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Introduction

Neuroscience has been instrumental in driving progress across various fields. Research on neural
processes has produced important theoretical breakthroughs as well as practical applications in areas
including artificial intelligence, medicine, and psychology.

For example, computational neuroscience has significantly advanced healthcare by providing insights
into brain function and inspiring novel computational tools for medical applications (Wang et al. 2023).
In machine learning, algorithms and architectures have been inspired by our brain’s mechanisms since the
field’s inception (McCulloch and Pitts 1943) and continue to do so to this day. For instance, convolutional
neural networks, which have revolutionized computer vision, were modeled after the mammalian visual
cortex (Lindsay 2021).

Today, as AI systems become more complex, there is a growing need for innovative approaches,
such as novel architectures or paradigms, to keep them sustainable and advance their capabilities (Ansar,
Goswami, and Chakrabarti 2024). The brain’s mechanisms for processing and encoding information
could turn out to be a rich source of inspiration for further advances in machine learning and related
fields (Schmidgall et al. 2023).

A major focus in computational neuroscience is dedicated to understanding how information is en-
coded in the brain. In this thesis, we will specifically deal with the problem of how spatial information
is represented in the hippocampus and how it adapts to new environments.

One of the most articulated ideas in neuroscience today is that of a cognitive map (Tolman 1948). A
cognitive map is a mental representation that allows an organism to acquire, code, store, recall, and de-
code information about the relative locations and attributes of phenomena in their environment (O’Keefe
and Nadel 1978). One of the functions of cognitive maps is enabling animals, including humans, to nav-
igate their environment by forming mental representations of spatial relationships. Continuous Attractor
Networks (CANs) provide a computational framework to understand how such cognitive maps could be
formed in the brain.

Specifically, CAN is a type of neural network in which connections are designed to keep the collective
activity of the neurons within a limited, continuous range of patterns, such that the joint synaptic activity
is constrained to a small set of possible co-activation patterns regardless of the various external stimuli
(Hopfield 1982; Rolls 2010).

Recent papers have showed that this concept is particularly useful when studying neural circuits that
handle spatial mapping, such as those in CA1 and CA3 locations in hippocampus and nearby areas (see
literature review). These circuits are ideal for examining CAN dynamics because they encode informa-
tion about space - a continuous and straightforward dimension to analyze. The data from these circuits
are thus relative easy to interpret.

CAN models help to explain how these spatial variables are represented within the brain. These
representations are visualized as existing on continuous manifolds such as rings (Chaudhuri et al. 2019)
or tori (Gardner et al. 2022) in a low-dimensional spaces. The shape of this underlying structure varies
depending on the type of information being encoded.
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In this thesis, we collected data from mice running on a treadmill using calcium imaging and applied
techniques from the field of topological data analysis on the neuronal time series to analyze its structure.
We replicate previous studies (Sun et al. 2023) showing that the underlying structure of the space map of
a mouse running on a track is encoded on a ring manifold. We also show that this structure remains stable
in the absence of any external stimuli, confirming results from Wills et al. (2005) and Sun et al. (2023),
but deteriorates when an external stimulus is introduced. At last, we put forward a possible explanations
for the deterioration of the structure.
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Chapter 1

Literature review

This literature review traces the evolution of our understanding of the hippocampus and its functions,
particularly in the context of spatial cognition and the formation of cognitive maps. We will highlight key
discoveries that have shaped our knowledge of hippocampal function and its role in spatial navigation.
Additionally, we will describe the development of imaging methods used to record neuronal activity, with
emphasis on those employed in our study. Lastly, we will discuss some recent applications of techniques
from the field of topological data analysis in neuroscience.

1.1 The hippocampus

The human hippocampus is a sea-horse shaped structure that forms part of the limbic system. Anatom-
ically, it lies above the subiculum and medial parahippocampal gyrus, forming a curved elevation approx-
imately 5 cm long along the floor of the inferior horn of the lateral ventricle. The hippocampus proper
can be divided into three distinct fields: CA1, CA2, and CA3. Each of these regions has unique cellu-
lar characteristics and connections. The hippocampal formation, a broader term, includes not only the
hippocampus itself but also several closely related structures. The formation includes the dentate gyrus,
hippocampus, subicular complex and entorhinal cortex. Phylogenetically, the hippocampus is a relatively
old part of the brain, exhibiting functional similarities across all mammals (Mancall, Brock, and Gray
2011; Clark and Larry R. Squire 2013). The hippocampus is a critical brain region implicated in a wide
range of cognitive and physiological processes. It plays a pivotal role in learning and memory (Bird
and Neil Burgess 2008; L. R. Squire 1992), spatial navigation (Eichenbaum 2017), emotional regulation
(Qasim et al. 2023), and even hypothalamic function (Bang et al. 2022). Understanding the hippocampus
is essential as it is also implicated in several neurological disorders, such as Alzheimer’s disease (Rao
et al. 2022).

In 1971, O’Keefe along with his student Jonathan Dostrovsky, discovered new type of cells when
they noticed that certain neurons in the hippocampus were activated only when a rat was in a specific
position location in its environment. These neurons would fire consistently in that particular area, leading
O’Keefe to the conclusion that these cells formed a map-like representation of the environment in the
rat’s brain. O’Keefe termed these neurons "place cells" because each seemed to correspond to a specific
place in the environment. The discovery of place cells provided the first neural basis for a cognitive map
in the brain (O’Keefe and Dostrovsky 1971).

Building on this, Muller and Kubie (1987) demonstrated that place cells maintain their relative spatial
firing patterns when familiar environmental cues are rotated, indicating a strong link between external
landmarks and internal representations. Moreover, they found that changing the arena’s shape from
circular to rectangular led to unpredictable alterations in firing patterns, suggesting distinct cognitive
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maps for different environmental geometries. This discovery laid the groundwork for the concept of
remapping. Expanding on these findings, Bostock, Muller, and Kubie (1991) explored the plasticity of
place cell representations in response to subtle environmental alterations. Their work revealed that even
minor changes could trigger significant shifts in place cell firing patterns, highlighting the hippocampus’s
mechanism for distinguishing between similar yet distinct spatial contexts. This flexibility enables the
creation of unique neural signatures for each environment, underlining the hippocampus’s critical role in
forming and updating cognitive maps. This dynamic nature of these representations allows for efficient
encoding of spatial information in different contexts.

Formalizing these observations, O’Keefe and N. Burgess (1996) introduced the concept of place
cell remapping as a fundamental mechanism for encoding different environments. By systematically
examining changes in place cell firing fields in response to environmental modifications, they solidified
the idea of multiple, distinct cognitive maps within the hippocampus.

Expanding on the concept of place cells, subsequent research explored the temporal patterns of hip-
pocampal activity. A critical discovery in this domain was the phenomenon of theta phase precession.
O’Keefe and Recce (1993) among others (Skaggs et al. 1996) demonstrated that the phase of place cell
spiking relative to theta rhythm, a neural oscillation in the hippocampus (Green and Arduini 1954), shifts
to earlier phases of the theta phase as the rodent runs through a place field. This provided strong evidence
for temporal coding of neural circuits by describing a possible mechanism behind dynamic updating of
cognitive maps by integrating spatial and temporal aspects.

Nowadays, theta precession has also been shown to play a broader role in cognitive function. Re-
cently, for instance, (Zheng et al. 2023) demonstrated that theta precession is a general coding mechanism
supporting several aspects of memory, by observing changing strength of the theta precession in humans
while watching short movie clips and found its correlation with memory retrieval.

Another breakthrough in understanding how cognitive maps are represented in the brain was made
by nobel prize winning authors May-Britt and Edvard Moser in 2005 at the Norwegian University of
Science and Technology with the discovery of grid cells. Grid cells generate a triangular grid of firing
fields that cover the entire environment. Unlike place cells, which activate in specific locations, grid cells
activate in multiple locations that form a hexagonal grid pattern across the environment (Hafting et al.
2005).

The formation of spatial maps in the brain, particularly within regions like the dorsal hippocampus
(dHPC), is significantly influenced by reward or other emotionally rich stimuli, which serve as critical
motivational cues for spatial learning and memory (Barnstedt, Mocellin, and Remy 2024; Sosa, Plitt, and
Giocomo 2024). The dHPC is well-known for its role in encoding spatial memories, such as navigating
towards a learned reward location. When an individual receives a reward or encounters emotionally
charged stimuli, these events can enhance the encoding of spatial information and the subsequent retrieval
of these memories. This is because the reward-related signals from the dHPC are transmitted to areas
like the nucleus accumbens (NAc), a region implicated in value-based action selection. This suggests
that how spatial maps look is affected by motivational significance. These findings suggest that spatial
representations in the brain are modulated by motivational significance. Neural spatial maps encode
not just the physical layout of an environment but also its relevance based on emotional context. This
integration of spatial and motivational information guides effective decision-making and action selection
in a goal-directed manner.

