
F3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s Thesis

Multi-Camera Visual Tracking
Onboard UAVs

Vadim Mychko

Supervisor: Ing. Matouš Vrba
August 2024





BACHELOR‘S THESIS ASSIGNMENT 

I. Personal and study details 

507455 Personal ID number:  Mychko  Vadim Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Cybernetics 

Open Informatics Study program: 

Artificial Intelligence and Computer Science Specialisation: 

II. Bachelor’s thesis details 

Bachelor’s thesis title in English: 

Multi-Camera Visual Tracking Onboard UAVs  

Bachelor’s thesis title in Czech: 

Vizuální sledování cíle více kamerami na palubě UAV  

Guidelines: 

1. Research different methods and types of visual tracking including bounding box tracking and sparse feature tracking. 
2. Develop a system for visual tracking of an object in images from multiple cameras placed onboard a moving autonomous 
UAV. The tracking should be initialized using a relative position of the target with respect to the UAV that is output by a 
detector using an onboard LiDAR [1]. 
3. Implement multiple visual tracking methods within the system including bounding box tracking and sparse feature 
tracking. 
4. Evaluate the accuracy, robustness and general properties of the implemented methods in realistic simulations with 
drone-hunting scenarios. 

Bibliography / sources: 

[1] Matouš Vrba, Viktor Walter, Václav Pritzl, Michal Pliska, Tomáš Báča, Vojtěch Spurný, Daniel Heřt and Martin Saska, 
„On Onboard LiDAR-based Flying Object Detection,“ arXiv preprint cs.RO 2303.05404, 2023. 
[2] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-learning-detection. Pattern Analysis and Machine Intelligence, 
IEEE Transactions on, 34(7):1409–1422, 2012. 
[3] David Held, Sebastian Thrun, and Silvio Savarese. Learning to track at 100 fps with deep regression networks. In 
European Conference Computer Vision (ECCV), 2016. 
[4] Jianbo Shi and Carlo Tomasi, „Good Features to Track,“ Conference on Computer Vision and Pattern Recognition, 
pages 593–600, 1994. 

Name and workplace of bachelor’s thesis supervisor: 

Ing. Matouš Vrba    Multi-robot Systems  FEE 

Name and workplace of second bachelor’s thesis supervisor or consultant: 

   

Deadline for bachelor thesis submission:   15.08.2024 Date of bachelor’s thesis assignment:   12.01.2024 

Assignment valid until:   21.09.2025 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
prof. Dr. Ing. Jan Kybic 

Head of department’s signature 
Ing. Matouš Vrba 
Supervisor’s signature 

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



III. Assignment receipt 
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



Acknowledgement / Declaration

I thank my supervisor, Ing. Matouš
Vrba, for guiding me throughout the
thesis topic.

I thank my family for their support
throughout my studies at FEE CTU.

I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of the university theses.

Prague, 15th August, 2024

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

v



Abstrakt / Abstract

S rostoucím rozšířením bezpilotních
letounů se zvyšuje důležitost zajištění
bezpečnosti ve vzduchu. Tato práce se
zabývá implementací systému vizuál-
ního sledování pomocí více kamer na
palubě bezpilotních letounů za účelem
zachycení nespolupracujících letících
cílů. Sledovací systém je navržen jako
doplněk stávajícího detektoru využí-
vající palubní LiDAR a řeší omezené
zorné pole LiDARu. Různé metody
vizuálního sledování jsou zkoumány a
vyhodnocovány ve scénářích lovu dronů
včetně sledování pomocí ohraničují-
cích obdélníků a sledování významných
bodů. Vizuální sledovače s jednou ka-
merou jsou rozšířeny pro nasazení s více
kamerami s využitím modelu dírkové
kamery. Implementovaný vícekamerový
systém vykazuje značné problémy při
vyhodnocování v simulaci, částečně
kvůli předpokladům. Práce zdůraz-
ňuje potřebu flexibilnějších přístupů ke
scénářům zachycení a navrhuje směry
budoucího výzkumu.

Klíčová slova: vizuální sledování více
kamerami, počítačové vidění, bezpilotní
letouny, sledování v reálném čase

Překlad názvu: Vizuální sledování cíle
více kamerami na palubě UAV

As the utilization of Unmanned Aerial
Vehicles (UAVs) continues to rise, en-
suring aerial safety becomes increasingly
critical. This thesis explores the im-
plementation of a multi-camera visual
tracking system onboard UAVs for cap-
turing non-cooperating flying targets.
The tracking system is designed to
complement an existing LiDAR-based
detection algorithm, addressing the
limited field of view of the LiDAR sen-
sor. Various visual tracking methods,
including bounding box and sparse
feature tracking, were researched and
evaluated in drone-hunting scenarios.
Single-camera visual trackers are ex-
tended into the multi-camera setting
by utilizing the pinhole camera model.
The implemented multi-camera system
reveals significant challenges when eval-
uated in simulation, partially due to the
made assumptions. The work highlights
the need for more flexible approaches
to interception scenarios and proposes
directions for future research.

Keywords: multi-camera visual track-
ing, computer vision, unmanned aerial
vehicles, real-time tracking
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Chapter 1
Introduction

The widespread adoption of Unmanned Aerial Vehicles (UAVs), commonly known as
drones, has significantly impacted various sectors, from aerial photography to surveil-
lance. The global UAV market is experiencing rapid growth, with projections indicating
an increase from $33.7 billion in 2023 to $54.6 billion by 2030 [1]. This rapid growth has
raised security concerns regarding aerial safety, particularly in sensitive areas such as
airports, government facilities, and critical infrastructure. The December 2018 Gatwick
Airport incident involved multiple UAV sightings near the airport’s runways, forcing
the airport’s closure for an extended period. This disruption affected approximately
140,000 passengers and resulted in the cancellation of 1,000 flights over a 36-hour pe-
riod, demonstrating the severe consequences of unauthorized UAV activity in sensitive
areas and highlighting the potential for malicious UAV use to cause significant economic
and logistical damage.

