32, Theorem 1]). On the other hand, the main open
problem in the theory of norm-attaining operators nowadays seems to be if
every finite-rank operator can be approximated by norm-attaining operators
(see [32, Question 9]). Since every nuclear operator is a limit of a sequence
of finite-rank operators, we were motivated to try to take one step further
in the theory by studying the set of all nuclear operators which attain their
(nuclear) norms systematically.

On account of clear relations between nuclear operators and projec-
tive tensor products, we focus also on a concept of norm-attainment in pro-
jective tensor products (see Definition 2.1). This is justifiable, since it has
strong and deep connections with different open problems coming from the
study of norm-attaining operators. To mention one of them, let Y be a finite-
dimensional Banach space. Then, for an arbitrary Banach space Z, every
operator from Y into Z attains its norm by using the compactness of the
unit ball of Y . If we suppose that the same happens with the nuclear oper-
ators, since Y is finite dimensional, we would have that the set of all norm-
attaining tensors in Y ∗⊗̂πZ is the whole set Y ∗⊗̂πZ for every Banach space
Z. By Corollary 3.11, the set of all norm-attaining operators from Z into Y
would be dense in L(Z, Y ) for every Banach space Z and this would mean
finally that every finite-rank operator can be approximated by norm-attaining
operators.

We proceed now to describe the content of the paper. In Sect. 2, we
give the necessary background material to help the reader to follow the track
of ideas from the text without having to jump into references so often. In
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particular, we give the precise definitions of norm-attainment in the con-
text of nuclear operators and tensor products (see Sect. 2.3) as well as the
concepts of approximations. Section 3 is devoted to the first examples of
nuclear operators and tensors which attain their norms. We give a charac-
terization for these kind of elements, which will be very helpful during the
entire paper. We prove that if every element in the projective tensor product
between two Banach spaces X,Y attains its projective norm, then the set of
all norm-attaining operators from X into Y ∗ is dense. Since there exist oper-
ators which cannot be approximated by norm-attaining operators, this result
gives the first examples of nuclear operators that do not attain their nuclear
norms, meaning that the study of norm-attaining nuclear operators is not a
trivial problem. In Sect. 4, we show that the set of all norm-attaining tensors
(in particular, we get the analogous result for nuclear operators) is dense in
the projective tensor product whenever both factors are finite-dimensional
Banach spaces (actually, our result is more general than this). By using
this result and the fact that the projective norm respects 1-complemented
subspaces, we prove that the density problem holds in a much more gen-
eral scenario. Indeed, we prove that if the involved Banach spaces satisfy a
property which guarantees the existence of many 1-complemented subspaces
(see Definition 4.7), then every tensor can be approximated (in the projective
norm) by norm-attaining tensors (and the result for nuclear operators follows
as a particular case). Since this property is satisfied by Banach spaces with
finite-dimensional decompositions of constant 1, Lp-spaces, and L1-predual
spaces, the problem of denseness for nuclear operators and tensors is covered
by all classical Banach spaces. Moreover, we prove that such a property is
stable by finite absolute sums, countable c0- and �p-sums, projective tensor
products, and injective tensor products. In Sect. 5, we present an example
of two Banach spaces X and Y , both failing the approximation property,
which shows that the set of norm-attaining tensors is not always dense in the
projective tensor product space based on the counterexample given in [32]
with the existence of an equivalent renorming of c0 which has bidual strictly
convex (see [24,25,35]). Finally, we finish the paper with a discussion on some
open problems.

2. Background, Notation, and Concepts

2.1. Basic Notation

We use essentially the notation from [36]. Let X, Y , and Z be Banach spaces
over the field K, which can be either R or C. We denote by BX and SX the
closed unit ball and the unit sphere, respectively, of the Banach space X. We
denote by L(X,Y ) the set of all bounded linear operators from X into Y . If
Y = K, then L(X, K) is denoted by X∗, the topological dual space of X. We
denote by B(X ×Y,Z) the Banach space of bounded bilinear mappings from
X × Y into Z. When Z = K, we denote this space by B(X × Y ). It is well
known that the space B(X×Y ) and L(X,Y ∗) are isometrically isomorphic as
Banach spaces. We denote by K(X,Y ) the set of all compact operators and
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by F(X,Y ) the space of all operators of finite-rank from X into Y . Given an
absolute norm | · |a defined on R2, let us denote by X ⊕a Y the absolute sum
of X and Y with respect to | · |a, which is a Banach space X × Y endowed
with the norm ‖(x, y)‖a = |(‖x‖, ‖y‖)|a for every x ∈ X and y ∈ Y .

2.2. Tensor Products and Nuclear Operators

The projective tensor product of X and Y , denoted by X⊗̂πY , is the com-
pletion of the space X ⊗ Y endowed with the norm given by

‖z‖π = inf

{ ∞∑

n=1

‖xn‖‖yn‖ :
∞∑

n=1

‖xn‖‖yn‖ < ∞, z =
∞∑

n=1

xn ⊗ yn

}

= inf

{ ∞∑

n=1

|λn| : z =

∞∑

n=1

λnxn ⊗ yn,

∞∑

n=1

|λn| < ∞, ‖xn‖ = ‖yn‖ = 1

}
,

where the infinum is taken over all such representations of z. It is well known
that ‖x ⊗ y‖π = ‖x‖‖y‖ for every x ∈ X, y ∈ Y , and the closed unit
ball of X⊗̂πY is the closed convex hull of the set BX ⊗ BY = {x ⊗ y :
x ∈ BX , y ∈ BY }. Throughout the paper, we will be using both formu-
las indistinctly, without any explicit reference. The canonical identification
B(X × Y,Z) = L(X⊗̂πY,Z) allows us to obtain the canonical identifica-
tion B(X × Y ) = (X⊗̂πY )∗. Using the fact that the spaces B(X × Y )
and L(X,Y ∗) are isometrically isomorphic, we also have the identification
(X⊗̂πY )∗ = L(X,Y ∗), where the action of an operator G : X −→ Y ∗ as a
linear functional on X⊗̂πY is given by

G

( ∞∑

n=1

xn ⊗ yn

)
=

∞∑

n=1

G(xn)(yn),

for every
∑∞

n=1 xn ⊗ yn ∈ X⊗̂πY . Let us recall also that there is a canonical

operator J : X∗⊗̂πY −→ L(X,Y ) with ‖J‖ = 1 defined by z =
∑∞

n=1 ϕn ⊗
yn �→ Lz, where Lz : X −→ Y is given by

Lz(x) =

∞∑

n=1

ϕn(x)yn (x ∈ X).

The operators that arise in this way are called nuclear operators. We denote
the set of such operators by N (X,Y ) endowed with the nuclear norm

‖T‖N = inf

{ ∞∑

n=1

‖x∗
n‖‖yn‖ : T (x) =

∞∑

n=1

x∗
n(x)yn

}
,

where the infimum is taken over all representations of T of the form T (x) =∑∞
n=1 x∗

n(x)yn for bounded sequences (x∗
n) ⊆ X∗ and (yn) ⊆ Y such that∑∞

n=1 ‖x∗
n‖‖yn‖ < ∞. Notice that every nuclear operator is compact since

it is the limit in the operator norm of a sequence of finite-rank operators.
Using the function J , we can identify the space N (X,Y ) with X∗⊗̂πY/ ker J
isometrically. In order to clarify the relations between the set of nuclear oper-
ators, the quotient space of the projective tensor product and their respective
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duals, we consider the following diagram:

(ker J)⊥ (
X∗⊗̂πY/ ker J

)∗ N (X,Y )∗

X∗⊗̂πY/ ker J N (X,Y )

δ J̃∗

J̃

,

where J̃ and δ are isometric isomorphisms between X∗⊗̂πY/ ker J and

N (X,Y ), and (kerJ)⊥ and
(
X∗⊗̂πY/ ker J

)∗
, respectively. If we consider

a nuclear operator T ∈ N (X,Y ) given by T =
∑∞

n=1 x∗
n ⊗ yn for some

(x∗
n)n∈N ⊂ X∗ and (yn)n∈N ⊂ Y bounded with

∑∞
n=1 ‖x∗

n‖‖yn‖ < ∞, then
for every H ∈ N (X,Y )∗, we have

H(T ) =

∞∑

n=1

G(x∗
n)(yn),

where G = (δ−1 ◦ J̃∗)(H) ∈ (ker J)⊥.
Recall that a Banach space is said to have the approximation property

if for every compact subset K of X and every ε > 0, there exists a finite-
rank operator T : X −→ X such that ‖T (x) − x‖ � ε for every x ∈ K. Let
us take into account that if X∗ or Y has the approximation property, then
X∗⊗̂πY = N (X,Y ) (see, for instance, [36, Corollary 4.8]). Recall also that
the injective norm of z ∈ X ⊗ Y is defined by

‖z‖ε = sup

{∣∣∣∣∣
n∑

i=1

x∗(xi)y
∗(yi)

∣∣∣∣∣ : x∗ ∈ BX∗ , y∗ ∈ BY ∗

}
,

where
∑n

i=1 xi ⊗ yi is any representation of z. We denote by X ⊗ε Y the
tensor product X ⊗ Y with the injective norm and its completion, denoted
by X⊗̂εY , is called the injective tensor product of X and Y .

For a complete background on tensor products in Banach spaces, we
refer the reader to the books [14,36].

2.3. Norm-Attaining Concepts

Recall that T ∈ L(X,Y ) attains its norm (in the classical way) if there is
x0 ∈ SX such that ‖T (x0)‖ = ‖T‖ = supx∈SX

‖T (x)‖. In this case, we say
that T is a norm-attaining operator. Recall also that B ∈ B(X×Y,Z) attains
its norm if there is (x0, y0) ∈ SX × SY such that ‖B(x0, y0)‖ = ‖B‖ =
sup(x,y)∈SX×SY

‖B(x, y)‖. In this case, we say that B is a norm-attaining
bilinear mapping. In the next sections, we will be considering the concepts
of attainment on the Banach spaces X⊗̂πY and N (X,Y ). For us, the most
natural approach is the following one.

Definition 2.1. Let X,Y be Banach spaces. We say that

1. z ∈ X⊗̂πY attains its projective norm if there is a bounded sequence
(xn, yn) ⊆ X×Y with

∑∞
n=1 ‖xn‖‖yn‖ < ∞ such that z =

∑∞
n=1 xn⊗yn
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and that ‖z‖π =
∑∞

n=1 ‖xn‖‖yn‖. In this case, we say that z is a norm-
attaining tensor.

2. T ∈ N (X,Y ) attains its nuclear norm if there is a bounded sequence
(x∗

n, yn) ⊆ X∗ ×Y with
∑∞

n=1 ‖x∗
n‖‖yn‖ < ∞ such that T =

∑∞
n=1 x∗

n ⊗
yn and that ‖T‖N =

∑∞
n=1 ‖x∗

n‖‖yn‖. In this case, we say that T is a
norm-attaining nuclear operator.

If (1) (respectively, (2)) holds, then we say that
∑∞

n=1 xn ⊗ yn (respec-
tively,

∑∞
n=1 x∗

n ⊗yn) is a norm-attaining representation. Let us fix the nota-
tion for the set of norm-attaining operators, bilinear mappings, tensors, and
nuclear operators. For the first two, we continue using the classical notation
NA(X,Y ) = {T ∈ L(X,Y ) : T attains its norm} and NA(X × Y,Z) = {B ∈
B(X × Y,Z) : B attains its norm}, respectively; if Z = K, then we simply
denote it as NA(X×Y ). For the last two, we shall use the following notations:

(1’) NAπ(X⊗̂πY ) = {z ∈ X⊗̂πY : z attains its projective norm}.
(2’) NAN (X,Y ) = {T ∈ N (X,Y ) : T attains its nuclear norm}.

Notice that, as we have pointed out before, when X∗ or Y has the approxima-
tion property then X∗⊗̂πY is isometrically isomorphic to N (X,Y ). In such
case, it is clear that both concepts of norm-attainment agree. Due to the
connection between projective tensor products, bilinear mappings, and oper-
ators, we are forced to observe also that the denseness of the sets NA(X ×Y )
and NA(X,Y ∗) are not equivalent in general, but the first implies the later.

Let us finish this introduction by clarifying what we mean by approxi-
mating elements from X⊗̂πY or N (X,Y ) by norm-attaining ones. Evidently,
when working with X⊗̂πY , it is natural to make the approximation of an
element z ∈ X⊗̂πY by an element z′ ∈ NAπ(X⊗̂πY ) using the tensor norm
‖ · ‖π. Similarly, we shall be dealing with the nuclear operator norm ‖ · ‖N

whenever we approximate a given nuclear operator T by a norm-attaining
nuclear operator T ′.

3. Nuclear Operators and Tensors Which Attain Their Norms

In this section, we provide the first examples of elements in X⊗̂πY and
N (X,Y ) which attain their norms. The first result gives us an important
characterization used abundantly in the rest of the paper.

Theorem 3.1. Let X,Y be Banach spaces. Let z ∈ X⊗̂πY with

z =

∞∑

n=1

λnxn ⊗ yn,

where λn ∈ R+, xn ∈ SX , and yn ∈ SY for every n ∈ N. Then, the following
assertions are equivalent:

1. ‖z‖π =
∑∞

n=1 λn; in other words, z ∈ NAπ(X⊗̂πY ).
2. There is G ∈ L(X,Y ∗) with ‖G‖ = 1 such that G(xn)(yn) = 1 for every

n ∈ N.
3. Every norm one G ∈ L(X,Y ∗) such that G(z) = ‖z‖π satisfies that

G(xn)(yn) = 1 for every n ∈ N.
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Proof. Suppose that ‖z‖π =
∑∞

n=1 λn with z =
∑∞

n=1 λnxn ⊗yn with (λn) ⊆
R+, (xn) ⊆ SX , and (yn) ⊆ SY . Pick any G ∈ (X⊗̂πY )∗ = L(X,Y ∗) such
that ‖G‖ = 1 and G(z) = ‖z‖π. Since we have

∞∑

n=1

λn = ‖z‖π = G(z) =
∞∑

n=1

λnG(xn)(yn),

it follows that G(xn)(yn) = 1 for each n ∈ N, which proves that (1) implies
(3). It is obvious that (3) implies (2). Finally, assume that there exists G ∈
L(X,Y ∗) with ‖G‖ = 1 such that G(xn)(yn) = 1 for every n ∈ N. Then,

∞∑

n=1

λn =

∞∑

n=1

λnG(xn)(yn) = G(z) � ‖z‖π �
∞∑

n=1

λn.

This completes the proof. �

Taking into account the isometric isomorphism between N (X,Y ) and
X∗⊗̂πY/ ker(J), we can take advantage of the previous estimates to prove a
nuclear operator version of Theorem 3.1 as follows.

Theorem 3.2. Let X,Y be Banach spaces. Let T ∈ N (X,Y ) with

T =

∞∑

n=1

λnx∗
n ⊗ yn,

where λn ∈ R+, xn ∈ SX , and yn ∈ SY for every n ∈ N. Then, the following
assertions are equivalent:

1. ‖T‖N =
∑∞

n=1 λn; in other words, T ∈ NAN (X,Y ).
2. There is G ∈ (ker J)⊥ with ‖G‖ = 1 such that G(x∗

n)(yn) = 1 for every
n ∈ N.

3. For any G ∈ (ker J)⊥ with ‖G‖ = 1 and G(T ) = ‖T‖N we get that
G(x∗

n)(yn) = 1 holds for every n ∈ N.

Proof. Let J̃ : X∗⊗̂πY/ ker J −→ N (X,Y ) be an isometric isomorphism
which maps, according to the notation of Sect. 2.2, z + ker J to Lz. If we let
z0 :=

∑∞
n=1 λnx∗

n ⊗ yn ∈ X∗⊗̂πY , then J(z0) = T and ‖T‖N = ‖z0 + ker J‖.
Now assume (1) and let us prove (3). To this end, pick any G ∈ (ker J)⊥ with
‖G‖ = 1 and G(z0 + kerJ) = ‖z0 + kerJ‖. Then,

∞∑

n=1

λn = ‖z0 + kerJ‖ = |G(z0)| =

∣∣∣∣∣G
( ∞∑

n=1

λnx∗
n ⊗ yn

)∣∣∣∣∣

�
∞∑

n=1

λn|G(x∗
n)(yn)|

�
∞∑

n=1

λn.

Then, we have |G(x∗
n)(yn)| = 1 for each n ∈ N. Using a convexity argument,

we get that G(x∗
n)(yn) = 1 for every n ∈ N. The other implications can be

proved as in Theorem 3.1. �
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With Theorems 3.1 and 3.2 in mind, we can now exhibit examples of
nuclear operators which attain their nuclear norms.

Example 3.3. Let X, Y be two reflexive Banach spaces such that X∗ or Y
has the approximation property (recall that, in this case, we have X∗⊗̂πY =
N (X,Y )). Assume further that X∗ is isometrically isomorphic to a subspace
of Y ∗. Take G : X∗ −→ Y ∗ to be a linear isometry and pick (x∗

n)n ⊆ SX∗ .
Now, for any n ∈ N, notice that ‖G(x∗

n)‖ = ‖x∗
n‖ = 1. Since Y is reflexive,

by using the James Theorem, we have that G(x∗
n) ∈ SY ∗ attains its norm, so

there exists yn ∈ SY so that G(x∗
n)(yn) = 1. Now, Theorem 3.1 (or Theorem

3.2) implies that, given any sequence (λn)n ⊆ (0, 1] with
∑∞

n=1 λn < ∞, the
nuclear operator

T :=

∞∑

n=1

λnx∗
n ⊗ yn ∈ N (X,Y )

attains its nuclear norm.

One may think that a norm-attaining nuclear operator should attain its
norm (in the classical way). This is not true in general as observed below.

Remark 3.4. Let Y be an infinite-dimensional strictly convex Banach space.
Then, there is T ∈ NAN (c0, Y ) such that T �∈ NA(c0, Y ). Indeed, let (yn)n ⊆
SY be linearly independent. For every n ∈ N, find y∗

n ∈ SY ∗ such that
y∗

n(yn) = 1. Define φ : Y −→ �∞ by φ(y) := (y∗
j (y))∞

j=1 ∈ �∞ for every
y ∈ Y . Given n ∈ N we get that |y∗

n(y)| � ‖y‖ since ‖y∗
n‖ = 1 holds for every

n ∈ N. This implies that supn∈N |y∗
n(y)| � ‖y‖, which proves that φ(y) ∈ �∞

for every y (i.e., φ is well defined) . In view of the linearity, we have that
φ is continuous and ‖φ‖ � 1. Furthermore, notice that φ(yn)(en) = 1 holds
for every n ∈ N, where (en)n is the basis of �1. This proves that the nuclear
operator T : c0 −→ Y defined by

T =

∞∑

n=1

1

2n
en ⊗ yn ∈ �1⊗̂πY

attains its nuclear norm by Theorem 3.2. Nevertheless, notice that T is not a
finite-rank operator and, consequently, T does not belong to NA(c0, Y ) (see
[32, Lemma 2.2] or the proof of [29, Proposition 4]).

We prove next that on the the finite-dimensional setting, every tensor
is norm-attaining. Before presenting a proof of it, let us notice that since
the convex hull of a compact set is compact when X and Y are both finite-
dimensional spaces, we have that co(BX ⊗ BY ) = co (BX ⊗ BY ), which is
a consequence of Minkowski–Carathéodory theorem (see, for instance, [17,
Exercises 1.57 and 1.58]).

Proposition 3.5. Let X,Y be finite-dimensional Banach spaces. Then, every
tensor attains its projective tensor norm. In other words, NAπ(X⊗̂πY ) =
X⊗̂πY.
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Proof. Let z ∈ X⊗̂πY with ‖z‖π = 1 be given and let us prove that
z ∈ NAπ(X⊗̂πY ). As we have mentioned before, since X and Y are finite-
dimensional Banach spaces, BX ⊗ BY is compact in X⊗̂πY and this implies
that BX⊗̂πY = co(BX ⊗ BY ) = co(BX ⊗ BY ). Therefore, z can be written
as a finite convex combination of elements in BX ⊗ BY , i.e.,

z =

n∑

j=1

λjxj ⊗ yj with

n∑

j=1

λj = 1,

where λj ∈ R+, xj ∈ BX , and yj ∈ BY for j = 1, . . . , n, that is, z is norm-
attaining. �

Let us notice that in Remark 3.4, we have constructed by hand a nuclear
operator from c0 into a particular Y which attains its nuclear norm. It turns
out that every nuclear operator from c0 into any Banach space Y attains
its nuclear norm. This should be compared to the fact that, in the classical
theory, whenever X is a Banach space such that NA(X,Y ) = L(X,Y ) for
some Y �= {0}, X must be reflexive (this is an application of James theorem).
In other words, this result is no longer true in the context of nuclear operators.

Proposition 3.6. Let Y be a Banach space. Then,

(a) every nuclear operator T ∈ N (c0, Y ) attains its nuclear norm. Equiva-
lently,

(b) every element in �1⊗̂πY attains its projective norm.

Proof. Indeed, in the last part of [36, Lemma 2.6], it is proved that Φ :
�1(Y ) −→ �1⊗̂πY given by

Φ((xn)n) =

∞∑

n=1

en ⊗ xn

is an onto linear isometry, where (en)n is the basis of �1 (in fact, Φ = J−1

in the proof given there). Let T ∈ N (c0, Y ) = �1⊗̂πY be given. By the
surjectivity of Φ, we can find an element (xn)n ∈ �1(Y ) such that Φ((xn)n) =
T . Consequently, T =

∑∞
n=1 en ⊗ xn. Then,

‖T‖N = ‖Φ((xn)n)‖ = ‖(xn)n‖ =
∞∑

n=1

‖xn‖ =
∞∑

n=1

‖en‖‖xn‖.

This proves that T attains its nuclear norm, as desired. �

Remark 3.7. Notice that Proposition 3.6 is also true for c0(I) and �1(I) for
any arbitrary index set I (see [36, Example 2.6]).

In the infinite-dimensional case, besides the nuclear operators from c0

into an arbitrary Banach space Y , we have that every nuclear operator on
a complex Hilbert space attains its nuclear norm. Although we prove this
result for nuclear operators (justified by the fact that we will be dealing with
eigenvalues and Schatten classes), we also get that every tensor in H⊗̂πH
attains its projective norm as every Hilbert space H has the approximation
property.
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Proposition 3.8. Let H be a complex Hilbert space. Then, every nuclear oper-
ator T ∈ N (H,H) attains its nuclear norm.

Proof. Note that T ∈ N (H,H) can be written as

T =

n0∑

j=1

λj〈·, xj〉yj ,

where n0 ∈ N ∪ {∞}, (λj)j is the sequence of nonzero eigenvalues of |T | =

(T ∗T )
1
2 , and (xj)j and (yj)j are orthonormal systems in H (see [19, Theorem

2.1]). On the other hand, it is well known that ‖T‖N = σ1(T ) =
∑n0

j=1 λj ,

where σ1(·) is the Schatten 1st norm (see, for example, [19, pages 96-97]).
This completes the proof. �

Taking into account Propositions 3.5, 3.6 and 3.8, it is natural to ask
whether or not the equality NAN (X,Y ) = N (X,Y ) (or NAπ(X⊗̂πY ) =
X⊗̂πY ) holds for all Banach spaces X and Y . We will give a negative answer
for this problem by proving that if this happens, then the set of norm-
attaining bilinear forms which attain their norms is dense in B(X × Y ).
From our point of view, this shows that the study of norm-attaining nuclear
operators is not a trivial task.

Lemma 3.9. Let X,Y be Banach spaces. If B ∈ B(X × Y ) = (X⊗̂πY )∗

attains its norm (as a functional) at an element of NAπ(X⊗̂πY ), then B ∈
NA(X × Y ).

Proof. Let B ∈ B(X × Y ) = (X⊗̂πY )∗ and z ∈ SX⊗̂πY with z =∑∞
n=1 λnxn ⊗ yn ∈ NAπ(X⊗̂πY ) be such that B(z) = 1, where λn ∈ R+,

xn ∈ SX , and yn ∈ SY . By Theorem 3.1, B(xn, yn) = 1 for every n ∈ N. In
particular, B ∈ NA(X × Y ). �

Proposition 3.10. Let X,Y be Banach spaces. If every element in X⊗̂πY
attains its projective norm, then the set of all bilinear forms on X ×Y which
attain their norms is dense in B(X × Y ). In other words, if NAπ(X⊗̂πY ) =
X⊗̂πY , then

NA(X × Y )
‖·‖

= B(X × Y ).

Proof. Let ε > 0. Let B ∈ B(X × Y ) = (X⊗̂πY )∗ with ‖B‖ = 1. By the
Bishop–Phelps theorem, for X⊗̂πY , there are B0 ∈ (X⊗̂πY )∗ with ‖B0‖ = 1
and z0 ∈ SX⊗̂πY such that B0(z0) = 1 and ‖B0 − B‖ < ε. By hypothesis,

z0 ∈ NAπ(X,Y ) attains its projective norm and by Lemma 3.9 we have that
B0 ∈ NA(X × Y ). Since ‖B0 − B‖ < ε, we are done. �

Proposition 3.10 yields the following consequence:

Corollary 3.11. Let X,Y be Banach spaces. Suppose that every element in
X⊗̂πY attains its projective norm. Then, the set of norm-attaining operators
from X into Y ∗ is dense in L(X,Y ∗). In other words, if NAπ(X⊗̂πY ) =
X⊗̂πY , then

NA(X,Y ∗)
‖·‖

= L(X,Y ∗).
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Now, by using Lemma 3.9, Proposition 3.10, and Corollary 3.11, we can
get examples of pairs of Banach spaces (X,Y ) such that there are elements
in the projective tensor product X⊗̂πY which do not attain their projective
norms.

Example 3.12. There are elements z ∈ X⊗̂πY such that z /∈ NAπ(X⊗̂πY )
in the following cases:

(a) 1 When X = L1(T), where the unit circle T is equipped with the Haar
measure m, and Y is the two-dimensional Hilbert space. Indeed, it is
shown in [18, Remark 5.7.(2)] that there is T ∈ B(X ×Y ) which attains
its norm as a linear functional on X⊗̂πY but not as an operator from
X into Y ∗ (nor the more as a bilinear form on X × Y ). By Lemma 3.9,
it follows that NAπ(X × Y ) �= X⊗̂πY .

(b) When X is L1[0, 1] and Y ∗ is a strictly convex Banach space with-
out the Radon–Nikodým property. Indeed, by [39, Theorem 3], the set
NA(L1[0, 1], Y ∗) is not dense in L(L1[0, 1], Y ∗). Let us notice that this
also shows that Proposition 3.6 is no longer true if we consider an L1(μ)-
space for a non-purely atomic measure μ.

(c) When Y = �p for 1 < p < ∞ and X is the Banach space constructed
by Gowers. Indeed, there is a Banach space G such that NA(G × �p)
is not dense in B(G × �p) (see [20, Theorem, page 149]). We should
notice that the unit ball of G lacks extreme points. This result should
be compared to the fact that, if X is reflexive and Y is any Banach
space, then K(X,Y ) ⊆ NA(X,Y ).

(d) When X and Y are both L1[0, 1]. Indeed, [10, Theorem 3] shows that
the set NA(L1[0, 1] × L1[0, 1]) is not dense in B(L1[0, 1] × L1[0, 1]).

Let us finish this section by highlighting two observations.

Remark 3.13. Notice that if we weaken the hypothesis in Proposition 3.10 by
assuming that NAπ(X⊗̂πY ) is dense in X⊗̂πY , the result does not remain
true. Indeed, by using Example 3.12.(c), we know that NA(L1[0, 1]×L1[0, 1])
is not dense in B(L1[0, 1]×L1[0, 1]), but we will see in Section 4 that the set of
all tensors which attain their projective norm on L1[0, 1]⊗̂πL1[0, 1] is dense in
L1[0, 1]⊗̂πL1[0, 1] (see Theorem 4.8 and Example 4.12.(b)). Nevertheless, we
will always have that NA(X,Y ∗) ∩ BL(X,Y ∗) is w∗-dense in BL(X,Y ∗) under
this hypothesis (see Remark 5.4).

Remark 3.14. Let Y be a finite-dimensional Banach space. Then, NA(Y,Z) =
L(Y,Z) for every Banach space Z by using the compactness of the unit ball
of Y . Let us suppose for a second that the same holds for nuclear operators.
Then, NAN (Y,Z) = N (Y,Z) for every Banach space Z. Since Y is finite-
dimensional, it has the approximation property and then we would have
that NAπ(Z⊗̂πY ∗) = Z⊗̂πY ∗ for every Banach space Z. By Corollary 3.11,
we would have that the set NA(Z, Y ) is dense in L(Z, Y ) for every Banach
space Z, which would imply that Y has property B of Lindenstrauss (solving
positively [32, Question 9]). Therefore, it is natural to wonder whether every

1The authors are thankful to the referee who provided us this example.
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nuclear operator T : Y −→ Z attain its nuclear norm for every Banach space
Z whenever Y is finite dimensional. This is not the case due to Example
3.12.(a)2 by taking Z = �L1(T) and Y = �22, the Euclidean plane (see [18,
Remark 5.7.(2)]).

4. Denseness of Nuclear Operators and Tensors Which Attain
Their Norms

Here we will be focusing on examples of Banach spaces X and Y such that
the sets NAπ(X⊗̂πY ) and NAN (X,Y ) are dense in norm in X⊗̂πY and
N (X,Y ), respectively. As we have seen in the previous section, there are
many examples of projective tensor products where we can guarantee the
existence of elements which do not attain their projective norms even when
one of the factors is reflexive (see Example 3.12(b)). In spite of the existence
of such non-norm-attaining tensors, it is natural to ask if the set of elements
in a tensor product space which attain their projective norms is dense in the
whole space.

Let us start by explaining where the difficulty comes from when one tries
to get such a property. Assume that z ∈ NAπ(X⊗̂πY ) is a norm-attaining
tensor in X⊗̂πY . This implies that there are bounded sequences (xn)n ⊆ X
and (yn)n ⊆ Y such that z =

∑∞
n=1 xn ⊗ yn with ‖z‖π =

∑∞
n=1 ‖xn‖‖yn‖. It

is clear that the task of choosing the optimal representation for z as a series of
basic tensors is the most difficult part. In order to avoid this inconvenience,
let us make use of Theorem 3.1. By applying it, for any bilinear mapping
B ∈ SB(X×Y ) = S(X⊗̂πY )∗ such that B(z) = ‖z‖π, we have that B(xn)(yn) =

‖xn‖‖yn‖ for every n ∈ N. In other words, B attains its bilinear norm at the

pair
(

xn

‖xn‖ , yn

‖yn‖

)
for every n ∈ N. Because of this, in order to get examples

of Banach spaces X and Y where the set NAπ(X⊗̂πY ) is dense in X⊗̂πY , we
need somehow that the space B(X × Y ) contains many bilinear forms which
attain their bilinear norm at many elements of SX × SY . This motivates us
to make use of the following definitions, which can be found in [12] and [13].

Definition 4.1. Let X,Y and Z be Banach spaces.

(a) We say that (X,Y ) has the Lo,o for operators if given ε > 0 and T ∈
L(X,Y ) with ‖T‖ = 1, there is η(ε, T ) > 0 such that whenever x ∈ SX

satisfies ‖T (x)‖ > 1 − η(ε, T ), there is x0 ∈ SX such that ‖T (x0)‖ = 1
and ‖x0 − x‖ < ε.

(b) We say that (X × Y,Z) satisfies the Lo,o for bilinear mappings if given
ε > 0 and B ∈ B(X × Y,Z) with ‖B‖ = 1, there exists η(ε,B) > 0 such
that whenever (x, y) ∈ SX × SY satisfies ‖B(x, y)‖ > 1 − η(ε,B), there
is (x0, y0) ∈ SX × SY such that ‖B(x0, y0)‖ = 1, ‖x − x0‖ < ε, and
‖y − y0‖ < ε.

2It is worth mentioning that this question was posed by the authors in a preliminary
version of this manuscript; they thank the anonymous referee who answered it negatively.
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Example 4.2. Let us highlight some examples and results related to the prop-
erties just defined.

(a) If dim(X),dim(Y ) < ∞, then (X × Y,Z) has the Lo,o for every Banach
space Z (see [13, Proposition 2.2]).

