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Introduction

Parallel algorithms for operations with dense matrices are at the forefront of scientific computing,
allowing fast handling of massive datasets and complex numerical calculations. They are the corner-
stone of various algorithms with applications, ranging from machine learning and data analytics to en-
gineering simulations and theoretical physics. Dense matrices, characterized by their non-sparse nature,
where most of the elements are non-zero, require optimized computational approaches and paralleliza-
tion strategies to utilize the full potential of modern hardware architectures.

The main goal of this thesis is to apply GPU-suitable algorithm optimizations and produce a workable
solution that may be added to the TNL library. The implementation is in CUDA C++, utilizing the
TNL structures and optimizing dense matrix operations, focusing primarily on matrix multiplication and
transposition.

This thesis is structured as follows: Chapter 1 delves into the theory behind GPU programming and
the tools used in this project. Chapter 2 discusses comprehensive optimization techniques, leveraging
a wide range of methods and tools for high-performance computing. Chapter 3 is dedicated to the
implementation, detailing the logic behind the selection and application of optimization techniques for
dense matrix operations. Finally, Chapter 4 concludes with UnitTests and benchmarks measured on a
professional-grade GPUs, followed by a comparison of the implementations against alternative NVIDIA
libraries.
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Chapter 1

Theory

1.1 GPU

The Graphics Processing Unit (GPU) is a specialized processor originally designed to accelerate
graphics rendering and to compute tasks together with the Central Processing Unit (CPU). GPUs and
CPUs are very similar computational engines. However, they are built for different purposes and have
different architectures [3].

The CPU, also known as the brain of the computer, is the main part that handles most of the internal
processing. With just one or a few threads on a single processing unit, CPUs are highly optimized
to operate at high frequencies, making them perfect for general-purpose computing tasks like running
operating systems, programs, and user interfaces.

On the other hand, GPUs are extremely effective for tasks that can be parallelized because they can
execute thousands of basic operations at once. GPUs are especially useful for complicated computations
in domains such as scientific research, machine learning, and simulations because of their capacity for
parallel processing.

Most applications consist of sequential and parallel components, so to maximize performance, sys-
tems are designed with a combination of CPU and GPU [4].

1.1.1 CUDA

To take advantage of the parallel computing capacity of NVIDIA GPUs, NVIDIA introduced Com-
pute Unified Device Architecture (CUDA), a revolutionary computer platform and programming model.
It enables programmers to utilize NVIDIA GPUs using C++ and other high-level programming lan-
guages [4].

CUDA’s architecture is designed around a scalable array of multithreaded Streaming Multiprocessors
(SMs). When a CUDA program executes, it runs in parallel across a large number of threads - each thread
computing one element of a matrix, for instance.

In addition to a software environment, the CUDA toolkit includes additional capabilities, such as
debugging and profiling applications, to assist programmers in creating effective GPU applications.

1.1.2 Thread Hierarchy

Threads are the fundamental unit of execution in parallel computing with CUDA. To improve the
efficiency and control of concurrent processing, CUDA organizes threads into bigger groups. CUDA in-
troduces the concept of warps, which are collections of 32 threads executing concurrently. These threads
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begin their execution simultaneously at the same program address, offering a base for synchronized op-
eration within the GPU’s architecture.

Kernels are CUDA C++ extended functions that execute simultaneously through N different CUDA
threads. They are defined using the __global__ declaration specifier and the number of CUDA threads
that execute that kernel for a given kernel launch is specified using a new <<< ... >>> execution config-
uration syntax [4].

Within a kernel, each executing thread is assigned a distinct ID, accessible through the ThreadIdx
built-in variable. Threads are organized into blocks, which can be indexed in one, two, or three dimen-
sions, offering flexible structuring options for parallel computation. This multi-dimensional indexing
allows threads to be efficiently managed and coordinated.

Threads are further organized into grids, which are composed of blocks. These blocks can be
uniquely identified by the blockIdx variable within a kernel. The CUDA framework requires thread
blocks to operate independently for efficient parallel processing, as it allows blocks to be executed in any
sequence.

This hierarchical organization enables precise control over the execution of parallel tasks, optimizing
the performance and scalability of applications that leverage the power of GPU computing.

Threads within blocks can share data through shared memory and coordinate memory access by syn-
chronizing execution. Synchronization points in the kernel can be specified by calling the __syncthreads()
function, which acts as a barrier at which all threads in the block must wait before any is allowed to pro-
ceed [4, 5].

1.1.3 Synchronization

The synchronization method is provided by the CUDA API and is necessary for coordination thread
execution within a block. When encountered in a kernel, this method blocks all threads at the calling point
until each of them reaches and executes __syncthreads(), ensuring that all threads have completed
the same amount of work at a given point before moving to the next step.

In matrix multiplication, it is important that all threads have loaded the necessary elements from the
input matrices into shared memory and completed their computations before writing back to the result
matrix. Similarly, in matrix transposition, synchronization is used to prevent data hazards when threads
read from and write to shared memory. It is used to ensure that all threads in the block have reached the
same execution point and that data integrity is maintained throughout the computation.

1.1.4 Memory

The CUDA runtime implements functions for memory allocation, deallocation, and data transmission
between the host (CPU) and the device (GPU). Moreover, CUDA provides a number of memory spaces,
each designed to serve a specific function and optimize certain elements of memory access and data
storage.

