
Czech Technical University in Prague
Faculty of Nuclear Sciences and Physical Engineering

User interface development for advanced searching
in the MBDB

Vývoj uživatelského rozhraní pro pokročilé
vyhledávání v projektu MBDB

Bachelor’s Degree Project

Author: Kryštof Krejčí

Supervisor: Ing. Jakub Klinkovský, Ph.D.

Consultant: Dr.rer.nat. Emil Dandanell Agerschou

Language advisor: Bc. Nathaniel Tobias Patton

Academic year: 2023/2024

Acknowledgment:
I would like to thank my supervisor, Ing. Jakub Klinkovský, Ph.D., for his expert guidance and unwa-
vering support throughout this project. Great guidance and insights from him were invaluable in shaping
the direction and success of my work.

I would also like to express my gratitude to Dr.rer.nat. Emil Dandanell Agerschou for his prac-
tical advice and consultations. His guidance was crucial in implementing the project and ensuring the
accuracy of the code through his thorough reviews.

Lastly, I would like to thank Bc. Nathaniel Tobias Patton for his assistance with the language,
which helped in refining the final presentation of this thesis.

Author’s declaration:
I declare that this Bachelor’s Degree Project is entirely my own work and I have listed all the used sources
in the bibliography.

Prague, August 5, 2024 Kryštof Krejčí

Název práce:

Vývoj uživatelského rozhraní pro pokročilé vyhledávání v projektu MBDB

Autor: Kryštof Krejčí

Studijní program: Aplikovaná informatika

Druh práce: Bakalářská práce

Vedoucí práce: Ing. Jakub Klinkovský, Ph.D., katedra softwarového inženýrství FJFI

Konzultant: Dr.rer.nat. Emil Dandanell Agerschou, Biotechnologický ústav AV CR

Abstrakt: Tato práce popisuje vývoj pokročilého uživatelského rozhraní pro vyhledávání v Molecular
Biophysics Database. Kromě toho se snaží kombinovat moderní webové technologie, jako jsou React a
Semantic UI, společně s robustní backendovou podporou z Pythonu a Elasticsearch, aby zvýšila efek-
tivitu získávání dat a zlepšila celkový uživatelský zážitek. Konkrétně se tato práce zaměřuje na imple-
mentaci dynamického tvůrce vyhledávacích dotazů, pomocí kterého mohou uživatelé snadno vytvářet
složité vyhledávací dotazy. Poté je uživatelsky vytvořený vyhledávací dotaz odeslán na server. V tomto
systému server zpracovává požadavek a poté vrací odpovídající výsledky vyhledávání. Systém také za-
hrnuje mnoho nezávislých funkcí: konverze YAML na JSON a specificky vyvinutý validační proces k
zajištění integrity dat. Toto nové rozhraní významně zlepšuje vyhledávací schopnosti MBDB, poskytuje
cenný nástroj pro výzkumníky v oblasti molekulární biofyziky a zlepšuje celkové řízení a dostupnost dat.

Klíčová slova: pokročilé vyhledávání, uživatelské rozhraní, molekulární biofyzika, MBDB, React, Elas-
ticsearch, převod YAML do JSON, vyhledávání dat

Title:

User interface development for advanced searching in the MBDB

Author: Kryštof Krejčí

Abstract: This thesis describes the development of an advanced user interface for searching within the
Molecular Biophysics Database. Moreover, it seeks to blend modern web technologies such as React
and Semantic UI, combined with solid backend support from Python and Elasticsearch, to increase data
retrieval efficiency and enhance the overall user experience. Specifically, this thesis focuses on imple-
menting a dynamic search query builder, through which users can easily create complex search queries.
Then the user-created search query is sent to the server. In this system, the server processes the request
and then returns the appropriate search results. The system also includes many independent features: a
YAML-to-JSON conversion system and a specifically developed validation process to guarantee data in-
tegrity. This new interface significantly enhances the search capabilities of MBDB, providing a valuable
tool for researchers in molecular biophysics and improving overall data management and accessibility.

Keywords: advanced search, user interface, molecular biophysics, MBDB, React, Elasticsearch, YAML
to JSON conversion, data retrieval

Contents

1 Introduction 8
1.1 Challenges with Existing Database Search Methods . 8
1.2 Significance of the MBDB in Biophysical Research . 9

1.2.1 GitHub Repository . 9
1.3 MOSBRI Integration . 9

2 Introduction to the MBDB 10
2.1 Objectives of the MBDB . 10
2.2 Core Technology for Data Storage . 10

2.2.1 Key Components of Invenio . 11
2.3 Database Structure and Metadata . 12

2.3.1 Structure of the Model . 12
2.4 Tools Used in This Thesis . 14

2.4.1 React and Semantic UI . 14
2.4.2 Python . 14
2.4.3 Apache Lucene . 14
2.4.4 Elasticsearch . 14
2.4.5 Luqum . 15
2.4.6 JSON . 15
2.4.7 YAML . 15

3 Advanced Search Frontend Development 16
3.1 Introduction . 16
3.2 Workflow . 16

3.2.1 Yaml Mapping . 16
3.2.2 React-Based Application . 17
3.2.3 Save and Load . 17
3.2.4 Search . 17
3.2.5 JSON to Elasticsearch . 17

3.3 User Interface . 18
3.3.1 Operators . 18
3.3.2 Searchable Fields Filter . 19
3.3.3 Searchable Fields . 19
3.3.4 Value Input . 19
3.3.5 Range Value Input . 19
3.3.6 Brackets . 19
3.3.7 Buttons . 19

6

3.3.8 Alerts . 20
3.4 Metadata Model Parsing Algorithm . 20

3.4.1 YAML to JSON Conversion . 21
3.4.2 Normalization of Field Names . 22

3.5 Backend Query Handling . 23
3.5.1 Query Interpretation and Construction . 23
3.5.2 Integration in MBDB . 23
3.5.3 Detailed Example . 24
3.5.4 Conclusion . 24

3.6 Code Functionality . 24
3.6.1 Main Code Overview . 24
3.6.2 App.jsx . 25
3.6.3 SearchCriteria.jsx . 26
3.6.4 Conclusion . 26

4 Testing and Validation 27
4.1 Input Form Validation . 27
4.2 Operator Validation . 28

4.2.1 Example . 28
4.3 Alerts . 29
4.4 Python Tests . 29

4.4.1 Single Fields . 29
4.4.2 Operators . 29

Conclusion 30

7

Chapter 1

Introduction

1.1 Challenges with Existing Database Search Methods

The ability to search in complex scientific databases effectively is critical for researchers to gather the
information they need to advance their work. The amount and complexity of data are rapidly increasing,
posing challenges when using traditional search methods. Researchers must sift through vast amounts
of specialized data to find the exact information they seek. Moreover, the average researcher in the
biological field is unlikely to have received training in SQL or similar query languages, making it even
more challenging to perform advanced searches.

