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Instructions

A key goal in the cognitive sciences is the development of mathematical models for
mental representations of object concepts. In this context, a large triplet-based dataset
(named 'Things') on object concepts was created, composed of triplets of pictures
presented to human subjects who judged which one is the most different. Forinstance, a
triplet can be considered with the following three figures: (A) a dog; (B) a cat; and (C) a bus.
This triplet is presented to a human subject who should answer, according to their
opinion, which of these three pictures is the odd one when considering the group (e.g, (C)
Bus). With a large dataset of these experiments, mathematical models were developed
to better understand how humans form concepts. This dataset was also previously
utilized to study the human alignments of pretrained computer vision models. However,
less attention has been given to natural language processing (NLP) models. In this thesis,
the main objective is to analyze how pretrained NLP models align with human's object
concepts based on the 'Things' dataset. The following tasks are expected:

1) Captioning the images of things based on at least three captioning-based NLP models.
2) Conducting a literature review to outline at least fifteen general use pre-trained NLP
models (e.g., Bert) that form a representative set of the state-of-the-art.

3) Extracting feature vectors from the last layers of the NLP models, by using the captions
of (1) as inputs and (2) as pre-trained models.

4) Comparing the feature vectors (using at least two metrics) to classify tripplets,
considering the 'Things' triplets datasetin a zero-shot learning fashion.

5) Comprehensively discuss the results of the thesis involves verifying possible
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interpretable aspects and how different classes of NLP models align with 'Things'

concepts.
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Abstract

This study proposes a strategy for evaluating the performance of Large Language Models
(LLMs) in comparison to natural human behavior. A comprehensive dataset of basic
everyday concepts paired with relevant images was employed. Each image was annotated
using three captioning methods: BLIP, ViT, and ChatGPT-4V. In subsequent stages,
the generated captions, along with the original image names, were processed through 24
state-of-the-art natural language processing models from eight distinct families. Vector
representations from the last five layers of these models were extracted and compared
using two scoring metrics. These embeddings were then utilized to solve an odd-one-
out task on a complex triplet dataset. The evaluation results indicate that accurately
mimicking human perception remains challenging for most models. However, models
from the GPT-2 and BERT families achieved an approximate accuracy of 40 — 50%
in analyzing complex triplets. Furthermore, the findings suggest that longer and more
detailed input texts facilitate more human-like responses from the models. Despite
these advancements, there remains significant scope for improving LLMs to ensure their
applicability across diverse environments and better understanding of nuanced concepts
without the need for extensive adjustments.

Keywords Large Language Models, Human Concept Representations, Odd-one-out
Problem, Zero-shot Learning, Image Captioning, Explainable Artificial Intelligence

Abstrakt

Tato studie navrhuje strategii pro hodnoceni vykonu velkych jazykovych modeli ve
srovnani s prirozenym lidskym chovanim. Byl pouzit rozsahly dataset zakladnich kazdo-
dennich konceptti sparovanych s relevantnimi obrazky. Kazdy obrézek byl anotovan
pomoci ti metod popisu: BLIP, ViT a ChatGPT-4V. V nésledujicich krocich byly vy-
generované popisky spolu s pavodnimi nazvy obrazku zpracovany prostiednictvim 24
state-of-the-art model na zpracovani prirozeného jazyka z osmi ruznych rodin. Byly
extrahovany vektorové reprezentace z poslednich péti vrstev téchto modeli a porovnany
pomoci dvou hodnoticich metrik. Tyto vektory byly nasledné vyuzity k feseni tlohy
“najdi vetrelce“ na obsdhlém datasetu trojic obrazkt. Vysledky hodnoceni ukazuji,
ze presné napodobeni lidského vnimani zlstava pro vétsinu model obtizné. Nicméné
modely z rodin GPT-2 a BERT doséhly priblizné presnosti 40 — 50% pti analyze tro-
jic. Zjisténi rovnéz naznacuji, ze delsi a podrobnéjsi vstupni texty usnadnuji modeltim
vytvaret odpovédi podobnéjsi tém lidskym. Navzdory témto pokroktm zlstava znacény
prostor pro zlepseni LLM, aby byla zajisténa jejich pouzitelnost v rtiznych prostredich
a lepsi pochopeni zakladnich konceptt bez nutnosti rozsahlych tprav.

Klicova slova Velké Jazykové Modely, Reprezentace Lidskych Koncepti, Problém

Vy¢nivajictho Prvku, Ué¢eni bez Vzorku, Titulkovani Obrazku, Pochopitelna Umeéla Iteli-
gence
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Chapter 1

INTRODUCTION

1.1 Motivation

Understanding and processing human language remains a hard task that interested peo-
ple for more than a century. The early history of this pursuit can be traced back to
the mid-20th century, marked by the initial attempts to decode information and es-
tablish the foundational theories of language perception [1]. By the 1960s and 1970s,
a rule-based approach dominated language understanding endeavors. Several systems
that relies on sets of linguistic rules were created (for instance ELIZA - the first program
using natural language processing (NLP) [2]), but, unfortunately, they were limited by
the complexity of natural language variations and struggled to encompass all linguistic
nuances effectively.

Subsequently, during the following years up to 1980, only minor advances were
achieved, leading to a period often referred to as “the first AI winter”. After some time
the concept of statistical language models emerged as a prominent paradigm. These
type of models employed various statistical methodologies to analyze extensive amount
of not-standardized input textual data, calculate how often certain words appear within
this text and make some predictions about the following potential word [3]. While rep-
resenting an advancement over rule-based systems, statistical models still had multiple
limitations in accurately capturing context and semantics.

The next important breakthrough in language processing occurred with the rise of
neural network-based methodologies, particularly with the evolution of deep learning
techniques in the 2010s. This era faced the transforming impact of recurrent neural
networks (RNNs) on NLP [4]. RNNs completely revolutionized the field by providing
simplified processes for interpreting contextual information and identifying semantic
relationships within the text. Their ability to dynamically capture dependencies over
sequences of data fundamentally changed the landscape of NLP, opening up new horizons
for advanced language understanding and generation.

Since then, the computational capabilities of computers raised, empowering researchers
to perform experiments with larger and more complex neural network architectures
trained on massive datasets. Among these advancements, the introduction of the trans-
former architecture [5, 6] stands out prominently. Soon after its inception, transformers
swiftly replaced recurrent neural networks for solving variety of NLP tasks due to their
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ability to capture long-range dependencies more efficiently.

In contemporary times, Large Language Models (LLMs) have emerged as ubiquitous
instruments in the realm of NLP-based artificial intelligence, being an important tool to
researchers, specialists and practitioners alike [7]. Due to their capacity to comprehend
(and often produce) text analogously to human language, LLMs have attracted consid-
erable interest and are utilized across a broad spectrum of tasks and applications. It is
important to notice how they have transformed the field of Al and language processing,
by being widely used not only for natural language understanding purposes, but also for
machine translation generation, text summarization, question answering and beyond [8].
Their flexibility and ability to adjust gives them invaluable possibilities for coping with
linguistic obstacles, overcoming traditional boundaries and fostering innovation across
various fields. Therefore, recent advancements in LLMs have raised the field of NLP to
new heights [9, 7].

Most successful LLMs are based on transformers. For instance, the BERT model
(Bidirectional Encoder Representations from Transformers) [10, 11, 12] has the ability
to adapt and solve a variety of problems. Additionally, in recent years models like GPT
(Generative Pre-trained Transformer) by OpenAl [13, 14, 15] and BART (Bidirectional
and Auto-Regressive Transformers) by Google [16] appealed. They democratized access
to advanced language processing capabilities and gave an opportunity to ordinary people
to interact and actively use these technologies with Chat GPT [17] or Gemini [18]. LLMs
changed our everyday life from using ordinary search engines and virtual assistants like
Siri or Alexa to automated content creation tools.

Still, even in the present day, Large Language Models often remain ‘black boxes’ [19].
Complete understanding of their inner processes and architecture is challenging, which
makes it difficult to predict or control their precise outputs [20, 21, 22]. Consequently,
it becomes crucial to extensively monitor and examine their performance to ensure their
reliability, effectiveness and mitigate potential risks associated with their deployment.
Additionally, assessing how closely their outputs resemble human expressions and genera-
tion is essential for evaluating their utility and potential usage across various applications
(23, 24].

Therefore, the primary focus of this research is to understand how representations of
objects by black-box-based LLMs align with human concept representations. Previous
related studies have employed diverse methodologies to the task of understanding LLM’s
black boxes mechanisms, such as perturbing input examples [25, 26], employing probing
strategies [27, 28], and utilizing surrogate models with simplified representations [29].
Our alignment strategy significantly deviates from these approaches. This thesis builds
on previous research in the realm of aligning human and neural representations [30].
However, instead of focusing on computer vision, this study explores the natural lan-
guage processing domain. Our primary aim in our experiment setup is to compare the
outcomes of solving triplet-based odd-one-out tasks between human participants and
artificial intelligence approaches. This problem involves presenting three different items
and asking participants to identify the one they consider most different, according to
their own judgment, or equivalently, the two most similar. This task is based on pattern
recognition and logical reasoning and can be used to assess cognitive skills such as cate-
gorization and problem-solving and it’s a important and well-studied research problem
in the field of cognitive sciences.
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In our experiment, for a comprehensive comparison, we utilized the THINGS dataset
[31], which includes a diverse range of triplets based on a variety of object images. Our
experimental pipeline can be briefly described as follows: the images were processed using
state-of-the-art image captioning models, and the resulting captions were then fed into
language models. Subsequently, we extracted the embeddings from these large language
models (LLMs) to perform the odd-one-out task using only these embeddings in a zero-
shot learning fashion. Ultimately, the image deemed most dissimilar was compared with
the human response to identify potential areas of disparity or conceptual challenges. The
overarching objective of this study was to highlight differences in how LLMs represent
concepts, with the aim of facilitating future improvements and enhancing user awareness.

1.2 Assignment and Contributions

This master’s thesis fulfills all the objectives of its proposed assignment.

The main contributions of this thesis and their relationship to the objectives are
as follows:

1. In this thesis, we propose a framework to analyze the alignment of human object
concepts with the representations in the latent space of LLMs. Our pipeline is
described in Chapter 4.2 and encompasses captioning, extracting feature vectors
of LLMs (items 1, 3, and 4 of the original assignment);

2. We analyze our pipeline with four captioning methods and extract embeddings
from twenty-four different LLMs (items 1, 2, and 3 of the assignment). Results
can be seen in Chapter 4.3 and 4.4;

3. We compare the embeddings using Cosine and Euclidean distances in a zero-shot
learning approach, using the THINGS dataset (assignment item 4).

4. We discuss our results by comparing captioning models and LLMs regarding the
alignment in Chapter 5;

5. A theoretical background and state-of-the-art approaches are available in Chap-
ter 2;

Part of the results of this thesis were submitted to the ACM Transactions on Intel-
ligent Systems and Technology (SCOPUS indexed). It is currently under review.

Anastasiia Hrytsyna and Rodrigo Alves. From Representation to Comprehen-
sion: Aligning Large Language Models with Human Object Understanding. Under
review in: ACM Transactions on Intelligent Systems and Technology, 2024.
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1.3 Thesis Organisation

The thesis organization is divided into few central chapters that effectively guide reader
through the various aspects of the research, from foundational concepts to experimental
findings and conclusions. Below is a compilation of these sections:

1.

INTRODUCTION

This section provides an overview of the thesis topic, starting with an introduction
to Large Language Models (LLMs) and offering a brief historical background to
contextualize their development and significance.

. THEORETICAL FOUNDATION

This section delves into the core concepts relevant to the research, including Odd-one-
out Problem, Zero-shot Learning, and Image Captioning. It explores different types
of image captioning, their applications and associated challenges. Another significant
subsection focuses on LLMs (Large Language Models), covering various aspects such
as different architectures (e.g., transformers), tokenization, word embedding, and
attention mechanisms. This provides readers with a comprehensive understanding
of the theoretical foundations underpinning whole research.

RELATED WORK

The following chapter, related works, presents a comparative analysis of a few
existing approaches for image captioning, text processing using different NLP mod-
els and their evaluation in comparison to the human beings. By reviewing related
work, it is easier to understand how this research contributes to the existing body of
knowledge in the field.

. METHODOLOGY

This section outlines the experimental methodology employed in the thesis. It in-
cludes descriptions of the input Dataset, the Image Captioning Models used for
image describing and Language Processing for language processing, and the process
of extracting the last hidden state. Additionally, it explains how zero-shot learning
was scored using various metrics. And, finally, it provides some insights into the
Experiment Pipeline.

. EXPERIMENTS

Here, some findings of the experiment are presented. This involves comparing the
outcomes of the models to human labels (Zero-shot Prediction), addressing any com-
plications encountered during the process (e.g., imprecise image captioning - The
Impact of Image Captioning), and discussing the impact of factors such as LLM
type, size and architecture (The Impact of Language Model Selection) and image
type (The Impact of Image Origin) on the results. You also analyze the effectiveness
of zero-shot prediction in general based on the experiments.

CONCLUSION

This section offers a Summary of your research findings and discusses potential av-
enues for Further Enhancements.



Chapter 2

THEORETICAL FOUNDATION

2.1 Odd-one-out Problem

Odd-one-out task is a fundamental problem often found in modern Intelligence Quotient
(IQ) tests that helps to understand different relationships among the objects. The main
idea of the task itself is to identify the item that does not belong among other sets of
items or concepts.