Conventional counter-UAV systems, often ground-based and reliant on human opera-
tors, may face mobility and response time limitations. These systems frequently depend
on jamming the navigation and control systems of intruding UAVs, which may not al-
ways be practical or desirable. Human-operated systems are prone to errors due to
fatigue, stress, or limited visibility. Additionally, physical takedown methods can lead
to uncontrolled crashes, posing risks to people and property on the ground and poten-
tially destroying valuable evidence for subsequent investigation and forensic analysis.
These limitations underline the need for more advanced, autonomous, and adaptable
counter-UAV solutions to effectively address the growing challenges posed by modern
UAV technologies.

Recent advancements in counter-UAV technology have led to the development of an
innovative autonomous aerial interception system, as described in [17, 21]. This sys-
tem employs an interceptor UAV equipped with a 3D Light Detection and Ranging
(LiDAR) sensor and a high-performance onboard computer. The system utilizes the
LiDAR sensor for detecting and tracking unauthorized UAVs and a novel fast-response
proportional navigation method for interception guidance, allowing for quick response
times and high accuracy when intercepting agile, maneuvering targets. The approach
offers significant advantages over ground-based solutions, including non-destructive cap-
ture using a deployable net, enhanced situational awareness due to its aerial perspective,
and fully autonomous operation that reduces reliance on human operators. Figure 1.1
illustrates a prototype of such an interceptor UAV.

The existing autonomous aerial interception system, while innovative, faces certain
limitations that impact its effectiveness in some scenarios. A primary constraint lies
in the LiDAR-based detection system, which, despite its accuracy, is restricted by
a limited Field of View (FOV) and detection range. These limitations can hinder the
system’s ability to continuously track agile or distant targets, especially during complex
interception maneuvers. This thesis proposes an extension to the current solution by
incorporating a multi-camera visual tracking system to address these shortcomings.
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t1

t2

t3 t4interceptor

t1

t2
t3 t4

intruder

Figure 1.1. Collage of a successful autonomous interception of a moving target. The maneuver
took approximately two seconds from 𝑡1 to 𝑡4. Taken from [17].

This enhancement aims to complement the existing LiDAR-based detector with visual
input from digital cameras, expanding the system’s overall FOV. By combining LiDAR
and visual data, the proposed solution seeks to provide more robust and continuous
tracking of the target, even when it momentarily moves outside the LiDAR’s detection
zone. Additionally, this multi-sensor approach is expected to improve the target’s
state estimation accuracy, potentially leading to more precise interception planning and
execution. This thesis thus focuses on developing and integrating this visual tracking
component to overcome the current limitations and enhance the overall performance of
the existing system.

The implementation of a visual tracking system on the interceptor UAV introduces
several challenges that need to be considered. The interceptor UAV must remain agile
and lightweight to effectively pursue and capture targets, which introduces size, weight,
and power consumption constraints. These constraints necessitate the development
of highly efficient algorithms capable of concurrent execution on a low-power Central
Processing Unit (CPU), including modules for detection, tracking, state estimation, and
interception planning. The visual tracking component must demonstrate robustness
in diverse environmental conditions, including varying lighting, occlusions, and rapid
movements.

The primary objectives of this research are threefold. First, to investigate and evalu-
ate sparse feature and template-based visual trackers in the context of drone-hunting
scenarios. Second, to integrate the selected visual tracking methods into the existing
system, combining them with the LiDAR-based detection algorithm. Finally, to extend
single-camera visual tracking capabilities to a multi-camera configuration, enhancing
the overall tracking performance and robustness of the interceptor UAV system.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The rest of the thesis is organized as follows: Chapter 2 reviews the related work.
Chapter 3 discusses the implemented multi-camera system in more detail. Chapter 4
evaluates the integrated trackers in drone-hunting scenarios. Chapter 5 discusses the
results and makes suggestions for future research.
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Chapter 2
Related Work

This chapter reviews existing research on detection of UAVs, single-camera visual object
tracking, state estimation techniques from a monocular camera, and navigation methods
for aerial interception.

2.1 Detection of UAVs

A novel approach for detection and localization of flying objects using a 3D LiDAR
sensor is presented in [21], which is specifically designed for autonomous aerial inter-
ception. The proposed system leverages a novel 3D occupancy voxel mapping method to
spatially differentiate flying objects from the background. This system offers high local-
ization accuracy, robustness to different environments and target appearance changes,
and a great detection range.

2.2 Sparse Feature Tracking

This section presents an overview of the existing sparse feature trackers. Sparse feature
tracking, also known as point tracking, is a computer vision technique that involves
identifying and following distinct points or features across multiple frames of video or
images.

2.2.1 Lucas-Kanade

One of the earliest works on tracking of features between images is the Lucas-Kanade
(LK) method [14], which was originally proposed as a method for estimating optical
flow. While this method does not explicitly track an object of interest, it may be
employed to track its distinct features. The LK method assumes constant motion
within the local neighbourhoods of the selected features, which implies the following:

. The LK method is unsuitable for estimating large motions across two images. This
can be partially resolved by introducing image pyramids, where the resolution of
each of the two images is essentially halved for each pyramid level [2]. Then, the LK
method is used on the images with the smaller resolution; the obtained estimates are
backpropagated to the images with the higher resolution, and the whole process is
repeated. Such pyramidal implementation improves tracking of even large motions.

. The LK method is unsuitable for tracking dynamic objects within a static back-
ground. Unfortunately, this fact cannot be directly avoided or compensated for, as
the assumption of constant flow within local neighbourhoods lies in the core design
of the method.

4
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The quality of the LK-based tracking depends on the number of levels in the image
pyramid, the size of the feature window (the size of local neighbourhoods), the textured-
ness of the image within these windows, and the amount of camera motion between
frames. Texturedness (or cornerness) is a measure of how much local intensity variation
exists in a small neighborhood of pixels. Areas with high texturedness are rich in visual
information and are more likely to be reliably tracked. The number of levels and the
size of the feature window are hyperparameters, which are set before the algorithm is
executed and are fine-tuned for the specific application. The camera motion cannot be
calculated in advance. However, the choice of what features to track (the texturedness)
can significantly boost the performance of the LK method. One method to choose the
features is using the Shi-Tomasi corner detector [20], which finds suitable features for
increasing the LK tracker’s accuracy.

