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Introduction

Efficient data management is crucial for large-scale scientific simulations. Without proper
data components, the simulation might not even be usable. The TNL-LBM project currently
uses the VTK format to save its data. Compared to other solutions, current implementation
of this library unfortunately comes with a lot of disadvantages, such as slower speed, hardly
readable code or bigger file size. ADIOS2 (Adaptive IO System version 2) offers a versatile
framework for high-performance data I/O, enabling seamless handling of vast datasets.

This thesis discusses the integration of the ADIOS2 library into TNL-LBM, highlighting the
design, implementation, and performance benefits of this approach over the current one. Main
The goals of this work are to speed up the data-saving process, reduce the file size, and clean
up the code, making it more readable and extensible.

This thesis is organized as follows: In chapter 1, we discuss the TNL-LBM project and
its design, features, and applications. In chapter 2, we cover VTK Format and its structure,
features, applications and disadvantages. This chapter also provides a few examples. Chapter
3 focuses on the ADIOS2 Library, including its features and integration with Scientific Work-
flows. Chapter 4 presents old and new implementations of data-saving methods, as well as the
comparison between them.
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Chapter 1

TNL-LBM

The TNL-LBM (Template Numerical Library for Lattice Boltzmann Method) project is an
advanced computational framework designed to facilitate large-scale simulations using the Lat-
tice Boltzmann Method.[1][2][3] The LBM is a powerful computational technique for fluid
dynamics simulations, which models fluid flow by tracking the evolution of particle distribution
functions on a discrete lattice grid. This method is particularly effective for simulating com-
plex fluid behaviors in various applications, including aerodynamics, porous media flow, and
multiphase flows.

1.1 Design and Features

The TNL-LBM project emphasizes modularity, efficiency, and flexibility. It extends these
principles to provide a robust platform tailored specifically for LBM simulations.

Key features include:

1. Modular Architecture
The design of TNL-LBM is highly modular, allowing for easy integration and extension
of different LBM models, boundary conditions, and collision operators. This modular-
ity facilitates customization and experimentation with various LBM approaches without
significant changes to the core codebase.[4]

2. High Performance
The project leverages advanced programming techniques, including template metapro-
gramming and hardware-specific optimizations, to ensure efficient utilization of compu-
tational resources. This includes support for General-Purpose computing on Graphics
Processing Units (GPGPU), which accelerates computations by offloading intensive tasks
to GPUs. This focus on performance makes TNL-LBM suitable for running on high-
performance computing (HPC) systems using Message Passing Interface (MPI).[5]

3. Scalability
One of the primary objectives of TNL-LBM is to support large-scale simulations. It is
designed to scale efficiently across multiple processors and compute nodes, enabling re-
searchers to tackle problems that require significant computational power and memory.
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4. Validation on Real-World Problems
Validating real-world problems is important for developing TNL-LBM. By applying it to
diverse and complex fluid dynamics scenarios, TNL-LBM has demonstrated its robustness
and accuracy. These validation efforts assure its dependability over numerous applications
which encourages wider adoption in the fields of science and engineering.

1.2 Applications and Use Cases

TNL-LBM has been employed in numerous scientific and engineering applications, demon-
strating its versatility and effectiveness. Some notable use cases include:

• Environmental Science
– Modeling pollutant dispersion in air and water, contributing to environmental impact

assessments and mitigation strategies.[6]

• Biomedical Engineering
– Simulation of blood flow in arteries and veins, aiding in the study of cardiovascular

diseases and the development of medical devices. [7]

• Energy Sector
– Analysis of air flow through a distributor plate in fluidized bed combustor. [8]

• Aerospace Engineering
– Simulation of airflow over aircraft wings and other aerodynamic surfaces to optimize

design and performance.
– While this was not done specifically with TNL-LBM, LBM in general can be used

for this problem.
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Chapter 2

VTK Format

The Visualization Toolkit (VTK) format is an international standard for scientific data rep-
resentation, supporting the realization of all types of analyses and visualizations. Initially being
part of the library of VTK, developed for the effective treatment of complex data structures usu-
ally encountered in scientific computing. Such power and versatility make this format one of
the most important tools available for researchers and practicing engineers today in areas such
as fluid dynamics, computational physics, and medical imaging. [9] [10]

2.1 Structure and Features

The VTK format supports a variety of data types and structures, which are critical for accu-
rately representing scientific data. This part is focused on VTK "legacy" file format.