(b) (X × Y, K) has the Lo,o for bilinear mappings if and only if (X,Y ∗) has
the Lo,o for operators, whenever Y is uniformly convex (see [13, Lemma
2.6]). In particular, if X is finite dimensional and Y is uniformly convex,
then (X × Y, K) has the Lo,o for bilinear forms (see [12, Theorem 2.4]).

(c) If 1 < p, q < ∞, then (�p × �q, K) has the Lo,o if and only if p > q′,
where q′ is the conjugate of q (see [13, Theorem 2.7.(b)]).

(d) There are reflexive spaces X and Y such that (X × Y, K) fails the Lo,o

(see [12, Theorem 2.21.(ii)]).

Our next aim is to prove that every nuclear operator between finite-
dimensional Banach spaces can be approximated by nuclear operators which
attain their nuclear norm. This will follow from a more general result.

Proposition 4.3. Let X,Y be Banach spaces. Suppose that (X∗ × Y, K) has
Lo,o for bilinear forms. Then, every nuclear operator from X into Y can be
approximated (in the nuclear norm) by nuclear operators which attain their
nuclear norm. In other words,

NAN (X,Y )
‖·‖N

= N (X,Y ).

We get the following particular case by combining Proposition 4.3 with
Example 4.2.

Corollary 4.4. Let X be finite-dimensional Banach space. If Y is uniformly
convex, then

NAN (X,Y )
‖·‖N

= N (X,Y ).

Now, we prove Proposition 4.3.

Proof of Proposition 4.3. Let T ∈ N (X,Y ) and ε > 0 be given. There exists
H ∈ N (X,Y )∗ with ‖H‖ = 1 such that H(T ) = ‖T‖N . Consider G :=

(δ−1 ◦ J̃∗)(H) ∈ (ker J)⊥ (see Subsection 2.1). Let AG be the bilinear form
on X∗ × Y defined by AG(x∗, y) = G(x∗)(y) for every x∗ ∈ X∗ and y ∈ Y .
Then ‖AG‖ = ‖G‖ = 1. Consider the positive value η(ε,AG) > 0 from
the assumption that (X∗ × Y, K) has Lo,o for bilinear forms. Now, choose
(λn)n ⊆ R+, (x∗

n)n ⊆ SX∗ , and (yn)n ⊆ SY so that T =
∑∞

n=1 λnx∗
n ⊗ yn

with ∞∑

n=1

λn < ‖T‖N + η(ε,AG)2.

We get that

‖T‖N = H(T ) = ReH(T ) =
∞∑

n=1

λn Re (G(x∗
n)(yn))

�
∞∑

n=1

λn|G(x∗
n)(yn)|
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�
∞∑

n=1

λn < ‖T‖N + η(ε,AG)2.

In particular,
∑

n∈N
λn (1 − Re (G(x∗

n)(yn))) < η(ε,AG)2 (4.1)

Consider the following set

I = {n ∈ N : Re (G(x∗
n)(yn)) > 1 − η(ε,AG)}.

From (4.1), notice that

η(ε,AG)
∑

n∈Ic

λn �
∑

n∈Ic

λn (1 − Re (G(x∗
n)(yn))) < η(ε,AG)2,

which implies that
∑

n∈Ic λn < η(ε,AG). On the other hand, for each n ∈ I,

Re AG(x∗
n, yn) = Re (G(x∗

n)(yn)) > 1 − η(ε,AG).

Thus, there exist norm one vectors (x̃∗
n)n∈I in X∗ and (ỹn)n∈I in Y such

that

|AG(x̃∗
n, ỹn)| = |G(x̃∗

n)(ỹn)| = 1, ‖x̃∗
n − x∗

n‖ < ε, and ‖ỹn − yn‖ < ε

for every n ∈ I. Let us write G(x̃∗
n)(ỹn) = eiθn with some θn ∈ R for every

n ∈ I. Notice that |1 − eiθn | <
√

2η(ε,AG) for every n ∈ I. Let us define

T ′ :=
∑

n∈I

λne−iθn x̃∗
n ⊗ ỹn.

Then,

‖T ′ − T‖N �
∥∥∥∥∥
∑

n∈I

λn(e−iθn x̃∗
n ⊗ ỹn − x∗

n ⊗ yn)

∥∥∥∥∥
N

+
∑

n∈Ic

λn

<
∑

n∈I

λn|1 − eiθn | +

∥∥∥∥∥
∑

n∈I

λn(x̃∗
n ⊗ ỹn − x∗

n ⊗ yn)

∥∥∥∥∥
N

+ η(ε,AG)

<
√

2η(ε,AG)(‖T‖N + η(ε,AG)2)

+ 2ε(‖T‖N + η(ε,AG)2) + η(ε,AG)

= (
√

2η(ε,AG) + 2ε)(‖T‖N + η(ε,AG)2) + η(ε,AG).

Finally, it is clear by definition that ‖T ′‖N �
∑

i∈I λn. On the other hand,

‖T ′‖N � |H(T ′)| =

∣∣∣∣∣
∑

n∈I

λne−iθnG(x̃∗
n)(ỹn)

∣∣∣∣∣ =
∑

n∈I

λn.

This shows that T ′ attains its nuclear norm and completes the proof. �

Using very similar arguments to Proposition 4.3 and Corollary 4.4, we
can obtain the following results.
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Proposition 4.5. Let X,Y be Banach spaces. Suppose that (X × Y, K) has
Lo,o for bilinear forms. Then, every tensor in X⊗̂πY can be approximated by
tensors which attain their projective norm. In other words,

NAπ(X⊗̂πY )
‖·‖π

= X⊗̂πY.

Corollary 4.6. Let X be a finite-dimensional Banach space. If Y is uniformly
convex, then

NAπ(X⊗̂πY )
‖·‖π

= X⊗̂πY.

Let us notice that, although we have the first examples of denseness by
using Propositions 4.3 and 4.5, property Lo,o seems to be very restrictive.
Indeed, when a pair of Banach spaces satisfies this property, both of them
must be reflexive since every bilinear mapping attains its norm. Moreover,
there are reflexive spaces X and Y such that (X × Y, K) fails this property
(see Example 4.2.(d)). On the other hand, we could have used the previous
results together with Example 4.2.(c) in order to get examples where the
denseness holds for �p-spaces: for instance, if 1 < p, q < ∞ and p > q′, then

the set NAπ(�p⊗̂π�q) is dense in �p⊗̂π�q by Proposition 4.5. Nevertheless, in
what follows we will take advantage of the finite-dimensional case to obtain
more general examples of Banach spaces where the density follows. The only
problem here is the fact that in general the projective norm does not respect
subspaces, but it does respect 1-complemented subspaces. For this reason,
intuitively, we need a property of Banach spaces which guarantees the exis-
tence of many 1-complemented subspaces. Motivated by this, we consider the
following definition.

Definition 4.7. Let X be a Banach space. We will say that X has the metric π-
property if given ε > 0 and {x1, . . . , xn} ⊆ SX a finite collection in the sphere,
then we can find a finite-dimensional 1-complemented subspace M ⊆ X such
that for each i ∈ {1, . . . , n} there exists x′

i ∈ M with ‖xi − x′
i‖ < ε.

Before proceeding, let us make a small observation. Let ε > 0 and F =
{x1, . . . , xn} ⊆ SX be given. Suppose that X has metric π-property as defined
above and let M be a finite-dimensional subspace of X with ‖x′

i − xi‖ < ε
for x′

i ∈ M and i = 1, . . . , n. Let Pε,F be the norm one projection onto M .
Then, for each i = 1, . . . , n, we have

‖Pε,F (xi) − xi‖ � ‖Pε,F (xi) − Pε,F (x′
i)‖ + ‖Pε,F (x′

i) − xi‖ < 2ε.

Consider now the net {Pε,F : ε > 0, F ⊂ SX a finite set} with (ε1, F1) �
(ε2, F2) if and only if ε2 < ε1 and F1 ⊆ F2. Then, (Pε,F )(ε,F ) strongly con-
verges to the identity on SX and hence on X with ‖Pε,F ‖ � 1 for every ε
and F . This shows that Definition 4.7 is in fact equivalent to [7, Definition
5.1] as the classical way of defining the metric π-property (we also send the
reader to [22] and [30] for more information on the π-property).

We have the following general result, which confirms that our intuition
of finding a property of Banach spaces, which guarantees the existence of
many 1-complemented subspaces, was in the right direction. This result will
give us many positive examples of denseness in both norm-attaining tensor
and nuclear operator cases (see Examples 4.12).
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Theorem 4.8. Let X be a Banach space satisfying the metric π-property.

(a) If Y satisfies the metric π-property, then NAπ(X⊗̂πY )
‖·‖π

= X⊗̂πY .

(b) If Y is uniformly convex, then NAπ(X⊗̂πY )
‖·‖π

= X⊗̂πY .

Proof. (a). Let u ∈ SX⊗̂πY and ε > 0 be given. By [36, Proposition 2.8],

there are bounded sequences (λn)n ⊆ R+, (xn)n ⊆ SX , and (yn)n ⊆ SY with
u =

∑∞
n=1 λnxn ⊗ yn and

∞∑

n=1

λn < 1 + ε. (4.2)

Find k ∈ N large enough so that ‖u−z‖π
X⊗̂πY

< ε
2 for z :=

∑k
n=1 λnxn ⊗yn.

Since X and Y have the metric π-property, we can find finite-dimensional
subspaces X0 of X and Y0 of Y which are 1-complemented and such that, for
every n ∈ {1, . . . , k}, there are x′

n ∈ X0 and y′
n ∈ Y0 such that

max {‖xn − x′
n‖, ‖yn − y′

n‖} <
ε

4kλn
.

Define z′ =
∑k

n=1 λnx′
n ⊗ y′

n and notice that ‖z′ − z‖π
X⊗̂πY

< ε
2 . More-

over, note that z′ ∈ X0⊗Y0. We have that X0 is 1-complemented in X and Y0

is 1-complemented in Y . Consequently, by [36, Proposition 2.4] we get that
norm of X⊗̂πY agrees on X0 ⊗ Y0 with the norm of X0⊗̂πY0. In particular,

‖z′‖π
X0⊗̂πY0

= ‖z′‖π
X⊗̂πY

. (4.3)

Finally, since X0, Y0 are finite-dimensional spaces, we use Proposition 3.5 to
show that z′ attains its projective norm in X0⊗̂πY0. Since (4.3) holds, z′

attains its norm in X⊗̂πY and we are done.
(b). Let u ∈ SX⊗̂πY and ε > 0 be given. There are bounded sequences

(λn)n ⊆ R+, (xn)n ⊆ SX , and (yn)n ⊆ SY with u =
∑∞

n=1 λnxn ⊗ yn and
(4.2) holds. We can find k large enough such that ‖u − z‖π

X⊗̂πY
< ε

3 for

z :=
∑k

n=1 λnxn ⊗ yn. Since X satisfies the metric π-property, we can find
a finite-dimensional subspace X0 which is 1-complemented and such that for
every n ∈ {1, . . . , k}, there is x′

n ∈ X0 such that ‖xn − x′
n‖ < ε

6kλn
. Define

z′ =
∑k

n=1 λnx′
n ⊗ yn. Notice that ‖z′ − z‖π

X⊗̂πY
< ε

3 and that z′ ∈ X0 ⊗ Y .

Since X0 is finite dimensional and Y is uniformly convex, by Corollary 4.6,
we can find z′′ ∈ X0⊗̂πY such that

‖z′ − z′′‖π
X0⊗̂πY

<
ε

3
with z′′

=

∞∑

n=1

an ⊗ bn and ‖z′′‖π
X0⊗̂πY

=

∞∑

n=1

‖an‖‖bn‖.

Since the norm of X⊗̂πY agrees on X0 ⊗ Y with the norm of X0⊗̂πY , the
result follows as in the previous item. �

Let us notice that if a Banach space Z satisfies the metric π-property,
then it has the metric approximation property and then the analogous result
for nuclear operators follows immediately from Theorem 4.8 and [36, Corol-
lary 4.8].
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Corollary 4.9. Let X be Banach space such that X∗ satisfies the metric π-
property.

(a) If Y satisfies the metric π-property, then NAN (X,Y )
‖·‖N

= N (X,Y ).

(b) If Y is uniformly convex, then NAN (X,Y )
‖·‖N

= N (X,Y ).

To finish this section, let us see particular cases where Theorem 4.8 and
Corollary 4.9 can be applied. This shows that we always have denseness in
all classical Banach spaces. Note that item (a) tells us that the metric π-
property happens very often. Also, the stability results, (d), (e), (f), and (g),
allow us to get more positive examples on denseness. We will first recall the
following definition:

Definition 4.10. Let X be a Banach space. A sequence {Xn}n∈N of finite-
dimensional subspaces of X is called a finite-dimensional decomposition of
X (F.D.D. for short) if every x ∈ X has a unique representation of the form

x =
∑+∞

n=1 xn with xn ∈ Xn for every n ∈ N.

Remark 4.11. A F.D.D. on a Banach space X determines a sequence {Pn}n∈N
of projections (called the partial sum projections of the decomposition) such

that if x =
∑∞

n=1 xn ∈ X, then Pj(x) =
∑j

n=1 xn for all j ∈ N. These
projections are commuting, have increasing range, and converge strongly to
the identity operator on X. The supremum of the norms of those projections
is finite and is called the decomposition constant.

Example 4.12. The following Banach spaces satisfy the metric π-property
(which might be well known for some readers, but we could not find proper
references and we include the proof for completeness).

(a) Banach spaces with a finite-dimensional decomposition with the decom-
position constant 1 (consequently, every Banach space with Schauder
basis can be renormed to have the metric π-property)as follows;

(b) Lp(μ)-spaces for any 1 � p < ∞ and any measure μ;
(c) L1-predual spaces;
(d) X ⊕a Y , whenever X,Y satisfy the metric π-property and | · |a is an

absolute norm;
(e) X =

[⊕
n∈N Xn

]
c0

or
[⊕

n∈N Xn

]
�p

, ∀ 1 � p < ∞, Xn satisfying the

metric π-property, ∀n;
(f) X⊗̂πY , whenever X,Y satisfy the metric π-property;
(g) X⊗̂εY , whenever X,Y satisfy the metric π-property.

Proof. (a). Given a Banach space X, if there exists a sequence of finite-
dimensional Banach spaces and 1-complemented subspaces {En}n∈N such
that En ⊆ En+1 holds for every n and such that

⋃
n∈N En is dense in X, then

X has the metric π-property. In particular, it applies whenever X is a Banach
space with an F.D.D. with the decomposition constant 1 (if Pn : X −→ X
are the associated norm-one projections, take En := Pn(X)).
(b). Let 1 � p < ∞ be given. Then, Lp(μ) has the metric π-property
regardless the measure μ. Let us write X = Lp(μ), for short. Consider
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x1, . . . , xn ∈ SX , ε > 0. For every i ∈ {1, . . . , n}, we can find a simple function
x′

i ∈ SX such that

‖xi − x′
i‖ < ε, (4.4)

where x′
i =

∑m
j=1 aijχAj

for suitable m ∈ N, aij ∈ R and pairwise disjoint
Aj ∈ Σ. Now, in order to prove that X has the metric π-property, define
M := span{χAj

: 1 � j � m} and let us construct P : X −→ X by the
equation

T (f) :=

m∑

j=1

1

μ(Aj)

∫

Aj

f dμχAj
.

It is clear from the disjointedness of A1, . . . , Am and the fact that ‖P (f)‖ �
‖f‖ holds for every f ∈ X. Furthermore, it is clear from the definition that
P (f) = f holds for every f ∈ M , so P is a norm-one projection onto M . The
result follows since x′

i ∈ M and by the arbitrariness of ε > 0. This proves (b).
(c). If X is a Banach space with X∗ = L1, then X has the metric π-property.
Indeed, let ε > 0 and {x1, . . . , xn} ⊂ SX be given. Define F1 = {0} and
F2 = span{x1, . . . , xn}. By [28, Theorem 3.1] and [34, Theorem 1.3], we may
find a subspace E of X such that E is isometric to �m

∞ for some m ∈ N
and d(x,E) < ε for all x ∈ F2. For each 1 � i � n, pick x′

i ∈ E so that
‖xi −x′

i‖ < ε. By [33, Lemma 2.1], there exists a norm one projection P from
X to E; hence E is indeed an 1-complemented finite-dimensional subspace
of X.
(d). To prove that the metric π-property is stable by absolute sums, let us
first notice that SX , in its definition, can be replaced by BX (indeed, let
ε > 0 and {x1, . . . , xn} ⊂ BX be given; without loss of generality, we may
assume that xi �= 0 for all 1 � i � n; from the metric π-property, we may
find a 1-complemented finite-dimensional space M of X with x′

i ∈ M such
that ‖xi/‖xi‖ − x′

i‖ < ε for every 1 � i � n; thus, ‖xi − ‖xi‖x′
i‖ < ε

and {‖x1‖x′
1, . . . , ‖xn‖x′

n} ⊂ M). Set Z = X ⊕a Y . Let ε > 0 and
{z1, . . . , zn} ⊂ SZ be given. If we write zi = (xi, yi) for each 1 � i � n,
then max{‖xi‖, ‖yi‖} � ‖zi‖a = 1 for every 1 � i � n. As X has the met-
ric π-property and {x1, . . . , xn} ⊂ BX , there exist a 1-complemented finite-
dimensional subspace M of X and {x′

1, . . . , x
′
n} ⊆ M such that ‖xi −x′

i‖ < ε.
Similarly, there exist a 1-complemented finite-dimensional subspace N of Y
and {y′

1, . . . , y
′
n} ⊂ N such that ‖yi − y′

i‖ < ε. If we let z′
i = (x′

i, y
′
i) for each

1 � i � n, then for every 1 � i � n, we have

‖zi − z′
i‖a � ‖xi − x′

i‖ + ‖yi − y′
i‖ < 2ε.

Let P and Q be norm one projections from X onto M and Y onto N , respec-
tively. Consider the map (P,Q) defined on X ⊕a Y as (x, y) �→ (Px,Qy) for
every (x, y) ∈ X ⊕a Y . Note that (P,Q) is a projection with (closed) range
M ⊕a N . Moreover,

‖(Px,Qy)‖a = |(‖Px‖, ‖Qy‖)|a � |(‖x‖, ‖y‖)|a = ‖(x, y)‖a

for every (x, y) ∈ X ⊕a Y ; hence M ⊕a N is a 1-complemented finite-
dimensional subspace of Z with {z′

1, . . . , z
′
n} ⊂ M ⊕a N satisfying ‖zi −z′

i‖ <
2ε for each 1 � i � n.
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(e). This can be obtained by extending the proof of (d). Let {x1, . . . , xn} ⊆
SX be given. First, approximate xi by x′

i of finite support. Now, say x′
i =

(xi1, . . . , xik, 0, 0, . . .) with some common k ∈ N. Find a 1-complemented
subspace Mj in Xj containing x1j , . . . , xnj from the assumption that
Xj enjoys the metric π-property for each 1 � j � k. Then, M =
{(z1, z2, . . . , zk, 0, 0, . . .) : zi ∈ Mi, 1 � i � k} is a finite-dimensional subspace
of X which is 1-complemented by the projection (P1, P2, . . . , Pk, 0, 0, . . .)
(defined similarly as in the item (d)) and M contains the set {x′

1, . . . , x
′
n}.

(f). Let ε > 0 and z1, . . . , zn ∈ SX⊗̂πY be given. For each 1 � i � n, consider

{x
(i)
j , y

(i)
j } ⊆ BX × BY to be such that

zi =

∞∑

j=1

x
(i)
j ⊗ y

(i)
j with ‖zi‖π >

∞∑

j=1

‖x
(i)
j ‖‖y(i)

j ‖ − ε.

For each i = 1, . . . , n, let Ni ∈ N be such that
∞∑

j=Ni+1

‖x
(i)
j ‖‖y(i)

j ‖ <
ε

2
.

Now, since X has the metric π-property, there exists a 1-complemented finite-
dimensional subspace M of X with

{
x̃j

(i) : 1 � j � Ni, 1 � i � n
}

⊆ M such that ‖x̃j
(i) − x

(i)
j ‖ < min

{
ε

4Ni
: 1 � i � n

}

and, analogously, there exists a 1-complemented finite-dimensional subspace
N of Y with{

ỹj
(i) : 1 � j � Ni, 1 � i � n

}

⊆ N such that ‖ỹj
(i) − y

(i)
j ‖ < min

{
ε

4Ni
: 1 � i � n

}

for each 1 � j � Ni with i = 1, . . . , n. By [36, Proposition 2.4], M⊗̂πN is an

1-complemented space. Let z̃i :=
∑Ni

j=1 x̃j
(i) ⊗ ỹj

(i). Then,
∥∥∥∥∥∥
z̃i −

Ni∑

j=1

x
(i)
j ⊗ y

(i)
j

∥∥∥∥∥∥
π

� 2Ni min

{
ε

4Ni
: 1 � i � n

}
� ε

2

for every i = 1, . . . , n. Then, X⊗̂πY has the metric π-property, as desired.
(g). Let z1, . . . , zn ∈ SX⊗̂εY and δ > 0 be given. For each i ∈ {1, . . . , n}, let

z̃i ∈ X⊗Y be such that ‖zi−z̃i‖ε < δ
2 . Let

∑Ni

j=1 x
(i)
j ⊗y

(i)
j be a representation

of z̃i for each i = 1, . . . , n. Since

{x
(i)
j : 1 � j � Ni, 1 � i � n} ⊆ X and {y

(i)
j : 1 � j � Ni, 1 � i � n} ⊆ Y,

there are 1-complemented finite-dimensional subspaces M � X and N � Y

with {x̃j
(i) : 1 � j � Ni, 1 � i � n} ⊆ M and {ỹj

(i) : 1 � j � Ni, 1 � i �
n} ⊆ N such that
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‖x
(i)
j − x̃j

(i)‖ < min

{
ε

4Ni
: 1 � i � n

}

and ‖y
(i)
j − ỹj

(i)‖ < min

{
ε

4Ni
: 1 � i � n

}
.

As M⊗̂εN is a 1-complemented subspace of X⊗̂εY (see, for instance, [36,
Proposition 3.2]),

ṽi =

Ni∑

j=1

x̃j
(i) ⊗ ỹj

(i) ∈ M⊗̂εN and ‖z̃i − ṽi‖ε � ‖z̃i − ṽi‖π � δ

2
,

which implies that ‖zi − ṽi‖ε < δ, we have that X⊗̂εY satisfies the metric
π-property. �

Remark 4.13. From the estimates of case (g) above it follows that X⊗̂αY has
the metric π-property whenever X and Y enjoy the metric π-property and α
is a uniform cross norm (see [36, Section 6.1] for background and details).

Example 4.12.(g) allows us to extend Theorem 4.8 for larger projective
tensor products.

Corollary 4.14. Let N ∈ N be given. Let X1, . . . , XN be Banach spaces with
the metric π-property, and Y be a Banach space. Then,

NAπ(X1⊗̂π · · · ⊗̂πXN ⊗̂πY )
‖·‖π

= X1⊗̂π · · · ⊗̂πXN ⊗̂πY.

5. There are Tensors Which Cannot be Approximated by
Norm-Attaining Tensors

By the results from previous section, one may think that the denseness for
norm-attaining tensors always holds true. In this section, we will see that this
is not the case. We show that there are Banach spaces X and Y such that
the set of all tensors in X⊗̂πY ∗ which attain their projective norms is not
dense in X⊗̂πY ∗. In order to do that, let us notice that, by Theorem 3.1, it
would be enough to show that NA(X,Y ∗∗) ∩ BL(X,Y ∗∗) is not norming for

X⊗̂πY ∗ (and in fact that is what we do; see Remark 5.4). On the other hand,
in view of the proof of [27, Proposition 2.3], note that if either X or Y ∗∗ satis-
fies the metric approximation property (respectively, bounded approximation
property), then F(X,Y ∗∗) is norming (respectively, K-norming) for X⊗̂πY ∗,
and this implies that F(X,Y ∗∗) is w∗-dense in L(X,Y ∗∗). This suggests us
to look for our counterexample in the context of Banach spaces failing the
approximation property and trying to guarantee that the set of operators
which attain their norms is not bigger than the set of finite-rank operators.
This is the reason why we will adapt [32, Theorem 1] taking into account all
the previous considerations.

For this, we will use Read’s space R (see [24,25,35] for all the details on
this space). Read’s space is a renorming of the Banach space c0, R = (c0, |||·|||),
which has bidual R∗∗ strictly convex (see [24, Theorem 4]). This implies
that NA(X,R∗∗) ⊆ F(X,R∗∗) whenever X is a closed subspace of c0 (see
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[32, Lemma 2]). It is worth mentioning that we are not using here the deep
properties of R (that it contains no two-codimensional proximal subspaces)
but only the fact that its bidual is strictly convex for the bidual norm and
that it contains c0 (this is in fact well known; the existence of such norms
can be justified, for instance, by using [25, Lemma 2.1] and taking R as a
one-to-one operator from c0 into �2).

Theorem 5.1. Let R be Read’s space. There exist subspaces X of c0 and Y of
R such that the set of tensors in X⊗̂πY ∗ which attain their projective norms
is not dense in X⊗̂πY ∗.

In order to prove Theorem 5.1, we would like to present several results,
which, from our point of view, have their own interest.

Lemma 5.2. Let X,Y be a Banach spaces such that Y ∗ is separable. If
F(X,Y ∗∗) is viewed as a subspace of (X⊗̂πY ∗)∗ = L(X,Y ∗∗), we have

BF(X,Y ∗∗) ⊂ BF(X,Y )
w∗

.

Proof. Let T ∈ F(X,Y ∗∗) with ‖T‖ < 1. Choose a countable dense subset
(y∗

n)n∈N of Y ∗ and let Fn = span{y∗
1 , . . . , y∗

n} for each n ∈ N. By the Principle
of Local Reflexivity, for each n ∈ N, there exists an operator φn : T (X) → Y
such that

1.
(
1 − 1

n

)
‖T (x)‖ � ‖φn(T (x))‖ �

(
1 + 1

n

)
‖T (x)‖ for every x ∈ X,

2. y∗(φn(T (x))) = y∗(T (x)) for every y∗ ∈ Fn and x ∈ X.

Choose n0 ∈ N so that 1
n < 1

‖T‖ − 1 whenever n � n0. Let us define Kn =

φn ◦ T ∈ F(X,Y ) for each n � n0. Then ‖Kn‖ � ‖φn‖‖T‖ < 1 for each

n � n0. We claim that Kn
w∗
−−→ T . First, observe that given x ∈ X and

m ∈ N, we have

y∗
m(Kn(x)) = y∗

m(φn(T (x))) = y∗
m(T (x)) for every n � m. (5.1)

Now, let x ∈ X \ {0}, y∗ ∈ Y ∗ and ε > 0 be given. Pick n0 ∈ N so that
‖y∗

n0
− y∗‖ < ε

2‖x‖ . By (5.1), we have for n � n0,

|y∗(Kn(x)) − y∗(T (x))| � |y∗(Kn(x)) − y∗
n0

(Kn(x))| + |y∗
n0

(Kn(x)) − y∗
n0

(T (x))|
+ |y∗

n0
(T (x)) − y∗(T (x))|

� ‖y∗ − y∗
n0

‖‖Kn‖‖x‖ + ‖y∗
n0

− y∗‖‖T‖‖x‖

<
ε

2
+

ε

2
= ε.

By a linearity argument we get that Kn(z) → T (z) for every z ∈ X ⊗ Y .
Finally, since the sequence Kn is bounded we get that Kn → T in the w∗-
topology.

This implies that {T ∈ F(X,Y ∗∗) : ‖T‖ < 1} ⊂ BF(X,Y )
w∗

. As a
w∗-closed set in L(X,Y ∗∗) is ‖ · ‖-closed, we conclude that BF(X,Y ∗∗) ⊂
BF(X,Y )

w∗
. �

In what follows, we will be using the strong operator topology (SOT ,
for short) and the weak operator topology (WOT , for short). Recall that the
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strong operator topology in L(X,Y ) is the topology defined by the basic
neighborhoods

N(T ;A, ε) = {S ∈ L(X,Y ) : ‖(T − S)(x)‖ < ε, x ∈ A} ,

where A is an arbitrary finite subset of X and ε > 0. Thus, in the SOT , a
net (Tα) converges to T if and only if (Tα(x)) converges to T (x) for every
x ∈ X. On the other hand, the weak operator topology is defined by the basic
neighborhoods

N(T ;A,A∗, ε) = {S ∈ L(X,Y ), |y∗(T − S)(x)| < ε, y∗ ∈ A∗, x ∈ A} ,

where A and A∗ are arbitrary finite sets in X and Y ∗, respectively, and
ε > 0. Thus, in the WOT , a net Tα converges to T if and only if (y∗(Tα(x)))
converges to y∗(T (x)) for every x ∈ X and y∗ ∈ Y ∗.

Let us notice that a convex set in L(X,Y ) has the same closure in the
WOT as it does in the SOT (see, for instance, [16, Corollary 5, page 477]).
We will use this fact in the proof of Theorem 5.1 below.

Lemma 5.3. Let X be a Banach space failing the approximation property.

Then, the identity map on X does not belong to RBF(X,X)
WOT

for any R > 0.

Proof. Let X be a Banach space which fails the approximation property and
let us denote the identity map on X by IdX . Then, by definition, IdX �∈
F(X,X)

τ
, where τ is the topology of uniform convergence on compact sets.

For given R > 0, let us prove that IdX �∈ RBF(X,X)
SOT

. In order to get a

contradiction, let us assume IdX ∈ RBF(X,X)
SOT

. Then there exists a net

(Tα)α∈Λ ⊂ RBF(X,X) such that Tα
SOT−−−→ IdX . Now, let K be a compact set

in X and ε > 0 be given. Choose a
(
min

{
ε

3R , ε
3

})
-net {x1, . . . , xk} for K.

Pick α0 ∈ Λ such that for every α � α0

max
1�i�k

‖Tα(xi) − IdX(xi)‖ = max
1�i�k

‖Tα(xi) − xi‖ <
ε

3
.

Given x ∈ K, take i ∈ {1, . . . , k} so that ‖x − xi‖ < min
{

ε
3R , ε

3

}
. Then,

‖Tα(x) − IdX(x)‖ � ‖Tα(x) − Tα(xi)‖ + ‖Tα(xi) − xi‖ + ‖xi − x‖
� ‖Tα‖‖x − xi‖ +

ε

3
+

ε

3

<
ε

3
+

ε

3
+

ε

3
= ε

for every α � α0. This implies that IdX ∈ F(X,X)
τ
, a contradiction. So,

IdX �∈ RBF(X,X)
SOT

= RBF(X,X)
WOT

. �

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let X be a closed subspace of c0 which fails the
approximation property (see, for instance, [31, Theorem 2.d.6]). Then, by

Lemma 5.3, the identity map on X does not belong to RBF(X,X)
WOT

for any
R > 0. Let Y = (X, |||·|||), where |||·||| is the norm that defines Read’s space.
Let us denote by ι ∈ L(X,Y ) the formal identity map from X to Y . Then
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T = ι/‖ι‖ does not belong to RBF(X,Y )
WOT

for any R > 0. It follows that

T does not belong to RBF(X,Y )
w∗

, where the previous weak-star topology

refers to σ(L(X,Y ∗∗),X⊗̂πY ∗), for any R > 0. Indeed, if T ∈ RBF(X,Y )
w∗

for some R > 0, given x ∈ X, y∗ ∈ Y ∗ and ε > 0, there exists T0 ∈ RBF(X,Y )

such that

|y∗(T (x) − T0(x))| = |(T − T0)(x ⊗ y∗)| < ε,

which implies that T ∈ RBF(X,Y )
WOT

, a contradiction. In particular, T

does not belong to BF(X,Y )
w∗

. As Y ∗ is separable, by Lemma 5.2, T does

not belong to BF(X,Y ∗∗)
w∗

. Thus, by the Hahn–Banach theorem we have that

the unit ball BF(X,Y ∗∗) is not norming for X⊗̂πY ∗. Take z ∈ X⊗̂πY ∗ with
‖z‖π = 1 and α > 0 such that

sup{|G(z)| : G ∈ BF(X,Y ∗∗)} < 1 − α. (5.2)

Claim: dist
(
z,NAπ(X⊗̂πY ∗)

)
>

α

2
.

