
F3 Faculty of Electrical Engineering
Department of Control Engineering

Master’s Thesis

Open-source Motion Control on
Mid-range and Small FPGAs

Jakub Janoušek
Cybernetics and Robotics

August 2024
Supervisor: Ing. Pavel Píša, Ph.D.

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

483444 Personal ID number: Janoušek Jakub Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Open-source Motion Control on Mid-range and Small FPGAs

Master’s thesis title in Czech:

Otevřené systémy řízení pohonů na střeních a malých programovatelných obvodech

Guidelines:

Motion control is fundamental for a wide range of robotic, space, and industrial applications. The project aims to evaluate
combinations of FPGA-based control electronics with GNU/Linux system and smaller RTOS as is NuttX system.
1) Familiarize with Zynq 7000 based MZ_APO board and microzed-mc-1 PMSM motor control FPGA design and power
stages
2) Propose and evaluate the procedure for current sensor calibration and integrate current transformations into PXMC
and pysimCoder control design
4) Test how the control PMSM system can be reproduced on a cheap entry and hobbyist-level ICE-V board and propose
a combined design for ESP32C3 microcontroller-based electronics
5) Document developed software and hardware setup

Bibliography / sources:

[1] Prudek. M.: Brushless motor control with Raspberry Pi board and Linux; Bachelor Thesis; CTU; Prague 2015
[2] Jeřábek, M.: Open-source and Open-hardware CAN FD Protocol Support; Jeřábek Martin; 2018; Master Thesis; CTU;
Prague 2016
[3] Belda, K.; Píša, P.: Explicit Model Predictive Control of PMSM Drives In: 2021 IEEE 30th International Symposium on
Industrial Electronics (ISIE). Piscataway: IEEE Industrial Electronics Society, 2021. ISSN 2163-5145. ISBN
978-1-7281-9023-5.
[4] Jeřábek, M.; Ille, O.; Píša, P.; Novák, J.: CTU CAN FD Core integration to Zynq-7000 system [Prototype] 2018.
online: https://canbus.pages.fel.cvut.cz/
[5] CTU GNU/Linux Simulink Target; online https://lintarget.sourceforge.net/

Name and workplace of master’s thesis supervisor:

Ing. Pavel Píša, Ph.D. Department of Control Engineering FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 15.08.2024 Date of master’s thesis assignment: 05.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. Pavel Píša, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgement / Declaration

First and foremost, I would like to
thank my supervisor, Dr. Píša, for
his patience and countless hours spent
teaching and helping me. I would al-
so like to thank my mom, dad, and
my brother for their support and help
throughout my studies. And last but
not least, my friends and especially my
girlfriend for their patience and help.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, August 15, 2024

. .

v

Abstrakt / Abstract

Tato práce se zaměřuje na vývoj open
source systému pro řízení pohybu po-
mocí FPGA střední a malé třídy, s dů-
razem na řízení synchronních motorů s
permanentními magnety (PMSM). Pro-
jekt integruje řídicí elektroniku na bázi
FPGA s operačním systémem reálného
času NuttX a prostředím GNU/Linux a
vytváří tak flexibilní a nákladově efek-
tivní řešení pro aplikace v robotice nebo
průmyslové automatizaci.

Mezi klíčové aspekty práce patří
analýza principů řízení pohybu, vý-
voj a implementace metody kalibrace
Hallova proudového senzoru a návrh
a implementace nové architektury ří-
dicího systému s využitím bezdrátové
desky ICE-V, která kombinuje mikro-
kontrolér ESP32-C3 s FPGA iCE40.
Navržený systém je pak otestován s
knihovnou Portable, highly eXtendable
Motion Control (PXMC) a grafickým
nástrojem pro návrh řídicích systémů a
generování kódu pysimCoder.

Klíčová slova: Řízení pohonů, PMSM,
NuttX, otevřené systémy, FPGA, py-
simCoder

Překlad titulu: Otevřené systémy ří-
zení pohonů na středních a malých pro-
gramovatelných obvodech

This thesis focuses on the devel-
opment of an open source motion
control system using mid-range and
small FPGAs, with a particular empha-
sis on controlling Permanent Magnet
Synchronous Motors (PMSM). The
project integrates FPGA-based control
electronics with the NuttX real-time
operating system and the GNU/Linux
environment to create a flexible and
cost-effective solution for applications
in robotics or industrial automation.

Key aspects of the work include the
analysis of motion control principles,
the development and implementation of
Hall current sensor calibration method,
and the design and implementation
of a new control system architecture
using the ICE-V Wireless board, which
combines the ESP32-C3 microcontroller
with the iCE40 FPGA. The designed
system is then tested with the Portable,
highly eXtendable Motion Control li-
brary (PXMC) and the graphical tool
for control system design and code
generation pysimCoder.

Keywords: Motion control, PMSM,
NuttX, Open-source, FPGA, pysim-
Coder

vi

Contents /

1 Introduction 1

2 Motion Control 2
2.1 PMS Motors 2

2.1.1 Construction of PMSM . . . 2
2.1.2 PMSM Control 3
2.1.3 Clarke Transformation 3
2.1.4 Park Transformation 4

2.2 Field Oriented Control 5
3 Original System Setup 6

3.1 MZ_APO Board 6
3.2 Power Stage 7

3.2.1 Power Control 7
3.2.2 Current Measurement 7

3.3 Used Motor 7
3.3.1 Positional Sensors 8

3.4 Microzed-mc-1 PMSM Mo-
tor Montrol FPGA Design 9

3.4.1 Data Transfer 9
4 Calibration of Current Sensors 10

4.1 Theory 10
4.1.1 Full Rank 3x3 Calibra-

tion Matrix 11
4.1.2 2x2 Calibration Matrix

using the Clarke Trans-
formation 12

4.2 Implementation 12
4.2.1 Collecting Data with

PXMC 12
4.2.2 Calculating the Cali-

bration Matrices 13
4.3 Calibration Results 14

4.3.1 Measurements 14
4.3.2 Calibration Matrices 14

5 NuttX 15
5.1 Overview of NuttX 15

5.1.1 NuttX Advantages 15
5.2 Basic Nuttx Organisation . . . 16

5.2.1 NuttX Kernel 16
5.2.2 Nuttx User Space 16

5.3 Source Code Organization . . . 17
5.3.1 Architecture Directory . . . 17
5.3.2 Boards Directory 17
5.3.3 Drivers Directory 17

5.4 NuttX Configuration and
Compilation 17

6 Motion Control on the ICE-
V Board 18

6.1 System Overview 18
6.2 ICE-V Wireless Board 19
6.3 Adapter Board 20
6.4 Firmware 21

6.4.1 Programming the ICE-
V Wireless Board 21

6.4.2 PXMC 22
6.4.3 PysimCoder 22

7 Programming of the iCE40
FPGA from NuttX 23

7.1 Overview of iCE40 FPGA
Programming 23

7.1.1 SPI Slave Configura-
tion Interface 23

7.1.2 SPI Slave Configura-
tion Process 24

7.2 Driver Design and Architecture 26
7.2.1 Upper Half of the Driver . 27
7.2.2 Lower Half of the Driver . . 28

8 Design of the ICE-V PMSM
Adapter Board 30

8.1 Purpose of the Board 30
8.2 Design Considerations 31

8.2.1 ICE–V Wireless Board . . 31
8.2.2 3p-motor-driver-1 Board . . 32

8.3 Power Supply 33
8.4 Communication Interfaces . . . 34

9 PXMC Library on the ICE-V 35
9.1 Library Description 35
9.2 The Command Processor . . . 36

9.2.1 Available Commands 37
9.2.2 Application Specific

Commands 37
9.3 Application Description 38

9.3.1 Application Structure . . . 39
9.3.2 Running the Application . 39

10 PysimCoder Models on the
ICE-V 41

10.1 Block Editor 41
10.2 Source Code Organization . . . 42

10.2.1 Resources 42
10.2.2 CodeGen 43

10.3 Using PysimCoder with NuttX 43

vii

10.4 Created Models for the
ICE-V 44

10.5 Model for PMSM Align Check . 44
10.5.1 Structure of the Model . . 45
10.5.2 Model Usage 45

10.6 Model for PMSM Closed
Loop Control 47

10.6.1 Current Calibration
Subsystem 48

11 Conclusions 50
11.1 Current Sensor Calibration . . 50
11.2 Development of the Motion

Control System using the
ICE-V Board 50

11.3 Further Development Options . 51
A Schematics and Fabrica-

tion Outputs of the ICE-V
PMSM Board 53

B List of all PXMC Commands
in the ice_v_pmsm Application 57

C PXMC Errors 59

D Schematic Diagram of the
3p-motor-driver-1 Board 60

References 62

viii

Tables / Figures

3.1 Order of data in SPI transfer
A .9

3.2 Order of data in SPI transfer
B .9

4.1 Table of possible winding
currents . 11

4.1 SPIMC Current Calibration
Pattern . 13

4.2 SPIMC Current Calibration
Pattern Extension 13

4.1 Table of measured phase cur-
rents . 14

4.2 Table of true phase currents . . . 14
4.3 Calibration matrix 3x3. 14
4.4 Calibration matrix 2x2. 14

2.1 PMSM with two pole pairs3
2.2 𝛼 and 𝛽 currents in relation

to 𝑎, 𝑏, 𝑐 currents3
2.3 Park transformation4
3.1 Picture of the MZ APO Board . .6
3.1 Picture of the used motor8
6.1 Picture of the entire motion

control system 18
6.1 Overview of the motion con-

trol system . 19
6.1 ICE-V Wireless board. 19
6.2 Schematic of ICE-V Wireless

board. 20
6.1 Schematic diagram of the

ESP32–C3 and the iCE40
on the ICE–V Wireless 21

7.1 iCE40 SPI Slave Configura-
tion Interface 24

7.2 iCE40 SPI Slave Configura-
tion Process . 24

7.3 iCE40 SPI Slave Configura-
tion Process Flowchart 26

8.1 ICE-V PMSM Adapter board . 30
8.1 ICE-V PMSM PMOD pin

mapping . 31
8.2 ICE-V PMSM FPGA pin

mapping . 31
8.3 ICE-V PMSM EPS32–C3 pin

mapping . 32
8.4 ICE-V PMSM 3p-motor-

driver-1 board connector 32
8.1 ICE-V PMSM 5V Power sup-

ply . 33
8.1 ICE-V PMSM Communica-

tion Interfaces 34
9.1 Overview of the structure of

the PXMC library. 35
10.1 PysimCoder Windows 42
10.1 PysimCoder Model for

PMSM Align Check 44
10.2 Graphs from PMSM Align

Check . 46
10.1 PysimCoder Model for

PMSM Closed Loop Control . . 47

ix

10.2 PysimCoder Subsystem
Model for PMSM Current
Calibration . 48

10.3 Graphs from PMSM Closed
Loop Control 49

A.1 Schematic diagram of the
ICE-V PMSM Board. 54

A.2 Board layout of the ICE-V
PMSM Board - Front 55

A.3 Board layout of the ICE-V
PMSM Board - Back 55

A.4 Board layout of the ICE-V
PMSM Board - Whole 56

D.5 Schematic diagram of the 3p-
motor-driver-1 Board 61

x

Chapter 1
Introduction

Motion control systems play a critical role in a wide range of applications, from robotics
and industrial automation to aerospace technology. These systems enable precise con-
trol over the movement and positioning of machines and devices, which is essential to
achieve high performance and accuracy in various tasks. Among the different types of
motor used in these systems, Permanent Magnet Synchronous Motors (PMSM) are val-
ued for their efficiency, reliability, and high power density. These characteristics make
PMSM a preferred choice in scenarios where precise control of speed and position is
important.

There is a growing interest in using open source technology to develop better and
more affordable motion control systems. The combination of open-source software with
Field Programmable Gate Arrays (FPGAs) creates a flexible platform for building cus-
tom motion control systems. FPGAs can be reprogrammed to handle specific tasks,
making them ideal for implementing specialized control methods. Open-source software
offers several advantages, including adaptability, cost-effectiveness, and a large commu-
nity of developers who contribute to continuous improvement and support, making it
easier to develop, deploy, and maintain these systems.

In this thesis, a motion control system for PMSM motors was developed using mid-
range and small FPGAs, specifically focusing on open-source solutions. The work
involved the development of a current sensor calibration method to ensure accurate
feedback, which is critical for effective motor control. The thesis also describes the de-
sign and implementation of a new control system architecture using the ICE-V Wireless
board, integrating the ESP32-C3 microcontroller with the iCE40 FPGA. Finally, cus-
tom control software was developed and tested using the Portable, highly eXtendable
Motion Control (PXMC) library and the open source graphical tool for control system
design and code generation pysimCoder.

1

Chapter 2
Motion Control

Motion control is a system used to manage the movement of machines or mechanical
systems. It involves controlling the speed, position, and acceleration of motors or
actuators to achieve desired outcomes. The basic structure of a motion control system
typically includes three main components:

. Controller: The controller receives input signals and generates outputs for the power
stage. It processes information from sensors and received instructions to determine
how the motors should move.. Power stage: The power stage takes the low power signals from the controller and
converts them to high power output directly for the motor. The exact input and
output form depends on a specific implementation of the controller and the type of
motor used.. Actuator: This is the component responsible for producing mechanical motion. There
are many different types of motors such as brushed DC motors, stepper motors,
asynchronous motors, or permanent magnet synchronous motors (PMSM).

This thesis will focus on the PMSM motors.

2.1 PMS Motors
Permanent Magnet Synchronous Motor (PMSM) is a three-phase AC synchronous mo-
tor with permanent magnets attached to the rotor and windings going through the
stator. They are known for their high efficiency, high reliability, and high power den-
sity. This makes them a good choice for many motion control applications, especially
where there is a need for speed or position control.

PMSMs are operated by electronic commutation instead of mechanical brushes, un-
like traditional brushed DC motors. This increases their reliability, as there are no
parts that are subject to wear, such as brushes or parts of the commutator. The effi-
ciency and power density are also improved. However, electronic commutation means
additional requirements for the controller.

There is another similar variant of the three-phase synchronous motor with perma-
nent magnets, the BLDC motor. The main difference is that the PMSM has sinusoidal
back electromotive force (BEMF), but the BLDC has trapezoidal BEMF. PMSM has
the advantage that the torque produced is constant throughout the turn, but BLDC is
somewhat easier to control.

2.1.1 Construction of PMSM

The PMSM motor consists of a rotor with permanent magnets and a stator with coil
windings of each of the three phases. The number of windings depends on the pole pair
count of the permanent magnet inside the stator. One of the possible configurations is
two pole pairs, as can be seen in the picture 2.1.

2

. 2.1 PMS Motors

Figure 2.1. PMSM with two pole pairs [1]

2.1.2 PMSM Control

The control of PMSM requires managing the magnitude and direction of the stator
magnetic field. The field needs to be closely controlled with regard to the position of
the rotor to maximize efficiency. For this reason, it is useful to have mathematical
transformations that relate the current flowing through each winding to the position of
the rotor and back. There exist two transformations which are useful for this, Clarke
Transformation and Park Transformation.

2.1.3 Clarke Transformation

The purpose of the Clarke transformation in PMSM control is to convert the currents
from the three-phase system (a three-dimensional system) to a two-phase orthogonal
system (a two-dimensional system). The two-phase system can also be interpreted as a
vector in the complex plane. The image 2.2 shows the transformation in greater detail.

a

b

c

α

β

iiβ

iα

Figure 2.2. 𝛼 and 𝛽 currents in relation to 𝑎, 𝑏, 𝑐 currents

3

2. Motion Control .
We are able to write the Clarke transformation in matrix form as used in [2]

⎡⎢
⎣

𝑖𝛼
𝑖𝛽
𝑖𝛾

⎤⎥
⎦

= 2
3

⎡⎢
⎣

1 − 1
2 − 1

2
0

√
3

2 −
√

3
2

1
2

1
2

1
2

⎤⎥
⎦

⎡⎢
⎣

𝑖𝑎
𝑖𝑏
𝑖𝑐

⎤⎥
⎦

, (1)

where 𝑖𝑎, 𝑖𝑏 and 𝑖𝑐 are generic three-phase currents and 𝑖𝛼, 𝑖𝛽 and 𝑖𝛾 are the corre-
sponding currents given by the transformation.

We can also write the inverse Clarke transformation as follows.