Key features include:

1. Data Types
VTK can handle scalar, vector, tensor, texture, and other types of data. This flexibility
allows it to represent all kinds of different physical quantities and properties, enabling the
widest spectrum of science applications.

2. Grid Structures
VTK handles many different types of grids, including structured grids, unstructured grids,
rectilinear grids, and polygonal data. It is highly desirable to have this capability so that
complex geometries and spatial relationships can be modeled with a high degree of accu-
racy in a simulation.

3. Data Representation
There are ASCII and binary representations available for VTK format. On one hand,
ASCII files are human-readable and very useful during debugging. On the other hand,
binary files have huge performance benefits since they are more compact and read/write
operations are much faster.
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4. Meta-Information
VTK files are able to hold metadata about the origin of the data and their processing
history, for instance. This metadata is very important for reproducibility in scientific
results and puts the data into a context.

2.2 Examples of VTK Formats

To provide a comprehensive understanding of the VTK format, the following examples il-
lustrate the structure and content of typical VTK files, accompanied by detailed explanations.

2.2.1 Example 1: ASCII VTK File for Structured Grid

1 # vtk DataFile Version 3.0
2 Structured Grid Example
3 ASCII
4 DATASET STRUCTURED_GRID
5 DIMENSIONS 3 3 3
6 POINTS 27 float
7 0 0 0 1 0 0 2 0 0
8 0 1 0 1 1 0 2 1 0
9 0 2 0 1 2 0 2 2 0

10 0 0 1 1 0 1 2 0 1
11 0 1 1 1 1 1 2 1 1
12 0 2 1 1 2 1 2 2 1
13 0 0 2 1 0 2 2 0 2
14 0 1 2 1 1 2 2 1 2
15 0 2 2 1 2 2 2 2 2

Listing 2.1: ASCII VTK File for Structured Grid

# vtk DataFile Version 3.0 is the VTK file version
DATASET STRUCTURED_GRID specifies that the dataset is a structured grid
DIMENSIONS defines a 3x3x3 grid
POINTS lists the coordinates of 27 points in 3D space and defines the grid’s vertices.

2.2.2 Example 2: Binary VTK File for Unstructured Grid

1 # vtk DataFile Version 3.0
2 Unstructured Grid Example
3 BINARY
4 DATASET UNSTRUCTURED_GRID
5 POINTS 8 float
6 \0\0\0\0\0\0\0\0\0\0\0@\0\0@@\0\0\0@\0\0\0\0\0\0\0\0\0@0\0@\0\0@@@\0\0\0\0\0\0@0\0@
7 CELLS 1 9
8 \1\0\0\0\1\0\0\0\2\0\0\0\3\0\0\0\4\0\0\0\5\0\0\0\6\0\0\0\7\0\0\0
9 CELL_TYPES 1

10 12

Listing 2.2: Binary VTK File for Unstructured Grid
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DATASET UNSTRUCTURED_GRID specifies that the dataset is an unstructured grid
POINTS lists the coordinates of 8 points in binary format
CELLS defines the connectivity of the points
CELL_TYPES specifies the type of cell used, with 12 representing a hexahedron

2.2.3 Example 3: VTK File for PolyData

1 # vtk DataFile Version 3.0
2 PolyData Example
3 ASCII
4 DATASET POLYDATA
5 POINTS 4 float
6 0.0 0.0 0.0
7 1.0 0.0 0.0
8 1.0 1.0 0.0
9 0.0 1.0 0.0

10 POLYGONS 1 5
11 4 0 1 2 3

Listing 2.3: VTK File for PolyData

DATASET POLYDATA indicates that the dataset is polydata
POINTS lists the coordinates of 4 points
POLYGONS defines a single polygon with 4 vertices, specified by their indices (0, 1, 2, 3)
in the points list, with 4 indicating the number of vertices and 5 the number of entries in this
section.

2.3 Applications and Use Cases

The VTK format is integral to numerous scientific and engineering workflows, providing
several key benefits:

1. Interoperability
The VTK format is supported by a wide range of visualization and analysis tools, in-
cluding ParaView[11], VisIt[12], and the VTK library itself. This interoperability allows
researchers to seamlessly integrate VTK-based data into their workflows, facilitating com-
prehensive data analysis and visualization.

2. Visualization
High-quality visualization is very important for interpreting complex simulation results.
The support provided in VTK for a wide range of data types and grid structures allows
details and accuracy in visual representations, which will lead to an understanding of
intricate phenomena.