2.2.2 CoTracker

One of the most recent works on point tracking is the CoTracker [10], a deep learning-
based model for joint pixel tracking across a video sequence. CoTracker demonstrates
impressive qualitative results compared to other modern methods. However, it uses
windowed inference, which implies that the video has to be obtained in advance to
predict points in the following frames. In turn, it limits the ability to get predictions in
the following frames in a rapid fashion. Moreover, the CoTracker is significantly more
computationally demanding than the LK tracker, which makes it undesirable to use
without hardware acceleration.

2.3 Bounding Box Tracking

This section provides an overview of the existing bounding box trackers. Bounding box
tracking is a computer vision method that involves identifying and following an object
of interest by enclosing it within a rectangular box across consecutive frames of video
or images. This technique tracks the entire object as a unit, updating the position,
size, and orientation of the bounding box to consistently represent the target object’s
location and dimensions throughout the sequence.

2.3.1 MedianFlow

Sparse feature trackers can be extended into bounding box tracking. One example
is the MedianFlow tracker [8], which creates a grid of points inside the given initial
bounding box. These points are tracked by the LK method, and for each point, the
error is measured. After that, 50% of the worst predictions are filtered out, while the
remaining predictions are used to calculate the displacement and scale change of the
bounding box. The MedianFlow tracker explicitly assumes that the points are not
entirely independent and are parts of bigger objects. However, the tracker tends to
suffer from the same problems as the LK method because the LK method is in the core
design of the MedianFlow tracker. This implies that it is not ideal for tracking dynamic
objects, especially objects with non-rigid parts, such as rotary wings of UAVs.

2.3.2 TLD

Short-term trackers fail when the object of interest is absent in subsequent frames and
are likely to never recover because such trackers usually do not implement any detection

5
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logic. However, any short-term tracker can be extended into a long-term tracker by uti-
lizing the Tracking-Learning-Detection (TLD) framework [9]. This framework explicitly
splits long-term tracking into three components: tracking, learning, and detection. The
tracker estimates the object’s motion frame-to-frame, the detector performs full scans
of frames to localize all appearances observed and learned in the past, and learning
monitors their performance to identify and correct errors by generating new training
data.

The detector generates all possible scales and shifts of the initial bounding box, classifies
generated patches, and accepts those with the object present. In the original version of
the TLD tracker, MedianFlow, together with failure detection, is used as the tracking
component. In turn, the TLD tracker suffers from the same problems as MedianFlow
and LK trackers, rarely benefiting from the detection component in the application
considered in this thesis.

The tracking component of the TLD tracker can be replaced with other single-target
bounding box trackers. Doing so might offer advantages such as improved performance
in challenging scenarios, adaptability to specific use cases, and the ability to incorporate
newer tracking algorithms. A replacement tracker must provide similar functionality
while maintaining TLD’s real-time performance. Replacing the tracker would be a
complex undertaking that could compromise the simplicity and efficiency of the original
TLD framework.

2.3.3 GOTURN

With the rise of deep learning techniques and neural networks, new state-of-the-art has
been achieved in many fields, including visual object tracking. One example is GO-
TURN [5], which is based on Convolutional Neural Networks (CNNs) and utilizes the
architecture of Siamese neural networks. Siamese neural networks accept two different
input vectors to compute the output while sharing the same weights of select layers [3].
In the case of the GOTURN tracker, the neural net accepts two inputs: the previous
frame cropped, scaled, and centered on the object of interest (“what to track”), and
the current frame cropped, scaled, and centered on the previous location of the object
(“where to look”). The neural net outputs the coordinates of the bounding box in the
current frame. Unfortunately, the tracker runs at approximately 21 Frame Per Sec-
ond (FPS) on a multi-core CPU, making it impractical without the usage of hardware
accelerators or a Graphics Processing Unit (GPU).

2.3.4 DaSiamRPN

Another tracker based on Siamese neural networks is DaSiamRPN [24]. The authors
highlight the importance of quality training data and propose a novel training strategy.
DaSiamRPN can be used for long-term tracking thanks to the proposed local-to-global
region strategy. Like GOTURN, it can run at over 100 FPS on a GPU, but only
approximately 13 FPS on a multi-core CPU. GOTURN and DaSiamRPN are used as
baselines in the evaluation in terms of the chosen metrics and inference time but are
unsuitable for deployment onboard resource-constrained UAVs.

2.3.5 Nano

Modern deep learning-based trackers heavily rely on CNNs, which typically consist of
millions of parameters to be learned. Such trackers are not usable on embedded devices

6
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and onboard computers with limited computational power. This issue may be par-
tially resolved with the MobileNet architectures [6] by introducing depthwise separable
convolution, which is extremely efficient compared to the traditional convolutional lay-
ers. Models based on MobileNets achieve comparable (and sometimes better) accuracy
than the models based on the traditional CNNs while performing up to 22 times less
computations.

Another option for making neural networks more computationally efficient is quantiza-
tion. Regarding the neural networks, the inputs and weights are restricted to integer-
only arithmetic, allowing for a lower memory footprint and inference time with little to
no reduction in performance [7].

Designing performant and lightweight models relies on human knowledge and expertise.
LightTrack [23] uses a neural architecture search to automate the process of designing
models suitable for embedded devices, allowing to find trackers that achieve better
performance than hand-crafted trackers. Nano [4] is yet another tracker based on
Siamese neural networks, which further builds on the LightTrack strategy and achieves
better performance with fewer parameters. The Nano tracker is highly optimized,
allowing it to run at over 100 FPS on a multi-core CPU.