1.2 Imaging methods

Neural recording techniques have improved substantially over the past 50 years. The amount of
simultaneously recorded neurons approximately doubled every 7 years (Stevenson and Kording 2011).
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According to Nicolelis (2008) (as cited in Stevenson and Kording (2011)), this has been made possible
by advances in silicon processing techniques among other rapid computer hardware development such
as data transfer speeds or storage capacity.

Traditional single-electrode extracellular recordings offered limited capacity, typically capturing the
activity of only a few neurons. This approach has been surpassed by the emergence of multielectrode
recording systems. These advanced technologies, as described by Kelly et al. (2007), allow for the
simultaneous recording of activity from hundreds of neurons, significantly expanding the scope of neural
data acquisition.

Alternative technique for recording activity from large neuronal populations is calcium imaging.
This method offers great spatial and temporal resolution, allowing us to visualize individual neurons
and capture their temporal dynamics with high precision (Giovannucci et al. 2019). Modern instruments
allow us to monitor populations of up to thousands of neurons in various regions of the brain both in
vitro and in vivo (Grienberger and Konnerth 2012; Nelson and Bonner 2021).

Calcium plays a critical role in neuronal signaling. When a neuron fires, calcium ions surge into
the cell. By monitoring these changes in calcium levels using fluorescent calcium indicators, which
emit light when they bind to calcium ions, we can indirectly observe neuronal activity (Grienberger and
Konnerth 2012)).

The most common approach for calcium imaging is two-photon calcium imaging. Here, two lower-
energy photons are absorbed by the fluorescent molecule, triggering it to emit light. This differs from
methods like one-photon calcium imaging, which utilizes a single, higher-energy photon. In most cases,
two-photon excitation offers superior depth penetration, leading to enhanced spatial resolution within the
tissue (ibid.).

Calcium imaging data, while powerful, requires proper preprocessing to accurately extract neuronal
firing rates. Several software libraries have been developed for this purpose, with CaImAn being a
popular Python package offering advanced analysis tools. CaImAn (Giovannucci et al. 2019) employs
a multi-step process to transform raw imaging data into time series representing neural activity. These
steps encompass motion correction, source extraction and activity deconvolution.

1.2.1 Calcium imaging data preprocessing

As our research leverages calcium imaging data, a basic understanding of the methodology, including
its preprocessing steps, is crucial for interpreting the results and drawing valid conclusions. This section
will provide an overview of the main preprocessing steps typically used to transform raw fluorescence
images into neural time series.

The initial step involves motion correction, addressing non-rigid motion artifacts. These artifacts
can manifest as spatial shifts within the field of view (FOV) due to factors like breathing or movement.
CaImAn utilizes the NoRMCorre algorithm (Pnevmatikakis and Giovannucci 2017) to tackle this issue.
NoRMCorre estimates motion vectors with subpixel resolution from overlapping image patches within
the FOV. These vectors are then used to infer a smooth motion field for each frame, crucial for subsequent
data analysis.

Following motion correction, CaImAn performs source extraction step to identify individual neu-
rons. This process leverages the constrained non-negative matrix factorization (CNMF) framework of
(Pnevmatikakis, Soudry, et al. 2016). CNMF effectively separates individual cells from background
noise, resulting in the identification of regions of interest (ROIs). These ROIs represent the specific ar-
eas within the image corresponding to individual neurons, allowing researchers to infer actual cellular
activity.

Finally, CaImAn performs temporal deconvolution of the raw signal. This deconvolution process
aims to infer the underlying spiking activity of the neurons, providing a more refined representation
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of neuronal firing patterns. This is achieved using sparse non-negative deconvolution as described in
(Vogelstein et al. 2010).

1.3 Computational approaches

The exponential growth of neuron recording capabilities had to be reflected in the way the data was
being analysed(Stevenson and Kording 2011; Ann Sizemore Blevins and Bassett 2020). To interpret the
complex information encoded in the activity of large neuronal ensembles, we need advanced decoding
methods.

Ann S. Blevins et al. (2022) names several approaches utilized to deal with big amounts of data in
neuroscience. Dimensionality reduction techniques, regression methods, cluster and non-linear analyses
or topological approaches all allow analysis from different points of view. All these tools can ultimately
be used to understand how the brain encodes information.

In this thesis, we will be concerned with methods based on ideas from topological data analysis
(TDA). TDA is an emerging field that applies concepts from topology to extract meaningful insights
from complex datasets. It focuses on understanding the shape and structure of data, rather than just its
numerical properties. TDA uses techniques to identify and quantify topological features such as loops,
holes, and clusters in high-dimensional data. These methods are particularly useful for analyzing large,
noisy datasets where traditional statistical approaches might struggle. TDA offers several advantages,
including robustness to noise, coordinate-free analysis, and the ability to capture global structure from
local information. (ibid.)

TDA gained prominence in the early 2000s, with Mapper (Singh, Memoli, and Carlsson 2007) being
one of the first widely recognized tools. Mapper’s successful application in identifying a new subset of
breast cancer demonstrated the potential of TDA in real-world problems. This method creates a graph
representation of high-dimensional data by clustering points in low-dimensional space into nodes and
connecting them with edges based on their high-dimensional relationships. Following Mapper, several
other TDA approaches were developed and popularized. Persistent homology (Edelsbrunner, Letscher,
and Zomorodian 2002), which predates Mapper but gained wider recognition later, is a tool for quanti-
fying topological features such as loops or holes in point cloud data across different scales. More recent
additions to the TDA toolkit include Uniform Manifold Approximation and Projection (McInnes, Healy,
and Melville 2020), a dimensionality reduction technique that preserves both local and global topologi-
cal structure, and Structure Index (Sebastian, Esparza, and Prida 2024), both of which are utilized in this
thesis.

The core concept lies in representing the system as a simplicial complex. This complex is built
from nodes and simplices that capture how these nodes interact. Notably, unlike edges in a network that
connect only two nodes, simplices can connect any number of them. (Ann S. Blevins et al. 2022)

Another fundamental concept here is that of homology. Homology provides a mathematical frame-
work for analyzing the topological features of spaces or simplicial complexes. It uses vector spaces
called homology groups (Hk) to represent and quantify K-dimensional so called holes - features of the
topological space. The dimension of each homology group corresponds to the number of independent
features of that dimension. For example, H0 represents connected components, H1 represents loops, and
H2 represents cavities. Higher-dimensional homology groups capture more abstract topological features.
This algebraic approach allows for a systematic and quantitative analysis of shape and structure, making
it particularly valuable in topological data analysis for uncovering hidden patterns and relationships in
complex, high-dimensional datasets (Chazal and Michel 2021).

The dimensions of these homology groups are known as Betti numbers, which characterize different
shapes and structures. For instance, a ring is characterized by the Betti number sequence (1,1,0), indi-
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cating one connected component, one loop, and no cavities. A torus, on the other hand, is represented
by (1,2,1), signifying one connected component, two independent loops, and one cavity. Betti numbers
thus uniquely identify different shapes based on their topological characteristics.

As Sizemore et al. (2019) states, topological methods will likely help elucidate data from systems
characterized by:

(a) complex, higher-order relationships among data points.

(b) topologically meaningful cavities or loops.

With the discovery of place cells and grid cells grew the interest to further explore how these cells
contribute to the brain’s ability to the formation of cognitive maps. Authors Leutgeb et al. (2005) and
Gothard, Skaggs, and McNaughton (1996) expanded on the previous findings about place field flexibil-
ity in changing 2D environments. Specifically, when the environment undergoes deformation, the place
fields can alter in shape, size, and location due to remapping, yet they preserve crucial spatial relation-
ships such as overlaps, adjacencies, and containments. Consequently, the firing sequences of the place
cells during animal navigation remain mostly constant across a range of geometric transformations. This
consistency supports the idea that the hippocampus provides a topological, rather than topographical,
representation of space—similar to a subway map’s depiction of routes rather than a detailed street map,
as noted by Dabaghian (2021).

These insights motivated further use of topological techniques for analysis of cognitive maps and
their representations in the brain. The manifolds discovered through these topological approaches could
potentially represent the continuous attractors underlying the encoded information.

For instance, an important observations were made by Gardner et al. (2022) who employed simulta-
neous recordings from grid cells within the medial entorhinal cortex to reveal that the collective activity
of grid cells organizes itself on a toroidal manifold. Using topological techniques (see UMAP section
in methods), they demonstrated that different positions on the torus directly correspond to the animal’s
physical locations within its environment. Remarkably, the grid cells maintained their specific activity
patterns consistently across different environments and between states of wakefulness and sleep.