Let S be a collection containing 3 elements, denoted as S = {x1, z2,x3}. The goal is
to identify the odd-one-out element x, (in this study - the object concept), within the
collection S based on a specified criterion or property. Mathematically, the odd-one-out
problem can be represented as:

To=arg min f(xi, 5)

where:
T, is the odd-one-out item in the collection S.

f(x;,S) is a function that evaluates the similarity of element x; € S to the
remaining triplet elements {y € S|y # x;}. In this study, the odd-one-out is
determined by minimizing this function.

The choice of function f(x;) depends on the specific context and characteristics of
the elements in the set, as well as the criteria used to define the odd-one-out.

Triplet 1 Triplet 2 Triplet 3

-

34

Fox Bear Kangaroo Bonsai Blender Ribbon

Orange  Blueberry

B Figure 2.1 Example of triplets that can be used in the odd-one-out task. All of the images
are copyright-free images from THINGS+ dataset [32]
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In our study, the challenge of the problem lies in identifying the most distinct image
concept by comparing generated image captionings and analyzing them with LLMs. It is
crucial to examine the difference between human visual perception and language models
text understanding in terms of defining differences and similarities within the exact
context. While some solutions may be straightforward, others demand considerable
effort or creative thinking. For example, in Figure 2.1 is shown “Triplet 1” and it is
relatively easy to identify that “Goat” is a probable distinct item because it’s an animal,
while the others are fruits. Yet, many cases offer less direct understanding, by presenting
a higher level of subjectivity. For instance, in “Triplet 2” the odd-one-out may be “Fox”
due to its fur color or “Kangaroo” for not being a local animal for Czech Republic
territory. Moreover, in certain cases (as seen in "Triplet 3”), discerning dependencies
can prove challenging even for human beings. This is why directly comparing model
results to human labels is not a straightforward task, as the ground truth is not clearly
defined. Nonetheless, observe that, different from the case of image captioning as is
known, the odd-one problem from triplets problem does not have ground truth. The
decision of which item is the most different depends on a series of aspects, such as culture,
taste, and knowledge of the participant choosing. However, we note that the collective
behavior can be studied.

In the realm of computer science, the odd-one-out problem serves as a valuable tool
for testing robots and artificial intelligence [33, 34]. Solving this task often requires
model training to recognize some patterns in the given input, analyze the characteris-
tics or attributes of each item, define exact associations among a set of items and then
determine the outlier that does not conform to the established pattern [35]. This can be
achieved through various problem-solving approaches and methods [36, 34, 37|, includ-
ing natural language understanding and processing, image recognition, pattern analysis
or even anomaly detection. Furthermore, a wide range of different techniques can be
employed, ranging from providing a selected model with labeled examples (supervised
learning), allowing the model to discover patterns on its own (unsupervised learning) or
guiding it through trial and error (reinforcement learning).

2.2 Zero-shot Learning

Zero-shot learning (or zero-data learning) [38] has surged in popularity over recent
decades within the machine learning sphere [39, 40]. The main idea is to train some
models to recognize classes and categorize input objects that have never been encoun-
tered during the training process. This approach holds particular relevance in scenarios
where acquiring labeled dataset for all potential classes is either extremely challenging,
time-consuming or prohibitively expensive.

In comparison to traditional supervised learning methods that require labeled dataset
for its training, zero-shot learning aims to recognize new (unseen) classes without explicit
examples by leveraging semantic similarities and extracting crucial features associated
with the classes. These important features could include textual descriptions, visual
resemblances, semantic embeddings or other forms of structured data. Combining mul-
tiple feature extraction techniques often proves highly effective and more accurate in
ZSL. Through this process, input items are mapped to the most corresponding class in a
semantic space later on [40]. An illustration of zero-data learning could involve instruct-
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ing a model to identify a particular animal, such as a koala, without directly exposing it
to any koala images. Instead, the model receives descriptions indicating that the animal
is four-legged creature, resembling a small bear and characterized by gray fluffy fur and
big nose, among other features.

It is crucial to understand that ZSL still relies on labeled training data, however it
does not necessitate labels for every individual class. Sufficient labeled data is required
to establish patterns or contextual understanding, which can subsequently be generalized
to unseen classes.

Nowadays, ZSL finds widespread application across various machine learning do-
mains, including chat bots, search engines, multi-label classification [41], news sentiment
classification [42], visual emotions recognition [43], clinical language processing [44] and
numerous other tasks, capable of handling novel situations [39, 45, 46]. In our study,
we chose to employ zero-data learning to address natural language processing tasks and
explore the disparity between human perception of odd-one-out items among triplets
and the embedding representations generated by Large Language Models.

2.3 Image Captioning

Image captioning is a complex computer vision and NLP task of generating textual
descriptions for input images [47, 48]. This sophisticated computational process aims to
produce coherent and informative sentences that accurately portray the visual content
depicted within the image. For doing this most of the systems use encoder-decoder
framework, where input image (sequence of pixels) is transformed to the set of meaningful
features that are hidden in it and then this information is decoded to the descriptive text
(sequence of words) (see Figure 2.2). That is why often image captioning is considered
a Sequence to Sequence problem.

<start> Bee flies <end>

Pretrained

CNN

Feature Vector

Input Image

<start> Bee other

B Figure 2.2 Encoder-Decoder Framework for Image Captioning Process. Input image is
copyright-free image from THINGS+ dataset [32]
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2.3.1 General Concept

The whole process of creating textual descriptions for input images is crucial in terms
of effective passing visual information to the next processing stages. The more exact
captioning is, the more details have been noticed and recorded as a text. It may be
divided into few important stages [48]:

1. Image Understanding

Regrettably, none of the recurrent neural networks can directly process an RGB
image tensor as input. Therefore, an input image must undergo processing by a
Convolutional Neural Network (CNN) to extract essential high-level features that
may be visually observed in the image’s content [49]. The central component of a
CNN is the Conv2d layer, which reveals concealed patterns by extracting crucial
features. These features serve as foundational elements that enable the network to
comprehend the content depicted in the image and encapsulate details regarding
objects, colors, types, shapes, textures, and various spatial relationships present
in the image. Popular CNN architectures used for this purpose include VGG-16,
ResNet and Inception, each renowned for its ability to effectively capture intricate
visual features.

2. Feature Encoding

In the subsequent stage, all previously extracted visual features are passed to a recur-
rent neural network (RNN), typically employing long short-term memory (LSTM)
or gated recurrent unit (GRU) cells [50]. LSTMs are well-suited for sequential data
processing tasks due to their ability to retain information over long sequences and
mitigate the vanishing gradient problem often encountered in traditional RNNs. An-
other method (GRU) is quite similar to LSTM, but with a simplified architecture,
making it computationally more efficient for solving the same tasks. In general, the
RNN then systematically processes these features one by one, generating a sequence
of hidden states (embeddings) that encode the concealed information within the
image input. These hidden states, represented as vectors, facilitate their seamless
integration into subsequent phases of the process.

3. Language Generation

Following the feature encoding, the caption generation takes place. It is produced by
another branch of RNN that uses an initial start token and progressively crafting the
complete caption word by word. At each time step, the RNN predicts the next word
by using the current hidden state and previously generated words (tokens). This
iterative process continues until either the end token is generated or a maximum
caption length is reached.

4. Training and Evaluation Phases

In the last phase all previously mentioned steps have to be combined and one final
model has to be trained. During the training model tries to generate different cap-
tions and then they are compared to the original one provided for training (in this
step reinforcement learning [51] may be used). The more similar captions are, the
better it is.
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After the training phase the model performance has to be evaluated by comparing
its generated outputs to human-written annotations. For doing this, metrics for text
difference analysis like BLEU (Bilingual Evaluation Understudy), METEOR (Metric
for Evaluation of Translation with Explicit Ordering) or CIDEr (Consensus-based
Image Description Evaluation) may be very useful [52].

2.3.2 Types of Image Captioning

There are several approaches to image captioning, each characterized by its own strengths,
weaknesses or limitations [53]. Understanding these diverse methodologies is essential
for navigating the landscape of image captioning research effectively. Here are some of
the primary types:

= Template-based Captioning. This method relies on pre-established sentence tem-
plates or structures to maintain consistency in generating captions. Foundational to
the field of image captioning, it defines a structured framework for ensuring coherence
and uniformity in textual descriptions.

m Deterministic Captioning. With deterministic models, the caption generated for
a particular image remains constant upon repeated analysis. This approach stands
as a conventional method within the realm of image captioning models.

m Stochastic Captioning. In contrast to the previous method, stochastic models
have the capacity to provide a variety of different captions for the same input image,
operating on the basis of probabilities. This aspect represents a progressive dimension
of Al image captioning, fostering dynamic interpretations and enriching the realm of
artificial intelligence.

m Attention-Based Captioning. This method utilizes attention mechanisms to di-
rect the model’s focus to the exact regions of the image during caption generation.
This dynamic adjustment enables the model to produce captions that are more con-
textually relevant by emphasizing relevant visual features.

= Conceptual Captioning. The model prioritizes the generation of captions that
depict the concepts and correlations within the image, rather than merely offering a
straightforward description of its visual elements.

m Free-form Captioning. True to its name, this approach grants a wider scope for
expression with the use of modern advancements in Al, facilitating a diverse range
of textual interpretations [54].

2.3.3 Application and Challenges

In today’s modern world, image captioning serves as a versatile tool [55] with a multitude
of applications spanning across diverse fields and industries. For instance, on digital plat-
forms like web, social media, galleries or e-commerce platforms image description may
enhance user experiences and human-computer interaction by adding more necessary
insights, information or citation about the content [47, 56]. In terms of online visibility,
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the incorporation of an image captioning can significantly improve a website’s search
engine by adding more content to the items. This augmentation makes the items more
understandable and discoverable through conventional text-based searches [57].

Another possible usage includes clarifying images to assist visually impaired indi-
viduals [58]. As an illustration, NVIDIA Corporation supports numerous initiatives,
where image captioning technologies are employed to assist individuals with limited or
no eyesight 1.

Peering into the future, the integration of these captioning systems may be widely
used within augmented (AR) and virtual reality (VR). This innovation will empower
users to receive the information and descriptive captions of unknown objects just by
wearing the glasses in real-time surrounding.

Furthermore, image captioning holds significant potential in the educational sector.
For instance, it can facilitate content creation by automatically generating descriptions
for images or educational videos (it goes by the name of closed captions [59, 60]), thereby
enriching learning experiences for students. Similarly, in the medical field, captioning as-
sists healthcare practitioners in interpreting and documenting diagnostic images, aiding
in medical diagnosis and treatment planning [61].

Nonetheless, all applications of Al and image captioning struggle with certain draw-
backs or hurdles. An inaccurate image description could result in diverse interpretations
or even misconceptions. Additionally, training data may sometimes bring biases and
impact final outcomes. And last but not least, real-time image captioning remains a
challenging task due to its computational complexity.

In the present study, some modern technologies have been assessed, specifically ex-
amining the disparities between image captioning with Al language understanding and
human perception. A few image captioning models (see Image Captioning Models Sec-
tion) have been used to generate different types of captions that lately were processed
by language models.

2.4 Large Language Models

Processing a sentence in a machine learning model (directly from a string, such as “Hello
world”) in one go is generally not feasible. The main reason it that standard neural
network uses and works with matrices in real number space. There is no dictionary
with pairs sentence-numerical representation of every possible sentence, so to obtain the
numerical representation of the sentence, it is necessary to calculate it. First, to process
the whole sentence, it is essential to divide it into smaller units for which some function
that maps these segments into their numerical representation may be obtained. Thus,
the initial step involves Tokenization, wherein the sentence is dissected into smaller
semantic units such as words or subwords. Subsequently, these tokens undergo Word
Embedding, a process whereby they are transformed into dense vectors, facilitating
numerical processing.

Within the realm of neural network architectures, the transformer model is partic-
ularly distinguished for its capability to effectively manage long-range dependencies in

'Link to the project:
https://developer.nvidia.com/embedded/community/jetson-projects/a-eye_for_the_blind
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textual data. This is primarily attributed to its utilization of the self-attention mech-
anism, which allows for a dynamic weighting of the influence of all other tokens in the
sequence, regardless of their positional distance. This mechanism enables the model to
establish connections between words regardless of their physical proximity. For exam-
ple, in German sentences that always have the negation of the verb at the end of the
sentence or more complex English sentences when we mention the same person multiple
time using pronouns [62]. In this case, it is important that words do not depend on
physical proximity.

The Transformer architecture comprises two primary components: the Encoder and
the Decoder, as described in the fundamental paper ”Attention is All You Need” [63].
The Encoder’s role entails processing the input sentence to distill a comprehensive rep-
resentation of its underlying concept. Subsequently, the Decoder utilizes this conceptual
representation, in conjunction with access to the encoded input, to generate the de-
sired output. In tasks like text generation, the Decoder employs a next-word-prediction
approach to iteratively construct the output sequence.