Limited Search Flexibility Most of today’s traditional search methods depend on keyword match-
ing which can be insufficient for more complex scientific queries. Researchers may be struggling with
expressing their search criteria, which can lead to incomplete or unrelated data.

Complex Data Scientific databases like MBDB contain data with complex relationships. Keyword
matching is not enough for these datasets. Effective use of metadata can drastically increase search
efficiency.

User Interface and Experience The complexity of advanced search requires an intuitive user interface
without a steep learning curve. A poorly created interface can discourage users from using this feature
and cause them to miss out on valuable data, given that many researchers in the biological fields are not
trained in complex database querying, a user-friendly interface becomes even more critical.

Performance With a growing amount of data in a database, ensuring quick search performance may
become difficult. Researchers don’t want to wait for slow responses during complex queries.

Better Data Discovery After solving the problem of basic keyword searching issues, researchers are
able to find relevant datasets faster. This can reduce the time needed to find needed information, giving
them more time for research and development.

8

Goals of the Thesis The primary goals of this thesis are to develop an advanced user interface for
the MBDB, enhance the usability of the search functionalities, and ensure the system is accessible to
researchers with varying levels of technical expertise. This involves integrating modern web technolo-
gies, ensuring robust backend support, and implementing user-friendly features for creating, saving, and
loading complex search queries.

1.2 Significance of the MBDB in Biophysical Research

The MBDB is evidence of the vital role that data sharing and accessibility play in promoting scientific
advancement. Furthermore, the searchable format of the database not only enhances the visibility of
distinct research projects but also makes it possible to validate pre-existing models as well as create new
ones through meta-analyses. In addition, the project encourages a more transparent and collaborative
research environment by highlighting the value of open science and data-sharing guidelines. This is
particularly important in the context of the so-called ’reproducibility crisis’ in experimental sciences,
where the ability to replicate results is crucial for scientific progress. This thesis explores scientific
research challenges and the technical aspects of the project while developing new search features for
MBDB. The new search tools in the MBDB can improve the speed of finding relevant data, which will
accelerate the understanding and progress of molecular biophysics.

1.2.1 GitHub Repository

The development and implementation details of this advanced search feature can be found in the
MBDB GitHub repository under the mbdb-search project. This repository contains all the code, doc-
umentation, and additional resources for the project. By providing public access to the repository, we
encourage collaboration, transparency, and further development within the research community [1].

1.3 MOSBRI Integration

The MBDB is aligned with the objectives of the MOSBRI (Molecular-Scale Biophysics Research In-
frastructure) initiative, which aims to develop a pilot database for biophysical data. The integration with
MOSBRI allows MBDB to leverage shared resources and standards, enhancing data interoperability and
collaboration within the biophysical research community. For more information, refer to the MOSBRI
objectives [2].

9

Chapter 2

Introduction to the MBDB

The Molecular Biophysics Database (MBDB) is a vital tool for scientists, making new advances in
how researchers save and share data. This project wants to push molecular biophysics ahead by putting
high-quality, regulated biophysical data in one place for easy use. MBDB’s core goal is to create one
place that keeps all the records of all experiments safe and helps people use them in the future. It gathers a
great number of experiments together in one place that users can search through, making MBDB a beacon
of hope for people all over the world to team up, share data openly, and make science data available to
everyone. It promises to facilitate easy access to data and make science experiments reproducible. This
lays a strong base for discoveries and cross-disciplinary studies and goes past old limits. By bringing
together what we know from the molecular biophysics community, MBDB significantly aids in our
search to learn more about how molecules shape life and disease.

2.1 Objectives of the MBDB

The primary goal of the MBDB is to create a comprehensive repository that collects biophysical
data from all sorts of experiments, and data analyses. The repository aims to serve as a resource for
researchers, students, and others by providing easy access to data from all around the world.

• Increase the efficiency of scientific research by enabling quick and reliable data retrieval.

• Assist interdisciplinary research by providing a platform that combines information from different
biophysical sub-fields.

• Encourage the repurposing of current data to cut down on redundant data generation and stimulate
creativity, for data-driven discoveries and establishing where existing gaps are.

2.2 Core Technology for Data Storage

At the technological heart of the MBDB is Invenio, which is an open-source framework designed for
managing digital repositories which was chosen for its strong feature set, scalability, and adaptability.
The capability of the framework when dealing with large datasets, complex data models, and various
metadata standards makes it an ideal choice for the project. Invenio is also used for databases such as
Zenodo or CERN Open Data [3]. Invenio helps MBDB in the following main aspects:

• Modular Architecture: Because of Invenio’s modular architecture, the MBDB can be expanded
and customized to satisfy the changing demands of the biophysics community.

10

Figure 2.1: Main page of the MBDB [4].

• Easy Data Model: By adopting Invenio, MBDB creates a comprehensive data model that takes
into account the unique characteristics of biophysical data, such as polymer structures and experi-
mental conditions

• Advanced Search Functionality: Invenio has a powerful search engine, which is based on Elas-
ticsearch that enables complex querying.

2.2.1 Key Components of Invenio

Invenio has the following components:

• API: Manages content negotiation, security, and schema validation using tools like Marshmallow
and JSON Schema.

• Records: Utilizes JSON Schema for defining data structure, ensuring consistency and accuracy.

• Search and Indexing: Powered by Elasticsearch, it provides advanced search capabilities for
efficient data querying.

• Metadata Extraction: Allows automatic extraction and management of metadata, crucial for
effective data discovery.

• UI: User-friendly interface for search, deposit, detail views, and administration, facilitating easy
interaction with the repository.

11

Figure 2.2: Invenio repository architecture[5].