3. Data Exchange
Because VTK format is standardized, it forms a very good basis for data exchange be-
tween different software tools and research groups. In this way, standardization makes
it that data are consistently interpretable, reducing the possibility of errors during data
transfer.
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4. Performance
The binary format option in VTK enables large performance improvements by reducing
file sizes and faster read/write operations. In reality, this performance boost is extremely
important while dealing with the large datasets usually created by high-resolution simula-
tions.

2.4 Disadvantages

Although the VTK format is pretty beneficial for a lot of reasons, such as flexibility in
scientific visualization tasks and support of a large number of various data types, it has many
drawbacks. These limitations can sometimes affect the effectiveness in certain applications and
workflows.

1. Lack of Random Access
One of the major drawbacks of the VTK format is that it does not support random access
to its data. This means that in many cases, parsing the whole file sequentially may be the
only way to access parts from large datasets. This will slow down the time taken to retrieve
the data, especially for huge data sets when only a small portion of data is required.

2. Absence of Parallel/Distributed Support
The VTK format does not natively provide any parallel or distributed computing envi-
ronment. This can be a huge drawback for many modern scientific computing use cases
when datasets are of a size that they no longer fit into the memory of a single machine.
Additional layers of complexity are required for efficient data handling and processing in
parallel or distributed systems.

3. Complex and Non-Robust Parsing
Parsing of VTK files is complex and often not very robust. Flexibility in the format
and multiple, variously existing data types can easily introduce inconsistencies, leading to
parsing errors. The structure may vary slightly from one VTK file to another, which makes
the development of parsing tools that will ensure precise data extraction over various files
rather difficult.

4. Lack of Formal Specification
Another major disadvantage is that no formal and complete specification documents are
available for the VTK format. An implementation serves as a reference, but no formal
specification is provided with the implementation. This may bring about ambiguities and
variations in how different tools and implementations do interpret the VTK format, thus
affecting compatibility and interoperation.

12



Chapter 3

ADIOS2 Library

The ADIOS2[13] library is a leading, high-performance data management framework de-
veloped to address the challenges of handling large-scale data volumes generated by scientific
simulations. It is specifically designed to enable efficient, flexible operations on a scalable basis
and allows any researcher to conduct effective input/output operations, thereby making it a very
integral part in computational science.

Many high-performance computing applications and tools integrate ADIOS2. For example,
Exascale Computing Project’s application ExaAM [14] relies on ADIOS2 for productive data
movement and storage, ensuring its scalable performance on large-scale simulations. Other
examples include the molecular dynamics simulator LAMMPS[15] and the fusion simulation
code XGC[16] which use ADIOS2 to realize their heavy-duty I/O tasks, thereby demonstrating
its versatility in different scientific areas.

3.1 Core Features and Capabilities

ADIOS2 is built to provide for the diverse and demanding needs of scientific data manage-
ment.

Its core features include:

1. High Performance
ADIOS2 is tuned for high-performance data I/O operations. This kind of functionality is
indispensable when dealing with the huge datasets arising from large-scale simulations.
Advanced techniques are used in reducing I/O overhead and maximizing throughput, such
as asynchronous I/O, collective buffering, data streaming, among others.

2. Scalability
Designed with HPC environments in mind, ADIOS2 scales efficiently across thousands
of nodes and processors. This scalability ensures that it can handle the increasing data
volumes associated with modern scientific simulations.
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3. Flexibility
ADIOS2 supports a wide range of data formats and storage backends, including HDF5, BP
(Binary Packed), and SST (Staging Transport). This flexibility allows it to be integrated
into various workflows and used in conjunction with different storage solutions, from local
disks to parallel file systems.

4. Data Model and APIs
The library provides a rich data model supporting most complicated classic data types,
such as multidimensional arrays and user-defined structures. It comes with easy-to-use
APIs available in many programming languages: C++, Fortran, Python, and C.

5. Fault Tolerance and Resilience
ADIOS2 offers a variety of capabilities for redundancy and error detection to ensure the
integrity and reliability of data in large-scale simulations.

3.2 Integration with Scientific Workflows

ADIOS2 is not just a standalone library but a critical component of various scientific work-
flows. It is designed to seamlessly integrate with simulation codes, data analysis tools, and vi-
sualization platforms. This integration capability is particularly important for multidisciplinary
research projects that require coordinated data management across different stages of the com-
putational pipeline.