Typically, cudaMalloc() is used to allocate memory and cudaFree() is used to free it. A method
for transferring data between host and device memory is cudaMemcpy(). During execution, CUDA
threads have access to data from several memory regions:

Global memory is the most extensive type of memory available to all threads and is accessible across
all blocks. It is located off-chip, which means that it has high latency and provides substantial space for
data storage. This type of memory is typically used to store large datasets that do not fit faster types of
memory.

Shared memory is significantly faster than global memory as it is located on the chip. This type of
memory offers much lower latency and higher bandwidth and is only visible to threads within the same
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block. It is commonly used as a user-managed cache, allowing threads within a block to quickly access
and reuse data. Shared memory is declared in kernel code using the __shared__ specifier.

Registers represent the fastest type of memory available in CUDA. They are also on the chip and
private to each thread, making them ideal for frequently accessed data or variables requiring the fastest
access speeds, such as loop counters or temporary variables in calculations.

Local memory serves as storage for automatic variables that do not fit into registers. Though physi-
cally situated in global memory, it behaves as a private space for individual threads. This type of memory
is typically used to store array indices or complex data structures that cannot be efficiently stored in reg-
isters.

This strategic use of memory types helps optimize performance in CUDA applications by aligning
memory usage with the needs of each specific computation task.

1.1.5 Tensor Cores

Tensor Cores are specialized programmable processing units within GPUs designed to accelerate
deep learning and other intensive arithmetic computations. With only minimal space and power require-
ments, Tensor Cores and the data channels that go with them are specially designed to boost floating-point
calculation throughput.

Each Tensor Core provides a 4 × 4 × 4 matrix processing array that can execute the operation D = A
× B + C , where A, B, C, and D are 4 × 4 matrices. This design allows multiple Tensor Cores to be used
simultaneously within a single GPU warp, thereby significantly increasing the computation capacity.

A full warp of execution uses several Tensor Cores concurrently throughout program execution.
Tensor cores can process larger 16 × 16 × 16 matrix operations due to threads within a warp. These
operations are made available by CUDA through the CUDA C++Warp-level Matrix Multiply Accumu-
late (WMMA) API as warp-level matrix operations. In order to effectively use Tensor Cores in CUDA
C++ programs, these C++ interfaces offer specialized matrix load, matrix multiply and accumulate, and
matrix store operations [7].

1.1.6 HIP

Heterogeneous-compute Interface for Portability (HIP) is a programming language developed by
AMD to provide a portable and efficient computing interface for developing applications that may operate
on a variety of hardware. It provides a C++ runtime API and a kernel language, enabling developers to
design high-performance applications that can operate on both AMD and NVIDIA GPUs.

The primary purpose of HIP is to make it easier to construct applications on a variety of platforms
by offering a standard programming model. This allows developers to easily convert CUDA code to
portable C++ code that can operate on a variety of GPU architectures.

One of the important characteristics of HIP is its ability to automatically convert CUDA code to HIP
code, allowing developers to retain a single codebase [6].

1.2 Dense Matrices

A dense matrix is a matrix with mostly non-zero elements. Such matrices are typically represented
and stored in two-dimensional arrays, which allows direct access to any element ai j given its row i and
column j [1]. This characteristic makes them suitable for a wide range of mathematical and computa-
tional operations, including the algebraic operations and transformations discussed in this section.
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Dense matrices are stored in row major or column major layouts. In row major order, the elements of
the matrix are stored sequentially row by row. This means that the elements in a single row are located
next to each other in memory. For example, in a 3 × 3 matrix, the storage order in the memory would be

a11 a12 a13

a21 a22 a23

a31 a32 a33


 → a11 a12 a13 a21 a22 a23 a31 a32 a33

( )
In contrast, column major order stores matrix elements sequentially by columns. Thus, elements in a

single column are contiguous in memory. Using the same 3 × 3 matrix example, the storage order would
be

a11 a12 a13

a21 a22 a23

a31 a32 a33


 → a11 a21 a31 a12 a22 a32 a13 a23 a33

( )
Furthermore, the storage layout directly impacts the performance when interfacing with software

libraries. For example, row-major order is the default storage used by programming languages such
as C and C++, whereas column-major order is used by CUDA, Fortran, and libraries optimized for
scientific computing. Dense matrix operations can often be parallelized to take advantage of multi-
core and multi-threaded computing environments. The storage order should be considered to minimize
memory contention and maximize the performance gains from parallel execution.

1.2.1 Dense Matrix Multiplication

Let A be an m×n matrix and B be an n× p matrix, where A ∈ Rm×n and B ∈ Rn×p. Matrix multipli-
cation is an operation in which the matrix A is multiplied by the matrix B, resulting in a matrix m× p C,
where C ∈ Rm×p. Each element ci j of C is the sum of the products of the corresponding elements from
the i-th row of matrix A and the j-th column of matrix B. Mathematically, the operation is defined as

ci j = ai1b1 j+ai2b2 j+ · · ·+ain+bn j =

n∑
k=1

aikbk j, (1.1)

where 1 ≤ i ≤ m and 1 ≤ j ≤ p. The element ci j is computed by summing the products of the corre-
sponding elements from the row of A and the column of B.

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn




A

b11 b12 · · · b1p

b21 b22 · · · b2p
...

...
. . .

...

bn1 bn2 · · · bnp




B

c11 c12 · · · c1p

c21 c22 · · · c2p
...

...
. . .