If this is not the case, there exists z′ ∈ NAπ(X⊗̂πY ∗) such that ‖z −
z′‖π � α

2 . This implies that ‖z′‖π � 1 − α
2 . Let G ∈ L(X,Y ∗∗) with ‖G‖ = 1

such that |G(z′)| = ‖z′‖π. In particular, G ∈ NA(X,Y ∗∗) by Theorem 3.1.
Notice that Y ∗∗ = Y ⊥⊥ is a closed subspace of R∗∗, so Y ∗∗ is strictly convex.
Thus, we have that G ∈ F(X,Y ∗∗) by [32, Lemma 2], which implies by (5.2)
that |G(z)| < 1 − α. Nevertheless,

|G(z)| � |G(z′)| − ‖z − z′‖π � 1 − α

2
− α

2
= 1 − α,

which is a contradiction. �

Remark 5.4. Notice that from the above proof it follows that, given
two Banach spaces X and Y , if NAπ(X⊗̂πY ) is dense in X⊗̂πY , then
NA(X,Y ∗) ∩ BL(X,Y ∗) is norming for X⊗̂πY .

In fact, from the proof of Theorem 5.1 (and its lemmas) we extract
more information. Recall that for every non-zero tensor u ∈ X ⊗Y , there is a
smallest N ∈ N for which there is a representation for z containing N terms.
The number N is known as the rank of u. Because of this, we will say that u
is a finite-rank tensor if u ∈ X ⊗ Y . Although it is not known whether every
finite-rank operator can be approximated by norm-attaining operators, the
case for tensors does not hold in general.

Proposition 5.5. There are tensors of finite rank which do not attain their
projective norm.

Proof. Consider X and Y ∗ as in Theorem 5.1. Then, there exist α > 0 and
z ∈ X⊗̂πY ∗ such that dist (z,NAπ(X⊗̂πY ∗)) � α. Now, take u of finite-
rank such that ‖z −u‖π < α

2 . Then, this element cannot attain its projective
norm. �
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As we have commented at the beginning of this section, let us notice
that from the proof of Theorem 5.1, there exist some Banach spaces X and
Y such that NA(X,Y ∗∗) ∩ BL(X,Y ∗∗) is not w∗-dense in BL(X,Y ∗∗). Actually,
we have the following result:

Corollary 5.6. There are Banach spaces X and Y such that

co(NA(X,Y ∗∗) ∩ BL(X,Y ∗∗))
w∗

�= BL(X,Y ∗∗).

6. Open Questions

In this section, we would like to discuss and propose some open questions.
We have proved that if H is a complex Hilbert space, every tensor

in H⊗̂πH attains its projective norm (see Proposition 3.8) and that the
set NAπ(Lp(μ)⊗̂πLq(ν)) is dense in Lp(μ)⊗̂πLp(ν) for 1 < p, q < ∞ and
measures μ and ν (see Example 4.12.(b)). However, we do not know what
happens in general when both factors are reflexive spaces.

Question 6.1. Let X,Y be reflexive Banach spaces. Is it true that the set of
all norm-attaining tensors is dense in X⊗̂πY ?

Let us notice that, by trying to mimic the proof of Theorem 5.1 (and
its lemmas) for the nuclear operator case, one would realize that

(ker J)⊥ �= (ker J)⊥ ∩ F (Y,X∗∗)
w∗

needs to be one the hypothesis (which we cannot guarantee that it holds).
We do not know if there is a version of Theorem 5.1 for nuclear operators.

Question 6.2. Are there Banach spaces X and Y so that NAN (X,Y ) is not
dense in N (X,Y )?

We say that a Banach space X has property quasi-α if, for an index
set Γ, there are A = {xγ ∈ SX : γ ∈ Γ}, A∗ = {x∗

γ ∈ SX∗ : γ ∈ Γ}, and
λ : A −→ R such that x∗

γ(xγ) = 1 for every γ ∈ Γ; |x∗
γ(xη)| � λ(xγ) < 1 for

γ �= η; and for every e ∈ Ext(BX∗∗), there is a subset Ae ⊆ A and a scalar

t with |t| = 1 such that te ∈ Q(Ae)
w∗

and re = sup{λ(x) : x ∈ Ae} < 1,
where Q is the canonical embedding on X∗∗ (see [11]). Let us notice that
property quasi-α is weaker than property α introduced by Schachermayer in
[37]. We have proved that NAπ(�1⊗̂πY ) = �1⊗̂πY for every Banach space Y
(see Proposition 3.6). Consequently, by using Proposition 3.10, we get that

NA(�1 × Y )
‖·‖

= B(�1 × Y )

for every Banach space Y . This is a particular case of [11, Theorem 2.17],
which we wonder if it could be extended in the following sense.

Question 6.3. Let X be a Banach space with property α (or quasi-α). Is it
true that the equality NAπ(X⊗̂πY ) = X⊗̂πY holds for every Banach space
Y ?
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de Castelló (IMAC), Universitat Jaume I, Campus del Riu Sec. s/n, 12071 Castelló,
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1. Introduction. Recently, it was studied the set of the nuclear operators
T : X −→ Y between two Banach spaces X,Y that attains their nuclear norm
in the sense that

T =
∞∑

n=1

x∗n ⊗ yn, and ‖T‖N =
∞∑

n=1

‖x∗n‖ ‖yn‖

for some (x∗n)∞n=1 ⊆ X∗ and (yn)∞n=1 ⊆ Y [10]. From a practical point of view, it
has been shown that this new concept has great connections with different norm-
attainment concepts like the norm-attainment of bounded functionals, the norm-
attainment of operators and the norm-attainment of bilinear forms coming from
the identification (X⊗̂πY )∗ = L(X,Y ∗) = B(X×Y ) (see [10, Proposition 3.10 and
Corollary 3.11]). In this paper, we focus on a related norm-attaining notion on the
N -fold symmetric tensor product of a Banach space X: we say that an element
z ∈ ⊗̂π,s,NX attains its norm if

z =
∞∑

n=1

λnx
N
n , and ‖z‖ =

∞∑

n=1

|λn|

for some (λn)∞n=1 ⊆ K and (xn)∞n=1 ⊆ X (given a natural number N ∈ N, we
denote by zN the element z⊗ N. . . ⊗z ∈ X⊗ N. . . ⊗X for every z ∈ X). Due to the
fact that the dual (⊗̂π,s,NX)∗ of the N -fold symmetric tensor product of a Banach
space X is identified with the space P(NX) of all N -homogeneous polynomials
on X, this norm-attainment notion turns out to be closely related to the theory
of norm-attaining homogeneous polynomials for which the reader is referred to
[1, 7, 9, 21].

We present a characterization for the set of all norm-attaining elements in
⊗̂π,s,NX, denoted by NAπ,s,N (X), and we use it to prove that if every element
in ⊗̂π,s,NX attains its norm, then the set NA(NX) of all N -homogeneous poly-
nomials which attain their norms in dense in P(NX). This, together with the
fact that there are Banach spaces X such that the set NA(NX) is not dense in
P(NX) (see [1, 18]), allows us to get our first examples of spaces X so that we can
guarantee the existence of non-norm-attaining elements in ⊗̂π,s,NX. As there exist
elements in ⊗̂π,s,NX which do not attain their norms, it is natural to ask when
the set of norm-attaining elements in ⊗̂π,s,NX forms a dense subset. We prove
that, under the metric π-property (see [8, 19]) on X, the denseness of NAπ,s,N (X)
holds from the fact that every tensor in ⊗̂π,s,NZ attains its norm whenever Z is
a finite dimensional space. This shows that, for a large class of Banach spaces,
as for instance Lp-spaces, L1-predual spaces, and Banach spaces with monotone
Schauder basis, the set NAπ,s,N (X) is dense in ⊗̂π,s,NX. We also present a result
not covered by the previous ones which holds under the Radon-Nikodým property
assumption. More precisely, we show that if X∗ has the Radon-Nikodým property
and the approximation property, then the set of tensors in ⊗̂π,s,NX∗ which at-
tain their norms is dense. Moreover, we observe that the problem whether the set
NAπ,s,N (X) is dense in ⊗̂π,s,NX for every Banach space, is separably determined.

1Corresponding author.



On norm-attainment in (symmetric) tensor products 3

We finish the paper by considering the set NAπ(X⊗̂πY ) of all norm-attaining
tensors in X⊗̂πY and obtaining some positive results on the denseness of the set
NAπ(X⊗̂πY ). For instance, we prove that if X is the convex hull of a finite set and
Y is a dual space, then every element in X⊗̂πY attains its norm, which seems to be
surprising somehow since there exists a Banach space X so that NAπ(X⊗̂π`22) 6=
X⊗̂π`22 (see [10, Example 3.12.(a)]). This result allows us to show that if X is a
polyhedral Banach space with the metric π-property, then the set NAπ(X⊗̂πY )
is dense in X⊗̂πY whenever Y is a dual space. Moreover, in the same line as
the symmetric tensor product case, we give a positive answer to an open question
from [10] by proving that NA(X∗⊗̂πY ∗) is dense in X∗⊗̂πY ∗, provided that X∗

and Y ∗ both have the Radon-Nikodým property, and at least one of them has the
approximation property.

2. Notation and preliminary results. In this section, we give the necessary
notation and some preliminary results we will be using throughout the paper.

The letters X,Y , and Z stand for Banach spaces over the field K which will
be R or C. We denote by BX and SX the closed unit ball and unit sphere of X,
respectively. Given a subset B ⊆ X, we denote the convex hull of B by co(B). The
symbol aco(B) stands for the absolutely convex (i.e., the convex and balanced) hull
of the set B. If A,B are subsets of X,Y , respectively, we denote by A⊗B the set
{x⊗ y ∈ X ⊗ Y : x ∈ A, y ∈ B}. Given a subset C of X, a point x ∈ C is said to
be an extreme point of C if x cannot be written as a convex combination of points
in C which are different from x itself. We denote by ext (C) the set of all extreme
points of C.

For two Banach spaces X and Y , the symbol L(X,Y ) stands for the space of
all bounded linear operators from X into Y . By B(X × Y ) we mean the space of
all bilinear forms on X × Y taking values in K. The Banach space of all scalar-
valued N -homogeneous polynomials on X is denoted by P(NX), which is endowed
with the norm ‖P‖ = supx∈BX |P (x)| for every P ∈ P(NX). In this case, P is
said to attain its norm when this supremum becomes a maximum. We denote by
NA(NX) the set of all N -homogeneous polynomials which attain their norms on
X. For background on homogeneous polynomials we refer the refer to [13, 16, 23].

The projective and injective tensor product between X and Y , denoted by
X⊗̂πY and X⊗̂εY , respectively, are the completion of the algebraic tensor product
X ⊗ Y endowed with the norms

(2.1) ‖z‖π := inf

{
n∑

i=1

‖xi‖‖yi‖ : z =
n∑

i=1

xi ⊗ yi
}
,

where the infimum is taken over all such representations of z, and
∥∥∥∥∥
n∑

i=1

xi ⊗ yi
∥∥∥∥∥
ε

= sup

{∣∣∣∣∣
n∑

i=1

x∗(xi)y
∗(yi)

∣∣∣∣∣ : x∗ ∈ BX∗ , y∗ ∈ BY ∗
}
.

It is well known that BX⊗̂πY = co(BX ⊗BY ) and that (X⊗̂πY )∗ = B(X ×
Y ) = L(X,Y ∗). There is a canonical operator J : X∗⊗̂πY −→ L(X,Y ) with
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‖J‖ = 1 defined by z =
∑∞
n=1 x

∗
n ⊗ yn 7→ Lz, where Lz : X −→ Y is given by

Lz(x) =
∑∞
n=1 x

∗
n(x)yn. The operators that arise in this way are called nuclear

operators and we denote them by N (X,Y ) endowed with the nuclear norm

(2.2) ‖T‖N := inf

{ ∞∑

n=1

‖x∗n‖‖yn‖ : T (x) =
∞∑

n=1

x∗n(x)yn

}
,

where the infimum is taken over all representations of T of that form. Let us
notice that every nuclear operator is the limit (in the operator norm) of a sequence
of finite-rank operators, so every nuclear operator is compact.

Recall that a Banach space X satisfies the approximation property (AP, for
short) if for every compact subset K of X and for every ε > 0, there exists a finite-
rank operator T : X −→ X such that ‖T (x)−x‖ 6 ε for every x ∈ K. It turns out
that whenever X∗ or Y has the approximation property, then X∗⊗̂πY = N (X,Y ).
For a detailed account on tensor products and nuclear operators, we refer the reader
to [11, 26].

The (N -fold) projective symmetric tensor product of X, denoted by ⊗̂π,s,NX,
is the completion of the linear space ⊗π,s,NX, generated by {zN : z ∈ X}, under
the norm given by

(2.3) ‖z‖π,s,N := inf

{
n∑

k=1

|λk| : z :=

n∑

k=1

λkx
N
k , n ∈ N, xk ∈ SX , λk ∈ K

}
,

where the infimum is taken over all the possible representations of z. Its topological
dual

(
⊗̂π,s,NX

)∗
can be identified (there exists an isometric isomorphism) with

P(NX). Indeed, every polynomial P ∈ P(NX) acts as a linear functional on
⊗̂π,s,NX through its associated symmetric N -linear form P and satisfies

P (x) = P (x, . . . , x) = 〈P, xN 〉

for every x ∈ X. We also have that B⊗̂π,s,NX = aco({xN : x ∈ SX}). To save

notation, by a symmetric tensor we will refer to a generic element of ⊗̂π,s,NX. For
more information about symmetric tensor products, we send the reader to [14] and
also to recent papers as [4, 5, 6].

Throughout the paper, we will be interested in studying the concepts of norm-
attainment on X⊗̂πY , N (X,Y ), and ⊗̂π,s,NX, meaning that their norms (2.1),
(2.2), and (2.3) are respectively attained. More precisely, we have the following
definitions, which will be our main notions in this paper:

(1) z ∈ X⊗̂πY attains its projective norm if there is a bounded sequence (xn, yn)
⊆ X × Y with

∑∞
n=1 ‖xn‖‖yn‖ < ∞ such that z =

∑∞
n=1 xn ⊗ yn and that

‖z‖π =
∑∞
n=1 ‖xn‖‖yn‖. In this case, we say that z is a norm-attaining

tensor.

(2) T ∈ N (X,Y ) attains its nuclear norm if there is a bounded sequence (x∗n, yn)
⊆ X∗ × Y with

∑∞
n=1 ‖x∗n‖‖yn‖ <∞ such that T =

∑∞
n=1 x

∗
n ⊗ yn and that
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‖T‖N =
∑∞
n=1 ‖x∗n‖‖yn‖. In this case, we say that T is a norm-attaining

nuclear operator.

(3) z ∈ ⊗̂π,s,NX attains its projective symmetric norm if there are bounded
sequences (λn)∞n=1 ⊂ K and (xn)∞n=1 ⊆ BX such that ‖z‖π,s,N =

∑∞
n=1 |λn|

for z =
∑∞
n=1 λnx

N
n . In this case, we say that z is a norm-attaining symmetric

tensor.

When there is no confusion of misunderstanding and it is clear on what spaces we
are working with, we denote the norms ‖ · ‖π, ‖ · ‖N , and ‖ · ‖π,s,N simply by ‖ · ‖.
Therefore, we set

(i) NAπ(X⊗̂πY ) =
{
z ∈ X⊗̂πY : z attains its projective norm

}
,

(ii) NAN (X,Y ) =
{
T ∈ N (X,Y ) : T attains its nuclear norm

}
,

(iii) NAπ,s,N (X) =
{
z ∈ ⊗̂π,s,NX : z attains its symmetric norm

}
.

Recall that a subspace Y of a Banach space X is said to be an ideal of X if
for every finite-dimensional subspace E of X and every ε > 0, there is a linear
operator T ∈ L(E, Y ) such that T (e) = e for every e ∈ E∩Y and ‖T‖ 6 1+ε. Let
us notice that 1-complemented subspaces are ideals and that the concept of being
an ideal of X coincides with the one of locally complemented subspace of X (see
[20]). The following result is motivated by [24, Theorem 1.(i)], where the author
proves that if X and Z are Banach spaces and Y is an ideal of Z, then X⊗̂πY is a
subspace of X⊗̂πZ and it is an ideal. In what follows, ⊗̂π,s,NY being an isometric
subspace means that if we consider the natural embedding of it into ⊗̂π,s,NX, then
the norms in ⊗̂π,s,NY and ⊗̂π,s,NX coincide on ⊗̂π,s,NY .

Theorem 2.1. Let X be a Banach space and Y an ideal of X. Then, ⊗̂π,s,NY is
an isometric subspace of ⊗̂π,s,NX.

Proof. Notice first that, by a denseness argument, it is enough to prove the
theorem for z =

∑n
i=1 λiyi ∈ ⊗π,s,NY ⊆ ⊗π,s,NX. By the definition of the norm

(see (2.3)), we have that ‖z‖⊗̂π,s,NX 6 ‖z‖⊗̂π,s,NY . Now, let us prove the other

inequality.
Let ε > 0 be given. Since the norm on a symmetric tensor product is finitely

generated (see [14, Subsection 2.2]), there exists a finite-dimensional subspace F
of X containing {y1, . . . , yn} such that ‖z‖⊗̂π,s,NF < ‖z‖⊗̂π,s,NX + ε. Since Y is

an ideal in X, there exists a linear operator T ∈ L(F, Y ) such that ‖T‖ 6 N
√

1 + ε
and T (yi) = yi for every i = 1, . . . , n. Let us define TN ∈ L(⊗̂π,s,NF, ⊗̂π,s,NY ) by
TN (mN ) := T (m)N for every m ∈ F . This operator is well-defined and satisfies
‖TN‖ = ‖T‖N 6 1 + ε (see [14, Subsection 2.2]). Therefore, we have that

n∑

i=1

λiy
N
i =

n∑

i=1

λiT (yi)
N =

n∑

i=1

λiT
N (yNi ) = TN

(
n∑

i=1

λiy
N
i

)
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and then
∥∥∥∥∥
n∑

i=1

λiy
N
i

∥∥∥∥∥
⊗̂π,s,NY

=

∥∥∥∥∥T
N

(
n∑

i=1

λiy
N
i

)∥∥∥∥∥
⊗̂π,s,NY

6 ‖TN‖
∥∥∥∥∥
n∑

i=1

λiy
N
i

∥∥∥∥∥
⊗̂π,s,NF

6 (1 + ε)‖z‖⊗̂π,s,NF
< (1 + ε)(‖z‖⊗̂π,s,NX + ε).

Since ε > 0 is arbitrary, ‖z‖⊗̂π,s,NY 6 ‖z‖⊗̂π,s,NX and we are done. 2

We will be using also the following straightforward fact.

Lemma 2.2. Let X be a Banach space. Let ε > 0 and x, y ∈ SX . Then,

‖xN − yN‖⊗̂π,s,NX 6 NN+1

N !
‖x− y‖.

Proof. By the polarization constant (see [14, Subsection 2.3]), we have that

‖xN − yN‖⊗̂π,s,NX 6 NN

N !
‖xN − yN‖X⊗̂πX...⊗̂πX .

Now, let us notice that

xN − yN =

N∑

k=1

xN−k ⊗ (x− y)⊗ yk−1.

This proves the statement since

‖xN − yN‖X⊗̂π...⊗̂πX 6
N∑

k=1

‖x‖N−k‖x− y‖‖y‖k−1 = N‖x− y‖.
2

3. Results for symmetric tensor products. In this section we show that
there are symmetric tensors that do not attain their norms and study the denseness
problem for norm-attaining elements in ⊗̂π,s,NX. We start by giving a relation be-
tween the concepts of norm-attainment for symmetric tensors and N -homogeneous
polynomials.

Theorem 3.1. Let X be a Banach space and suppose that every element in
⊗̂π,s,NX attains its norm. Then the set of all N -homogeneous polynomials that
attain their norms is dense in the space of all N -homogeneous polynomials. In
other words,

NA(NX) = P(NX).

In order to prove Theorem 3.1, we present a characterization for elements of
⊗̂π,s,NX to attain their norms. We have the following result, which is the coun-
terpart of [10, Theorem 3.1] for symmetric tensors and homogeneous polynomials.

We denote by sign(λ) the complex number λ
|λ| for each λ ∈ C \ {0}.
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Lemma 3.2. Let X be a Banach space and let

z =

∞∑

n=1

λnx
N
n ∈ ⊗̂π,s,NX

where λn ∈ C \ {0} and (xn)∞n=1 ⊆ SX . Then, the following statements are equiv-
alent.

(1) ‖z‖ =
∑∞
n=1 |λn|; in other words, z ∈ NAπ,s,N (X).

(2) There exists P ∈ SP(NX) such that P (xn) = sign(λn),∀n ∈ N.

(3) Every P ∈ SP(NX) such that P (z) = ‖z‖ satisfies P (xn) = sign(λn),∀n ∈ N.

Proof. Let us suppose that (1) holds. Pick any P ∈
(
⊗̂π,s,NX

)∗
= P(NX) with

‖P‖ = 1 and P (z) = ‖z‖. We have that

∞∑

n=1

|λn| = ‖z‖ = P (z) =
∞∑

n=1

λnReP (xn) 6
∞∑

n=1

|λn|,

which implies that P (xn) = sign(λn) for every n ∈ N. This shows that (3) holds.
The implication (3) ⇒ (2) is immediate. Assume now that (2) holds. Then, there
exists P ∈ P(NX) with ‖P‖ = 1 such that P (xn) = sign(λn) for every n ∈ N. So,

∞∑

n=1

|λn| > ‖z‖ > P (z) =

∞∑

n=1

λnP (xn) =

∞∑

n=1

|λn|

and this implies ‖z‖ =
∑∞
n=1 |λn|. Therefore, (2) implies (1). 2

By using Lemma 3.2 above, we can now prove Theorem 3.1.

Proof of Theorem 3.1. Let ε > 0 and P ∈ P(NX) = (⊗̂π,s,NX)∗ with ‖P‖ = 1
be given. By the Bishop-Phelps theorem for the Banach space ⊗̂π,s,NX, there are
P0 ∈ P(NX) with ‖P0‖ = 1 and z0 ∈ S⊗̂π,s,NX such that

P (z0) = 1 and ‖P0 − P‖ < ε.

By hypothesis we have that z0 ∈ NAπ,s,N (X). So, there are (λn)∞n=1 ⊆ R\{0} and
(xn)∞n=1 ⊆ SX such that ‖z0‖ =

∑∞
n=1 |λn| for z0 =

∑∞
n=1 λnx

N
n . By Lemma 3.2,

P0(xn) = sign(λn) for every n ∈ N. In particular, P0 ∈ NA(NX) and we are
done. 2

Now we are able to present some examples where there exist symmetric tensors
z which do not attain their norms.

Remark 3.3. It is known (see [1, 18]) that if X = d∗(w, 1) with w ∈ `2 \ `1, the
predual of the Lorentz sequence space, then the set P(NX), for N > 2, of all
norm-attaining N -homogeneous polynomials on X, is not dense in P(NX). Thus,
Theorem 3.1 implies that there exists an element z in ⊗̂π,s,NX which does not
attain its norm.
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In contrast to Remark 3.3, when X is finite-dimensional, we do have that every
symmetric tensor is norm-attaining (we send the reader also to Theorem 4.1 for an
analogous phenomenon on projective tensor products). Its proof can be obtained
by arguing as in [10, Proposition 3.5] with the aid of the fact that a convex hull of
a compact set in a finite dimensional space is again compact and that B⊗̂π,s,NX =

aco({xN : x ∈ SX}).

Proposition 3.4. Let X be a finite dimensional Banach space. Then, every sym-
metric tensor attains its projective symmetric tensor norm. In other words,

NAπ,s,N (X) = ⊗̂π,s,NX.

As promised, we shall investigate when it is possible to approximate an arbitrary
element z ∈ ⊗̂π,s,NX by a norm-attaining symmetric tensor. Similarly to what it
is done in [10], this is achieved under the assumption that X contains “many”
1-complemented subspaces.

Definition 3.5. Let X be a Banach space. We say that X has the metric π-
property if given ε > 0 and {x1, . . . , xn} ⊆ SX , we can find a finite dimensional
1-complemented subspace M ⊆ X and x′i ∈ M with ‖xi − x′i‖ < ε for every
i = 1, . . . , n.

We invite the reader to [8] (and also to [19, 22]) for more information about
π-properties. Moreover, [10, Example 4.12] sums up known examples of Banach
spaces satisfying the metric π-property. Just to name a few, it is known that
Lp-spaces, L1-predual spaces, and Banach spaces with a finite dimensional decom-
position with decomposition constant 1 satisfy such a property. Now, we present
the following result analogous to [10, Theorem 4.8].

Theorem 3.6. Let X be a Banach space with the metric π-property. Then, every
symmetric tensor can be approximated by symmetric tensors which attain their
norms. In other words,

NAπ,s,N (X)
‖·‖π,s,N

= ⊗̂π,s,NX.

Proof. Let u ∈ S⊗̂π,s,NX and ε > 0 be given. There are (λn)∞n=1 ⊆ R \ {0} and

(xn)∞n=1 ⊆ SX such that

u =

∞∑

n=1

λnx
N
n and

∞∑

n=1

|λn| < 1 + ε.

Find k ∈ N large enough such that

‖u− z‖ < ε

2
for z =

k∑

n=1

λnx
N
n ∈ ⊗π,s,NX.
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Since X has the metric π-property, we can find a finite dimensional space M of
X which is 1-complemented and such that, for every n ∈ {1, . . . , k}, there exists
x′n ∈M such that

‖xn − x′n‖ <
N !

NN+1
· ε

4
.

Define z′ :=
∑k
n=1 λn(x′n)N ∈ ⊗π,s,NM . Since M is finite dimensional, by Propo-

sition 3.4 we have z′ ∈ NAπ,s,N (M), and, since ‖z′‖⊗̂π,s,NM = ‖z′‖⊗̂π,s,NX , we also

have z′ ∈ NAπ,s,N (X). Finally, by using Lemma 2.2, we have that

‖z′ − z‖ =

∥∥∥∥∥
k∑

n=1

λn

(
(x′n)N − xNn

)∥∥∥∥∥ 6
k∑

n=1

|λn|‖(x′n)N − xNn ‖ <
ε

2
.

Therefore, ‖z′ − u‖ < ε and we are done. 2

Before proceeding, let us use Theorem 3.6 to point out the following observation
on the hypothesis of Theorem 3.1.

Remark 3.7. In Theorem 3.1, the assumption that every element of ⊗̂π,s,NX at-
tains its norm cannot be relaxed to the case that NAπ,s,N (X) is dense in ⊗̂π,s,NX.
Indeed, if X = d∗(w, 1) with w ∈ `2 \ `1, then X has monotone symmetric basis
(see, for instance, [29, Proposition 2.2] and [18, Lemma 2.2]) and, therefore, satis-
fies the metric π-property (see, for instance, [10, Example 4.12]), which implies that
NAπ,s,N (X) is dense in ⊗̂π,s,NX by Theorem 3.6. On the other hand, as we al-
ready have mentioned in Remark 3.3, the set of all norm-attaining N -homogeneous
polynomials is not dense in P(NX) for N > 2.

Our next goal will be obtaining the following result on the denseness of norm-
attaining elements in ⊗̂π,s,NX∗ under the hypothesis of Radon-Nikodým property
(for short, RNP), see Theorem 4.5 and Corollary 4.6 for its counterpart for nuclear
operators and projective tensor products, respectively.

Theorem 3.8. Let X be a Banach space. Suppose that X∗ has the RNP and the
AP. Then, every symmetric tensor in ⊗̂π,s,NX∗ can be approximated by symmetric
tensors that attain their norms. In other words,

NAπ,s,N (X∗)
‖·‖π,s,N

= ⊗̂π,s,NX∗.

In order to prove Theorem 3.8, we need two preliminary results. Let us start
with the following general lemma for spaces satisfying the RNP, which will also be
used to prove Theorem 4.5.

Lemma 3.9. Let X be a Banach space with the RNP. Then

A :=

{
x =

n∑

i=1

λixi ∈ X : λ1, . . . , λn > 0, x1, . . . , xn ∈ ext (BX) , ‖x‖ =

n∑

i=1

λi

}

is dense in X.
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Proof. Let x0 ∈ SX . Pick x∗ ∈ SX∗ to be such that x∗(x0) = 1. Now, let
us consider the closed convex set C := {x ∈ BX : x∗(x) = 1}. Since X has
the RNP, we have that C = co ext (C). Moreover, C is a face of BX and so
ext (C) ⊆ ext (BX). Thus, x0 ∈ co{x ∈ ext (BX) : x∗(x) = 1}. To conclude, it
suffices to check that

co{x ∈ ext (BX) : x∗(x) = 1} ⊆ A.

To this end, take v =
∑n
i=1 λixi, where xi ∈ ext (BX), x∗(xi) = 1 and λi > 0 for

all i = 1, . . . , n, and
∑n
i=1 λi = 1. Then,

1 > ‖v‖ > 〈x∗, v〉 =

n∑

i=1

λi = 1

and so v ∈ A. A straightforward homogeneity argument allows us to restrict the
assumption ‖x0‖ = 1, and the lemma is proved. 2

We also need the following result, which is a consequence of Lemma 3.2 and
Lemma 3.9.

Lemma 3.10. Let X be a Banach space. Assume that ⊗̂π,s,NX has the RNP and

that ext
(
B⊗̂π,s,NX

)
⊆ {±xN : x ∈ BX}. Then, every symmetric tensor can be

approximated by symmetric tensors which attain their norms. In other words,

NAπ,s,N (X)
‖·‖π,s,N

= ⊗̂π,s,NX.

Proof. By Lemma 3.9, the set

A =

{
z =

n∑

i=1

εiλix
N
i ∈ ⊗̂π,s,NX : εi ∈ {1,−1}, λi > 0, xi ∈ SX , ‖z‖ =

n∑

i=1

λi

}

=

{
z =

n∑

i=1

λix
N
i ∈ ⊗̂π,s,NX : λi ∈ R, xi ∈ SX , ‖z‖ =

n∑

i=1

|λi|
}

is dense in X. Clearly, A ⊆ NAπ,s,N (X). 2

Now we are ready to prove Theorem 3.8.

Proof of Theorem 3.8. Let us observe first that if X∗ has the RNP and the AP,
then ⊗̂π,s,NX∗ has the RNP. Indeed, by using [14, Subsection 2.3], we have that
⊗̂π,s,NX∗ is isomorphic to a subspace of X∗⊗̂π . . . ⊗̂πX∗. Since X∗ has the RNP
and AP, we have thatX∗⊗̂π . . . ⊗̂πX∗ has the RNP (see [12, Theorem VIII.4.7]) and
then we can conclude that ⊗̂π,s,NX∗ has the RNP. Now by using [4, Proposition 1],
we have that

ext
(
B⊗̂π,s,NX∗

)
= ext

(
B(⊗̂ε,s,NX)∗

)
⊆ {±ϕN : ϕ ∈ X∗, ‖ϕ‖ = 1}
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and by Lemma 3.10, the set NAπ,s,N (X∗) is dense in ⊗̂π,s,NX∗, as desired. 2

Notice that if X∗ has the RNP, then PI(NX), the Banach space of all N -
homogeneous integral polynomials on X, has the RNP. Consequently, ⊗̂ε,s,NX
cannot contain an isomorphic copy of `1, which in turn implies that PI(NX) is iso-
metrically isomorphic to the Banach space Pnu(NX) of all N -homogeneous nuclear
polynomials on X (see [4, Theorem 2]).

Theorem 3.11. Let X be a Banach space. Suppose that ⊗̂ε,s,NX does not contain
a copy of `1. Then the set of norm-attaining elements in Pnu(NX) is w∗-dense in
Pnu(NX) = (⊗̂ε,s,NX)∗.

Proof. Let P ∈ SPnu(NX) be given. By the Bishop-Phelps theorem [3], given ε > 0,
we can find P0 ∈ S(⊗̂ε,s,NX)∗ so that P0 attains its norm at some u0 ∈ S⊗̂ε,s,NX
and ‖P0 − P‖ < ε. We will prove that P0 can be approximated by norm-attaining
elements in Pnu(NX) in the w∗-topology. For this, let us consider the set

C :=
{
Q ∈ B(⊗̂ε,s,NX)∗ : 〈Q, u0〉 = 1

}
.

Notice that C is a w∗-compact and convex set. It follows from Krein-Milman
theorem (see, for instance, [2, Theorem 7.68]) that C = cow

∗
(ext (C)). As C is a

face of B(⊗̂ε,s,NX)∗ , due to [4, Proposition 1], we have that

C ⊆ cow
∗({± (x∗)N : x∗ ∈ SX∗ , 〈±(x∗)N , u0〉 = 1

})
.