Recently, Sun et al. (2023) utilized TDA to describe the formation of a cognitive map of a mouse
running on a treadmill learning a novel task. First, they introduced new visual cue pairs to replace original
indicators of reward on the treadmill, finding that mice learned these new cues significantly faster than
the original set. Second, they occasionally presented "stretched trials" where the distance to reward
zones was extended. During these trials, mice initially showed anticipatory licking at the usual reward
locations, despite the altered environment. Neural recordings revealed that place cells adapted their firing
patterns to these changes, with different responses observed for near and far trials. By applying UMAP,
they showed that the cognitive representation gradually adapted to account for both short and stretched
trials.



Chapter 2

Methods

2.1 Experiment Description

The experiment was conducted at the Leibniz Institute for Neurobiology in Magdeburg by Dr. Sanja
Mikulovic and Endre Marosi. Data preprocessing was performed as described in the literature review
chapter with additional assistance from Pavol Bauer.

The experimental apparatus consisted of 7 cm wide and 360 cm long textile belt including six dif-
ferently textured zones: horizontal and vertical glue stripes, glue dots, Velcro dots, vertical tape stripes
and upright nylon spikes. In this thesis, we employ a twilight color gradient to represent the position on
the running track for improved clarity. The reward zone for imaging experiments was 30 cm long and
was placed between the end of the horizontal glue stripes and the beginning of the vertical tape stripes
(Figure 2.1)

Four mice, labeled mouse 1, 2, 3 and 4, were subjected to a two-week habituation period involving
various handling procedures. Subsequently, they were trained to perform a task on the slowly moving
treadmill apparatus. The task required mice to lick a metal spout located in a hidden reward zone on the
treadmill belt to receive a liquid reward. After dispensing the reward, the mouse had to run another full
lap for it to be dispensed again. This process repeated for 300 seconds per session.

Custom Python software managed reward delivery and task monitoring. Calcium activity and be-
havioral markers, including treadmill position, velocity, and licking behavior, were recorded following
the habituation period. A detailed description of the experimental apparatus can be found in Barnstedt,
Mocellin, and Remy (2024).

The experiment was conducted in two phases. During the initial three days of the recording, mice
performed the previously learned task of running on a treadmill to reach a fixed reward location. In the
subsequent three days, a novel obstacle was introduced in the form of a treadmill brake. This brake was
activated over a specific treadmill distance (location 260cm-324cm), slowing the belt making it more
difficult for the mice to run. Overall, we were working with 24 recordings.

14



CHAPTER 2. METHODS 15

Figure 2.1: Running track layout. This color mapping provides a visual correspondence between loca-
tions on the track and their respective positions within the experimental setup. (Adapted from Barnstedt,
Mocellin, and Remy (2024). Licensed under CC BY 4.0. https://doi.org/10.1038/s41467-024-47361-x.
Modified from the original.)

2.2 Data Preprocessing

Neural data were originally preprocessed using the CaImAn pipeline as described in Literature review
chapter. Following this, we have performed additional preprocessing steps. The CaImAn preprocessed
dataset consisted of 300-second recordings sampled at 80 Hz, containing only deconvolved neural activ-
ity (spikes). The number of neurons recorded varied across sessions, with a maximum of 382, a minimum
of 53, a mean of 221.5, and a median of 200.5 neurons. To standardize the data, all neural activity was
z-scored.

Behavioral data was collected concurrently with the neural recordings. The treadmill position signal,
originally ranging from 0 to 175, was normalized to values between 0 and 1, corresponding to a distance
of 0 to 360 cm. We conducted a separate analysis of periods of active running behavior To focus on these
intervals, we excluded timepoints where the mouse’s speed fell below 10 cm/s from our analysis.

To reduce data dimensionality and enhance computational efficiency, we implemented both temporal
and spatial binning techniques. For temporal binning, we aggregated sets of 50 consecutive samples
(0.625s) and calculated their mean values. For spatial binning, the treadmill positions were binned into
30 bins of 12 cm length. We then computed the mean value for each of these segments and concatenated
the results across all laps.

All preprocessing was performed in Python.
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Figure 2.2: The heatmap visualizes the activity of recorded neurons. Binned time is displayed on the
X-axis (480 bins), spanning the entire recording. The Y-axis represents individual neurons, with each
row depicting a single neuron’s activity. This heatmap allows for a quick overview of how individual
neurons’ firing rates change over time. Data displayed is from a single representative session (mouse 1,
day 3, reward session)

Computational Techniques

In this section, we will describe the computational methods employed in this thesis. We begin with
an explanation of the K-Nearest Neighbors (KNN) algorithm, as it is a key component in the computation
of all topological methods used in this study. Following this, we will detail three main techniques. First,
we’ll explore Uniform Manifold Approximation and Projection (McInnes, Healy, and Melville 2020),
a manifold learning and visualization technique. Next, we’ll discuss the Structure Index (Sebastian,
Esparza, and Prida 2024), a topological method for quantifying structure in point cloud data. Lastly,
we’ll examine Rastermap (Stringer et al. 2023), a method for sorting and clustering neurons.
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2.3 K-nearest neighbor

The KNN algorithm is a fundamental supervised learning method for both classification and regres-
sion tasks. It operates in a non-parametric way, meaning it makes no assumptions about the underlying
data distribution. Here’s a breakdown of how KNN works:

1. Distance Calculation: Given a new data point (x), KNN first calculates its distance to all points in
the training dataset. This distance can be measured using various metrics like Euclidean distance,
Manhattan distance, or cosine similarity.

2. K-Nearest Neighbors Identification: The algorithm then identifies the k closest data points (neigh-
bors) to x based on the chosen distance metric. The value of k is a hyperparameter that needs to be
tuned for optimal performance.

3. Prediction: KNN predicts the class label of (x) by performing a majority vote among the class la-
bels of its (K) nearest neighbors. The class label that appears most frequently among the neighbors
becomes the predicted class for (x).

2.4 UMAP

Uniform Manifold Approximation and Projection (UMAP) is a dimensionality reduction technique
used to represent high-dimensional data in a lower-dimensional space. It is particularly useful for ex-
ploratory data analysis, clustering, and pattern recognition tasks.

UMAP is grounded in the ideas of category theory, a branch of mathematics that deals with abstract
structures and relationships between them. Category theory provides a framework for understanding and
formalizing the notion of similarity or equivalence between objects. UMAP uses these mathematical
foundations to capture the intrinsic structure of data in a lower-dimensional space.

From a computational standpoint, UMAP is essentially a graph-based method. It constructs a high-
dimensional graph representation of the data, where each data point connects to its nearest neighbors.
This local connectivity captures the local structure of the data, which is crucial for preserving its inherent
relationships. UMAP then defines an objective function that preserves desired characteristics of the
constructed graph and finds a low-dimensional representation which optimizes this objective function.

2.4.1 Data

In summary, UMAP makes three key assumptions about the data:

1. Manifold structure: UMAP assumes that the data lies on a manifold, a lower-dimensional structure
that locally resembles a Euclidean space near each point, embedded within the higher-dimensional
space. While the data may not be inherently uniformly distributed across this manifold, UMAP
assumes that a metric can be defined such that the data would be approximately uniformly dis-
tributed with respect to that metric. This means that any region of fixed volume within the data
space should contain roughly the same number of points, ensuring a balanced representation across
different areas.

2. Local connectivity: The data on the underlying manifold is assumed to be locally connected.
This assumption allows UMAP to represent nearby or related points in high-dimensional space as
neighbors in the low-dimensional space, capturing meaningful patterns and relationships within
the data.
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3. Topological preservation: UMAP’s primary goal is to preserve the topological structure of the
manifold. This means maintaining the overall shape and connectivity of the data, rather than
focusing solely on preserving exact distances between points.

2.4.2 Calculation of UMAP

UMAP falls under the category of algorithms based on KNN graphs. This means understanding
UMAP’s inner workings can be done by looking at weighted graphs. Several dimensionality reduction
techniques utilize KNN graphs. However, UMAP offers distinct advantages that make it particularly
suitable for our analysis.

One key advantage is its ability to handle the "curse of dimensionality." In high-dimensional data,
traditional distance metrics become unreliable. UMAP addresses this issue by focusing on preserving
the relationships between neighboring points in the local area. This focus on local similarities makes
UMAP effective even when dealing with data in very high dimensions.