...

cm1 cm2 · · · cmp




C

× =

In the visualization above, matrices A, B, and C represent the input and output of the matrix multipli-
cation operation. The highlighted cells illustrate the calculation of element c11 in matrix C, specifically
showing how c11 is the sum of products of the elements from the first row of A and the first column of B.
Similarly, each element of C is calculated using the corresponding row of A and column of B.
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In the domain of linear algebra, dense matrix multiplication is a fundamental operation with wide-
ranging applications in computer science, engineering, and physics. Performance on a broad spectrum of
computer activities is directly affected by the efficiency of this process. The ability to split and execute
matrix multiplication operations concurrently is a feature that parallel computing systems take advantage
of. Computation time can be significantly decreased by dividing the work among several processors,
either in a distributed computing environment or on a single computer with multi-threading. In the
upcoming sections, we will explore various optimization strategies and their implementations in parallel
computing environments.

1.2.2 Dense Matrix Transposition

Let A be an m× n matrix where A ∈ Rm×n. Matrix transposition is an operation that flips matrix A
over its diagonal, resulting in a transpose matrix AT which is an n×m matrix, where AT ∈ Rn×m. The
element (AT )i j of the transposed matrix is equal to the element a ji of the original matrix, i.e., the rows
and columns are swapped. The operation is mathematically defined as

(AT )i j = a ji, (1.2)

where 1 ≤ i ≤ n and 1 ≤ j ≤ m. This defines that each element ci j in the transpose matrix AT is derived
from the element a ji in the original matrix A.

Consider the transposition of a 4×2 matrix A:

A =


a11 a12
a21 a22
a31 a32
a41 a42

 → AT =

[
a11 a21 a31 a41
a12 a22 a32 a42

]
.

The visual diagram above illustrates the transposition in which each element ai j of matrix A is repo-
sitioned to the corresponding location a ji in AT .

Although transposing a matrix is theoretically simple, the computational consequences can differ
based on the matrix’s size and the system architecture. It is possible to parallelize the transposition of a
matrix so that several processing elements can carry out the computation concurrently. We will explore
matrix transposition optimization strategies inside a parallel computing environment in the sections that
follow.

1.2.2.1 Transposition Methods

The introduction of GPU computing has made the creation of effective transposing matrix algorithms
on these parallel platforms necessary. There are two primary transposition methods: out-of-place and
in-place.

Out-of-place transposition involves using additional memory to hold the transposed matrix. This
method can achieve high performance by exploiting the substantial memory bandwidth of GPUs. How-
ever, it comes at the cost of doubling the memory requirement, which can be restrictive given the limited
on-board memory of GPUs.

In contrast, in-place transposition operates directly on the original matrix without using additional
memory. This method is preferable because GPUs have limited memory. In-place transposition methods
are categorized into two primary types: those that handle square matrices and those that handle non-
square matrices.
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For square matrices, in-place transposition can be implemented relatively straightforwardly by swap-
ping elements across the diagonal. This technique allows for efficient memory usage and can leverage
the parallel processing capabilities of GPUs to achieve high performance.

However, for non-square matrices, in-place transposition is more challenging because swapping el-
ements across the diagonal leads to out-of-bounds memory accesses. One approach is to reduce the
non-square matrix into the largest possible square submatrix within the original. This allows for efficient
transposition using GPU parallelism within the square submatrix. After the transposition, the matrix is
padded back to its original non-square dimensions. This reduction can be achieved through blocking
or tiling techniques that allow the non-square matrix to be divided into smaller square tiles that can be
transposed individually.

1.3 TNL

Teplate Numerical Library (TNL) is an open-source library that offers a collection of building blocks
that facilitate the development of efficient numerical solvers and High-performance computing (HPC)
algorithms. It supports multicore CPUs, GPUs, and distributed systems with a unified interface for
modern hardware architectures [11].

1.3.1 Lambda Functions

Programming for GPUs often involves writing kernels. TNL offers skeletons or patterns of such
algorithms and combines them with user-defined lambda functions. This approach simplifies GPU pro-
gramming and provides several advantages.

• Implementing lambda functions is easier compared to writing GPU kernels.

• The implemented code works on both CPU and GPU, allowing developers to write a single code-
base for both hardware architectures.

• Debugging can be done on the CPU first, with minimal or no changes required to run it on the
GPU.

Managing distinct memory architectures in high-performance computing requires special attention
to address spaces. TNL simplifies this by offering a unified interface that abstracts the complexities of
data transfer between CPU and GPU memory. These devices are defined as follows

1 TNL::Devices::Host

2 TNL::Devices::Cuda

3 TNL::Devices::Hip

When using TNL::Devices::Host, the computation occurs on the CPU. This process can be se-
quential or parallel, often utilizing multiple CPU threads through OpenMP for enhanced performance.
For computations on NVIDIA GPUs, the TNL::Devices::Cuda is employed. This device uses the
__cuda_callable__ annotation to compile the lambda function such that it is executable on both the
host and the CUDA device. This dual compatibility ensures that the same codebase can efficiently op-
erate across different platforms. Similarly, the TNL::Devices::Hip targets AMD GPUs using HIP
technology, which mirrors NVIDIA’s CUDA in allowing cross-platform code functionality.

TNL automatically handles the differences in memory allocation and access between these address
spaces, minimizing data transfer latency through efficient use of the PCI-Express bus. Data structures
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also provide views to encapsulate references, facilitating efficient memory access across devices. By
leveraging these abstractions, developers can focus on writing high-performance code without worrying
about device-specific memory intricacies [11].