2.4 State Estimation

The problem of estimating a flying target’s 3D position and velocity from a monocu-
lar camera onboard a UAV is investigated in [15]. The author implements and com-
pares multiple approaches, including geometric methods based on line intersection and
Kalman Filter-based algorithms using bearing measurements. The performance of the
state estimation techniques is evaluated through both simulated and real-world sce-
narios designed to resemble the interception maneuver. These experiments align with
the primary application of the visual tracking system considered in this thesis – the
interception of flying objects by autonomous aerial vehicles.

Several of the implemented methods demonstrated the capability to estimate the tar-
get’s state under various conditions accurately. However, it is important to note that
the quality of the state estimation was found to be highly dependent on the precision
of the visual tracking system. The visual tracker, responsible for following the tar-
get throughout the video stream, plays a crucial role in providing accurate input data
for the state estimation algorithms. Consequently, any imprecisions or errors in the
visual tracking process can significantly impact the overall performance of the state
estimation.

2.5 Navigation & Planning

A novel approach for autonomous aerial interception of non-cooperating UAVs by an
interceptor UAV is presented in [17]. The authors propose a new guidance method
called Fast Response Proportional Navigation, designed to intercept agile maneuvering
targets while relying on onboard state estimation and tracking. The guidance method
is compared to existing approaches in extensive simulations, demonstrating its superior
performance in terms of response time and number of successful interceptions. The
paper also addresses challenges in target state estimation, proposing an interacting

7
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multiple model filter and a new measurement model to improve accuracy when tracking
targets following general trajectories.

The authors integrate their proposed methods into a complete autonomous interception
system, which is evaluated in realistic simulations and real-world experiments. The
system combines LiDAR-based detection and tracking of flying objects from [21] with
the proposed state estimation and guidance techniques. The experiments show that the
system can successfully intercept highly maneuvering targets in real-world conditions,
outperforming existing solutions.

2.6 Datasets & Benchmarks

The Visual Object Tracking (VOT) challenge series [11–13] aims to advance single-
camera visual tracking research. The benchmarks utilize curated datasets featuring
diverse objects and scenarios, with recent editions transitioning from bounding boxes
to segmentation mask annotations. The challenge was expanded to address various
tracking scenarios, including short-term tracking, where trackers are reset after failure,
and long-term tracking, where algorithms must handle target disappearance and re-
detection.

UAV123 [16] is a dataset and benchmark for evaluating visual object tracking algorithms
using video footage from cameras mounted on UAVs. UAV123 presents challenges that
are common in aerial tracking scenarios but are underrepresented in existing ground-
based datasets, such as significant scale and aspect ratio changes, fast motion, and
low-resolution targets. By evaluating 14 popular trackers on this dataset, the authors
demonstrate that many algorithms struggle with the specific challenges posed by UAV-
based tracking.

8



Chapter 3
Methodology

This chapter describes the multi-camera system in more detail: how the tracking is
initialized, how the object is tracked in one camera, and how the tracking information
between cameras is exchanged.

3.1 System Overview

Front tracker

point clouds

images

LiDAR

Front
camera

State
estimation

Interception
navigation & planning

LiDAR-based
detector

Down tracker

Down
camera

initialize

exchange

images

Figure 3.1. Diagram of a possible autonomous aerial interception system, complemented with
multiple digital cameras. The multi-camera tracking system (highlighted in blue) is tackled
within the thesis. The multi-camera system can be extended with more digital cameras by
defining an “exchange” relationship between the cameras. The cameras must have overlapping
FOVs and must be calibrated in order to exchange the tracking information.

Figure 3.1 illustrates the block diagram of the implemented multi-camera visual tracking
system. The tracking is initialized using a relative position of the target with respect
to the interceptor UAV, which is output from the detection algorithm [21]. In the
diagram, each tracker (“Front tracker” and “Down tracker”) is assumed to be a single-
camera tracker. Exchange of tracking information between the trackers is established
through a unidirectional “exchange” relationship. The intended behavior of this system
is outlined as follows:

1. The front tracker, which has an overlapping FOV with the LiDAR sensor, receives a
point cloud (a collection of 3D points) assumed to belong to the target, as identified
by the detector.

9



3. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2. The front tracker transforms the received point clouds into its coordinate system and

projects them onto the image plane.

3. The front tracker independently tracks the target in the images and exchanges the
tracking information with the down tracker whenever possible.

4. Upon successful tracking information exchange, the down tracker receives the initial
bounding box and begins tracking the target independently from the front tracker.

5. The trackers predict the target’s position in the image, even when the target moves
outside the LiDAR’s FOV. This can be used to estimate the target’s position and
velocity (e.g., by a Kalman Filter).

3.2 Tracking Initialization

A pinhole camera model is a purely geometric mathematical model for projecting points
from the world onto the image plane and backprojecting points from the image plane
into the world. This model is used for projecting the incoming detections (collections
of 3D points) onto the image plane. This camera model requires intrinsic parame-
ters (which characterize the camera itself) and extrinsic parameters (which define the
camera’s position and orientation in the world). The intrinsic parameters are typically
obtained using calibration, while extrinsic parameters depend on the specific camera
setup. This thesis does not cover the process of obtaining these parameters. Instead,
the parameters are assumed to be known within a small margin of error. However,
it should be noted that these parameter estimates may not be entirely accurate when
applied in real-world experiments. This thesis assumes an ideal pinhole camera model
and does not account for any distortion.

STA
R

STA
R

Optical 
center

Ray

Object 
in world

Principal 
point

Optical axis

Focal length
Image
plane

Figure 3.2. Pinhole camera model terminology. The optical center (pinhole) is placed at the
origin of the 3D world coordinate system (𝑢, 𝑣, 𝑤), and the image plane (where the virtual
image is formed) is displaced along 𝑤-axis, which is also known as the optical axis. The position
where the optical axis strikes the image plane is called the principal point. The distance between
the image plane and the optical center is called the focal length. Taken from [18].
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Figure 3.2 introduces common pinhole camera model terminology. To establish the
position 𝐱 = [𝑥, 𝑦]𝑇 in the image plane where the 3D point 𝐰 = [𝑢, 𝑣, 𝑤]𝑇 is projected,
the following equation in homogeneous coordinates is solved:

𝜆 [ 𝐱
1 ] = ⎡⎢

⎣

𝜙𝑥 0 𝛿𝑥
0 𝜙𝑦 𝛿𝑦
0 0 1

⎤⎥
⎦

[ 𝛀 𝝉 ] [ 𝐰
1 ] , (1)

where 𝜆 is an arbitrary scaling factor, 𝜙𝑥 and 𝜙𝑦 are focal lengths in the 𝑥- and 𝑦-
directions, [𝛿𝑥, 𝛿𝑦]𝑇 is the position of the principal point (in pixels), 𝛀 ∈ ℝ3×3 is a
rotation matrix, and 𝝉 ∈ ℝ3×1 is a translation vector. {𝜙𝑥, 𝜙𝑦, 𝛿𝑥, 𝛿𝑦} are intrinsic
parameters, and {𝛀, 𝝉} are extrinsic parameters.