It follows from Lemma 3.2 that P0 can be approximated by norm-attaining ele-
ments in Pnu(NX) in the w∗-topology and we are done. 2

Recall that Pnu(NX) coincides with ⊗̂π,s,NX∗ isometrically whenever X∗ has
the AP. It is known that the James-Hagler space JH is an example of a Banach
space whose dual does not have the RNP while the symmetric injective tensor
product ⊗̂ε,s,NJH does not contain a copy of `1 (see [15]). Thus, the assumption
in Corollary 3.12 below is strictly weaker than that of Theorem 3.8.

Corollary 3.12. Let X be a Banach space such that X∗ has the AP. If ⊗̂ε,s,NX
does not contain a copy of `1, then the set NAπ,s,N (X∗) is w∗-dense in ⊗̂π,s,NX∗.

Let us observe that so far we have presented only positive results on the (w∗-)
denseness of symmetric tensors which attain their norms in ⊗̂π,s,NX. In fact, we do
not know whether the set NAπ,s,N (X) is dense in ⊗̂π,s,NX for every Banach space
X. The first candidate that would pop up in our minds would be a Banach space X
such that the set NAπ(X⊗̂πX) is not dense in X⊗̂πX. Nevertheless, the techniques
from [10, Section 5] (where the authors show that there exist subspaces X of c0 and
Y of the Read’s space R such that the set NAπ(X⊗̂πY ∗) is not dense) do not seem
to work. Indeed, the idea behind was requiring that every element of NA(X,Y ∗)
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has finite rank, and then working with a bounded operator T : X −→ Y which can
not be approximated by finite rank operators from the failure of the approximation
property. This construction is doable since X and Y are isomorphic and then T
can be taken as a formal identity thanks to classical results on AP. However, for
one such example of the form X⊗̂πX, we would need to work with an operator
T : X −→ X∗, for a certain subspace X of c0, which is not approximable by finite
rank operators and, to the best of our knowledge, the existence of such a space X
and such a T is unknown. Despite that, we shall conclude this section by showing
that this open problem is separably determined.

Theorem 3.13. Let N ∈ N be fixed. If NAπ,s,N (Y ) is dense in ⊗̂π,s,NY for every
separable Banach space Y , then NAπ,s,N (X) is dense in ⊗̂π,s,NX for every Banach
space X.

Proof. Let X be a Banach space, z ∈ ⊗̂π,s,NX, and let ε > 0 be given. Choose
a representation z =

∑∞
n=1 λnx

N
n with (λn)∞n=1 ⊆ R \ {0} and (xn)∞n=1 ⊆ SX sat-

isfying that
∑∞
n=1 |λn| < ‖z‖⊗̂π,s,NX + ε. Let Z := span{xn : n ∈ N}. Thus, Z

is a separable Banach space. By [28, Proposition 2] (see also [17, Lemma 4.3]),
there exists a separable ideal Y of X such that Z ⊆ Y . As Y is an ideal, by The-
orem 2.1, we have that ‖z‖⊗̂π,s,NX = ‖z‖⊗̂π,s,NY . By the hypothesis, there exists

z′ =
∑∞
n=1 µny

N
n ∈ NAπ,s,N (Y ) with ‖z′‖⊗̂π,s,NY =

∑∞
n=1 |µn| which satisfies that

‖z − z′‖⊗̂π,s,NY < ε. Considering z′ as an element of ⊗̂π,s,NX, we notice that

∞∑

n=1

|µn| = ‖z′‖⊗̂π,s,NY = ‖z′‖⊗̂π,s,NX 6
∞∑

n=1

|µn|,

which implies that z′ ∈ NAπ,s,N (X). Finally, ‖z−z′‖⊗̂π,s,NX = ‖z−z′‖⊗̂π,s,NY < ε.
2

4. Results for projective tensor products. In this section, we present some
results on the denseness of tensors in projective tensor products of Banach spaces.

Let us first notice that when X = L1(T), where the unit circle T is equipped
with the Haar measure, and Y is the two-dimensional Hilbert space `22, we have
that NAπ(X⊗̂πY ) 6= X⊗̂πY [10, Example 3.12 (a)]. This shows that finite dimen-
sionality on just one of the factors is not enough to guarantee that every tensor in
X⊗̂πY is norm-attaining. Nevertheless, we have the following result.

Theorem 4.1. Let X be a Banach space with BX = co ({x1, . . . , xn}) for some
x1, . . . , xn ∈ SX and assume that Y is a dual space. Then, every tensor in X⊗̂πY
attains its projective tensor norm. In other words,

NAπ(X⊗̂πY ) = X⊗̂πY.

Proof. Let us assume that Y = Z∗. Notice first that since X is finite dimensional,
we have that L(X,Z) = K(X,Z) = X∗⊗̂εZ and then L(X,Z)∗ = X⊗̂πZ∗. We
will use this fact to prove the following statement.
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Claim: The set {xi} ⊗ BZ∗ is a w∗-compact convex subset of X⊗̂πZ∗ for each
i = 1, . . . , n.

Indeed, for each i = 1, . . . , n, let us take Ti : L(X,Z) −→ Z to be defined by
Ti(T ) := T (xi) for every T ∈ L(X,Z). Therefore, its adjoint operator T ∗i : Z∗ −→
L(X,Z)∗ = X⊗̂πZ∗ satisfies T ∗i (z∗) = xi ⊗ z∗ for every z∗ ∈ Z∗ and i = 1, . . . , n.
This implies that T ∗i (BZ∗) = xi ⊗ BZ∗ and since T ∗ is w∗-w∗ continuous, we can
conclude that {xi} ⊗BZ∗ is w∗-compact convex in X⊗̂πZ∗.

Thus, A := co (
⋃n
i=1 xi ⊗BZ∗) is w∗-compact as being the convex hull of a

finite number of w∗-compact convex sets (see, for instance, [2, Lemma 5.29]). So,
in particular, A is w∗-closed and then norm-closed. Finally, if z ∈ BX ⊗BZ∗ , then
there are λi > 0 with

∑n
i=1 λi = 1 such that

z =

(
n∑

i=1

λixi

)
⊗ y =

n∑

i=1

λixi ⊗ y.

Therefore, BX ⊗ BZ∗ ⊆ A and by taking convex hulls, we get A = BX⊗̂πZ∗ =
BX⊗̂πY . In particular, every element of SX⊗̂πZ∗ can be written as a finite convex
combination of basic tensors in BX ⊗BZ∗ , so it is norm attaining. 2

Recall a Banach space X is said to be polyhedral if the unit ball of every finite-
dimensional subspace is a polytope, that is, the convex hull of a finite set. We can
use Theorem 4.1 to get the following denseness result.

Theorem 4.2. Let X be a Banach which is polyhedral and satisfies the metric
π-property. Assume that Y is a dual space. Then, every tensor in X⊗̂πY can be
approximated by tensors that attain their norms. In other words,

NAπ(X⊗̂πY )
‖·‖π

= X⊗̂πY.
Proof. Let u ∈ SX⊗̂πY and ε ∈ (0, 1) be given. Then, there exist sequences

(λn) ⊆ R+, (xn) ⊆ SX , and (yn) ⊆ SY with u =
∑∞
n=1 λnxn ⊗ yn and

∑∞
n=1 λn <

1 + ε. We may find k ∈ N so that ‖u− z‖ < ε
2 , where z :=

∑k
n=1 λnxn ⊗ yn. Since

X satisfies the metric π-property, we can find a finite-dimensional subspace M of
X which is 1-complemented and such that for every n ∈ {1, . . . , k}, there exists

x′n ∈M such that ‖xn − x′n‖ < ε
4 . Define z′ :=

∑k
n=1 λnx

′
n ⊗ yn and notice that

‖z′ − z‖ =

∥∥∥∥∥
k∑

n=1

λnx
′
n ⊗ yn −

k∑

n=1

λnxn ⊗ yn
∥∥∥∥∥ =

∥∥∥∥∥
k∑

n=1

λn(x′n − xn)⊗ yn
∥∥∥∥∥

6
∞∑

n=1

λn‖x′n − xn‖‖yn‖

<
ε

4

k∑

n=1

λn

<
ε

2
.
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Notice now that z′ ∈ M⊗̂πY and since M is 1-complemented in X, we have that
‖z′‖M⊗̂πY = ‖z′‖X⊗̂πY . Moreover, since X is a polyhedral, we have that BM
is equal to co {x1, . . . , xm} for some x1, . . . , xm ∈ SM . Theorem 4.1 shows then
that z′ ∈ NAπ(M⊗̂πY ) and, therefore, z′ ∈ NAπ(X⊗̂πY ). Finally, ‖z′ − u‖ 6
‖z′ − z‖+ ‖z − u‖ < ε. 2

The Banach space c0 endowed with ‖ · ‖∞ is the canonical example of a poly-
hedral space. So, we have the following immediate consequence of Theorem 4.2,
which is not covered by [10, Theorem 4.8].

Corollary 4.3. Let Y be a dual space. Then, NAπ(c0⊗̂πY ) is dense in c0⊗̂πY .

Remark 4.4. Notice that in Theorem 4.2 the hypothesis of X having the metric
π-property is essential. Indeed, in [10, Section 5] the authors show that if X is a
closed subspace of c0 (and hence polyhedral since this property is hereditary) failing
the approximation property and Y := (X, |||·|||) is a renorming of X, where |||·||| is
the norm that defines Read’s space, then NAπ(X⊗̂πY ∗) is not dense in X⊗̂πY ∗.

Next, we can prove the following result on the denseness of nuclear operators
which attain their nuclear norms under the RNP assumption.

Theorem 4.5. Let X,Y be Banach spaces such that X∗ and Y ∗ have the RNP.
Then, every nuclear operator from X into Y ∗ can be approximated by norm-
attaining nuclear operators. In other words,

NAN (X,Y ∗)
‖·‖N

= N (X,Y ∗).

Proof. Suppose that X∗ and Y ∗ have the RNP. Then, N (X,Y ∗) = (X⊗̂εY )∗

also has the RNP (this is shown in [12, Theorem VIII.4.7, pg. 249] under the
additional assumption that X∗ or Y ∗ have the AP, which is only used to get

N (X,Y ∗) = X∗⊗̂πY ∗). Also, ext
(
BN (X,Y ∗)

)
= ext

(
B(X⊗̂εY )∗

)
⊆ SX∗ ⊗ SY ∗ (cf.

[27]). By Lemma 3.9, the set

A=

{
T =

n∑

i=1

λix
∗
i ⊗ y∗i : λi > 0, x∗i ∈ SX∗ , y∗i ∈ SY ∗ for i=1, . . . , n, ‖T‖=

n∑

i=1

λi

}

is dense in N (X,Y ∗). Clearly, A ⊆ NAN (X,Y ∗). 2

If we are under the hypotheses of Theorem 4.5 together with the extra as-
sumption that one of the spaces has the approximation property, then the equality
X∗⊗̂πY ∗ = N (X,Y ∗) holds (see, for instance, [25, Corollary 4.8]). By using Theo-
rem 4.5, we get the following counterpart of Theorem 3.8 for non-symmetric tensors,
which provides a positive answer for [10, Question 6.1] in the case that one of the
spaces has the approximation property.
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Corollary 4.6. Let X,Y be Banach spaces such that X∗ and Y ∗ have the RNP
and at least one of them has the AP. Then, every tensor in X∗⊗̂πY ∗ can be
approximated by tensors that attain their norms. In other words,

NAπ(X∗⊗̂πY ∗)
‖·‖π

= X∗⊗̂πY ∗.

Even if we weaken the assumption in Theorem 4.5 so that only X∗ has the RNP,
we are still able to obtain the denseness result, but in the w∗-topology, of the set
of norm-attaining nuclear operators as in Theorem 3.11. Notice that N (X,Y ∗) is
identified with (X⊗̂εY )∗, the dual of injective tensor space, under the assumption
that X∗ has the RNP. Arguing in the same way as in the proof of Theorem 3.11 but

using the fact that ext
(
B(X⊗̂εY )∗

)
⊆ SX∗ ⊗ SY ∗ and [10, Theorem 3.2] instead of

[4, Proposition 1] and Lemma 3.2, respectively, the following result can be obtained.

Theorem 4.7. Let X be a Banach space such that X∗ has the RNP. Then, the
set NAN (X,Y ∗) is w∗-dense in N (X,Y ∗) = (X⊗̂εY )∗ for any Banach space Y .

Using the equality X∗⊗̂πY ∗ = N (X,Y ∗) provided that one of X∗ or Y ∗ has
the AP, we get the following immediate consequence of Theorem 4.7.

Corollary 4.8. Let X,Y be Banach spaces such that X∗ has the RNP and at
least one of X∗ or Y ∗ has the AP. Then, the set NAπ(X∗⊗̂πY ∗) is w∗-dense in
X∗⊗̂πY ∗ = (X⊗̂εY )∗.
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C∞-smooth norm that locally depends on finitely many coordinates (LFC, for short),

as well as a polyhedral norm that locally depends on finitely many coordinates.

As a consequence, we also prove that Y admits locally finite, σ -uniformly discrete

C∞-smooth and LFC partitions of unity and a C1-smooth locally uniformly rotund norm.

This theorem substantially generalises several results present in the literature and gives

a complete picture concerning smoothness in such dense subspaces. Our result covers,

for instance, every weakly Lindelöf determined Banach space (hence, all reflexive ones),

L1(μ) for every measure μ, �∞(�) spaces for every set �, C(K) spaces where K is a
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of density ω1 are covered by our result.
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1 Introduction

The topic of smooth approximation is one of the classical themes in analysis. In the

setting of Banach spaces the problem has several aspects, among which the existence

of smooth partitions of unity, smooth extensions, approximation of continuous or

Lipschitz functions by smooth ones, smooth renormings, approximation with smooth

norms, study of polynomials and spaces of polynomials, and so on. For an introduction

to these directions of research we refer to the monographs [15, 18, 28, 49].

It is by now a well-known fact that the existence of a smooth norm (or

more generally a smooth bump) on a Banach space X has several deep structural

consequences for the space. For example, the presence of a C1-smooth bump implies

that the space is Asplund [17]; the presence of an LFC bump yields that the space is a

c0-saturated Asplund space [22, 48]. If X admits a C2-smooth bump, then either it

contains a copy of c0, or it is super-reflexive with type 2 [21]. Finally, if X admits a

C∞-smooth bump and it contains no copy of c0, then it has exact cotype 2k, for some

k ∈ N, and it contains �2k [12]. Each of these results involves at some point the

completeness of the space X , most frequently via the appeal to some form of variational

principles, such as the Ekeland variational principle [16], Stegall’s variational principle

[56], the Borwein–Preiss smooth variational principle [8], or the compact variational

principle [13]. It is therefore unclear whether any, possibly weaker, form of the above

results could be valid for general normed spaces. In this direction, it was pointed out

in [3, p. 96] that it is not known whether X is an Asplund space provided the set where

its norm fails to be Fréchet differentiable is “small” in some sense (also see [25, Problem

148]). For example, it is unknown if there is a norm on �1 that is Fréchet differentiable

outside a countable union of hyperplanes.

Nevertheless, some scattered results concerning normed spaces are present

in the literature. Vanderwerff [60] proved that every normed space with a countable

algebraic basis admits a C1-smooth norm; this result was later improved to obtain a

C∞-smooth norm [27], a polyhedral norm [14], and an analytic one [9]. These results and

the previous discussion motivated [25, Problem 149], [33], and recent research of the

present authors [9], where the following problem was posed.

Problem 1.1. Let X be a Banach space and k ∈ N ∪ {∞, ω}. Is there a dense subspace Y
of X that admits a Ck-smooth norm?

Although the problem is seemingly very general and ambitious, note that [14]

answers it in the positive for X separable and k = ω. Moreover, in [9] it was solved in

the positive for �∞ and k = ω, �1(c) and k = ω, and spaces with long unconditional bases
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and k = ∞. It is worth pointing out that in these results the density of smooth norms

cannot be guaranteed in general. The main contribution of the present paper is a vast

generalisation of the previous results by means of the following theorem.

Theorem A. Let X be a Banach space with a fundamental biorthogonal system

{eα; ϕα}α∈�. Consider the dense subspace Y of X given by Y := span{eα}α∈�. Then,

(i) Y admits a polyhedral and LFC norm,

(ii) Y admits a C∞-smooth and LFC norm,

(iii) Y admits a C∞-smooth and LFC bump,

(vi) Y admits locally finite, σ -uniformly discrete C∞-smooth and LFC partitions

of unity,

(v) Y admits a C1-smooth locally uniformly rotund (LUR) norm.

Moreover, norms as in (i), (ii), and (v) are dense in the set of all equivalent norms on Y.

The main novel parts of Theorem A are claims (i) and (ii), whose proof constitutes

the core of the paper and is presented in Section 3. Clauses (iii)–(v) follow from the

former ones via known results or adaptations of known techniques. More precisely,

(iii) is an obvious consequence of (ii), while the existence of locally finite, σ -uniformly

discrete C∞-smooth partitions of unity follows from (ii) via [36, Corollary 6] or

[34, Theorem 2]. The fact that functions in the partition of unity can be chosen to be

LFC follows by inspection of the proof of [34] as we will briefly discuss in Section 4.

Finally, (v) follows from (ii) by using ideas from [31], and we shall explain this in

Section 5.

Let us point out that Theorem A draws a complete picture concerning smooth-

ness in the sense that it implies the existence of smooth norms, norm approximation by

smooth norms, C1-smooth LUR norms, and the existence of partitions of unity, which are

instrumental for the smooth approximation of continuous or Lipschitz functions (see,

e.g., [15, §VIII.3] or [28, Chapter 7]). The unique part of the result where one might ponder

possible improvements is (v), where it is natural to ask whether Y admits Ck-smooth

LUR norms for some k � 2. Nonetheless, this is not the case in general, since a normed

space with a C2-smooth LUR norm has super-reflexive completion (Theorem 5.2). Hence,

in general it is not possible to replace C1-smoothness with higher-order smoothness

in (v) (even in the separable case). Although Theorem 5.2 is a more or less formal

consequence of [21, Theorem 3.3(ii)], it is of notable importance in our context since

it is one of the few instances where the existence of a smooth norm on an incomplete

normed space bears structural consequences for the space.
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As a simple consequence of Theorem A, we can obtain one further such

instance. Indeed, if a Banach space X admits a fundamental biorthogonal system,

then densely many norms on X are C∞-smooth and LFC on a dense and open subset

of X (Corollary 3.5). On the one hand, this result should be compared to the classical

characterisation of Asplund spaces, that a Banach space X is Asplund if and only if

every norm on X is Fréchet differentiable on a dense Gδ set. On the other hand, in the

particular case of Banach spaces with fundamental biorthogonal systems, it generalises

Moreno’s result that every Banach space admits a norm that is Fréchet differentiable

on a dense open set [44] (with Moreno’s argument it doesn’t seem possible to obtain the

density of such norms).

We now discuss how general our results are and compare them to the literature.

If we restrict our attention to separable Banach spaces, a classical result due to

Markuševič [42] asserts that every separable Banach space admits an M-basis, hence

Theorem A applies to every separable Banach space. Therefore, our result generalises

simultaneously [27], where a C∞-smooth LFC norm is constructed in every normed space

with a countable algebraic basis, and [14], where a polyhedral norm is constructed in

such spaces. Here we should observe that, for a normed space, admitting a countable

algebraic basis is equivalent to being the linear span of the vectors of an M-basis, again

by [42]. On the other hand, in [9] an analytic norm is also constructed in normed spaces

with a countable algebraic basis, while in our result it is not possible in general to

obtain analytic norms [9, Theorem 3.10].

For non-separable Banach spaces the problem has only been faced in

[9, Theorem B], where a C∞-smooth norm is constructed in the linear span of every long

unconditional Schauder basis (and in [9, Theorem A], concerning the concrete spaces

�∞ and �1(c), as mentioned above). Once more, Theorem A is substantially stronger,

since we additionally obtain an approximation result, the LFC condition, polyhedral

norms, partitions of unity, and C1-smooth LUR norms. Moreover, the assumption on

the space is much more general, for the existence of an unconditional basis is a rather

strong assumption, while the existence of a fundamental biorthogonal system is a much

weaker one, as we now discuss.

A large class of Banach spaces that admit a fundamental biorthogonal system

(even an M-basis) is the class of Plichko spaces [30, 37, 38]. Such a class of Banach

spaces contains all weakly Lindelöf determined (WLD, for short) Banach spaces, hence

all weakly compactly generated (hereinafter, WCG) spaces and in particular all reflexive

ones; besides, every L1(μ) space and every C(K) space, where K is a Valdivia compactum

or an Abelian compact group, is a Plichko space (see, e.g., [38, §6.2 and §5.1], [39]).
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More generally, Kalenda [40] recently proved that every Banach space with a projectional

skeleton admits a (strong) M-basis. Among the Banach spaces that admit a projectional

skeleton we could additionally mention duals of Asplund spaces [41], preduals of Von

Neumann algebras [6], or preduals of JBW∗-triples [7]. Additionally, there are several

examples of concrete Banach spaces where a fundamental biorthogonal system can

be constructed, for example, �∞(�) for every set � [11], �c∞(�) when |�| � c [23, 51],

or C([0, η]) for every ordinal η (this is standard; see, e.g., [40, Proposition 5.11]). More

generally, C(T) has an M-basis, for every tree T, [40, §5.3]. Moreover, it is proved in [11]

that a Banach space X with dens X = κ admits a fundamental biorthogonal system

provided that X has a WCG quotient of density κ. Similarly, Plichko [50] proved that

a Banach space X with dens X = κ admits a fundamental biorthogonal system if and

only if X has a quotient of density κ with a long Schauder basis. Finally, it is consistent

with ZFC, and in particular true under Martin Maximum MM, that every Banach space

of density ω1 admits a fundamental biorthogonal system [57].

Let us add one more comment concerning the space �∞. On the one hand, in

[9, Theorem 3.1], an analytic norm is constructed in the dense subspace of �∞ comprising

all sequences that attain finitely many values; while Theorem A only gives a C∞-smooth

norm in a subspace with a less explicit description. On the other hand, Theorem A also

yields the LFC condition, a polyhedral norm, a C1-smooth LUR norm, and partitions of

unity; additionally, it holds for �∞(�) for every set �.

Several months after the present research was completed, the authors obtained

the following result [10], related to Theorem A. If 1 � p < ∞, the dense subspace

Yp := ⋃
0<q<p �q(�) of �p(�) admits a C∞-smooth and LFC norm. The interest of the result

is that Yp is not the linear span of a biorthogonal system and it has linear dimension

equal to that of �p(�).

Finally, recall that it is in general unknown if, in a non-separable Banach space

with a Ck-smooth norm, Ck-smooth norms are dense in the set of all equivalent norms.

Among the few results available in the literature let us mention [1, 5, 54, 55], where the

problem is solved for spaces with a small boundary such as c0(�). In particular, the

Ck-smooth approximation of norms is open in �2(ω1), or C([0, ω1]), while our Theorem A

gives the C∞-smooth approximation in some dense subspace of the said spaces.

Our paper is organised as follows: Section 2 contains the definitions of some

notions that we will need and some auxiliary (known or folklore) results. Section 3 is

devoted to the main part of the proof of Theorem A and we prove clauses (i) and (ii). A

brief discussion of (iv) is given in Section 4. Finally, in Section 5 we discuss the existence
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of Ck-smooth LUR norms: we give the proof of Theorem A(v) borrowing our methods

from [31] and we prove Theorem 5.2.

2 Preliminary Material

Our notation is standard as in, for example, [2, 15, 19]. Throughout the paper we always

consider normed spaces over the reals. We use the calligraphic font X , Y for infinite-

dimensional normed spaces and we denote by F, G, H, . . . their finite-dimensional

subspaces. For an infinite-dimensional normed space X , we denote by X ∗, SX , and

BX the dual space, the unit sphere, and the closed unit ball respectively; accordingly,

the unit sphere and ball of the finite-dimensional normed space F are SF and BF ,

respectively. We use the calligraphic notation for the unit sphere since we keep the

letter S for a generic slice as we will make extensive use of slices in our arguments. We

write 〈ϕ, x〉 to denote the action of a functional ϕ ∈ X ∗ at a point x ∈ X . When talking

about norm approximations, hence in particular density of norms, we always refer to

uniform approximation on bounded sets. More precisely, the assertion that a norm ‖·‖
on X can be approximated by norms with property P means that, for every ε > 0, there

is a norm |||·||| on X with property P and such that (1 − ε)|||·||| � ‖·‖ � (1 + ε)|||·|||.

2.1 Convexity and slices

A finite-dimensional normed space F is polyhedral if its unit ball is a polyhedron, that

is, it is a finite intersection of closed half-spaces; an infinite-dimensional normed space

is polyhedral if every its finite-dimensional subspace is so. A normed space (X , ‖·‖)
is locally uniformly rotund (LUR, for short) if, for every x ∈ SX and every sequence

(xn)n∈N ⊆ SX with ‖xn + x‖ → 2 one has xn → x. A norming functional for x ∈ X is a

functional ψ ∈ SX ∗ such that 〈ψ , x〉 = ‖x‖. A slice of BX is a set of the form S(ψ , δ) :=
{y ∈ BX : 〈ψ , y〉 > 1 − δ}, for some ψ ∈ SX ∗ and δ > 0. For us it will be convenient

to consider slices S(ψ , δ) where the functional ψ attains its norm. Therefore, we write

S(x, ψ , δ) to indicate the slice S(ψ , δ) whenever ψ attains its norm at x. A point x ∈ SX is

strongly exposed if there is a norming functional ψ for x such that diam (S(x, ψ , δ)) → 0,

as δ → 0+. It is a standard fact that if X is LUR then every point of SX is strongly

exposed (see, for instance, [19, Problem 8.27]), namely we have the following:

Fact 2.1. Let X be an LUR normed space, x ∈ SX , and ψ ∈ SX ∗ be a norming functional

for x. Then diam (S(x, ψ , δ)) → 0, as δ → 0+.
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We also collect here for future reference the following standard observation con-

cerning slices; the proof is so simple that we include it here for the sake of completeness.

Fact 2.2. Let X be a normed space and let ψ ∈ SX ∗ attain its norm at x ∈ SX . Then

δ �→ diam(S(x, ψ , δ)) is a continuous function on (0, ∞).

Proof. Fix arbitrarily ε > 0 and take y, z ∈ S(x, ψ , δ+ε). Consider the points yλ, zλ ∈ BX
defined by yλ := λx + (1 − λ)y and zλ := λx + (1 − λ)z, where λ := ε

δ+ε
∈ (0, 1). Then

yλ, zλ ∈ S(x, ψ , δ), since

〈ψ , yλ〉 = 〈ψ , λx + (1 − λ)y〉 > λ + (1 − λ)(1 − δ − ε) = 1 − δ

(and analogously for zλ). Hence,

‖y − z‖ = 1

1 − λ
‖yλ − zλ‖ � 1

1 − λ
diam(S(x, ψ , δ)) =

(
1 + ε

δ

)
diam(S(x, ψ , δ)).

This yields 0 � diam(S(x, ψ , δ + ε)) − diam(S(x, ψ , δ)) � 2ε/δ and we are done. �

2.2 Fundamental biorthogonal systems

A biorthogonal system in a normed space X is a system {eα; ϕα}α∈�, with eα ∈ X and

ϕα ∈ X ∗, such that 〈ϕα, eβ〉 = δα,β (α, β ∈ �). A biorthogonal system is fundamental

if span{eα}α∈� is dense in X ; it is total when span{ϕα}α∈� is w∗-dense in X ∗. A

Markuševič basis (M-basis, for short) is a fundamental and total biorthogonal system.

A biorthogonal system {eα; ϕα}α∈� is bounded if there is M < ∞ with ‖xα‖ · ‖ϕα‖ � M

(α ∈ �).

The following standard lemma, concerning distances of vectors from finite-

dimensional subspaces in presence of a bounded biorthogonal system, will be used

frequently in our argument. We refer to [26, §1.2] for a more general treatment of such

types of results.

Lemma 2.3. Let (X , ‖·‖) be a normed space and {eα; ϕα}α∈� be a bounded biorthogonal

system in X with ‖eα‖ = 1, ‖ϕα‖ � M (α ∈ �). Let α1, . . . , αn, β1, . . . , βm ∈ � be such that

αi �= αj and βi �= βj for i �= j; set F := span{eα1
, . . . , eαn

} and G := span{eβ1
, . . . , eβm

}.
(i) If {α1, . . . , αn} ∩ {β1, . . . , βm} = ∅ and x ∈ SF , then

dist(x, G) � 1

nM
.
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13916 S. Dantas et al.

(ii) More generally, for every x ∈ F,

dist(x, F ∩ G) � nM · dist(x, G).

Proof. (i) is a particular case of (ii) since the assumption of (i) gives F ∩ G = {0}, so

dist(x, F ∩G) = ‖x‖. For the proof of (ii), assume that, for some k � 0, α1 = β1, . . . , αk = βk

and {αk+1, . . . , αn} ∩ {βk+1, . . . , βm} = ∅. Fix x ∈ F and let

x̃ := x −
n∑

j=k+1

〈ϕαj
, x〉eαj

=
k∑

j=1

〈ϕαj
, x〉eαj

∈ F ∩ G.

Moreover, taking y ∈ G with dist(x, G) = ‖x − y‖, we can estimate

dist(x, F ∩ G) � ‖x − x̃‖ =
∥∥∥∥∥∥

n∑
j=k+1

〈ϕαj
, x〉eαj

∥∥∥∥∥∥ �
n∑

j=k+1

|〈ϕαj
, x〉|

=
n∑

j=k+1

|〈ϕαj
, x − y〉| � nM · ‖x − y‖ = nM · dist(x, G).

�

In the proof of Theorem A we shall need two important results concerning

fundamental biorthogonal systems in Banach spaces, which we collect below.

Theorem 2.4. Let X be a Banach space with a fundamental biorthogonal system

{eα; ϕα}α∈� and let Y := span{eα}α∈�. Then,

(i) there exists a bounded fundamental biorthogonal system {e′
α; ϕ′

α}α∈� such

that Y = span{e′
α}α∈� [29].

(ii) Y admits an LUR norm (which approximates the original norm of Y) [45, 58].

The claim in (i) is stated and proved in [29] for M-bases only; however, an inspec-

tion of the argument shows that it holds true for every fundamental biorthogonal sys-

tem. Perhaps the simplest way to see this is to note that the argument in [29] never uses

the completeness of the space, hence if {eα; ϕα}α∈� is a fundamental biorthogonal system

in a Banach space X , it is an M-basis for the normed space Y := span{eα}α∈� and we can

apply [29] to the space Y. Earlier partial results due to Plichko can be found in [50, 52].

Part (ii) is essentially Troyanski’s renorming technique [58] (also see [15, Chapter VII],
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or [30, Theorem 3.48]). The same type of results can also be found in the literature under

the name Deville’s master lemma, for example, in [46, 47]. The formulation given here

is stated explicitly, for example, in [45, Lemma 2.1], and some variants of it are also

used in [24, 35, 62]. The assertion in parentheses concerning the density of LUR norms

is standard [15, p. 52]. Finally, note that Theorem A(v) constitutes an improvement of

Theorem 2.4(ii).

2.3 Smooth norms via Minkowski functionals

A norm ‖·‖ on X is Ck-smooth if its k-th Fréchet derivative exists and it is continuous at

every point of X \{0} (equivalently, of SX ). The norm ‖·‖ locally depends on finitely many

coordinates (is LFC, for short) on X if for each x ∈ SX there exist an open neighbourhood

U of x and functionals ϕ1, . . . , ϕk ∈ X ∗ such that ‖y‖ = ‖z‖ for every y, z ∈ U with

〈ϕj, y〉 = 〈ϕj, z〉 for every j = 1, . . . , k.

A convex body is a convex set with nonempty interior. A canonical way to

build an equivalent norm on a normed space (X , ‖·‖) consists in building a bounded,

symmetric convex body D. Then D induces an equivalent norm on X via its Minkowski

functional μD, defined by μD(x) := inf{t > 0: x ∈ tD}. If D is additionally closed, then

the unit ball of (X , μD) coincides with D itself. Moreover, if (1 − δ)BX ⊆ D ⊆ BX for

some δ > 0, then ‖·‖ � μD � (1 − δ)−1 ‖·‖. This approach is ubiquitous in smooth

renorming, combined with the following standard lemma, a version of the Implicit

Function theorem; the formulation given here follows from [28, Lemma 5.23]. We refer,

for example, to [4, 14, 20, 21, 32, 48] for some instances of uses of this technique.