2.3 Database Structure and Metadata

The main model of MBDB is a two-part structure, which differentiates between general parameters
and method-specific parameters.

General Parameters

General parameters describe both the metadata of the record (e.g. authors), as well as biophysical
properties expected to be present for all types of biophysical measurement (e.g. identities of measured
species).

All records have the same fields in the general parameters section Independent of measurement tech-
nique, which means that required fields in general parameters are present (and hence searchable) in all
records.

Method-Specific Parameters

The method-specific parameters include detailed information about how data was measured and how
it was analyzed (e.g. measurement protocol). As this is inherently specific to the techniques used, the
fields in method-specific parameters should only be expected to exist in records using the same technique.

2.3.1 Structure of the Model

Reusable Elements

Reusable elements are designed to be used across different data models, providing consistency and
reducing redundancy in the data structure.

12

Figure 2.3: Two-part structured model, general parameters and method-specific parameters [7].

Polymorphic Elements

Polymorphic elements allow for flexible data modeling by supporting different data types and struc-
tures, which is crucial for accurately representing the diverse range of biophysical data. You can either
look at it as an analog of class inheritance or perhaps more appropriately as an implementation of this
schema pattern. The Polymorphic Pattern is used when documents have more similarities than they have
differences, allowing them to be stored in a single collection for improved performance. This pattern
is particularly useful when we want to access information from a single collection without the need for
complex joins. For more details, refer to the MongoDB Polymorphic [8].

13

2.4 Tools Used in This Thesis

This section discusses the different tools that were used during the development of the Advanced
Search project. Each subsection will focus on one particular tool or library that was chosen for the
project, its purpose, and its application within the project.

2.4.1 React and Semantic UI

React is a JavaScript library that is used to build user interfaces, specifically those of single-page appli-
cations where data can be changed dynamically without necessarily reloading the whole page. Backed
by React 18, the MBDB creates a user interface that responds promptly—including delivery of real-
time information [9]. With React’s component-based architecture, user interfaces are made in a modular
way which means they can be managed more easily and updated independently without affecting other
components within an application. The advantage of this approach is that it simplifies how we develop
web applications as chunks that can just be moved around within an application which would have been
otherwise not possible.

Semantic UI is a front-end development framework that aims to create beautiful, responsive layouts
using human-friendly HTML. These components were integrated with React in the MBDB to enhance
the user experience [10].

BUN is a modern JavaScript runtime that drives the UI in MBDB, with all the necessary tools and
configurations necessary for a smooth process of designing and deploying software. Thus, BUN is made
to save time and be effective as it lines up the stages of creating an application and the final product’s
operation. Using BUN, the MBDB gets faster production, faster code execution, and a wide range of
tools to handle dependencies and create the application [11].

2.4.2 Python

Python, known for its simplicity and versatility, is extensively used in the MBDB for various backend
processes. It is very heavily used language both within and outside of the scientific, making it easier to
make collaborative development. Various scripts were developed with Python to convert data, connect
to Elasticsearch, and carry out challenging searches. When dealing with large datasets, it is possible
to carry out manipulations on them fast without any difficulties because Python has many libraries like
pandas and NumPy among others that can be used for data processing efficiently [12].

2.4.3 Apache Lucene

Apache Lucene is an open-source search library developed by the Apache Software Foundation. It
provides powerful search capabilities and forms the backbone of many search applications, including
Elasticsearch. In the MBDB, Lucene enables fast and accurate retrieval of biophysical data through its
robust query language and efficient search algorithms [13].

2.4.4 Elasticsearch

Elasticsearch is a strong search and analytics engine that is employed in indexing and querying large
datasets. By using Apache Lucene, it offers quick and precise search results. In the MBDB, Elasticsearch
handles indexing and querying of biophysical data. Due to its scalability and distributed architecture, the

14

engine can handle very large quantities of data both efficiently and quickly. Elasticsearch in the MBDB is
suitable due to its advanced search capabilities, real-time queries, and powerful query language, allowing
consumers to easily obtain the data they require [14].

2.4.5 Luqum

Luqum is a Python library that aids in the generation and analysis of sophisticated search inquiries.
During the execution of MBDB, Luqum serves as a tool that helps to convert user input into organized
queries that Elasticsearch can process efficiently. Lucene queries, on which Elasticsearch’s query lan-
guage is anchored, can be created by Luqum. It is used to make sure that the MBDB performs its search
queries and gives back proper results to users [15].

2.4.6 JSON

JSON, which is short for JavaScript Object Notation, is a lightweight data interchange format that’s
comprehensible by humans and easy for machines to process and generate. Because of its simple syntax
based on key-value pairs, JSON finds a lot of practical usage in web applications when it comes to
exchanging data between them [16].

Within the MBDB, JSON is utilized for storage and data transmission, guaranteeing that secure user
interface-generated formats can be analyzed by backend systems seamlessly.

2.4.7 YAML

YAML, which stands for “YAML Ain’t Markup Language” is a standard for human-readable data
serialization commonly used in configuration and data exchange. This language with easy syntax is often
used for complex data description and is both easy to read and write so many people use it [17]. YAML
and JSON are highly related and since YAML (1.2), JSON is equivalent to a subset of YAML’s flow style
syntax without comment.

The MBDB uses YAML files to define data models and configuration which are later transformed
into JSON format for the system to continue the process.

15

Chapter 3

Advanced Search Frontend Development

3.1 Introduction

In this section we will cover how the Advanced Search module was designed and developed and look
at how it is applied by the MBDB system. Most importantly, we will see how complex search queries can
be generated or modified at high speed, with precision in results, and efficiently through the platform.
It includes working on big datasets through a combination of YAML mapping and React-powered UI.
First, we will explore the primary components of the software. This includes how queries are created
by the web application and how querying interpreters process queries from back-end algorithms while
transforming YAML into searchable JSON objects. This system’s various parts have been engineered to
work in perfect harmony ensuring that anyone using it receives nothing but the best experience possible.

3.2 Workflow

The main objective of this section is to provide a general description of the Advance Search pro-
cesses. This section discusses what each process does, how it interacts with others, what it receives, and
what it forwards to the next. At the beginning, the search method is defined in a YAML file. There are
currently four methods defined in MBDB: MST.yaml, BLI.yaml, SPR.yaml, and ITC.yaml. It contains
the MBDB database’s searchable items. The project now uses the first one, MST.yaml, however, it is
simple to exchange it with the other two methods to get different results.