The key benefits of integrating ADIOS2 into TNL-LBM include:

1. Efficient Data I/O
The ADIOS2 environment will enable TNL-LBM to accomplish efficient data I/O, al-
lowing saving of simulation time to be spent on tasks other than reading or writing data.
Such high efficiency will make this software an indisputable need when simulating high-
resolution datasets.

2. Scalable Data Management
TNL-LBM making use of ADIOS2 would allow it to scale across several nodes for large-
scale simulations and ensures that the management of data is handled in a manner that
supports the analysis of problems in complex fluid dynamics.

3. Interoperability with VTK
ADIOS2 supports the inclusion of VTK metadata commonly used for visualization. The
capability thus provided enables TNL-LBM to write simulation results in a structure that
can be later on mapped and visualized by the ParaView plugin for ADIOS2 data. This
functionality, therefore, simplifies the post-processing workflow of the results from TNL-
LBM-based research by being ready for analysis and visualization without any further
need for data conversion.
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4. Data Streaming and Staging
ADIOS2’s support for data streaming and in-situ data processing enables real-time anal-
ysis and visualization of simulation data. This feature is particularly valuable for mon-
itoring long-running simulations and making timely adjustments based on intermediate
results.
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Chapter 4

Code structure

In the project, several methods are employed to periodically write simulation data, such
as velocity fields and density distributions, to files using VTK metadata. These methods are
invoked at regular intervals during the simulation to capture the evolving state of the system.

4.1 Old implementation

4.1.1 writeVTK Methods

The project uses 5 main methods for saving different parts of the simulation once in a while.
These are:

• writeVTK_3D
– Saving the entire simulation field

• writeVTK_3Dcut
– Saving 3D cut of the simulation, defined by cut offset and length

• writeVTK_2DcutX
– Saving 2D cut of the simulation on X axis, defined by X coordinate

• writeVTK_2DcutY
– Saving 2D cut of the simulation on Y axis, defined by Y coordinate

• writeVTK_2DcutZ
– Saving 2D cut of the simulation on Z axis, defined by Z coordinate
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4.1.2 Code Examples

Listing 4.1 depicts a code from writeVTK_3D, whose function is to first create the VTK-
Writer class and open the file in append mode, followed by writing metadata describing the
dataset, such as its dimensions, time, cycle and wall coordinates, into the file using vtk method
writeInt or writeFloat.

1 VTKWriter vtk;
2

3 FILE* fp = fopen(filename.c_str(), "w+");
4 vtk.writeHeader(fp);
5 fprintf(fp,"DATASET RECTILINEAR_GRID\n");
6 fprintf(fp,"DIMENSIONS %d %d %d\n", (int)local.x(), (int)local.y(), (int)local.z());
7 fprintf(fp,"X_COORDINATES %d float\n", (int)local.x());
8 for (idx x = offset.x(); x < offset.x() + local.x(); x++)
9 vtk.writeFloat(fp, lat.lbm2physX(x));

10 vtk.writeBuffer(fp);
11

12 fprintf(fp,"Y_COORDINATES %d float\n", (int)local.y());
13 for (idx y = offset.y(); y < offset.y() + local.y(); y++)
14 vtk.writeFloat(fp, lat.lbm2physY(y));
15 vtk.writeBuffer(fp);
16

17 fprintf(fp,"Z_COORDINATES %d float\n", (int)local.z());
18 for (idx z = offset.z(); z < offset.z() + local.z(); z++)
19 vtk.writeFloat(fp, lat.lbm2physZ(z));
20 vtk.writeBuffer(fp);
21

22 fprintf(fp,"FIELD FieldData %d\n",2);
23 fprintf(fp,"TIME %d %d float\n",1,1);
24 vtk.writeFloat(fp, time);
25 vtk.writeBuffer(fp);
26

27 fprintf(fp,"CYCLE %d %d float\n",1,1);
28 vtk.writeFloat(fp, cycle);
29 vtk.writeBuffer(fp);
30

31 fprintf(fp,"POINT_DATA %d\n", (int)(local.x()*local.y()*local.z()));
32

33 fprintf(fp,"SCALARS wall int 1\n");
34 fprintf(fp,"LOOKUP_TABLE default\n");
35 for (idx z = offset.z(); z < offset.z() + local.z(); z++)
36 for (idx y = offset.y(); y < offset.y() + local.y(); y++)
37 for (idx x = offset.x(); x < offset.x() + local.x(); x++)
38 vtk.writeInt(fp, hmap(x,y,z));

Listing 4.1: Metadata Writing
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Listing 4.1 continues with code from Listing 4.2, whose function is to write simulation data
into the file. It is implemented using few nested cycles, which allow the method to go trough
every dimension of either scalar or vector variable. The value of the variable is retrieved using
the outputData function, and is written into the file using vtk method writeFloat. Every
writeVTK method uses some variation of this code and code from Listing 4.1.