1.3.2 Data Structures

1.3.2.1 Arrays and Vectors

An array in TNL is a templated class defined in the TNL::Containers namespace with template pa-
rameters:

• Value: The type of data stored in the array.

• Device: The device where the array is allocated.

• Index: The type used for indexing of the array elements.

• Allocator: The type of allocator used for the allocation and deallocation of memory used by the
array.

TNL defines three types of arrays: common arrays with dynamic allocation, static arrays allocated
on the stack, and distributed arrays with dynamic allocation. They are unable to share data with each
other or data assigned elsewhere. This can be accomplished using the ArrayView structure, which has
comparable semantics as Array but does not manage data allocation and deallocation. Array views are
useful for encapsulating data allocated elsewhere and dividing huge arrays into sub-arrays. The technique
of encapsulating external data in a view is known as binding.

Dynamic vectors in TNL are templated classes defined in the TNL::Containers namespace. They
have three template parameters:

• Real: The type of data stored in the vector.

• Device: The device where the vector is allocated.

• Index: The type used for indexing of the vector elements.

• Allocator: The type of the allocator used for the allocation and deallocation of memory used by
the vector.

They provide basic linear algebra operations with a focus on Blas level 1 procedures. TNL is in-
tended to be simple to implement, and in some situations faster than Blas or CuBlas implementations.
Vectors, unlike arrays, require the Real type to be numeric or a type with provided fundamental alge-
braic operations. The type of algebraic operations necessary depends on the vector operations that the
user will invoke. Vectors are derived from arrays and hence inherit all of the array’s methods.

1.3.2.2 Dense Matrices

Dense matrix (TNL::Matrices::DenseMatrix) is a templated class using five template parameters:

• Real: The type of matrix elements.

• Device: The device where the matrix is allocated.

• Index: The type to be used for the indexing of the matrix elements.
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• ElementsOrganization: The organization of the elements of the matrix in memory.

• RealAllocator: The type of allocator used for the allocation and deallocation of memory used by
the matrix.

This class exposes some public methods that enable the reading, editing, and inspection of matrix
elements. This functionality is important in computational environments where matrices may reside
across different memory spaces.

Accessing elements in DenseMatrix is facilitated through several methods and operator overloads,
each tailored for specific use cases

• getElement and setElement: These methods provide a safe way to access and modify elements
of a matrix, regardless of where the matrix data is stored. For example, if a matrix is stored on a
GPU, these methods ensure that the element is correctly accessed or modified, even when called
from a CPU. This is achieved by handling necessary data transfers between the CPU and GPU,
ensuring consistency and correctness. The getElement(row, column) method returns a copy
of the matrix element at the specified indices, preventing any modification of the actual data in the
matrix. In contrast, the setElement(row, column, value) method modifies the element at
the specified indices directly within the matrix.

• Operators () and []: These operators are overloaded to provide more intuitive and direct access
to matrix elements. The () operator allows users to access or modify elements directly using row
and column indices, such as in matrix(row, column). This direct access is efficient but must
be used within the correct execution context (i.e., CPU code for CPU matrices and GPU kernels
for GPU matrices) to avoid errors. Unlike getElement and setElement, which manage cross-
device execution internally, these operators do not handle such transitions and are meant for use in
environments where the execution context is known and consistent.

To facilitate the management of matrix structure, DenseMatrix offers methods like getRows and
getColumns, which provide direct access to the matrix’s dimensional properties. These methods are
essential for algorithms that need to adapt to the matrix size dynamically or when initializing structures
based on matrix dimensions.

The functionality of DenseMatrix is further enhanced by the provision of views, which allow for
controlled manipulation and access:

• getView: This method returns a modifiable view of the matrix, enabling users to perform updates
or manipulations on the matrix data while preserving the underlying data structure’s integrity. This
is particularly useful for operations that require repeated modifications to matrix elements.

• getConstView: In contrast, the getConstView method provides a read-only view of the matrix,
ensuring data consistency and protecting the data against unintended modifications. This method
is crucial for operations that require data integrity, such as during multi-threaded or distributed
computations where data race conditions might otherwise lead to data corruption.

1.3.3 Norms

1.3.3.1 L2 Norm

The L2 norm, also known as the Euclidean norm, computes the Euclidean distance from the origin
to a point in space, returning a positive scalar of a vector. This norm is defined as

L2Norm =
√

a2
1+a2

2+a2
3, (1.3)
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where it represents the square root of the sum of squared vector components [12].
The implementation of the L2 norm within TNL is defined as follows:

1 auto l2Norm(const ET1& a) {

2 using TNL::sqrt;

3 return sqrt(sum(sqr(a)));

4 }

1.3.3.2 Max Norm

Contrastingly, the Max Norm, or also called the infinity norm, is determined by defining the maxi-
mum absolute value among the vector’s components. This norm is mathematically expressed as

MaxNorm =max(|a1|, |a2|, |a3|), (1.4)

where the maximal component’s magnitude is represented without considering its direction.
The Max Norm’s implementation within TNL is

1 auto maxNorm(const ET1& a) {

2 return max(abs(a));

3 }
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Chapter 2

Optimization Techniques

This chapter is dedicated to dissecting a range of optimization techniques that have been proposed in
various articles to enhance the performance and efficiency of matrix multiplication and transposition on
GPU architectures.

2.1 Global Memory Coalescing

Memory access patterns in CUDA kernels depend on the arrangement of threads. The positioning
of threads within a block and blocks within a grid is a determining factor in how effectively a kernel
accesses global memory.