The overall architecture does not always have to consist of both encoder and de-
coder parts. For tasks like classification, where generating human-readable output is
unnecessary, an encoder that can summarize the context and idea of the input text
is sufficient. On the other hand, if we imagine that the decoder forms the answer by
composing the answer word by word based on the outputs generated so far, it can be
adapted to generate output sequences from predefined input text, obviating the need for
an Encoder. This Decoder-only architecture finds application in prominent models such
as GPT (e.g., GPT-2, GPT-3, GPT-4) [64] and ChatGPT. A well-known representative
of the Encoder-Only architecture is BERT [10]. BERT has spawned numerous derivative
models like RoOBERTa [65] and ALBERT [66].

Typically, to represent a sentence, the output of the Encoder’s final layer is utilized,
often by considering the classification token (e.g., [CLS] in BERT [10]) or by averaging
the last hidden states across all tokens. Similarly, by employing the classification token
in the beginning of the input we can perform classification tasks using decoder-only
transformers.

2.4.1 Tokenization

Tokenization, within the domain of NLP and machine learning, involves transforming a
sequence of text into smaller components called tokens. In the context of LLMs, tok-
enization is crucial for converting raw text data into a format that the model can process
efficiently without losing text meaning. Typically, tokenization involves splitting the text
into individual words or subwords, and sometimes even characters, syllables, depending
on the specific tokenization scheme used. The main significance of this procedure lies
in its ability to assist machines in comprehending, analyzing and interpreting human
language [67].

While segmenting sentences by words appears logical [68], as each word encapsulates
the entirety of its meaning, it presents a challenge in maintaining an exhaustive dictio-
nary encompassing all encountered words. When we later come across a new, previously
unseen word that is not in the dictionary, we cannot classify it. An illustrative instance
occurs when we encounter a word with same or similar meanings, albeit in slightly var-
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ied forms, such as "offer”, "offers”, ”offering”, and ”offered”, necessitating understanding
their meanings repeatedly (during embedding learning). If we wanted to reduce the dic-
tionary to the smallest possible size, we could split the sentence into individual letters.
This poses comprehension challenges as the model must decipher word meanings incre-
mentally letter by letter, leading to subpar results due to the aforementioned issues.

A harmonious compromise between these approaches involves segmenting sentences
and words into subwords. Subwords are word fragments that offer the advantage of
encapsulating broader semantic units akin to words, yet retain the ability to infer word
meaning even with novel inputs, equivalent to character-level tokenization. Among to-
kenization methods, subword tokenization emerges as the most prevalent and widely
adopted technique.

2.4.2 Word Embedding

Word embeddings are dense, multi-dimensional vector representations of words that
facilitate the transformation of text data into numerical formats. Within Large Language
Models (LLMs), word embeddings serve to represent each token as a fixed-size vector
within a continuous vector space. In this vector space, words that are semantically
similar used to have similar vector representation, so they are located close to each other
(are embedded nearby each other - see Figure 2.3) [69, 70]. We distinguish between static
and contextualized embeddings [71, 72].
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Static embeddings (or content-independent embeddings), exemplified by tech-
niques like Word2Vec [72], GloVe [73] and FastText [74], provide fixed representations
for words irrespective of their context within a sentence or document. These embeddings
encode semantic and syntactic information based on co-occurrence statistics in large text
corpora. However, this type of embeddings lack information about the word’s position in
the sentence and its surrounding context. Consequently, any word with different mean-
ing in distinct sentences acquire the same embedding, posing challenges for the model
to achieve more deeper, nuanced understanding of the complete sentence. For example,
consider the word "mouse”, which can denote either a small mammal or a computer
peripheral device.

In contrast to static embeddings, contextualized embeddings (content-dependent
embeddings), exemplified by RNN based (CoVe, Flair or ELMo) and transformer based
models, such as BERT [10] and GPT-2 [64], dynamically tailor word representations
according to their contextual surroundings. By harnessing deep neural networks trained
on extensive text corpora, contextualized embeddings capture real properties of each
word in a sentence. Each word’s embedding is not only influenced by its own identity
but also by the neighboring words in the given sentence, enabling the model to grasp
nuanced meanings and linguistic nuances more effectively.

2.4.3 Transformer Architecture

2.4.3.1 Encoder

Encoder is part of the transformer architecture that is responsible for processing inputs
and their representation within the transformer, it does not create any new text in the
output. It typically consists of several encoder blocks connected in series, where higher
blocks serve to process more complex relationships and dependencies.

2.4.3.1.1 Input embedding

At the outset, when tokenizing the input text for model ingestion, tokens necessitate
encoding into dense vector representations. The initial entry into the first block will be
created by static embedding, which, however, does not contain any information about
the position.

Since the transformer encoder processes the entire input at once, it is not possible
to ensure that the position information is processed. Consequently, preceding the initial
encoder block entry, positional embedding supplements the static token embedding,
thereby integrating token position information into the model. In this way, the position
of each token is introduced into the model. Given that the self-attention mechanism
governs inter-token links, the encoder block’s initial output yields contextualized token
embeddings. While both input and output dimensions remain consistent across encoder
blocks, positional information is solely appended to the initial entry, persisting through
subsequent blocks via transmission.
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2.4.3.1.2 Self-Attention Mechanism

At the input of token embedding into the encoder block, three vector representations
are created, which are used for processing and the influence of other parts of the text on
each token. The following description describes the processing of one token from input
to output of the encoder block. This processing happens simultaneously for all inputs
(tokens).

Using the weight matrices W,, Wy, W, three vectors @ (query), K (key) and V/
(value) are created. Weight matrices are trainable parameters that acquire their value
during network training. For any input:

Q=XWwe
K=XWkK
V=xw"

For trainable weight matrices W&, WX e R4 and WV e RIxdv

The Self-Attention mechanism calculates the impact of each token from the input
on the resulting output vector of our token. Pairwise computation across input tokens
involves @ (query) and K (key) vector multiplication, culminating in weight determina-
tion signifying contextual relevance. The result is a list of weights, how important and
how much influence each vector should have on our input. These values are reduced
and normalized using the softmax function and thus their sum in the result is 1. The
resulting value is the weighted average V' of the vectors of all elements of the input [75].

Attention(Q, K, V) ft (QKT)V
ention(Q, K, V) = softmax(———
Vi,
The output is a new vector that has also acquired properties from its neighbors based
on common contextual binding.

2.4.3.1.3 Multi-Head Attention

While the self-attention mechanism singularly targets contextual features, by mul-
tiplying the number of attention heads, multi-head attention is created, which can en-
compass multiple contextual relations concurrently [76].

Each head, sharing identical embeddings or preceding encoder block outputs, gen-
erates unique vectors (@, K, V') via distinct weight matrices (Wi, Wyi, W,i). Following
analogous self-attention procedures, resultant vectors from multiple heads conflate into a
consolidated vector. The resulting vectors from several heads are concatenated together
to form one large vector. The dimensionality of the vector is reduced using the weighting
matrix W,, typically to the original input size.
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2.4.3.1.4 Feedforward Neural Network

The resulting vector from self-attention passes through the FFN layer, which intro-
duces nonlinearity. An FFN layer can be, for example, a fully connected ReLU layer
with four times as many hidden units as inputs, followed by another fully connected
layer without activation with original size [77]. Initially, Layer Normalization was ap-
plied after the residual connection; however, in the newer improved configuration, layer
normalization is exclusively applied in the FFN layer and precedes the Fully connected
layers.

2.4.3.1.5 Normalization and residual connections

The mechanism of encoder block is a bit more complex as there are residual connec-
tions involved as well as normalizations of the output of the multi-head attention and
FFN layer.

2.4.3.1.6 Output of the Encoder Block

Each encoder block processes its input and creates a representation with a deeper
context at the output, similar to how CNN convolutional neural networks create more
complex image features within each layer.

Since the block processed the vector representation of the token, its output was also
a vector representation for each input separately.

2.4.3.2 Decoder

The decoder block within the Encoder-Decoder transformer architecture shares similar-
ities with the Encoder in its structure and functionality. One of the main differences
it, that decoder block creates an output in form of generated text. In a way, how the
decoder works, the text is formed through word-by-word generation.

The embedding is received at the input of the decoder in a manner analogous to that
of the encoder. Notably, multiheaded attention now incorporates masking, restricting
the decoder’s view to positions of tokens that have been generated in the sentence so far.
A conventional method to mask other positions involves setting their "weight” before
the softmax to —oo.

Subsequently, the token’s processing proceeds to the subsequent MultiHeaded atten-
tion, specifically the Encoder-Decoder cross attention. Here, the query vector @ in the
decoder is generated from the token, while vectors K and V originate from the encoder.
Following this stage, FFN and normalization are applied.

The principal distinctions between the encoder and the decoder lie in the decoder’s
limited scope during self-attention, focusing solely on the output generated thus far, and
its incorporation of cross-attention in each decoder block, leveraging the processing of
input text from the encoder.
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2.4.3.2.1 Decoder-Only Architecture

Models like the ones belonging to the GPT family adhere to the Decoder-Only ar-
chitecture paradigm.

Unlike the original architecture described in ”Attention Is All You Need” [63], the
encoder is omitted. Consequently, modifications are requisite in the structure of the
Decoder block, necessitating the removal of the cross-attention head, thereby retaining
only masked multihead attention capable of observing the inputs generated up to that
point.

Within a decoder-only architecture, the input is inserted at the beginning of the
decoder output, allowing the decoder to proceed with output generation. Notably, the
input processing of decoder-only architectures closely resembles that of encoder-only
architectures, particularly when comparing the output from (encoder/decoder) blocks,
resulting in vectors representing the contextual representation of the input

2.4.3.3 Sentence Representation

2.4.3.3.1 Encoder

When obtaining a general representation of the entire input, one possibility is to use
a special token, which is typically added to the beginning of the input, whose role is
to represent the content of the entire sentence. However, for such a mechanism to be
effective, the model must be trained to recognize and accurately interpret the designated
classification token. For instance, BERT [11] directly incorporates such tokens and
employs them for Next-Sentence-Prediction during training. Nonetheless, alternative
models, such as RoBERTa [65], abstain from utilizing Next-Sentence-Prediction during
training.

Alternatively, the second option involves deriving vectors from the entire output and
passing them through a pooling layer—commonly through methods such as averaging.
Average pooling emerges as the most prevalent form of pooling, although alternatives
like max pooling are also feasible.

2.4.3.3.2 Decoder

A prevalent approach to obtain a contextual vector representation of the entire input
entails averaging the outputs originating from the final decoder block. Alternatively, in
certain scenarios, the utilization of classification tokens is feasible, particularly if the
model has been trained for such a purpose.
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3.1 Image Captioning

Initial efforts to generate automated image captions were made before the advent of
deep learning techniques. These methods primarily involved template-based approaches
that relied on creating basic template sentences, which were then populated with spe-
cific results from an object detection model [78, 79, 80]. An alternative method is the
retrieval-based approach, which utilizes a dataset of images with their related captions,
rank them by measuring the similarities to find the set of images most similar to the one
in question and then reuses their existing captions to create a new description for the
queried image. This strategy is significantly limited when handling images that are not
in the dataset and thus remain unclassified, i.e., unseen [81, 82].

Shortly after the advent of advanced computer vision techniques, many sophisticated
and efficient image captioning methods were developed [83]. A lot of them use classic
approach of processing visual objects, trying to understand the main concepts and then
generate some phrases out of these concept descriptions with the use of linguistic models.
These process is called bottom-up approach.

Another approach is the top-down method, which differs primarily by framing the
image description task as a machine language translation problem. Instead of translat-
ing from one language to another, the model translates visual information into natural
language.

This approach primarily leverages neural networks and convolutional neural networks
to encode visual information and generate output text using recurrent neural networks
(for more details, see Image Captioning Section) [84, 85]. Various implementations of
image captioning differ mainly based on the type of RNN utilized, but many face the issue
of uniformly distributing semantic concepts throughout the description. Therefore, a
significant improvement was achieved by employing graph convolutional neural networks,
which better understand the semantic and spatial relationships between objects [86, 87].
This enhancement allows additional information, such as location and velocity, to enrich
the generated captions [88].
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On the contrary, there is also ongoing research aimed at improving the quality of the
caption text itself. For example, in [89], the authors proposed ATT-BM-SOM, a method
tailored to enhance readability, sentence syntax, and overall caption structure. This
framework leverages the attention balance mechanism and syntax optimization module
to effectively integrate image information into the captions.

Current most popular state-of-the-art in image captioning is mixed approach that se-
lect and combine the results from both bottom-up and top-down approaches or transformer-
based models [90].

Likewise, recent approaches often leverage transformer models, which offer the ad-
vantage of using attention mechanisms without relying on RNNs for image captioning
[63], or create convolution-free networks. Many studies explore modifications to the
self-attention operator [91, 92, 93]. Additionally, as previously mentioned, transformer
architectures can be applied directly to image analysis, reducing the necessity for CNN
usage [94, 95]. Specifically, in this context, a pre-trained Vision Transformer network
(ViT) (that was also used in this experiment) serves as an encoder, followed by a stan-
dard transformer decoder for caption generation.

3.2 Language Processing

LLMs are sophisticated Al systems trained on extensive text datasets that may be used
for text understanding, generating, translation and interacting with human language in
a contextually aware manner [96, 9].