The conversion of incoming detections (collections of 3D points) to the camera’s 2D
image plane is achieved by solving Equation (1) for each 3D point. These projected
points are immediately usable for sparse feature trackers without additional processing.
However, an additional step is necessary when employing these projections to initialize
bounding box trackers. This involves transforming the projected points into a bounding
box configuration by identifying the minimum and maximum coordinates along each
axis, thereby defining the four corners of the required initial bounding box.

3.3 Single-Camera Tracking

Once initialized, trackers with an overlapping FOV with the LiDAR sensor start track-
ing the object of interest, operating independently from the LiDAR-based detector.
Sparse feature trackers track the distinct features of the object while bounding box
trackers assign bounding boxes in each consequent frame. The choice of the tracker
is not restricted and may include short-term trackers without built-in re-detection ca-
pabilities. It is assumed that during crucial interception maneuvers, the LiDAR-based
detector, rather than the tracker itself, will perform any necessary re-detection.

3.4 Information Exchange

Two cameras must be positioned with overlapping FOVs to exchange tracking infor-
mation. Both cameras are assumed to be modeled using the pinhole camera model,
and the intrinsic and extrinsic parameters to be known. When a point is backprojected
from one camera into the world, a ray represents the possible positions of the 3D point
corresponding to the image point, as shown in Figure 3.3. When this ray is projected
onto the image plane of the second camera, it forms an epipolar line, making the exact
position of the projected point ambiguous. The ray in the camera’s coordinate system
knowing its 2D projection 𝐱 = [𝑥, 𝑦]𝑇 in the image plane is obtained as:

𝑢 = (𝑥 − 𝛿𝑥
𝜙𝑥

) 𝑤,

𝑣 = (
𝑦 − 𝛿𝑦

𝜙𝑦
) 𝑤,

(2)

where 𝑤 ∈ ℝ is an unknown parameter and 𝐰 = [𝑢, 𝑣, 𝑤]𝑇 is a point lying on the ray.
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optical 
center 1

camera 
plane 1

camera 
plane 2

optical 
center 2

ray

epipolar
line

Figure 3.3. A 3D point 𝐰 corresponding to 𝐱1 on the image plane lies somewhere on a ray,
which passes through the optical center of the first camera, and the position of 𝐱1. However,
it is unknown where the 3D point 𝐰 lies on the ray. Projections of all possible positions of 𝐰
onto the image plane of the second camera form a line, which is referred to as an epipolar line.
Taken from [19].

The exact position of a 3D point backprojected from an image plane can be determined
when complemented with depth information. This thesis assumes that the camera,
which has an overlapping FOV with the LiDAR sensor, provides depth information
aligned with its RGB visual image (e.g., by a stereo camera). Then, for the pixel
𝐱 = [𝑥, 𝑦]𝑇 in the image plane, the depth 𝑑 ∈ ℝ (in meters) is known, and substituting
the 𝑤 variable in Equation (2) with 𝑤 = 𝑑, the complete solution is obtained as:

𝑢 = (𝑥 − 𝛿𝑥
𝜙𝑥

) 𝑑,

𝑣 = (
𝑦 − 𝛿𝑦

𝜙𝑦
) 𝑑,

𝑤 = 𝑑.

After establishing the 3D point, it is transformed and projected onto the second cam-
era’s image plane by solving Equation (1). For sparse feature trackers, the procedure
is repeated for each point tracked by the first camera, and the second camera’s tracker
becomes initialized.

For bounding box trackers, a more complex approach is employed. First, the tracked
object’s center depth is estimated by analyzing the depth distribution within the bound-
ing box. This estimation calculates the average of the middle 50% of sorted depth values
within the bounding box. Subsequently, for each pixel within the bounding box, the ab-
solute difference between its specific depth and the estimated center depth is calculated.
If this difference falls within a predetermined threshold (specified as a hyperparame-
ter), the pixel is accepted for the previously described routine. After obtaining multiple

12
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0.0 2.0 4.0 6.0 8.0 10.0 12.0
Depth (in meters)

Figure 3.4. RGB image of the target with the aligned depth estimations taken from simulation
using the Intel RealSense RGB-D camera. The depth information is represented as a 16-bit
grayscale image, with the depth equal to zero in the areas where depth estimation is unavailable
(notice the dark region at the top of the depth image). The green bounding box denotes what
a single-camera tracker could predict.

projected points in the second camera’s image plane, the points are transformed into
the bounding box, similarly to how the detections are transformed.

Figure 3.4 shows an example of an RGB image of the target with the aligned depth
estimations. Inside the green bounding box, there is not only the body of the tracked
target but also the background. Only the points belonging to the tracked object are
desirable when exchanging tracking information. Therefore, the previously described
procedure filters the background points inside the bounding box.
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Chapter 4
Evaluation

This chapter evaluates bounding box and sparse feature trackers in drone-hunting sce-
narios. This chapter also examines how the implemented multi-camera tracking system
behaves during interception maneuvers in simulation.