Another advantage of UMAP is its ability to capture both local and global structures within the data.
This is in contrast to some methods like t-SNE (Maaten and Hinton 2008), which primarily focus on
local structure. For tasks where understanding the overall organization of the data is important, UMAP’s
ability to preserve both local and global information proves to be crucial. These advantages make UMAP
a compelling choice for our analysis.

Constructing the low-dimensional representation involves two key stages: graph construction and
graph layout.

Graph Construction

This stage establishes a weighted KNN graph that captures the relationships between data points. Let
X = x1, . . . , xn be the input data points, d : X × X → R+0 a metric, and k ∈ N. The process involves the
following steps:

1. Identifying nearest neighbors: For each data point xi, compute the set xi1 , . . . , xik of k nearest
neighbors under the metric di.

2. Assigning edge weights while ensuring local connectivity: For each xi, define

ρi = min{di(xi, xi j) | 1 ≤ j ≤ k, di(xi, xi j) > 0},

and set σi such that

k∑
j=1

exp
{
−max(0, di(xi, xi j) − ρi)

σi

}
= log2(k).

This ensures that xi connects to at least one other data point with an edge of weight 1, satisfying the
local connectivity constraint. The max function ensures that the exponential term does not exceed
1.

3. Constructing the Directed Weighted Graph: Define a weighted directed graph G = (V, E, w) where:

• Vertices V are the set X

• Edges E = {(xi, xi j) | 1 ≤ j ≤ k, 1 ≤ i ≤ N}
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• Weight function w is defined as:

w((xi, xi j)) = exp
{
−max(0, d(xi, xi j) − ρi)

σi

}
4. Symmetrizing the Graph: Unfortunately, the resulting graph is not necessarily symmetric. This

asymmetry stems from UMAP’s theoretical foundations, which assume a uniform distribution
of the data on the manifold. To satisfy this assumption, the algorithm employs locally adaptive
distance metrics, where the scale of distances is adjusted for each point based on its local neigh-
borhood. As a result, the perceived distance from xi to x j may not equal the distance from x j to
xi. This local adaptation of the metric leads to direction-dependent edge weights in the graph,
reflecting the varying local geometries around each point.

Let A be the weighted adjacency matrix of G. The symmetric matrix B is given by:

B = A + A⊤ − A ◦ A

where ◦ is the pointwise product. Note that Bi j can be interpreted as the probability that at least
one directed edge exists between xi and x j in either direction.

The final UMAP graph G is an undirected weighted graph with adjacency matrix B.

Graph Layout

The goal of this stage is to find a low-dimensional representation that preserves the relationships
between data points captured in the KNN graph. To achieve this, UMAP utilizes a force-directed graph
drawing algorithm, which iteratively applies a set of attractive and repulsive forces among vertices. This
process amounts to a non-convex optimization problem, with convergence to a local minimum ensured
by gradually diminishing both the attractive and repulsive forces.

Attractive forces pull connected points closer based on their weights in the KNN graph. This encour-
ages points with stronger connections to be positioned closer in the low-dimensional space. In addition
ot the attractive forces, repulsive forces are used to push points apart, preventing overcrowding in the
low-dimensional space. To manage computational complexity, these repulsive forces are approximated
through sampling. In particular, when an attractive force is applied to an edge, one of its vertices is
simultaneously repelled by a random sample of other vertices.

The forces are derived from gradients that minimize the edge-wise cross-entropy between the weighted
KNN graph G and a low-dimensional equivalent graph H constructed from the embedded points yi. This
cross-entropy is defined as:

C((A, µ), (A, ν)) =
∑
a∈A

µ(a) log
(
µ(a)
ν(a)

)
+ (1 − µ(a)) log

(
1 − µ(a)
1 − ν(a)

)
where µ and ν represent the edge weights in G and H respectively.
The optimization aims to position points yi such that the induced weighted graph H closely approxi-

mates the topology captured by the source data in G.
The attractive and repulsive forces are derived from the cross-correlation, by calculating gradients of

logarithms of the smooth approximation function of the edge strength Φ : Rd × Rd → [0, 1], defined as:

Φ(x, y) =
(
1 + a

(
∥x − y∥22

)b
)−1
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The parameters a and b are derived by fitting non-linear least squares against the membership strength
function Ψ : Rd × Rd → [0, 1], where

Ψ(x, y) =

1 if ∥x − y∥2 ≤ min-dist
exp

(
−(∥x − y∥2 −min-dist)

)
otherwise

Ψ(x, y) is used to define the desired properties of the low-dimensional embedding, which Φ(x, y)
approximates.

The resulting forces have the following forms:

1. Attractive Force:

FA(yi, y j) =
−2ab∥yi − yj∥

2(b−1)
2

1 + ∥yi − yj∥
2
2

w((xi, x j))(yi − yj)

where w((xi, x j)) is the edge weight from the KNN graph.

2. Repulsive Force:

FR(yi, y j) =
2b

(ϵ + ∥yi − yj∥
2
2)(1 + a∥yi − yj∥

2b
2 )

(1 − w((xi, x j)))(yi − yj)

where ϵ is a small number to prevent division by zero.

Finally, the new coordinates of the points are updated as:

yi+1 = yi + η(
∑

j∈neighbors(i)

FA(yi, y j) −
∑

k∈random sample

FR(yi, yk))

where η is the learning rate.

2.4.3 Initialization

:
While the algorithm can be initialized randomly, in practice we employ spectral layout for the ini-

tialization. The symmetric Laplacian of the graph G serves as a discrete approximation of the Laplace-
Beltrami operator on the manifold represented by the graph. Using this spectral information to guide the
initialization process enhances both the convergence speed and stability of the algorithm by capturing
important structural information about the graph before the optimization begins.

To construct the Laplacian matrix of graph G, follow these steps:

1. Start with the Adjacency Matrix A of graph G, where Ai j = 1 if nodes i and j are connected, and
0 otherwise.

2. Construct the Degree Matrix D, a diagonal matrix where:

Dii =
∑

of row i in A

Di j = 0 for i , j
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3. Calculate the symmetric normalized Laplacian L using the formula:

L = I − D−1/2AD−1/2

where I is the identity matrix, and D−1/2 is the inverse square root of D.

4. Compute k eigenvectors corresponding to the lowest (non-zero) eigenvalues of L, where k is the
target dimension of the UMAP embedding.

2.4.4 Hyperparameters

UMAP has four main hyperparameters:

1. Number of nearest neighbors: This represents a trade-off between preserving local (fewer
neighbors) and global (more neighbors) structure in the data.

2. Target dimension: The dimension we want to embed our pointcloud in.

3. Minimum Distance: Minimum distance between points in the low-dimensional representation.
It controls how tightly UMAP is allowed to pack points together with smaller values allowing for
tighter clusters.

4. Number of epochs: Number of training epochs to use in the optimization.

UMAP analysis was performed using the official UMAP implementation with the following parame-
ters: 15 nearest neighbors to balance local and global structure preservation, a 3-dimensional target space
for visualization and interpretation, a minimum distance of 0 to allow for tight clustering, and the default
500 epochs for optimization.

2.4.5 Illustration

To illustrate UMAP’s ability to reveal hidden structures in complex data, we constructed a synthetic
dataset based on sine and cosine functions. Originally parameterizing perfect circles, these functions
were masked by adding random noise and slight amplitude variations. We also add entirely random
data to obfuscate the sine-cosine information even further. This results in a high-dimensional matrix
where the circular patterns are effectively hidden. UMAP successfully recovered the underlying circular
patterns from this high-dimensional, noisy data. By color-coding the projected points according to their
original sine function values, we visually confirmed UMAP’s ability to group data points corresponding
to similar phases of the circular trajectory. (Figure 3)

The sine and cosine wave formulas with random amplitude A ∼ U(0.5, 1.5), fixed frequency f = 1.0,
and random noise N ∼ N(0, σ2) where σ ∼ U(0.1, 0.3) can be represented as:

A sin(2π f t) + N

A cos(2π f t) + N
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Figure 2.3: UMAP embedding of noisy sine/cosine data. Points are colored by their original sine function
values, demonstrating the recovery of the underlying circular structure.

2.5 Structure Index

In neuroscience research, we frequently encounter the challenge of identifying how a specific feature
is distributed across a point cloud. This arises in various contexts, such as investigating representations
within neural manifolds (Barnstedt, Mocellin, and Remy 2024), analyzing neurophysiological signals
(Rutkowski, Komendziński, and Otake-Matsuura 2024), and performing anatomical image segmentation
(Momota et al. 2024).