Lemma 2.5. Let (X , ‖·‖) be a normed space, D �= ∅ be an open, convex, and symmetric

subset of X and f : D → R be even, convex, and continuous. Assume that there is

a > f (0) such that B := {f � a} is bounded and closed in X . If f is Ck-smooth for some

k ∈ N ∪ {∞, ω} (resp. LFC) on D, then the Minkowski functional μB of B is a Ck-smooth

(resp. LFC) norm on X .

We will also need the following folklore lemma, a variation of the above result.

Lemma 2.6. Let D be a bounded, symmetric, convex body in a normed space X . Assume

that for every x ∈ ∂D there are a neighbourhood U of x and functionals ϕ1, . . . , ϕn ∈ X ∗

such that

∀y ∈ U : y ∈ D ⇐⇒ 〈ϕi, x〉 � 1, ∀i = 1, . . . , n. (2.1)

Then, μD is an LFC norm.
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Proof. Pick any x ∈ X with μD(x) = 1, namely x ∈ ∂D. Let a neighbourhood U of x

and functionals ϕ1, . . . , ϕn ∈ X ∗ be as in the statement of the lemma. There are an open

neighbourhood V of x and ε > 0 such that s−1 ·y ∈ U for every y ∈ V and every s ∈ R with

1− ε � s � 1+ ε. Moreover, the continuity of μD yields the existence of a neighbourhood

W of x, W ⊆ V, such that 1 − ε � μD(y) � 1 + ε for every y ∈ W.

We claim that the neighbourhood W of x and the functionals ϕ1, . . . , ϕn witness

that μD satisfies the LFC condition at x. Indeed, towards a contradiction, assume that

there are y, z ∈ W such that 〈ϕi, y〉 = 〈ϕi, z〉 for i = 1, . . . , n, but μD(y) < μD(z). Pick s ∈ R
with μD(y) < s < μD(z); then 1 − ε � s � 1 + ε, by definition of W. The definition of V
now yields that s−1 · y, s−1 · z ∈ U . Moreover, the definition of μD gives s−1 · y ∈ D and

s−1 ·z /∈ D. Hence, by (2.1), we derive that there is i0 ∈ {1, . . . , n} such that 〈ϕi0 , s−1 ·z〉 > 1,

while 〈ϕi, s−1 · y〉 � 1 for each i = 1, . . . , n. However, this contradicts the fact that

〈ϕi0 , y〉 = 〈ϕi0 , z〉 and concludes the proof. �

3 Proof of the Main Result

The goal of this section is the proof of the core parts of our main result, items (i) and (ii)

of Theorem A. Before diving into the details of the proof, let us present here some of the

main ideas involved in the argument.

Let Y := span{eα}α∈� be the linear span of the fundamental biorthogonal system

and F := span{eα1
, . . . , eαn

} be a finite-dimensional subspace. By Theorem 2.4(ii), we can

assume that the norm on Y is LUR, so we can cover the unit sphere of F with finitely

many open slices of BY with arbitrary small diameters. By removing such slices from

BY we end up with a convex body PF whose intersection with F is a polyhedron. After

having performed such a construction in the single subspace F, one would like to “glue

together” all such convex sets PF in order to get the desired polyhedral norm on Y.

When trying to implement this idea, we face two main difficulties. The first one is that,

if G := span{eβ1
, . . . , eβk

} is a subspace of F, the polyhedron PF ∩ F corresponding to F

intersected with G should coincide with PG∩G. In order to solve this, when choosing the

slices in F, we only add those that have small intersection with the slices coming from

proper subspaces of F. Moreover, the diameter of these “new” slices is much smaller than

the one of the slices constructed before. This inductive construction will be carried out

in Step 1. The second, and main, difficulty is that the slices corresponding to some other

subspace G := span{eβ1
, . . . , eβk

} (now, not necessarily contained in F) could intersect F.

Since this could happen for infinitely many of such subspaces G, there would be no

way to assure that the ball of F remains a polyhedron. The rather delicate choice of
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the slices in Step 1 is justified by the need to circumvent such a problem. Indeed, in

Step 2 we show that there even exists a neighbourhood of BF , that we will denote by

T(F, θF/2), that “protects” F, in the sense that the other slices do not intersect such a

neighbourhood. The existence of this neighbourhood will be the crucial ingredient in

the proof of the LFC and for smoothing the norm in Steps 3 and 4, respectively.

Proof of Theorem A(i) and (ii). Let X be a Banach space with a fundamental

biorthogonal system {eα; ϕα}α∈�, set Y := span{eα}α∈�, and choose any equivalent norm

‖·‖ on Y. Theorem 2.4(i) yields that Y is the linear span of a bounded (fundamental)

biorthogonal system, hence it allows us to assume that {eα; ϕα}α∈� is bounded. Our task

consists in building two norms, the former polyhedral and LFC, the latter C∞-smooth

and LFC, that approximate ‖·‖. By Theorem 2.4(ii) there exists an LUR norm on Y that

approximates ‖·‖, hence we can (and do) assume that ‖·‖ is already LUR on Y. Finally,

up to rescaling we can also assume that ‖eα‖ = 1, ‖ϕα‖ � M (α ∈ �), for some M � 1.

We start by fixing one piece of notation. Denote, for n ∈ N,

Fn := {
span{eα1

, . . . , eαn
} : α1, . . . , αn ∈ �, αi �= αj for i �= j

}

F<ω :=
⋃
n∈N

Fn.

Note that F<ω is a directed set by inclusion. Moreover, for F ∈ F<ω and θ > 0, we

consider the open “tubular” neighbourhood of F in BY defined by

T(F, θ) := {y ∈ BY : dist(y, F) < θ}.

Step 1. Construction of the slices.

We start by building a collection of slices parametrised by F<ω that satisfy the

conditions in the following claim.

Claim 3.1. Let ε > 0 be fixed. Then there are nets (εF)F∈F<ω and (θF)F∈F<ω of positive

reals and sets (�F)F∈F<ω , where �F is a finite set of slices of BY , such that

(i) θF � εF � ε for every F ∈ F<ω;

(ii) εF � 1
4nM for every F ∈ Fn;
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(iii) εF � 1
4nM θG for every F ∈ Fn and every G ∈ F<ω with G � F;

(iv) if S ∈ �F , then −S ∈ �F as well;

(v) diam(S) < εF for every S ∈ �F ;

(vi) if S ∈ �F , then S is of the form S = S(x, ψ , δ), for some δ > 0, some functional

ψ ∈ SY∗ that is norming for x, where

x ∈ SF \
⋃

G∈F<ω

G�F

T(G, θG);

(vii) Setting, for F ∈ F<ω,

UF :=
⋃

G∈F<ω

G⊆F

⋃
S∈�G

S,

we have 2θF � dist(SF , BY \ UF). In particular, SY ∩ T(F, θF) ⊆ UF .

Proof of Claim 3.1. Without loss of generality, we assume that ε < 1. We start by

proving that the second clause in (vii) indeed follows from the first part. Pick any

x ∈ SY ∩T(F, θF) and find w ∈ F with ‖x−w‖ < θF . Since ‖x‖ = 1, we have |‖w‖ − 1| < θF ,

hence the vector w̃ := w
‖w‖ satisfies ‖w−w̃‖ < θF . Thus, ‖w̃−x‖ < 2θF � dist(SF , BY \UF).

This inequality and w̃ ∈ SF imply x ∈ UF , as desired.

We now build (εF)F∈F<ω , (θF)F∈F<ω , and (�F)F∈F<ω with the above properties and

we argue by induction on n := dim F (where F ∈ F<ω). To check the statement for

n = 1, pick any F ∈ F1, namely F = span{eα}, for some α ∈ �. Set εF := min{ε, 1
4M }

and let ψα ∈ SY∗ be a norming functional for eα. By Fact 2.1 there is δα such that

the slice S(eα, ψα, δα) has diameter smaller than εF . Let �F := {±S(eα, ψα, δα)} and

UF := S(eα, ψα, δα) ∪ −S(eα, ψα, δα). Then SF ⊆ UF , so dist(SF , BY \ UF) > 0 and we can

finally choose θF � min{εF , 1
2dist(SF , BY \ UF)}. With this construction, all conditions

(i)–(vii) are clearly satisfied.

Now fix n � 2 and assume inductively that εF , θF , and �F have already been

defined for every F ∈ F<ω with dim F � n − 1 and satisfy (i)–(vii). Fix F ∈ Fn arbitrarily.

There are only finitely many G ∈ F<ω with G � F and θG has already been defined for

each such G, hence we can choose εF > 0 such that

εF � 1

4nM
min{θG : G ∈ F<ω, G � F}.
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This gives conditions (iii) and (ii), since θG � εG � ε < 1. Consider now the set

V :=
⋃

G∈F<ω

G�F

⋃
S∈�G

S,

pick x ∈ SF \ V and a norming functional ψx for x. By Fact 2.1 there exists δx > 0

such that diam(S(x, ψx, δx)) < εF . The collection
{
S(x, ψx, δx) : x ∈ SF \ V

}
is an open

cover of the compact set SF \ V, so we can extract a finite subcover
{
S(xj, ψxj

, δxj
)
}k

j=1

of
{
S(x, ψx, δx) : x ∈ SF \ V

}
. We set �F := {±S(xj, ψxj

, δxj
)
}k

j=1. Then conditions (iv) and (v)

are satisfied. (vi) is satisfied as well because

SY ∩
⋃

G∈F<ω

G�F

T(G, θG) ⊆
⋃

G∈F<ω

G�F

⋃
S∈�G

S = V

by (vii) of the inductive assumption.

Finally, we define UF as in (vii); by construction UF is an open subset of BY that

contains SF . Hence, the closed sets SF and BY \ UF are disjoint and, thus, they have

positive distance (SF being compact). So, we can choose θF > 0 such that

θF � min
{
εF ,

1

2
dist(SF , BY \ UF)

}
.

This yields conditions (i) and (vii) and concludes the inductive step. �

Step 2. The convex bodies PF and the compatibility condition.

Next, we use the family of slices from the previous step to build, for every

F ∈ F<ω, a convex body PF . We prove the crucial fact (see Fact 3.2 below) that this

construction is compatible, in the sense that the construction of PF does not interfere

with the one of PG, for any F �= G ∈ F<ω.

For every F ∈ F<ω and every n ∈ N we define

PF := BY \
⋃

G∈F<ω

G⊆F

⋃
S∈�G

S (3.1)

Pn :=
⋂

F∈Fn

PF =
⋂

G∈F<ω

dim G�n

⋂
S∈�G

BY \ S. (3.2)
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Let us note here the following monotonicity properties: PF ⊆ PG whenever F,

G ∈ F<ω, G ⊆ F. Hence, Pn+1 ⊆ Pn for n � 1. We shall discuss further properties of

such sets at the beginning of Step 3, while we now turn to the main property of the

construction.

Fact 3.2. (Compatibility). For every F ∈ F<ω and every n ∈ N with dim F � n we have

Pn ∩ T(F, θF/2) = PF ∩ T(F, θF/2). (†)

Proof of Fact 3.2. The “⊆” inclusion is clear since Pn ⊆ PF if dim F � n, by the

monotonicity properties mentioned above. So, we only need to prove that, for every

F ∈ F<ω and every n ∈ N, one has

PF ∩ T(F, θF/2) ⊆ Pn.

(Notice that checking the inclusion PF ∩T(F, θF/2) ⊆ Pn for every n � dim F is equivalent

to checking it for every n ∈ N, since (Pn)n∈N is a decreasing sequence.) By the definition

(3.2) of Pn it is thus sufficient to prove that, for every F, G ∈ F<ω and every S ∈ �G,

PF ∩ T(F, θF/2) ⊆ BY \ S. (*)

We prove this by induction on n := max{dim F, dim G}. Throughout the argument, we

assume F �= G as (∗) is trivially true when F = G.

For the case n = 1, assume by contradiction that there are F �= G ∈ F1 and

S ∈ �G with PF ∩ T(F, θF/2) ∩ S �= ∅. Pick x ∈ PF ∩ T(F, θF/2) ∩ S. Then dist(x, F) < θF/2.

Moreover, by condition (vi) of Claim 3.1, S ∈ �G implies the existence of z ∈ SG ∩S, hence

by (v), ‖x − z‖ < εG. Thus, we get dist(z, F) < εG + θF/2. Therefore, Lemma 2.3(i) and

conditions (i) and (ii) give the following contradiction

1

M
� dist(z, F) < εG + θF/2 � 1

4M
+ 1

8M
� 1

2M
.

Now fix n � 2 and assume by induction that (∗) holds for every F, G ∈ F<ω with

max{dim F, dim G} � n−1 and every S ∈ �G. Take F, G ∈ F<ω with max{dim F, dim G} = n

and S ∈ �G. First of all, since S ∈ �G, (v) and (vi) respectively imply that diam(S) < εG

and S = S(z, ψ , δ) for some

z ∈ SG \
⋃

H∈F<ω

H�G

T(H, θH). (3.3)
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Let us stress that, in particular, z ∈ S ∩ G, fact that we shall use several times below. We

distinguish two cases: dim F = n, or dim G = n and dim F � n − 1.

Case 1. dim F = n.

Set k := dim G � n and, towards a contradiction, assume that there is x ∈ PF ∩
T(F, θF/2) such that x ∈ S. Since x, z ∈ S, by (v), ‖x − z‖ < εG. Moreover, x ∈ T(F, θF/2)

implies dist(x, F) < θF/2, so dist(z, F) < εG + θF/2. Now there are three sub-cases.

• If F ∩ G = {0}, then we readily have a contradiction. Indeed, applying

Lemma 2.3(i) to z ∈ SG and F gives the absurdity that

1

kM
� dist(z, F) < εG + θF/2

(i),(ii)
� 1

4kM
+ 1

8nM

k�n
� 1

2kM
.

• If G ⊆ F, then PF ⊆ PG. However, this contradicts x ∈ PF \ PG (x ∈ S with

S ∈ �G implies x /∈ PG by using item (vi)).

• The last sub-case is that F∩G �= {0} and G �⊆ F. In particular, these conditions

give F ∩ G � G (and F ∩ G � F as well, since dim(F ∩ G) � k − 1). We can now

apply Lemma 2.3(ii) to get

dist(z, F ∩ G) � kM · dist(z, F) < kM(εG + θF/2)
(i)
� kM(εG + εF/2)

(iii)
� kM

(
1

4kM
θF∩G + 1

8nM
θF∩G

)
k�n
� 1

2
θF∩G.

Notice that, when applying condition (iii) we are using the assumptions that

F ∩G � G and F ∩G � F. This estimate implies that z ∈ T(F ∩G, θF∩G); however,

this is a contradiction with (3.3), since F ∩ G � G.

Case 2. dim G = n and dim F � n − 1.

Here we set k := dim F � n − 1 and, as in Case 1, we assume towards a

contradiction that there is x ∈ PF ∩ T(F, θF/2) with x ∈ S. As above, x, z ∈ S and (v)

imply ‖x − z‖ < εG; we again distinguish the same three sub-cases.

• If F ∩ G = {0}, we use the assumption that x ∈ T(F, θF/2) to find w ∈ F with

‖x − w‖ < θF/2. Since x ∈ S, 1 − εG � ‖x‖ � 1, so 1 − εG − θF/2 � ‖w‖ �
1 + θF/2. Then the vector w̃ := w

‖w‖ satisfies ‖w − w̃‖ � εG + θF/2, hence

‖x − w̃‖ � εG + θF . Moreover, dist(x, G) � ‖x − z‖ < εG. This finally yields

dist(w̃, G) � 2εG + θF . We can now apply Lemma 2.3(i) to w̃ ∈ SF and G to get
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the following contradiction:

1

kM
� dist(w̃, G) � 2εG + θF � 2

4nM
+ 1

4kM
� 3

4kM
,

where we are using again (i), (ii), and that k � n.

• If F ⊆ G, then actually F � G, as dim F = k � n − 1. The assumption

x ∈ T(F, θF/2) gives dist(x, F) < θF/2, hence (using (iii) and that F � G)

dist(z, F) < εG + θF/2
(iii)
� 1

4nM
θF + θF/2 < θF .

Hence, z ∈ T(F, θF), which is in contradiction with (3.3) since F � G.

• If F ∩ G �= {0} and F �⊆ G, then F ∩ G � F (and F ∩ G � G as well since

dim(F ∩ G) � k � n − 1). As before, we can pick w ∈ F with ‖x − w‖ < θF/2.

Since ‖x − z‖ < εG, such a w satisfies dist(w, G) � ‖w − z‖ � εG + θF/2.

Combining the estimate dist(w, G) � εG + θF/2 with Lemma 2.3(ii) applied to

w ∈ F (the lemma is used in the second inequality) we obtain

dist(z, F ∩ G) � dist(w, F ∩ G) + (εG + θF/2)

� kM · dist(w, G) + (εG + θF/2)

� (kM + 1) · (εG + θF/2)
(i)
� 2kM · (εG + εF/2)

(iii)
� 2kM

(
1

4nM
θF∩G + 1

8kM
θF∩G

)
k�n
� 3

4
θF∩G.

Again, this implies z ∈ T(F ∩ G, θF∩G), a contradiction with (3.3).

This concludes the induction step, hence the proof of Fact 3.2. �

Step 3. Construction of a polyhedral LFC norm and proof of Theorem A(i).

In this step we shall use the sets (PF)F∈F<ω and (Pn)n∈N to build a polyhedral

and LFC norm on Y that approximates ‖·‖. The desired norm will be the Minkowski

functional of the set P defined by

P :=
⋂
n∈N

Pn. (3.4)
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To begin with, every set PF (F ∈ F<ω) is a closed, convex, and symmetric set (the

symmetry is consequence of condition (iv)); plainly, we also have PF ⊆ BY . Moreover,

by (v), PF is obtained from BY by removing slices of diameter at most εF � ε, so

(1 − ε)BY ⊆ PF . As a consequence of these remarks, the set P is a closed, convex and

symmetric set with

(1 − ε)BY ⊆ P ⊆ BY .

Thus, the Minkowski functional μP of P is an equivalent norm on Y, whose unit ball

is precisely P. Further, the previous chain of inclusions gives ‖·‖ � μP � (1 − ε)−1 ‖·‖,

hence μP approximates ‖·‖. We now show that μP is a polyhedral and LFC norm on Y,

thereby concluding the proof of Theorem A(i).

In order to check that (Y, μP ) is polyhedral, take a finite-dimensional subspace

E of Y. Then there is F ∈ F<ω with E ⊆ F. Hence, it suffices to prove that the unit ball

P ∩ F of F is a polyhedron. From Fact 3.2 we obtain in particular Pn ∩ F = PF ∩ F for

every n ∈ N, n � dim F; thus, P ∩ F = PF ∩ F. We enumerate all the slices that appear in

the definition of PF :

⋃
G∈F<ω

G⊆F

�G = {Sj}N
j=1, (3.5)

where Sj = S(xj, ψj, δj). Then we can write

P ∩ F = PF ∩ F = {y ∈ BF : 〈ψj, y〉 � 1 − δj for all j = 1, . . . , N}
= {y ∈ F : 〈ψj, y〉 � 1 − δj for all j = 1, . . . , N} =: C.

Indeed, the second equality is just the definition of PF , while the “⊆” inclusion of the

third equality is obvious. In order to prove that C ⊆ PF ∩ F, it is sufficient to prove

that C ⊆ BF . Towards a contradiction, assume that there is x ∈ C with ‖x‖ > 1. Then

x/‖x‖ ∈ C as well. Notice that the second clause of (vii) gives in particular SF ⊆ ∪N
j=1Sj.

Hence, there is j ∈ {1, . . . , N} such that x/‖x‖ ∈ Sj, which contradicts x/‖x‖ ∈ C.

Consequently, we obtained that

P ∩ F = PF ∩ F = {y ∈ F : 〈ψj, y〉 � 1 − δj for all j = 1, . . . , N}

is a polyhedron, hence μP is a polyhedral norm.
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Finally, we use Lemma 2.6 to show that the norm is LFC. First, in the notation of

(vii), we have PF = BY \ UF , so dist(SF , PF) � 2θF for every F ∈ F<ω. Thus,

‖x‖ � 1 − 2θF for all x ∈ PF ∩ F. (3.6)

Moreover, as before, Fact 3.2 gives P ∩ T(F, θF/2) = PF ∩ T(F, θF/2) for every F ∈ F<ω.

Now fix arbitrarily x ∈ ∂P. Then there is F ∈ F<ω with x ∈ F, hence x ∈ PF ∩ F

and ‖x‖ � 1 − 2θF by (3.6). Consider the open ball U := Bo
θF/2(x) := {y ∈ Y : ‖y − x‖ <

θF/2}; then U ⊆ T(F, θF/2). Indeed, for every y ∈ U , dist(y, F) � ‖y − x‖ < θF/2 and

‖y‖ � ‖x‖ + θF/2 � 1 − 2θF + θF/2 < 1. The inclusion U ⊆ T(F, θF/2) then allows us to

“localise” the compatibility condition and deduce from Fact 3.2 that P ∩ U = PF ∩ U .

Moreover, using (3.5) and the definition of PF , we can write

PF =
{

y ∈ BY :

〈
ψj

1 − δj
, y

〉
� 1 for all j = 1, . . . , N

}
.

Consequently, for every y ∈ U , y ∈ P if and only if
〈

ψj
1−δj

, y
〉

� 1 for every

j = 1, . . . , N (here we are using the equality P ∩ U = PF ∩ U ). Therefore, Lemma 2.6

implies that μP is LFC, as desired.

Step 4. Smoothing and proof of Theorem A(ii).

In this step we glue together in a smooth way the functionals corresponding to

the slices from Step 1 and obtain a C∞-smooth and LFC norm on Y. The smoothness

of the resulting norm will crucially depend again on the compatibility condition (†). In

order to leave room for the smoothing, the main technical point consists in actually

applying Fact 3.2 to some suitably enlarged slices and not to the slices from Step 1.

Fix F ∈ F<ω and write (note that, differently from (3.5), here we do not enumerate

the slices in �G with G � F) �F = { ± S(xj, ψxj
, δxj

)
}k

j=1. We first define

�F :=
{

ψxj

1 − δxj

}k

j=1

.

Observe that this notation allows us to write

PF :=

⎧⎪⎪⎨
⎪⎪⎩y ∈ BY : |〈ψ , y〉| � 1 for all ψ ∈

⋃
G∈F<ω

G⊆F

�G

⎫⎪⎪⎬
⎪⎪⎭ . (3.7)
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Moreover, since all the finitely many slices in �F have diameter less than εF , by Fact 2.2

there is δF > 0 such that diam(S(xj, ψxj
, δxj

+ δF)) < εF for every j = 1, . . . , k. We then pick,

for every F ∈ F<ω, an even, convex, and C∞-smooth function �F : R → [0, ∞) such that

�F(1) = 1 and �F(s) = 0 if and only if |s| � 1 − δF . Note that every such a function is

strictly increasing on [1 − δF , ∞). We are now in position to define � : Y → [0, ∞] by

�(y) :=
∑

F∈F<ω

∑
ψ∈�F

�F

(〈ψ , y〉).

For F ∈ F<ω, we also define �F : Y → [0, ∞) by

�F(y) :=
∑

G∈F<ω

G⊆F

∑
ψ∈�G

�G

(〈ψ , y〉).

We wish to apply Lemma 2.5 to the function � and sets D := {� < 1} and

B := {� � 1 − ε}. To this aim we first observe that (recall the definition of P from

(3.4))

(1 − ε)BY ⊆ {� = 0} ⊆ B ⊆ D ⊆ P ⊆ BY . (3.8)

Indeed, in order to check the first inclusion note that, for S = S(xj, ψxj
, δxj

) ∈ �F ,

the condition diam(S(xj, ψxj
, δxj

+ δF)) < εF , together with (i) of Claim 3.1, implies

δxj
+ δF < εF � ε. Hence, if y ∈ Y satisfies ‖y‖ � 1 − ε, then for every F ∈ F<ω and

every ψ = ψxj
1−δxj

∈ �F we have

|〈ψ , y〉| =
∣∣∣∣∣
〈

ψxj

1 − δxj

, y

〉∣∣∣∣∣ � 1 − ε

1 − δxj

�
1 − δF − δxj

1 − δxj

� 1 − δF .

This yields �(y) = 0 and shows the first inclusion. Next, if y ∈ D, then for every

ψ ∈ �F and every F ∈ F<ω we have �F

(〈ψ , y〉) < 1, so |〈ψ , y〉| < 1 by the properties of the

functions �F . Hence, y ∈ PF for every F ∈ F<ω, thus D ⊆ P. The other inclusions being

trivial, (3.8) is proved.

In particular, the set B is bounded and closed in Y (since � is lower semi-

continuous on Y by Fatou’s lemma). Moreover, � is even and convex, hence D is convex

and symmetric. In order to be able to apply Lemma 2.5 we need to show that D is open

and that � is C∞-smooth and LFC on D. All these properties follow rather easily from

the next claim, asserting that � is locally a finite sum on D.
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13928 S. Dantas et al.

Claim 3.3. For every y ∈ D there are an open subset U of Y with y ∈ U and F ∈ F<ω

such that � = �F on U .

Assuming the validity of the claim, note that the function �F is clearly

C∞-smooth and LFC on Y (it is defined via a finite sum). Thus, Claim 3.3 immediately

yields that � is C∞-smooth and LFC on some open neighbourhood of D in Y. Hence,

it also follows that D is open. We are then in position to apply Lemma 2.5, which

leads us to the conclusion that μB is a C∞-smooth and LFC norm. Finally, (3.8) implies

‖·‖ � μB � (1 − ε)−1 ‖·‖, hence μB approximates the norm ‖·‖. Consequently, in order to

conclude the proof of Theorem A(ii), we only need to prove Claim 3.3.

Proof of Claim 3.3. Take F ∈ F<ω with y ∈ F and consider the set U defined by

U := T(F, θF/2) ∩

⎧⎪⎪⎨
⎪⎪⎩z ∈ Y : ‖z‖ < 1, |〈ψ , z〉| < 1 for every ψ ∈

⋃
G∈F<ω

G⊆F

�G

⎫⎪⎪⎬
⎪⎪⎭ .

Observe that U is indeed open in Y. In fact, T(F, θF/2) is open in BY , so T(F, θF/2)∩
{z ∈ Y : ‖z‖ < 1} is open in Y; this and the fact that ∪G∈F<ω

G⊆F
�G is a finite set yield that

U is open in Y. Moreover, y ∈ U . Indeed, the assumption that y ∈ D yields |〈ψ , y〉| < 1

for every ψ ∈ �G and every G ∈ F<ω, G ⊆ F. By the same reason (or from (3.8)) we also

get that y ∈ PF ∩ F. Hence, ‖y‖ < 1, in light of (3.6). Finally, since y ∈ BF ⊆ T(F, θF/2), it

follows that y ∈ U .

We shall now prove that � = �F on the set U . This amounts to proving that

for every z ∈ U , every G ∈ F<ω, with G �⊆ F, and every ψ ∈ �G one has �G(〈ψ , z〉) = 0;

equivalently, that |〈ψ , z〉| � 1 − δG.

Now the main idea comes. Fix G ∈ F<ω with G �⊆ F and write �G = { ±
S(xj, ψxj

, δxj
)
}k

j=1. Set �̃G := { ± S(xj, ψxj
, δxj

+ δG)
}k

j=1 and �̃H = �H for H ∈ F<ω, H �= G.

Then define sets P̃H and P̃n as in (3.1) and (3.2), but replacing the slices (�H)H∈F<ω with

the slices (�̃H)H∈F<ω . Since G �⊆ F, we have �̃H = �H for every H ∈ F<ω, H ⊆ F, hence

P̃F = PF . Moreover, the system of slices (�̃H)H∈F<ω satisfies all conditions (i)–(vii) in

Claim 3.1 with the same parameters (εH)H∈F<ω and (θH)H∈F<ω . Consequently, the sets P̃H

and P̃n also satisfy the compatibility condition (†) from Fact 3.2. Hence, given n ∈ N with

n � dim F, dim G, we have

PF ∩ T(F, θF/2) = P̃F ∩ T(F, θF/2)
(†)⊆ P̃n ⊆ P̃G.
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Besides, U ⊆ PF ∩ T(F, θF/2) by (3.7). Therefore, for every z ∈ U and every slice

±S(xj, ψxj
, δxj

+ δG) ∈ �̃G, we have z /∈ ±S(xj, ψxj
, δxj

+ δG); in other words, |〈ψxj
, z〉| �

1 − δxj
− δG, for every j = 1, . . . , k.

Finally, if ψ ∈ �G, there is j ∈ {1, . . . , k} with ψ = ψxj
1−δxj

, hence

|〈ψ , z〉| =
∣∣∣∣∣
〈

ψxj

1 − δxj

, z

〉∣∣∣∣∣ �
1 − δxj

− δG

1 − δxj

� 1 − δG.

This yields �G(〈ψ , z〉) = 0, hence �(z) = �F(z), as desired. �

As we explained before, this concludes Step 4 and the proof of Theorem A(ii). �

Remark 3.4. It is apparent from the above proof that we only used the LUR condition

via Fact 2.1, namely we only used that the fact that if Y is LUR, then every point of SY
is strongly exposed. One could wonder whether the argument could be modified as to

only require every point of SY being denting for BY . However, this is not a more general

assumption, since Raja [53] proved that every normed space Y such that every point of

SY is a denting point for BY actually has a LUR renorming. Indeed, although [53, The-

orem 1] is stated for Banach spaces, it is readily seen that the proof of the implication

(iii)⇒(i) there is valid for every normed space. The same result appeared earlier in [59],

but the (probabilistic) proof there seems to really depend on completeness.

As we already mentioned in the Introduction, the following corollary of

Theorem A generalises a result from [44].

Corollary 3.5. Let X be a Banach space with a fundamental biorthogonal system. Then

densely many norms on X are C∞-smooth and LFC on a dense open subset of X .

Proof. Let {eα; ϕα}α∈� be a fundamental biorthogonal system in X and let

Y := span{eα}α∈�. According to Theorem A(ii), we can take a C∞-smooth and LFC norm

‖·‖ on Y. Then for every y ∈ Y, y �= 0, there are δy > 0, functionals ψ1, . . . , ψn ∈ X ∗, and a

C∞-smooth function G : Rn → R such that

‖z‖ = G
(〈ψ1, z〉, . . . , 〈ψn, z〉) for every z ∈ Bo

Y (y, δy), (3.9)

where Bo
Y (y, δy) := {z ∈ Y : ‖y − z‖ < δy} (see, e.g., [28, Fact 5.79]). Since obviously

Bo
Y (y, δy) is dense in Bo

X (y, δy), the formula (3.9) is actually valid for every z ∈ Bo
X (y, δy).
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Consequently, setting U := ∪y∈Y\{0}Bo
X (y, δy), U is a dense open set in X , and ‖·‖ is

C∞-smooth and LFC in U . Finally, C∞-smooth and LFC norms are dense in Y, so we

are done. �

4 Partitions of Unity

In this short section we explain how Theorem A(iv) follows from [34] and we begin

by recalling Haydon’s result from [34] that we need (also see [28, Theorem 7.53]). We

denote by {e∗
γ }γ∈� the coordinate functionals on c0(�) and we refer to [28, §7.5] for basic

definitions concerning partitions of unity.

Theorem 4.1. (Haydon, [34]). Let Y be a normed space with a Ck-smooth bump function.

Assume the following:

(i) there is a continuous function � : Y → c0(�) such that e∗
γ ◦ � is Ck-smooth

where non-zero, for every γ ∈ �;

(ii) for every finite set F ⊆ � there is a Ck-smooth map PF : Y → Y such that

span(PF(Y)) has locally finite Ck-smooth partitions of unity;

(iii) for every x ∈ Y and ε > 0 there is δ > 0 such that ‖x − PF(x)‖ < ε, where

F := {γ ∈ � : |�(x)(γ )| � δ}.
Then Y admits locally finite and σ -uniformly discrete Ck-smooth partitions of unity.