1 char idd[500];
2 real value;
3 int dofs;
4 int index=0;
5 while (outputData(*this, index++, 0, idd, offset.x(), offset.y(), offset.z(), value,

dofs)){
6 if (dofs==1){
7 fprintf(fp,"SCALARS %s float 1\n",idd);
8 fprintf(fp,"LOOKUP_TABLE default\n");
9 }

10 else
11 fprintf(fp,"VECTORS %s float\n",idd);
12

13 for (idx z = offset.z(); z < offset.z() + local.z(); z++)
14 for (idx y = offset.y(); y < offset.y() + local.y(); y++)
15 for (idx x = offset.x(); x < offset.x() + local.x(); x++){
16 for (int dof=0;dof<dofs;dof++){
17 outputData(*this, index-1, dof, idd, x, y, z, value, dofs);
18 vtk.writeFloat(fp, value);
19 }
20 }
21 vtk.writeBuffer(fp);
22 }
23 fclose(fp);

Listing 4.2: Data Writing
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Listing 4.3/4: VTKWriter header declares metadata writing method writeHeader and
data writing methods writeInt and writeFloat, the latter of which requires support methods
forceBigEndian and writeBuffer. These data writing methods save single value at a time.

1 #ifndef __VTK_WRITER__
2 #define __VTK_WRITER__
3

4 #include "defs.h"
5

6 struct VTKWriter{
7 bool zip=false;
8 long buffer_len=64*1024*1024;
9 long buffer_pos=0;

10 float *buffer=0;
11

12 void forceBigEndian(unsigned char *bytes);
13 void writeHeader(FILE*fp);
14 void writeInt(FILE*fp, int val);
15 void writeFloat(FILE*fp, float val);
16 void writeBuffer(FILE*fp);
17

18 VTKWriter(){
19 buffer = (float*)calloc(buffer_len , sizeof(float));
20 buffer_pos=0;
21 }
22

23 ~VTKWriter(){
24 if (buffer) free(buffer);
25 }
26 };
27

28 #include "vtk_writer.hpp"
29 #endif

Listing 4.3: VTKWriter header

1 void VTKWriter::writeInt(FILE*fp, int val)
2 {
3 forceBigEndian((unsigned char *) &val);
4 fwrite(&val, sizeof(int), 1, fp);
5 }
6

7 void VTKWriter::writeFloat(FILE*fp, float val){
8 if (!fp) return;
9 forceBigEndian((unsigned char *) &val);

10 if (buffer_pos >=buffer_len){
11 printf("vtk.writeFloat::unexpected pos %ld vs. max %ld\n",buffer_pos ,

buffer_len -1);
12 return;
13 }
14 buffer[buffer_pos] = val;
15 buffer_pos++;
16 if (buffer_pos == buffer_len){
17 writeBuffer(fp);
18 }
19 }

Listing 4.4: VTKWriter data writing methods

19



4.2 New implementation

In the new implementation, the methods responsible for saving data have been renamed
from writeVTK_... to writeADIOS_.... They also use new ADIOSWriter class to save
data, which uses the ADIOS2 library. From the subsection 3.2, the Efficient Data I/O, Scalable
Data Management and Interoperability with VTK features were used. Overall shape of the
dataset field does not change.

4.2.1 MPI

The Message Passing Interface (MPI) [17] used by the TNL-LBM project serves for dis-
tributed data and parallel computations. MPI enables partitioning of the computational domain
among many processors, hence increasing the scalability and performance of applications.

4.2.2 ADIOSWriter class

The ADIOSWriter class exemplifies this distributed data model. It is initialized with an
MPI communicator, allowing coordination among different processes. The constructor sets up
the ADIOS2 I/O system using the provided communicator and configures the output file for
either writing or appending based on the simulation cycle. The class handles global and local
data extents, physical origins, and grid spacing, ensuring proper alignment and mapping of data
across the distributed system.