⎡⎢
⎣

𝑖𝑎
𝑖𝑏
𝑖𝑐

⎤⎥
⎦

= ⎡⎢
⎣

1 0 1
− 1

2

√
3

2 1
− 1

2
−

√
3

2 1

⎤⎥
⎦

⎡⎢
⎣

𝑖𝛼
𝑖𝛽
𝑖𝛾

⎤⎥
⎦

(2)

For the currents flowing through the three windings of the motor stator 𝑖𝑎, 𝑖𝑏 and 𝑖𝑐
the following equation is true.

𝑖𝑎 + 𝑖𝑏 + 𝑖𝑐 = 0 (3)

This means that in equation (2) the 𝑖𝛾 is zero and the transformation can be rewritten
from equation (1) to

[𝑖𝛼
𝑖𝛽

] = √2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2
] ⎡⎢

⎣

𝑖𝑎
𝑖𝑏
𝑖𝑐

⎤⎥
⎦

. (4)

where 𝑖𝛼 and 𝑖𝛽 are the transformed currents in the two-dimensional system.

2.1.4 Park Transformation

The primary purpose of the Park transformation is to convert the stationary mag-
netic field represented in the two-phase orthogonal system obtained by using Clarke
transformation to a new set of axes aligned with the rotor’s magnetic field.

The axes are chosen so that they are orthogonal, and called direct and quadrature
axes, and the currents called 𝑖𝑑 and 𝑖𝑞, respectively. The picture 2.3 shows the relation
between 𝑖𝛼, 𝑖𝛽 and 𝑖𝑑, 𝑖𝑞.

Stator

Rotor

q

d

β

α

ω θ
N

S

Figure 2.3. Axes d(direct) a q(quadrature) are chosen aligned to the rotor. [1]

The direct axis is aligned along the rotor’s magnetic field direction. It primarily
affects the magnetic flux within the motor. Control of 𝑖𝑑 allows for the management of
the motor flux, influencing how the motor handles magnetic saturation and efficiency.

4

. 2.2 Field Oriented Control

The quadrature axis is orthogonal to the direct axis and primarily governs the pro-
duction of torque in the motor. Controlling 𝑖𝑞 directly influences the torque output of
the motor.

We can write the Park transform in matrix form as follows [3].

[𝑖𝑑
𝑖𝑞

] = [cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃] [𝑖𝛼

𝑖𝛽
] (5)

We can also write the inverse Park transformation as

[𝑖𝛼
𝑖𝛽

] = [cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃] [𝑖𝑑

𝑖𝑞
] . (6)

2.2 Field Oriented Control
Field Oriented Control (FOC) is a control strategy for PMSM motors. It utilizes
the Park and Clarke transforms, both in the normal and in their inverse forms. The
primary goal of FOC is to control the magnetic field within the motor to achieve efficient
torque production. This is done by aligning the stator current vector with the rotor’s
magnetic field. The process involves transforming the three-phase motor currents into
two orthogonal components, the direct axis and the quadrature axis, as defined by the
Park transform.

First, the currents 𝑖𝑎, 𝑖𝑏 and 𝑖𝑐 of each of the three phases of the motor are measured.
These currents are used later for feedback control. Then these currents are transformed
into a stationary two-phase reference frame (𝑖𝛼, 𝑖𝛽) using the Clark transformation.
Then 𝑖𝛼 and 𝑖𝛽 currents are transformed into a rotating reference frame aligned with
the rotor magnetic field using the Park transformation. The currents are then expressed
as 𝑖𝑑 (d)and 𝑖𝑞 (q) components, which are orthogonal. The d-axis current is aligned
with the rotor’s magnetic field, while the q-axis current is perpendicular to it.

The control algorithms are then applied to the 𝑖𝑑 and 𝑖𝑞 currents. The type of
algorithm used depends on the application. For example, when controlling the speed
of the motor, a Proportional-Integral (PI) controller might be implemented to adjust
the 𝑖𝑞 current for torque control, while the 𝑖𝑑 current may be controlled to manage the
magnetic flux, optimizing motor efficiency and preventing magnetic saturation.

The effective implementation of field oriented control requires precise feedback on
rotor position, which is typically obtained using sensors such as encoders or Hall effect
sensors or incremental rotary counters (IRC). This positional feedback is important as
it determines the transformation angles used in the Park transformation, ensuring that
the currents 𝑖𝑑 and 𝑖𝑞 are accurately aligned with the magnetic field axes of the rotor.

5

Chapter 3
Original System Setup

The initial phase of this thesis was to familiarize with the MZ_APO board based on the
Zynq 7000 and microzed-mc-1 PMSM motor control FPGA design and power stages
and then to design a procedure for Hall current sensor calibration.

The MZ_APO board was used for motor control and also during the calibration of
the current sensors together with the 3p-motor-driver-1 power stage. Motor control
was realized with both the Portable, highly eXtendable Motion Control library (PXMC)
[4], as well as the open-source graphical tool for control system design and real-time
code generation, pysimCoder [5], together with the microzed-mc-1 PMSM motor control
FPGA design.

This chapter will introduce the components and designs used.

3.1 MZ_APO Board
The MZ_APO board is an educational kit built on the MicroZed board., which is
based on the Zynq-7010 MicroZed SBC. The MZ_APO was created by the PiKRON
company, and the full design can be found on the PiKRON gitlab [6].

This board provides numerous peripherals and interfaces, and is used in education
and projects with GNU/Linux, RTEMS and VxWorks operating systems. The board
is shown in Figure [7].

Figure 3.1. Picture of the MZ APO Board [8]

The more detailed board specification is documented on the B35APO course pages
[8] and in the MZ-APO documentation [9]. The key properties are:

6

. 3.2 Power Stage

. Base Chip: Xilinx Zynq-7010 All Programmable SoC. Type: Z-7010, part XC7Z010. CPU: Dual ARM Cortex-A9 MPCore at 866 MHz (NEON &Single/Double Precision
Floating Point). 2x L1 32 kB data + 32 kB instruction, L2 512 KB. FPGA: 28K Logic Cells (∼ 430K ASIC logic gates, 35 kbit). Computing units in FPGAs: 100 GMACs. FPGA memory: 240 KB. Memory on MicroZed board: 1GB

The MZ_APO board also has many communication interfaces, such as Ethernet,
USB, Serial port, or CAN, which could be used for communication with the board.

3.2 Power Stage

The MZ_APO board is connected to the 3p-motor-driver-1 power stage board. This
board was developed by PiKRON company for experimenting with motion control, and
its design files can be found in the company’s gitlab [10]. The schematic diagram is in
Appendix D.

The board has multiple key parts, namely the motor power control, phase current
measurement, and connection of the Hall sensors and the IRC to the main board.

3.2.1 Power Control

The power control of the motor is implemented by a trio of half H-bridges, each consist-
ing of two power N-MOS transistors and controlled by a half-bridge N-Channel Power
MOSFET Driver LT1158. The drivers are then controlled by PWM and Enable signals.

The motor power control part is completely galvanically isolated from the rest of the
system to protect control electronics and suppress interference.

3.2.2 Current Measurement

The board measures the current flowing through all three motor windings. The sensors
used for this measurements are analog Hall effect sensors Allegro ACS711 [11]. These
sensors are mounted next to each other on the board. Unfortunately, the placement
of the sensors results in them measuring not only the desired phase, but they are also
affected by the currents flowing through the two other phases.

This is the reason for the design of the current measurement calibration described
later in this thesis.

The analog outputs of the sensors are then measured by the onboard 12-bit analog-
to-digital converter (ADC) ADS7841, which then allows reading of the ADC values via
SPI.

3.3 Used Motor

The used motor in this thesis is a Permanent Magnet Synchronous Motor (PMSM).
The exact type of motor used is BLWR233D-36V-4000 made by Aneheim Automation
[12]. The motor can be seen in Figure 3.1.

7

3. Original System Setup .

Figure 3.1. Picture of the used motor

The motor has a power rating of 92 Watts, its rated voltage is 36 V, and it also has
two pole pairs. Its parameters are shown in the following list:

. Rated Voltage (V): 36. Rated Power (Watts): 92. Rated Torque (oz-in): 31.2. Rated Speed (RPM): 4000. Torque Constant (oz-in/A): 8.5. Back EMF Voltage (V/kRPM): 4.45. Line-to-Line Resistance (ohm): 0.64. Line-to-Line Inductance (mH): 2.1. Rotor Inertia (oz-in-sec2): 0.0010600. ”L” Length (in): 2.9. Weight (lbs): 1.65

3.3.1 Positional Sensors

To the motor are connected two position sensors, the Hall sensors, and an Incremental
Rotary Counter (IRC).

The Hall sensors measure the motor position by detecting changes in the magnetic
field as the rotor moves. There are three Hall sensors, which together provide the
absolute position of the motor with a resolution of six sectors per one electrical rotation
of the motor.

The Incremental Rotary Counter (IRC), also connected to the motor, offers much
higher resolution in the measured position. The IRC works by producing a series of
pulses as the motor shaft rotates, each pulse corresponding to a small increment in
movement.

There are two signals from the IRC, typically named A and B that are out of phase
(often referred to as quadrature output). The two signals together measure not only
the change in position of the motor, but because of the phase shift, they also signalize
the direction of the motor movement.

The IRC also has a third signal, the index, which indicates when the motor is in a
specified angle. This index signal is used to obtain the absolute position of the motor,
as the A and B signals would only provide relative information. For this reason, the IRC
is often used together with the Hall position sensors.

8

. 3.4 Microzed-mc-1 PMSM Motor Montrol FPGA Design

3.4 Microzed-mc-1 PMSM Motor Montrol FPGA Design
The microzed-mc-1 FPGA design was developed for the control of a PMSM motor as
part of previous projects. The design can be found on the gitlab page[13] or it is used
as part of the application of the rvapo project available at [14]. It is also described in
the presentation [15] and also in the thesis by Martin Prudek[1].

The FPGA design is responsible for processing the outputs from the power stage
board, namely the Hall position sensors, the IRC and the measured phase currents,
and also generating the PWM and Enable signals for the half-bridges controlling the
power MOSFETs.

The design communicates with the control system via SPI. The communication is
two-way; at the same time, the control system tells the FPGA the instructions for the
power control, and the FPGA reports the Hall position, IRC value and index position,
and the information about measured currents.

3.4.1 Data Transfer
The data is transmitted in 128 bits. The following tables show the exact composition of
the message. The table 3.1 shows the order of data transferred from the control system
to the FPGA. The table 3.2 then shows the order of the data in the SPI transfer from
the FPGA to the control system.

Bits Function
127 ADC reset

126 .. 124 Enable PWM1 .. PWM3
123 .. 121 Half-Bridge Shutdown for PWM1 .. PWM3
120 .. 43 Unused
42 .. 32 PWM1 duty cycle
31 .. 27 Unused
26 .. 16 PWM2 duty cycle
15 .. 11 Unused
10 .. 0 PWM3 duty cycle

Table 3.1. Order of data in the SPI transfer from the control system to the FPGA

Bits Function
127 ..96 IRC

95 Hall 1
94 Hall 2
93 Hall 3

92 .. 81 Index position
80 .. 72 Number of summed currents
71 .. 48 Sum of currents, channel 2
47 .. 24 Sum of currents, channel 0
23 .. 0 Sum of currents, channel 1

Table 3.2. Order of data in the SPI transfer from the FPGA to the control system

9

Chapter 4
Calibration of Current Sensors

The measurement of phase currents of a PMSM is important for current feedback
control, for example, in field-oriented control or sensorless control of the motor. If the
measurement is inaccurate, it can negatively affect the overall behavior and performance
of the system.

This is the case of the used power stage board, the 3p-motor-driver-1, where the
analog current sensors ACS711 based on the Hall effect, described in the section 3.2,
are too close to each other on the board. This results in each sensor being influenced
not only by its corresponding phase current but also by the currents in the other two
phases.

4.1 Theory
The sensors measure the current through the induced magnetic field. The output of
the sensor is linear to the magnetic field (and to the measured current in the ideal case
when not affected by anything else)[11]. The magnetic field measured by the sensor
is caused by the current flowing through it and also by the other two currents in the
neighboring sensors.

Let us assume that any other source of the magnetic field in the vicinity is negligible
or at least static. This assumption is based on the fact that there are no other high
current traces in the vicinity of the sensors and that the rest of the system is much less
power demanding.

The linearity of the sensors means that there exists a linear transformation that
correlates the measured current values with the true values. In fact, there can be some
non-zero offset, so the transformation should be considered affine, but for the sake of
simplicity, we can separate the problem of finding the offsets from the transformation.

The calibration can then be written as the following equation:

𝑖true = 𝑋𝑖measured, (1)

where 𝑖measured are the measured currents, 𝑋 is the calibration matrix, and 𝐼true are
the true currents.

Finding the linear transformation is then the matter of finding the matrix 𝑋. Finding
the calibration matrix 𝑋 can be formulated as a Least Squares problem. The matrix
𝑋 can then be calculated from the equation

𝑋𝐴 = 𝐵, (2)

where 𝐴 are true currents measured externally in the form on 3 × 𝑛 (n is the number of
measurements) and 𝐵 are the values measured from Hall current sensors on the board.

Because we have three phases of the motor, we would ideally have the matrix 𝑋 of
size 3 × 3. To obtain a valid solution of the matrix 𝑋, the matrices 𝐴 and 𝐵 must have
rank at least 3.

10

. 4.1 Theory

Because the motor windings are interconnected in a star pattern, the current flowing
to the motor through one of the phases must flow out through the rest of phases. The
sum of the currents must remain zero as there is no other path for the current to take.

The simplest way for the current to flow is that one of the phases is connected to the
voltage source, one is connected to the ground, and the third is left disconnected. Then
there are three possibilities for the configuration of the motor winding connections, as
seen in table 4.1. The values in the table are normalized because their size does not
matter for the rank of the matrix. The order of positive and negative currents is also
arbitrary as long as the disconnected phase stays the same.

Winding A Winding B Winding C

1 -1 0
0 1 -1
1 0 -1

Table 4.1. Table of possible phase currents, normalized.

We can form any other possibility of the currents flowing through the phases as a
linear combination of these vectors.

It is important to see that the rank of this matrix is 2, which means there is no
solution to the least squares problem, and we need either more data to extend the rank
or to use a different coordinate system.

4.1.1 Full Rank 3x3 Calibration Matrix

If we think of the table 4.1 as a matrix and calculate its kernel, we get the vector:

ker(𝐵) = span([1, 1, −1])

The resulting vector shows us that it would suffice to extend the measurements by this
vector or its linear combination with the rest. One such vector is

[1, 0, 0],

which would suffice to get the full rank of 3.
This would require a non-zero sum of the phase currents. To achieve this, we can

rewire the motor connection and connect one of the phases directly to the ground via
an external cable, so that the return current does not flow through the Hall sensor.

Another way of achieving the full rank of the matrices was tried. Unfortunately,
even if we connect one of the phases to the power supply and the two remaining to
ground through the sensors, so we would not have to modify the motor connection, we
would still get linearly dependent vector on the measurements already conducted. This
situation would result in the vector of

[4
3

, 2
3

, 2
3

] ,

which does not increase the rank of the measurement matrix. This is to be expected,
as it is still just a linear combination of the vectors from Table 4.1.

11

4. Calibration of Current Sensors .
4.1.2 2x2 Calibration Matrix using the Clarke Transformation

The rank deficiency of the matrix shown in previous chapter is caused by the nature of
the PMSM motor, that the sum of all currents must be equal to zero. If we used two
perpendicular phases instead of the three in the PMSM, each 60° apart, it would solve
the problem of the redundant dimension.

We can use the Clarke transformation for this purpose. In the new reduced coordinate
system, the calibration matrix can be calculated without changing the motor wiring.
From the control perspective, it does not matter if we are calibrating the currents
before the Clarke transformation or after, the control is using the currents after the
Park transformation.

The correction matrix in this case was then calculated as a least squares problem
from the equation

𝐶−1𝑋𝐶𝐴 = 𝐵, (3)

where 𝐶 is the Clarke transform matrix, 𝐴 is the matrix of true currents and 𝐵 is the
matrix of measured currents.

4.2 Implementation

The calibration procedures described previously were implemented and tested using the
PXMC library. The PXMC is described later in Chapter 9, together with its usage in
the ICE-V motion control system. The same principles are also applicable here.

4.2.1 Collecting Data with PXMC

The PXMC application was extended to allow measurement of the phase currents. For
this purpose, the application command currentcal was used and extended.