3.2.1 Yaml Mapping

The YAML tree structure has to be converted into individual objects with their descriptions so that the
user can view each one as a searchable option. This is the point at which my convert_yaml_to_json.py
is useful. It accomplishes this by recursively traversing and extracting the YAML. Following the extrac-
tion, the names may be ambiguous. Because there are multiple objects with the same ending names
but different paths to them. Therefore, we must improve their user-recognition. The goal is to make
each name unique. The prettier_names.py process is the one that performs this task. It traverses and
comes up with the best names by going over the objects several times. Once this is finished, it is prepared
for display.

16

YAML Schema
Mapping

YAML to JSON
Conversion

Search Query
Builder Interface

Save
Query

Load
Query

SearchQuery ConstructionSend Query to
Database

File
Validation

Input
Validation

Figure 3.1: The diagram shows how are each component and process connected.

3.2.2 React-Based Application

The React-based web application is the most crucial component of the entire process. This is where
the user assembles and refines the search query. After the user is satisfied, the query has to pass additional
validations to ensure it is correctly constructed. The user can either search the assembled query or store
it for later use after the query has been verified.

3.2.3 Save and Load

If the user chooses to save the query, the website’s content is converted into JSON format, shown in
the console, and an input request for the file name appears.

By using the file as a backup, the query does not need to be assembled from scratch each time. More
experienced users may change or combine many searches. (Combine two or more JSON files)

After that, users have the option to load the file into the web application. Where it needs to pass
another validation process. Therefore, the user is unable to upload invalid data or inject malicious data
into the server. The UI is then reconstructed based on the uploaded data so that it may be altered and
searched for.

3.2.4 Search

Continuing with the search functionality, we can now search using two separate methods. The first
one reads the lines and converts them into a string, which is then sent to the API as (q=...). The second
one, more complex sends the data to the server utilizing the same JSON structure that was used to save
the query, but instead of sending sting, it sends (json=...).

3.2.5 JSON to Elasticsearch

When the server receives this JSON data, it first transforms it into a Luqum query and then into an
Elasticsearch query, which is then sent as a request to the database to retrieve the data. Lastly, the data that

17

the database returned is displayed on the testing version of the MBDB application available at https:
//mbdb.test.du.cesnet.cz/[4]. This testing version allows users to interact with the application
and verify its functionality before it is deployed in a production environment.

3.3 User Interface

The whole interface of the query builder sits behind the Advanced Search button on the MBDB web
page. This means users can easily access advanced search functionalities with a single click. After
clicking the button, the query builder interface is revealed. It is a line-by-line input form with logical
operators between every two lines except the first one, as a single line cannot logically compare itself.
Then the user searches and chooses what object they are looking for. Then corresponding value field is
selected. Then to-value input can be generated with the plus ("+") button. On every line are left and
right brackets, activated by a click. Also if the user figures out that they made a mistake in the process of
creating multiple lines, they can remove individual lines with the Remove button. Under the query are
four buttons: Add Field, Search, Download/Copy, and Upload. The input is made of lines where the user
can put in what you’re searching for. On each line, you can pick from AND, NOT, or OR operators, except
on the first line. Then you choose what object the user is searching for and type in the specific thing they
want. If it’s a date or number, they can also look for a range, for example from January to March. Each
line lets the user use brackets to be more specific. After setting up their search, pressing the search button
will get results. The user can also save their searches, copy them, or load them again. It is designed to
be user-friendly.

Figure 3.2: The image shows all the functionality of the query builder

3.3.1 Operators

As mentioned earlier, the operators are the first thing that should be filled in each line. The operator
in the first line is not present because at least two query lines are needed. Three operators are available
to use: AND, OR, and NOT. Operators AND and OR work as expected. The NOT operator works as an AND
operator but negates the value for the line or bracket segment. This implies that AND and NOT operators
can be on the same logical level. But AND and OR cannot. More about this is the validation chapter [4].

18

https://mbdb.test.du.cesnet.cz/
https://mbdb.test.du.cesnet.cz/

3.3.2 Searchable Fields Filter

There is a great amount (450-500 depending on the specific model) of searchable items in the
database for users to search for. For this exact reason, there is a search field that will narrow down
the searchable objects. Clicking on the magnifying glass on each line will cause it to expand into an
input field. After inserting the value, it will narrow the search for the searchable objects.

3.3.3 Searchable Fields

This input determines the parameters for the search as well as the kind of input that will be displayed
for the from-value and to-value. It is recommended to use the filter to reduce the number of available
options.

3.3.4 Value Input

Depending on what type of object is being searched for, this input field will change after it has been
selected. At the moment, there are three primary input types: dates, numbers, and strings. When using
the string input, the user is not restricted in any way to what can be entered. Any positive and negative
numbers can be entered into the number type input. Finally, the user is prompted to enter a legitimate
date because the date type input will appear as a date picker. If present, it is not possible to input larger
or smaller numbers than what is allowed for the number input. This can be considered a form of input
field validation.

3.3.5 Range Value Input

The to-value is hidden beneath the "+" button and only appears for date and number inputs. After
clicking, an input field matching the value type is created. It functions just like the from-value input.
There is one connection between the two. From-value input functions as a from value, while to-value
input functions as a to. When from is greater than to, the two values are swapped to keep consistency in
the searches.

3.3.6 Brackets

Each line has one set of brackets, the left after the operator and the right one at the end of the line.
They have two states, dark green to show they are disabled and bright green for active ones. Brackets are
also validated with multiple measures that are discussed in the validation chapter [4].

3.3.7 Buttons

Beneath the query input area, four essential buttons are displayed, providing users with a range of
functionalities to enhance their search experience:

• Add Field: This button helps users add more fields to the search query in a dynamic way. Every
additional click introduces another line for field input and allows users to further clarify or expand
their search criteria.

• Search: Centered on the interface is where you will find this button that carries out an act of
searching the search. As soon as you have set the conditions that you want, all it takes is just one
single click on this same button for it to return with results having met any specific criteria given.

19

• Download/Copy: For those who work with the same queries, copy and save button should be
more useful. It takes time to enter lengthy queries into the inputs. With the help of this feature,
users can save their query as a JSON file or view it in the console.