1 ADIOSWriter(TNL::MPI::Comm communicator , std::string file_name , CoordinatesType
global, CoordinatesType local, CoordinatesType offset, PointType physOrigin ,
real physDl, int cycle) : adios(communicator){

2 bpIO = adios.DeclareIO("bpIO");
3 bpIO.SetEngine("BP4");
4 fileName = file_name + ".bp";
5 if(cycle==0){
6 bpWriter = bpIO.Open(fileName , adios2::Mode::Write);
7 }else{
8 bpWriter = bpIO.Open(fileName , adios2::Mode::Append);
9 }

10 this->global = global;
11 this->local = local;
12 this->offset = offset;
13 this->physOrigin = physOrigin;
14 this->physDl = physDl;
15 bpWriter.BeginStep();
16 }

Listing 4.5: ADIOSWriter Constructor
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Listing 4.6: The destructor finalizes the ADIOS2 writing step and constructs XML metadata
for VTK visualization.

1 ~ADIOSWriter(){
2 const std::string extentG = "0 " + std::to_string(global.z()) + " 0 " + std::

to_string(global.y()) + " 0 " + std::to_string(global.x());
3 const std::string extentL = "0 " + std::to_string(local.z()) + " 0 " + std::

to_string(local.y()) + " 0 " + std::to_string(local.x());
4 const std::string origin = std::to_string(physOrigin.x()) + " " + std::to_string

(physOrigin.y()) + " " + std::to_string(physOrigin.z());
5 const std::string spacing = std::to_string(physDl) + " " + std::to_string(physDl

) + " " + std::to_string(physDl);
6

7 const std::string imageData = R"(
8 <?xml version="1.0"?>
9 <VTKFile type="ImageData" version="0.1" byte_order="LittleEndian">

10 <ImageData WholeExtent=")" + extentG + R"(" Origin=")" + origin + R"("
Spacing=")" + spacing + R"(">

11 <Piece Extent=")" + extentL + R"(">
12 <CellData Scalars="data">)"
13 + DataArrays + R"(
14 </CellData >
15 </Piece>
16 </ImageData >
17 </VTKFile >)";
18

19 bpIO.DefineAttribute <std::string >("vtk.xml", imageData);
20 bpWriter.EndStep();
21 varNames.clear();
22 bpWriter.Close();
23 }

Listing 4.6: ADIOSWriter Destructor

Listing 4.7: The recordVarName method saves the variable names into a vector varNames.
Depending on the dimension (dim) of the variable, it constructs the appropriate XML <DataArray>
element. Lastly, it saves it into a vector DataArrays, which is used in the destructor.

1 template < int D_, typename real, typename idx >
2 void ADIOSWriter <D_, real, idx>::recordVarName(std::string varName, int dim){
3 varNames.push_back(varName);
4 switch(dim){
5 case 0:
6 DataArrays += "<DataArray Name=\"" + varName + "\"> " + varName + " </

DataArray >\n";
7 break;
8 case 1:
9 case 3:

10 DataArrays += "<DataArray Name=\"" + varName + "\"/>\n";
11 break;
12 default:
13 throw std::invalid_argument("Invalid dimension of \"" + varName + "\"("

+ std::to_string(dim) + ").");
14 }
15 }

Listing 4.7: Method for saving variable names
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Listing 4.8/9: The write methods within ADIOSWriter facilitate both scalar and vector
data writes, managing the data distribution across the specified global, local, and offset dimen-
sions, while making sure no variable can be saved twice under the same name. Additionally,
they save the variable name using recordVarName.

1 template <typename T>
2 void ADIOSWriter <D_, real, idx>::write(std::string varName, T val){
3 if(std::find(varNames.begin(), varNames.end(), varName) == varNames.end()){
4 adios2::Variable<T> value = bpIO.DefineVariable <T>(varName);
5

6 bpWriter.Put(value,val);
7 bpWriter.PerformPuts();
8

9 recordVarName(varName, 0);
10 }else{
11 throw std::invalid_argument("Variable \"" + varName + "\" is already defined

.");
12 }
13 }

Listing 4.8: Method for writing scalar data

1 template <typename T>
2 void ADIOSWriter <D_, real, idx>::write(std::string varName, std::vector<T>& val, int

dim){
3 if(std::find(varNames.begin(), varNames.end(), varName) == varNames.end()){
4 adios2::Dims shape({size_t(global.z()), size_t(global.y()), size_t(global.x