Coalesced memory access occurs when threads of a single warp access consecutive memory loca-
tions. This efficient pattern allows the GPU to consolidate these requests into a fewer number of memory
transactions, maximizing memory bandwidth utilization.

In contrast, non-coalesced memory access happens when threads in the same warp access non-
sequential memory locations. This results in multiple, isolated memory transactions, leading to increased
latency and decreased bandwidth efficiency, which can severely impact performance.

Typically, in matrix multiplication, threads are indexed in a CUDA block in a way that each thread
is responsible for computing one element of the result matrix. The thread indices threadIdx.x,
threadIdx.ywithin the block and the block indices blockIdx.x, blockIdx.ywithin the grid uniquely
determine the position of an element in the output matrix.

In the naive implementation from the article [13], two threads in the same block, with Thread IDs
(0, 0) and (0, 1), would load the same column of the second matrix but different rows of the first one.
Specifically, Thread (0,0) accesses A[0][0] and B[0][0], while Thread (0,1) accesses A[0][1] and
B[0][0]. This access pattern leads to non-coalesced memory accesses, as threads of the same warp
access memory that is not sequential, causing multiple memory transactions where fewer could suffice
[13].

1 // Pseudocode of the Naive Kernel to demonstrate the memory access pattern

2 __global__ void naiveKernel(float *A, float *B, float *C, int N) {

3 const int row = blockIdx.y * blockDim.y + threadIdx.y;

4 const int col = blockIdx.x * blockDim.x + threadIdx.x;

5

6 if (row < N && col < N) {

7 float value = 0.0;

8 for (int k = 0; k < N; ++k) {

9 value += A[row * N + k] * B[k * N + col];
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10 }

11 C[row * N + col] = value;

12 }

13 }

The thread configuration can be modified so that threads within the same warp access consecutive
memory addresses, thus reducing the required memory transactions and increasing the bandwidth uti-
lization [13].

1 // Pseudocode of the Optimized kernel with improved memory coalescing

2 __global__ void optimizedKernel(float *A, float *B, float *C, int N) {

3 const int row = blockIdx.x * blockDim.x + (threadIdx.x / blockDim.y);

4 const int col = blockIdx.y * blockDim.y + (threadIdx.x % blockDim.y);

5

6 if (row < N && col < N) {

7 float value = 0.0;

8 for (int k = 0; k < N; k++) {

9 value += A[row * N + k] * B[k * N + col];

10 }

11 C[row * N + col] = value;

12 }

13 }

In this optimized version, the thread indices are recalculated to ensure that Thread ID (0,0) accesses
A[0][0] and B[0][0], and Thread (0,1) accesses A[0][1] and B[1][0].

By accessing consecutive elements of matrix A in terms of the row index and matrix B in terms of the
column index, the memory transactions are significantly reduced. The optimized kernel achieves better
memory coalescing, resulting in improved performance.

2.2 Shared Memory Cache-Blocking

When multiplying two matrices, parts of them are usually loaded from global memory into shared
memory. This section highlights the rationale behind using 1D and 2D shared memory arrays in CUDA
specifically for linear algebra operations.

Linear data structures like vector addition use 1D arrays where element-wise computations are done.
They are simple to implement and most effective for linear data partitioning as well as sequential access
by threads within a block.

The following code snippet demonstrates a basic vector addition (C = A + B) using shared memory
sData.

1 __global__ void vectorAdd(const float* A, const float* B, float* C, int numElements) {

2 extern __shared__ float sData[]; // Shared memory for vector A

3 int i = blockDim.x * blockIdx.x + threadIdx.x;

4 if (i < numElements) {

5 sData[threadIdx.x] = A[i]; // Load A[i] into shared memory

6 __syncthreads(); // Ensure all threads have loaded their elements

7 C[i] = sData[threadIdx.x] + B[i]; // Perform addition using A from shared memory

8 }

9 }
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This example leverages shared memory for fast, repeated access to elements of vector A, reducing
the number of global memory accesses and thereby enhancing the kernel’s performance. The synchro-
nization barrier ensures that all threads in the block have loaded their data into shared memory before
proceeding to computation.

Each thread loads one element from vector A into shared memory. After synchronizing the threads
within the block to ensure that all elements are loaded, each thread computes the sum of its corresponding
elements in A and B, then writes the result to vector C. This method leverages fast access to data stored
in shared memory, reducing global memory accesses.

2D arrays, on the other hand, are ideal for more complex data structures such as those involving
matrices. This allows for more natural access patterns in two dimensions, which is important when
loading elements in operations like matrix multiplication and transposition.

In the shared memory cache-blocking technique, data chunks are loaded from global memory into
shared memory for processing. This reduces global memory accesses, leveraging shared memory’s high
speed to perform more operations on cached data before fetching new data.

Below is an example of a tiled matrix multiplication.