4.1 Bounding Box Tracking
The considered bounding box trackers were evaluated on chosen sequences from the
UAV123 dataset [16]. The chosen sequences (specifically “uav[1-8]”) consist of tracking
other UAVs from the camera mounted on a chasing UAV. The sequences offer a challeng-
ing dataset that closely mirrors the real-world complexity of the expected application of
the implemented system. Moreover, the sequence “uav1” is included in the VOTS2023
benchmark [13] on segmentation tracking, indicating the high-quality and challenging
nature of the sequences. All used implementations of the bounding box trackers are
from the OpenCV library1, including the weights for the deep learning-based trackers.
Figure 4.1 shows a few frames from the selected UAV123 sequences.

Figure 4.1. Frames of the selected sequences from the UAV123 dataset. The green bounding
box indicates the ground truth annotation.

1 https://opencv.org
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The anchor-based evaluation methodology from the VOT2020 benchmark [11] is used
for the evaluation. Each tracker is initialized at a specific frame (anchor) and run
without further re-initialization. Anchors are placed approximately 50 frames apart
(depending on whether the object is visible or not). If an anchor is placed in the first
half of a sequence, the tracker is evaluated in the forward direction. Otherwise, the
tracker is evaluated in the backward direction. Such an evaluation technique allows
an objective comparison of all trackers because the trackers cannot show improved
performance based on a random favorable re-initialization. On a sub-sequence starting
from an anchor 𝑎 of a sequence 𝑠, the considered metrics taken from [12, 22] are defined
as:

. Accuracy 𝐴 is the average overlap (or Intersection over Union, IoU) between the
ground truth and the prediction before a failure, averaged over all sequences. Failure
is defined as the frame where the overlap between the ground truth and prediction
dropped below 0.1 and did not increase above this threshold during the subsequent
10 frames. This is expressed as:

𝐴 = 1
∑𝑠 ∑𝑎 𝑁𝐹

𝑠,𝑎
∑

𝑠
∑

𝑎

𝑁𝐹
𝑠,𝑎

∑
𝑖=1

Ω𝑠,𝑎(𝑖),

where 𝑁𝐹
𝑠,𝑎 is the number of frames before the failure starting from the anchor 𝑎 in

the sequence 𝑠, and Ω𝑠,𝑎(𝑖) is the overlap between the prediction and the ground
truth bounding boxes at the frame 𝑖.

. Robustness 𝑅 is the percentage of successfully tracked frames averaged over all se-
quences. Successfully tracked frames are all frames before a failure. This is expressed
as:

𝑅 =
∑𝑠 ∑𝑎 𝑁𝐹

𝑠,𝑎

∑𝑠 ∑𝑎 𝑁𝑠,𝑎
,

where 𝑁𝑠,𝑎 is the number of frames starting from the anchor 𝑎 in the sequence 𝑠.

. Precision 𝑃 is the percentage of frames whose Euclidean distance (in pixels) between
centers of the ground truth and the prediction is lower than a given threshold, av-
eraged over all sequences. A precision plot then depicts the precision metric as a
function of different thresholds (typically 0-50 pixels). A threshold of 20 pixels was
chosen as the representative precision included in Table 4.1. This is expressed as:

𝑃(𝛼) = 1
∑𝑠 ∑𝑎 𝑁𝑠,𝑎

∑
𝑠

∑
𝑎

𝑁𝑠,𝑎

∑
𝑖=1

[𝑑𝑠,𝑎(𝑖) ≤ 𝛼],

where 𝑑𝑠,𝑎(𝑖) is the Euclidean distance between centers of the prediction and the
ground truth bounding boxes starting from the anchor 𝑎 in the sequence 𝑠 at the
frame 𝑖.

. Success rate 𝑆 is the percentage of frames whose overlap between the ground truth
and the prediction is higher than a given threshold, averaged over all sequences. A
success plot then depicts the success rate as a function of different thresholds. A
threshold of 0.5 was chosen as the representative success rate included in Table 4.1.
This is expressed as:

𝑆(𝛼) = 1
∑𝑠 ∑𝑎 𝑁𝑠,𝑎

∑
𝑠

∑
𝑎

𝑁𝑠,𝑎

∑
𝑖=1

[Ω𝑠,𝑎(𝑖) ≥ 𝛼].
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. Area Under Curve (AUC) is the area under the curve of the success plot. This metric

ranks the trackers in Table 4.1. This is expressed as:

AUC = ∫
1

0
𝑆(𝛼) 𝑑𝛼.

Figure 4.2 shows a plot of each tracker’s accuracy/robustness metrics. Figure 4.3 depicts
the precision and success plots. Table 4.1 summarizes all the metrics; for precision/suc-
cess scores, the representative thresholds described previously are used. Table 4.1 also
lists the average computation speed of the trackers, which is crucial to consider for
resource-constrained environments.
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Figure 4.2. Accuracy/robustness plot of the bounding box trackers evaluated on chosen se-
quences from the UAV123 dataset.
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Figure 4.3. Plots of the precision and success metrics for the bounding box trackers evaluated
on chosen sequences from the UAV123 dataset.
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Tracker Accuracy Robustness Precision Success AUC FPS
Nano 0.658 0.357 0.400 0.250 0.220 108.5
DaSiamRPN 0.529 0.410 0.385 0.181 0.183 13.1
GOTURN 0.324 0.063 0.184 0.082 0.085 21.8
MedianFlow 0.457 0.185 0.155 0.072 0.074 623.7
TLD 0.413 0.061 0.063 0.032 0.035 42.7

Table 4.1. Summary of the different metrics of the bounding box trackers evaluated on chosen
sequences of the UAV123 dataset. For each metric, red, green, and blue colors denote first,
second, and third place, respectively. FPS was measured on the Intel Core i7-12700H processor
with 14 cores and 20 physical threads. Note that FPS heavily depends on the platform.

Tracker Window Levels
MedianFlow 21×21 4
TLD 10×10 2

Table 4.2. Differences between hyperparameters of the MedianFlow and TLD trackers. “Levels”
denote the number of levels in the image pyramid, which may significantly impact the tracker’s
ability to capture large motions. “Window” denotes the size of the feature window in pixels,
which may notably affect the tracker’s accuracy.