())});
5 adios2::Dims start({size_t(offset.z()), size_t(offset.y()), size_t(offset.x

())});
6 adios2::Dims count({size_t(local.z()), size_t(local.y()), size_t(local.x())

});
7 adios2::Variable<T> values = bpIO.DefineVariable <T>(varName, shape, start,

count);
8

9 bpWriter.Put(values,val.data());
10 bpWriter.PerformPuts();
11

12 recordVarName(varName, dim);
13 }else{
14 throw std::invalid_argument("Variable \"" + varName + "\" is already defined

.");
15 }
16 }

Listing 4.9: Method for writing vector data
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4.2.3 writeADIOS methods

Listing 4.10: At the beggining of the method, 2 vectors and a ADIOSWriter class are
initilized, followed by saving of the walls of the simulation.

1 std::vector<int> tempIData;
2 std::vector<float> tempFData;
3 ADIOSWriter <3, float, int> adios(MPI_COMM_WORLD , filename.c_str(), global, local,

offset, lat.physOrigin , lat.physDl, cycle);
4

5 for (idx z = offset.z(); z < offset.z() + local.z(); z++)
6 for (idx y = offset.y(); y < offset.y() + local.y(); y++)
7 for (idx x = offset.x(); x < offset.x() + local.x(); x++)
8 tempIData.push_back(hmap(x,y,z));
9 adios.write<int>("wall",tempIData ,1);

10 tempIData.clear();

Listing 4.10: Initialization in writeADIOS_3D

Listing 4.11: During the data saving, the method first stores data into the temporary vector.
Due to an issue[18] with saving vector variable as single variable, each dimension of vector
variable is saved as separate variable with corresponding suffix.

1 while (outputData(*this, index++, 0, idd, offset.x(), offset.y(), offset.z(), value,
dofs)){

2 std::string IDD(idd);
3 for (int dof=0;dof<dofs;dof++){
4 for (idx z = offset.z(); z < offset.z() + local.z(); z++)
5 for (idx y = offset.y(); y < offset.y() + local.y(); y++)
6 for (idx x = offset.x(); x < offset.x() + local.x(); x++){
7 outputData(*this, index-1, dof, idd, x, y, z, value, dofs);
8 tempFData.push_back(value);
9 }

10 switch(dof){
11 case 0:
12 if(dofs>1){
13 adios.write<float >(IDD + "X",tempFData ,dofs);}
14 else{
15 adios.write<float >(IDD,tempFData ,dofs);
16 }
17 break;
18 case 1:
19 adios.write<float >(IDD + "Y",tempFData ,dofs);
20 break;
21 case 2:
22 adios.write<float >(IDD + "Z",tempFData ,dofs);
23 break;
24 }
25 tempFData.clear();
26 }
27 }
28

29 adios.write<float >("TIME",time);
30 adios.write<int>("CYCLE",cycle);

Listing 4.11: Data writing in writeADIOS_3D
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4.3 Evaluation of the new implementation

The new implementation of the data management system within TNL-LBM has undergone
several critical enhancements aimed at improving readability, efficiency, and writing perfor-
mance. This section evaluates the key improvements made in the recent update.

4.3.1 Code Quality

• Refactoring
– Unused code from the prior implementation was removed, which helped reduce the

overall size of the code. Not only has this reduction in redundant code made the
implementation more readable, but also easier to maintain and debug. The writing
methods have also been overloaded to allow for easier usage.

• Optimization
– The method for saving data has been hugely optimized. While in the old imple-

mentation, data is saved one value at a time, in the new implementation, it saves a
whole vector of values. This change drastically reduces the overhead associated with
frequent I/O operations, improving the performance of the data-saving process.

• Self-Verifying
– A new method to save variable names, recordVarNames, has been introduced,

which, among helping to create metadata, can also be used to check if a variable
is being saved more than once. This feature is most important in complex simula-
tions where several variables are tracked and saved.

• Consolidated Data Storage
– With the new implementation, data are saved into a single file, significantly improv-

ing the visualization process. Previously, storing data in multiple files required the
program to link those files together upon visualization, which many times introduced
undesirable lines between sections. By consolidating all data into one file, this new
approach eliminates the possibility of such visual artifacts, leading to cleaner and
more accurate representations of the simulation results.
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4.3.2 Writing Performance

The performance evaluation of the old and new implementation for saving the whole sim-
ulation field was conducted using two different configurations: one with a single process and
another with four processes, both at resolution 4. The TNL class Timer was used to measure
the time.