1 // Shared Memory Tiled Matrix Multiplication

2 __global__ void matrixMulShared(float *A, float *B, float *C, int N) {

3 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

4 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

5

6 int row = blockIdx.y * BLOCK_SIZE + threadIdx.y;

7 int col = blockIdx.x * BLOCK_SIZE + threadIdx.x;

8 float tmp = 0.0;

9 for (int bkIdx = 0; bkIdx < N; bkIdx += BLOCK_SIZE) {

10 As[threadIdx.y][threadIdx.x] = A[row * N + bkIdx + threadIdx.x];

11 Bs[threadIdx.y][threadIdx.x] = B[(bkIdx + threadIdx.y) * N + col];

12 __syncthreads();

13

14 for (int k = 0; k < BLOCK_SIZE; k++) {

15 tmp += As[threadIdx.y][k] * Bs[k][threadIdx.x];

16 }

17 __syncthreads();

18 }

19 if (row < N && col < N) {

20 C[row * N + col] = tmp;

21 }

22 }

In this approach, shared memory arrays As and Bs are strategically used to load tiles of matrices A
and B to minimize global memory accesses. Each thread block collaboratively computes a portion of the
output matrix C, maximizing data reuse in shared memory. This minimization of memory traffic between
global and shared memory significantly boosts the performance of the matrix multiplication.

This effective utilization of shared memory for caching data demonstrates a significant reduction in
latency and an increase in throughput for matrix computations in CUDA [13].

2.3 Padding in Shared Memory Arrays

Padding is a strategic modification applied to data structures in GPU programming to enhance mem-
ory access efficiency and prevent performance bottlenecks caused by bank conflicts. This section ex-
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plores the use of padding in shared memory arrays, its rationale, and its benefits.
In CUDA programming, shared memory is organized into multiple memory banks. During paral-

lel execution, multiple threads may attempt to access data from the same memory bank simultaneously.
Since each memory bank can only service one access at a time, simultaneous requests lead to what is
known as a bank conflict. This conflict forces accesses to be serialized, thereby degrading the perfor-
mance by eliminating the benefits of parallel execution.

To mitigate bank conflicts, padding is introduced in the memory allocation of shared arrays. Padding
involves adding an extra element to the dimensions of shared memory arrays, typically in scenarios where
data structures are accessed by multiple threads. For example, in the context of matrix multiplication
kernels, consider the shared memory allocation for matrix tiles:

1 // Two-dimensional shared memory arrays with added padding

2 __shared__ float tileA[tileDim][tileDim + 1];

3 __shared__ float tileB[tileDim][tileDim + 1];

The additional element in the second dimension tileDim+1 ensures that each row of the tile is offset
in memory. This offset prevents threads of a warp from accessing elements that fall into the same memory
bank, thereby avoiding bank conflicts.

The main advantage of implementing padding in shared memory arrays is the significant reduction
in bank conflicts, which leads to:

• Increased throughput of memory operations due to fewer delays caused by serialized accesses.

• Enhanced overall computational efficiency, particularly in kernels that heavily rely on shared mem-
ory, such as those used in matrix multiplication.

• Improved execution speed and smoother performance in applications that are intensive in memory
bandwidth.

In summary, padding is a critical optimization technique in GPU programming, especially for appli-
cations that require high levels of parallelism and make extensive use of shared memory.

2.4 Loop Unrolling

Loop Unrolling is an optimization technique used to enhance performance by reducing the number
of conditions. In CUDA, this can be beneficial due to the parallel nature of the computation. The syntax
#pragma unroll explicitly instructs the compiler to unroll loops, which can lead to significant speed
improvements in certain situations. It can be used in the following ways.

• #pragma unroll: Completely unrolls the loop, should be used when the loop count is fixed and
small.

• #pragma unroll N: Unrolls the loop N times, where N is a positive integer.

• #pragma unroll 1: Prevents unrolling of the loop.

In the following example, the #pragma unroll(4) directive unrolls the loop body four times to
reduce loop overhead and optimize performance.
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1 // Using pragma unroll 4 for optimization

2 #pragma unroll 4

3 for (int i = 0; i < 4; ++i) {

4 C[idx * 4 + i] = A[idx * 4 + i] + B[idx * 4 + i];

5 }

In this example, #pragma unroll(4) results in.

i = 0;

if (i > N - 4) goto remainder;

for (; i < N - 4; i += 4) {

C[i] = A[i] + B[i];

C[i+1] = A[i+1] + B[i+1];

C[i+2] = A[i+2] + B[i+2];

C[i+3] = A[i+3] + B[i+3];

}

if (i < N) {

remainder:

for (; i < N; i++) {

C[i] = A[i] + B[i];

}

}

By unrolling the loop, the compiler reduces the number of iterations and loop overhead. This in-
creases computational efficiency for vector addition, as larger chunks of data are processed in each loop
iteration.

2.5 Blocktiling and Warptiling

The concept of tiling in CUDA programming refers to the practice of partitioning data and compu-
tation into smaller chunks or tiles that can be processed more efficiently by the GPU. This technique is
widely used to optimize memory usage and computational performance, especially for algorithms that
operate on large datasets.

Blocktiling organizes computations into blocks, each executed independently on a stream multipro-
cessor (SM) within the GPU. The blocks are the fundamental units of computation, and by assigning
each block to an SM, different blocks can process data concurrently. This model maximizes the parallel
execution capabilities of the GPU.

In the matrix multiplication, this approach involves storing sub-matrix tiles in shared memory, which
significantly reduces the demand for global memory accesses. Each computational block processes its
assigned tile independently, which allows multiple blocks to execute in parallel across various SMs. This
setup not only minimizes global memory access but also enhances computational efficiency by enabling
the reuse of data loaded into shared memory by the threads within each block.

Warptiling optimizes computations at the warp level. By structuring the computations to align with
warp size, warptiling reduces shared memory conflicts and enhances register usage. The optimized kernel
below demonstrates this concept.