The results show that the best performant tracker is Nano, which only lacks robustness.
DaSiamRPN achieving better robustness than Nano may be explained by the local-to-
global search strategy for re-detecting the object of interest. Long-term tracking is not
essential for the intended application, as the needed re-detection is executed by the
LiDAR-based detection algorithm. Regarding computation speed, Nano runs at over
100 FPS on a multi-core CPU, which is suitable for real-time tracking onboard UAVs.
The only tracker executing at a much higher FPS is MedianFlow, which, on the other
hand, performs much worse than Nano in the other metrics.

Surprisingly, MedianFlow shows much better results than TLD at a lower computational
cost. This may be explained by the fact that the hyperparameters of the MedianFlow
tracker have been set to capture large movements, while the TLD tracker uses the
default parameters of MedianFlow. Table 4.2 shows used hyperparameters. Hyperpa-
rameters of the trackers were not set the same due to implementation limitations, as the
available Application Programming Interface (API) does not provide a way to change
the parameters.

Notably, GOTURN performs the worst according to the VOT2020 metrics. However,
GOTURN is the third best regarding precision/success metrics. This may be explained
by the fact that the VOT2020 metrics are calculated before a failure, and any further
recoveries are not considered in the calculation once failed. GOTURN might recover
past 10 frames used in the failure definition, which might provide better results, reflected
in the precision/success results. Even though GOTURN does not explicitly possess a re-
detection module, the previous template (“what to track”) together with new locations
(“where to look”) give a chance for recovery.
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4.2 Sparse Feature Tracking

The Lucas-Kanade and CoTracker sparse feature trackers were evaluated on a manually
annotated video sequence of 312 frames. The sequence consists of tracking a UAV from
a camera placed onboard another chasing UAV. Figure 4.4 shows the first and last
frames of the sequence together with the ground truth. This sequence, similar to those
in the UAV123 dataset, presents significant challenges for tracking. The target UAV
moves continuously, has rotating wings, and is filmed by a camera that also moves and
rotates. These factors combine to create a complex scenario to thoroughly test the
capabilities of sparse feature trackers in drone-hunting applications.

Figure 4.4. First and last frames of the manually annotated sequence for evaluating sparse
feature trackers. Distinct color circles denote different ground truth point annotations.
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The implementation of the Lucas-Kanade tracker utilizes a pyramidal approach from
the OpenCV library, employing a four-level image pyramid and a 21×21 pixel feature
window. These hyperparameters are similar to those used in the previously discussed
MedianFlow tracker. For the CoTracker, the weights from the project’s official GitHub
repository2 are used.

The calculated statistics for evaluating sparse feature trackers include accuracy and
FPS. Accuracy 𝐴 is the percentage of points whose Euclidean distance (in pixels) be-
tween the ground truth and the prediction is lower than a given threshold, averaged
over all frames of the video sequence. This is expressed as:

𝐴(𝛼) = 1
𝑁

𝑁
∑
𝑡=1

1
𝑀𝑡

𝑀𝑡

∑
𝑖=1

[𝑑𝑡(𝑖) ≤ 𝛼],

where 𝑁 is the number of frames in the sequence, 𝑀𝑡 is the number of non-occluded
points at the frame 𝑡, and 𝑑𝑡(𝑖) is the Euclidean distance between the 𝑖-th non-occluded
ground truth and predicted point at the frame 𝑡. 𝐴𝑎𝑣𝑔 is the average of 𝐴(𝛼) across
five thresholds: 1, 2, 4, 8, and 16 pixels.

An additional metric worth considering is occlusion prediction, where each tracker
estimates whether a tracked point becomes occluded. While occlusion prediction is a
valuable metric for evaluating tracker performance, it was not calculated in this thesis.
This omission is primarily due to the Lucas-Kanade method’s inherent limitation in
providing such predictions. Although the CoTracker offers this capability, the absence
of comparable data from the Lucas-Kanade tracker makes a fair comparison impossible.
Therefore, while occlusion prediction remains a noteworthy consideration for future
evaluations, it is not applicable in the current analysis.

Figure 4.5 shows the accuracy plot of the evaluated sparse feature trackers. Table 4.3
lists each tracker’s average accuracy and computation speed. The results show that the
best sparse feature tracker is the Lucas-Kanade, which demonstrates superior accuracy
and excellent computation speed on multi-core CPUs. In contrast, the CoTracker is less
accurate, which may be explained by several factors: the high-speed rotary wings of
the tracked UAV, the non-stationary camera movement, and the changing appearance
of the tracked UAV due to variations in illumination and viewpoint throughout the
sequence.

The CoTracker’s windowed inference approach, while sophisticated, poses challenges
for rapid frame-by-frame prediction, particularly when the number of incoming frames
is less than the inference window. This limitation and slow computation speed on
CPUs make the CoTracker unsuitable for embedded applications but still valuable as a
baseline for evaluating other point trackers.

Tracking points on highly dynamic objects with the LK method can be challenging,
especially on UAVs with rotary wings, as it directly violates the assumptions of the
LK algorithm. However, despite the disadvantages of the LK method, it is highly
computationally efficient, especially for a low number of points. Moreover, it can be
effectively parallelized by performing the same operation for each point, resulting in a
linear speedup.

It is important to note that both trackers’ accuracy metric heavily depends on the
quality of the provided annotations. The short sequence was manually annotated to

2 https://github.com/facebookresearch/co-tracker
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Figure 4.5. Accuracy plot of the sparse feature trackers evaluated on the manually annotated
sequence.

Tracker 𝐴𝑎𝑣𝑔 FPS
Lucas-Kanade 0.359 2135.38
CoTracker 0.291 0.24

Table 4.3. Summary of the different metrics of the sparse feature trackers evaluated on the
manually annotated sequence. FPS was measured on the Intel Core i7-12700H processor with
14 cores and 20 physical threads.

ensure reliability. However, to validate these results more comprehensively, developing
a realistic simulation environment capable of generating accurate annotations would be
beneficial. Such an approach would offer a controlled setting for evaluating trackers’
performance and verifying findings from real-world data.