• Load: The user can load the query into the web page from the JSON file without any issues. Errors
may arise if they decide to change the file. The user is notified when the query loads partially or
not at all.

3.3.8 Alerts

The user receives alerts when a validation process detects errors in the query or during the JSON
loading process on the website. For the convenience of the user, all errors are displayed in a single alert.
See the validation section for more information on alerts.

3.4 Metadata Model Parsing Algorithm

For the YAML configuration to be accessible and searchable in my application. The YAML first
needs to be converted into JSON format that describes every searchable object. This process is divided
into two main parts.

1. YAML to JSON Conversion (convert_yaml_to_json.py)
The convert_yaml_to_json.py script reads the YAML file, then parses its content, and finally
constructs a JSON array where is every element represented as a field.

2. Normalization of Field Names (prettier_names.py)
Many fields now have ambiguous names that can be confusing for the user. The
prettier_names.py takes care of this problem and ensures a unique name for each field.

20

3.4.1 YAML to JSON Conversion

The MBDB relies heavily on a YAML to JSON conversion. This is because it changes YAML’s
tree-like structure into JSON format which has become popular. This helps a lot in handling, querying,
and displaying data within the system efficiently. I developed a Python script for this specific purpose,
which reads the YAML file and then generates an equivalent JSON output after processing it.

Core functionality The script’s primary functions include:

1. Creating field items The create_field_item() function constructs dictionaries for each field
item, including properties like pretty_name, field_path, type, and description.

2. Building JSON output The build_json_output() function recursively processes the YAML
schema, handling properties and polymorphic types, and constructing the JSON output. It in-
cludes:

• Field types: The algorithm supports fields such as string, number, and date, determined
based on the YAML type definitions.

• Additional properties: Fields can include minimum, maximum, and poly_type properties
if specified in the YAML.

Field creation in each object Each object in the JSON output can include multiple fields taken from
the YAML schema, such as:

• pretty_name: Basic name for the object.

• field_path: The hierarchical path to the field within the schema.

• type: The data type of the field, such as string or number.

• description: An optional description of the field.

• minimum and maximum: Optional properties for numerical fields.

• poly_type: An optional property for polymorphic types.

This structured approach ensures that the YAML-defined data structures are accurately converted into a
JSON format, handling all the data that can be queried within the MBDB system.

21

3.4.2 Normalization of Field Names

In the MBDB’s JSON Pretty Name Standardization process, field names of the JSON data are made
unique and human-readable. This entails reading a JSON file, identifying and resolving duplicate field
names, and then changing them in a way that is standard.

Core functionality The script performs the following key tasks:

1. Reading and writing JSON files

• read_from_file(file_name): Reads JSON content from a specified file.

• write_to_file(file_name, data): Writes the processed JSON data to a specified file.

2. Formatting names format_name(name): Standardizes field names by replacing underscores
with spaces and capitalizing the words.

3. Updating pretty names update_pretty_name(): Updates the pretty_name field of each JSON
object to ensure uniqueness and readability.

4. Identifying and resolving duplicate names

• find_duplicate_names(): Identifies duplicate pretty_name fields and their paths.

• remove_if_equal(): Removes common elements in paths to create minimal unique names.

• update_duplicate_pretty_names(): Finds and updates duplicate pretty names within the
JSON data.

Field creation in each object Each object in the JSON output includes:

• pretty_name: A user-friendly name for the field.

• field_path: The hierarchical path to the field within the schema.

This approach ensures that the JSON-defined data structures are standardized and unique, facilitating
efficient data handling and querying within the MBDB system.

22

3.5 Backend Query Handling

This chapter covers the backend mechanisms for handling user-generated queries within the MBDB.
The process involves converting user input from JSON to a query language that Elasticsearch can un-
derstand, ensuring efficient and precise data retrieval. The primary components responsible for this
functionality are implemented luqum_convertor.py files. This files work to interpret, construct, and
apply complex search queries.

3.5.1 Query Interpretation and Construction

General Workflow

The backend query handling begins with user-defined criteria in JSON format. These criteria are
parsed and transformed into a structured query using the Luqum library, which is specifically designed
for building and analyzing search queries. The constructed Luqum tree is then converted into an Elastic-
search query, which is executed to retrieve the relevant data.

Key Components in luqum_convertor.py

Method: construct_luqum_tree The construct_luqum_tree method is responsible for trans-
forming JSON criteria into a Luqum tree. This involves:

• Parsing JSON criteria to identify fields, operators, and bracket operations.

• Constructing Luqum tree nodes for words, phrases, and ranges.

• Applying logical operators (AND, OR, NOT) to combine the fields into a coherent search tree.

• Handling nested queries using bracket operations to maintain the correct logical grouping.

Method: apply The apply method takes the constructed Luqum tree and converts it into an Elastic-
search query. It supports schema analysis to optimize the query structure and applies the query to the
search object. Additionally, it handles aggregations and post-filters if specified in the JSON criteria.

The luqum_convertor.py file complements search_options.py by providing a standalone func-
tion for constructing Luqum trees from JSON criteria.

3.5.2 Integration in MBDB

The integration of these components within the MBDB allows for advanced search capabilities.
Users can define complex search criteria through the web interface, which are then processed and exe-
cuted by the backend, ensuring accurate and efficient data retrieval.

Key Components in search_options.py

The search_options.py file is a critical part of the query handling mechanism. It includes the
JsonQueryParamInterpreter class, which contains methods to construct and apply search queries.

Class: JsonQueryParamInterpreter This class inherits from ParamInterpreter and includes
methods for constructing Luqum trees from JSON criteria and applying these queries to the search object.
Paramlnterpreter is an Invenio native class, making this a seamless integration.

23

3.5.3 Detailed Example

To illustrate the functionality, consider the following example of a user-defined search query in JSON
format:

1 [
2 {
3 "field": "metadata.general_parameters.record_information.title",
4 "value": "Research Paper"
5 },
6 {
7 "operator": "and"
8 },
9 {

10 "field": "metadata.general_parameters.record_information.deposition_date",
11 "value": {
12 "from": "2024-01-01",
13 "to": "2024-12-31"
14 }
15 }
16]

This query searches for records with the title "Research Paper" and deposition dates within the year
2024. The backend components parse this JSON, construct a Luqum tree, and convert it into an Elastic-
search query to retrieve the relevant records.