1 __global__ void MatrixMulWarp(float *A, float *B, float *C, int N) {

2 __shared__ float As[WARP_SIZE][WARP_SIZE];

3 __shared__ float Bs[WARP_SIZE][WARP_SIZE];
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4

5 int warpRow = threadIdx.y, warpCol = threadIdx.x;

6

7 As[warpRow][warpCol] = A[warpRow * WARP_SIZE];

8 Bs[warpRow][warpCol] = B[warpCol * WARP_SIZE];

9 __syncthreads();

10

11 float CValue = 0;

12 for (int k = 0; k < WARP_SIZE; ++k) {

13 CValue += As[warpRow][k] * Bs[k][warpCol];

14 }

15 C[warpRow] = CValue;

16 }

This kernel focuses on data reuse within the warp and minimizes synchronization overhead by struc-
turing computations to align with warp execution. Each thread within a warp loads a single element
of matrices A and B into the shared memory arrays As and Bs, respectively. The threads use their
threadIdx.x and threadIdx.y to determine their column and row positions in the warp. After syn-
chronizing the threads with __syncthreads(), each thread computes a partial sum of the dot product
for its respective element in the resulting matrix C, iterating over the shared warp-size tiles.

Combining blocktiling and warptiling allows CUDA developers to harness GPU parallelism at mul-
tiple hierarchical levels. This ensures efficient allocation and usage of GPU resources, achieving high
performance in computationally intensive tasks like matrix multiplication, approaching near-cuBLAS
performance levels [13].

2.6 Register Blocking

Register Blocking is an optimization technique that utilizes the GPU’s registers, the fastest accessi-
ble form of memory available to threads. By storing frequently accessed data directly in registers during
computation, this method minimizes memory latency and maximizes computational throughput. Regis-
ters provide faster access than shared memory, allowing for faster computations and reduced reliance on
slower memory hierarchies.

The article [14] describes an improved matrix multiplication algorithm for Fermi GPUs that employs
Register Blocking. This algorithm intricately divides the computation across a grid of thread blocks
(TBs), each dedicated to processing a 64 × 64 block of the output matrix C. This structured division is
specifically designed to match the architecture of the Fermi GPU, allowing for an efficient distribution
of computational tasks.

Within each thread block, the setup involves 16 × 16 threads, which collectively handle the entire 64
× 64 block. This configuration is critical as it ensures that each thread block is large enough to perform
substantial computation but not so large as to cause excessive data management overhead or resource
contention. Each thread computes elements within a 16 × 16 sub-block of the larger matrix, effectively
utilizing the Fermi GPU’s registers by limiting the number of elements each thread needs to handle
simultaneously.

To facilitate this computation, the algorithm uses shared memory by first loading 64 × 16 elements
of matrix A and 16 × 64 elements of matrix B into it. This use of shared memory is strategic—it serves
as a staging area that reduces the frequency and volume of slower global memory accesses. Once in
shared memory, subsets of this data—specifically, four elements from matrix A and four from matrix B
are loaded into the registers of each thread.
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By having each thread load a total of eight elements into registers, the algorithm minimizes the
need for memory accesses during the core phase of matrix multiplication, which involves numerous
operations. This efficient register utilization not only speeds up individual computations, but also signifi-
cantly enhances overall kernel performance by reducing the overhead associated with memory accesses.
Moreover, the organization of data loading and computation allows for coalesced writes back to global
memory, which are optimized for memory bandwidth and reduce the overall execution time of the kernel
[14].

2.7 Tensor Cores Utilization

Tensor Cores are programmed using the CUDA WMMA API, which allows for the efficient execution
of mixed-precision GEMM (General Matrix to Matrix Multiplication) operations. Below is an example
that demonstrates the use of WMMA for performing a simple matrix multiplication using Tensor Cores.

1 #include <mma.h>

2 using namespace nvcuda;

3

4 __global__ void wmma_example(half *a, half *b, float *c, int M, int N, int K) {

5 // Define the fragments

6 wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::col_major> a_frag;

7 wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::col_major> b_frag;

8 wmma::fragment<wmma::accumulator, 16, 16, 16, float> c_frag;

9

10 // Initialize the output to zero

11 wmma::fill_fragment(c_frag, 0.0f);

12

13 // Load the inputs

14 wmma::load_matrix_sync(a_frag, a, M);

15 wmma::load_matrix_sync(b_frag, b, K);

16

17 // Perform the matrix multiplication

18 wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);

19

20 // Store the output

21 wmma::store_matrix_sync(c, c_frag, M, wmma::mem_col_major);

22 }

This kernel performs the matrix multiplication of two input matrices A and B, both of size 16 × 16,
using Tensor Cores and stores the result in matrix C. Each element of matrices A and B is a half-precision
floating-point number (half), while the elements of matrix C are single-precision floating-point numbers
(float).

The WMMA API is designed to work with fragments of the matrices. A fragment is a data struc-
ture that holds a portion of a matrix tile that Tensor Cores can compute on. For the matrices in this
case, we utilize 16 × 16 segments. The functions wmma::load_matrix_sync, wmma::mma_sync,
and wmma::store_matrix_sync allow you to load data into fragments, execute the matrix multiply-
accumulate operation, and store the result back into memory.

Tensor Cores significantly speed up matrix computations, but because they utilise half-precision
inputs, they present certain issues, especially with precision. Significant rounding mistakes may result
from this, particularly in situations where high numerical accuracy is required. However, methods such
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as mixed precision programming, which combines half- and full precisions to balance accuracy and
performance, and precision refinement can help to reduce these inaccuracies [8].