The currentcal command can be called directly from the PXMC application using
the command processor. The core of the command function is a loop that iterates
through seven calibration cycles - one for the offset and two for each required vector
(opposite current flow direction). For each cycle, the function retrieves a specific pat-
tern of PWM settings, which define the duty cycles and enable states for three different
phases. Before proceeding with each calibration cycle, the function waits for user con-
firmation. Once confirmed, the system is set up to perform current measurements,
initially discarding the first set of measurements to allow the system to stabilize. Then
it accumulates current readings over a specified number of samples.

After completing the measurements for each cycle, the function calculates the average
current values for each of the three phases and stores these results in a matrix. The
data are stored in the raw ADC counts, as this allows the function to be universal
regardless of the type of the ADC or the sensors. This matrix is later saved as a CSV
file.

The command measures the currents for different phase settings. The settings used
are listed in table 4.1. This table is used by default in the configuration procedure, but
it can be modified or extended according to the user’s needs. For example, the table
was extended for the 3 × 3 calibration matrix with the configuration shown in Table
4.2.

12

. 4.2 Implementation

PWM1 Enable 1 PWM2 Enable 2 PWM3 Enable 3
0 0 0 0 0 0
1 1 0 1 0 0
0 1 1 1 0 0
0 0 1 1 0 1
0 0 0 1 1 1
0 1 0 0 1 1
1 1 0 0 0 1

Table 4.1. SPIMC current calibration pattern

PWM1 Enable 1 PWM2 Enable 2 PWM3 Enable 3
1 1 0 0 0 0

Table 4.2. SPIMC current calibration pattern extension for the 3 × 3 calibration matrix

The source code for the current calibration data acquisition from the PXMC is part
of the ice_v_pmsm project[16] and it is implemented in the appl_pxmccmds.c file.

4.2.2 Calculating the Calibration Matrices
The measured phase current data must be processed to obtain the calibration matrices.
This calculation was done using two methods, since the processing script was created
in both Matlab and Python.

The Python script is divided into two main functions, get_cal_matrix_clarke and
get_cal_matrix_3x3. Both of the functions expect as their input three parameters.
The first parameter is the CSV file that contains the true currents measured externally.
The second parameter is the CSV file that contains the currents measured by the PXMC
from the on-board Hall sensors. The last parameter is the name of the output CSV file,
to which the calculated calibration matrix will be written.

The get_cal_matrix_3x3 function calculates the correction matrix in the 3 × 3
format. First, the measured currents are loaded into a matrix B. The data organization
follows the pattern of Table 4.1 with the added line from Table 4.2. The first row
contains the measured offsets, the rest then form the matrix 𝐵 described in the equation
(2). The true currents are then loaded into the matrix A, which were measured during
the procedure using an external ammeter. Their format must also match the pattern.

The offsets are then subtracted from the B matrix and converted from the raw ADC
values to Amperes. For this purpose, the function corr_currents was implemented.

After conversion, the calibration matrix 𝑋 is calculated using the least-squares
method with the NumPy function np.linalg.lstsq according to the equation (2)
and saved in the desided CSV file.

The get_cal_matrix_clarke function calculates the correction matrix in the
2 × 2 format using the Clarke transformation. The procedure is similar to the
get_cal_matrix_3x3 function. The only difference is that the calibration matrix 𝑋
needs to be calculated using the equation (3).

The same calculations are also performed in the Matlab scripts. The naming con-
vention stays the same, the 𝐵𝐴 matrix contains the true, externally measured currents,
and the 𝐵 matrix contains the measured currents by the PXMC.

13

4. Calibration of Current Sensors .

4.3 Calibration Results

4.3.1 Measurements
The measurements taken and used to calculate the calibration matrices are listed in the
following tables. The table 4.1 shows the raw ADC values from the PXMC. The table
4.2 then shows the true values measured by external ammeter.

Winding A Winding B Winding C

2039.70 2067.93 2060.78
2045.37 2254.93 1886.63
2222.81 1886.33 2058.77
2227.91 2073.88 1883.68
2038.33 1905.48 2062.58

Table 4.1. Table of measured phase currents, in 12bit ADC values

Winding A [A] Winding B [A] Winding C [A]

0 1.30 -1.30
1.33 -1.33 0
1.30 0 -1.30

0 -1.130 0

Table 4.2. Table of true phase currents in Amperes
The last row in both tables was created by connecting one of the phases directly to

the GND, bypassing one of the Hall current sensors.

4.3.2 Calibration Matrices
The following 3 × 3 matrix was calculated using the developed calibration procedure.

0.969059 -0.007795 0.029863
-0.027891 0.941421 0.000986
0.023964 0.011096 1.020851

Table 4.3. 3x3 Calibration matrix.

The same measurements without the last row were used to create the 2x2 calibration
matrix using the Clarke transformation. The resulting matrix is then

0.968973 -0.001363
-0.002462 0.967489

Table 4.4. 2x2 Calibration matrix.

The calibration matrices are used in the pysimCoder models described in Section
10.6 and were also used in Ing. Damir Gruncl’s Diploma Thesis[17], where he used
them to control the PMSM motor with his developed RISC-V coprocessor.

14

Chapter 5
NuttX

In this section, we focus on the real-time operating system NuttX, designed specifically
for use in embedded systems and microcontrollers. It will be used in the design of
a custom motion control system based on the ICE-V board, described in a following
chapter.

5.1 Overview of NuttX

NuttX is a real-time operating system (RTOS) specifically designed for use in embedded
systems and microcontrollers with an emphasis on standards compliance and small
footprint. NuttX was first introduced by Gregory Nutt in 2007. It has been under
incubation at The Apache Software Foundation from 2019 to November 2022, when
it became a top-level project. Development is managed under The Apache Software
Foundation and follows the Apache License 2.0. [18]

NuttX is designed to comply with the POSIX (Portable Operating System Inter-
face) and also implements ANSI standards and additional APIs from Unix systems and
other RTOS such as VxWorks.[19] This conformity to standards ensures that software
developed for other standard operating systems, such as Linux, can be easily ported to
NuttX.

NuttX includes RTOS features such as fully preemptive scheduling, task priorities
with priority inheritance, and symmetric multiprocessing. It also supports multithread-
ing with semaphores, pthreads, or mutexes.

5.1.1 NuttX Advantages

The NuttX system is intended to be used in a wide variety of embedded applications,
as it is scalable from small 8-bit to modern 64-bit microcontrollers. It can be used
with many different architectures, for example ARM, RISC-V or Atmel AVR. The
modularity of the system allows its use in low-cost microcontrollers with small memory
(the final executable can then be run on as low as only 32 kB of total memory (code and
data), although typical NuttX build usually requires about at least 64 kB memory).
Larger systems, on the other hand, can benefit from extensive list of additional features
and drivers.

NuttX is highly configurable, allowing projects to include only the necessary compo-
nents, and uses the Kconfig system, borrowed from the Linux kernel. After configuring
with Kconfig, the build system uses GNU makefiles. The small footprint is achieved
by compiling and including only the required features in the executable file, along with
other optimization techniques. Each peripheral or component can be added or removed
from the build before compilation due to its modular design.

15

5. NuttX .

5.2 Basic Nuttx Organisation
NuttX employs a structured architecture that divides its system into two primary com-
ponents, the kernel and the user space. This separation enhances modularity and
security, allowing developers to modify the operating system to the specific needs of
embedded systems.

5.2.1 NuttX Kernel

The NuttX kernel is the core component of the operating system, responsible for
managing fundamental operations and resources. It includes several key subsystems.
The scheduler handles task execution, ensuring tasks are scheduled based on prior-
ity and timing requirements, supporting policies like round-robin, priority-based, or
rate-monotonic scheduling. Inter-Process Communication (IPC) mechanisms, such as
message queues, semaphores, signals, and mutexes, allow tasks to communicate and
synchronize with each other. Memory management handles the allocation and deallo-
cation of memory resources, supporting both static and dynamic memory allocation,
and features to manage memory fragmentation.

The kernel also includes low-level device drivers for interfacing with hardware pe-
ripherals such as GPIO, UART, I2C, SPI, ADC, CAN, and Ethernet, which abstract
the hardware details from the application layer and provide a consistent interface for
developers. The file system support in the kernel handles file operations, storage man-
agement, and file system mounting, with support for various file systems including FAT
or ROMFS. The network stack implements networking protocols such as TCP/IP and
UDP, managing network interfaces like Ethernet and Wi-Fi to enable network commu-
nication and connectivity.

5.2.2 Nuttx User Space

In NuttX, the user space operates separately from the kernel. This creates a secure
and stable environment for application execution. This user space consists of several
components, such as user applications, system applications, middleware, libraries, and
configuration and initialization scripts.

Applications handle specific tasks within the system and utilize kernel services
through well-defined APIs, enabling interaction with underlying system functions using
drivers or libraries. The applications can be user-developed to handle specific tasks
of the whole system, or they can be system applications that include built-in utilities
and tools provided by NuttX, such as shell interfaces, diagnostic tools, and system
management utilities. These applications are important for configuring, monitoring,
and controlling the system, helping users and developers to manage and troubleshoot
effectively.

There are also middleware and libraries responsible for higher-level functionalities,
including graphical user interfaces, communication protocols, and application frame-
works, or configuration and initialization scripts for setting up the runtime environ-
ment.

The NuttX can divide the system kernel from applications on systems with Memory
Management Unit (MMU). By dividing the system into kernel and user space, NuttX
ensures that user applications run in a protected environment. This protects the system
from application crashes or unexpected behavior, as it would not impact the kernel’s

16

. 5.3 Source Code Organization

operation. This separation enables applications to be platform independent and not
focus on hardware specifics, allowing faster hardware changes if necessary. When using
flat address space, the applications can even be loaded during the system execution.

5.3 Source Code Organization
NuttX source code organization is similar to that of the Linux kernel [20]. The key
subdirectories for this thesis are arch/, boards/, and drivers/, which contain the
necessary source code and headers for architectures, microcontrollers, boards, and de-
vice drivers. The NuttX core is not discussed as this is beyond the scope of this thesis.

5.3.1 Architecture Directory
This directory contains architecture-specific code. Each supported architecture such
as ARM, x86 or RISC-V has its subdirectory with folders include/ for architecture-
specific definitions and src/ for implementation files. The architecture-specific defini-
tions are for example which peripherals are supported, external interrupts or peripheral
identificators. The implementation files include all source files for hardware-specific
implementation for supported drivers. These parts of the drivers are called in NuttX
documentation as lower half drivers. [21]

5.3.2 Boards Directory
The boards/ directory includes board-specific configurations and initialization code,
organized by architecture and then by specific boards. This directory is important for
initializing the boards using code from the arch/ directory.

5.3.3 Drivers Directory
The drivers/ directory contains the upper half device drivers for various hardware
peripherals such as GPIO, UART, I2C, SPI, ADC, CAN and network interfaces. This
part of the driver implements the high-level interface such as read, write, or open.
The upper half of the driver connects to the lower half via callbacks.

This separation of drivers into lower half and upper half is helpful, ensuring that
there is only one interface defined for applications or other drivers, such as SPI, and
that it is in the upper half not dependent on architecture. The architecture-specific
implementation is then left for the lower half of the driver.

5.4 NuttX Configuration and Compilation
NuttX configuration is managed through the Kconfig system, similar to the Linux ker-
nel, and the build process uses the GNU make program to compile the source code.
The configuration process involves selecting the desired features and components for
the target system. This is done using the menuconfig, qconfig, or similar alternatives,
which provide a user-friendly interface for NuttX configuration. Before the configura-
tion itself, it is necessary to load an initial configuration depending on the board and
chip used.

After the configuration, it is necessary to build the whole system. This is done using
GNU makefiles, which create the final binary file to be uploaded to the board. This
compilation not only compiles the kernel, but the final binary also includes the enabled
applications.

This whole process is explained in detail in [22].

17

Chapter 6
Motion Control on the ICE-V Board

This chapter describes the design of a motion control system using the ICE-V Wireless
board[23] as the controller, which is an open source board based on the microcontroller
ESP32-C3-MINI-1[24] and the Lattice iCE40UP5k-SG48 FPGA[25]. The new motion
control system uses the same power stage as previously used with the MZ_APO board.
A new board was designed to connect the power stage to the ICE–V board, providing
a power source for the ICE–V from the input system voltage, and also provides a CAN
interface for control and allows access to multiple features of both boards for future
use.

The final design of the motion control system using the ICE-V Wireless is shown in
Figure 6.1. The system for control of the connected PMSM is made up of the ICE-V
Wireless board, the 3p-motor-driver-1 power stage, and the custom-designed adapter
board.

Figure 6.1. Picture of the entire motion control system using the ICE_V Wireless, the
power stage and the designed adapter board

6.1 System Overview
The motion control system is structured into several logical blocks. This structure can
be seen in figure 6.1. The first block depicts NuttX RTOS, in which one of the control
applications is running, either PXMC or the code generated from pysimCoder. This
application then communicates with the FPGA, which is responsible for providing the
application with data from Hall sensors, IRC, and also measured currents. The FPGA
is also responsible for generating the desired PWM signals for the H-Bridges on the

18

. 6.2 ICE-V Wireless Board

3p-motor-driver-1 together with the Enable signals, which then drive the connected
PMSM motor. The FPGA design is the microzed-mc-1, described in the Section 3.4.

PWM, EN
PXMC

or
pysimCoder Model

FPGA

Hall state
IRC

Current

H-Bridges

IRCPMSM
motor

Hall

NuttX
RTOS

Motor
Output

3x PWM+EN

Currents

Hall Current
Sensors

ADC

SPI

/
3

/
3

/
3

A,B,I

Figure 6.1. Overview of the motion control system.

The PXMC or pysimCoder applications are responsible for the speed or position
control of the motor. The FPGA serves to alleviate some of the tasks of the ESP32–C3,
which is to collect all the necessary information from the power stage and to keep
generating the PWMs.

6.2 ICE-V Wireless Board
The ICE-V-Wireless is an open source development board designed for a variety of
applications, including IoT devices and educational projects. It features the Lattice
iCE40UP5k FPGA paired with an Espressif ESP32–C3 module based on the RISC–V
architecture, providing Wi–Fi and Bluetooth Low Energy (BLE) capabilities.

The ICE-V Wireless GitHub project [23] has schematics and PCB layout available
in KiCad 6.0 format, together with a PDF version of the schematic. The board is shown
in figure 6.1.

Figure 6.1. ICE-V Wireless board. [23]

19

6. Motion Control on the ICE-V Board .
The functional blocks and layout schematic diagram can be seen in Figure 6.2.

ESP32-C3

USB
Connector

SPI

iCE40CRESET
CDONE

PSRAM
SPI

GPIO Pins
/

USB TTY-ACM
and debug

USB TTY-ACM
and debug

3.3V Power
Supply

5V
from USB

3V3

GND5V 3V3

PMOD1 PMOD2 PMOD3

GPIO Pins GPIO Pins

Battery
Connector

4V from
Battery

9

/
8

/
8

RST BOOT

RGB
LED

PWR
LED

LED

Figure 6.2. Schematic description of ICE-V Wireless board.

The key components of the board are:

. ESP32-C3-MINI-1 module [24]:
The ESP32-C3 is a microcontroller chip developed by Espressif Systems. It features
a single-core RISC-V 32-bit processor which can run at up to 160 MHz. It comes
with 4MB of embedded flash memory and supports 2.4 WiFi (802.11 b/g/n) and
Bluetooth 5 (Low Energy). ICE40UP5-SG48I [25]:
The ICE40UP5-SG48I is from the Lattice iCE40 UltraPlus family and features 5280
LUTs, 128 kbits of block RAM, 8 DSPs and 2 I2C and SPI cores. It also has low
static power, which makes it suitable for battery-operated use cases.. LY68L6400 serial quad SPI Pseudo-SRAM (PSRAM):
The PSRAM has size of 64Mb and is connected directly to the FPGA. This means
that its contents must be loaded through the FPGA itself at the beginning.

The ESP32-C3 is connected to the iCE40 FPGA by SPI with two additional GPIO
pins. It can be connected to by the USB connector, which provides a USB TTY-ACM
and debug connection. The two buttons on the board, RST and BOOT, are connected to
the ESP32-C3.

The iCE40 is apart from the ESP32-C3 also connected to the PSRAM via another
SPI connection. The SPI connections between the iCE40 and the ESP32-C3 and the
iCE40 and the PSRAM are not connected together. The pins of the iCE40 are accessible
through the three PMOD connectors, with eight GPIO pins per connector.