3.5.4 Conclusion

The backend query handling in MBDB is designed to efficiently process complex search queries
defined by users. By leveraging the Luqum library and Elasticsearch, the system ensures precise and fast
data retrieval, enhancing the overall usability and functionality of the MBDB.

3.6 Code Functionality

This chapter provides an overview of the main code functionality within the MBDB application. The
application is primarily built using React, a JavaScript library for building user interfaces, and it leverages
several vital functions to handle the core operations of the application. This section will outline the key
components and their main functionalities.

3.6.1 Main Code Overview

The application’s main code is organized into several key files, each responsible for specific func-
tionalities. The two primary files discussed in this chapter are App.jsx and SearchCriteria.jsx.
These files contain the core logic for initializing the project, handling search criteria, and managing user
interactions.

24

3.6.2 App.jsx

The App.jsx file is the entry point of the application. It initializes the project and manages the
overall state of the application. The main functions within this file are:

• App: This function is responsible for the initialization of the project. It sets up the initial state and
prepares the application for user interactions.

• handleSearch and handleCriteriaChange: These functions handle the criteria changes.
handleSearch processes the search criteria and updates the state accordingly, while
handleCriteriaChange manages the updates to individual search criteria inputs.

• handleSearchClick: This function triggers the search operation. It gathers the current search
criteria, formats them, and sends the search request to the backend.

• addSearchCriteria: This function adds a new line of search criteria. It dynamically updates the
state to include additional search criteria inputs.

• handleJsonData and handleLoadJson: These functions manage JSON data. handleJsonData
processes the JSON data received from the server or user input, and handleLoadJson handles
loading JSON data into the application’s state.

App.jsx Code Excerpt

The following code is an illustrative overview of the main structure of the App.jsx file.

1 import React, { useState } from ’react’;
2 import SearchCriteria from ’./SearchCriteria’;
3 import { handleSearch , handleCriteriaChange , handleSearchClick , addSearchCriteria ,

handleJsonData , handleLoadJson } from ’./functions’;
4

5 const App = () => {
6 const [criteria, setCriteria] = useState([]);
7

8 return (
9 <div>

10 <h1>MBDB Search </h1>
11 <SearchCriteria
12 criteria={criteria}
13 onCriteriaChange={handleCriteriaChange}
14 onAddCriteria={addSearchCriteria}
15 />
16 <button onClick={handleSearchClick}>Search </button>
17 <input type="file" onChange={handleLoadJson} />
18 </div>
19);
20 };
21

22 export default App;

Listing 3.1: App Component

25

3.6.3 SearchCriteria.jsx

The SearchCriteria.jsx file defines the search criteria component. This component manages the
individual search criteria and their associated functions. The main functionalities include:

SearchCriteria is the main component that defines the structure and behavior of the search criteria.
It handles the rendering of input fields, dropdowns, and other UI elements related to search criteria.
Additionally, it manages the functions for adding, updating, and removing search criteria.

SearchCriteria.jsx Code Excerpt

The following code is an illustrative overview of the main structure of the SearchCriteria.jsx
file.

1 import React from ’react’;
2

3 const SearchCriteria = ({ criteria, onCriteriaChange , onAddCriteria }) => {
4 return (
5 <div>
6 {criteria.map((crit, index) => (
7 <div key={index}>
8 <input
9 type="text"

10 value={crit.value}
11 onChange={(e) => onCriteriaChange(index, e.target.value)}
12 />
13 <button onClick={() => onAddCriteria()}>Add</button>
14 </div>
15))}
16 </div>
17);
18 };
19

20 export default SearchCriteria;

Listing 3.2: SearchCriteria Component

3.6.4 Conclusion

This chapter has provided an overview of the main code functionality within the MBDB application,
focusing on the App.jsx and SearchCriteria.jsx files. The key functions within these files are
essential for initializing the project, managing search criteria, and handling user interactions.

26

Chapter 4

Testing and Validation

Every project needs to be tested and validated. The aim of testing and validation is to reduce unex-
pected behavior that might happen when a user uses the application in particular or edge scenarios. The
developer additionally utilizes the validation as a precaution.

4.1 Input Form Validation

Validation in this project occurs in two stages. The first stage ensures that the user has entered a
proper query into the inputs, checking for issues that can be created by the user.

1. Operator, field, from-value, and to-value inputs cannot remain empty.

2. The values are switched if the from-value is not smaller than the to-value.

3. Nothing other than numbers may be entered into the number input field.

4. Nothing other than the date can be entered into the input.

5. Minimal and maximal value control: No smaller or larger number than allowed may be entered
into the input.

6. Operator validation. The OR operator cannot be on the same level as NOT and AND.

7. Make sure there are the same number of left and right brackets in the query.

8. Verifies that the brackets are in the right location and the query has a valid nesting structure.

The second type of validation serves as a guard of the JSON that the user tries to load into the
interface. The JSON guard ensures consistency when loading. The user is informed by an alert when
something goes wrong.

1. When the JSON doesn’t have the correct structure, it is automatically rejected.

2. Look for missing fields

3. Detect missing operators

4. Swaps from-value and to-value in the same way as mentioned before.

5. Ensures that the values are in the valid range between minimal and maximal.
27

All input fields are mandatory, requiring the user to provide a value. When the input is left empty,
it is highlighted with a red border, so the user doesn’t have to go one by one and search for the empty
inputs.

Consistency is vital in searching. After inserting from and to values in the wrong order, such that the
from value is larger. In this case the inputs exchange values.

Brackets are validated on two different fronts. The first one only checked if there is the same number
of left and right brackets. Sometimes it is sufficient for it to be valid. But when you take into account the
nesting of brackets, another problem arises. It is necessary to make sure it is also satisfied.

4.2 Operator Validation

The main concern here is expression structure logic, namely the incompatibility of the AND and
NOT operators at the same level as the OR operator. This is because combining these operators without
using the appropriate hierarchical architecture results in unclear expression interpretation and logical
problems. The creation of a string that shows the logical structure of a query depends on the function
generateQueryStructureString. It achieves this by assembling a template that includes grouping
symbols and logical operators from search criteria. Here, it is more important to illustrate the logic of
the query than its actual meaning.