The Structure Index (SI) addresses this challenge. It is a directed graph-based metric designed to
quantify the distribution of feature values across arbitrary D-dimensional spaces within a point cloud. SI
focuses on overlapping distributions of data points that share similar feature values within a defined local
neighborhood. By analyzing these overlaps, SI allows us to identify structures, patterns, and relationships
within the dataset. This approach enables us to explore how different features manifest and vary across
the point cloud data. This is particularly relevant in neuroscience, where mapping features onto a point
cloud can provide valuable insights into how the brain encodes and represents information.

While embedding a point cloud into a lower-dimensional space allows for visualization using dimen-
sionality reduction techniques like UMAP, additional methods are necessary for effective comparison
and accurate quantification of feature distributions and point cloud shapes across different datasets. SI
offers a complementary approach specifically designed to analyze these distribution patterns within the
original high-dimensional space.
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2.5.1 Calculation of the SI

The aim of the SI is to quantify structure in the distribution of a feature over a point cloud. Consider
a point cloud P embedded in a space of dimension D and a set of feature values f mapped onto P,
F = { fp|p ∈ P}.

The calculation of the SI consists of several steps:

1. Create a finite covering B = {Bi}i∈N of a point cloud P by splitting it into bin-groups Bi according
to their feature value such that Bi = {p ∈ P | ti ≤ fp < ti+1}, where P = {B1, . . . , Bn} and Bi∩B j = ∅

when i , j. Features can be both continuous or discrete.

2. Compute the overlap between each pair of bin-groups in terms of the K-nearest neighbors. Given
two bin-groups, U and V , define an overlap score from U to V , OSU→V , as the ratio of k-nearest
neighbors of all the points of U that belong to V in the point cloud space. That is,

OSU→V (k) =
1
|U |k

∑
u∈U

|{N j
u(U ∪ V − {u})| j = 1, . . . , k} ∩ V | (2.1)

where N j
u(U ∪ V) denotes the set of k-nearest neighbors of point u in the union of U and V .

3. Compute the overlap score for each pair of bin groups Bi and B j, which yields an adjacency matrix
Mnxn, such that Mi j = OS Bi→B j Matrix M can be interpreted as a weighted directed graph where
nodes are bin groups and edges represent overlap relationships. The diagonal elements of the
matrix are set to zero, that is, OS U→U(k) = 0, indicating no self-overlap.

4. Finally, Structure Index S I is defined as 1 minus the mean weighted out-degree of the nodes after
scaling:

S I(M) = 1 − (
2

n2 − n

n∑
i

n∑
j

Mi, j) (2.2)

To provide complementary quantification of the overlap patterns, we developed a method to summa-
rize the overlap scores for statistical comparison across experimental days. Starting with each mouse’s
overlap matrix, we computed the sum of the matrix M with its transpose (M + MT ). From this sym-
metrized matrix, we extracted the upper triangular portion, excluding the main diagonal, and summed
the elements of each diagonal separately. This process yielded an array of diagonal sums for each mouse,
with each sum representing a different level of overlap. We then aggregated these arrays across all mice
for each experimental day by element-wise summation. The resulting arrays, one for each day, were used
to generate boxplots, providing a visual representation of the overlap score distributions.

2.5.2 Hyperparameters

Similar to UMAP, the SI utilizes hyper-parameters to influence its behavior:

1. Number of neighbors: Increasing the number of neighbors generally improves the algorithm’s
ability to capture global structures within the data. A larger neighborhood provides more context,
enabling more accurate assessment of feature value distributions across the point cloud.

2. Number of bins: This parameter determines the granularity of the analysis. A higher number
of bins allows for capturing finer details in the structure. However, it’s essential to maintain a
reasonable number of data points within each bin to prevent the SI from being unduly influenced
by sparsely populated bins. Ideally, a relatively even distribution of data points across bins is
preferred.
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SI calculation was performed using the official library released by the authors of the SI paper. For
our calculations, we used 10 nearest neighbors and 10 bins. These parameters balanced the capture of
local and global structures while maintaining sufficiently populated bins for robust analysis.

2.5.3 Illustration

For illustration we generate a point cloud uniformly distributed on the surface of a sphere. By apply-
ing different labeling schemes, we achieve different values of SI. (Figure 4)

Using spherical coordinates (r, θ, ϕ), where:

• r: constant radius of the sphere

• θ: azimuthal angle, 0 ≤ θ < 2π

• ϕ: polar angle, 0 ≤ ϕ ≤ π

Points are generated by converting spherical to Cartesian coordinates:

x = r sin ϕ cos θ

y = r sin ϕ sin θ

z = r cos ϕ

Randomly sampling angles θ and ϕ ensures uniform point distribution on the sphere. For low SI
labeling, points are labeled randomly with values from 0 to 5 (Figure 4A). For high SI labeling, the
sphere is divided into 6 equal polar angle bands, and points are labeled accordingly (Figure 4B).
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Figure 2.4: SI Illustration A) Structured labeling: A sphere divided into 6 equal-sized bins, each assigned
a unique label. This structured arrangement results in a high SI of 0.95. B) Non-structured labeling: A
sphere with randomly assigned labels, demonstrating a lack of spatial pattern and an SI of 0.00. C) A
graphical representation of an SI calculation step of the orderly labeled sphere. Nodes symbolize labeled
sections, and arrows depict overlap between sections. Thicker arrows signify greater overlap. Optimal
SI is achieved when connections exist solely between adjacent sections, minimizing overlap with distant
sections. D) Non-structured graph illustrating a step of SI calculation of the randomly labeled sphere.
Arrows pointing to non-neighboring nodes indicate that points in the bin represented by the source node
have neighbors from non-adjacent bins. This suggests less structure and thus lowers the SI score.

2.6 Rastermap

Rastermap (Stringer et al. 2023) is a visualization framework designed to find patterns in neural data.
It sorts neural responses along a one-dimensional manifold, making it easier to identify and interpret
activity patterns. The algorithm works by first normalizing and reducing the dimensionality of the data.
Then, it clusters the data and computes an asymmetric similarity matrix between the clusters. Finally,
it sorts the similarity matrix to optimize a matching score. This sorting helps to reveal patterns in the
neural data that would be difficult to see otherwise.
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The algorithm consists of five primary steps: dimensionality reduction, clustering, creating an asym-
metric similarity matrix, sorting this matrix, and upsampling the cluster centers.

2.6.1 Calculation of the Rastermap

1. Data Normalization and Dimensionality Reduction: The data preparation process begins with nor-
malization. Each neuron’s activity is z-scored to achieve a mean of zero and a standard deviation
of one. After normalization, the data undergoes dimensionality reduction. First, the normalized
data is binned. Then, singular value decomposition (SVD) is performed on this binned data. Only
a fraction of the left singular vectors representing the neurons are retained. These vectors are then
scaled by their corresponding singular values.

2. Clustering: To identify groups of co-active neurons, a modified K-means algorithm called scaled
K-means is used. This method assigns each neuron to a cluster iteratively re-estimating cluster
means, similar to the regular K-means, with the difference of fitting an additional variable λi for
each neuron i such that

xi = λiµσi + noise

Here, xi is the activity vector for neuron i, σi is the cluster assigned to neuron i, and µ j is the
activity of cluster j. Similar to K-means, the model is optimized by iteratively assigning each
neuron to the cluster that best explains its activity.

3. Cluster Activity and Cross-Correlation: For each cluster i, compute the mean cluster activity and z-
score each cluster activity trace. Calculate the cross-correlation between all pairs of cluster activity
traces using the following formula:

ci × c j[τ] =
1
T

∑
t

ci(t − τ)c j(t)

for a specified number of time lags τ.

Next, construct an asymmetric similarity matrix S by taking the maximum value of the cross-
correlation for each cluster pair over these τ values:

S i, j = max
τ

(ci × c j[τ])

4. Sorting the Similarity Matrix: Optimize the sorting of the similarity matrix of the cluster nodes to
maximize the matching score. The matching score is defined as the dot product between the sorted
similarity matrix and a prespecified matching matrix M:

score =
∑
i, j

Mi, jS sorted
i, j

The matching matrix M has two parts: global similarity part and local traveling salesman similarity
part. The global similarity matr is defined as:

Mglobal
i, j = − log(|xi − x j| + 0.001)

where xi =
i
n and the diagonal elements Mglobal

i,i are set to zero.
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This function generates a similarity measure between elements i and j, where the similarity de-
creases gradually as the difference between xi and x j increases. The logarithmic transformation
ensures that even distant elements contribute to the overall similarity, creating a long-range effect.
This is why it is termed "global." The small constant 0.001 prevents the logarithm from becoming
undefined and controls the maximum similarity value.

In contrast, the local similarity matrix is close to 1 for the first off-diagonal and very small else-
where:

Mlocal
i, j = exp

− (xi − x j)2

2σ2


where σ = i

2N and the diagonal elements Mlocal
i,i being zero.