The whole ICE-V Wireless board also has two power supplies, 3.3V and 1.2V. The
1.2V power supply is used only internally for the iCE40, but the 3.3V power supply pro-
vides power for the ESP32-C3 and also serves to power external peripherals connected
to the PMOD connectors.

6.3 Adapter Board
The adapter board has been developed to replace the MZ_APO board with the
ICE-V Wireless. It features connectors for both the ICE-V Wireless board as well

20

. 6.4 Firmware

as the power stage board 3p_motor_driver_1, as well as a 5V power supply for the
ICE-V Wireless from the system voltage supplied for the power stage and motor.
It also allows access to unused pins of both the ESP32–C3 and the iCE40, and adds
the possibility to communicate with the system via the CAN interface. The design is
further described in Section 8.

6.4 Firmware
The whole motion control uses NuttX as its operating system. The NuttX is respon-
sible for board initialization, such as loading the correct bitstream to the FPGA, and
afterwards it handles all higher-level functionality of the entire motion control system.
The lower level functionalities, such as PWM control and ADC calculations, are done
internally by the bitstream inside the FPGA.

The control software itself is then running inside the NuttX. In this thesis, two
different control software were used, PXMC[4] and pysimCoder[5].

6.4.1 Programming the ICE-V Wireless Board

The programming of the board is done in two steps, since both the ESP32–C3 and
the iCE40 need to have the correct firmware or gateware loaded. The first is the
programming of the ESP32–C3, which has a USB peripheral capable of programming
and JTAG debugging directly accessible on the board. In the case of the iCE40, it
is more complicated, as the only way to program it is through the ESP32-C3. The
following diagram 6.1 shows how the ESP32–C3 and the FPGA are connected. The
FLASH and PSRAM memories are also shown.

SPI
ESP32-C3

SPI
iCE40 PSRAM

Embedded
Flash

Figure 6.1. Block schematic description of the ESP32–C3 and the iCE40 on the
ICE-V Wireless board.

The diagram shows how the devices are connected. The ESP32–C3 must load a
bitstream to the FPGA during board initialization. Also, if there is a need to update
the SPI PSRAM connected to the FPGA, it is only possible to do so through the FPGA.
The authors of the board solve this by having a separate bitstream for the FPGA that
allows the data to pass through and be loaded into the PSRAM.

In this thesis, we are using the NuttX RTOS, so we need to have the ability to load
the bitstream configuration from the ESP32–C3 into the iCE40 FPGA directly inside
the operating system. Unfortunately, no such driver or application was available. It
was then decided to implement this functionality into the NuttX and try to make it
part of the mainline.

This was successfully done and the pull request was successfully merged. The process
of programming the FPGA through the NuttX ESP32—-C3 and the development of
the driver is described in Section 7.

21

6. Motion Control on the ICE-V Board .
6.4.2 PXMC

The PXMC is Portable, highly eXtendable Motion Control library and system core,
developed by PiKRON Ltd. [4] It is an open source library with the source code avail-
able at the company’s gitlab [26]. It represents a ground-up rewrite of the company’s
previous motion control systems, initially implemented in MARS-2 units. Designed for
portability and extensibility, PXMC can be adapted to a wide range of hardware plat-
forms and is suitable for applications in robotics, laboratory, and medical instruments.
It is compatible with multiple motor types, such as DC, PMSM, and stepper motors,
with and without position feedback.

The library can be used from the NuttX operating system and connect to the iCE40
FPGA, and together they can control the PMSM motor. The usage of the PXMC is
described in more detail in the chapter 9

6.4.3 PysimCoder
The software pysimCoder is an open source control application development tool de-
signed by Professor Roberto Bucher of the University of Applied Sciences and Arts of
Southern Switzerland [5]. The source code is available on the projects github [27]. It
is a flexible tool that allows for the rapid development of control algorithms for em-
bedded systems. PysimCoder provides a graphical user interface for designing control
systems, which can then be automatically translated into executable code for various
microcontrollers and operating systems, including NuttX.

In the context of the motion control system on the ICE-V Wireless board, pysim-
Coder can be used to create control algorithms that are then deployed to the board.
The use of PysimCoder in the motion control system is further described in chapter 10.

22

Chapter 7
Programming of the iCE40 FPGA from NuttX

This chapter describes the implementation of an open source driver designed to load
configuration bitstreams into an iCE40 FPGA from the NuttX operating system. The
ICE-V Wireless board relies on a custom firmware for the ESP32-C3 to load the desired
bitstream into the FPGA, which meant that a new driver must have been developed
for NuttX to use the iCE40 FPGA. The driver code can be found in my repository
[28]. A pull request [29] was created and later accepted, so it is now part of the NuttX
mainline.

7.1 Overview of iCE40 FPGA Programming
The iCE40 UltraPlus FPGAs, developed by Lattice Semiconductor are SRAM-based
FPGAs, which also have on-chip, one-time programmable NVCM (Non-Volatile Con-
figuration Memory) to store configuration data. The SRAM memory cells are volatile,
meaning that once power is removed from the device, its configuration is lost and must
be reloaded on the next power-up. This means that the bitstream must be loaded at
startup to configure its logic blocks and interconnections. The bitstream can be stored
either in the on-chip, one-time programmable NVCM or in an external SPI Flash. As
we want to use the iCE40 for prototyping and development, we will be using the second
option, so we can modify the configuration later instead of only one permanent write.
The bitstream can be loaded into the FPGA in either Master SPI Configuration Mode
or Slave SPI Configuration Mode. [30]

The Master SPI Configuration Mode is the mode in which the FPGA operates in SPI
Master mode and loads the bitstream directly from the connected SPI Flash PROM.
The second possible mode is the Slave SPI Configuration Mode. In this mode, the
FPGA operates in SPI Slave mode and waits for the external processor to load the
bitstream into it from its memory or elsewhere. We need to utilize the Slave SPI
Configuration Mode, as the FPGA is directly connected to the ESP32–C3, as shown in
figure 6.1

In the context of the ICE-V Wireless board, bitstream loading is managed by the
ESP32-C3 microcontroller, which runs the NuttX operating system. The NuttX RTOS
did not have an available driver for bitstream loading, so we decided to create one as
part of this thesis. First, it is necessary to describe the process of loading the bitstream
into the iCE40 FPGA.

7.1.1 SPI Slave Configuration Interface

The ESP32–C3 serially writes a configuration image to an iCE40 FPGA Using the SPI
slave configuration interface through the iCE40 SPI interface. In addition to the SPI
connection, there are two configuration control signals, CDONE and CRESET, which
are used during the writing of the configuration bitstream. The configuration interface

23

7. Programming of the iCE40 FPGA from NuttX .
is shown in figure 7.1. The Application Processor in the figure is, in our case, the
ESP32-C3.

Figure 7.1. iCE40 SPI Slave Configuration Interface. [30]

SPI_SI, SPI_SO, SPI_SS, and SPI_SCK are SPI pins, where SI stands for Serial
Input, SO for Serial Output, SS for Slave Select, and SCK for Slave Clock. The CRE-
SET pin is the configuration reset input on the iCE40, active (reset) when low. The
CDONE pin is the Configuration Done output from iCE40, which indicates the correct
load of the configuration.

7.1.2 SPI Slave Configuration Process

To write the bitstream of the configuration to the iCE40, the driver must follow a
specific procedure, which is illustrated in the figure 7.2.

Figure 7.2. Application Processor Waveforms for SPI Peripheral Mode Configuration Pro-
cess [30]

The driver begins by driving the iCE40 CRESET pin low and resetting the iCE40
FPGA. While in reset, the driver needs to hold the iCE40 SPI_SS pin low for at least
200 ns, and after that, while still holding the SPI_SS low, it can set the CRESET pin
high again. When the iCE40 FPGA starts from reset with its SPI_SS low, it will enter

24

. 7.1 Overview of iCE40 FPGA Programming

the SPI peripheral mode, which is necessary for the upload of the bitstream by the
driver.

After driving CRESET high, the driver must wait at least 1200 µs, to allow the
iCE40 FPGA to clear its internal configuration memory. After this time, the SPI_SS
is set to high, the driver sends 8 clock cycles with no payload, and then the SPI_SS
goes back to low. Then the iCE40 is ready to receive the configuration bitstream. The
driver then sends the entire configuration bitstream without interruption to the iCE40
SPI_SI input on the falling edge of the SPI_SCK clock input, with each byte being
sent the most significant bit (msb) first. The SPI_SO output pin on the iCE40 is not
used during SPI slave mode.

After sending the entire image, the iCE40 FPGA releases the CDONE output, al-
lowing it to float high. If CDONE remains low, it means that an error occurred and
the configuration was not uploaded to the FPGA. After the CDONE is high, the driver
then must send at least 49 additional dummy bits, effectively 49 additional SPI_SCK
clock cycles measured from rising-edge to rising-edge. This makes the SPI interface
pins available to the user-application loaded in FPGA.

To upload another configuration, the driver just needs to restart the FPGA and start
over.

25

7. Programming of the iCE40 FPGA from NuttX .
The whole process can be summarized by the flow chart in Figure 7.3iCE40 Programming and Configuration

Technical Note

© 2018-2022 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal.
All other brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

32 FPGA-TN-02001-3.4

SPI Slave Configuration

Drive CRESET_B = 0.

Drive SPI_SS = 0, SPI_SCK = 1.

Wait a minimum of 200 ns.

Release CRESET_B or
drive CRESET_B = 1.

Wait a minimum of 1200 µs to clear
internal configuration memory.

Set SPI_SS = 1,
Send 8 dummy clocks.

Send configuration image serially on
SPI_SI to iCE40, most-significant bit

first, on falling edge of SPI_SCK. Send
the entire image, without interruption.

Ensure that SPI_SCK frequency is
between 1 MHz and 25 MHz.

Wait for 100 clocks cycles
for CDONE to go high.

CDONE = 1?
No

Yes

ERROR !

Send a minimum of 49
additional dummy bits and 49
addition SP I_SCK clock cycles
(rising-edge to rising-edge) to

active the user-I/O pins.

SPI interface pins available as
user-defined I/O pins in application.

No

Yes

Reconfigure?

Note: The configuration flow is the same for a bitstream with and without a header.

Figure 13.3. SPI Slave Configuration Process

Refer to Appendix A. SPI Slave Configuration Procedure for the SPI peripheral configuration procedure.

Figure 7.3. SPI Slave Configuration Process Flowchart [30]

7.2 Driver Design and Architecture
The driver is designed for transfer of the bitstream file from the ESP32-C3’s memory
to the FPGA. The goal of the driver is to allow the loading of bitstream directly from
the filesystem, either using ioctl or directly, using:

cp example_bitstream.bin /dev/ice40-0

The driver is developed as part of the SPI drivers and is divided into two parts, as
discussed in Chapter 5, the upper half and the lower half. The upper half is created

26

. 7.2 Driver Design and Architecture

as the universal driver for the iCE40 FPGA, which is independent of the architecture
or board used. The lower half is created for the ESP32-C3, namely esp32c3-legacy, as
the NuttX code for ESP32-C3, which was used, was moved to the esp32c3-legacy and
a new one was being written. For stability and continuity, we decided to continue the
development for the old version and have the possibility to modify the code for the new
version in the future, once it is stabilized.

Configuration options for enabling and setting the driver were also implemented using
the Kconfig system.

7.2.1 Upper Half of the Driver
The upper half of the driver is divided into multiple files. The main part of the upper
half of the driver is located in the drivers/spi/ice40.c and include/nuttx/spi/ice40.h.

The upper half of the driver must communicate with the lower half of the driver
to execute architecture-specific commands and also needs to know status information
about the state of the driver. For this purpose exists the ice40_dev_s structure, defined
as follows:

struct ice40_dev_s
{

FAR const struct ice40_ops_s *ops;
FAR struct spi_dev_s *spi;
bool is_open;
bool in_progress;

};

This structure requires the lower half of the driver to provide two fields, ice40_ops_s
and spi_dev_s. The structure ice40_ops_s stores the functions of the lower half of the
driver. Then the structure spi_dev_s is for the driver to access the SPI driver in order
to handle the SPI communication with the iCE40 FPGA.

Lastly, there are two booleans, is_open, which serves to check if the device was
already opened, and in_progress, which is there to check if the FPGA was correctly
initialized and is ready for SPI transfer of the bitstream.

The structure ice40_ops_s is then defined as

struct ice40_ops_s
{

CODE void(*reset)(FAR struct ice40_dev_s *dev, FAR bool reset);
CODE void(*select)(FAR struct ice40_dev_s *dev, FAR bool select);
CODE bool(*get_status)(FAR struct ice40_dev_s *dev);

};

As seen in the code listing, communication with the lower part of the driver is done
through the three functions: reset, select, and get_status. Their usage is explained
later in context of the upper half functionality.

The upper half of the driver creates a character device driver in the /dev directory
inside the NuttX operating system, by default named /dev/ice40-0. This initialization
is performed by the ice40_register function called from board-level logic, supplying the
ice40_dev_s structure.

27

7. Programming of the iCE40 FPGA from NuttX .
The driver implements the standard POSIX file operations as follows:

static const struct file_operations g_ice40_fops =
{

ice40_open, /* open */
ice40_close, /* close */
ice40_read, /* read */
ice40_write, /* write */
NULL, /* seek */
ice40_ioctl, /* ioctl */

};

The ice40_open serves to open the character device driver and to ensure that it is
opened only once.

The ice40_read call is currently ignored, as it does not make sense in the context of
bitstream loading into the FPGA.

The more interesting functions are ice40_write and ice40_ioctl, as both can be used
to actually write the bitstream into the iCE40. The ice40_write can be used to load
either the whole bitstream at once, or it can be called multiple times in a row to perform
the whole upload. It first checks if the driver is in progress to load the bitstream after
previous write or IOCTL. If the sequence has not yet been initiated, it starts with that
sequence and sets the in_progress field in the state structure. The sequence is started
by calling the private function ice40_init_fpga, and then by calling ice40_writeblk
to actually write the bitstream into the iCE40. Then it returns the length of the buffer
written. After the whole write sequence, the driver must be closed to finish the upload
sequence.

The ice40_ioctl function has three implemented options:

. FPGAIOC_WRITE_INIT. FPGAIOC_WRITE. FPGAIOC_WRITE_COMPLETE

The FPGAIOC_WRITE_INIT initializes the FPGA by calling ice40_init_fpga, the
same as in the case of ice40_write. FPGAIOC_WRITE calls the ice40_writeblk func-
tion to write the buffer to the FPGA, and lastly, the FPGAIOC_WRITE_COM-
PLETE finishes the write by calling ice40_endwrite.

The ice40_close then finally ends the write of the bitstream to the FPGA by calling
ice40_endwrite, and closes the whole device.

The previously mentioned private functions ice40_init_fpga, ice40_writeblk, and
ice40_endwrite, together with the rest, are implemented according to the iCE40 con-
figuration procedure mentioned in Section 7.1.2.

With the driver’s implementation, it was also necessary to add ioctl definitions
for the FPGA inside the include/nuttx/fs/ioctl.h file, add the source files in-
side the drivers/spi/Make.defs, and also add the driver to the correct Kconfig file
drivers/spi/Kconfig.

7.2.2 Lower Half of the Driver

The lower half of the driver is again divided into multiple files across two directo-
ries, arch/risc-v/src/esp32c3-legacy containing the architecture-specific functions called

28

. 7.2 Driver Design and Architecture

from the upper half driver, and the boards/risc-v/esp32c3-legacy/common, containing
the board specifics and driver registration.

Inside the arch directory, there are the files esp32c3_ice40.c and esp32c3_ice40.h.
They implement the functions of the structure ice40_ops_s: ice40_reset, ice40_select,
and ice40_get_status. The ice40_reset and ice40_select are used to write to the GPIO
pins of the ESP32–C3 to reset the iCE40 via the CRESET and toggle the chip select
pin via SPI_SS, respectively. The ice40_get_status then is used to read the GPIO pin
to get the iCE40 status from the CDONE pin.

There is also the function esp32c3_ice40_initialize, which is responsible for correct
initialization of the GPIO pins, the SPI driver, and their initial configuration.