In the case when Y := span{eα}α∈� is the linear span of some fundamental

biorthogonal system {eα; ϕα}α∈� we can apply Haydon’s result as follows. The map �

is defined by

�(x) :=
(〈

ϕα

‖ϕα‖ , x
〉)

α∈�

,

so that e∗
γ ◦ � is evidently C∞-smooth and LFC on Y. The map PF is just the canon-

ical projection from Y onto span{eα}α∈F ; surely, the finite-dimensional normed space

span{eα}α∈F admits locally finite C∞-smooth and LFC partitions of unity. The approxi-

mation condition is also easily satisfied, since for every x ∈ Y there is a finite set F ⊆ �

with x = PF(x). Hence, Theorem 4.1 yields that Y admits locally finite and σ -uniformly

discrete C∞-smooth partitions of unity.

In order to explain why such partitions of unity are also LFC, we follow the

proof and notation in [28, Theorem 7.53]. Since the functions ϕF,q,r defined there are

LFC and � is linear, every map ϕF,q,r ◦ � is LFC (see, e.g., [28, Fact 5.80]). Next, instead

of using the partition ring C∞(Z), where Z is a normed space, we replace it with the
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partition ring of C∞-smooth LFC functions on Z (we refer to [28, Definition 7.47] for

the definition of partition ring). Since the partition ring of C∞-smooth LFC functions

on Z is determined locally, in the sense of [28, Definition 7.48], all the statements in

[28, Lemma 7.49] are equivalent. Also notice that the partition ring of C∞-smooth LFC

functions on Y contains a bump function by Theorem A(iii). After these remarks, we can

return to the argument in [28, Theorem 7.53]. The unique additional difference is that

we need to show that each of the sets �−1(WF,q,r), P−1
F (V), and (Id − PF)−1(Um) is of the

form {f �= 0}, for some C∞-smooth and LFC function f : Y → R. We explain this for

sets P−1
F (V), the other two cases being analogous. By assumption V = {g �= 0}, for some

C∞-smooth and LFC function g : span{eα}α∈F → R. Then P−1
F (V) = {g ◦ PF �= 0} and the

function g ◦ PF : Y → R is C∞-smooth and LFC (again, the LFC property follows from the

linearity of PF (this argument does not work in the general setting of Theorem 4.1, since

there the maps � and PF are not necessarily linear)). All the remaining steps of the proof

being identical to the argument in [28], we conclude the validity of Theorem A(iv).

5 C1-Smooth LUR Norms

In this section we discuss the proof of Theorem A(v), thereby concluding the proof of

our main result. As we said already, the argument is an adaptation of [31], therefore we

shall restrict ourselves to defining the desired C1-smooth LUR norm and refer to [31] for

the verification of the various properties. Very roughly speaking, the main idea in [31] is

to smoothen up the formula for the norm from Troyanski’s renorming technique. Since

LUR renormings typically involve countably many contributions around each point, it

is crucial to have uniform Lipschitz estimates in order to obtain C1-smoothness in the

limit. Two earlier results, based on the same strategy but substantially less technical,

are [43] and [48] (also see [15, §V.1]), where a C1-smooth LUR norm is constructed in

every separable Banach space and in c0(�), respectively.

If Y := span{eα}α∈� is the linear span of a fundamental biorthogonal system

{eα; ϕα}α∈�, then, to begin with, we can assume that {eα; ϕα}α∈� is bounded, thanks to

Theorem 2.4(i). Secondly, in light of Theorem A(ii), C∞-smooth norms are dense in the

set of all equivalent norms on Y. Hence, Theorem A(v) is a consequence of Theorem 5.1

below.

Theorem 5.1. Let X be a Banach space with a bounded fundamental biorthogonal

system {eα; ϕα}α∈�. Let Y := span{eα}α∈� and let ‖·‖ be a C1-smooth norm on Y. Then ‖·‖
can be approximated by C1-smooth LUR norms.
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Before the proof we need to recall a couple of definitions. Let Y be a normed

space and D be a convex subset of Y. A convex function f : D → R is strictly convex if

its graph contains no non-trivial segments. Given a set �, a function g = (gγ )γ∈� : Y →
�∞(�) is coordinate-wise convex (resp. coordinate-wise Ck-smooth) if, for every γ ∈ �,

the function gγ is convex (resp. Ck-smooth).

Proof of Theorem 5.1. Without loss of generality, we can assume that ‖eα‖ = 1 and

‖ϕα‖ � M, for some M � 1 (M corresponds to the constant 2C in [31, §4.2]). We begin

by fixing some notation. Let, for every n ∈ N, ξn : [0, ∞) → [0, ∞) be a C∞-smooth,

1-Lipschitz convex function such that ξn(t) = 0 when t ∈ [0, 1/n] and ξn(t) = t − 2
n when

t � 3/n (take the convolution of t �→ max{0, t − 2
n } with a suitable bump). Let Bo

Y be the

open unit ball of Y. Given a set �, on �∞(�) we consider the seminorm �·� defined by

�z� := inf
{
t > 0: {γ ∈ � : |z(γ )| > t} is finite

} = ‖q(z)‖�∞(�)/c0(�),

where q : �∞(�) → �∞(�)/c0(�) is the quotient map. For η ∈ (0, 1) we consider the set

Aη(�) := {
z ∈ �∞(�) : �z� < (1 − η)‖z‖∞

}
.

Note that z ∈ Aη(�) is a “strong maximum” condition, in the sense that finitely many

coordinates of z are quantitatively larger than the others. The construction of the norm

is then performed in three steps.

First, consider the system of functions
{
gn,m,l : n, m, l ∈ N, l � n

}
on R2 obtained

by shifting and scaling a certain function g. Set g : R2 → [0, ∞) to be g(t, s) = 0 for t � 0

and, for t > 0,

g(t, s) := exp (−10/t) ·
(

s2

100
+ s

10
+ 1

)
.

For n, m, l ∈ N with l � n define

gn,m,l(t, s) := g
(

t − l/n

1 + nM
, θn,m

s

1 + nM

)
.

The main properties of the system
{
gn,m,l

}
are listed in [31, Lemma 4.5], where in

particular the parameters ρn ∈ (0, 1/2), θn,m ∈ (0, 1), and κn,m ∈ (0, ρn) are fixed.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/16/13909/6655610 by U
niversitat de Valencia user on 17 Septem

ber 2023



Smooth and Polyhedral Norms 13933

Let ηn,m := ρn − κn,m ∈ (0, 1/2). Consider the set

�n := {
(A, B) : ∅ �= B ⊆ A ⊆ �, |A| � n

}

and the functions Hn,m : Bo
Y → �∞(�n) defined by

Hn,my(A, B) := gn,m,|A|

(∑
α∈A

ξn

(|〈ϕα, y〉|), ξn

(∥∥∥∥∥y −
∑
α∈B

〈ϕα, y〉eα

∥∥∥∥∥
))

.

It is easily seen that Hn,m is 1-Lipschitz, coordinate-wise convex and coordinate-wise

C1-smooth. Additionally, [31, Lemma 4.7] asserts that Hn,my ∈ Aηn,m
(�n) for every y ∈ Bo

Y
with Hn,my �= 0.

The second step consists in building the norms for gluing together the functions

Hn,m in the standard way. For η ∈ (0, 1/2), take a C∞-smooth convex function

ψη : [0, ∞) → [0, ∞) such that ψη(t) = 0 for t ∈ [0, 1 − η], ψη is strictly convex on

[1 − η, ∞), and ψη(1) = 1. We also require that ψη1
(t) � ψη2

(t) for t ∈ [0, 1] and η1 < η2.

Set �η : �∞(�) → [0, ∞] by

�η(z) :=
∑
γ∈�

ψη(|z(γ )|)

and let Zη be the Minkowski functional of the set {�η � 1}. One readily sees that Zη1
� Zη2

if η1 � η2, that Zη is a lattice norm, and that (1 − η)Zη � ‖·‖ ∞ � Zη. In particular,

Zη is 2-Lipschitz on �∞(�). Moreover, Zη is C∞-smooth and LFC on the set Aη(�) and

(1 − η)Zη(z) < ‖z‖∞ for every z ∈ Aη(�), [31, Lemma 4.1]. Additionally, Zη satisfies a

LUR condition for “large coordinates” (namely for those coordinates γ for which z(γ ) >

(1 − γ )Zη(z)), [31, Lemma 4.3 and Lemma 4.4].

Finally, in the last step we glue all the ingredients together. Consider the norm Zη

on �∞(�) with η = ηn,m and � = �n as defined above. For j, n, m ∈ N define Jj,n,m : Bo
Y →

[0, ∞) by

Jj,n,m := ξj ◦ Zηn,m
◦ Hn,m.

Clearly, Jj,n,m is 2-Lipschitz on Bo
Y and Jj,n,m(0) = 0. Moreover, Zηn,m

◦ Hn,m is C1-smooth

on the set {Hn,m �= 0}; this follows from the facts that Hn,m is coordinate-wise C1-smooth,

that Hn,my ∈ Aηn,m
(�n) when Hn,my �= 0, and that Zηn,m

is C1-smooth on Aηn,m
(�n).
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Hence, Jj,n,m is C1-smooth on Bo
Y . Finally, fix ε > 0 and define J : Bo

Y → [0, ∞) by

J(y)2 := ‖y‖2 + ε
∑

j,n,m∈N
2−(j+n+m)Jj,n,m(y)2.

Since each Jj,n,m is 2-Lipschitz, the series of the derivatives converges and J is

C1-smooth on Bo
Y . Also, ‖y‖ � J(y) �

√
1 + 4ε‖y‖, hence

1 − ε√
1 + 4ε

BY ⊆ {J � 1 − ε} ⊆ BY .

Therefore, the Minkowski functional |||·||| of the set {J � 1 − ε} is a norm that

approximates ‖·‖. Moreover, J is C1-smooth on Bo
Y ⊇ {J < 1}, so Lemma 2.5 yields

that |||·||| is C1-smooth. What remains to be proved is that |||·||| is LUR, which follows

the argument in [31, Proposition 4.10]. As a matter of fact the argument is even simpler

in our context, since instead of finding a finite set A with

∥∥∥∥∥∥y −
∑
γ∈A

Qγ y

∥∥∥∥∥∥ < ε,

we can find a finite set A = supp(y) with y = ∑
α∈A〈ϕα, y〉eα (Qγ in [31] are projections

that correspond to the rank-one projections 〈ϕα, ·〉eα). �

5.1 Higher-order smoothness and super-reflexivity

We shall conclude the section observing that the C1-smooth LUR norms that we

constructed above can’t in general admit any higher-order smoothness. This essentially

follows from results in [21] (also see [28, §5.2]) and we sketch the explanation below.

We write that a norm on X is C1,+
loc -smooth (resp. C1,+-smooth) if it is differen-

tiable with locally uniformly continuous (resp. uniformly continuous) derivative on SX .

Moreover, we also recall that the modulus of smoothness of a norm ‖·‖ on a Banach

space X is the function ρX : (0, ∞) → (0, ∞) defined by

ρX (τ ) := sup
{‖x + τh‖ + ‖x − τh‖ − 2

2
: ‖x‖ = ‖h‖ = 1

}
.

A Banach space X is uniformly smooth if ρX (τ )
τ

→ 0 as τ → 0+; it is a classical result

that uniformly smooth Banach spaces are super-reflexive.
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Theorem 5.2. Let Y be a normed space with a C1,+
loc -smooth LUR norm ‖·‖. Then the

completion Ŷ of Y is super-reflexive.

Proof. Since ‖·‖ is LUR, every point of its unit sphere is strongly exposed. Hence,

[28, Theorem 5.46] (which comes from [21]) implies that Y has a C1,+-smooth norm |||·|||.
Let g : Y \ {0} → R be the derivative of |||·|||; by homogeneity, g is uniformly continuous on

{y ∈ Y : |||y||| � 1/2} with modulus of continuity, say ωg. Fix y, h ∈ Y with |||y||| = |||h||| = 1

and τ ∈ (0, 1/2). By Lagrange’s theorem, there are θ± ∈ (0, 1) with

|||y ± τh||| − |||y||| = 〈g(y ± θ±τh), ±τh〉

(here we are using the facts that |||·||| is differentiable on Y and y, h ∈ Y). Note that∣∣∣∣∣∣y ± θ±τh
∣∣∣∣∣∣ � 1/2. Then we have

|||y + τh||| + |||y − τh||| − 2|||y||| = 〈
g(y + θ+τh) − g(y − θ−τh), τh

〉
�

∣∣∣∣∣∣g(y + θ+τh) − g(y − θ−τh)
∣∣∣∣∣∣ · τ

� ωg

(∣∣∣∣∣∣θ+τh + θ−τh
∣∣∣∣∣∣) · τ � ωg(2τ) · τ .

Since Y is dense in Ŷ, the previous inequality is also valid for every y, h ∈ Ŷ with

|||y||| = |||h||| = 1. Hence, (dividing by 2τ and) passing to the supremum over such y, h

yields

ρŶ (τ )

τ
�

ωg(2τ)

2
→ 0, as τ → 0+.

Consequently, (Ŷ, |||·|||) is uniformly smooth, as desired. (This argument showing that

C1,+-smooth norm are uniformly smooth certainly is a classical one. We presented it

just because of the passage to the completion that we needed in the midst of it.) �

Remark 5.3. In particular, no dense subspace Y of c0(�) admits a C1,+
loc -smooth LUR

norm. This particular case could also be proved by combining [28, Theorem 5.46]

with [61]. More precisely, a standard “small perturbations” argument shows that it

is sufficient to consider � = N and Y = c00 (see, e.g., [33, Theorem 2.1]). Then

[28, Theorem 5.46] would imply that c00 has a C1,+-smooth norm, which is false [61].
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[42] Markuševič, A. I. “Sur les bases (au sens large) dans les espaces linéaires.” C. R. (Doklady)

Acad. Sci. URSS (N.S.) 41 (1943): 227–9.

[43] McLaughlin, D., R. Poliquin, J. Vanderwerff, and V. Zizler. “Second-order Gateaux differen-

tiable bump functions and approximations in Banach spaces.” Canad. J. Math. 45 (1993):

612–25. https://doi.org/10.4153/CJM-1993-032-9.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/16/13909/6655610 by U
niversitat de Valencia user on 17 Septem

ber 2023



Smooth and Polyhedral Norms 13939

[44] Moreno, J. P. “Geometry of Banach spaces with (α, ε)-property or (β, ε)-property.” Rocky

Mountain J. Math. 27 (1997): 241–56. https://doi.org/10.1216/rmjm/1181071959.

[45] Moreno, J. P. “On the weak∗Mazur intersection property and Fréchet differentiable norms on

dense open sets.” Bull. Sci. Math. 122 (1998): 93–105.

[46] Orihuela, J. and S. L. Troyanski. “LUR renormings through Deville’s master lemma.” Rev.

R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 103 (2009): 75–85. https://doi.org/10.

1007/BF03191834.

[47] Orihuela, J. and S. L. Troyanski. “Deville’s master lemma and Stone’s discreteness in

renorming theory.” J. Convex Anal. 16 (2009): 959–72.

[48] Pechanec, J., J. H. M. Whitfield, and V. Zizler. “Norms locally dependent on finitely many

coordinates.” An. Acad. Brasil Ci 53 (1981): 415–7.

[49] Phelps, R. R. Convex Functions, Monotone Operators and Differentiability. Lecture Notes in

Mathematics, 1364, 2nd ed. Berlin: Springer, 1993.

[50] Plichko, A. N. “Construction of bounded fundamental and total biorthogonal systems from

unbounded systems.” Dokl. Akad. Nauk USSR 254 (1980): 19–23.

[51] Plichko, A. N. “Banach spaces without fundamental biorthogonal systems.” Soviet Math.

Dokl. 254 (1980): 978–801.

[52] Plichko, A. N. “On projective resolutions of the identity operator and Markuševič bases.”
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In this paper, we provide an infinite metric space M such that the set SNA(M)
of strongly norm-attaining Lipschitz functions on M does not contain a subspace
which is linearly isometric to c0. This answers a question posed by Antonio Avilés,
Gonzalo Martínez-Cervantes, Abraham Rueda Zoca, and Pedro Tradacete. On the
other hand, we prove that SNA(M) contains an isometric copy of c0 whenever M
is an infinite metric space which is not uniformly discrete. In particular, the latter
holds true for all infinite compact metric spaces while it does not hold true for all
proper metric spaces. We also provide some positive results in the non-separable
setting.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Let M be a pointed metric space. We consider the subset SNA(M) of Lip0(M) of all strongly norm-
attaining Lipschitz functions on M . In 2016, Marek Cúth, Michal Doucha, and Przemyslaw Wojtaszczyk [8]
proved that ℓ∞ (and hence c0) embeds isomorphically in Lip0(M) for any infinite metric space M . One
year later, this result was improved by Marek Cúth and Michal Johanis by showing that ℓ∞ (and hence c0)
embeds isometrically in Lip0(M) [9]. Motivated by the papers [1,13,19], we turn our attention to the study
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of the analogous problems for the subset SNA(M). In big contrast to what happens in the classical norm-
attainment theory, where Martin Rmoutil [21] proved that the set of all norm-attaining functionals needs
not contain 2-dimensional spaces, Antonio Avilés, Gonzalo Mart́ınez Cervantes, Abraham Rueda Zoca, and
Pedro Tradacete [1] provided a beautiful and interesting construction, and showed that SNA(M) contains an
isomorphic copy of c0 for every infinite complete metric space M (answering [19, Question 2] in the positive).
At the very ending of that paper, the authors wondered whether an isometric version of this result holds
true (see [1, Remark 3.6]).

In this paper, we answer the latter question by providing an example of an infinite uniformly discrete
metric space M such that SNA(M) does not contain any subspace which is linearly isometric to c0 (see
Theorem 4.1). On the other hand, we prove that SNA(M) does contain a linearly isometric copy of c0
whenever M is infinite but not uniformly discrete (see Theorem 4.2). It turns out that this is no longer
true even for proper metric spaces (see Theorem 4.4). We conclude the paper by tackling the problem in
the non-separable setting; we prove that whenever dens(M ′) = Γ > ℵ0, then SNA(M) contains a linearly
isometric copy of c0(Γ ) (see Theorem 5.2).

2. Preliminaries and notation

Throughout the text, all the vector spaces will be considered to be real. Let (M, d) be a pointed metric
space (that is, a metric space with a distinguished point 0). We denote by Lip0(M) the Banach space of all
Lipschitz functions f : M → R such that f(0) = 0, endowed with the Lipschitz norm

∥f∥Lip := sup
{ |f(y) − f(x)|

d(x, y) : x, y ∈ M, x ̸= y

}
.

We say that a Lipschitz function f ∈ Lip0(M) strongly attains its norm, or that it is strongly norm-attaining,
if there exist two different points p, q ∈ M such that

∥f∥Lip = |f(p) − f(q)|
d(p, q) .

The set of strongly norm-attaining Lipschitz functions on M will be denoted by SNA(M). In the last
few years, this topic has been intensively studied. We send the reader to [1–7,11,12,14,15,17–19] and the
references therein.

In this paper, we will discuss the possibility of finding a linear space isometrically isomorphic to c0 inside
the set SNA(M). Clearly, this situation is reduced only to infinite metric spaces. Note also that, for our
purposes, the choice of the distinguished point 0 in the pointed metric space M is irrelevant in our context.
Indeed, if 0 and 0′ are two distinguished points in M , then the mapping from Lip0(M) to Lip0′(M) defined
as f ↦→ f − f(0′) is a linear isometry that completely preserves the strong norm-attainment behaviour of
the mappings, so we do not need to worry about the choice of the distinguished point.

In this document, the expression linear subspaces of SNA(M) should be understood as linear subspaces
of Lip0(M) consisting of strongly norm-attaining Lipschitz functions. Also, if Y is a Banach space, then we
say that Y isometrically embeds in SNA(M) (or, equivalently, SNA(M) contains a linearly isometric copy
of Y ), whenever there exists a linear isometric embedding U : Y → Lip0(M) such that U(Y ) ⊆ SNA(M).

The separation radius of a point x ∈ M is defined by

R(x) := inf
{

d(x, y) : y ∈ M \ {x}
}

,

and it will play an important role in some of the upcoming results. We will say that a point x from a metric
space M attains its separation radius whenever there is some y ∈ M such that R(x) = d(x, y). The symbol
M ′ stands for the set of all cluster points of M . Recall that a metric space M is said to be discrete if M ′ = ∅,

2
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uniformly discrete if inf{R(x) : x ∈ M} > 0, and proper if every closed and bounded subset of M is compact.
The notation B(x, R) stands for the closed ball of centre x ∈ M and radius R > 0.

Throughout the entire note, we will denote by c0(Γ ) the space of all real valued functions over a set Γ

satisfying that for every element x ∈ c0(Γ ), the set {γ ∈ Γ : |x(γ)| ⩾ ε} is finite for every ε > 0. If Γ is
countable, we will refer to c0(Γ ) simply as c0.

Let X be a separable Banach space with a Schauder basis denoted by {xn}∞
n=1. We say that a sequence

{yn}∞
n=1 in a Banach space Y is (isometrically) equivalent to the basis {xn}∞

n=1 if there exists a linear
(isometric) isomorphism T : span{yn : n ∈ N} → X such that T (yn) = xn for all n ∈ N. The following
straightforward facts will be used throughout the text without any explicit reference.

(i) A sequence {xn}∞
n=1 is isometrically equivalent to the canonical basis of c0 if and only if the equality ∑∞

n=1 λnxn

 = maxn |λn| holds for every sequence {λn}∞
n=1 ∈ c0.

(ii) If a sequence {xn}∞
n=1 is isometrically equivalent to the canonical basis of c0, then so is the sequence

{εnxn}∞
n=1, where εn ∈ {−1, 1} for every n ∈ N.

(iii) Any subsequence of a sequence which is isometrically equivalent to the canonical basis of c0 is once again
isometrically equivalent to the same basis.

Given any set A and a natural number k ∈ N, we denote by A[k] the set of all subsets of A with exactly
k elements. We will use Ramsey’s Theorem intensively throughout the text, which ensures that given any
infinite set A and any finite partition of the set A[k], {B1, . . . , Bn} for some n ∈ N, there exists an infinite
subset S of A and a number i ∈ {1, . . . n} such that S[k] is contained in Bi (see, for instance, [10, Proposition
6.4]).

Finally, let us note the following. If M is any metric space and Mc is its completion, then, as Lipschitz
mappings extend uniquely by uniform continuity, one clearly has Lip0(M) = Lip0(Mc). However, it can
happen that a Lipschitz mapping strongly attains its norm on Mc but not on M , so SNA(M) can be a strict
subset of SNA(Mc) sometimes. For this reason, we will state our main positive results for general metric
spaces (complete or not) whenever possible.

3. Some useful tools

In this section, we state and prove some auxiliary results that will be crucial for the rest of the note. The
following are three essential yet straightforward lemmas that hold in any metric space. We provide their
proofs for the sake of completeness.

Lemma 3.1. Let M be a metric space. Suppose that {fn}∞
n=1 ⊆ Lip0(M) is a sequence isometrically

equivalent to the canonical basis of c0. If for every n ∈ N, the function fn strongly attains its Lipschitz norm
at a pair of points xn, yn ∈ M , then fm(xn) = fm(yn) for every m ∈ N \ {n}.

Proof. Let n ∈ N be fixed. Suppose that the function fn strongly attains its Lipschitz norm at a pair
of points xn, yn ∈ M . Without loss of generality, we may (and we do) assume that |fn(xn) − fn(yn)| =
fn(xn) − fn(yn) = d(xn, yn). Let us suppose by contradiction that there exist natural numbers m ̸= n such
that fm(xn) ̸= fm(yn). We may again suppose without loss of generality that fm(xn) > fm(yn) (otherwise
we may consider the sequence {gk}∞

k=1 defined as gm = −fm and gk = fk for k ̸= m, which is still equivalent
to the c0 basis). Set f := fn + fm. Then, we have that

3
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|f(xn) − f(yn)| ⩾ (fn + fm)(xn) − (fn + fm)(yn)
= fn(xn) − fn(yn) + fm(xn) − fm(yn)
> d(xn, yn),

which yields a contradiction with the fact that f is 1-Lipschitz. ■

Lemma 3.2. Let M be a metric space. Suppose that {fn}∞
n=1 ⊆ Lip0(M) is a sequence equivalent to the

canonical basis of c0. Then, for all p ∈ M , limn→∞ |fn(p)| = 0.

Proof. Let T : c0 → span{fn : n ∈ N} be a linear isomorphism with T (en) = fn for all n ∈ N and set
C = ∥T∥. Suppose that for some p ∈ M , the sequence {fn(p)}∞

n=1 does not converge to 0. Then, there exists
N ∈ N such that

∑N
n=1 |fn(p)| > C · d(p, 0). However, this implies that there exist {εn}N

n=1 ⊆ {−1, 1}N

such that the function
∑N

k=1 εnfn is not C-Lipschitz, contradicting the fact that the operator norm of T is
C. ■

Finally, for the upcoming positive results of the paper, we need the following generalization of [1, Lemma
3.1].

Lemma 3.3. Let Γ be a nonempty index set. Let M be a pointed metric space such that there exist
{(xγ , yγ)}γ∈Γ ⊆ M × M with xγ ̸= yγ for every γ ∈ Γ satisfying that

d(xα, xβ) ⩾ d(xα, yα) + d(xβ , yβ) (3.1)

for every α ̸= β ∈ Γ . Then there is a linear subspace of SNA(M) linearly isometric to c0(Γ ).

Proof. Since the choice of the point 0 is not relevant as noted before, we may assume that 0 ∈ {yγ}γ∈Γ .
Pick γ′ ∈ Γ such that yγ′ := 0. For each γ ∈ Γ , define fγ : M → R by

fγ(x) := max{0, d(xγ , yγ) − d(x, xγ)} (x ∈ M).

Clearly, fγ′(0) = 0. Also, if γ ̸= γ′ we have by means of the triangle inequality,

d(xγ , yγ)
(3.1)
⩽ d(xγ , xγ′) − d(xγ′ , yγ′) ≤ d(xγ , yγ′).

Therefore, fγ(0) = max{0, d(xγ , yγ) − d(xγ , yγ′)} = 0 for every γ ∈ Γ .
Notice that for every γ ∈ Γ , fγ(x) ̸= 0 if and only if x is such that d(xγ , x) < d(xγ , yγ). Also, notice that

by (3.1), for every α ̸= β in Γ , B(xα, d(xα, yα)) ∩ B(xβ , d(xβ , yβ)) has empty interior.
Let λ := (λγ)γ∈Γ ∈ c0(Γ ) and let γ0 ∈ Γ be such that |λγ0 | = ∥λ∥∞. Set f =

∑
γ∈Γ λγfγ . Clearly,

|f(xγ0) − f(yγ0)| = |λγ0 |d(xγ0 , yγ0).

Therefore, we will be done if we show that ∥f∥Lip ⩽ |λγ0 |:
Let x ̸= y be two points in M . We will distinguish several cases.

(a) If both x and y lie outside of
⋃

γ∈Γ B(xγ , d(xγ , yγ)), then clearly |f(x) − f(y)| = 0.
(b) Assume that x /∈ ⋃

γ∈Γ B(xγ , d(xγ , yγ)) and that there exists some α ∈ Γ such that y ∈ B(xα, d(xα, yα)).
Since 0 ⩽ d(xα, yα) − d(xα, y) ⩽ d(xα, x) − d(xα, y) ⩽ d(x, y), we have

|f(x) − f(y)| = |λα|(d(xα, yα) − d(xα, y)) ⩽ |λγ0 |d(x, y).
4
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(c) Assume now that there is some γ ∈ Γ such that x, y ∈ B(xγ , d(xγ , yγ)). Then, by the triangle inequality,

|f(x) − f(y)| = |λγ∥(d(xγ , yγ) − d(xγ , x)) − (d(xγ , yγ) − d(xγ , y))|
= |λγ0 | |d(xγ , x) − d(xγ , y)|
≤ |λγ0 |d(x, y).

(d) Finally, if there are different α, β ∈ Γ such that x ∈ B(xα, d(xα, yα)) and y ∈ B(xβ , d(xβ , yβ)), thanks
to (3.1), we know that d(xα, yα) ⩽ d(xα, xβ)−d(xβ , yβ). Hence, by means of this last inequality and the
triangle inequality, we have that

d(xα, yα) − d(xα, x) + d(xβ , yβ) − d(xβ , y) ⩽d(xα, xβ) − d(xα, x) − d(xβ , y)
⩽d(x, y).

(3.2)

Then,

|f(x) − f(y)| = |λαfα(x) − λβfβ(y)|
⩽ |λγ0 |(fα(x) + fβ(y))
= |λγ0 |(d(xα, yα) − d(xα, x) + d(xβ , yβ) − d(xβ , y))

(3.2)
⩽ |λγ0 |d(x, y). ■

4. The isometric containment of c0 in SNA(M)

In this section we turn our attention to the main results of the paper.

4.1. A bounded and uniformly discrete counterexample

In this subsection, we construct an infinite complete metric space M such that the set SNA(M) of strongly
norm-attaining Lipschitz functions does not contain a linearly isometric copy of c0, answering a question
posed in [1, Remark 3.6]. It is worth mentioning that no point of the constructed metric space attains its
separation radius.

Theorem 4.1. There exists an infinite bounded uniformly discrete metric space M such that c0 is not
isometrically contained in SNA(M) and for which no point in M attains its separation radius.

Proof. Let M = {pn}n∈N be any countable set endowed with the metric d given by

d(pn, pm) =
{

1 + 1
max{m,n} if m ̸= n,

0 otherwise.

Note that the diameter of M is 3/2.
For the sake of contradiction, let us suppose that there exists a sequence {fn}n∈N of strongly norm-

attaining functions which is isometrically equivalent to the canonical basis of c0. For each n ∈ N, let
xn, yn ∈ M be such that xn ̸= yn and

⏐⏐fn(xn) − fn(yn)
⏐⏐ = d(xn, yn). Our goal is to find two natural

numbers n0 ̸= m0 and δ ∈ {−1, 1} such that the Lipschitz function fn0 + δfm0 has Lipschitz norm strictly
greater than 1. This will lead to a contradiction.

Let us consider the sets

A :=
{

{n, m} ∈ N[2] : {xn, yn} ∩ {xm, ym} = ∅
}

,

5



S. Dantas, R. Medina, A. Quilis et al. Nonlinear Analysis 232 (2023) 113287

B1 :=
{

{n, m} ∈ N[2] : xn = xm

}
,

B2 :=
{

{n, m} ∈ N[2] : yn = ym

}
, and

B3 :=
{

{n, m} ∈ N[2] : xn = ym or xm = yn

}
.

Note that, as an immediate consequence of Lemma 3.1, those sets form a partition of N[2]. By Ramsey’s
theorem, there exists C ∈ {A, B1, B2, B3} and an infinite set S ⊆ N such that S[2] ⊆ C.

Case 1 : C = A.
By restricting ourselves to S, we have that {xn, yn} ∩ {xm, ym} = ∅ for every n, m ∈ S with n ̸= m. For

each n ∈ S, let us set

εn := 1
2k(n) , where k(n) := max{k ∈ N : pk = xn or pk = yn}.

Let us fix some n0 ∈ S. Since {xn, yn} ∩ {xm, ym} = ∅ for every n, m ∈ S with n ̸= m, by Lemma 3.2 and
the definition of the metric d, there exists m0 ∈ S \ {n0} such that

(i) max{|fm0(xn0)|, |fm0(yn0)|} ⩽ εn0

3 and

(ii) max{d(xn0 , xm0), d(xn0 , ym0), d(yn0 , xm0), d(yn0 , ym0)} ⩽ 1 + εn0

3 .

Now, by Lemma 3.1, there is a constant Cm0 ∈ R such that fn0(xm0) = fn0(ym0) = Cm0 . Since all the
previous inequalities still hold if we relabel any of the pairs (xn0 , yn0) or (xm0 , ym0), we may assume that

|fn0(xn0) − Cm0 | ⩾ |fn0(yn0) − Cm0 | and |fm0(xm0)| ⩾ |fm0(ym0)|.