This is a Gaussian function where similarity decreases rapidly as the difference between xi and x j

grows. Consequently, Mlocal strongly emphasizes nearby elements and quickly approaches zero
for distant ones. The parameter σ determines the width of this local influence.

Set the lower diagonal of each matrix to zero to enforce forward sequences of activity. Normalize
the matrices by their sums across all entries. The final matching matrix is a weighted sum of the
two matrices:

M = (1 − w)Mglobal + wMlocal

where w is a parameter.

Intuitively, if Mi, j is high, the score increases more by putting a high value of S at position (i, j) in
the sorted matrix. On the other hand, if Mi, j is low, putting a low value of S at (i, j) minimizes the
reduction in score.

The sorting algorithm is initialized using the first singular vector weights for each cluster node.
The process then iteratively optimizes the arrangement by computing the change in score for each
potential movement of clusters within the matrix. Each potential movement practically means
that each row and column, representing the clusters, is moved into every other row and column,
resulting in n ∗ (n − 1) potential moves. Initially, all possible movements of individual nodes are
tested, and the node movement that yields the highest score increase is implemented. If no single-
node movement improves the score, the algorithm progresses to testing all possible moves of two
consecutive nodes, and so on, gradually increasing the group size. In the implementation, this
process of searching for beneficial moves of node groups is repeated for up to 400 iterations or
until no movement of any group size results in a score increase. This approach ensures a thorough
exploration of the solution space, balancing local and global optimizations to achieve the best
possible sorting of the similarity matrix.

5. Upsampling: The granularity of the feature space representation in Rastermap is significantly
enhanced through an upsampling technique. This process expands the initial set of Nclusters
reference points to a denser grid of 10 × N clusters points. These newly generated points serve as
intermediate locations within the feature space, providing a more refined framework for subsequent
neuron assignment.

To construct these intermediate points, a weighted, locally linear regression approach is employed.
This method approximates a linear function mapping discrete cluster indices to features in the Prin-
cipal Component Analysis (PCA) space, focusing on localized regions surrounding each cluster.
In essence, this process interpolates between the original cluster centers to create a more detailed
map of the feature space.
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The extent and influence of these local neighborhoods are modulated by weights determined by
the proximity of clusters in the Rastermap sorting. A Gaussian weighting function is utilized,
based on Euclidean distance between cluster indices, with a standard deviation of σ = 1/

√
2. To

maintain computational efficiency and focus on local relationships, only the 50 nearest neighbors
are considered for each upsampled point.

This linear approximation is performed at every new upsampled position, resulting in a feature
space map with tenfold increased resolution compared to the original data. Consequently, a signif-
icantly more detailed view of the feature space is obtained.

The ultimate goal of this upsampling process is to provide a more refined framework for neuron
assignment. By creating a denser grid of reference points, neurons can be more precisely matched
to their most similar location in feature space.

As a final step, the upsampled features are correlated with each neuron’s activity profile. Neurons
are then assigned to the position of their best-matching upsampled node. This assignment process
ensures that each neuron is placed at the most appropriate location within the refined feature space,
allowing for a more accurate representation of neuronal relationships and similarities.

2.6.2 Hyperparameters

1. Number of clusters: This parameter determines the number of clusters to be computed using
scaled K-means clustering. It represents the initial number of reference points before upsampling.

2. Number of principle components: This parameter specifies the number of top left singular
vectors to keep after performing singular value decomposition on the normalized activity matrix.

3. Locality: This parameter determines the weight given to the local "traveling-salesman" similarity
matrix when creating the final matching matrix. It balances between global and local similarity in
the optimization process.

4. Time lag window: The range of time lags (τ) used when computing cross-correlations between
cluster activity traces.

5. Temporal bin: Determines whether and how to bin the data in time before computing singular
vectors.

We employed the Python library provided by the Rastermap authors for our analysis. Our calculations
used the following parameter values: 30 clusters, 64 principal components, a locality of 0.15, and a time
lag window of 15, temporal bin was left 1, as our data was already binned.



Chapter 3

Results

To understand how the hippocampus encodes spatial information, we employed UMAP for dimen-
sionality reduction and visualization of neural signals recorded from mice running on a treadmill. Prior
to applying UMAP, we preprocessed the data using two binning approaches: temporal binning, where
signals were mean-binned in time using 50 samples per bin (each bin representing 0.625 seconds), and
spatial binning, where data was divided into 30 bins (each bin representing 12 cm) for each lap of the
treadmill. The time-binned and place-binned signals were then separately analyzed.

Analyzing data of mice running on the treadmill with familiar reward stimulus at the track’s end,
UMAP successfully captured the underlying structure of the neural activity. The resulting three-dimensional
embedding revealed a circular pattern, suggesting that the neural representation of the mouse’s position
during laps on the treadmill followed a circular manifold (Figure 3.1).

To further investigate the spatial representation within the UMAP embedding, we mapped the mouse’s
position on the treadmill onto the embedding using a color gradient. This gradient transitioned smoothly
from white at the starting position to white again at the final position, with a blue-orange color spectrum
representing intermediate locations. Remarkably, this color mapping aligned perfectly with the circular
UMAP projection. Each loop within the circle corresponded to a single lap completed by the mouse, and
the color gradient remained consistent across all laps.

29
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Figure 3.1: UMAP embeddings of neural activity during treadmill running of mouse 1, day 3, reward
run. A) UMAP projection of a single (third) lap on the treadmill. Individual points represent temporal
bins, colored with a twilight gradient indicating position on the treadmill (refer to Figure 1 for color
scale mapping). This visualization demonstrates how neural activity patterns change with respect to the
animal’s position during a single lap. This embedding consists of 67 points. B) Full UMAP embedding
of the entire session, comprising 480 points. A distinct cluster of points (highlighted by a red rectangle)
represents times when the mouse was consuming the reward. These points are concentrated at the part
of the embedding representing the beginning of the treadmill, indicating that the mouse slowed down or
stopped to receive and consume the reward, thus spending more time in this position. Principal Compo-
nent Analysis (PCA) was applied to align the first two components with the X and Y axes, resulting in
this 2D visualization.

To investigate how different binning methods affect UMAP embeddings, we evaluated two distinct
approaches:

1. Temporal binning: In this method, neural activity data points within specific time intervals are
aggregated and averaged to form a single data point.

2. Spatial binning: This approach groups and averages neural activity data from adjacent locations
on the treadmill to create a single data point.

A key distinction between these methods lies in how they handle periods of mouse inactivity, such as
during reward consumption. In spatial binning, these stationary periods are typically consolidated into a
single data point. In contrast, temporal binning may generate multiple data points during these inactive
intervals.

When using temporal binning, a distinct cluster emerged within the circular UMAP projection. This
cluster corresponded to time points when the mouse was stationary or slow, likely due to eating behavior
(Figure 3.1B). To eliminate this cluster we focused on the bins when the mouse was running (velocity>
10m/s). Embedding the runnning-only signal disrupted the circular structure by splitting it at the point
of removal (Figure 3.2B).
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Figure 3.2: Comparison of full run to running-only UMAP embeddings. A) UMAP embedding of the
entire session (480 points), including both running and stationary periods. The embedding shows a
complete circular structure. B) UMAP embedding after removing stationary periods (241 points). The
circular structure is disrupted, revealing a split at the point where stationary temporal bins were excluded.
This comparison illustrates the impact of isolating running behavior on the overall neural state space
representation. PCA was employed to align the first two principal components of each embedding with
the X and Y axes.

Spatial binning of neural activity did not yield a distinct cluster for stationary periods, as expected,
since all immobile time points corresponded to a single location (Figure 3.3A). Interestingly, the effect
of bin size on the UMAP embedding differed between temporal and spatial binning strategies. While
finer temporal binning generally produced a more cohesive circular structure, spatial binning exhibited a
more complex relationship. For some mice, coarser spatial bins were necessary to maintain a connected
circular embedding. Increasing the spatial resolution beyond a certain point led to fragmentation of the
embedding structure, contrary to what was observed with temporal binning (Figure 3.3B).
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Figure 3.3: Impact of spatial binning resolution on UMAP embeddings of neural activity. A) 30 bins per
lap. This coarser spatial resolution maintains a more continuous circular structure in the embedding. B)
60 bins per lap. The finer spatial resolution leads to a more fragmented embedding, with breaks in the
circular pattern.

To investigate how the introduction of a novel stimuli affects the UMAP representation, we analyzed
neural signals recorded while mice ran on a treadmill with a braking mechanism that made it harder for
the mouse to move the belt at a specific location. This intervention was applied for three consecutive
days.