The source files also must have been added to the correct Make.defs. The fol-
lowing configurations of the board systems were also added to the Kconfig in
arch/risc-v/src/esp32c3-legacy: ESP32C3_ICE40_CSPIN is the chip select pin,
ESP32C3_ICE40_CDONEPIN is the CDONE pin, ESP32C3_ICE40_CRSTPIN is the CRE-
SET pin, and ESP32C3_ICE40_SPI_PORT configures to which SPI port is the iCE40
connected.

In the boards directory, the main extension is the implementation of the function
esp32c3_ice40_setup, implemented in the esp32c3_board_ice40.c, which is used to
initialize the lower half of the driver using the esp32c3_ice40_initialize function
and register the upper half of the driver using the ice40_register function.

This function is finally called from the esp32c3_bringup.c bringup file, and the
whole driver is now registered.

29

Chapter 8
Design of the ICE-V PMSM Adapter Board

The ICE-V PMSM adapter board was designed as a bridge between the ICE-V Wireless
board and the power stage board 3p_motor_driver_1. The primary objective was
to replace the MZ_APO board with a cheap entry-level ICE-V Wireless board while
ensuring compatibility with the existing power stage. The adapter board integrates
the ICE-V system into the motion control setup by providing the necessary power,
communication interfaces, and additional connectivity options.

The design of the adapter board was done using KiCad, a widely used open source
electronics design automation (EDA) software. The board design is open source, and
its design files, including schematics and PCB layout, are available as a part of the
ice-v-pmsm project in the Open Technologies Research Education and Exchange Ser-
vices (otrees) gitlab[16]. The board render from KiCad can be seen in figure 8.1.

Figure 8.1. Picture of the designed adapter board for the ICE-V motion control system.

8.1 Purpose of the Board

The board has multiple purposes within the motion control system. The first is to
connect the signals from both the ESP32–C3 and the iCE40 FPGA to the power stage.
Next one is to provide power for the ICE–V board, without the need for multiple
external power sources. Another is to provide connection for external peripherals and
system, for example, to enable control of the motor from another higher-level system.
The last is to mechanically connect the other two boards used in the system.

30

. 8.2 Design Considerations

8.2 Design Considerations
The design of the board was constrained by the two connected boards, from both
an electrical and a mechanical point of view. Meeting the requirements for the
ICE-V Wireless board was easier, as its design [23] was also done in KiCad. In the
case of the 3p-motor-driver-1 board it was a little more complicated, as it was
developed in a different EDA software, the PEDA [31]

8.2.1 ICE–V Wireless Board

The ICE-V Wireless board interfaces with the ICE-V PMSM board via four connec-
tors: three PMOD type connectors with FPGA signals and 3.3V power and one 12-pin
connector that interfacing signals from ESP32–C3 and 5V power.

The FPGA signals from the three PMOD connectors are routed via zero ohm resistors
to the 3p_motor_driver_1, where they are responsible for controlling the transistors
to drive the PMSM motor by three-phase voltage. They are also responsible for getting
information from the Hall sensors, incremental rotary counters (IRC), and status of the
MOSFET drivers, and for SPI connection to the analog-to-digital converter (ADC).
The pin assignments of the FPGA pins to the PMODs are shown in figure 8.1.

Figure 8.1. ICE-V PMSM PMOD pin mapping.

The exact pin assignments from FPGA pins to the 3p-motor-driver-1 are shown
in figure 8.2. The reason for the separation of the signals via the zero-ohm resistors
was to be able to disconnect some of the signals if necessary, and in the same time the
pads can serve for measurement with an oscilloscope.

Figure 8.2. ICE-V PMSM FPGA pin mapping

31

8. Design of the ICE-V PMSM Adapter Board .
The last connector on the ICE-V Wireless board is the 12-pin one with the signals

from the ESP32–C3. Its pinout is shown in figure 8.3. The pins are used for the
communication interfaces, which are later described in section 8.4.

Figure 8.3. ICE-V PMSM EPS32–C3 pin mapping

8.2.2 3p-motor-driver-1 Board

The 3p-motor-driver-1 is connected to the board via one data connector shown in
figure 8.4 and also one power connector, which attaches the main power supply from
the 3p-motor-driver-1 board, where it is used to power the motor and transistors.

Figure 8.4. ICE-V PMSM 3p-motor-driver-1 board connector

Figures 8.1, 8.2, and 8.4 contain all the information about how the FPGA is connected
to the power stage, except for power.

The 3p-motor-driver-1 is powered via an external power supply and its input
voltage is typically 24V, but can range from 9V up to 30V maximum. This voltage is
also supplied to the ICE–V PMSM board via an additional connector.

32

. 8.3 Power Supply

8.3 Power Supply
The ICE–V Wireless board is normally powered through its USB port, or it has the
possibility of being powered with a LiPo battery. Internally, it then has to convert the
input 5V voltage to 3.3V for the ESP32–C3 and also for the PMOD connectors, as well
as to 1.2V for the iCE40 FPGA. Both the 3.3V and the 1.2V are created directly from
the 5V.

This means that if the designed motion control system is to be operated standalone,
the ICE-V PMSM board must provide 5V instead of the USB, created from the input
voltage from the 3p-motor-driver-1 board.

A power supply was designed using the MC33063AD, which is a monolithic control
circuit containing the primary functions required for DC−to−DC converters [32]. The
MC33063AD was used to create a step-down converter. The circuit is shown in figure
8.1.

Figure 8.1. ICE-V PMSM 5V Power supply using the MC33063AD

The resistors R22 and R23 serve to set the output voltage, which is calculated with
equation (1) and with 𝑅22 = 4700 and 𝑅23 = 1500 the output voltage is 5.16, within
the tolerated margins for all components.

𝑉𝑜𝑢𝑡 = 1.25 (1 + 𝑅22
𝑅23

) , (1)

The design of the power supply also includes fuses to protect the boards from over-
current and also LED indication of functionality.

The 3p-motor-driver-1 also needs to have 5V delivered to the on-board sensors,
together with 3.3V. The 5V is already created by the mentioned power supply, but
the 3.3V is not. However, it is not necessary to add another power supply for the
3.3V, as the ICE–V Wireless board has the 3.3V power supply for the ESP32–C3 and
also for external peripherals via the PMODs. The power supply mentioned uses an
XC6222B331MR-G regulator, which according to its datasheet can deliver over 700mA
of current, more than enough for the internal needs of the ICE-V Wireless and the
sensors on the 3p-motor-driver-1.

33

8. Design of the ICE-V PMSM Adapter Board .

8.4 Communication Interfaces
The ICE-V PMSM board has also added additional communication interfaces. Their
schematic can be seen in figure 8.1. The first added interface is the connector J8, which
enables additional devices to be connected to the FPGA, such as different types of
encoders or sensors. There is the possibility of connecting multiple devices, as there are
in total 3 additional chip select pins provided.

The power output on the J8 connector has a selectable voltage output, either 5V or
3.3V, which extends the range of peripherals that can be connected. This can be done
via the JP2 jumper.

Figure 8.1. ICE-V PMSM ICE-V PMSM Communication Interfaces

Next, there is the possibility of connecting to the board via CAN interface, for which
the SN65HVD230 CAN driver was selected. It operates on 3.3V, which is required for
the ESP32–C3, and is compatible with the specifications of the ISO 11898-2 High-Speed
CAN Physical Layer standard with speeds up to 1 Mbps according to the datasheet.
The user of the board can choose which pins of ESP32–C3 will be used for the CAN
interface by selecting whether the resistors R36 and R37 (default) or R31 and R32 are
to be populated. In the default configuration, the main serial interface of the ESP32–C3
is left as the UART and is directed to connector J10.

The board also has an optional CAN termination of 120 Ohms, which can be enabled
by shorting the JP1 jumper.

34

Chapter 9
PXMC Library on the ICE-V

9.1 Library Description

The open source Portable, highly eXtendable Motion Control library (PXMC) [4] de-
veloped by PiKRON Ltd. and available from the company’s gitlab [26], is used in this
project to control the movement of the PMSM motor. There is also available documen-
tation on the project’s webpage[33]. The structure of the PXMC library is shown in
Figure 9.1

+
cu

rr
en

t
li

m
it

M
O

S
F

E
T

 d
ri

v
er

+
cu

rr
en

t
li

m
it

M
O

S
F

E
T

 d
ri

v
er

ENI

do_inp

do_gen
ENG

uA

uC

uB
+

cu
rr

en
t

li
m

it
M

O
S

F
E

T
 d

ri
v

er

iA
i B
i C

PIRC, PTPER
PTOFS

PTSHIFT

Forward

Clark

A,B,C

to

beta

alpha,

Forward

Park

alpha,

beta

to

D, Q

AP

AS

RP

RS

MA, MS
EP, GEN_ST
GEN_INFO

PMSM

IRC

HAL

Current

ADC

do_out

beta
to

alpha

A,B,C
PWM

Inv.

Park

to

alpha

beta

D,Q

do_con
ENR

Speed

and/or

position

control

Q

D

Q compoenent

controller

D component

controller

current D

current Q

Figure 9.1. Overview of the structure of the PXMC library [33].

On the right side there is the PMSM motor together with its coupled Hall sensors
and the incremental encoder sensor (IRC). The position of the IRC and partially the
Hall sensors is taken to the function do_inp (if the enable input flag ENI is set), which
calculates the actual position (AP) and the actual speed (AS). These two values are
then given to the controller implemented under the function do_con.

During the same time, if the Enable generator flag ENG is set, the requested position
(RP) and the requested speed (RS) are calculated and also given to the controller.

The controller then based on the selected mode calculates the quadrature (Q) and
direct (D) components of the currents or voltages. The controller is implemented as
two PID regulators for each of the two components of the currents. In our case, the
controller is working in a voltage mode, which means that only the speed and position
difference are used to calculate the D and Q currents, and the real measured D and
Q currents are not used to compensate, as is depicted by the dashed lines from the
forward Park and Clarke transformations.

35

9. PXMC Library on the ICE-V .
Another possible operating mode of the PXMC library is the current mode, in which

the measured D and Q currents can be used to improve the performance, although it
has not been implemented for our setup, mainly due to higher computational power
and higher sampling frequency required for current control loop than achievable on the
ESP32–C3, as it does not contain FPU and all floating point arithmetic calculations
are emulated in software and are very slow.

From the controller the calculated D and Q currents are passed into the do_out
function, which is responsible for calculating the final voltages for the 3-phase PMSM
motor using the inverse Park and Clarke transformations.

9.2 The Command Processor
The PXMC library implements a command processor, which can be used as an alter-
native to the C functions call interface to interact with the system. The command
processor allows the user to run various functions of the PXMC library and also change
various settings and parameters while controlling the motor. This can be useful for
testing and debugging, as well as fine-tuning the parameters, for example of the PID
regulators.

The generic command format is as follows:

<COMMAND>[<PARAM1>][<OPCHAR>][<VALUE>]

The COMMAND is the name of the command, PARAM1 is the first parameter, OPCHAR is
for the operation character, which is either ":" character for write or "?" character for
read, and lastly the VALUE is the value you want to set. The value is only used with
the set opchar ":" character, for reading the value does not make sense.

There is the second type of OPCHAR characters, which are used in responses to com-
mands. The first response OPCHAR is the =, which is a response to the previous command
with ":" The original command is also repeated, so there is the possibility of sending
batch commands.

The second response OPCHAR is the "!". It is used for the asynchronous output,
which is not directly the result of a command, but rather is printed later. An example
of this can be the RA: command, which is used to get confirmation that the command
is finished. This command sends RA! upon successful completion of the currently
running motor operation, or FAIL! in case of failure during execution.

The commands also follow a convention, where the commands written as upper case
are meant for full control of the motor via, for example, serial interface, and the lower
case commands are used for debugging or other internal usage.

It is best to show the commands in an example. Let us say that we want to set the
speed of the motor connected to the ICE-V to 100 units (this is not done in revolutions
per second, but fractions 1/256 of IRC per sampling period). The command would be
SPD and we want to control the axis A as PXMC is capable of running multiple axes
at the same time and we have only one motor connected. This would result in the
following command:

SPDA:100

To show how to use a command to get a value, we can look at how to ask for the
current position of the motor. For this purpose, there is the AP command to get the
actual position, again for the A axis. The resulting command is then:

APA?

36

. 9.2 The Command Processor

The last example of commands is how to stop the motor on the A axis. This can
be done using the command STOP. In this case, we are giving the command and not
asking, but the value is here omitted as it would not make sense. The result is then:

STOPA:

If we had multiple axes and wanted to for example stop the second, B axis, the
command would simply be:

STOPB:

9.2.1 Available Commands
Here are some of the most useful commands. The full list can be found in the docu-
mentation or related source files, namely inside the pxmc_basecmds.c inside the PXMC
library or inside our application in the appl_pxmccmds.c file. In addition, all available
commands can be printed using the available help command. This command lists all
the commands implemented from both the library and the application. It is also pos-
sible to add or modify the commands, which has been done in this thesis as well to
implement some debugging functionality.

. Speed control:
Motor speed control is performed with the SPD or SPDFG (Fine grained speed) com-
mands. They are able to set the parameters only; you cannot ask for current speed
using them. According to documentation, the SPD must be in the range of ⟨1, 1500⟩
and the SPDFG in the range of ⟨100000, 98500000⟩.. Position control:
Position control have multiple commands. The user can obtain the actual position
using AP, or go to the position by either GA to go to the absolute position from the
start, or GR to go relative to the current position. The starting position (position of
zero) can be set by the command ZERO, such as ZEROA:.. Controller parameters:
The command processor allows the user to set parameters of regulators and other
functions inside PXMC during execution. Each change is applied immediately after
the command execution, even during axis movement.

For example, the PID constants of the controller can be set by REGP, REGI and
REGD respectively. The rest of the available commands are listed in the source code.. General debugging commands:
There are two useful commands for debugging the application, the AXERR and the
PURGE. The AXERR returns the last axis error code. The axis errors can be found in
the pxmc.h file in the library, where they are defined in hexadecimal.

The three most common are the AXERRA=262 (0x106), which is named in the header
file PXMS_E_MAXPD, and it means that the difference of actual and requested posi-
tion is above the limit, the AXERRA=263 (0x107), named PXMS_E_OVERL, which
means that an overload error has occurred, and the AXERRA=264 (0x108), named
PXMS_E_HAL, which means there was a problem with the Hall sensors.

The complete list of errors is in Appendix C.

9.2.2 Application Specific Commands
It is possible to add custom commands to the PXMC command processor at the
application level. The application commands are defined in the sw/nuttx-omk/
ice_v_pmsm/appl_pxmccmds.c file.

37

9. PXMC Library on the ICE-V .
For our application, a command was added to measure the slack of the control loop,

which is useful to measure if the application is keeping up and the control is on time.
Here, we use this added command to show how to implement similar custom commands
as well on the application level.

The command implemented for our application was REGSLACK. The REGSLACK? re-
turns the maximal measured timing slack of our application, which is the difference
between the requested time of the next execution and the actual time. The command
REGSLACK: resets the measured value, which is done by writing the command without
the value parameter.

The command needs to be registered in the appl_pxmccmds.c file, so that the com-
mand processor knows about it. The registration is done with the following line, where
it is registered with the command name and also the help message.

cmd_des_t const cmd_des_slack_max =
{

0,
CDESM_OPCHR|CDESM_RW,
"REGSLACK",
"maximum timing slack of sampling period",
cmd_do_slack_max,
{}

};

The structure cmd_des_t stores all the necessary parameters for the command cre-
ation and is defined as:

typedef struct cmd_des{
int code;
int mode;
char *name;
char *help;
int (*fnc)(cmd_io_t *cmd_io, const struct cmd_des *des, char *param[]);
char *info[];

} cmd_des_t;

The most important fields are the name, which determines how the command will
be called from the command processor, the mode, which determines if the command is
read, write, or both, and fcn, which is the function that will be called.

In our case, the function cmd_do_slack_max checks if we want to read or write and
calls the corresponding function from the appl_utils.c, which handles the rest.

9.3 Application Description
The application used in this thesis extends the code developed for tests performed on
the Raspberry Pi with FPGA, which is available in the gitlab repository [34].

The application is developed as a NuttX application, which is to be run inside the
NuttX shell. The user can then control the motor with this application through a simple
command processor implemented by the PXMC library, or develop another application
that can utilize the PXMC library directly, for example to control the motor from
external peripherals such as CAN interface added to the ICE-V PMSM board.

38

. 9.3 Application Description

9.3.1 Application Structure

The application with PXMC developed for NuttX RTOS does not use the standard
apps directory, but instead uses exported NuttX. The applications are then built
against the exported files outside the source tree.