Note that the triangle inequality yields that

|fn0(xn0) − Cm0 | + |fn0(yn0) − Cm0 | ⩾ d(xn0 , yn0) and |fm0(xm0)| + |fm0(ym0)| ⩾ d(xm0 , ym0),

and so, under our previous assumption we get that

|fm0(xm0)| ⩾ 1
2 + εm0 and |fn0(xn0) − Cm0 | ⩾ 1

2 + εn0 . (4.1)

In particular, fm0(xm0) ̸= 0. Set now δ := |fm0 (xm0 )|
fm0 (xm0 ) ∈ {−1, 1}. To finish the proof of this case, we

distinguish two possibilities depending on the sign of fn0(xn0) − Cm0 :
If fn0(xn0) < Cm0 , consider the function f = fn0 + δfm0 , which is 1-Lipschitz by assumption. However,

using properties (i) and (ii) and Eq. (4.1) we obtain that

|f(xn0) − f(xm0)| ⩾ −fn0(xn0) − δfm0(xn0) + fn0(xm0) + δfm0(xm0)

>
1
2 + εn0 + 1

2 − |fm0(xn0)| > d(xn0 , xm0),

a contradiction.
On the other hand, if fn0(xn0) ⩾ Cm0 , an analogous procedure shows that the function g = fn0 − δfm0

has a Lipschitz norm greater than 1 witnessed by the same pair (xn0 , xm0). This again yields a contradiction.

Case 2 : C = B1.
Restricting ourselves to S once more, note that there exists k∗ ∈ S such that xn = pk∗ for every n ∈ S.

By Lemma 3.1, we have that yn ̸= ym for every n, m ∈ S with n ̸= m. Using Lemma 3.2, we may find
n0, m0 ∈ S with n0 ̸= m0 such that

|fn0(xn0)| ⩽ 1
10 and |fm0(xm0)| ⩽ 1

10 , (4.2)
6
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and so, by the triangle inequality, we have that

|fn0(yn0)| ⩾ 9
10 and |fm0(ym0)| ⩾ 9

10 . (4.3)

Since xn0 = xm0 , another consequence of Eq. (4.2) together with Lemma 3.1 is that

|fn0(ym0)| ⩽ 1
10 and |fm0(yn0)| ⩽ 1

10 . (4.4)

Changing signs of fn0 and fm0 if necessary, we may assume that fn0(yn0) > 0 and fm0(ym0) > 0. Finally,
consider the function f := fn0 − fm0 , which is 1-Lipschitz by the assumption on the sequence {fn}n∈N.
However, applying (4.3) and (4.4), and recalling that the diameter of M is 3/2 we obtain that

|f(yn0) − f(ym0)| ⩾ fn0(yn0) + fm0(ym0) − fm0(yn0) − fn0(ym0)

⩾ 9
5 − (|fm0(yn0)| + |fn0(ym0)|) > d(yn0 , ym0).

We have then a contradiction and the proof of this case is over.

Case 3 : C = B2.
If C = B2 =

{
{n, m} ∈ N[2] : yn = ym

}
and S[2] ⊂ B2, defining x′

n = yn and y′
n = xn for all n ∈ N we

observe that S[2] ⊂
{

{n, m} ∈ N[2] : x′
n = x′

m

}
, so this case can be solved in an analogous way to the case

C = B1.

Case 4 : C = B3.
We will show that this case cannot happen. Suppose for the sake of contradiction that S[2] ⊂ B3 ={

{n, m} ∈ N[2] : xn = ym or xm = yn

}
, and fix n0 ∈ S. Defining S1 = {m ∈ S \ {n0} : xm = yn0} and

S2 = {m ∈ S \ {n0} : ym = xn0} we obtain that

S
[2]
1 ⊂

{
{n, m} ∈ N[2] : xn = xm = yn0

}
⊂ B1,

S
[2]
2 ⊂

{
{n, m} ∈ N[2] : yn = ym = xn0

}
⊂ B2.

The sets S1 and S2 must be singletons. Indeed, suppose first that there existed n1 ̸= n2 ∈ S1. Then
xn1 = xn2 , and since {n1, n2} ∈ B3, one of xn1 = yn2 or yn1 = xn2 holds. This implies that either xn1 = yn1
or xn2 = yn2 , which is a contradiction with the fact that the functions fn1 and fn2 strongly attain their
Lipschitz norm at the corresponding pairs of points. Similarly, we obtain that S2 is a singleton as well.

Finally, since for each m ∈ S \ {n0} we have that either xn0 = ym or xm = yn0 , it follows that
S = S1 ∪ S2 ∪ {n0}, and thus the cardinality of S is at most 3. This is a contradiction with the choice
of S. ■

It is worth mentioning that there exist countable bounded uniformly discrete metric spaces M with the
condition that no point x in M attains its separation radius, but such that c0 embeds isometrically in
SNA(M). Indeed, it suffices to consider a countable collection {Mn}n∈N of copies of the previous space
in such a way that d(Mn, Mm) = 3 for all different n, m ∈ N, and observe that, in this context, Lemma 3.3
applies. This means that the aforementioned property is not sufficient for c0 not to be contained in SNA(M)
isometrically.

Likewise, one could be tempted to assume that the condition of not attaining the separation radii is at
least necessary in negative results like Theorem 4.1. However, this is far from being true as well. In fact,
later in this section we will exhibit a proper unbounded uniformly discrete metric space M such that c0
cannot be embedded in SNA(M) isometrically (see Theorem 4.4). In particular, every point of M attains its
separation radius, since closed bounded sets in M are compact. On the other hand, we will see in the next
subsection that the property of being uniformly discrete is indeed necessary in order to get such negative
results (see Theorem 4.2).

7
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4.2. Non uniformly discrete metric spaces

Let us move on to the main positive result of the paper. Going in the opposite direction of Theorem 4.1,
here we show that we can always embed c0 isometrically in SNA(M) whenever M is infinite but not uniformly
discrete. Recall that M ′ is the set of cluster points of M . Let us remark that the complete metric spaces such
that the set of cluster points is either empty or infinite were already covered in [1], and we do not address
these cases at all in the proof.

Theorem 4.2. Let M be an infinite non uniformly discrete metric space. Then, the set SNA(M) contains
a linearly isometric copy of c0.

Proof. Assume first that M is complete. By [1, Theorems 3.2 and 3.4] it suffices to assume that M ′ is non-
empty and finite. We can also assume without loss of generality that 0 ∈ M ′. Now we can find a sequence
{xn}n∈N in M converging to 0 such that R(xn) > 0 for all n ∈ N . It is clear that the sequence {R(xn)}n∈N
converges to 0.

We are going to define a sequence {fk}k∈N of 1-Lipschitz functions in SNA(M) which will be isometrically
equivalent to the canonical basis of c0 and such that the subspace span{fk : k ∈ N} (which is linearly
isometric to c0) is contained in SNA(M).

We define the following sets:

A :=
{

{n, m} ∈ N[2] : d(xn, xm) ⩾ R(xn) + R(xm)
}

,

B :=
{

{n, m} ∈ N[2] : d(xn, xm) < R(xn) + R(xm)
}

,

which form a partition of N[2]. By Ramsey’s theorem, there is C ∈ {A, B} and an infinite subset S ⊆ N such
that S[2] ⊆ C. These two possibilities give us two separate cases.

Case 1 : C = A.
Consider the subset {xn}n∈S , which satisfies that d(xn, xm) ⩾ R(xn)+R(xm) for all n ̸= m ∈ S. Assume

first that there is an infinite subset of S, which we denote by S0, such that R(xn) is attained for every n ∈ S0.
Consider now for each n ∈ S0 an element yn ∈ M such that d(xn, yn) = R(xn). It is straightforward to see
that the sequences {xn}n∈S0 , {yn}n∈S0 satisfy the assumptions of Lemma 3.3 and we are done.

Otherwise, by passing to a subsequence if necessary, we may assume that R(xn) is not attained for any
n ∈ S. Let us then choose inductively a sequence {ak}k∈N among the elements of the sequence {xn}n∈S

satisfying that for every k ∈ N,

d(ak, 0) ⩽ d(aj , 0) − R(aj)
3 ∀j < k. (4.5)

For the sake of clarity, let us denote ∆k = d(ak,0)−R(ak)
3 for every k ∈ N. It is clear from (4.5) that

{∆k}∞
k=1 is a decreasing sequence. Now, by definition of R(ak), we deduce that for every k ∈ N, there is

some bk ∈ B(ak, R(ak) + ∆k). Finally, let us prove that the sequences {ak}k∈N and {bk}k∈N are under the
assumptions of Lemma 3.3. Pick n, m ∈ N with n < m. Clearly, the following expressions hold

d(an, 0) =R(an) + 3∆n, d(am, 0) ⩽ ∆n, d(an, bn) ⩽ R(an) + ∆n

d(am, bm) ⩽ R(am) + ∆m ⩽ R(am) + 3∆m = d(am, 0) ⩽ ∆n.
(4.6)

Hence, by (4.6) we have that

d(an, am) ⩾ d(an, 0) − d(am, 0) ⩾ R(an) + 2∆n ≥ d(an, bn) + d(am, bm).

This finishes the first case.
8
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Case 2 : C = B.
Since the set S is infinite and the sequence {xn}n∈S is convergent, we can inductively define a pair of

sequences {ak}k∈N ⊆ {xn}n∈S and {bk}k∈N ⊆ {xn}n∈S satisfying the following properties:

(i) R(ak) < εj/2, for j, k ∈ N with j < k, where εj = R(aj) + R(bj) − d(aj , bj) > 0.
(ii) R(bk) < R(ak)/2 for every k ∈ N.

Fixed k ∈ N, we define fk : M → R by

fk(p) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

R(ak) − εk

2 if p = ak,

−R(bk) + εk

2 if p = bk,

0 otherwise.

Property (i) and the definition of εk ensure that fk(ak) ⩾ 0 and fk(bk) ⩽ 0 for every k ∈ N. With this,
we obtain that

|fk(ak)| = R(ak) − εk

2 , and |fk(bk)| = R(bk) − εk

2 , for all k ∈ N. (4.7)

Let {λk}k∈N ∈ c0. Again we will show that f :=
∑

k∈N λkfk ∈ SNA(M) and also that ∥f∥Lip =
maxk∈N{|λk|}. Choose k0 ∈ N such that |λk0 | = maxk∈N{|λk|}.

We again start by proving that f is |λk0 |-Lipschitz. Take p, q ∈ M with p ̸= q. We will show that
|f(p) − f(q)| ⩽ |λk0 |d(p, q). If both p and q form a pair {ak, bk} for some k ∈ N, the previous inequality
is clear. We need to study now the two remaining possibilities:

(a) Suppose that there exist k1, k2 ∈ N with k1 < k2 such that p ∈ {ak1 , bk1} and q ∈ {ak2 , bk2}. Then, by
(4.7) we have in particular that |f(p)| = |λk1 |

(
R(p) − εk1

2

)
and |f(q)| ⩽ |λk2 |R(ak2). Hence, we obtain

that

|f(p) − f(q)| ⩽|λk0 | ·
(

R(p) − εk1

2 + R(ak2)
)

⩽|λk0 | · R(p) ⩽ |λk0 | · d(p, q).

(b) If p ∈ M \ {xk}k∈N, then f(p) = 0 and, using (4.7) again, we have that

|f(p) − f(q)| = |f(q)| ⩽ |λk0 | · R(q) ⩽ |λk0 | · d(p, q).

We have proven then that the Lipschitz norm of f is smaller or equal than |λk0 |. Finally, considering the
pair of points ak0 and bk0 , we quickly observe that ∥f∥Lip = |λk0 | and that f strongly attains its Lipschitz
norm at this pair of points. This finishes the proof for complete metric spaces.

Finally, assume now that M is not complete and let Mc be its completion. Note that if M ′
c is empty or

infinite, we already have the result using again the constructions from [1, Theorems 3.2 and 3.4]. Otherwise,
if M ′

c is finite, it suffices to do the same procedure we described but on Mc instead of M , and also asking
to our original sequence {xn}n∈N to be in M . Then, the constructed sequence of functions {fk}k∈N from
SNA(Mc) will still be strongly norm-attaining when restricted to M . Finally, it suffices to consider the
functions f − f(0M ) if needed (for instance, if our original limit point 0 was in Mc \ M , which means that
it cannot be the distinguished point from the original space M). ■

It is an immediate consequence of [1, Theorem 3.3] that if M is any infinite compact metric space, then
c0 is isomorphically embedded into SNA(M) (for countable compact metric spaces this was achieved non
constructively using the little Lipschitz space). Note that our previous theorem provides a constructive proof
that for any infinite compact metric space M with a finite amount of cluster points, SNA(M) actually
contains c0 isometrically.

9
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Corollary 4.3. Let M be an infinite compact metric space. Then, the subset SNA(M) contains a linearly
isometric copy of c0.

4.3. A proper and uniformly discrete counterexample

To finish this section, we show that Corollary 4.3 cannot be improved to include all proper metric spaces.
Indeed, we have the following result.

Theorem 4.4. There exists an infinite proper uniformly discrete metric space M such that c0 is not
isometrically contained in SNA(M) and for which every point in M attains its separation radius.

Proof. Let M = {pk}∞
k=0, with distinguished point p0 = 0, be a countable set endowed with the metric

d : M × M → R given by:

d(pk, pj) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

k + j − εmax{k,j} if k ̸= j ∈ N \ {0},

k if j = 0,

j if k = 0,

0 if j = k,

where {εk}k∈N is a sequence of positive numbers such that εk+1 > εk and εk < 1/2 for all k ∈ N. For
convenience, write δk = εk+1 − εk > 0 for all k ∈ N. It is clear that M is proper since every bounded set is
finite.

As in the proof of Theorem 4.1, we start by assuming that there exists a sequence {fn}n∈N of functions in
SNA(M) isometrically equivalent to the canonical basis of c0, and we are going to find two natural numbers
n0 ̸= m0 such that fn0 − fm0 is not 1-Lipschitz, which will yield a contradiction. For each n ∈ N, since fn

is strongly norm-attaining, we may consider two points xn ̸= yn such that |fn(xn) − fn(yn)| = d(xn, yn).
We write k(n) and j(n) to denote the natural numbers such that xn = pk(n) and yn = pj(n) for every

n ∈ N. By relabelling the pairs (xn, yn) if needed, we may assume that k(n) < j(n) for all n ∈ N.
We now define the sets A, B1, B2, and B3 as in the proof of Theorem 4.1. By Ramsey’s theorem, there

exists C ∈ {A, B1, B2, B3} and an infinite set S ⊆ N such that S[2] ⊆ C.

Case 1 : C = A.
In this case, choose an arbitrary n0 ∈ S such that k(n0), j(n0) ̸= 0. By Lemma 3.2, and using that

{xn, yn} ∩ {xm, ym} = ∅ for all n ̸= m ∈ S, we can find m0 ∈ S with k(m0) > j(n0) such that

|fm0(xn0)| <
1
2δj(n0) and |fm0(yn0)| <

1
2δj(n0). (4.8)

Using Lemma 3.1 we can define Cm0 ∈ R such that Cm0 = fn0(xm0) = fn0(ym0). Using the triangle
inequality, we know that

|fn0(xn0) − Cm0 | + |fn0(yn0) − Cm0 | ⩾ d(xn0 , yn0),

and so, we obtain that either

(a0) |fn0(xn0) − Cm0 | ⩾ k(n0) − 1
2 εj(n0), or

(a1) |fn0(yn0) − Cm0 | ⩾ j(n0) − 1
2 εj(n0).

Similarly, since |fm0(xm0)| + |fm0(ym0)| ⩾ d(xm0 , ym0) by the triangle inequality, we get that either

(b0) |fm0(xm0)| ⩾ k(m0) −
( 1

2 εj(n0) + 1
2 δj(n0)

)
, or

(b1) |fm0(ym0)| ⩾ j(m0) −
(
εj(m0) − 1

2 εj(n0) − 1
2 δj(n0)

)
.

10
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In total, there are now 4 different possibilities that must be checked for contradiction. We will only expand
on the two possibilities where (a0) holds, since the two remaining possibilities (where (a1) holds) are proven
similarly. Hence, suppose first that (a0) and (b0) hold. By changing the signs of fn0 and fm0 if necessary, we
may suppose that fn0(xn0)−Cm0 ⩾ k(n0)− 1

2 εj(n0) and fm0(xm0) ⩾ k(m0)−
( 1

2 εj(n0)+ 1
2 δj(n0)

)
. Consider the

function f = fn0 − fm0 , which is 1-Lipschitz since we are assuming that {fn}n∈N is isometrically equivalent
to the canonical basis of c0. However, using (4.8), we have that

|f(xn0) − f(xm0)| ⩾ fn0(xn0) − fm0(xn0) − Cm0 + fm0(xm0)

> k(n0) − 1
2εj(n0) − 1

2δj(n0) + k(m0) − 1
2εj(n0) − 1

2δj(n0)

⩾ k(n0) + k(m0) − εk(m0) = d(xn0 , xm0),

which yields a contradiction. Suppose now that (a0) and (b1) hold. Again we may suppose that fn0(xn0) −
Cm0 ⩾ k(n0)− 1

2 εj(n0) and fm0(ym0) ⩾ j(m0)−
(
εj(m0)− 1

2 εj(n0)− 1
2 δj(n0)

)
. Using (4.8) again, the 1-Lipschitz

function f = fn0 − fm0 now tested at the pair (xn0 , ym0) yields

|f(xn0) − f(ym0)| > k(n0) − 1
2εj(n0) − 1

2δj(n0) + j(m0) − εj(m0) + 1
2εj(n0) + 1

2δj(n0)

= k(n0) + j(m0) − εj(m0) = d(xn0 , ym0),

which is again a contradiction. This finishes the proof for Case 1.

Case 2 : C = B1.
Write k∗ to denote the non-negative integer (including 0) such that pk∗ = xn for all n ∈ S. Suppose first

that k∗ = 0. Then, choose any two different numbers n0 ̸= m0 ∈ S. Since both fn0 and fm0 strongly attain
their norm, at the pairs (0, yn0) and (0, ym0) respectively, and both fn0 and fm0 vanish at 0, we have that
|fn0(yn0)| = j(n0) and |fm0(ym0)| = j(m0). With Lemma 3.1 we obtain that fn0(ym0) = fm0(yn0) = 0. By
changing the signs of both functions if needed, we may suppose that fn0(yn0) = j(n0) and fm0(ym0) = j(m0),
producing a contradiction directly by considering the mapping f = fn0 − fm0 , which is not 1-Lipschitz as
witnessed by the pair (yn0 , ym0). Indeed,

|f(yn0) − f(ym0)| = j(n0) + j(m0) > d(yn0 , ym0).

Suppose now that k∗ ̸= 0. Using Lemma 3.2, choose two different natural numbers n0 ̸= m0 ∈ S with
j(m0) > j(n0) > k∗ such that

|fn0(pk∗)| <
1
4 and |fm0(pk∗)| <

1
4 .

On the one hand, these inequalities imply, by the triangle inequality, that |fn0(yn0)| > k∗ +j(n0)−εj(n0) − 1
4

and |fm0(ym0)| > k∗ + j(m0) − εj(m0) − 1
4 , while, on the other hand, they imply by Lemma 3.1 that

|fn0(ym0)| <
1
4 and |fm0(yn0)| <

1
4 .

Finally, we may again suppose without loss of generality that fn0 and fm0 are both positive at the points
yn0 and ym0 respectively, and consider the function f = fn0 − fm0 , which is assumed to be 1-Lipschitz.
However, we have that

|f(yn0) − f(ym0)| ⩾ fn0(yn0) − fm0(yn0) − fn0(ym0) + fm0(ym0)
⩾ j(n0) + j(m0) + 2k∗ − 1 − εj(n0) − εj(m0)

> j(n0) + j(m0) > d(yn0 , ym0),

a contradiction. This finishes the proof of Case 2.
11
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Case 3 : C = B2.
We will show that this case is impossible. Suppose, for the sake of contradiction, that S[2] ⊆ B2. Then

for all m, n ∈ S, yn = ym = pj∗ for some fixed j∗ ∈ N. Since k(n) < j(n) for all n ∈ N, we obtain that
k(n) < j∗ for all n ∈ S. The set S is infinite, so there exist n ̸= m ∈ S such that xn = xm and yn = ym. It
follows that the functions fn and fm from the basis strongly attain their norms at the same pair of points,
contradicting Lemma 3.1.

Case 4 : C = B3.
Similarly to Case 4 of the proof of Theorem 4.1, if S ⊂ N satisfies S[2] ⊂ B3, the cardinality of S is at

most 3. Hence, Ramsey’s Theorem cannot apply to B3 either and the proof is finished. ■

5. The non-separable case

In this section we tackle the problem of embedding c0(Γ ) in SNA(M) isometrically, where Γ is an arbitrary
set of large cardinality. Let us first introduce some basic concepts and results of set theory that will be heavily
used in this section.

We denote by dens(M) the density character of a metric space M , defined as the smallest cardinal Γ
such that there is a dense subset of M of cardinality Γ . The cofinality cof(α) of an ordinal α is the smallest
ordinal β such that α = supγ<β αγ , where {αγ}γ<β is an ordinal sequence with αγ < α for all γ < β. A
cardinal Γ is regular if cof(Γ ) = Γ . Following the notation of [20], for an ordinal α, we denote by α+ the
least cardinal strictly bigger than α, which is always a regular cardinal (see [20, Lemma 10.37]). We again
refer the reader to [20] for a comprehensive background on this topic. Finally, recall that a subset of a metric
space S ⊆ M is called r-separated for some r > 0 whenever d(x, y) ⩾ r for all x ̸= y ∈ S.

The next result is essentially based on the proof of [16, Proposition 3].

Proposition 5.1. Let M be a metric space with dens(M) = Γ for some cardinal Γ . Then, there exists
a discrete set L ⊆ M with card(L) = Γ . Moreover, if cof(Γ ) > ℵ0, then L can be chosen to be uniformly
discrete.

Proof. Note that if Γ is finite, the result is trivial, so we will only prove the case where Γ is infinite. Note
also that it is well known that if M is any infinite Hausdorff topological space (in particular if M is an infinite
metric space), then it always contains an infinite discrete set, so the case where Γ = ℵ0 is already finished.
Hence, we will assume now that Γ is uncountable. For every k ∈ N, let Mk be some maximal 1

2k -separated
subset of M . Denote Γk := |Mk| for all k ∈ N, and note that

⋃
k∈N Mk = M , and so, supk∈N Γk = Γ . If

cof(Γ ) > ℵ0, then, since
⋃

k∈N Mk = M , we have that there is k0 ∈ N such that Γk0 = Γ and so we take
L := Mk0 .

Now, let us assume that cof(Γ ) = ℵ0. If there exists k0 ∈ N such that Γk0 = Γ , we are done, since we can
take once again L := Mk0 . On the other hand, if this is not the case, we have that Γk < Γ for every k ∈ N
and cof(Γ ) = ℵ0. Since Γ is not regular, we know that Γ+

k < Γ , for every k ∈ N. Using this, and the fact
that supk∈N Γk = Γ , it is straightforward to inductively construct a subsequence {Γkn}n∈N of {Γk}k∈N with
Γk1 infinite and such that Γ+

kn
< Γkn+1 for all n ∈ N. Notice that since {Γk}k∈N is an increasing sequence,

we have that supn∈N Γkn = Γ .
Now, for each n ∈ N, let us consider a sequence of sets {M̃n}n∈N such that M̃n is a subset of Mkn+1 with

|M̃n| = Γ+
kn

for all n ∈ N. Let us write M̃n = {xn
α : α ∈ Γ+

kn
}.

For each n ∈ N, each j ⩽ n, and each α ∈ Γ+
kj

, we define

An
j, α := M̃n+1 ∩ B

(
xj

α,
1

2kj+1+1

)
.

12
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We will inductively construct, for every n ∈ N, a set Ln ⊆ M̃n with |Ln| = Γ+
kn

and a finite subset
Nn ⊆ M such that whenever j < n,

d(Ln, Lj \ Nn) ⩾ 1
2kj+1+2 . (5.1)

Set L1 := M̃1 and N1 := ∅. Now, assuming that for some n ∈ N we have constructed Lj and Nj for all j ⩽ n,
we can do the inductive step towards n + 1.

(a) Suppose that |An
j, α| < Γ+

kn+1
for every j ⩽ n and α ∈ Γ+

kn
. Since Γ+

kn
< Γ+

kn+1
and Γ+

kn+1
is regular, we

have that ⏐⏐⏐⏐⏐⏐⏐⏐

⋃

j⩽n, α∈Γ+
kj

An
j, α

⏐⏐⏐⏐⏐⏐⏐⏐
< Γ+

kn+1
= card(M̃n+1).

Therefore, the set
Ln+1 := M̃n+1 \

⋃

j⩽n, α∈Γ+
kj

An
j, α

satisfies |Ln+1| = Γ+
kn+1

and (5.1) holds by setting Nn+1 = ∅. Indeed, for any j ∈ {1, . . . , n}, every
point in Lj is of the form xj

α for some α ∈ Γ+
kj

. Hence, if there exists a point p ∈ Ln+1 such that
d(p, xj

α) < 1
2kj+1+2 , then p belongs to the set An

j, α, which leads to a contradiction with the definition of
Ln+1.

(b) Suppose now that |An
j0, α0 | = Γ+

kn+1
for some j0 ⩽ n and some α0 ∈ Γ+

kj0
. Without loss of generality we

consider j0 ∈ {1, . . . , n} to be such that |An
j, α| < Γ+

kn+1
for all j0 < j ⩽ n and all α ∈ Γ+

kj
. Define

Ln+1 := An
j0, α0 \

⋃

j0<j⩽n, α∈Γ+
kj

An
j, α.

Arguing as in case (a), we obtain that |Ln+1| = Γ+
kn+1

. Finally, define

Nn+1 :=
{

x ∈ M : ∃i ∈ {1, . . . , j0} such that x ∈ Li and d(x, Ln+1) <
1

2ki+1+2

}

which is finite since for each i ∈ {1, . . . , j0}, there can only be at most a single point xi in Li such that
d(xi, Ln+1) < 1

2ki+1+2 . Indeed, if i = j0, the only point in Lj0 that can satisfy that property is xj0
α0 , since

for every β ∈ Γ+
kj0

\ {α0}, d(xj0
β , An

j0, α0) ⩾ 1
2kj0+1+1 . On the other hand, if i < j0, if there were two

points xi ̸= yi ∈ Li with that property, we would have that

d(xi, yi) ⩽ d(xi, An
j0, α0) + d(yi, An

j0, α0) + diam(An
j0, α0) <

1
2ki+1

,

a contradiction with the fact that Li is 1
2ki+1 -separated.

Let us check that the sets Ln+1 and Nn+1 satisfy Eq. (5.1) for each j ∈ {1, . . . , n}. Fix j ∈ {1, . . . , n}. If
j ⩽ j0 then the inequality follows directly by definition of Nn+1. Otherwise, if j > j0, then the inequality
holds following the same argument as in case (a).

Having discussed both possibilities, the induction is finished. To finish the proof, set L :=
(⋃

n∈N Ln

)
\(⋃

n∈N Nn

)
. It is clear that |L| = Γ , and using Eq. (5.1), it is straightforward to prove that all convergent

sequences in L are eventually constant, and thus L is discrete. ■

As an application of Lemma 3.3 and Proposition 5.1, we have the following isometric result.
13
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Theorem 5.2. Let M be a pointed metric space such that dens(M ′) = Γ for some infinite cardinal Γ . Then
there is a linear subspace of SNA(M) that is isometrically isomorphic to c0(Γ ).

Proof. The case where Γ = ℵ0 is already covered in [1, Theorem 3.2]. Assume now that Γ > ℵ0. If we
apply Proposition 5.1 to the set M ′, we find a discrete set L ⊆ M ′ with card(L) = dens(L) = Γ and such
that all points of L are cluster points of M . Finally, Lemma 3.3 can be applied now if we consider {xγ}γ∈Γ

to be L itself and for each γ ∈ Γ , we set yγ to be sufficiently close to xγ . ■
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project P20 00255, and MIU (Spain) FPU19/04085 Grant. A. Quilis was supported by PAID-01-19, by
project GA23-04776S and by projects SGS23/056/OHK3/1T/13 and grant PID2021-122126NB-C33/MCIN/
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[11] L.C. Garćıa-Lirola, C. Petitjean, A. Procházka, A. Rueda Zoca, Extremal structure and duality of Lipschitz free spaces,

Mediterr. J. Math. 15 (2) (2018) 23, Paper No. 69.
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ALGEBRAIC GENERICITY OF CERTAIN FAMILIES OF NETS IN
FUNCTIONAL ANALYSIS

SHELDON DANTAS AND DANIEL L. RODRÍGUEZ-VIDANES

Abstract. In Functional Analysis, certain conclusions apply to sequences, but they cannot
be carried over when we consider nets. In fact, some nets, including sequences, can behave
unexpectedly. In this paper we are interested in exploring the prevalence of these unusual nets
in terms of linearity. Each problem is approached with different methods, which have their
own interest. As our results are presented in the contexts of topological vector spaces and
normed spaces, they generalize or improve a few ones in the literature. We study lineability
properties of families of (1) nets that are weakly convergent and unbounded, (2) nets that fail
the Banach-Steinhaus theorem, (3) nets indexed by a regular cardinal κ that are weakly dense
and norm-unbounded, and finally (4) convergent series which have associated nets that are
divergent.
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1. Introduction

The present paper is about lineability: we say that a subset M of a vector space X is lineable
(respectively, κ-lineable, for a cardinal κ) if M∪{0} contains a vector space of infinite-dimension
(respectively, of dimension κ). These sort of problems have been studied intensively during the
past few years since the term lineability was coined by V. I. Gurariy in the early 2000s and
since then have appeared in the literature in different areas of Mathematics such as Functional
Analysis, Real Analysis, Complex Analysis, Set Theory, Dynamical Systems, among others (we
send the reader to [2, 8, 15,16,24,25,28,30] and the references therein).

2020 Mathematics Subject Classification. Primary 46B87; Secondary 15A03, 47B01.
Key words and phrases. Lineability; nets; weakly convergent; weakly dense; topological vector space; normed

space; Banach space.
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Our main interest here is to provide a contribution about the study of “pathological” nets in
Functional Analysis in the sense of lineability. Some of these families of nets that are studied
in this work arise from two well-known results that hold true for sequences. They are the
following ones: (a) every weakly convergent sequence is bounded and (b) the Banach-Steinhaus
theorem, which states that every sequence of bounded linear operators that converges pointwise
to a bounded linear operator is uniformly bounded. On the other hand, for the upcoming
results it is also important to recall also the following. Some authors have thoroughly worked
on the problem about finding conditions that (∥xn∥)n∈N has to satisfy in order that the set
{xn : n ∈ N} is weakly closed (see, for instance, [3,6,20,21]). In particular, it is known that for
every separable Banach space X, there exists a sequence (xn)n∈N ⊆ X such that ∥xn∥ −→ ∞
as n → ∞ and the set {xn : n ∈ N} is weakly dense in X (see, for instance, [3, Corollary 5]
and also [21, Section 2] for a refinement).

1.1. Preliminaries and notation. In what follows, we present briefly the notation we will
be using throughout the paper and then we will describe our main results. All the spaces
that we work with here are considered to be nonzero. We will be using basic concepts and
notations from Set Theory found, for instance, in [10, 18]. Ordinal numbers will be identified
with the set of their predecessors and cardinal numbers with the initial ordinals. Given a set
A, the cardinality of A will be denoted by card(A). We denote by ℵ0, ℵ1 and c the first infinite
cardinal, the second infinite cardinal and the cardinality of the continuum, respectively. The
cofinality cof(α) of an ordinal α is the smallest ordinal β such that α = supγ<β αγ, where
{αγ}γ<β is an ordinal sequence of length β with αγ < α for all γ < β. We say that a cardinal
number κ is regular if cof(κ) = κ (see, for instance, [23]).

A set A is a directed set (also known as an index set) if A is a nonempty set that is endowed
with a preorder ⩽ (a reflexive and transitive relation) such that every pair of elements of A
has an upper bound. A net in a set X is a function from a directed set A to X which will be
denoted by (xa)a∈A. We denote the set of nets in X indexed by A as XA.

Given a topological space X and (xa)a∈A a net in X, we say that (xa)a∈A converges to x ∈ X
if for every neighborhood Ux of x, there exists an element a0 ∈ A such that xa ∈ Ux for every
a ⩾ a0. Recall that if X is a topological vector space, then a net (xa)a∈A in X weakly converges
to x ∈ X (denoted by xa

w−→ x) if and only if (x∗(xa))a∈A converges to x∗(x) for every x∗ ∈ X∗.
If a directed set A is in particular an ordinal number α, then we have the so-called α-

sequences instead of nets defined in a set. It is known that the convergence of α-sequences in
a topological space can be reduced to the convergence of cof(α)-sequences (see, for instance,
[29, Propositions 3.1 and 3.2]). Therefore, we simply consider κ-sequences, where κ is a regular
cardinal number. This notion of κ-sequence was introduced in 1907 by J. Mollerup [26] and
has been studied throughout the 20th and 21st centuries by many mathematicians in several
contexts (see [22, 27, 29, 31] and the references therein). Given a κ-sequence (xα)α<κ in X, we
say that (xβα)α<κ is a κ-subsequence of (xα)α<κ if there exists an increasing injective function
φ : κ → κ such that xβα = xφ(α) for every α < κ.