Before the era of transformers, LLMs used architectures like long short-term mem-
ory (LSTM) to create some connected word embeddings. For example, ELMo [97] repre-
sented a significant advancement in contextual understanding within language processing
tasks, while ULMFiT [98] utilized LSTM to pre-train a language model on large datasets
and fine-tune it for diverse tasks, pioneering effective transfer learning in natural lan-
guage processing.
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With the advent of attention mechanisms [63], transformers have become the state
of the art in language models, fundamentally altering the landscape of natural language
processing (NLP) (see Figure 3.1). BERT [10] revolutionized the field by introducing
deep bidirectional training, which allows for a more detailed and comprehensive under-
standing of context.

Building on BERT"s success, several modifications have been developed to further
enhance performance and address specific needs. RoBERTa (Robustly optimized BERT
approach) [65] optimizes the pre-training process by training on a larger dataset and
longer sequences, resulting in its improved accuracy and robustness. DistilBERT [99] was
created to make the model architecture faster and lighter, reducing the model size by 40%
while retaining 97% of BERT’s performance. ALBERT (A Lite BERT) [66] introduces
parameter-sharing strategies across layers to reduce model size and memory consumption
significantly, increasing training speed and overall scalability. These modifications not
only improve performance but also make BERT more adaptable to various applications,
from large-scale industrial tasks to smaller, edge-based deployments.

Since then, the largest and most effective Large Language Models (LLMs) have been
built using a decoder-only transformer-based architecture. This design enables efficient
processing and generation of large-scale text data. Prominent examples include OpenAl’s
GPT series (e.g., GPT-3.5 and GPT-4, used in ChatGPT and Microsoft Copilot) [9],
Google’s Gemini [100], Meta’s LLaMA family of models [101], Anthropic’s Claude models
[102] and Mistral Al’s models (1).

The major advantage of these models is their ability to generate human-like text and
solve a wide range of problems, from answering questions to generating creative content.
These models excel in interacting through chatbots, providing insightful and context-
aware responses to the primary queries. They can assist in various applications, such as
drafting emails, creating content, providing customer support, translating languages and
even engaging in complex problem-solving and decision-making tasks. This versatility
and efficiency have made transformer-based LLMs the cornerstone of modern natural
language processing and Al-driven communication tools.

To achieve multitasking capabilities and enhance the performance of LLMs, various
alignment techniques and examinations have been conducted [103]. One notable method
is on-policy reinforcement learning (RL), which trains and rewards the system based on
selected data. This approach is exemplified by proximal policy optimization (PPO)
[104], which fine-tunes the model using a reward system to optimize performance. A
similar method, direct policy optimization (DPO), focuses on direct learning from human
preferences without a reward system [105].

Another effective technique is iterative preference fine-tuning, where the model’s
performance is enhanced by repeatedly optimizing based on newly generated preference
outcomes in each iteration. Modern approaches also achieve satisfactory results through
prompt engineering and querying, which involves crafting specific input prompts to guide
the model’s responses. Additionally, a novel method called self-improving has been
proposed, where the model iteratively plays against instances of itself, thus refining
its capabilities without the need for additional human expert opponents [106]. These

Link to the source: https://docs.mistral.ai/getting-started/models/
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diverse strategies contribute to the robust and versatile performance of contemporary
LLMs, enabling them to excel in various tasks and applications.

Nowadays, multimodal models (the one that take more than one type of input)
become very popular not even for the researchers, but also for ordinary people in their
everyday life. Vision language models, only one type of of multimodal models, are
used on daily bases for performing image captioning (e.g. CLIP [107]), visual question
answering (e.g. GPT-4-Vision 2) and image or video from text generation (e.g. DALL-E
[108], SORA [109]).

Another advantage of current models is their ability to learn not only from a vast
amount of training data but also from ongoing interactions. This means that the more
they are used, the better they become at generating relevant and accurate responses.
This continuous learning process allows the models to adapt and improve over time,
enhancing their performance and making them more effective in various applications.

3.3 LLMs Performance Evaluation

Despite their numerous advantages, LLMs raise significant ethical concerns, particularly
in the areas of data privacy, accuracy and correctness. Furthermore, they can inad-
vertently perpetuate biases present in their training data, resulting in skewed or unfair
outcomes. That is why ensuring the correctness of LLM-generated content is critical,
as inaccuracies can have profound consequences due to the widespread use and trust in
these technologies by the general public.

Addressing these challenges is essential for the responsible deployment of LLM tech-
nology. There are numerous frameworks and platforms designed to evaluate LLMs.
These evaluation systems utilize various metrics to assess performance, such as accu-
racy, fairness and responsiveness. Some platforms offer even real-time evaluations of Al
outputs to check for retrieval performance and responsibility.

It is crucial to clearly define evaluation criteria at the first place to ensure compre-
hensive and meaningful assessments.

Evaluating LLMs in real-world scenarios is a complex and time-consuming task.
Unlike traditional models that aim to produce outputs strictly matching a predefined
ground truth, LLMs are often expected to generate human-like responses. This expec-
tation adds a layer of complexity to the evaluation process. It is not enough for an LLM
to simply perform as designed; it must also produce outputs that meet the nuanced and
subjective criteria of human communication. This dual requirement necessitates sophis-
ticated evaluation methods that often go beyond standard metrics, taking into account
factors such as coherence, relevance and the naturalness of the generated responses.

As an example, see Table 3.1 3. This table outlines five different techniques used to
measure LLLM performance. Some methods are designed to assess whether the model can
perform a basic set of tasks, while others evaluate sentence completion or multitasking
ability. Additionally, some techniques focus on the quality of the response, considering
factors such as perplexity, relevance and truthfulness. In reality, even more advanced

2Link to the source: https://cdn.openai.com/papers/GPTV_System_Card.pdf
3Link to the source page: https://medium.com/data-science-at-microsoft/
evaluating-1llm-systems-metrics-challenges-and-best-practices-664ac25be7eb5
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B Table 3.1 An example of different LLM evaluation benchmarks

Benchmarks Description Reference URL
GLUE (General | A benchmark offering a stan- | https://gluebenchmark.com/
Language Under- | dardized collection of diverse
standing Evalua- | NLP tasks to assess the ef-
tion) fectiveness of various language
models
SuperGLUE A benchmark comparing more | https://super.gluebenchmark. com/
challenging and diverse tasks
to GLUE, incorporating com-
prehensive human baselines
HellaSwag A benchmark assessing the | https://rowanzellers.com/hellaswag/
proficiency of an LLM in com-
pleting sentences
TruthfulQA A benchmark evaluating the | https://github.com/sylinrl/TruthfulQA
accuracy and truthfulness of
the model’s responses
MMLU (Mas- | A benchmark assessing the | https://github.com/hendrycks/test
sive Multitask | multitasking capability of the
Language Under- | LLM
standing)

methods exist to assess models’ regulatory compliance, hallucination levels and ability
to handle harmful content [96]. All of these varied approaches ensure a comprehensive
evaluation of LLMs, addressing both their technical capabilities and correct human-like
quality of their outputs.

With all of these needs, a new position has emerged in the current era: LLMOps
(a specialization of MLOps designed specifically for Large Language Models). The pri-
mary task of LLMOps is to integrate a CI/CE/CD (Continuous Integration/Continuous
Evaluation/Continuous Deployment) approach to effectively oversee the lifecycle of ap-
plications powered by LLMs. This role ensures that LLMs are consistently updated,
rigorously evaluated and reliably deployed, maintaining high standards of performance,
safety and ethical compliance throughout their use.

The challenge of evaluating LLMs arises from the repetitive cycle of running LLM
applications on a set of prompts, manually inspecting outputs, while attempting to check
the input quality as well. This process often requires human interaction and evaluation,
making it time-consuming, subjective and costly, particularly for large-scale assessments.

Such dependence on human input for evaluating LLM outputs highlights the ineffi-
ciency and potential bias in current evaluation methods. For this reason some modern
investigations tries to perform more automatic evaluations and use some advantages of
other AI technologies. For example in article [110] authors explore the effectiveness of
Large Language Models (LLMs) as automatic evaluators using simple prompting and
in-context learning. By assembling 15 LLMs of varying sizes, the study evaluates their
output responses through preference rankings conducted by other LLMs. The Cogni-
tive Bias Benchmark for LLMs as Evaluators (CoBBLEr) is introduced to measure six
cognitive biases. Findings reveal approximately 40% of significant biases among differ-
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ent models, questioning LLMs’ reliability as evaluators. Additionally, the study finds
a 49.6% Rank-Biased Overlap (RBO) score between human and machine preferences,
indicating its misalignment. Consequently, the research suggests that LLMs may not
yet be suitable for automatic annotation that aligns with human preferences.

This study compares the LLMs’ understanding of basic concepts from our everyday
life to human perception. The following chapters detail the entire process and present
key findings.



Chapter 4
METHODOLOGY

4.1 Dataset

The THINGS dataset [31] comprises a collection of naturalistic images depicting basic
real-life concepts along with their corresponding names and fuzzy categories. Fuzzy cat-
egories here mean that one concept can belong to more than one category. To build this
database, the authors engaged with 1,395 workers from the online crowdsourcing plat-
form Amazon Mechanical Turk. These workers were involved in various tasks related to
dataset creation, including object image collection, preprocessing, naming and catego-
rization. Dataset primary purpose is to facilitate cognitive science research focusing on
overall object concepts across various domains such as visual perception and semantic
awareness. The dataset holds relevance across a diverse array of disciplines, including
psychology, neuroscience and computer science.

The dataset consist of 1,854 meticulously chosen object concepts from American
English, accompanied by corresponding images and labels. These selections underwent
a harsh process that combined word-sense disambiguation and crowdsourcing, ensuring
precise representation of common concepts. Subsequently, all concepts were categorized
into 27 overarching categories using both human judgment and WordNet’s taxonomic
classification, resulting in an extensive collection of over 26,000 high-quality images.
The final dataset was reduced to include one image per concept and a public version
of all images was released in the THINGS+ dataset [32]. Furthermore, this dataset
includes an additional 53 higher-level fuzzy categories, allowing objects to be assigned
to multiple categories simultaneously. By exploring object categorization and semantic
relationships, this dataset serves as a valuable resource for understanding how ordinary
people perceive, recognize and interact with objects in their everyday environment. An
examples of images from THINGS+ dataset [32] along with their respective categories
may be observed in Figure 4.1.

Employing the THINGS dataset [31], the researchers conducted a triplet odd-one-out
experiment (see Section 2.1) to evaluate perceived image similarity within the context of
a third (most dissimilar) image. Human participants were presented with sets of three
object figures and tasked with identifying the most distinct one. Through this process,
the study aimed to check both context-independent and context-dependent perceived
similarities. This methodology yielded a total of 4.70M human similarity judgments.
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B Figure 4.1 Fifty-three broader image categories that have been examined in the study. All
of the images are copyright-free images from THINGS+ dataset [32].

For the purpose of this study, the initial focus was on verifying the quality of the
image dataset and the collected triplets. Efforts were made to ensure uniformity in
image format, size, and correspondence between image names and content, facilitating
their usability in subsequent processing stages. Additionally, duplicates were removed
from the original triplet dataset to enhance the credibility of the final evaluation. Con-
sequently, the input triplet dataset with 4.7M records was divided into two subsets: one
containing duplicates and the other devoid of them. Throughout this text, the subset
consisting solely of repeated images within the triplets we denoted as the “Repeated
Triplet Dataset*.

It’s crucial to understand that in this case, identifying the odd-one-out lacks a defini-
tive ground truth. For instance, presenting a triplet like {peacock, toucan, owl} to var-
ious individuals would likely result in a wide range of answers. However, by gathering
responses from a significant number of participants, it becomes possible to calculate the
collective probability for each object concept that humans, in general, would perceive as
more dissimilar within the triplet. To explore this, the researchers intentionally gath-
ered batches of trials (from different participants) for a randomly selected set of triplets.
Therefore, the inclusion of duplicate triplets aimed to assess within-subject variability
and gain insights into individual differences in perceived similarity judgments.

To illustrate further, once again consider a triplet consisting of {peacock, toucan, owl}.
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After conducting 100 trials, let’s say we obtained the following proportions of answers:
{0.5,0.2,0.3}. In this scenario, the ideal classifier would predict peacock, achieving a
maximum accuracy of 0.5. Conversely, the worst classifier would select toucan, result-
ing in an accuracy of 0.2. Comparatively, a random classifier would have an expected
accuracy of 1/3, as it would randomly select one of the three options, aligning with the
chance of selecting the correct answer out of the available choices.

4.2 Experiment Pipeline

THINGS /
Triplets Dataset LLM's Layer Embedding

P = Captioning
Dddrone
0| tuman Judgment — Zero-shot
PP Accuracy
: €k,1
7 Image Captioning ALBERT Zero-shot Learning
BLIP BERT
> GPT-4-Vision-Preview DISTILBERT — Cosine Similarity .
GPT-2 Euclidean Distance

TH\NGS cnncepts ROBERTA

XLM €k2
XLNET

Zero-shot  Human
Prediction judgement

B P

{one-hot encoding)

orange

Ck3
€k3

B Figure 4.2 Tllustration of overall methodology utilized in this study. From left to right: input
THINGS and triplets dataset preprocessing, image captioning, description processing by LLM,
extraction of hidden states and their distance analysis, selection of odd-one-out item, final results
analysis. All of the input images are copyright-free images from THINGS+ dataset [32].