The application used is registered inside NuttX under the name ice_v_pmsm, and
its source code is part of the ice_v_pmsm project on the Open Technologies Research
Education and Exchange Services (otrees) gitlab [16].

The application is compiled as part of the entire NuttX, so the result of its compilation
is the entire NuttX binary. When building the binary for NuttX with PXMC, the OMK
build system is used.

Ocera Make System (OMK) is an advanced make system written entirely in GNU
make. Its use requires only GNU Make and standard UNIX utilities and aims to simplify
the whole build process. [35]

The application was based on the NuttX OMK template. The template creates
the NuttX application and registers it, so it can be run through the NSH shell. The
template also mounts a ROMFS filesystem at /etc and provides a system init script
at /etc/init.d/rc.sysinit and a startup script at /etc/init.d/rcS. Inside the rcS startup
script file there is the command to load the created bitstream to the iCE40:

cp /etc/fpga/ice_v_ice40_pmsm.bin /dev/ice40-0

This command is using the newly implemented NuttX driver. There is also the pos-
sibility to run the ice_v_pmsm at the start, but currently the user has the ability to
choose what to do with the system, as the NuttX shell (NSH) is run at the start.

To run the application at startup, the command, in our case name of the application

ice_v_pmsm

can be added at the end of the rcS file. The same is true for any other command that
the user or the developer wants to perform at startup.

9.3.2 Running the Application

The application ice_v_pmsm that can be started from the NSH command line interface.
When started, the PXMC application initializes and then runs the earlier described
command processor waiting for input on the system console. The first is the initializa-
tion of the application, in which the background task of the PXMC is started. Then
the application runs a command processor, so the user can interact with the PXMC
task via commands on the terminal and not just another application.

The PXMC base thread is spawned as a task with a high priority, in our case 200
(out of 256), to ensure it will not be delayed by the scheduler and other tasks. The base
thread is the center of the PXMC and it runs a control loop in every sampling period.

Each sampling period then calculates the position of the motor by using the func-
tion pxmc_sfi_input, then calls the controller, and sets the output PWM to the mo-
tor via the function pxmc_sfi_controller_and_output. After that, it transfers the
output to the FPGA to generate the PWMs and receives the data from Hall sen-
sors, IRC value, and currents. Then another position setpoint is generated with the
pxmc_sfi_generator, and lastly, there is the debug function pxmc_sfi_dbg.

The sampling frequency can be set from the command processor with the command
REGSFRQ. The command is able to read the current frequency and set a new one, even
during the execution of the application.

39

9. PXMC Library on the ICE-V .
Using the previously described and implemented command REGSLACK, we measured

the slack of the control loop (and added ways to measure it). The NuttX maximal
measured latency from the planned sampling time is about 1.5 ms with the setup and
configuration used. For this reason, we set the control loop frequency to 500 Hz. The
precise reason for this is unclear, but it is due to the NuttX scheduler, and an important
contribution is caused by the need to read program code from SPI connected program
Flash, and it needs to be studied more in the future.

40

Chapter 10
PysimCoder Models on the ICE-V

PysimCoder is an open-source graphical tool for control system design and real-time
code generation, developed by Professor Roberto Bucher from the University of Applied
Sciences and Arts of Southern Switzerland. The source code is available on the project
github [27] and there is also extensive documentation in Professor Bucher’s book Python
for Control Purposes[5].

PysimCoder serves dual purposes: It can be used as a simulation tool for simple
control schemes and as a rapid prototyping application for real-time control systems.
The tool is compatible with various target operating systems, including GNU/Linux
(with or without a preemptive RT kernel) and the NuttX RTOS, which is used in this
thesis.

The application consists of an extended Python control library and a graphical block
editor with a code generator. It allows for the rapid development of control algorithms
for embedded systems, where the user can design the control system via a graphical
block editor. This lets the user not focus on implementation details but rather on the
control system itself.

The designed block diagram then can be either simulated, or compiled for the target
hardware and then deployed.

10.1 Block Editor

PysimCoder’s graphical block diagram editor provides a user interface that allows users
to construct control systems visually, similar to how they would do so in other tools like
Simulink. The editor consists of a diagram window for building control systems and a
library window that contains a collection of prebuilt blocks categorized into different
libraries, such as Input, Output, Linear, or NuttX.

Users can easily drag and drop these blocks into the diagram window to create their
control systems. Each block within the editor is customizable, with specific parameters
that can be adjusted by double-clicking on the block. This allows for fine-tuning of
control algorithms, such as setting controller gains or specifying device names. Many
blocks also support multiple inputs and outputs, which can be configured through a
right-click menu.

The block editor and the library can be seen in Figure 10.1, which shows a simple
test model in pysimCoder.

41

10. PysimCoder Models on the ICE-V .

Figure 10.1. PysimCoder’s library (left) and diagram window (right)

10.2 Source Code Organization
The source code of the pysimCoder is organized into several directories, with the two
most relevant for this thesis being ”resources” and ”CodeGen”. The ”resources” di-
rectory contains JSON declarations for blocks and the associated Python code, while
the ”CodeGen” directory includes Makefile templates and C code of the blocks for
supported targets.

Each block has three main components: the declaration of the block, its Python file,
and the C code.

10.2.1 Resources
The resources directory contains the upper part of the pysimCoder blocks, the decla-
rations, and the Python code. The declaration of the block is inside its parent library
folder in resources/blocks/blocks/. Each of the library folders contain .xblk files
in JSON format and provides a declaration of the block parameters, such as input,
output, or its icon.

The .xblk JSON file contains the following list of parameters:

. lib – Name of the parent library. name – Name of the block. ip – Number of inputs. op – Number of outputs. stin – 1 if number of inputs can be set by user, 0 otherwise. stout – 1 if number of outputs can be set by user, 0 otherwise. icon – Name of the icon. params – Name of Python function with list of parameters. help – User help to be displayed in the block

The Python file is located inside the library folder at resources/blocks/rcpBlk/.
The main part is the function called from the .xblk file, and its input parameters
must match the parameters defined inside the .xblk file. The most important part

42

. 10.3 Using PysimCoder with NuttX

of the Python function is then to call the RCPblk function of the pysimCoder, which
is a procedural interface to the RCPblk library. The call contains the name of the
corresponding C function, as well as other parameters of the block.

10.2.2 CodeGen
The last part of the pysimCoder block is inside of the CodeGen directory. Inside, there
is the C code responsible for executing the block’s functionality on the target.

The C function, which was referenced in the Python part of the block, is responsible
for the correct execution of the block during the whole model run. Typically, the
function has the following form:

void example_function(int flag, python_block *block)
{

if (flag==CG_OUT){ /* input / output */
inout(block);

}
else if (flag==CG_END){ /* termination */

end(block);
}
else if (flag ==CG_INIT){ /* initialization */

init(block);
}

}

The example_function receives a flag, which indicates the state of the execution,
and a pointer to the block structure. The state of execution can be one of the following
three states:. CG_OUT:

Performs the functionality of the block from input to output.. CG_END:
Stops the output of the block and correctly terminates everything needed.. CG_INIT:
Initializes the block, the underlying drivers and everything else required for block
operation.

10.3 Using PysimCoder with NuttX
The pysimCoder models can be run on the NuttX RTOS, which was used in this thesis
for the motion control system on the ICE-V board. Here are the necessary steps to
run the pysimCoder models on the NuttX RTOS. The pysimCoder does not add the
generated application to the NuttX apps directory, but rather uses the exported NuttX,
similarly to the PXMC application described in Section 9.3.

The exported NuttX files must be copied or linked into the \nuttx directory under the
pysimCoder/CodeGen/, as they are needed for model compilation. With the exported
NuttX files in the correct pysimCoder directory, the C files must be compiled. This
can be done by going to the CodeGen/nuttx/devices/ directory and running the make
command.

After the compilation of the NuttX blocks, the user can compile the pysimCoder
model. However, it is necessary to select the correct Template Makefile nuttx.tmf in
the pysimCoder block editor.

43

10. PysimCoder Models on the ICE-V .
The generated loadable executable is then a standard NuttX operating system built

according to its configuration prior to export. The binary file can be loaded onto the
chip depending on its type and programming interface.

Inside NuttX, the generated code from the pysimCoder model is available as main
application, and it can be run with the following command:

nsh> main

10.4 Created Models for the ICE-V

To test the pysimCoder on the ICE-V, two models were created. The first is
the nuttx_spi_pmsm_align_check, and its purpose is to check the alignment of
the Hall sensor position to the incremental rotary counter. The second is the
nuttx_spi_pmsm_cl_pid_q, which implements closed loop control of the motor.

Both implemented models use the Phase3Motor implemented for communication with
the FPGA subsystem via SPI. This block was implemented as part of the rpi-mc-1
project [10] and currently is in the mainline of pysimCoder.

10.5 Model for PMSM Align Check

The Permanent Magnet Synchronous Motor used in our motion control has coupled Hall
sensors and an incremental rotary counter with index, both of which give information
about the motor’s absolute position. The created model can be used to determine how
these two positions are related to the motor phases.

To help with the process, the PMSM Align block was used. It computes the electric
angle of the PMSM form the Hall sector, encoder position, last position of encoder’s
index, and index count. It also has configurable offsets for both the Hall sensor and the
IRC. The block uses the Hall sensors until the encoder hits its index for the first time,
after that it uses the more precise IRC.

The Hall sensor and IRC offsets must be correctly determined for the correct commu-
tation of the motor. For this purpose, a pysimCoder model was designed. The model
is shown in Figure 10.1.

Figure 10.1. PysimCoder Model for PMSM Align Check

44

. 10.5 Model for PMSM Align Check

10.5.1 Structure of the Model
Inside the model, there are multiple important sections. The first section is the input
of the Phase3Motor. The input of the block is divided into three PWM signals and
the corresponding three PWM Enable signals. The PWM Enable signals can be set to
either 1 to enable the PWM output to the motor, or 0, to disable it. In the model, all
three constants are set to 1.

The PWM signals are calculated from direct (D) and quadrature (Q) values using
inverse Park and Clarke transformations. The Inverse Park transformation block has
three inputs used. The first two from the top correspond to the quantities D and Q,
and the third one corresponds to the electric rotation angle of the motor.

The next part is the output of the Phase3Motor block and the PMSM Align block.
The Phase3Motor has in total seven outputs. The first three are the measured currents
that flow through the motor as they are measured. That means they are 12 bit unsigned
numbers (0 - 4098) and the zero current corresponds to half of the range - 2048.

The next three outputs are related to IRC. The fourth from the top is the IRC
position, the fifth is the IRC index position, and the sixth is the IRC index count. The
last, the 7th output, is the Hall sector (0-5).

The PMSM Align block then takes the IRC and Hall outputs from the Phase3Motor
and calculates the resulting electrical angle of the PMSM. The block also has an align
reset input, which when active forces the block to use Hall position and not to switch
to encoder position. For our purposes, we connect a constant to this block with either
1 or 0, depending on the need.

The last section of the model is responsible for calculating the position difference
between the requested position and the calculated position and cleaning it of the peri-
odicity. The difference between the two angles ϕdiff is then calculated according to the
formula (1). The formula is calculated using the provided pysimcoder blocks.

ϕdiff = ((ϕrequested − ϕcalculated) + π) (mod 2π) − π (1)

10.5.2 Model Usage
For the purpose of finding the correct Hall and IRC offsets, the Q value is set to zero,
and the D value is set to an arbitrary low value to induce magnetic field in the windings,
enough to make the motor shaft spin during model execution, but not high enough to
burn the motor. The rotation of the motor is then controlled via the electric angle
input to the inverse Park transformation. In the model, the angle is generated as a
triangle signal. The signal was created by integrating a square signal of amplitude 4,
with a period of 8𝜋 and 50% duty cycle, which means that the motor should perform
four electric rotations clockwise and return to zero, on repeat.

By setting the non-zero value only to the D axis and then changing the electric
rotation of the motor, we are trying to control the motor in a feedforward manner.
The motor needs to have no load connected to its shaft for this to work. The motor
then should follow the angle input to the inverse Park transformation, after some initial
jump in position to match the magnets position to the induced magnetic field.

With the motor following the generated angle, we can proceed with offset calibration.
The first offset that needs to be calibrated is the Hall position offset. We do not want
to use the IRC position, so we need to set the AlignReset constant to 1. Then the
calculated position will be only from the Hall sensors.

45

10. PysimCoder Models on the ICE-V .
We need to set the Hall offset so that the resulting difference in position will be zero,

which can be seen on the printed output to the NSH inside the NuttX. In the case of
our motor, this was equal to -2.

After the Hall offset is configured correctly, we can calibrate the IRC offset. First, we
need to set the AlignReset constant to 0 to enable the use of IRC. We need to ensure
that the generated angle trajectory allows the motor to turn multiple rotations, so the
motor will certainly go over the IRC index position, which allows the PMSM Align block
to switch from using the Hall sensor position to the IRC position.

The IRC offset can be calculated as the mean value of the position difference over
multiple full periods of the generated and requested position. In the case of our motor,
the calculated mean difference was -0.15, which is then the configured IRC angle offset.

The measured data from after the calibration procedure was successfully performed
are shown in Figure 10.2.

0 10 20 30 40
Time (s)

0

5

10

15

20

25

Po
sit

io
n

(ra
d)

Requested position

0 10 20 30 40
Time (s)

0

1000

2000

3000

4000

Po
sit

io
n

(c
ou

nt
s)

IRC position

0 10 20 30 40
Time (s)

0.5

0.0

0.5

1.0

Po
sit

io
n

(ra
d)

Difference of the requested and IRC position

0 10 20 30 40
Time (s)

0

1

2

3

4

In
de

x
co

un
t

Index count

Figure 10.2. Graphs of the measured values from PMSM Align Check

In the first graph, we can see the requested position in radians. The second graph
shows the position of the motor as seen from the incremental rotary counter. In the

46

. 10.6 Model for PMSM Closed Loop Control

third graph, we can see the measured difference between the requested position and
the calculated one. Here we can see that the difference oscillates around zero and there
is some lag visible. That is the reason for calculating the IRC offset as a median over
multiple periods.

At the beginning of the third graph there is also visible change of the shape of the
difference curve. The reason is that initially, the position is calculated from Hall sensors,
which is much more coarse, and after the first IRC index is found, the position starts
to be calculated from the IRC position.

The moment of the first IRC index is clearly visible on the fourth graph and corre-
sponds to the change in the third one.

10.6 Model for PMSM Closed Loop Control
After the Hall sensor and IRC alignment was calibrated, we can use the pysimCoder
to actually control the motor. As part of this thesis, an example model was created to
control the position of the motor.

The designed pysimCoder model can be seen in Figure 10.1.

Figure 10.1. PysimCoder Model for PMSM Closed Loop Control

The model uses the calculated position from the previously used and configured
PMSM Align block as the angle input to the inverse Park transformation. This time,
the D component is set to zero and the Q component is used to control the motor.

Position control is achieved by using the PID controller, where the error value at its
input is calculated from the difference of the desired setpoint and the measured position
of the motor from the IRC.

The desired setpoint in this example was generated using a setup similar to the previ-
ous model used for alignment 10.5. The desired trajectory was generated by integrating
the output from the PulseGenerator block, this time with arbitrary parameters, in our

47

10. PysimCoder Models on the ICE-V .
case amplitude of 2000, period of 10 seconds, 50% duty cycle and symmetric around
zero.

This example model also measures the motor currents, although they are not used
for control in this setup, mainly due to the limited control loop frequency. Both of these
examples are running at 200 Hz, at higher frequencies is occurring a timing overrun,
and the control loop is not keeping up.

10.6.1 Current Calibration Subsystem

At the beginning of this thesis, a Hall current sensor calibration was designed and con-
ducted. In the designed model, a pysimCoder subsystem is implemented that calibrates
the measured currents. The detail of the subsystem is shown in Figure 10.2.

Figure 10.2. PysimCoder Subsystem Model for PMSM Current Calibration

The subsystem is using the created 3x3 matrix calibration. The first step is to
subtract the current offsets, which were measured while no current was flowing through
the sensors. Afterwards, the Gain block is used to perform the matrix multiplication
of the three input currents with the calibration matrix.

Here we take advantage of the pysimCoder’s ability to use python syntax inside the
block’s parameters, as the matrix can be inserted in a format of 2D python array. The
current matrix and offsets used correspond to the ones calculated in Section 4.3.