On the initial day, after introducing the novel braking stimulus, mouse 1 displayed a UMAP embed-
ding with a well-defined structure, closely resembling the patterns observed during standard reward runs
(Figure 3.4A). The position gradient mapped onto this structure also mirrored that of reward runs, sug-
gesting minimal initial disruption to the neural representation of spatial information. In contrast, mice 2,
3, and 4 exhibited less coherent structures on this first day (Figure 3.4D), indicating a more immediate
impact of the braking stimulus on their neural representations. The second day brought further changes
(Figure 3.4B,D): Mouse 1’s previously stable structure deteriorated, while mouse 2 showed improved
structural coherence. Mice 3 and 4 maintained their low structural integrity from the previous day. By
the third day, a marked deterioration in UMAP structure was evident across all mice compared to their
baseline reward runs. The characteristic circular pattern and associated position gradient, previously
observed, were no longer discernible (Figure 3.4C,F).
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Figure 3.4: Progressive impact of the braking stimulus on UMAP representations in two mice over
three consecutive days. Mouse 1: A) Day 1 (243 points): The UMAP embedding shows a well-defined
circular structure with a clear position gradient, closely resembling the pattern observed in standard
reward runs. This suggests minimal initial disruption to spatial information encoding. B) Day 2 (243
points): The previously stable structure begins to show signs of deterioration. The circular pattern is
less pronounced, and the position gradient appears more diffuse. C) Day 3 (210 points): A marked
deterioration is evident. The characteristic circular structure is largely lost, and the position gradient is no
longer discernible, indicating significant disruption to spatial encoding. Mouse 2: D) Day 1 (95 points):
The UMAP embedding displays a less coherent structure compared to mouse 1. The embedding consists
of fewer points, because mouse 2 completed fewer laps on the treadmill. This reduced activity is likely
due to the surprise effect of the novel braking stimulus, which may have caused the mouse to hesitate
or pause more frequently. The lack of visible structure in this embedding is primarily attributed to this
reduced running behavior rather than solely to disrupted neural representations. E) Day 2 (189 points):
The embedding shows improved structural coherence compared to Day 1. A more defined circular pattern
emerges, though not as pronounced as mouse 1’s initial state. This improvement suggests that mouse 2
had become more comfortable with the novel braking stimulus. F) Day 3 (137 points): Similar to mouse
1, the embedding structure has significantly deteriorated. The circular pattern and position gradient are
no longer visible, indicating a breakdown in the organized encoding of spatial information. PCA was
applied to align the first two principle components of each embedding with the X and Y axes, resulting
in this 2D visualization.

To quantify the changes in spatial encoding observed in the UMAP embeddings, we employed a
graph-based method called the Structure index (Figure 3.5). This method analyzes the topological struc-
ture of the data and provides a numerical value to represent the level of organization.

As part of the SI calculation, we first computed overlap scores between different positions in the
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environment. To visualize the distribution of these overlap scores across days and conditions, we devel-
oped a method to summarize them for statistical comparison. This involved symmetrizing each mouse’s
overlap matrix, extracting the upper triangular portion, and summing diagonal elements to create an ar-
ray of overlap scores. These arrays were aggregated across mice for each day and visualized as boxplots
(Figure 3.5A,C).

For a more detailed view of individual mouse performance, we also calculated the SI for each mouse
separately across the three days (Figure 3.5B,D).

We observed a consistently high SI value across all three days for the reward runs in all mice except
mouse 3, which had low structure on the first day and continued to learn throughout the runs (Figure
3.5A,B). This indicates that the neural representation of spatial information remained stable during these
runs with only reward delivery.

Consistent with the deterioration observed in the UMAP structure, the SI value associated with the
braking stimulus condition exhibited a gradual decline over the three days in all mice except for mouse
4, which SI sharply dropped immediately in day 1 (Figure 3.5C,D), ultimately reaching a point where
no significant structure was detectable. This finding suggests that repeated exposure to the novel braking
stimulus disrupted the organized encoding of spatial information in the hippocampus progressively in
some mice and more rapidly in others.
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Figure 3.5: Comparison of Structure Index between reward and brake conditions over three days. This
figure illustrates the changes in neural representation structure across reward and brake conditions: Re-
ward Condition: A) Boxplots show decreasing overlap score across all three days, indicating improving
structure. The improvement is the result of the improvement of structure of mouse 3 (Green) in days 2
and 3. B) Individual mouse trajectories demonstrate minimal fluctuation (mouse 1, 2, 4) or improving
trend (mouse 3) in SI scores, further supporting the stability of neural structure in the reward condition.
Brake Condition: C) Boxplots reveal a declining trend in SI scores over the three days, suggesting a
progressive loss of structure in neural representations. D) Individual mouse trajectories show a gen-
eral downward trend, particularly pronounced by day 3, indicating a consistent degradation of structural
organization across subjects.

To gain further insights into the changes in UMAP structure, we employed Rastermap clustering
(Figure 3.6). This method groups neurons with similar activity patterns. During reward runs, place cell
sequences exhibited a consistent firing pattern, activating once per lap (Figure 3.6A,C). This regularity
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aligns with the stable UMAP structure and high SI values observed across all three days for reward runs.
By the third day of brake runs, we observed notable alterations in place cell activation patterns. In

mouse 1, we detected skips in the place cell sequence, consistent with the progressive deterioration of the
UMAP structure and decreasing SI. Mouse 2 exhibited an increased frequency of place cell iterations,
with six complete sequences occurring within just three full laps, aligning with the overall lower structure
scores during brake runs compared to reward runs (Figure 3.6D). The sequence of place cell activations
was not entirely disrupted by the novel stimuli, but rather the mapping of this sequence onto the spatial
representation was distorted. This distortion appeared as a shift and disrupted frequency of firing patterns.
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Figure 3.6: Rastermap plot displaying neuronal activity patterns across reward and brake runs of mouse
2 on days 1 and 3. A) Day 1, Reward condition: Stable place cell activation patterns are evident, with
each sequence corresponding to a single lap. Green highlights indicate reward dispensing periods. B)
Day 1, Brake condition: Place cell activations are present but less pronounced due to fewer laps run.
Red highlights show periods when the treadmill brake was on. C) Day 3, Reward condition: Similar to
day 1, stable place cell activation patterns are observed, with each sequence matching a single lap. D)
Day 3, Brake condition: Sequential place cell activations outnumber the lap count, suggesting increased
frequency of place cell iterations. Two distinct bands of cell activities are visible during brake runs:
one underlying place cell activity, the other corresponding to periods of no movement. In all panels,
the position signal ranges from 0 (beginning of the treadmill) to 1 (end of the treadmill). Red dots
on the position plots mark the start of brake signals. The heatmap below each position plot represents
neuronal time series data. Green highlights in the heatmap indicate temporal bins when reward was being
dispensed, while red highlights show temporal bins with the treadmill brake on.

Theoretically, such a distorted place cell mapping should disrupt the interpretability of the color
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gradient in the UMAP embedding, while keeping the underlying UMAP structure itself intact. However,
our observations did not fully align with this expectation (Figure 3.4C).

To further investigate the UMAP distortion, we performed a detailed analysis of the rastermap clus-
ters. In this analysis, we identified three distinct firing patterns within the recorded neural signals. The
first firing pattern closely resembled that of place cells, exhibiting repeated activation at specific loca-
tions on the treadmill. This suggests that these neurons were primarily responsible for encoding spatial
information. The second pattern consisted of two disjunct bands of activity. One of these bands exhibited
neuronal activity predominantly during periods when the mouse was in motion, ostensibly supporting the
activation observed within the place cells. In contrast, the second non-place-cell cluster demonstrated
activity primarily when the mouse was either stationary or engaged in feeding behaviors, as visible in
Figure 3.6D, possibly encoding information related to rest or some other behavioral state.

Based on these findings, we proceeded to manually extract place cells whenever they were identi-
fiable within the Rastermap clusters. This allowed us to apply UMAP separately to two distinct neural
populations: the extracted place cells and the cells exhibiting the disjunct firing patterns (Figure 3.7).

Figure 3.7: UMAP projections of different neuronal populations during reward runs. Each embedding
has 480 points. (A) UMAP embedding of extracted place cells, showing a circular structure. (B,E)
UMAP projections of motion cells, which are active alongside place cells during movement. (C,F)
UMAP projections of rest cells, active when the motion cells are inactive. (D) UMAP embedding of all
neurons in a case where no circular structure was originally observed, demonstrating that extraction of
place cells did not restore circular structure in this instance. Note that non-place-cell clusters (B,C,E,F)
display no visually meaningful embeddings.