4.3 Multi-Camera Tracking

The implemented multi-camera system was evaluated in simulation, with the config-
uration shown in Figure 4.6. The MedianFlow tracker was used for each camera’s
independent tracker, with the hyperparameters described previously. The interception
scenarios were generated using the guidance technique introduced in [17]. The eval-
uation of the multi-camera system revealed several challenges inherent to high-speed
interception maneuvers. The critical problems identified include:

. Rarity of Ideal Scenarios: Many generated maneuvers are unusable because the ideal
scenario — when an object is detected within the front camera’s FOV and the front
camera successfully exchanges information with the down camera — occurs infre-
quently.

. Limited Frame Availability: Generated scenarios typically contain only 20-30 frames
in total, often with just 2-3 frames per camera during the interception maneuver.
This scarcity of camera frames makes continuous tracking of the object extremely
challenging.
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LiDAR sensor

Intel RealSense
stereo cameras

Figure 4.6. UAV configuration for evaluating the implemented multi-camera system in the sim-
ulation. The UAV is equipped with a 3D LiDAR sensor and a pair of Intel RealSense stereo
cameras. In the simulation, the stereo cameras are placed at the same coordinate and orienta-
tion, differing only in the pitch angles: 45∘ for the front camera and 65∘ for the down camera.

. Tracker Assumptions vs. Reality: Standard trackers assume relatively smooth object
motion between subsequent frames. However, this assumption breaks down during
high-speed interception maneuvers, even in simulation environments.

. Asynchronous Sensor Operation: The system’s sensors operate at different frequen-
cies — LiDAR sensor at 10 Hz and cameras at 30 Hz — introducing temporal mis-
alignment between incoming detections and camera images. While software synchro-
nization is implemented, mismatches between incoming detections and the tracked
object still occur, complicating the initialization of the front camera’s tracker.

. Camera Synchronization Issues: The cameras in the system are not hardware-
synchronized. To ensure proper system functionality, additional software-based
synchronization is necessary. This software synchronization introduces its own
complexities and potential for timing misalignments.

Figure 4.7 illustrates the behavior of the implemented multi-camera tracking system
during a critical interception maneuver in one cherry-picked scenario. The results reveal
that the front camera’s initial bounding box demonstrates high accuracy, and the Me-
dianFlow tracker successfully maintains object tracking despite the high-speed nature
of the maneuver. After several frames, the front camera effectively shares information
with the down camera, initializing its tracker. However, the down camera’s tracker ini-
tially struggles, losing the object after just one frame and only resuming tracking upon
receiving another exchange from the front camera. The second information exchange
provides a more precise bounding box, enabling the down camera to track the object
consistently until it leaves its FOV. Throughout the entire sequence, the front camera
maintains successful object tracking. These observations highlight the system’s capa-
bilities and potential areas for improvement in multi-camera tracking during high-speed
interception scenarios.
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Figure 4.7. Behavior of the implemented system during the interception maneuver. “Front
projections” denote the projected points from the LiDAR-based detector. “Down projections”
denote the projected points by exchanging tracking information. “Front tracker” and “Down
tracker” are independent trackers for each camera.
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Chapter 5
Conclusion

This thesis explored several approaches to multi-camera visual tracking onboard UAVs
to complement a LiDAR-based detection algorithm [21] in the context of drone-hunting.
Various visual tracking methods were investigated, including sparse feature and bound-
ing box tracking, highlighting each method’s strengths and weaknesses. The evalua-
tion of the bounding box trackers revealed trade-offs between computational cost and
tracking performance. Among the considered bounding box trackers, the Nano tracker
emerged as highly efficient and accurate for real-time deployment onboard UAVs. Fur-
thermore, the feasibility of extending single-camera trackers into the multi-camera set-
ting was examined using the projective geometry and the pinhole camera model.

The simulation-based evaluation of the implemented multi-camera system revealed sig-
nificant challenges. The majority of the simulated trajectories were found to be imprac-
tical for immediate use, primarily due to the made assumptions about expected system
behavior. The hypothetical ideal scenario for the interception maneuver proved to be
excessively constraining, revealing the need for a more flexible approach in real-world
applications.

Future research should prioritize the development of a more flexible approach to inter-
ception scenarios, moving beyond the current restrictive assumptions. Emphasis should
be placed on creating a unified sensor integration framework, thoroughly exploring the
fusion of LiDAR-derived spatial information with visual clues from cameras. Leveraging
pre-calculated apriori maps to enhance security in specific areas presents an intriguing
research opportunity. Moreover, the current reliance on projective geometry may be
overly limiting, suggesting the need to explore alternative approaches for combining
data from multiple cameras.
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Appendix A
AI Tools

This appendix provides a brief overview of the Artificial Intelligence (AI) tools used
in the research and writing process of this bachelor’s thesis. The use of these AI tools
aligns with the guidelines and permitted extent outlined in the “Framework Rules for
the Use of Artificial Intelligence at CTU for Study and Teaching Purposes in Bachelor
and Follow-up Master Studies” document (issued on 29th January 2024).

ChatGPT (OpenAI)1, and Gemini (Google DeepMind)2 have been used as general-purpose
tools, facilitating self-study, text reformulation, literature search, and data visualiza-
tion. Elicit3, Consensus4, and Semantic Scholar5 have been used for the initial literature
search. SciSpace6 has been used for literature review with the AI copilot.

1 https://chat.openai.com
2 https://gemini.google.com
3 https://elicit.com
4 https://consensus.app
5 https://semanticscholar.org
6 https://typeset.io
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Appendix B
Abbreviations

AI . Artificial Intelligence

API . Application Programming Interface

AUC . Area Under Curve

CNN . Convolutional Neural Network

CPU . Central Processing Unit

FOV . Field of View

FPS . Frames Per Second

GPU . Graphics Processing Unit

IoU . Intersection over Union

LiDAR . Light Detection and Ranging

LK . Lucas-Kanade

TLD . Tracking-Learning-Detection

UAV . Unmanned Aerial Vehicle

VOT . Visual Object Tracking
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