The motor position control using the designed block was successfully performed, and
the results are shown in Figure 10.3.

48

. 10.6 Model for PMSM Closed Loop Control

0 2 4 6 8 10 12
Time (s)

1000

0

1000

2000

3000

4000
Po

sit
io

n
(c

ou
nt

s)
Measured position

Requested position
Measured position

0 2 4 6 8 10 12
Time (s)

0.02

0.00

0.02

Control variable

0 2 4 6 8 10 12
Time (s)

0.4

0.2

0.0

0.2

0.4

0.6

Cu
rre

nt
 (A

)

Current A, B, C
Current A
Current B
Current C

Figure 10.3. Graphs of the measured values from PMSM Closed Loop Control

We can see that the motor successfully followed the requested position. The measured
currents are also calibrated by the model design.

49

Chapter 11
Conclusions

This project successfully demonstrated the integration and functionality of motion con-
trol systems on the MZ_APO board and the ICE-V Wireless board. The focus of
this thesis was on the calibration of the current sensors used by the power stage and
development of a new system using the ICE-V board.

11.1 Current Sensor Calibration
The calibration of current sensors was an important part of the thesis, improving the
precision of current measurements in the motor control system. The calibration process
began with the collection of raw current data through the PXMC library, which was then
processed to generate a calibration matrix using both 3x3 and 2x2 matrix formats, where
the second one uses the Clarke transformation to reduce the system to the orthogonal
vector base.

The created calibration matrix compensated for sensor crosstalk and other systematic
errors. This was later used in the implementation of pysimCoder models for motor
position control and also used in the motor control system done by Ing. Damir Gruncl
in his diploma thesis[17].

11.2 Development of the Motion Control System using
the ICE-V Board

The development of the motion control system on the ICE-V board represented a
significant portion of the thesis, involving several steps:

. System Design and Integration:
The ICE-V board was selected as a cost-effective alternative to the MZ_APO

board. It is an inexpensive board with the interesting combination of a RISC-V
based ESP32-C3 microprocessor with the small iCE40 FPGA. The new system was
designed to use the existingp-motor-driver-1 power stage, utilized already with the
MZ_APO. This meant that a new adapter board had to be designed to connect the
ICE-V board with the power stage, which was described in the Chapter 8.. Firmware and Driver Development:

NuttX RTOS was selected for the ESP32-C3, which would then run the control
software. An important part of the development involved programming a custom
NuttX driver for the ESP32-C3 to handle the FPGA’s configuration. This driver
was responsible for loading the FPGA with the necessary bitstreams at startup to
be later utilized by the control software.. Control Software Implementation:

The control software was developed using the PXMC library and also using the
pysimCoder, which were adapted to run on the NuttX operating system on the

50

. 11.3 Further Development Options

ESP32C3. The control software with the PXMC library was used to control the
PMSM position and speed, and it can also be used to perform the current calibration.

The pysimCoder was used to create models for the PMSM control and also to
perform the alignment of the Hall position sensors and the IRC to the motor electrical
angle.

11.3 Further Development Options
There are several options for the further development of the motion control system
presented in this thesis. One significant enhancement would be replacing the current
ESP32-C3 microcontroller with the newer ESP32-C6. The ESP32-C6 features a dual-
core RISC-V architecture, which provides an opportunity to offload motor control
tasks to the second core. Specifically, the second core could be dedicated to running
the control loop for the PMSM, potentially allowing for an increase in the control
loop frequency and allowing the use of the full field-oriented control using current
feedback.

The ESP32-C6 has already been used with NuttX RTOS to create small robotic
platforms during teaching the Microcomputer Engineering with Space Applications
course at the Luleå University of Technology in Kiruna, Sweden, where I assisted
Dr. Píša with the practical aspects of the course. The experience gained from these
sessions proved that the ESP32-C6 can be successfully used with the NuttX RTOS
and it would be interesting to utilize it further.

Another area of potential development is the modification of the FPGA bitstream
to incorporate the Park and Clarke transformations directly within the FPGA. Cur-
rently, these transformations are performed by the main processor, which increases
its computational load. By moving these calculations into the FPGA, the processing
burden on the main processor could be significantly reduced, freeing up resources,
and potentially improving overall system performance.

51

Appendix A
Schematics and Fabrication Outputs of the
ICE-V PMSM Board

Below are the schematic diagram and fabrication outputs for the ICE-V PMSM
board, as designed in KiCad and available at the project’s gitlab.

53

A Schematics and Fabrication Outputs of the ICE-V PMSM Board .

Figure A.1. Schematic diagram of the ICE-V PMSM Board

54

. .

Figure A.2. Board layout of the ICE-V PMSM Board - Front

Figure A.3. Board layout of the ICE-V PMSM Board - Back

55

A Schematics and Fabrication Outputs of the ICE-V PMSM Board .

Figure A.4. Board layout of the ICE-V PMSM Board - Whole

56

Appendix B
List of all PXMC Commands in the ice_v_pmsm
Application

Here is the complete list of possible commands in the ice_v_pmsm application, which
can be called inside the PXMC command processor from the NSH. The list is also
available by calling the help command from inside the application.. help - prints help for commands. G? - go to target position. GR? - go relative. PWM? - direct axis PWM output. HH? - hard home request for axis. SPD? - speed request for axis. SPDT? - speed request with timeout. SPDFG? - fine grained speed request for axis. SPDFGT? - fine grained speed request for axis with timeout. STOP? - stop motion of requested axis. RELEASE? - releases axis closed loop control. ZERO? - zero actual position. PURGE? - clear ’axis in error state’ flag. AP? - actual position. ST? - axis status bits encoded in number. AXERR? - last axis error code. REGP? - controller proportional gain. REGI? - controller integral gain. REGD? - controller derivative gain. REGS1? - controller S1. REGS2? - controller S2. REGMD? - maximal allowed position error. REGMS? - maximal speed. REGACC? - maximal acceleration. REGME? - maximal PWM energy or voltage for axis. REGCFG? - hard home and profile configuration. REGPTIRC? - number of irc pulses per phase table. REGPTPER? - number of elmag. revolutions per phase table. REGPTMARK? - phase index at encoder index mark in irc pulses. REGPTSHIFT? - shift (in irc) of generated phase curves. REGPTVANG? - angle (in irc) between rotor and stator mag. fld.. REGPWM1COR? - PWM1 correction. REGPWM2COR? - PWM2 correction. REGPWM3COR? - PWM3 correction. REGPTHALPH? - hal input phase. R? - send R?! or FAIL?! at axis finish

57

B List of all PXMC Commands in the ice_v_pmsm Application .
. R - send R! or FAIL! at finish. COORDMV - initiate coordinated movement to point f1,f2,.... COORDMVT - coord. movement with time to point mintime,f1,f2,.... COORDRELMVT - coord. relative movement with time to point mintime,f1,f2,.... COORDSPLINET - coord. spline movement with time to point mintime,or-

der,a11,a12,...,a21,... COORDGRP - group axes for COORDMV, for ex. C,D,F. COORDDISCONT - max relative discontinuity between segs. REGCURDP? - current controller d component p parameter. REGCURDI? - current controller d component i parameter. REGCURQP? - current controller q component p parameter. REGCURQI? - current controller q component i parameter. REGCURHOLD? - current steady hold value for stepper. REGMODE? - axis working mode. REGSFRQ - set new sampling frequency. REGSLACK - maximum timing slack of sampling period. logcurrent - log current history. currentcal - current calibration

58

Appendix C
PXMC Errors

Here is the complete list of PXMC Error codes as defined in the file pxmc.h in the
submodule/pxmc/libs4c/pxmc_core/ directory of the ice_v_pmsm project.. PXMS_E_COMM: 0x105 (261)

Offset of commutation error. PXMS_E_MAXPD: 0x106 (262)
Difference of position over limit. PXMS_E_OVERL: 0x107 (263)
Overload error. PXMS_E_HAL: 0x108 (264)
Hall sensor error. PXMS_E_POWER_STAGE: 0x109 (265)
Power stage fault signal. PXMS_E_I2PT_TOOBIG: 0x10A (266)
Too big difference between Hall and index phase offset. PXMS_E_WINDCURRENT: 0x10B (267)
Winding current too high. PXMS_E_WINDCURADC: 0x10C (268)
Winding current sensing ADC failure. PXMS_E_MCC_FAULT: 0x10D (269)
Motion control coprocesor failure. PXMS_E_UV_PROT: 0x10E (270)
Undervoltage protection

59

Appendix D
Schematic Diagram of the 3p-motor-driver-1
Board

Here is the complete schematic diagram of the 3p-motor-driver-1 board. It was
designed in PEDA software and the source can be found in the PiKRON Gitlab
project, the rpi-mc-1 [10]

60

. .