As stated earlier, in this work we are interested in studying the lineability of families of nets.
This sort of approach was initiated by J. Carmona Tapia et. al. in [9] from several points
of view and recently the second author in [29] analyzed several “monstrous” families of nets
and κ-sequences related to Measure Theory. Still about reference [29], more specifically about
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[29, Section 1.2], the author showed several details regarding the study of lineability involving
families of nets. Let us dive into some of these ideas since they will be relevant in our context
as well. Given a vector space V and a directed set A0, we assume that there exists MA0 ⊂ V A0

satisfying a pathological property (P). It may be possible that we can extend A0 to a directed
set A1 having greater cardinality such that we can find MA1 ⊆ V A1 still satisfying property
(P). With this mind, not only we are interested in studying the lineability properties of the
family of nets satisfying property (P) indexed by an arbitrary directed set, but also we are
looking for the smallest indexed set A in terms of cardinality for which there is a net indexed
by A satisfying such a property and having the same lineability properties. Likewise, in terms
of κ-sequences, we are looking for the smallest κ.

1.2. The main results. Now we are ready to describe briefly our main results. By using the
Fichtenholz-Kantorovich-Hausdorff theorem (see [14,17]), we show in Theorem 2.1 that, for an
infinite-dimensional topological vector space, given a cardinal number κ between ℵ0 and c, there
exists a directed set A of cardinality κ such that the family of all nets indexed by A that are
weakly convergent and unbounded is 2κ-lineable. Next, in Proposition 2.8, we study “how big”
is the set of nets which do not satisfy the Banach-Steinhaus theorem. More precisely, we show
that, for every normed spaces X and Y , there exists a directed set A with cardinality κ between
ℵ0 and c such that the set of all nets of continuous linear operators (Ta)a∈A from X into Y
that are pointwise convergent and {∥Ta∥ : a ∈ A} is unbounded is 2κ-lineable. In Section 2.3,
we study lineability properties related to the following (already mentioned) property: in every
(separable) Banach space, there is a sequence (xn)n∈N ⊆ X such that ∥xn∥ −→ ∞ as n → ∞
and {xn : n ∈ N} is weakly dense in X. We are interested in both separable and non-separable
(using κ-sequences) cases. To be more precise, we will study the lineability properties of the set
of all κ-sequences (xα)α<κ such that {∥xα∥ : α < κ} is unbounded and {xα : α < κ} is weakly
dense in X, where X is a normed space with density character dens(X) = κ. Finally we study
lineability properties related to a family of nets that are divergent but its series is convergent
(see Theorem 2.13). The last section is dedicated to remarks and open problems related to the
topics of the paper.

2. Main Results

Since we will be dealing with different contexts as we have mentioned in the introduction,
we split this section into four subsections.

2.1. Weakly convergent and unbounded nets. We will prove the following result in terms
of lineability for a family of nets which are weakly convergent and unbounded. Recall that a
topological vector space (TVS, for short) is a vector space endowed with a topology such that
vector addition and scalar multiplication are both continuous. In this case, we denote by X∗

its topological dual and σ(X,X∗) the weak topology on X. The symbol K stands for the set
of real or complex numbers.

Theorem 2.1. Let ℵ0 ⩽ κ ⩽ c be a cardinal number. Let X be a real or complex infinite-
dimensional TVS. There exists a directed set A of cardinality κ such that the family of nets in
X indexed by A that are unbounded and weakly convergent is 2κ-lineable.
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Note that Theorem 2.1 improves and generalizes [9, Theorem 2.1] by considering arbitrary
infinite-dimensional TVS over R or C and decreasing the size of the index set to make it ⩽ c
while still having the property of being c-lineable.

In Remark 2.2 below we provide some remarks regarding Theorem 2.1, which depend on the
model of ZFC that we consider.

Remark 2.2. Assume that X is an infinite-dimensional TVS. On the one hand, under ZFC+CH
(where CH denotes the Continuum Hypothesis), it is clear that ℵ0 < ℵ1 = c and 2ℵ0 = c <
2c = 2ℵ1 . Therefore, by Theorem 2.1, there exist directed sets A0 and A1 with cardinalities
card(A0) = ℵ0 and card(A1) = ℵ1 such that the families of nets in X indexed by A0 and A1

that are unbounded and weakly convergent are c-lineable and 2ℵ1-lineable, respectively. So,
under ZFC+CH, the size of the directed set A can affect the dimension of the desired vector
space based on Theorem 2.1.

On the other hand, under ZFC+¬CH+MA (where MA denotes Martin’s Axiom and ¬CH
the negation of the CH), we have that 2ℵ0 = 2ℵ1 since ℵ0 < ℵ1 < c (see [10, Theorem 9.5.9]
and [19, Theorem 16.20]). Therefore, by Theorem 2.1 and taking κ = ℵ0, there is a directed
set A having cardinality ℵ0 such that the set of nets in X indexed by A being unbounded and
weakly convergent is c-lineable. If we took κ = ℵ1, we would increase the size of our index set
but the dimension of the desired vector space would still be c; therefore, we would not obtain
a larger algebraic structure even though we are increasing the size of the index set.

In order to prove Theorem 2.1 we need to introduce some notation and remind some relevant
results in our context. We start with the concept of independent families.

Definition 2.3. Let Γ be a nonempty set. We say that a family Y of subsets of Γ is independent
if for any pairwise distinct sets Y1, . . . , Yn ∈ Y and any ε1, . . . , εn ∈ {0, 1} we have that

Y ε1
1 ∩ · · · ∩ Y εn

n ̸= ∅,

where Y 1 and Y 0 denote Y and Γ \ Y , respectively.

We will use the Fichtenholz-Kantorovich-Hausdorff theorem (FKH, for short) as stated below.

Theorem 2.4 (Fichtenholz-Kantorovich-Hausdorff theorem). [14,17] Let Γ be a set of infinite
cardinality κ. There is a family of independent subsets Y of Γ of cardinality 2κ.

It is worth mentioning the following observation below about Theorem 2.4.

Remark 2.5. When one applies FKH, one gets a family Y of 2κ-many subsets of nonempty
sets such that Y ε1

1 ∩· · ·∩Y εn
n ̸= ∅ whenever Y1, . . . , Yn ∈ Y and ε1, . . . , εn ∈ {0, 1}. As a matter

of fact, the sets Y ε1
1 ∩ · · · ∩ Y εn

n besides being nonempty are in fact infinite. The reader can go
to the observation right after [13, Definition 1.3] for a simple proof of this fact (alternatively
the reader may consider the definition of independent subsets given in the paragraph below
[18, Theorem 2.7]).

We are now ready to provide a proof for Theorem 2.1.

Proof of Theorem 2.1. Let A− ⊆ (−∞, 0) and A+ ⊆ (0,∞) be such that card(A−) = card(A+) =
κ. Let A = A− ∪ A+ endowed with the standard order of R and note that card(A) = κ. By



ALGEBRAIC GENERICITY OF CERTAIN FAMILIES OF NETS IN FUNCTIONAL ANALYSIS 5

FKH, there is a family K ⊆ P(A−) of independent subsets of A− such that card(K) = 2κ. Fix
x ∈ X \ {0}. For every K ∈ K, we define

(xK
a )a∈A =





|a|x, if a ∈ K,

1
a
x, if a ∈ A+,

0, if a ̸∈ K ∪ A+.

We will see that given nonzero scalars λ1, . . . , λm ∈ K and K1, . . . , Km ∈ K distinct, the net∑m
j=1 λj

(
x
Kj
a

)
a∈A

is unbounded, which also immediately implies the linear independence of
{(

xK
a

)
a∈A : K ∈ K

}
. Indeed, since K is a family of independent sets, by Remark 2.5, there

exists a sequence of distinct terms (a1l )l∈N ⊆ K1 \ (K2 ∪ · · · ∪Km), that is, unbounded in A−.
Therefore, the set {

m∑

i=1

λix
Ki

a1l
: l ∈ N

}
=
{
λ1

∣∣a1l
∣∣x : l ∈ N

}

is unbounded.
Finally, it is enough to prove that each

(
xK
a

)
a∈A weakly converges to 0. Fix x∗ ∈ X∗ and

K ∈ K. Since A is a linearly ordered set and x∗(x) is fixed, for every ε > 0, there is an
a0 ∈ A+ ⊆ A such that for any a ⩾ a0 we have 1

a
|x∗(x)| < ε. Hence, for any a ⩾ a0, it yields

∣∣x∗ (xK
a

)
− x∗(0)

∣∣ =
∣∣x∗ (xK

a

)∣∣ = 1

a
|x∗(x)| < ε.

This finishes the proof. □
Let us provide a proof of the following weaker version of Theorem 2.1 which is interesting on

its own (this also motives a natural problem posed in Section 3). By weaker we mean that the
size of the directed set may be larger than the one considered in Theorem 2.1. More specifically,
we have the following result.

Proposition 2.6. Let X be a real or complex infinite-dimensional TVS. There exists a directed
set A of cardinality card(X∗) such that the family of nets in X indexed by A that are unbounded
and weakly convergent is 2c-lineable.

Let us introduce some notation and preliminary results which will help us in the proof of this
latter result. On c00 over R, we define the partial order ≼ as follows: for any P = (Pi)i∈N, Q =
(Qi)i∈N ∈ c00, we set

P ≼ Q if and only if |Pi| ⩽ |Qi| for every i ∈ N.
For every n ∈ N, we denote nN := {0, 1, . . . , n− 1}N. On

⋃∞
n=1 n

N, we define the partial order
⩽∗ in the following manner: for any a = (aj)j∈N, b = (bj)j∈N ∈ ⋃∞

n=1 n
N,

a ⩽∗ b if and only if aj ⩾ bj for every j ∈ N.
Let Pn

1 := R1[x1, . . . , xn] be the set of all real polynomials of degree 1 in n variables. The map
Φ:

⋃∞
n=1Pn

1 → c00 \ {0} defined for every P =
∑m

k=1 Pkxk ∈
⋃∞

n=1 Pn
1 by

Φ(P ) := (P1, . . . , Pm, 0, . . .)
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is a bijection. We denote by βN the Stone-Čech compactification of N and we set

P :=
⋃

n∈N
Pn

1 × nN.

We also need the following result from [11].

Lemma 2.7. There exists a family of 2c-many real functions {gU : U ∈ βN} and c-many distinct
real numbers {xP,a : ⟨P, a⟩ ∈ P} such that for distinct U1, . . . ,Un ∈ βN and P ∈ Pn

1 , there exists
a ∈ nN with

P (gU1 , . . . , gUn)(xP,a) ̸= 0.

We are now ready to present a proof for Proposition 2.6.

Proof of Proposition 2.6. Let X be an infinite-dimensional TVS and F(X∗) the family of all
finite subsets of X∗. Let us recall that card(F(X∗)) = card(X∗) since X∗ is infinite.

On A := F(X∗) × (c00 \ {0}) ×
⋃∞

n=1 n
N × (0,∞), we define the partial order ⩽ as follows:

for any ⟨F, P, a, ε⟩, ⟨G,Q, b, ε′⟩ ∈ A,

⟨F, P, a, ε⟩ ⩽ ⟨G,Q, b, ε′⟩ if and only if F ⊆ G, P ≼ Q, a ⩽∗ b, ε ⩾ ε′.

Observe that A endowed with ⩽ is a directed set and card(A) = card(X∗). For every
⟨F, P, a, ε⟩ ∈ F(X∗) × (c00 \ {0}) ×

⋃∞
n=1 n

N × (0,∞), where P = (Pi)i∈N and a = (aj)j∈N,
let us define

V⟨F,P,a,ε⟩ :=

{
x ∈ X : |x∗(x)| < ε ·min

{
1,

1∑∞
i=1 |Pi|

,
∞∑

j=1

2−(j(aj+1))

}
, ∀x∗ ∈ F

}
.

Notice that

B0 :=

{
V⟨F,P,a,ε⟩ : ⟨F, P, a, ε⟩ ∈ F(X∗)× (c00 \ {0})×

∞⋃

n=1

nN × (0,∞)

}

is a neighborhood basis of 0 for the weak topology σ(X,X∗). Since X is infinite-dimensional,
for every F ∈ F(X∗), there is a nonzero vector xF ∈ X such that x∗(xF ) = 0 for any x∗ ∈ F .
Now, for each U ∈ βN, let us define the net

(
xU
⟨F,P,a,ε⟩

)
⟨F,P,a,ε⟩∈A :=

(
gU(xΦ−1(P ),a)

ε
xF

)

⟨F,P,a,ε⟩∈A

where xΦ−1(P ),a witnesses the conclusion of Lemma 2.7.

Let us prove that any nonzero linear combination of the nets in B :=

{(
xU
⟨F,P,a,ε⟩

)
⟨F,P,a,ε⟩∈A

}

weakly converges to 0. To do so, it is enough to show that
(
xU
⟨F,P,a,ε⟩

)
⟨F,P,a,ε⟩∈A

converges to 0

weakly for every U ∈ βN. Given W a weak neighborhood of 0, there exists ⟨F, P, a, ε⟩ ∈ A such
that V⟨F,P,a,ε⟩ ⊆ W since B0 is a neighborhood basis of 0 for the weak topology σ(X,X∗). Notice
that for any ⟨G,Q, b, ε′⟩ ⩾ ⟨F, P, a, ε⟩ we have that V⟨G,Q,b,ε′⟩ ⊆ V⟨F,P,a,ε⟩ ⊆ W . By definition
F ⊆ G, therefore x∗(xG) = 0 for every x∗ ∈ F . Hence,

∣∣x∗ (xU
⟨G,Q,b,ε′⟩

)∣∣ =
∣∣gU(xΦ−1(Q),b)

∣∣
ε′

|x∗(xG)| = 0 < ε,



ALGEBRAIC GENERICITY OF CERTAIN FAMILIES OF NETS IN FUNCTIONAL ANALYSIS 7

for every x∗ ∈ F . Therefore, xU
⟨G,Q,b,ε′⟩ ∈ V⟨G,Q,b,ε′⟩ ⊆ W .

We will now distinguish between the real and complex cases.

Case 1. Assume that X is a real vector space. Let us show that the nets in B are linearly
independent over R and any nonzero linear combination is unbounded. Let P =

∑n
k=1 Pkxk ∈

Pn
1 be arbitrary and U1, . . . ,Un ∈ βN pairwise distinct. Then there exists a ∈ nN such that

P (gU1 , . . . , gUn)(xP,a) ̸= 0 by Lemma 2.7. Take any F ∈ F(X∗). Then
∣∣∣∣∣

n∑

k=1

Pk
gUk

(xP,a)

ε

∣∣∣∣∣xF =
1

ε
|P (gU1 , . . . , gUn)(xP,a)|xF .

Since P (gU1 , . . . , gUn)(xP,a) ̸= 0 and xF ̸= 0, by taking ε → 0, we are done.

Case 2. Assume that X is a complex vector space. Let us show that the nets in B are linearly
independent over C and any nonzero linear combination is unbounded. First of all, observe that
Pn

1 + iPn
1 (where i =

√
−1) can be identified with the set Cn

1 [x1, . . . , xn], where Cn
1 [x1, . . . , xn]

denotes the set of complex polynomials of degree 1 in n real variables. Let P =
∑n

k=1 Pkxk ∈ Pn
1

and U1, . . . ,Un ∈ βN pairwise distinct, then there is a ∈ nN such that P (gU1 , . . . , gUn)(xP,a) ̸= 0.
Take any Q =

∑n
k=1 Qkxk ∈ Pn

1 and F ∈ F(X∗). Then
∣∣∣∣∣

n∑

j=1

(Pj + iQj)
gUj

(xP,a)

ε

∣∣∣∣∣xF =
1

ε
|(P + iQ)(gU1 , . . . , gUn)(xP,a)|xF

=
1

ε

√
(P (gU1 , . . . , gUn)(xP,a))

2 + (Q(gU1 , . . . , gUn)(xP,a))
2 xFα

Since P (gU1 , . . . , gUn)(xP,a) ̸= 0 and xF ̸= 0, taking ε → 0, we conclude the proof. □

2.2. Nets that fail the Banach-Steinhaus theorem. The idea of the construction of the
vector space in the proof of Theorem 2.1 can be carried out to show the existence of large vector
spaces of nets that fail the Banach-Steinhaus theorem. Although its proof uses similar ideas
from the proof of Theorem 2.1, we provide a detailed argument for the sake of completeness.

Recall that the well-known Banach-Steinhaus theorem states the following (see, for instance,
[12, Chapter 3, Theorem 14.6]): let X be Banach space and Y be a normed space; denote
by L(X, Y ) the Banach space of all continuous linear operators from X into Y ; if a sequence
(Tn)n∈N ⊆ L(X, Y ) strongly converges pointwise, then there is a T ∈ L(X, Y ) such that (Tn)n∈N
strongly converges pointwise to T and {∥Tn∥ : n ∈ N} is uniformly bounded. Let us recall that
this theorem is a result only about sequences, not nets (for an easy example, see [12, page 97]
just after its proof as a consequence of the Principle of Uniform Boundedness).

In terms of lineability of the nets which do not satisfy the Banach-Steinhaus theorem, we
have the following result.

Proposition 2.8. Let ℵ0 ⩽ κ ⩽ c be a cardinal number. If X and Y are nonzero real or
complex normed spaces, then there exists a directed set A with card(A) = κ such that the
set of nets of continous linear operators (Ta)a∈A in L(X, Y ) that converge pointwise and also
strongly converge pointwise to an operator but {∥Ta∥ : a ∈ A} is not bounded is 2κ-lineable.
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Proof. Fix I ∈ L(X, Y ) \ {0} (this can be done since X ̸= {0} ≠ Y ). Let A− ⊂ (−∞, 0) and
A+ ⊂ (0,∞) be such that card(A−) = card(A+) = κ, and take A = A− ∪ A+ endowed with
the standard order of R. Note that card(A) = κ. By FKH, there exists K ⊆ P(A−) a family
of independent subsets of A− having cardinality 2κ. For any K ∈ K, define

(
TK
a

)
a∈A =





|a|I, if a ∈ K,
1
a
I, if a ∈ A+,

0, otherwise.

Given nonzero scalars λ1, . . . , λm ∈ K and K1, . . . , Km ∈ K distinct, let us show that
{∥∥∥∥∥

m∑

j=1

λjT
Kj
a

∥∥∥∥∥ : a ∈ A
}

is unbounded, proving also the linear independence of the subset
{∥∥∥
(
TK
a

)
a∈A

∥∥∥ : K ∈ K
}

. As
K is a family of independent subsets of A−, we can take an unbounded sequence (a1l )l∈N ⊆
K1 \ (K2 ∪ · · · ∪Km), which shows that

{∥∥∥∥∥
m∑

j=1

λjT
Kj

a1l

∥∥∥∥∥ : l ∈ N

}
=
{
|λ1a

1
l | ∥I∥ : l ∈ N

}

is unbounded.
Finally, observe for any K ∈ K and for every x ∈ X, we have that

(
TK
a (x)

)
a∈A converges to

0 and also
(
TK
a

)
a∈A strongly converges pointwise to the null operator. Thus, the vector space

generated by the family of nets
{∥∥∥
(
TK
a

)
a∈A

∥∥∥ : K ∈ K
}

is as needed. □

2.3. Weakly dense and norm-unbounded nets. In this section, we will be interested in
nets (xa)a∈A such that {xa : a ∈ A} is weakly dense and the set {∥xa∥ : a ∈ A} is unbounded.
In [3, Corollary 5] (see also [7,20,21] for more general results in this line), the authors show that,
in a separable Banach space X, there exists a sequence (xn)n∈N ⊆ X such that {xn : n ∈ N} is
weakly dense in X and ∥xn∥ −→ ∞ as n → ∞. Our aim here is to prove Theorem 2.12 below,
which deals with a family of κ-sequences satisfying that {xα : α < κ} is weakly dense in X and
also that the set {∥xα∥ : α < κ} is unbounded. We show that such a family is κ+-lineable under
some condicions on κ. As an immediate consequence of Theorem 2.12, we obtain Corollary 2.9
below which is related to the existence of norm divergent sequences that are weakly dense.

Corollary 2.9. Let X be real or complex separable Banach space. The set of all sequences
(xn)n∈N ⊆ X such that

(a) {∥xn∥ : n ∈ N} is unbounded and
(b) {xn : n ∈ N}σ(X,X∗)

= X

is c-lineable.

For the proof of Theorem 2.12, we need the definition of almost disjoint subsets of a regular
cardinal number as well as Lemma 2.11, which is taken from [18]. We start with almost
disjointness.
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Definition 2.10. Let κ be a regular cardinal number. We say that K1, K2 ⊆ P(κ) are almost
disjoint if |K1| = |K2| = κ and |K1 ∩K2| < κ.

We will use the following lemma.

Lemma 2.11. [18, Lemma 9.23 and Exercise 9.12] Let κ be a regular cardinal.
(a) There exists an almost disjoint K ⊆ P(κ) such that |K| = κ+.
(b) If 2<κ = κ, then there exists an almost disjoint K ⊆ P(κ) such that |K| = 2κ.

Theorem 2.12. Let X be a real or complex normed space with dens(X) = κ ⩾ ℵ0, where κ is
a regular cardinal. Denote by UWDκ the set of all κ-sequences (xα)α<κ such that

(i) {∥xα∥ : α < κ} is unbounded and
(ii) {xα : α < κ}σ(X,X∗)

= X.
Then, the set UWDκ is κ+-lineable. Moreover, if 2<κ = κ, then UWDκ is 2κ-lineable.

Before we get into the proof of Theorem 2.12, let us provide a comment about properties (i)
and (ii) above. Suppose that the net (xa)a∈A satisfies that {xa : a ∈ A} = X or {xa : a ∈ A} is
norm-dense in X. Then, clearly we have that {∥xa∥ : a ∈ A} is unbounded and {xa : a ∈ A}
is weakly dense (i.e., conditions (i) and (ii) are both satisfied for the net (xa)a∈A). Moreover, if
dens(X) = κ, we can assume that |A| = κ and consider a bijection f : A −→ κ. Since (i) and
(ii) are satisfied for (xa)a∈A, conditions (i) and (ii) will be also satisfied for a κ-sequence thanks
to the bijection f . This guarantees the existence of κ-sequences satisfying such properties.

Proof of Theorem 2.12. We start the proof by defining a family K of almost disjoint subsets
(see Definition 2.10 above) of κ that witnesses either Lemma 2.11(a) or Lemma 2.11(b). For
each K ∈ K, we can consider an increasing bijection φK : K −→ κ. Now, let (xα)α<κ be a
κ-sequence satisfying properties (i) and (ii). For a fixed K ∈ K and every α < κ, we define

(1) xK
α :=

{
xφK(α), whenever α ∈ K,

0, otherwise.

Write K = {αβ : β < κ}, where β1 < β2 < κ implies that αβ1 < αβ2 . Since each K ∈ K is
such that |K| = κ, we have that the set {∥xK

α ∥ : α < κ} is also unbounded. Moreover, since
for every K ∈ K we have that

{xα : α < κ} ⊆ {xK
α : α < κ},

then we obtain
X = {xα : α < κ}σ(X,X∗) ⊆ {xK

α : α < κ}σ(X,X∗) ⊆ X.

This shows that {xK
α : α < κ}σ(X,X∗)

= X for every K ∈ K.

Now, let λ1, . . . , λn be nonzero scalars and K1, . . . , Kn ∈ K distinct. Since card(K1) = κ and
card(K1 ∩Kj) < κ for every j = 2, . . . , n, we have that the cardinality of the set

I1 := K1 \
(

n⋃

j=2

(K1 ∩Kj)

)
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is also κ, that is, card(I1) = κ. Consider (xαβ
)β<κ to be a κ-subsequence of (xα)α<κ indexed

by I1. Then, by the election of the index set I1 and by using (1), we get that
{∥∥∥∥∥

n∑

j=1

λjx
Kj
αβ

∥∥∥∥∥ : β < κ

}
=
{
|λ1|

∥∥∥xφK1
(β)

∥∥∥ : β < κ
}
.

This argument shows at once that (xK1
α )α<κ, . . . , (x

Kn
α )α<κ are linearly independent and also

that the set {∥∥∥∥∥
n∑

j=1

λjx
K
α

∥∥∥∥∥ : α < κ

}

is unbounded in X. It remains to prove that

(2)

{
n∑

j=1

λjx
Kj
α : α < κ

}σ(X,X∗)

= X.

Before doing that, let us observe the following. Since card
(⋃n

j=2(K1 ∩Kj)
)

< κ and κ is
regular it yields

α := sup

{
α ∈

n⋃

j=2

(K1 ∩Kj)

}
< κ

by [18, Lemma 3.9]. Why we are considering such an α will be clear below. In order to prove
(2), let us fix x ∈ X. Since (ii) holds true, there exists (zβ)β<κ ⊆ {xα : α < κ} such that
zβ

w−→ 1
λ1
x. Considering once again the index set I1 and α, there exists α ⩽ α0 < κ such that

for every α0 ⩽ β < κ, we have that
n∑

j=1

λjx
Kj

β = λ1xφK1
(β).

Since φK1 is an increasing bijection and card(I1) = κ, we have that
{
λ1xφK1

(β) : α0 ⩽ β < κ
}
= {λ1xα : α < κ} \ F ,

where F is a set with elements of the κ-sequence (λ1xα)α<κ such that its cardinality is < κ.
Therefore, there exists a κ-sequence (z̃β)β<κ ⊆ {∑n

j=1 λjx
Kj
α : α < κ} such that

z̃β
w−→ λ1 ·

1

λ1

x = x

and this proves (2) as desired. □

2.4. Convergent series with associated divergent nets. Let X be a normed space and I
an infinite set. We can give meaning to the convergence of the (possibly) “uncountable sum”
in X, denoted by

∑
i∈I xi, where each xi belongs to X, as follows: consider F to be the set of
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all finite subsets of I endowed with the inclusion ⊆. Bearing this in mind, we have that F is a
directed set. Now, for every F ∈ F , we define

xF :=
∑

i∈F
xi.

Each xF is then a well-defined vector of X (since F is finite) and (xF )F∈F is a net. In the same
line, we have the following definition. Given xi ∈ X for all i ∈ I, we say that

∑
i∈I xi converges

to x ∈ X whenever limF∈F xF = x. Recall that in Hilbert spaces, the latter definition can
be used to obtain some relevant characterization in the non-separable case (see, for instance,
[12, Chapter 1, Theorem 4.13]).

Our next result is motivated by the following fact. If X = H is a Hilbert space and I = N,
it is known that if limF∈F hF = h ∈ H, then

∑∞
n=1 hn = h, but the converse is not true in

general (it is important to mention that if
∑∞

n=1 hn is absolutely convergent, then the converse
implication is satisfied; see, for instance, [12, Chapter 1, Section 4, Exercises 10 and 11]). The
following result shows that we can find (in terms of lineability) large sets of sequences (xn)n∈N
in a normed space such that the series

∑∞
n=1 xn is convergent but the net (xF )F∈F diverges. In

what follows, we denote by CS(K) ⊆ KN the set of all sequences (kn)n∈N such that the series
with general terms (kn)n∈N is conditionally convergent.

Theorem 2.13. Let X be a normed space defined over K ∈ {R,C} and F the family of finite
subsets of N endowed with the order ⊆. The set of all sequences (xn)n∈N ⊆ X such that∑∞

n=1 xn is convergent and (xF )F∈F diverges is c-lineable.

Proof. Since a series
∑

an of complex numbers is conditionally convergent if and only if∑
Re(an) or

∑
Im(an) is conditionally convergent, we restrict ourselves to the real case, that

is, K = R. Fix x ∈ X \ {0}. Let V1 ⊆ (CS(K)∪ {0}) be a vector subspace of dimension c (that
we might consider thanks to [1, Theorem 2.1], which holds for both real and complex cases).
Then, the set

xV1 := {(knx)n∈N : (kn)n∈N ∈ V1} ⊆ XN

yields the desired result. Indeed, it is easy see that xV1 is a vector subspace of XN of dimension
c such that

∑∞
n=1 knx = x

∑∞
n=1 kn converges. Recall that given a conditionally convergent

series
∑∞

n=1 kn, the series of positive terms
∑

n k
+
n diverges. Now fix M > 0 and F ∈ F to be

arbitrary. Let F+
M ∈ F be such that F+

M ⊇ F , kn = k+
n provided that n ∈ F+

M \ F , and
∑

n∈F+
M

kn =
∑

n∈F
kn +

∑

n∈F+
M\F

kn > M.

Therefore,
∥∥∥∥∥∥
∑

n∈F+
M

knx

∥∥∥∥∥∥
=

∥∥∥∥∥∥
x
∑

n∈F+
M

kn

∥∥∥∥∥∥
=

∣∣∣∣∣∣
∑

n∈F+
M

kn

∣∣∣∣∣∣
∥x∥ > M∥x∥.

□
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3. Remarks and Open Questions

We conclude the paper by presenting a series of remarks and open problems related to the
contents of the paper.

The proof of Theorem 2.6 uses Lemma 2.7, but in [11] there is a stronger version of this
lemma which states the following.

Lemma 3.1. There exists a family of 2c-many real functions {gU : U ∈ βN} and c-many distinct
real numbers {xP,a : ⟨P, a⟩ ∈ P} such that for distinct U1, . . . ,Un ∈ βN and any real polynomial
P of degree at least 1 in n variables, there exists a ∈ nN with

P (gU1 , . . . , gUn)(xP,a) ̸= 0.

In view of Lemma 3.1 and the usage of Lemma 2.7 in Theorem 2.6, the following problem
seems to be natural. For the precise concepts of algebrability we send the reader to [2].

Problem 3.2. Let X be a real or complex topological algebra. What can be said about the
algebrability of the family of nets that are weakly convergent and norm-unbounded? What is
the smallest possible directed set that witnesses our desired algebrability property?

Given a regular cardinal κ, it is well-known that under ZFC we can only guarantee that
all almost disjoint families have cardinality at most κ+. Now, under additional assumptions
without the Generalized Continuum Hypthesis such as 2<κ = κ, we can assure the existence of
an almost disjoint family of the largest possible cardinality (recall that in ZFC we have that
2<ℵ0 = ℵ0, so in this case no extra assumptions are needed). However, J. E. Baumgartner
proved that it is consistent with ZFC that there is no almost disjoint family of ℵ1 having
cardinality 2ℵ1 (see [6, Theorem 5.6]). The existence of large families of almost disjoint subsets
of κ are used in the proof of Theorem 2.12 in order to construct the desired vector space, but
they do not play a role in the definition of the set UWDκ. For this, it is natural to ask the
following question which we were not able to solve.

Problem 3.3. Let κ be a regular cardinal number. Can we guarantee the 2κ-lineability of
UWDκ within ZFC?

Related to this question we have the following one, which we wonder whether Corollary 2.9
holds also when one considers ∥xn∥ −→ ∞ as n → ∞ instead of only assuming that the set
{∥xn∥ : n ∈ N} is unbounded. This is relevant since in the references [3, 20, 21] the authors
study these kind of sequences.

Problem 3.4. Is the set of all sequences (xn)n∈N ⊆ X such that
(i) ∥xn∥ → ∞ and
(ii) {xn : n ∈ N}w(X,X∗)

= X

c-lineable?

As a counterpart of Problem 3.4 for κ-sequences, we also wonder whether there exists κ-
sequences which satisfy properties (i) and (ii) from Problem (3.4) above and, in this case, what
are its lineability properties.
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Let us remind that in the proof of Theorem 2.13 we use the fact that CS(K) is c-lineable.
Now, it is also known that CS(R) is (ℵ0, 1)-algebrable with respect to the Cauchy product [4]
and CS(C) is c-algebrable with repect to the pointwise product [5] (once again, we send the
reader to [2] for the algebrability properties). In view of these facts, one could wonder whether
the set of conditionally convergent series can be used to construct algebras that satisfy the
conditions of Theorem 2.13. We highlight this question as follows.

Problem 3.5. Under (possibly) additional assumptions on a normed algebra X, what are the
algebrability properties of the set of sequences (xn)n∈N ⊆ X such that

∑∞
n=1 xn converges but

(xF )F∈F diverges?
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