To verify the alignment of LLM representations with human concept understand-
ing, we used object triplets extracted from the THINGS dataset. Our full pipeline is
illustrated in Figure 4.2. It consisted of the following stages:

1. A triplet (collection of three object concepts) is the input of our method. In the
example (in Figure 4.2), a triplet k is composed of the objects oy 1, 0k 2,0k 3 that
respectively represent an apple, a dog, and an orange.

2. Each object is then captioned using the same image captioning method (e.g., BLIP).
For instance, the first picture could receive the caption “apple”. Captioning methods
are discussed in Section 4.3.

3. The generated captions are tokenized and processed by an LLM (e.g., BERT)
to extract feature vectors (hidden states). See Section 4.4.

4. The next stage includes zero-shot learning methodology with distance metrics
and the most distinct object identification (see Section 4.4.2). As label, we use the
odd-one-out object that was labeled by the human subject P (). In our toy example,
P = 2 represents that dog was the selected one.

In conclusion, the general LLM performance was analyzed (captioningxlanguage models x
layersx distances = 4x21x5x2 = 840 different results have been obtained) and discussed
in the following Section 5. To avoid the burden of computation, we first preprocess the
embeddings for each image and then use the preprocessed version in our analysis.
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4.3 Image Captioning Models

In the initial phase of this experiment, captions were generated for all images within
the THINGS dataset [31]. To accomplish this, several deep learning models for vision
interpreting were employed, as aggregating multiple responses often leads to superior
outcomes. Additionally, the original image labels were slightly adjusted and incorporated
into subsequent processing stages. Below is a list of all the methods utilized for the image

captioning task.

(a) Image Label: mousel

Basic Caption: mouse animal

ViT Caption: a small brown and white bird sit-
ting on a piece of paper

BLIP Caption: a mouse on a mouse board
GPT Caption: The image shows a close-up
view of a rodent, likely a mouse or rat, stand-
ing on a surface that has printed text. The ro-
dent has a grayish-brown coat of fur, large round
black eyes, prominent rounded ears, and a pink-
ish snout. Its forelimbs are visible with pink-
ish skin, and it appears to be looking off to the
side. The background contains a blurred section
of text, which is not readable

(b) Image Label: mouse2
Basic Caption: computer mouse

ViT Caption: a black mouse sitting on top of a
white surface

BLIP Caption: a computer mouse on a white
surface

GPT Caption: The image shows a wired com-
puter mouse on a white background. The mouse
is predominantly black with a gray trim around
the base. It features a left and a right click but-
ton, a scroll wheel, which appears to be orange,
and possibly a third button on the left side. The
cord extends from the front of the mouse and ap-
pears to be black as well. There is a textured
pattern on the mouse pad or surface on which
the mouse is resting.

B Figure 4.3 Example of captioning results for 2 input images. Both images are copyright-free
images from THINGS+ dataset [32]. For image captioning ViT [111], BLIP [112] and GPT-4V

[90] models have been used.
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4.3.1 Vision Transformer (ViT) with GPT-2

The first model employed for captioning input images combines the Vision Transformer
(ViT) [111] with GPT-2 [64].

The encoding component utilizes the Vision Transformer [111], specifically trained
on the ImageNet dataset. It operates by dividing image inputs into patches and incor-
porates an additional token to encapsulate global image features such as size and color
palette. Subsequently, this sequence of token embeddings is fed into the standard Trans-
former, which employs attention mechanisms to discern relationships within the input
and process it in a manner akin to conventional NLP tasks. This streamlined approach
has demonstrated impressive results while minimizing computational costs, rendering it
a popular choice among contemporary methodologies.

The decoding stage, on the other hand, involves a language model, GPT-2 [64], which
is tasked with generating textual descriptions based on the encoded image features. One
of the disadvantages is that this model may struggle with generating captions for images
that contain multiple objects or conveying certain abstract concepts that are difficult to
represent visually (for example emotions, metaphors, etc.).

4.3.2 Bootstrapping Language-Image Pre-training (BLIP)

Introducing BLIP [112], a pretrained model that may be used for image captioning
tasks, designed to facilitate great portability across a spectrum of vision-language tasks
through its multimodal combination of encoder and decoder parts. This advanced model
not only comprehends the intricate relationships between objects within images but also
leverages spatial arrangements to craft descriptive captions. Its’ architecture enables
flexible transferability between vision-language understanding and generation tasks.

BLIP offers three key advantages: Firstly, it supports multiple languages. Secondly,
its versatility extends beyond image captioning, encompassing tasks such as visual ques-
tion answering, visual dialog, zero-shot text-video retrieval, and more. Lastly, in the
realm of captioning, BLIP distinguishes itself by prioritizing the creation of human-
like captions, eschewing generic descriptions for more nuanced and contextually relevant
interpretations.

The BLIP model, pioneered by Salesforce Research, underwent training on the COCO
dataset, a comprehensive collection comprising more than 120,000 image-caption pairs.
At its core, BLIP integrates the versatile Vision Transformer (ViT) as its encoder mech-
anism. Subsequently, the decoding process focuses on crafting textual descriptions based
on these extracted features. In this phase, BLIP employs a Language Modeling Loss,
that motivates this decoder to generate precise and contextually relevant descriptions.

4.3.3 Generative Pre-trained Transformer 4 (GPT-4V)

In the subsequent phase, captions were generated using the GPT-4V model ('V’ for
"Vision’) [90] - current state-of-the-art. Similar to its predecessors, this model utilizes
the transformer architecture, renowned for its adeptness with sequential data processing.
The versatility of GPT models extends to various applications, with the option to fine-
tune them on specific datasets for even better outcomes [113]. Nonetheless, GPT-4 is
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not without its known constraints, including social biases, potential hallucinations and
susceptibility to adversarial prompts.

In comparison to the previous methods, these descriptions are much more realistic,
longer, detailed and more human-like. Employing the GPT-4-Vision API ! with precise
prompts to describe images facilitated this advancement. In this study, generated answer
is limited to a maximum of 300 tokens, which is approximately 200 words. However, there
were limitations encountered during this phase, notably certain image types prohibited
from processing due to API policies. For instance, images featuring lingerie remained
uncaptioned as they were ineligible for processing (in the result it was necessary to
remove at about 7.5K triplets with this object).

4.3.4 Original Naming

Lastly, a captioning relying on the original image names is employed. Certain input
image labels undergo minor preprocessing, entailing the addition of essential information
to enhance clarity and distinguish the content depicted in the images. For instance, the
term pipe may be associated with both plumbing pipe and smoking pipe. - for this reason
we added an adjective for disambiguation.

Figure 4.3 displays selected outcomes of image captioning. It also shows the difficul-
ties in the correct concept understanding (see some issues in ViT descriptions concerning
a bird, mouse as an animal and mouse as a computer device misinterpretations).

It is important to emphasize that 3 captioning methods (Original, ViT and BLIP)
produces deterministic captions, while GPT-4V model - stochastic ones.

It is crucial to note that the caption generation and evaluation were conducted using
the THINGS dataset [31]. However, for the purpose of this work, publicly available
images from the THINGS+ dataset [32] were shown, potentially resulting in slight vari-
ations in color palette.

Neither of the mentioned captioning techniques covers the object’s identity or its
context within the image. Instead, they solely focus on conveying the visual content
inherent in the image, discernible to the observer.

Assessing the quality of captions in this study without direct human involvement
proves exceedingly challenging. The dataset comprises solely brief image names, typically
one or two words, rather than comprehensive descriptions, making the establishment of
expected ground truth captions unfeasible. Alternatively, evaluating the correlation
between generated captions is plausible; however, the inherent variability in length and
linguistic style across the captions also undermines the precision and reliability of such
an assessment.

To evaluate the captions, the percentage of captions containing the precise input
image concept derived from the THINGS dataset was considered. The output result
was 13% for ViT model, 40% for BLIP and 80% for GPT-4-Vision-Preview.

Link to the official page: https://openai.com/index/gpt-4
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4.4 Language Processing

Following the completion of captioning for all images in the input dataset, the text pro-
cessing phase takes place. This phase involves analyzing various potential NLP models,
putting necessary captions and then extracting the final hidden state from each model
(see Utilized Language Models). Subsequently, these hidden vectors are combined into
triplets and passed into subsequent scoring stages to assess distances and extract the
farthest image vector representation (see Scoring Zero-shot Learning).

4.4.1 Utilized Language Models

Down below there is a list of 8 open source machine learning framework types for NLP
(with the exact models used in this study).

1. BERT

The BERT (Bidirectional Encoder Representations from Transformers) architecture
[10] consists of bidirectional transformers, allowing the model to capture the informa-
tion from left and right contexts in a given input text sequence. During the training
phase, BERT learns how to generate contextualized embeddings for each token in
the input by considering surrounding words. The model was trained with the use
of unsupervised learning on a wide scope of input text data. In addition, it uses
masked language modeling and next sentence prediction to provide a better final
result. Combination of this approaches makes it easier for the model to understand
the relationships between words in the entire sentence.

BERT models come in several variations distinct mainly in different language con-
texts and computational requirements. The bert-base-cased variant is a base model
trained on cased text data. The bert-base-multilingual-cased model extends base
model capabilities to multiple languages, making it suitable for multilingual appli-
cations. For more computationally complex tasks, there are larger variants such as
bert-large-cased, which offers increased capacity and performance. Additionally,
corresponding to its name, variants like bert-large-cased-whole-word-masking
incorporate techniques like whole-word masking during pre-training to further im-
prove model performance and robustness.

2. ALBERT

ALBERT (A Lite BERT) [66] (with its relevant variations: albert-large-v1, albert-
large-v2, albert-xzzxlarge-v1 and albert-rxlarge-v2) is a modification of the BERT
architecture that aims to improve its efficiency and suitability while maintaining or
even surpassing the performance of traditional BERT models. ALBERT achieves this
by significantly reducing the number of model parameters (with the use of matrix
factorization and cross-layer parameter sharing) without sacrificing overall effective-
ness. Additionally, model utilizes self-supervised learning during the training, in-
cluding masked language modeling and sentence order prediction (checking whether
both sentences are in the correct or inverse order), to learn rich representations of
text data.
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. DistilBERT

DistilBERT is a smaller and faster variant of traditional BERT, designed to be more
efficient with fewer amount of computational resources (at about 60% of BERT
original size) [99]. This reduction in size is achieved through different techniques,
mainly knowledge distillation.

The distilbert-base-multilingual-cased and distilbert-base-uncased variants are
modification specifically used for multilingual applications. Consequently, The ”cased”
variant preserves the case information in the input text, while the "uncased” variant

treats all text as lowercase.

. RoBERTa

Another variant of BERT model is RoBERTa [65], which does not use next sentence
prediction, has modified key hyperparameters and distinct training process in com-
parison to the traditional method. Unlike the other models, which are trained on
diverse datasets with various pre-training objectives, RoBERTa is using a single large
corpus of text data with a consistent objective and employs dynamic masking. This
approach enables to learn more robust and generalizable representations of language.

RoBERTa is available in several variants, including roberta-base and roberta-
large, which differ in terms of model size and capacity. Additionally, RoBERTa
includes variants like roberta-large-openai-detector, which are specifically trained
for specific use cases (for example it may predict if text was generated by a GPT
model). It makes this variant powerful tools for a wide range of different NLP appli-
cations.

. GPT2

GPT-2 (Generative Pre-trained Transformer 2) is a state-of-the-art language genera-
tion model developed by OpenAT [9]. It is based on the transformer architecture and
trained on a dataset of 8M web pages using unsupervised learning. The main idea is
to predict the next word in a sequence based on the previous ones. Because of atten-
tion mechanism GPT-2 model may focus on some exact part of input text to generate
to be the most relevant outcome. Still, this approach has some disadvantages like
generating repetitive or nonsensical sentences while producing long text.

GPT-2 model is also available in several sizes, each with varying capacities and
capabilities (for example, gpt2, gpt2-medium, gpt2-large and gpt2-xl).

. GPT

Another separate model family is OpenAl’s text embeddings represented on their
/embeddings endpoint 2 in the OpenAI API 3. Several models of different size and
architecture have been used: text-embedding-ada-002, text-embedding-3-small
and text-embedding-3-large. Their precise architecture and training process re-
mains unknown.

2Link to the endpoint: https://platform.openai.com/docs/api-reference/embeddings
3Link to the OpenAI API: https://platform.openai.com/docs/overview
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7. XLM

XLM (Cross-lingual Language Model) is another family of pre-trained multilingual
language models developed by Facebook AT Research [114]. One of their key features
is their ability to encode and process text in different languages using a shared
vocabulary and model parameters, helping cross-lingual transfer learning.

The XLM models are available in various configurations. For example, xlm-mlm-
xnli15-1024 variant is fine-tuned on the XNLI dataset and uses a multilingual
masked language modeling. On the other hand, the zlm-mlm-en-2048 variant has
larger model size and is optimized for English-language related tasks only.

8. XLNET

The last model is XLNET [115], which is another bidirectional autoregressive model
that use permutation language modeling, which allowing it to capture dependencies
among word positions in a sentence. For achieving this, the probability of a word
token among all permutations of word tokens in a sentence is considered during the
training phase.

There are a few different modifications of XLNET, for example xlnet-base-cased
and xlnet-large-cased.

In the context of language models and transformers, ”hidden state” term takes
place. Basically, these models consist of several similar layers that are stacked one by
one. Each layer has its certain output that is passed to the next layer as an input. This
layer output represent the whole important processed information from the input as a
vector and is called ”hidden state” (on Figure 2.2 states are represented as horizontal
lines between the model layers).