F
L
T
2

F
L
T
2

E
N
2

E
N
2

F
L
T
1

F
L
T
1

E
N
1

E
N
1

F
L
T
3

F
L
T
3

E
N
3

E
N
3

5
V

G
N
D

G
N
D

S
H
D
N
1

S
H
D
N
1

P
W
M
2

P
W
M
2

S
H
D
N
2

S
H
D
N
2

P
W
M
3

P
W
M
3

S
H
D
N
3

S
H
D
N
3

S
T
A
T
1

S
T
A
T
1

S
T
A
T
2

S
T
A
T
2

S
T
A
T
3

S
T
A
T
3

P
W
R
S
T
A
T

M
A
R
K

3
.
3
V

3
.
3
V

3
.
3
V

3
.
3
V

3
.
3
V

3
.
3
V

3
.
3
V

O
U
T
3

O
U
T
3

O
U
T
2

O
U
T
2

O
U
T
1

O
U
T
1

S
N
S
1

S
N
S
1

S
N
S
2

S
N
S
2

S
N
S
3

S
N
S
3

P
W
M
_
1

P
W
M
_
1

S
H
D
N
_
1

S
H
D
N
_
1

P
W
M
1

P
W
M
1

S
H
D
N
_
2

S
H
D
N
_
2

P
W
M
_
2

P
W
M
_
2

S
H
D
N
_
3

S
H
D
N
_
3

P
W
M
_
3

P
W
M
_
3

S
T
A
T
_
1

S
T
A
T
_
1

S
T
A
T
_
2

S
T
A
T
_
2

S
T
A
T
_
3

S
T
A
T
_
3

H
A
L
L
_
3

H
A
L
L
_
3

H
A
L
L
_
2

H
A
L
L
_
2

H
A
L
L
_
1

H
A
L
L
_
1

P
W
R
_
S
T
A
T

P
W
R
_
S
T
A
T

S
C
S

S
C
S

S
C
L
K

S
C
L
K

M
O
S
I

M
O
S
I

M
I
S
O

M
I
S
O

I
R
C
_
A

I
R
C
_
A

I
R
C
_
B

I
R
C
_
B

I
R
C
_
I

I
R
C
_
I

V
P
W
R

V
P
W
R

V
P
W
R

V
P
W
R

V
P
W
R

V
P
W
R

V
P
W
R

V
P
W
R

V
P
W
R

G
N
D

2
4
V

P
G

2
4
V

3
3

2
2

1
1

P
G1 2

21

P
G

P
G

21

P
G

21

21

P
G

P
G

21

P
G

21

P
GP
G

P
G

21

P
G

V
O
U
T

3

GND 2

V
I
N

1

5
V

A
V
C
C

G
N
D

G
N
D

G
N
D

21

21

21

2
1

G
N
D

G
N
D

A
V
C
C

G
N
D

A
V
C
C

G
N
D

5
F
A
U
L
T

6
V
I
O
U
T

7
V
C
C

8

I
P
-

4
I
P
-

3
I
P
+

2
I
P
+

1

P
G

P
G

P
G

V
C
C

9
G
N
D

10
M
O
D
E

11
D
O
U
T

12
B
U
S
Y

13
D
I
N

14
C
S

15
D
C
L
K

16

V
R
E
F

8
S
H
D
N

7
C
O
M

6
C
H
3

5
C
H
2

4
C
H
1

3
C
H
0

2
V
C
C

1

G
N
D

5
F
A
U
L
T

6
V
I
O
U
T

7
V
C
C

8

I
P
-

4
I
P
-

3
I
P
+

2
I
P
+

1

G
N
D

5
F
A
U
L
T

6
V
I
O
U
T

7
V
C
C

8

I
P
-

4
I
P
-

3
I
P
+

2
I
P
+

1

P
G

21

212
4
V 1 21

2

3
3

2
2

1
1

21

4
4

3
3

2
2

1
1

21

21

2
1

21

2
1

2
1

G
N
D

5
V

5
5

4
4

3
3

2
2

1
1

V
C
C
2

V
C
C
2

V
C
C
2

V
C
C
2

V
C
C
2

P
G

3
3

2
2

1
1

5
V

G
N
D

21

21

G
N
D21

2121

3
.
3
V

G
N
D

G
N
D21

21

G
N
D21

G
N
D

G
N
D21

21

G
N
D21

G
N
D

G
N
D

G
N
D

21

21

21

G
N
D21

3
.
3
V

21

3
.
3
V

3
.
3
V

G
N
D

G
N
D

1
0

10
9

9
8

8
7

7
6

6
5

5
4

4
3

3
2

2
1

1

21

21

21

21

21

21

21

G
N
D

816

B
4

9

B
3

7

B
2

15

B
1

1

Y
4

11

Y
3

5

Y
2

13

Y
1

3

O
E

4

O
E

12

A
4

10

A
3

6

A
2

14

A
1

2

21

21

G
N
D

P
G

G
N
D
2

5
O
U
T
B

6
O
U
T
A

7
V
C
C
2

8

G
N
D
1

4
I
N
B

3
I
N
A

2
V
C
C
1

1

21

21

G
N
D

P
G

G
N
D
2

5
O
U
T
B

6
O
U
T
A

7
V
C
C
2

8

G
N
D
1

4
I
N
B

3
I
N
A

2
V
C
C
1

1

G
N
D

P
G

G
N
D
2

5
O
U
T
B

6
O
U
T
A

7
V
C
C
2

8

G
N
D
1

4
I
N
B

3
I
N
A

2
V
C
C
1

1

G
N
D

P
G

G
N
D
2

5
O
U
T
B

6
O
U
T
A

7
V
C
C
2

8

G
N
D
1

4
I
N
B

3
I
N
A

2
V
C
C
1

1

G
N
D

P
G

G
N
D
2

5
O
U
T
B

6
O
U
T
A

7
V
C
C
2

8

G
N
D
1

4
I
N
B

3
I
N
A

2
V
C
C
1

1

4
0

40
3
9

39
3
8

38
3
7

37
3
6

36
3
5

35
3
4

34
3
3

33
3
2

32
3
1

31
3
0

30
2
9

29
2
8

28
2
7

27
2
6

26
2
5

25
2
4

24
2
3

23
2
2

22
2
1

21
2
0

20
1
9

19
1
8

18
1
7

17
1
6

16
1
5

15
1
4

14
1
3

13
1
2

12
1
1

11
1
0

10
9

9
8

8
7

7
6

6
5

5
4

4
3

3
2

2
1

1

4
0

40
3
9

39
3
8

38
3
7

37
3
6

36
3
5

35
3
4

34
3
3

33
3
2

32
3
1

31
3
0

30
2
9

29
2
8

28
2
7

27
2
6

26
2
5

25
2
4

24
2
3

23
2
2

22
2
1

21
2
0

20
1
9

19
1
8

18
1
7

17
1
6

16
1
5

15
1
4

14
1
3

13
1
2

12
1
1

11
1
0

10
9

9
8

8
7

7
6

6
5

5
4

4
3

3
2

2
1

1

P
G

2

3

1

P
G

23

1

P
G

21

2
1

P
G

P
G

P
G

21

21

21

21

P
G

P
G

1
2

2
1

21

2
1

21 32

1

2
1

32

1

B
I
A
S

3

E
N

4
F
A
U
L
T

5
I
N

6

V
+

10
V
+

2

B
O
D
R

1
B
O

16

G
N
D

7

B
F
B

8
B
D
R

9

S
-

11
S
+

12

T
S
R

13
T
F
B

14
T
D
R

15

P
G

2

3

1

P
G

23

1

P
G

21

2
1

P
G

P
G

P
G

21

21

21

21

P
G

P
G

1
2

2
1

21

2
1

21 32

1

2
1

32

1

B
I
A
S

3

E
N

4
F
A
U
L
T

5
I
N

6

V
+

10
V
+

2

B
O
D
R

1
B
O

16

G
N
D

7

B
F
B

8
B
D
R

9

S
-

11
S
+

12

T
S
R

13
T
F
B

14
T
D
R

15

P
G

2

3

1

P
G

23

1

P
G

21

2
1

P
G

P
G

P
G

21

21

21

21

P
G

P
G

1
2

2
1

21

2
1

21 32

1

2
1

32

1

B
I
A
S

3

E
N

4
F
A
U
L
T

5
I
N

6

V
+

10
V
+

2

B
O
D
R

1
B
O

16

G
N
D

7

B
F
B

8
B
D
R

9

S
-

11
S
+

12

T
S
R

13
T
F
B

14
T
D
R

15

T
H
U

O
C
T

2

2
0
1
4

3
P
-
M
O
T
O
R
-
D
R
I
V
E
R
-
1C
N
4

1
0
0
n

C
2
3

1
0
0
n

C
2
4

1
0
0
n

C
2
5

1
0
0
n

C
2
2

1
0
0
n

C
2
1

1
0
0
n

C
2
0

1
0
0
n

C
1
9

U
1
0

7
8
M
0
5

1
0
0
n

C
1
8

1
0
0
n

C
1
7

1
0
0
n

C
1
6

A
D
S
7
8
4
1

U
7

2
2
0
u

C
5
0

2
2
0
u

C
4
9

S
K
1
6

D
8S
K
1
6

D
7

C
N
8

2
2
0
u

C
4
6

C
N
6

3
K
3

R
4
0

3
K
3

R
3
9

1
0
K

R
3
8

3
K
3

R
3
7

1
0
K

R
3
6
1
0
K

R
3
5

C
N
5

1
0
0
n

C
4
4

2
n
2

C
4
3

1
0
u

C
4
2

1
0
0
n

C
4
1

1
0
u

C
3
9

1
0
0
n

C
3
8

2
n
2

C
3
7

1
0
u

C
3
6

1
0
0
n

C
3
2

2
n
2

C
3
1

1
0
u

C
3
0

1
0
K

R
3
4

1
0
K

R
3
3

1
0
K

R
3
2

1
0
K

R
3
1

3
K
3

R
3
0

Z
L
2
3
1
-
1
0
P
G

C
N
3

1
0
K

R
2
9

1
0
K

R
2
8

1
0
K

R
2
7

1
0
K

R
2
6

3
K
3

R
2
5

3
K
3

R
2
4

3
K
3

R
2
3

A
M
2
6
L
V
3
2
C
D

U
4

R
2
2

R

R
2
1

R
I
O
5

A
D
U
M
1
2
0
0

RR
2
0

RR
1
9

I
O
4

A
D
U
M
1
2
0
0

I
O
3

A
D
U
M
1
2
0
0

I
O
2

A
D
U
M
1
2
0
0

I
O
1

A
D
U
M
1
2
0
0

C
N
2

C
N
1

B
A
T
5
4
C

D
6

B
S
S
1
3
8

T
9

1
0
K

R
1
8

1
0
0
R

R
1
7

1
uC
1
5

1
uC
1
4

1
0
0
n

C
1
3

2
2
R

R
1
6

1
N
4
1
4
8
-
0
8
0
5

D
5

1
0
0
n

C
1
2

1
0
nC
1
1

2
2
R

R
1
5

R
0
2
0

R
1
4

2
2
R

R
1
3

L
T
1
1
5
8

U
3

B
A
T
5
4
C

D
4

B
S
S
1
3
8

T
6

1
0
K

R
1
2

1
0
0
R

R
1
1

1
uC
1
0

1
uC
9

1
0
0
n

C
8

2
2
R

R
1
0

1
N
4
1
4
8
-
0
8
0
5

D
3

1
0
0
n

C
7

1
0
nC
6

2
2
R

R
9

R
0
2
0

R
8

2
2
R

R
7

L
T
1
1
5
8

U
2

D
2

B
A
T
5
4
C

T
3

B
S
S
1
3
8

1
0
K

R
6

1
0
0
R

R
5

1
uC
5

1
uC
4

1
0
0
n

C
3

2
2
R

R
4

1
N
4
1
4
8
-
0
8
0
5

D
1

1
0
0
n

C
2

1
0
nC
1

2
2
R

R
3

R
0
2
0

R
2

2
2
R

R
1

L
T
1
1
5
8

U
1

Figure D.5. Schematic diagram of the 3p-motor-driver-1 Board

61

References
[1] Prudek Martin. Brushless motor control with Raspberry Pi board and Linux.

2015.
https://dspace.cvut.cz/bitstream/handle/10467/62036/F3-BP-2015-
Prudek-Martin-Bp_2015_prudek_martin.pdf?sequence=41&isAllowed=y.

[2] W. C. Duesterhoeft, Max W. Schulz, and Edith Clarke. Determination of In-
stantaneous Currents and Voltages by Means of Alpha, Beta, and Zero Compo-
nents. Transactions of the American Institute of Electrical Engineers. 1951, 70
(2), 1248-1255. DOI 10.1109/T-AIEE.1951.5060554.

[3] Colm J. O’Rourke, Mohammad M. Qasim, Matthew R. Overlin, and James L.
Kirtley. A Geometric Interpretation of Reference Frames and Transformations.
IEEE Transactions on Energy Conversion. 2019, 34 (4), 2070-2083.
DOI 10.1109/TEC.2019.2941175.

[4] PiKRON. PXMC - Portable, highly eXtendable Motion Control library. 2024.
https://pxmc.org/.

[5] Roberto Bucher. Python for control purposes. 2019.
https://robertobucher.dti.supsi.ch/wp-content/uploads/2017/03/
BookPythonForControl.pdf.

[6] PiKRON. microzed_apo repository. 2024.
https://gitlab.com/pikron/projects/mz_apo/microzed_apo.

[7]
[8] CTU FEE. B35APO course pages. 2024.

https://cw.fel.cvut.cz/wiki/courses/b35apo/documentation/mz_apo-
howto/start.

[9] CTU FEE. Education Kit MicroZed APO. 2024.
https://cw.fel.cvut.cz/wiki/_media/courses/b35apo/en/semestral/
mz_apo-datasheet-en.pdf.

[10] PiKRON. rpi-mc-1 gitlab repository. 2024.
https://gitlab.com/pikron/projects/rpi/rpi-mc-1.

[11] Allegro Microsystems. ACS711 Datasheet. 2023.
https://www.allegromicro.com/-/media/files/datasheets/acs711-
datasheet.pdf.

[12] Aneheim Automation. Brushless motor BLWR233D-36V-4000. 2024.
https://anaheimautomation.com/blwr233d-36v-4000.html.

[13] Pavel Pisa. microzed-mc-1 gitlab. 2024.
https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/-/
tree/master/system/ip/pmsm_3pmdrv1_1.0.

[14] Open Technologies Research Education, and Exchange Services. rvapo-apps git-
lab. 2024.
https://gitlab.fel.cvut.cz/otrees/fpga/rvapo-apps.

62

https://dspace.cvut.cz/bitstream/handle/10467/62036/F3-BP-2015-Prudek-Martin-Bp_2015_prudek_martin.pdf?sequence=41&isAllowed=y
https://dspace.cvut.cz/bitstream/handle/10467/62036/F3-BP-2015-Prudek-Martin-Bp_2015_prudek_martin.pdf?sequence=41&isAllowed=y
http://dx.doi.org/10.1109/T-AIEE.1951.5060554
http://dx.doi.org/10.1109/TEC.2019.2941175
https://pxmc.org/
https://robertobucher.dti.supsi.ch/wp-content/uploads/2017/03/BookPythonForControl.pdf
https://robertobucher.dti.supsi.ch/wp-content/uploads/2017/03/BookPythonForControl.pdf
https://gitlab.com/pikron/projects/mz_apo/microzed_apo
https://cw.fel.cvut.cz/wiki/courses/b35apo/documentation/mz_apo-howto/start
https://cw.fel.cvut.cz/wiki/courses/b35apo/documentation/mz_apo-howto/start
https://cw.fel.cvut.cz/wiki/_media/courses/b35apo/en/semestral/mz_apo-datasheet-en.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/b35apo/en/semestral/mz_apo-datasheet-en.pdf
https://gitlab.com/pikron/projects/rpi/rpi-mc-1
https://www.allegromicro.com/-/media/files/datasheets/acs711-datasheet.pdf
https://www.allegromicro.com/-/media/files/datasheets/acs711-datasheet.pdf
https://anaheimautomation.com/blwr233d-36v-4000.html
https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/-/tree/master/system/ip/pmsm_3pmdrv1_1.0
https://gitlab.fel.cvut.cz/canbus/zynq/zynq-can-sja1000-top/-/tree/master/system/ip/pmsm_3pmdrv1_1.0
https://gitlab.fel.cvut.cz/otrees/fpga/rvapo-apps

. .
[15] Pavel Pisa. GNU/Linux and FPGA in Real-time Control Applications. Installfest

presentation. 2017.
https://installfest.cz/if17/slides/so_t2_pisa_realtime.pdf. PDF -
PMSM and DC motor control on Raspberry Pi and Xilinx Zynq MZ_APO.

[16] Open Technologies Research Education, and Exchange Services. ice-v-pmsm git-
lab repository. 2024.
https://gitlab.fel.cvut.cz/otrees/risc-v-esp32/ice-v-pmsm.

[17] Damir Gruncl. Pipelined RISC-V processor design in VHDL for education and
FPGA demonstration. 2024.
https://dspace.cvut.cz/bitstream/handle/10467/114963/F3-DP-2024-
Gruncl-Damir-samproj_v2-3.pdf.

[18] The Apache Foundation. About Apache NuttX . 2024.
https://nuttx.apache.org/docs/latest/introduction/about.html.

[19] The Apache Foundation. The Inviolable Principles of NuttX . 2024.
https://nuttx.apache.org/docs/latest/introduction/inviolables.
html.

[20] The Apache Foundation. Directory Structures. 2024.
https://nuttx.apache.org/docs/10.0.0/quickstart/organization.html.

[21] The Apache Foundation. Device Drivers. 2024.
https://nuttx.apache.org/docs/latest/components/drivers/index.
html.

[22] The Apache Foundation. Configuring NuttX . 2024.
https://nuttx.apache.org/docs/latest/quickstart/configuring.html.

[23] QWERTY Embedded Design. ICE-V Wireless. 2024.
https://github.com/ICE-V-Wireless/ICE-V-Wireless.

[24] Espressif. ESP32 C3. 2024.
https://www.espressif.com/en/products/socs/esp32-c3.

[25] Lattice Semiconductor. Lattice iCE40 UltraPlus FPGA. 2024.
https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlu
s.

[26] PiKRON. PXMC - Portable, highly eXtendable Motion Control library gitlab
repository. 2024.
https://gitlab.com/pikron/sw-base/pxmc/.

[27] Roberto Bucher. pysimCoder Github repository. 2024.
https://github.com/robertobucher/pysimCoder.

[28] Jakub Janousek. NuttX fork with support for FPGA iCE40 bitstream loading.
2024.
https://github.com/janouja/nuttx/tree/ice40-driver.

[29] Jakub Janousek. NuttX pull request: drivers/spi: Add support for FPGA iCE40
bitstream loading. 2024.
https://github.com/apache/nuttx/pull/12012.

[30] Lattice Semiconductor. iCE40 Programming and Configuration. 2022.
https://www.latticesemi.com/view_document?document_id=46502.

[31] Petr Porazil Pavel Pisa. PEDA - electronic design automation software. 2024.
https://sourceforge.net/p/peda/wiki/Home/.

63

https://installfest.cz/if17/slides/so_t2_pisa_realtime.pdf
https://gitlab.fel.cvut.cz/otrees/risc-v-esp32/ice-v-pmsm
https://dspace.cvut.cz/bitstream/handle/10467/114963/F3-DP-2024-Gruncl-Damir-samproj_v2-3.pdf
https://dspace.cvut.cz/bitstream/handle/10467/114963/F3-DP-2024-Gruncl-Damir-samproj_v2-3.pdf
https://nuttx.apache.org/docs/latest/introduction/about.html
https://nuttx.apache.org/docs/latest/introduction/inviolables.html
https://nuttx.apache.org/docs/latest/introduction/inviolables.html
https://nuttx.apache.org/docs/10.0.0/quickstart/organization.html
https://nuttx.apache.org/docs/latest/components/drivers/index.html
https://nuttx.apache.org/docs/latest/components/drivers/index.html
https://nuttx.apache.org/docs/latest/quickstart/configuring.html
https://github.com/ICE-V-Wireless/ICE-V-Wireless
https://www.espressif.com/en/products/socs/esp32-c3
https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus
https://www.latticesemi.com/en/Products/FPGAandCPLD/iCE40UltraPlus
https://gitlab.com/pikron/sw-base/pxmc/
https://github.com/robertobucher/pysimCoder
https://github.com/janouja/nuttx/tree/ice40-driver
https://github.com/apache/nuttx/pull/12012
https://www.latticesemi.com/view_document?document_id=46502
https://sourceforge.net/p/peda/wiki/Home/

References .
[32] Texas Instruments. MC3x063A 1.5-A Peak Boost/Buck/Inverting Switching

Regulators. 2024.
https://www.ti.com/lit/gpn/MC33063A.

[33] PiKRON. PXMC Documentation. 2024.
https://pxmc.org/files/pxmc.pdf.

[34] Open Technologies Research Education, and Exchange Services. PXMC-Linux
gitlab repository. 2024.
https://gitlab.fel.cvut.cz/otrees/motion/pxmc-linux.

[35] Pavel Pisa Michal Sojka. OMK: Ocera Make System. 2024.
https://rtime.felk.cvut.cz/omk/omk-manual.html.

64

https://www.ti.com/lit/gpn/MC33063A
https://pxmc.org/files/pxmc.pdf
https://gitlab.fel.cvut.cz/otrees/motion/pxmc-linux
https://rtime.felk.cvut.cz/omk/omk-manual.html

	TITLE
	Specification
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Motion Control
	PMS Motors
	Construction of PMSM
	PMSM Control
	Clarke Transformation
	Park Transformation

	Field Oriented Control

	Original System Setup
	MZ_APO Board
	Power Stage
	Power Control
	Current Measurement

	Used Motor
	Positional Sensors

	Microzed-mc-1 PMSM Motor Montrol FPGA Design
	Data Transfer

	Calibration of Current Sensors
	Theory
	Full Rank 3x3 Calibration Matrix
	2x2 Calibration Matrix using the Clarke Transformation

	Implementation
	Collecting Data with PXMC
	Calculating the Calibration Matrices

	Calibration Results
	Measurements
	Calibration Matrices

	NuttX
	Overview of NuttX
	NuttX Advantages

	Basic Nuttx Organisation
	NuttX Kernel
	Nuttx User Space

	Source Code Organization
	Architecture Directory
	Boards Directory
	Drivers Directory

	NuttX Configuration and Compilation

	Motion Control on the ICE-V Board
	System Overview
	ICE-V Wireless Board
	Adapter Board
	Firmware
	Programming the ICE-V Wireless Board
	PXMC
	PysimCoder

	Programming of the iCE40 FPGA from NuttX
	Overview of iCE40 FPGA Programming
	SPI Slave Configuration Interface
	SPI Slave Configuration Process

	Driver Design and Architecture
	Upper Half of the Driver
	Lower Half of the Driver

	Design of the ICE-V PMSM Adapter Board
	Purpose of the Board
	Design Considerations
	ICE--V Wireless Board
	3p-motor-driver-1 Board

	Power Supply
	Communication Interfaces

	PXMC Library on the ICE-V
	Library Description
	The Command Processor
	Available Commands
	Application Specific Commands

	Application Description
	Application Structure
	Running the Application

	PysimCoder Models on the ICE-V
	Block Editor
	Source Code Organization
	Resources
	CodeGen

	Using PysimCoder with NuttX
	Created Models for the ICE-V
	Model for PMSM Align Check
	Structure of the Model
	Model Usage

	Model for PMSM Closed Loop Control
	Current Calibration Subsystem

	Conclusions
	Current Sensor Calibration
	Development of the Motion Control System using the ICE-V Board
	Further Development Options

	Schematics and Fabrication Outputs of the ICE-V PMSM Board
	List of all PXMC Commands in the ice_v_pmsm Application
	PXMC Errors
	Schematic Diagram of the 3p-motor-driver-1 Board
	References