Then it is up to the isValidExpression function to make sure the logical expression follows pre-
determined rules. There are several steps involved in this:

1. Clean: Extra spaces are first removed to keep the expression uniform for analysis.

2. Replace: The algorithm identifies sub-parts which are enclosed in parentheses. Then they are
replaced with a placeholder Y . It makes the query easier to understand. The nested parts are
marked for further evaluation.

3. Evaluate: The main objective is to determine whether the simplified expression follows the given
rules. It makes certain that the operators AND and NOT do not exist at the same level as OR.

Until the logical consistency of the entire structure is confirmed, these procedures are applied recur-
sively to each component of the expression.

4.2.1 Example

The process of validating the logical structure of expressions is similar to validating a formal gram-
mar, like L-systems. This ensures that the structure adheres to specific rules, maintaining logical consis-
tency.

• X represents a single line in the expression.

• Y is a placeholder for a nested part of the expression.

Consider the expression: (X or (X not X) or X) and X. The isValidExpression function goes
through the steps like this:

1. Clean: Remove extra spaces (Xor(XnotXorX)orX)andX

2. Replace: (Xor(XnotXorX)orX) replaced with a placeholder Y . Then we have YandX

28

CHAPTER 4. TESTING AND VALIDATION 29

Figure 4.1: Search error alert

3. Evaluate: YandX is just one operator that implies validity.

4. The following steps are:

5. Xor(XnotXorX)orX → XorYorX → valid

6. XnotXorX → has both NOT and OR that is by the rules invalid query. In this step it ends and False
is returned.

4.3 Alerts

Users can make mistakes at every step of the search process, from editing the JSON to creating the
search query on the website. When they make a mistake, we need to convey the message of what are they
doing wrong, or at least what is happening. This is the reason why alerts have been implemented. These
alerts will be displayed when the search query is wrong or incomplete. The other way how to trigger the
alerts is when the validation of the loaded JSON is invalid. In the alert is a detailed description of all
the problems. For each action, there is only one alert so the user does not need to click "OK" for every
mistake he makes. some problems can be in the alert window multiple times because they can occur on
multiple lines. In this way, the user knows it occurred multiple times on different lines.

4.4 Python Tests

The system contains Python tests that are created using the Python library pytest. Cur-
rently, tests are in the test_luqum_convertor.py file that can be run with the command
pytest test_luqum_convertor.py. The test focuses on making sure that the Search feature op-
erates correctly. We make sure the searches are consistent when changes are made and the format is not
broken when we send our query to Elasticsearch.

4.4.1 Single Fields

These tests focus on the construction of single fields in the Luqum search tree. Every test involves a
JSON input that asserts that the output of the construct_luqum_tree function matches the expected
Luqum tree structure. This part consists of 11 tests and each one tests one case, for example, full-text
value, negative value, number value, Unicode value, range value, and wildcard range (using *).

4.4.2 Operators

This section has only two tests, one makes sure the OR operator works, and correctly other one tests
the AND operator.

Conclusion

In this thesis, I have developed an advanced user interface for the MBDB. The built-in functionality
in that interface allows for improved access to and use of advanced search technology, which enables
easy building and running of complex queries. Users were not able to take advantage of the possibility
that such powerful search facilities of the MBDB had opened up. It solves a number of problems related
to searching voluminous, scientific databases. With a friendly user interface and intuitiveness, complex
search query formulation is reduced to basic steps. Users are now able to define search parameters, apply
logical operators, and manage nested queries in a clean and responsive interface powered by React and
Semantic UI. This is particularly valuable for those researchers who have the task of sifting through a
great number of special data to find particular information.

The UI supports saving the queries into JSON files and reloading them when need be, without nec-
essarily starting from scratch. In essence, this feature improves user experience by handling complex
search criteria to be reused. At the core of this development is that the frontend user interface links with
the backend, which ensures any query formation and fetching of results are carried out without errors
using Elasticsearch. It does so by translating the user input into structured JSON queries, which are later
converted to Elasticsearch queries with the help of the Luqum library. This will make the search powerful
and efficient, enabling the system to process intricate queries and give the results refined in time.

Also, other features of the system provide processes such as YAML-to-JSON with robust validation,
which creates data integrity and consistency. The mechanism of validation will guarantee that both the
user-generated queries and the JSON files being loaded are properly formatted and error-free. This is a
two-fold process for maintaining the integrity of the system and in not encountering errors because of
incorrect or poorly entered data. Such features are essential not only to keep the search results accurate
but also for the database to remain a valuable resource for researchers in molecular biophysics.

I learned a lot of technologies from this project, namely JavaScript, React, BUN, and Semantic UI.
Moreover, I used to apply most of the algorithms known to me while developing independent components
and integrating them into larger systems. This is sure to help in the next job—either another independent
project or working with some people on a bigger framework.

In summary, this project is intended to be a significant contribution to the MBDB, ensuring that users
can search for and retrieve data more effectively. It is also an example showing that the user-friendly
design of scientific databases gives more accessibility to advanced technologies.

30

Bibliography

[1] MBDB GitHub Repository. MBDB-Search: User Interface Development for Advanced Search-
ing in MBDB. Available at: https://github.com/Molecular-Biophysics-Database/
mbdb-search. Description: The repository contains the source code and documentation for the
advanced search user interface developed for the MBDB project.

[2] MOSBRI (MoIecular-Scale Biophysics Research Infrastructure). MOSBRI Objectives and Goals.
Available at: https://www.mosbri.eu/. Accessed on: [20.7.2024]. Description: The initiative
aims to develop a pilot database for biophysical data, enhancing data interoperability and collabora-
tion within the biophysical research community.

[3] Invenio Software. Invenio: Open Source Framework for Managing Digital Repositories. Available
at: https://inveniosoftware.org/. Accessed on: [15.6.2024]. Description: Invenio provides a
robust framework for building and managing digital repositories, used by institutions such as CERN.

[4] MBDB Testing Version. Testing Platform for Molecular Biophysics Database. Available at: https:
//mbdb.test.du.cesnet.cz/. Accessed on: [1.8.2024]. Description: A testing platform for the
MBDB project, allowing users to interact with and verify the functionality of the database.