Interestingly, a circular embedding was only observed for the UMAP projection of the place cells
(Figure 3.7A). This finding aligns with our initial observations, where a circular structure was present
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in the UMAP embedding during reward runs with well-defined spatial information. In contrast, the
application of UMAP to the non-place-cell clusters did not yield any visually meaningful embeddings
(Figure 3.7B,C,E,F). Notably, extracting the place cells did not restore the circular structure in cases
where it was previously absent in the UMAP embedding of all neurons (Figure 3.7D). No structure
emerged, even with the removal of seemingly redundant neurons.
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Discussion

In our study, we performed an in-depth examination of neuronal signal data using three advanced
analytical techniques: Uniform Manifold Approximation and Projection, RasterMap, and Structure In-
dex. This analysis has provided significant insights into how spatial information is encoded within the
neurons of mice.

We began by replicating previous findings (Sun et al. 2023) through the application of UMAP to
visualize spatial information encoded in hippocampal neuronal activity. Our results demonstrated that
the spatial position of mice on a treadmill is represented by a circular embedding. As expected from
previous works (Wills et al. 2005), we observed that this encoded structure remains stable in the absence
of novel stimuli.

Our investigation into binning strategies has yielded insights into the neural representation of space
in the hippocampus. Temporal binning revealed a distinct cluster in the signal embedding corresponding
to stationary periods, highlighting the importance of considering behavioral states when analyzing neural
data. Analysis of running-only signals disrupted the circular structure observed in the UMAP projection,
emphasizing the continuous nature of spatial encoding during movement.

These findings suggests that in addition to visualizing spatial information encoded in hippocampus,
topological techniques enable us to also infer behavioral and environmental states associated with them.
Previous studies have demonstrated that spatial continuity is achieved through partial coverage of spatial
fields modulated by phase precession (O’Keefe and Recce 1993; Skaggs et al. 1996). Our findings sug-
gest UMAP might be sensitive to different spatial bin size selections. We hypothesize that this sensitivity
arises because optimal representation may require each spatial bin to cover a single place field. This
could be analyzed in future using additional techniques for precise identification of place fields. Our
observation emphasizes the importance of careful methodological considerations in neural data analysis
and highlights the complex relationship between analytical spatial resolution and the underlying neural
code.

Our study also demonstrated that the introduction of a novel stimulus leads to a deterioration of
the structure in low dimensional spatial representations. This was evidenced by changes in the UMAP
visualizations over time and quantified using SI. This contrasts with the results of Sun et al. (2023), who
observed a gradual adaptation of representations to a novel task. This discrepancy may be attributed to
differences in the nature of the novel stimuli. While their novel stimulus consisted of the introduction of
unfamiliar visual cues within a familiar task context, our study involved a novel stimulus that imposed
increased behavioral demands on the animals. The aversive nature of our task may have induced a more
pronounced disruption to the underlying neural code.

Interestingly, we observed variability in the response to the novel stimulus across individual mice.
Mouse 1 exhibited initial resilience, maintaining its UMAP structure initially before showing deteri-
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oration. This contrasted with other mice, which displayed more immediate disruption to their spatial
representations.

Despite individual differences, a consistent pattern emerged across all mice over the three-day period
following the introduction of the novel stimulus. We observed a progressive breakdown of the circular
UMAP structure, indicating a fundamental reorganization of spatial representations. This reorganization
appears to be in response to the new temporal dynamics introduced by the braking mechanism, which
served as our novel stimulus.

To quantify these observations, we employed the Structure Index to assess the topological structure
of the data. This analysis supported our qualitative observations from the UMAP visualizations. Embed-
dings that were well-visualized and maintained clear structure exhibited higher Structure Index values,
while more chaotic embeddings showed lower values.

Our study builds upon and complements previous findings, such as those reported by Sosa, Plitt, and
Giocomo (2024), which demonstrated that hippocampal place cells encode not only spatial locations but
also salient events within an environment. While Sosa et al. observed that changing reward locations
induced remapping of place cell activity, our research extends this concept by examining the effects of
introducing novel stimuli. It is known (Wills et al. 2005), that place cells are able to rapidly switch
between different representations of different environments. Our research offers new insights into the
explanation of what happens to a stable representation during learning of another.

Our analysis, utilizing RasterMap clustering techniques, has revealed a possible mechanism under-
lying the observed deterioration of spatial representations following the introduction of a novel stimulus.
We found that this deterioration is primarily associated with a fundamental change in place cell encoding
patterns.

In familiar environments, place cells predominantly encoded reward-to-reward intervals at the be-
ginning of each lap. However, upon introduction of a novel stimulus, this encoding pattern shifted
dramatically. Place cells began to represent reward-to-stimulus and stimulus-to-reward intervals instead.
The stimulus being the beginning of the brake section of the treadmill or its anticipation. This alteration
in the reference points for spatial encoding may be the key factor disrupting the stable attractor dynamics
observed in familiar settings.

Anticipation of mouse is well documented phenomena (Barnstedt, Mocellin, and Remy 2024). Given
that the braking event represents an aversive stimulus, it is plausible that the location where the mouse
anticipates this event could serve as a salient point in the animal’s cognitive map. This anticipation of
a surprising or aversive event might trigger changes in neuronal firing patterns, potentially leading to a
remapping of spatial representations in the hippocampus (Blair et al. 2023).

This temporal reorganization of place cell activity provides a possible explanation for the breakdown
of the circular UMAP structure observed over the three-day period. It suggests that the hippocampal
representation is dynamically adjusting to incorporate the new temporal dynamics introduced by the
braking mechanism, potentially at the expense of maintaining a stable spatial map. These findings extend
our understanding of hippocampal plasticity, demonstrating how the introduction of a novel, behaviorally
relevant stimulus can lead to a reorganization of neural encoding that prioritizes salient events over pure
spatial mapping.

Lastly, we found that removing non-place cells did not help recover structure in data where it was
not previously present. This observation suggests that the lack of structure in certain datasets was not
due to the presence of non-place cells masking an underlying spatial representation. Rather, it indicates
that the absence of structure reflects a genuine reorganization or disruption of the spatial encoding.

Conversely, when we removed non-place cells from structured data, we observed that the place cell
encoding remained intact. This preservation of structure suggests that the spatial information is primarily
encoded by the place cells, as expected.



Conclusion

This study aimed to investigate the neural encoding of spatial maps with a particular focus on the
stability and adaptability of these representations in the hippocampus.

Our UMAP analysis revealed a ring-like structure in the spatial representations of CA1 regions, con-
firming previous studies that suggested the existence of a ring attractor in hippocampal spatial encoding.

Under familiar environmental conditions, we observed that these ring attractors remained highly
stable, aligning with theoretical predictions of CAN behavior as well as previous studies. This stability
is crucial for maintaining consistent spatial representations and supports the role of CANs in reliable
spatial navigation and memory.

One of the contributions of this study is the observation of the degradation of these attractor states
when animals were exposed to novel stimuli. The Structure Index quantitatively demonstrated this de-
terioration, while UMAP visualizations clearly illustrated the breakdown of the ring structure. This
degradation of the attractor state in novel environments supports the idea that different environments are
represented by distinct CAN representations in the hippocampus. It suggests that there are limits to what
a single CAN can represent, and that the brain may need to form new or modified CANs to accurately
encode novel spatial contexts.

A key contribution of our research is the identification of a change in place cell encoding as the
primary mechanism underlying this attractor degradation. Through RasterMap clustering techniques,
we discovered that in familiar environments, place cells primarily encoded the reward-to-reward interval
at the beginning of each lap. However, when exposed to novel stimuli, this encoding pattern changed
dramatically. Place cells tended to shift to represent reward-to-stimulus and stimulus-to-reward intervals.
We hypothesize that the observed disruption of stable attractor dynamics in familiar environments may
primarily result from this shift in spatial encoding reference points.

These observations challenge the view of CANs as rigid structures and instead suggest a more flexi-
ble model where attractor states can be temporarily destabilized to accommodate new information. This
plasticity may be crucial for adaptive behavior, allowing the hippocampus to balance stable representa-
tions with the ability to encode novel experiences.

A potential limitation of our study is the specific experimental paradigm used, particularly the focus
on a single type of salient stimulus (the brake) and the sample size. To address these limitations and
further validate our findings, future research should aim to replicate these results with a larger number
of mice and explore the effects of diverse salient stimuli beyond the brake used in this study. This
could include various sensory modalities such as visual, auditory, or olfactory cues, as well as other
types of behaviorally relevant events. Such investigations would help confirm the generalizability of our
observations and provide a more comprehensive understanding of how different novel stimuli impact
hippocampal spatial representations and attractor dynamics.
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