For the purposes of this study, the hidden states from the last 5 model layers have
been extracted and used for the future evaluation. Each model layer output consisted
of a few token vector representation. These vectors have been averaged to the one final
vector that proceeded to the next evaluation steps. This process was applied to each
LLM model.

4.4.2 Scoring Zero-shot Learning

Let a triplet T be sampled from dataset 7 and composed of the illustration objects
{0k1,0k2,083}, where o 1 € {1,2,---,1854}. These objects may be a triplet of {peacock,
toucan, giraffe} images. After a brief triplet analysis most of human beings will prob-
ably choose image of giraffe as the most distinct one. On the other hand, for artificial
intelligence it is much harder task.

To tackle this task, the input image undergoes processing to be represented as a
single vector. As previously discussed, this vector representation, referred to as the hid-
den state obtained by image description processing, plays a pivotal role in the analysis.
Consequently, the triplet of objects {0y 1, 0x2,0k 3} is transformed into a triplet of em-
beddings {hy.1, hg 2, hi,3}, which can also be explored within a vector space. The most
distinct object (the odd-one-out) is represented by the most distinct vector. This vector
has to be located farthest apart from the others in this space.
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To identify the most dissimilar vector Euclidean or Cosine distance metrics may be
utilized.

The Euclidean distance is a simple measure of the shortest straight-line distance
between two vectors in Euclidean space. The smaller this distance is, the more similar
input vectors are. Mathematically, the Euclidean distance between two object vector
representations hy 1 and hy o with corresponding quasi-coordinates (A1, hon, -+, hin)
in k-dimensional space for each n € {1,2,---,1854} is given by the formula:

euclidean_distance(hy 1, hy2) = \/(hl,l - h1,2)2 + (ho1 — h272)2 +o 4 (hgg — hk,2)2

where:

hi,1 and hy o are vector representations (hidden states) for i = 1,2,--- k of
oi,1 and oy, 2 respectively

euclidean_distance(hy,1, h2) marks for a Euclidean distance between input
vectors (hy,1 and hy 2)

Another scoring metric is Cosine distance that measures how different two vectors
in multi-dimensional space are. For doing this cosine value of the angle between the
these vectors is considered, as it represents the relationship among vectors regardless of
their magnitudes. In general, the cosine distance between hy 1 and hy 2 is given by:

hi1-h K hiah
cosine_distance(hy 1, hr2) =1 — Rl k2 izt k1 P2

el W2l [0 hga /S0 ho?

where:
hi.1 - hi 2 is scalar product of hidden states hy 1 and hy 2
||hiall - ||hk2] is the product of their lengths

cosine_distance(hy 1, hy2) marks for a Cosine distance between input vectors
(hk,l and hkyg)

Cosine distance ranges from 0 to 2, with 0 indicating that the vectors are identical,
1 indicating they is no correlation among them and values close to 2 indicating they are
orthogonal or unrelated.

To sum up, the similarity-based zero-shot procedure is as follows. For every or-
dered objects triplet Ty, = {0x,1,0k2,0%3} the corresponding vector {h.1,hy 2, hi 3} is
created and then passed to any of mentioned scoring methodology (Euclidean or Co-
sine). The distance between each pair of vectors is calculated. It is represented by
Dy, = {dy,1,dk2,dr 3}, where dj, 1 value represents distance between the remaining other
pair of vectors hy o and hj 3. The estimated position P, of the odd-one-out concept in
triplet T} is defined as

I3k, = argminDy

as the furthest vector (the most distinct one) in a triplet is not the part of the shortest
distance
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EXPERIMENTS

5.1 Zero-shot Prediction

In this section some results obtained from the whole experiment (see Section 4) will be
discussed. As it was mentioned before, in the final evaluation was considered mainly
Accuracy metric (see its formula down below) for each combination of captioned image
from THINGS dataset [31], NLP model processing output, models’ layers and distance
calculation procedure.

number of correctly separated triplet objects

Method Accuracy = x 100%

number of all triplets

Note that, three captioning models (ViT [111], BLIP [112] and GPT-4V [90]) have
been used along with processed image name. All of them are described in Section
4.3. Moreover, 24 different models from multiple LLM families have been considered:
ALBERT [66], BERT [10], DistilBERT [99], GPT and GPT-2 [9], RoBERTa [65], XLM
[114] and XLNet [115]. In Section 4.4 their main properties have been mentioned. In
addition, more exact details about their architecture and training data are described in
Table 5.1. Also, the last 5 model layers’ output have been extracted an compared with
the use of 2 distance evaluation metrics (see Section 4.4.2).

It is important to note that most of the analysis in this section are separate for
original Triplet Dataset (without any repeated object triplet combination) and Repeated
Triplet Dataset (the one that contains multiple human judgements about odd-one-out
object within the same triplet. For more details see Section 4.1.

Table 5.1 shows some insights about maximum experiment performance within its
group (model type, pre-trained model, its architecture details, dataset and distance
evaluation metric).Values of the best performers are highlighted.

It should be highlighted the correlation between Triplet and Repeated Triplet Datasets.
As expected, most of the time better model performance on the first mentioned dataset
is also notable on the second one. Still, the maximum accuracy for Repeated Triplet
Datasets is much lower - it is just slightly higher from Random Classifier, so it will be
discussed in the separate Section 5.2.
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B Table 5.1 Zero-shot Learning percentual accuracy and model information. The metric rep-
resents the best accuracy (in %) within model layers and all captioning methods. Legend: L is
total number of layers, H is the size of model last hidden state and P is the number of parameters
(weights) in the model.

. Triplet Repeated Triplet
N{%ietla:z:?e Model L H P ’(1;::::3 Dataset Dataset

Cosine Euclidean | Cosine Euclidean
bert-base-cased 12 768 110M  1.54 | 47.51 47.55 34.31 34.35
BERT bert-base-multilingual-cased 12 768 110M  1.62 44.3 44.79 34.06 34.19
(Wikipedia, BookCorpus) bert-large-cased 24 1024 340M  3.02 | 47.03 46.84 34.52 34.48
bert-large-cased-whole-word-masking 24 1024  340M 3.06 48.4 48.36 34.39 34.42
albert-large-v1 24 1024 17M  3.02 | 43.99 43.93 34.26 34.27
ALBERT albert-large-v2 24 1024 17™™ 3.42 46.49 46.4 34.47 34.47
(Wikipedia, BookCorpus) albert-xxlarge-v1 12 4096 223M  7.53 | 44.56 44.64 34.34 34.37
albert-xxlarge-v2 12 4096  223M 7.67 43.6 44.07 34.31 34.34
DISTILBERT distilbert-base-multilingual-cased 6 768 134M 0.98 42.28 42.22 34.12 34.09
(Wikipedia, BookCorpus) distilbert-base-uncased 6 768 66M 097 | 49.09 48.99 34.65 34.51
ROBERTA roberta-base 12 768 125M  1.65 435 43.46 34.0 33.98
(BookCorpus, English Wikipedia, roberta-large 24 1024 355M  3.18 49.0 49.03 34.57 34.55
CC-News, OpenWebText, Stories) | roberta-large-openai-detector 24 1024 355M  3.18 38.41 38.46 33.68 33.65
gpt2 12 768 117M 181 | 48.34 47.72 34.3 34.38
GPT2 gpt2-large 36 1280 774M 557 | 49.97 50.01 34.54 34.55
(WebText) gpt2-medium 24 1024 345M  3.52 | 49.74 49.44 34.55 34.6
gpt2-x1 48 1600 1558M 852 | 49.53 49.15 34.6 34.55
text-embedding-ada-002 1536 50.0 33.36 33.36 33.43 33.43
GPT text-embedding-3-small 1536  125M 50.0 33.33 33.33 33.51 33.51
text-embedding-3-large 3072 760M 50.0 33.34 33.34 33.52 33.52
XLM xlm-mlm-en-2048 12 2048 550M  2.87 | 36.89 36.89 33.69 33.72
(Wikipedia, Toronto Book Corpus) | xIm-mlm-xnlil5-1024 12 1024  550M 241 34.36 34.35 33.59 33.61
XLNET xInet-base-cased 12 768 110M 2.75 48.85 48.34 34.54 34.56
(Wikipedia, BookCorpus, Giga5, etc.) | xInet-large-cased 24 1024 340 5.9 49.96 49.93 34.49 34.52

Another table parameter is Time column, which indicated how long it takes (in min-
utes) to process whole input dataset of image descriptions and extract the last hidden
state out of the model '. It is important to note that for greater exactness, the ex-
periment should be carried out multiple times and then the average value should be
considered. Still, even in case of one run (like in this study) T%me value may show some
approximate trends among the models. It is may be observed from a Table 5.1 that larger
architectures mostly takes twice longer time to process the outcome in comparison to
their corresponding smaller models. Additionally, embeddings obtained from OpenAl’s
API need much more time for generation due to the connection to API, while does not
seem to give more efficient results.

The next trend, notable from the Table 5.1 is that some Model Types have better
performance in comparison to the others. For example, in Triplet Dataset GPT2 models
may reach accuracy nearly 50%, while XLMs’ maximum possible accuracy is just 36.9%.
The number of models’ parameters did not seem to have a notable effect on the results.
Probably, this fact may be explained by training dataset of the models. Some of them
may be composed of more commonly used ideas that are also present in the input
datasets, so even the most basic models may successfully handle a greater number of
tokens.

Overall, members of the BERT family and their variations typically exhibit strong
performance, often surpassing that of the Random Classifier, with many achieving a
maximum accuracy exceeding 40%. It is also crucial to bear in mind that the task at
hand lacks a ground truth, meaning the observed results reflect how closely NLP models
perform relative to human beings.

n the experiment NVIDIA TESLA P100 GPU accelerator (16 GB) was used. For its more detailed
parameters visit https://www.kaggle.com/
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Finally, another correlation worth noting is observed in the distance calculation
method (Cosine and Euclidean). As may be observed from a Table 5.1 maximum ac-
curacy remains consistent within one model and both of these metrics, indicating that
they do not significantly influence the final results.

5.2 Repeated Triplets Dataset

In this section some results within Repeated Triplet Dataset will be discussed.

Repeated Triplet Dataset is much smaller in comparison to its predecessor (it consist
only of 140K odd-one-out human judgement entries in comparison to 4.7M in Triplet
Dataset). Also, there is nearly 10K of unique triplets and slightly more than 8K of them
repeat just 2 or 3 times. The rest of the dataset consist of triplets that have a lot of
occurrences (mostly 20 or 100) with different human labels. Therefore, the confidence
of choosing the same object in a triplet a few times is slightly higher than 40% - see left
graph on Figure 5.1.

All Choices Distribution Max Choice Distribution
100 -

Prevalence

T Random
Choice Choice

B Figure 5.1 The boxplots for repeated human labels confidence prevalence. On the left-hand
side of the picture the distribution of choice confidence among all triplet object is shown, while
on the other side the distribution of maximum object probabilities is considered.

On the right side of Figure 5.1 the distribution for the concepts with the highest
probability is shown. It may be observed that median is still around 50%, so most of
the time the most distinct object within the triplet has it confidence rate of 50%.

This fact make the analysis of Repeated Triplet Dataset really complicated. Most of
the time triplet analysis is complex even for human being, so there is no situation where
most of the people choose one concept and the other answers may be considered as some
type of “outlier”. There is no situation, when most of human participant agree to define
the same object within the triplet with probability of 90% (in our case it is just 50%, as
it was mentioned before), which makes it harder to align with ML approach.

For this reason most of the models have low performance (similar to Random Clas-
sifier) within Repeated Triplet Dataset (see Figure 5.2) and it is almost impossible to
select a preferred one. The worst performance have within all model types have XLM.
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B Figure 5.2 Comparative percentual accuracy of image captioning models on odd-one-out
problem: Triplet Dataset (TD) vs. Repeated Triplet Dataset (RTD) with the use of cosine (CD)
and euclidean (ED) distances as scoring metrics.
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Also, in the contrast to the original dataset, any of the captioning methods shows its
benefit in general maximum zero-shot accuracy. Neither of them, within the difference
between long description or just exact one or two word label, proves to somehow better
overall performance.

5.3 The Impact of Image Captioning

In this study all of the image descriptions, generated with the use of 4 different ap-
proaches, have been compared in terms of its general performance.

On Figure 5.2 some major correlations in captioning methods in each selected model
may be observed. The graph is considered for each model, dataset and distance metric
separately, so the final results are more accurate.

Due to the task complexity and the absence of a definitive ground truth, the perfor-
mance on Repeated Triplet Dataset is low regardless any captioning method discussed
in Section 4.3. On the other hand, a significant accuracy difference is presented within
the original Triplet Dataset depending on its captioning. It might be marked that im-
age descriptions generated with the use of GPT-4 model have better performance in
comparison to the other methods.

It is important to notice that this captioning approach differs from others in its
capacity to generate longer and more detailed image descriptions. While BLIP and
ViT models typically produce brief word combinations or small sentences, the GPT-4
model excels at providing extensive details about all the subjects depicted in the image:
their textures, colors and the relationships among them. Consequently, with a richer
descriptive context, it becomes easier for a NLP model to understand the underlying
concept. It is also noteworthy that among the various captioning methods represented
in Figure 5.2, none has achieved higher maximum accuracy than the GPT-4 model.
Understanding this point is crucial in terms of this study, indicating that while correctly
labeling concepts is important, comprehensive image descriptions, even without explicit
concept names, prove to be more effective overall.