[5] Invenio Architecture. Detailed Architecture of Invenio Repository Framework. Available at:
https://narodni-repozitar.github.io/developer-docs/docs/technology/invenio/
architecture/. Accessed on: [15.6.2024]. Description: Provides an in-depth look at the modular
architecture of Invenio, highlighting its scalability and adaptability for large datasets.

[6] MBDB Documentation. Introduction to the Data Model. Molecular Biophysics Database. Avail-
able at: https://molecular-biophysics-database.github.io/mbdb-docs/datamodel/
intro. Accessed on: [15.6.2024]. Description: An overview of the data model used in MBDB,
explaining the structure and organization of biophysical data.

[7] MBDB Two-part Structure Data Model Image. Visual Representation of the Two-part Structure Data
Model in MBDB. Available at: https://github.com/Molecular-Biophysics-Database/
mbdb-docs/tree/main/public/static/img. Accessed on: [15.6.2024]. Description: An image
illustrating the two-part data model used in MBDB, showing the separation of general and method-
specific parameters.

[8] Ken W. Alger, Daniel Coupal. Building with Patterns: The Polymorphic Pattern in Mon-
goDB. Available at: https://www.mongodb.com/developer/products/mongodb/
polymorphic-pattern/. Accessed on: [14.7.2024]. Description: This article explains the
polymorphic pattern in MongoDB, used for handling documents with similar but not identical
structures, improving performance and query efficiency.

31

https://github.com/Molecular-Biophysics-Database/mbdb-search
https://github.com/Molecular-Biophysics-Database/mbdb-search
https://www.mosbri.eu/
https://inveniosoftware.org/
https://mbdb.test.du.cesnet.cz/
https://mbdb.test.du.cesnet.cz/
https://narodni-repozitar.github.io/developer-docs/docs/technology/invenio/architecture/
https://narodni-repozitar.github.io/developer-docs/docs/technology/invenio/architecture/
https://molecular-biophysics-database.github.io/mbdb-docs/datamodel/intro
https://molecular-biophysics-database.github.io/mbdb-docs/datamodel/intro
https://github.com/Molecular-Biophysics-Database/mbdb-docs/tree/main/public/static/img
https://github.com/Molecular-Biophysics-Database/mbdb-docs/tree/main/public/static/img
https://www.mongodb.com/developer/products/mongodb/polymorphic-pattern/
https://www.mongodb.com/developer/products/mongodb/polymorphic-pattern/

[9] React. React: A JavaScript Library for Building User Interfaces. Developed by Facebook. Available
at: https://react.dev/. Accessed on: [8.7.2024]. Description: Detailed documentation and user
guide for React, a popular JavaScript library for building modern user interfaces.

[10] Semantic UI. Semantic UI: A Front-end Development Framework. Available at: https://
semantic-ui.com. Accessed on: [8.7.2024]. Description: Comprehensive documentation for Se-
mantic UI, which provides responsive and customizable front-end components.

[11] Bun. Bun: A Modern JavaScript Runtime. Available at: https://bun.sh/. Accessed on:
[8.7.2024]. Description: Documentation and guides for Bun, a JavaScript runtime designed for effi-
cient and fast development.

[12] Python. Python: An Interpreted, High-level Programming Language. Developed by the Python
Software Foundation. Available at: https://www.python.org/. Accessed on: [8.7.2024]. De-
scription: Python’s official site, offering extensive documentation, tutorials, and resources for devel-
opers.

[13] Apache Lucene. Apache Lucene: A High-performance, Full-featured Text Search Engine Library.
Developed by the Apache Software Foundation. Available at: https://lucene.apache.org/.
Accessed on: [8.7.2024]. Description: Detailed documentation and user guide for Lucene, which
powers the search functionality in many applications, including Elasticsearch.

[14] Elasticsearch. Elasticsearch: A Distributed, RESTful Search and Analytics Engine. Developed
by Elastic NV. Available at: https://www.elastic.co/. Accessed on: [8.7.2024]. Description:
Comprehensive documentation for Elasticsearch, a powerful search engine based on Lucene.

[15] Luqum. Luqum: A Python Library for Lucene Query Manipulation. Available at: https://luqum.
readthedocs.io/en/latest/about.html. Accessed on: [8.7.2024]. Description: Documenta-
tion and usage guide for Luqum, which helps in generating and analyzing complex search queries in
Lucene.

[16] JSON. JavaScript Object Notation (JSON) Data Format. Available at: https://www.json.org/
json-en.html. Accessed on: [8.7.2024]. Description: Official site for JSON, providing specifica-
tions and examples for this widely used data format.

[17] YAML. YAML Ain’t Markup Language (YAML) Data Format. Available at: https://yaml.org/.
Accessed on: [8.7.2024]. Description: Official site for YAML, offering specifications and documen-
tation for this human-readable data serialization standard.

32

https://react.dev/
https://semantic-ui.com
https://semantic-ui.com
https://bun.sh/
https://www.python.org/
https://lucene.apache.org/
https://www.elastic.co/
https://luqum.readthedocs.io/en/latest/about.html
https://luqum.readthedocs.io/en/latest/about.html
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://yaml.org/

	Introduction
	Challenges with Existing Database Search Methods
	Significance of the MBDB in Biophysical Research
	GitHub Repository

	MOSBRI Integration

	Introduction to the MBDB
	Objectives of the MBDB
	Core Technology for Data Storage
	Key Components of Invenio

	Database Structure and Metadata
	Structure of the Model

	Tools Used in This Thesis
	React and Semantic UI
	Python
	Apache Lucene
	Elasticsearch
	Luqum
	JSON
	YAML

	Advanced Search Frontend Development
	Introduction
	Workflow
	Yaml Mapping
	React-Based Application
	Save and Load
	Search
	JSON to Elasticsearch

	User Interface
	Operators
	Searchable Fields Filter
	Searchable Fields
	Value Input
	Range Value Input
	Brackets
	Buttons
	Alerts

	Metadata Model Parsing Algorithm
	YAML to JSON Conversion
	Normalization of Field Names

	Backend Query Handling
	Query Interpretation and Construction
	Integration in MBDB
	Detailed Example
	Conclusion

	Code Functionality
	Main Code Overview
	App.jsx
	SearchCriteria.jsx
	Conclusion

	Testing and Validation
	Input Form Validation
	Operator Validation
	Example

	Alerts
	Python Tests
	Single Fields
	Operators

	Conclusion