1 TNL::Timer timer;
2 timer.start();
3 block.writeVTK_3D(nse.lat, outputData , fname, nse.physTime(), cnt[VTK3D].count);
4 timer.stop();
5 std::cout << "write3D saved in: " << timer.getRealTime() << std::endl;
6 timer.reset();

Listing 4.12: Code for measuring the write time for writeVTK_3D and writeADIOS_3D

• Parameters of the Simulation
All of the following simulations and measurements were done on a school computer
gp1[19] with parameters:
- CPU: 2× Intel Xeon E5-2630 v3(8 cores @ 2.4-3.2 GHz, 20 MiB cache)
- Disk: 1 TB WD Caviar Black

The size of the lattice for both simulations was (X,Y,Z) = (512,128,128). The fields stored
for visualization were lbm_density (scalar variable) and velocity. (vector variable)

• Single Process Performance
For the single process configuration, the time taken to save the simulation field over the
first five steps is presented in Table 4.1. The results show a significant improvement in the
new implementation compared to the old one.

Both implementations resulted in the same file size of 827 MB, indicating that the new
implementation achieves better performance without increasing the storage requirement.

Step # Old New
0 3.8070 2.8500
1 3.7395 2.6761
2 3.7346 2.6858
3 3.7485 2.6696
4 3.7432 2.6786

Table 4.1: Time (in seconds) to save the data using a single process, during first 5 steps, for old and new
implementation
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• Multi-Process Performance
For the configuration with four processes, the time taken to save the simulation field over
the first five steps is shown in Table 4.2. Each process’s time is recorded, highlighting the
parallel performance improvements.

The file size for the old implementation was 822 MB, while the new implementation
resulted in a slightly larger file size of 828 MB. This small increase in file size is more
than compensated for by major efficiency gains in performance.

Old Implementation New Implementation
Step # Proc 0 Proc 1 Proc 2 Proc 3 Proc 0 Proc 1 Proc 2 Proc 3

0 0.7433 0.7544 0.8049 0.8056 0.5505 0.5448 0.5449 0.5499
1 0.8037 0.8042 0.8114 0.8131 0.5372 0.5372 0.5372 0.5375
2 0.7705 0.7990 0.8095 0.8097 0.5441 0.5443 0.5386 0.5445
3 0.8011 0.8016 0.8116 0.8121 0.5341 0.5342 0.5342 0.5344
4 0.7820 0.7840 0.8087 0.8095 0.5347 0.5350 0.5352 0.5352

Table 4.2: Time (in seconds) to save the data using four processes, during first 5 steps, for old and new
implementation and for each process
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Conclusion

The main goal of this bachelor thesis was to implement a new data-saving system for the
TNL-LBM project using the ADIOS2 library and compare it to the current implementation.
This was achieved by first studying the project’s old data management system, refactoring its
code, and replacing it with new methods utilizing ADIOS2.

The first chapter discusses the design and features of the TNL-LBM project. It mentions
topics such as Modular Architecture, High Performance or Validation on Real-World Problems.
The chapter continues with applications of the project in practice, including Environmental
Science, Biomedical Engineering, or Energy Sector.

The second chapter was devoted to the VTK legacy format, currently used by TNL-LBM.
Following a brief introduction, it continues with the structure and features of this format, such as
Grid Structures, Data Representation and Meta-Information. A few examples and applications
of this format are then listed. The chapter finishes with a list of disadvantages.

The third chapter focuses on the ADIOS2 library. After explaining its function, it mentions
core features and capabilities, including High Performance, Flexibility and Fault Tolerance and
Resilience. The chapter then lists the benefits of integration of ADIOS2 into TNl-LBM, cover-
ing Efficient Data I/O, Scalable Data Management, or Interoperability with VTK.

The last chapter presents both old and new code structures while providing few examples. It
then evaluates the new implementation, providing a number of improvements. The chapter ends
by providing measured data on writing speed, coming to the conclusion that in both single and
multiprocess simulations, the new implementation has significantly improved in writing speed
while sacrificing little to no file size.

For future work, further improvements, such as solving the vector variable saving issue, can
be implemented. Additionally, further data collection of reading speeds could be conducted.
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