THINGS e BLIP VIiT e GPT-4 i&’ human label

.}-.- et
-
3 Ty ','-‘..?#

B Figure 5.3 Different captioning methods representation in 2D vector space. For this visual
representation predictions for random 100K triplets from THINGS dataset [31] have been con-
sidered. Yellow star in this graph presents human odd-one-out judgement.
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To gain a deeper understanding of the previous statement, a random sample of 100K
triplets was selected. Each model odd-one-out prediction for mentioned set of triplets
was utilized and combined to a common vector that represents model predicted results.
Additionally, human labels for each triplet have been combined into one vector as well
and incorporated for comparison purposes. Consequently, a list of vectors (that represent
human and AT predictions of odd-one-out in 100K triplets sample) was compiled. To
make the next steps more straightforward and not dependent on scoring metric, among
all models consider the one, where cosine distance for predictions was used.

In the subsequent step, a dimensionality reduction technique was applied. T-distributed
Stochastic Neighbor Embedding (t-SNE) [116] was employed to reduce the input high-
dimensional vectors, allowing them to be visualized in a standard 2D vector space. Some
of the results of this process are depicted in Figure 5.3. Each point on the graph repre-
sents a concept from the THINGS dataset [31], with human label denoted by a "yellow
star”. Notably, human judgment appears to be closely located to the "GPT” cluster,
indicating that human responses exhibit similar behavior to the results obtained using
GPT-4 captioning.

5.4 The Impact of Language Model Selection

During this examination 24 language models, described in Section 4.4, have been con-
sidered. All of the models have distinct architectures, parameters or training process
and part of their performance overview is presented in Table 5.1.

Throughout this examination, while the direct influence of the model’s parameters
on the final results has not been precisely noticed, it is apparent that the scope and
nature of the input training data do exert a significant impact. Models trained on a
more extensive and diverse scope of input data (such as GPT2 or XLNET) inherently
possess a richer and more nuanced understanding of concepts in general. This broader
knowledge enables them to interpret incoming information more correctly, generalize it
when it is necessary or discern certain distinctions, thereby enhancing their capacity to
accurately identify the most distinct object within a given triplet.

In terms of model size itself, an unconventional observation emerges: larger model
architectures do not necessarily guarantee more accurate results compared to human per-
formance. Consider models within GPT2 architecture: gpt2, gpt2-medium, gpt2-large,
gpt2-x1. In Table 5.1, their maximum accuracies are outlined, revealing that their aver-
age values are quite similar, hovering around 48%, 49.5%, 50%, and 49.3% respectively.
This finding suggests that even simpler models can achieve commendable performance,
and in some cases, they may generalize even better than their larger counterparts. In
the subsequent section, detailed considerations regarding the influence of model layers
outcome on overall performance are examined.

Also, it is important to point out that novel approaches produced by OpenAl (GPT
Model Type) do not seem to produce better outcome within the examined dataset in
comparison to other models. Therefore, in this case this method may not be considered
as the most advanced one as it is much more complex in comparison to the others and
does not produce results that proves deeper understanding of some basic concepts.
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5.4.1 Model Layers Comparison

In Section 4.4, it was noted that, for a deeper understanding of how NLP models interpret
input, the last five layers have been specifically examined (except from GPT Model Type
due to the OpenAl API limitation: the embedding may be generated only on the final
stage - last layer). These layers are denoted as follows: L represents the last layer, L — 1
is the preceding layer and L — 2, L — 3, L — 4 are labeled accordingly.

In this study, the output of each model layer consists of hidden states for every
generated token. To combine these outputs into a main characteristic vector, Average
Pooling was employed, averaging across all hidden states. This characteristic vector
was then utilized to identify the odd-one-out object within the triplet and then the final
accuracy was calculated for each of these layers. This approach empower an investigation
for a better understanding the relationship between the layer and the overall performance
by putting some light on the dependencies between the two.

Triplet Dataset Repeated Triplet Dataset

Layer

% of Models % of Models

B Figure 5.4 Percentage of models with final accuracy higher that 40% depending on the
utilized dataset. These models are highlighted in the graph with orange color, when the rest of
the models with poorer performance are presented in gray.

Figure 5.4 illustrates some performance results depending on the test dataset and
model layer. All of the models performances have been considered and divided into 2
main group: the one that exceeded the accuracy of 40% and the rest models with a lower
accuracies. The first group, the main point of interest, is highlighted in the graph with
an orange color. On the right side of the graph none of the models are colored in orange,
indicating that all of them achieved lower accuracy within Repeated Triplet Dataset.

On the other hand, the output from the fifth last layer in 30% of models gives a
satisfactory performance (accuracy is higher that 40%). It is crucial to understand that
even on such early stages some of the models may emphasize important details for a
future possible correct estimation. Even DistilBERT model type, which has relatively
smaller architecture and contains just a few layers in general, managed to identify some
of important patterns and produce accuracy higher than 40% in 6 out of 16 models
(37.5%) (consider the results obtained from DistilBERT models in combination with
L — 4 layer).
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Conversely, a positive correlation between general accuracy and layer order can be
observed. Accuracy tends to increase slightly within the last few layers. This fact
indicates that, most of the time, the model better comprehends the input information
and selects necessary features in the later processing stages.

Consider Figure 5.5 that represent a dependency of model accuracy on considered
layer and scoring metric. Note that median accuracy for most of the layers is quite
similar (differs just in a few percents), while upper quartile increases with layer order.
Also, among deeper layers (L — 4, L — 3) more precise accuracy (higher that 45%) is
more likely to be an outlier (represented as a dot in the graph).

Cosine Distance Euclidean Distance
50 . . . 3
. = . "
48
46

44

42

Triplet Dataset
Zero-shot Accuracy (%)

40

Repeated Triplet Dataset
Zero-shot Accuracy (%)
&

@

33.4
33.2 l — J

L4 L-3 L2 L1 L L4 L-3 L2 L1 L

Layer

B Figure 5.5 The boxplots show the distribution of accuracy of the different captioning meth-
ods and LLMs combinations organized by dataset, model layer and zero-shot scoring procedure
(Cosine or Euclidean Distances).Legend: symbols on x axis L, L—1, L—2, L—3, L —4 represent
model layer depth, where L is the output from the last layer

It is crucial to note that pooling technique may also slightly influence the result, so
it is important to consider it during the examination.
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5.4.2 Vector Scoring Method Comparison

In this study 2 different scoring metric have been considered (Euclidean and Cosine).
The first metric examines the line distance among the input vectors, while the other one
considers an angle between the objects to understand their similarity (more details have
been discussed in Section 4.4.2).

Primary representation of different approaches utilizing both metrics are presented
in Table 5.1. The table shows maximum model prediction accuracy depending on the
dataset and metric used in the study. Due to the fact that both accuracies within the
same dataset and model are quite similar (the difference is around 0.5% in most of the
cases), it is possible to make an assumption that the importance of choosing an exact
scoring metric does not have a major influence on the final prediction results (addi-
tionally, a similar trend can be observed in Figure 5.5). Both scoring metrics perceive
multi-dimensional space similarly and can define the most distinct object prediction.

5.5 The Impact of Image Origin

In this stage, 27 overarching image categories were considered. It is important to note
that only 1,295 images were classified into one of these categories, while the remain-
ing images belonged to multiple fuzzy categories. Consequently, for a fair evaluation,
in the subsequent stages only 1.5 million triplets (comprising images with overarching
categories) were taken into account. To further elucidate this process, results obtained
using the Cosine distance metric only were considered.

In Figure 5.6, the top 20 most popular triplets are displayed. It is observed that
many of these triplets include ’animal’ or ’food’ items combined with other concepts.
Additionally, most triplets consist of items from different categories (gray bars on the
graphs) or from the same category (orange color). This complexity complicates the
process of selecting the most dissimilar item and results in less clear-cut outputs.
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During the examination, it was crucial to compare the model’s understanding across
all categories. To facilitate this comparison, all images were replaced with their respective
category names. Subsequently, a new accuracy metric was calculated based solely on
whether the model’s prediction matched the human-labeled category. The results of this
experiment are presented in Table 5.2.

For each model type, a category that appears to be the easiest for the model to
understand in a manner similar to humans is highlighted. For example, GPT-2 models
perform well with the category “kitchen appliance“, while BERT models most accurately
recognize “drinks®. It is also noteworthy that less common categories, such as “tool“ or
“container”, are challenging for most models to understand. Another interesting obser-
vation is the lack of a consistent dependency between the best category performance and
the training dataset. Models trained on similar datasets yield distinct outcomes, indicat-
ing that the dataset alone does not determine the model’s proficiency in understanding
specific categories.

B Table 5.2 The percentual accuracy for correctly understanding the overarching category is
dependency on the model family. This metric represents the average accuracy of comparing
whether the odd-one-out choice matches the category of the human label

ALBERT BERT DISTILBERT GPT GPT2 ROBERTA XLM XLNET
animal 36.40  41.26 41.09 33.22 39.43 37.78 34.26 36.81
body part 41.55  45.30 39.05 33.28 41.75 40.76  35.44 41.48
clothing 41.18  44.74 41.78 33.30 43.91 43.95 36.02 40.98
clothing accessory 42.36  44.59 40.08 33.27 3891 42.65 36.23 41.56
container 36.40 38.51 37.06 33.35 37.64 36.76  33.78 36.44
dessert 44.02  46.17 43.21 33.38 44.62 44.92  34.69 41.13
drink 38.30  47.06 39.93 33.11 40.84 42.78 33.48 38.96
electronic device 43.52  42.47 44.42  33.40  43.29 41.40 37.29 39.65
food 42.73  45.20 43.96 33.24 43.01 41.21 34.73 41.47
furniture 39.00  41.17 38.74 33.40 41.09 40.40 35.43 38.42
home decor 37.80  40.99 41.15 33.37  39.19 41.61 35.29 38.52
kitchen appliance 42.61  42.18 39.53 33.30  49.28 43.56 38.36 34.78
kitchen tool 38.16 37.84 37.58 33.40 37.52 38.45 32.62 37.11
medical equipment 42.71 43.82 41.73 33.67 41.69 44.00 36.00 38.96
musical instrument 39.69  43.43 41.23 33.29 38.99 40.43 35.93 38.45
office supply 35.39  36.70 34.92 33.30 34.18 33.32 31.42 36.62
part of car 4213  47.02 45.55 33.29  46.89 44.38 37.52 40.43
plant 43.60  45.86 44.49 33.23  41.99 38.74 33.27 39.86
sports equipment 41.76  43.41 42.40 33.41 38.84 41.06 38.75 37.64
tool 36.71  37.96 35.55 33.40 35.41 36.75 32.94 36.78
toy 37.52  38.79 40.20 33.40 37.28 38.86 34.21 38.27
vehicle 42.95 44.83 45.84 33.46  46.59 42.03 37.93 39.49
weapon 38.19  39.80 38.32 33.52  40.47 39.05 32.40 35.24

In the subsequent evaluation stage, the dependency of model errors on specific cate-
gories was examined. Figure 5.7 illustrates this analysis, with human labels represented
in each row (the desirable outcome from the language model) and all categories shown in
separate columns. The values indicate the probability that the model’s selection of the
odd-one-out will align with human expectations. In cases where the model’s selection
does not match the expected category, the figure also shows with which categories the
model confused them.
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B Figure 5.7 The matrix depicts the possibility (in %) of sucessfully chosen category (rep-
resented as columns in a matrix) for each category that was human choice from the triplet
(rows). The visualization reveals patterns of different category associations and relative frequen-
cies within the dataset

It is evident that many categories frequently struggle with incorrectly selecting “food*
as the odd-one-out. This may be due to outliers in the data chosen for this examination,
either because the “food“ category is more prevalent within the triplets or it contains
more images with known classifications. A similar trend can be observed in the “animal
and “clothing* categories. These categories are very popular and well-known to most of
the models, which increases their likelihood of being selected as the odd-one-out. Despite
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this issue, it is also noticeable that some categories, which are logically similar (such as
“part of car® and “vehicle®), are not often confused by the models. This suggests that
the models are able to distinguish between closely related categories more effectively
than might be expected.
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M Figure 5.8 A matrix with color-coded cells representing each category similarity based on
human perception

In the following stage, an inverse comparison was undertaken to examine category
similarity. Figure 5.8 illustrates the outcomes derived from the analysis of human labels.
Each value within the matrix quantifies the perceived similarity between categories based
on human judgments. For instance, the analysis of responses to the odd-one-out task
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indicates that categories such as “food“, “dessert* and “drink* are perceived as quite
similar, resulting in elevated similarity scores within the matrix. In contrast, categories
like “animal“ and “office supply“ exhibit minimal relatedness, leading to substantially
lower values in the corresponding cells. Consequently, the probability of these cate-
gories appearing together in the same triplet and being considered relevant or similar is
markedly reduced.
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B Figure 5.9 A matrix with some color-coded cells that represent each category similarity based
on GPT-2 family perception

A similar process was conducted using outcomes from the GPT-2 family of mod-
els, specifically chosen for their better performance. Consequently, a second heatmap
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representing the model’s perception of category similarities is displayed in Figure 5.9.

Upon carefully reviewing the two figures (5.8 and 5.9), it can be observed that the
selected LLM model exhibits fewer dependencies within the categories, resulting in a
generally lighter table. This indicates that the model perceives separate categories as
more distinct compared to human perception. Additionally, there are more pronounced
distinctions among similar categories. For example, “kitchen appliance* is perceived as
less similar to “kitchen tool“, and “vehicle“ is less similar to “part of car®, compared to
the results obtained from human responses. This suggests that the LLM model lacks a
nuanced understanding of these concepts.
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B Figure 5.10 The map shows patterns and inner similarity of categories for human perception.
It was created with the use of Principal Component Analysis (PCA) method and the similarity
matrix where each category is represented as a vector where each dimension equals to similarity
to relevant category
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B Figure 5.11 The map shows patterns and inner similarity of categories for GPT-2 family
perception. It was created with the use of Principal Component Analysis (PCA) method and
the similarity matrix where each category is represented as a vector where each dimension equals
to similarity to relevant category
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The final stage involves representing these category similarities in a 2D space. This
was achieved by applying the Principal Component Analysis (PCA) dimensionality re-
duction technique to each row from the two previously mentioned matrices. The results
of this analysis are displayed in Figures 5.10 and 5.11.

In this case, it is much more straightforward to notice some dependencies among the
proposed categories. Both humans and the model easily categorize and understand the
most basic concepts: “food“, “dessert” and “drink“. These categories are located close to
each other in each graph and, at the same time, farther from other concepts. Similarly,
“body part“, “animal“ and “plant“ are situated separately and farther from all other
points, indicating they are not deeply related to other categories.

However, both methods exhibit problematic points. Notably, the cloth related cat-
egories and “vehicle® are located near each other, suggesting a stronger similarity than
expected. A more significant issue is the GPT-2 model’s perception that “toy*“ and “med-
ical equipment“ are related. This misconception could lead to problematic outcomes if
the model is used without careful oversight.
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Chapter 6

CONCLUSION

6.1 Summary

Large Language Models (LLMs) have increasingly become integral to everyday life, sig-
nificantly enhancing various aspects of human interaction and productivity. Their ad-
vanced natural language processing capabilities facilitate seamless communication be-
tween humans and machines, empowering people with real-time language translation,
personalized digital assistants, tutoring or generating educational content tailored to in-
dividual learning styles, automated creative content generation, etc. These models aid in
improving accessibility for individuals with disabilities through speech-to-text and text-
to-speech functionalities. In the healthcare sector, they assist in diagnosing medical
conditions through the analysis of patient data and medical literature.

The adaptability and extensive application potential of LLMs underscore their impor-
tance as transformative tools in modern society, driving efficiency and innovation across
diverse domains. As previously mentioned, LLMs are utilized in various fields, and thus,
it is crucial for them to accurately comprehend the basic concepts that surround us.

In today’s technological landscape, numerous types of Large Language Models (LLMs)
exist, yet none have fully embodied the ideal of a highly intelligent Al of the new era.
Despite their impressive advancements, these models still exhibit notable limitations and
disadvantages that hinder their performance. Many LLMs continue to make errors in
areas such as semantics, logic and factual accuracy. Additionally, contemporary expec-
tations for Al are evolving; people increasingly desire Al systems that emulate human
behavior rather than function as perfectly logical robots. This shift underscores the
importance of subjectivity, empathy and nuanced understanding in Al interactions, as
human behavior is often neither purely logical nor consistently effective. Consequently,
there remains a significant journey ahead in refining LLMs to meet these expectations,
involving continuous improvements and breakthroughs in Al development.

To achieve robust solutions using LLMs, proper performance evaluation is essential.
The primary goal of such evaluation is to identify the main weaknesses and limitations
of current models to enhance their future capabilities. Various metrics have been devel-
oped to assess model outputs, checking their robustness and overall performance. Some
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evaluation methods have become so popular that entire platforms have been created
around them, making these tools accessible to everyone.

Certain approaches leverage other modern technologies and Al to facilitate auto-
mated evaluation. These methods use additional Al tools to generate tasks for LLMs
and subsequently assess their performance. Despite these advancements, most bench-
marks still require significant human interaction and evaluation. This human involve-
ment ensures that the evaluations account for nuances and complexities that automated
systems might miss, but it also highlights the need for more sophisticated, integrated
evaluation frameworks in the future.

In this study, an advanced strategy for evaluating the performance of Large Lan-
guage Models (LLMs) was proposed. The main idea is to compare the capabilities of
popular models in natural text processing to human performance. To achieve this, basic
concepts from everyday life were used as benchmarks. The study assessed the models’
understanding of these concepts, their relationships and their similarities and then com-
pared the models’ performance to human perception. This approach aims to highlight
discrepancies in different spheres and areas for improvement in how LLMs comprehend
and process natural language.

To perform the evaluation, the THINGS dataset was utilized. This dataset was
constructed from a list of the most popular concepts that surround us. From this list,
the most popular categories were selected and expanded with precise examples (names
of specific items). In later stages, a common visual representation was provided for
each item. The final dataset consisted of different image combinations of three items
(triplets). The main task was to demonstrate understanding of the selected concepts in
each triplet by identifying their similarities and selecting the most dissimilar item (odd-
one-out problem). For each combination human answers were provided to facilitate
easier evaluation in the subsequent stages.

At the beginning, all images were converted back to text using three different models
for image captioning. These models, each with distinct architectures, provided varying
descriptions. The BLIP and ViT models generated relatively short descriptions, whereas
GPT-4V produced more detailed and longer texts. Additionally, the descriptions were
supplemented with the original item names, ensuring clarity and context.

In the next stage, an examination of the current most popular pretrained Large
Language Models was conducted. Various models were compared, resulting in a final
list of 24 models from 8 model families (Bert, Albert, DistilBert, Roberta, GPT-2, GPT
Embedding, XLM, XLNet). To ensure a fair evaluation, the selected models represent a
diverse range of types, architectures, sizes and training data.

Then, the input text (image captioning from each approach) was passed to the LLMs
without any pretraining. At this point, a zero-shot learning strategy was chosen to
assess the models’ primary understanding of concepts without any additional fine-tuning.
This approach evaluates how well the models can be integrated into basic environments
without further modifications. To enhance the robustness of the investigation, the last
five hidden states of each model were considered and vector representations (embeddings)
of the input text were extracted. These vectors were then compared within each triplet
using Cosine and Euclidean similarity measures. The final performance results were
based on the evaluation of all triplets.
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It is important to mention that all results were compared with human labels, which
do not necessarily indicate the ground truth and are not always highly reliable. Conse-
quently, common performance evaluation metrics may not be applicable in this context,
necessitating a more flexible and open approach. Additionally, the THINGS dataset is
designed in such a way that distinguishing the odd-one-out item can be sometimes chal-
lenging even for humans, making the task inherently subjective and adding complexity
to the comparison of LLMs’ performance.

Several key findings from the experiment are detailed in the EXPERIMENTS
Section. These insights highlight the strengths and limitations of current LLMs in un-
derstanding and processing basic concepts compared to human perception. The results
provide a comprehensive overview of how well these models perform in various scenarios,
offering valuable information for future improvements and research in the field of Large
Language Models.

Overall, the results show that emulating human reasoning in terms of some basic
concepts understanding remains a challenging task for the models. Most of them achieve
an accuracy between 40% and 50%, which is better than a Random Classifier (with an
accuracy of 33% for a triplet problem) but still far from ideal. This means that, on
average, only 40% to 50% of the triplet answers matched those labeled by
humans (noting that this does not necessarily indicate the ground truth).

Still, the analysis reveals that in cases where the triplet comparison was not straight-
forward, people often were uncertain of their answers as well. The input dataset
includes several examples of triplets that were reviewed multiple times, with each person
providing a different answer for the most dissimilar object. Consequently, the average
confidence rate for selecting the right odd-one-out item is approximately 40%.

Additionally, a more detailed analysis indicates that models receiving longer and
more detailed descriptions from the GPT-4V model generally yield better
results. Their average accuracy in selecting the correct odd-one-out is higher. In most
cases, longer descriptions are more effective than the exact item names generated from
the THINGS dataset. This suggests that, in terms of this comparison, the models
resemble human behavior: the more explanation they receive, the easier it is for them
to understand each concept deeply and make similar decisions.

In terms of different LLM architectures, there are notable distinctions as well. Firstly,
larger model architectures require more time and computational resources to extract
embeddings and use them for item comparisons. However, a larger model size does
not necessarily guarantee more precise results. The analysis did not reveal any other
dependencies, such as those based on the training dataset or number of hidden states. In-
terestingly, models from the GPT-2 family generally exhibited the most effective
performance (see Table 5.1).

Lastly, after considering image categories, several conclusions can be drawn. First,
the training dataset does not significantly help the model understand certain types of
data better. Nuanced relationships among categories remain challenging for
the model to define, leading to decision-making based on a more polarized perception.
Additionally, both approaches easily grasp some simple categories, while more complex
ones may be misconceived by LLMs, potentially leading to serious issues.
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The results of this experiment make it easier to determine if a selected model is
suitable for the task that the LLM is supposed to perform. They also help identify
the model’s main weaknesses, allowing for targeted improvements during fine-tuning
and deployment phases. Understanding these aspects ensures that the model can be
optimized for better performance in its intended application.

6.2 Further Enhancements

The examination encompasses a comprehensive comparison of various models, evaluating
multiple aspects of Large Language Model (LLM) performance. This includes assessing
the models’ ability to comprehend fundamental concepts without any fine-tuning, their
overall performance and their similarity to human perception. Additionally, the exam-
ination considers the impact of different input types and the influence of architectural
variations on model performance.

The evaluation process is inherently complex, involving numerous metrics and cri-
teria to provide a holistic assessment of each model’s capabilities. Despite the rigorous
nature of this evaluation, there is always room for refinement and the introduction of
new methodologies. Continuous advancements in the field necessitate the ongoing de-
velopment of evaluation techniques to ensure they remain robust and relevant.

Improvements to the evaluation process may encompass a variety of enhancements.
These include the incorporation of additional metrics, the use of more diverse datasets
and the inclusion of a broader range of captioning methods or models for text processing.
Furthermore, considering even deeper layers within the models and applying additional
scoring metrics can provide a more nuanced understanding of their capabilities.

There is always the potential to improve the input dataset of concepts and triplets.
Enhancements can include adding new features and descriptions to the items, implement-
ing support for additional languages, and making the dataset more robust by repeatedly
verifying the correctness of the answers. These improvements can lead to a more com-
prehensive and accurate dataset, ultimately contributing to better model understanding
and evaluation.

Testing alternative calculation techniques could also yield valuable insights. For in-
stance, instead of relying on average pooling applied to the last hidden state to obtain
phrase representations, other pooling methods or classification vectors could be em-
ployed. This could involve experimenting with max pooling, attention-based pooling or
other sophisticated aggregation methods that might capture different aspects of the data
more effectively.

Moreover, models can be slightly modified through fine-tuning to better align with
specific requirements. This approach suggests that their performance with few-shot
learning is likely to improve. However, several questions arise regarding the extent of
effort required to achieve satisfactory outcomes.

One important consideration is determining the level of fine-tuning necessary to
produce a model that performs well for a given task. This involves assessing the trade-off
between the amount of data and computational resources needed for fine-tuning versus
the performance gains achieved. Evaluating different fine-tuning strategies, such as
transfer learning, domain adaptation and task-specific adjustments, can provide insights
into the most efficient methods for enhancing model performance. Additionally, the
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effectiveness of providing models with a clear outline of the main general categories
needs to be examined.

Another potential enhancement involves automating the evaluation strategy and
leveraging other available AT tools. This can facilitate the generation of evaluation tasks,
setting up frameworks for real-time competitions among models and systematically as-
sess the behavior and performance of the tested LLMs. Automating these processes
may significantly increase the efficiency and scalability of the evaluation, ensuring con-
sistent, robust and objective comparisons while reducing costs by minimizing human
intervention.

At the end, it also makes sense to perform the same evaluation and comparison of
models’ understanding of concepts by solving a different type of problem, rather than
relying solely on the odd-one-out approach. This could involve using tasks such as
analogy completion, concept categorization or contextual reasoning, providing a more
comprehensive assessment of the models’ capabilities.

By integrating these improvements, the evaluation framework can be enhanced to
provide a more comprehensive and detailed assessment of LLM performance and better
capture the nuances of human language understanding and generation. This continuous
refinement is crucial for keeping pace with the rapid advancements in the field of natural
language processing, ensuring that evaluation techniques remain robust, relevant and
capable of identifying the most effective models and methodologies.
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Enclosed Media Contents

| README.md.................. guide to navigate through the enclosed media content
L odata ..o e a folder with some precalculated data
image_captioning.csv................. generated captions for all input images
category tdf.csv.....cooiiiiin.... model output prediction for each triplet
triplet_accuracy.pkl ................. final results for original triplet dataset
repeated_triplet_accuracy.pkl ...... final results for repeated triplet dataset
R oo Yo 1= a folder with all necessary code
dataset_processing_and_captioning.ipynb................. captions creation
captions_processing.ipynb................. embeddings creation and scoring
results_analysis.ipynb..........ccooeunnn... model performance evaluation
| Images. ... a folder with some images from thesis
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