2.8 Autotuning

Autotuning is a technique that optimizes block sizes and grid dimensions to maximize computational
efficiency and resource utilization. The size and dimension of blocks per grid and threads per block are
important factors in kernel’s performance.

While selecting the parameters for the execution configuration should be done simultaneously, there
are some general guidelines that can be applied to each parameter separately. The main goal is to keep
the entire GPU occupied while selecting the first execution configuration parameter, which is the number
of blocks per grid, or grid size. For each multiprocessor to have at least one block to execute, the number
of blocks in a grid must exceed the number of multiprocessors.

Additionally, each multiprocessor should have numerous active blocks so that the hardware can be
kept occupied by blocks that aren’t waiting for a synchronization.

To help with coalescing and prevent wasting computation on under-populated warps, the number of
threads per block should be a multiple of the warp size. Only when there are several concurrent blocks
per multiprocessor should a minimum of 64 threads per block be employed. A decent place to start
when experimenting with varied block sizes is between 128 and 256 threads per block. If latency is an
issue for a multiprocessor, use multiple smaller thread blocks instead of one larger one. Kernels that call
__syncthreads() regularly will especially benefit from this.[5].
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Chapter 3

Implementation

This chapter is dedicated to the implementation of kernels that utilize all the techniques and strategies
listed in the previous chapter. The goal is to implement optimizations for both matrix multiplication and
transposition in the TNL project. The following kernels have been developed and optimized.

Dense Matrix Multiplication

• Kernel 1.1: Implemented in TNL the authors’s involvement in this project.

• Kernel 1.2: Optimizes linear thread index calculations for efficient shared memory access.

• Kernel 1.3: Utilizes 2D shared memory arrays to improve memory access patterns during matrix
multiplication.

• Kernel 1.4: Implements a tile-based approach with two-dimensional shared memory arrays for
matrix multiplication.

• Kernel 1.5: Identical with Kernel 1.4 but includes padding within shared memory to minimize
bank conflicts and further enhance performance.

• Kernel 1.6: Employs Register Blocking technique.

Dense Matrix Transpostion

• Kernel 2.1: Implemented in TNL before my involvement in this project.

• Kernel 2.2: Combines aligned and non-aligned strategies for matrix transposition into a single
kernel, using a dynamic selection mechanism based on matrix dimension alignment.

• Kernel 2.3: Consolidates matrix transposition into one kernel with an extra column in shared
memory configuration to avoid bank conflicts, applicable for both row-major and column-major
formats.

• Kernel 2.4: Enhances Kernel 2.3 by enabling in-place transposition, specifically optimized for
square matrices to save memory space.

We will explore the implementation specifics of each kernel using a profiling tool.
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3.1 Profiling

NVIDIA’s nvprof command-line profiler was used to collect comprehensive performance data of the
kernels implemented below. With nvprof is possible to gather a wide range of performance measures,
such as hardware utilization efficiencies and memory operations.

The test matrix configurations were chosen with care to assess the GPU kernels in a variety of cir-
cumstances:

• Square Matrices: Sizes like 128 × 128 to 1024 × 1024 test the kernels under conditions where
memory access patterns are optimal and computation is uniform across dimensions.

• Rectangular Matrices with More Rows than Columns: These matrices (e.g., 1024 × 512) as-
sess the kernels’ efficiency in handling scenarios where the aspect ratio favors more rows, posing
challenges in parallelization and memory access.

• Rectangular Matrices with More Columns than Rows: Configurations such as 512 × 1024
examine performance under conditions where the aspect ratio favors more columns, which can
stress different aspects of memory bandwidth and computational distribution.

These configurations provide thorough understanding of the behaviour of the kernels across common
use cases, offering a solid foundation for application deployment and optimization.

The environment for all profiling measurements was provided by the Faculty of Nuclear Sciences
and Physical Engineering at CTU in Prague. Detailed specifications of the system used are listed in the
table below.

System Component Specification
Hostname gp1.fjfi.cvut.cz
CPU 2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz
Cores 8 cores
CPU Cache 20480 KB
RAM 125 Gi
GPU Quadro P6000, 24576 MiB

Table 3.1: System specifications for GP1

3.1.1 Performance Metrics

The following table details the GPU performance metrics collected using NVIDIA’s nvprof tool.
The metrics provide insights into various aspects of GPU performance and efficiency. Each metric is
explained briefly to facilitate understanding of its impact on the GPU’s performance.
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Metric Description
Instructions per Warp Average number of instructions executed per

warp.
Global Load Throughput (GB/s) Rate at which data is read from global memory.
Global Store Throughput (GB/s) Rate at which data is written to global memory.
SM Load Trans. Per Req. Average number of transactions per request from

a Streaming Multiprocessor to load data.
SM Store Trans. Per Req. Average number of transactions per request from

a Streaming Multiprocessor to store data.
Warp Execution Efficiency (%) Percentage of warps that are eligible for execu-

tion vs. those stalled.
Issued IPC Instructions per cycle issued to the GPU. Indi-

cates how well the SMs are being utilized.
Achieved Occupancy Ratio of active warps to the maximum number of

warps supported per SM.
SM Utilization General indication of the activity level of the

Streaming Multiprocessors.
DRAM Read Throughput (GB/s) Rate at which data is read from the Dynamic Ran-

dom Access Memory (DRAM).
DRAM Write Throughput (GB/s) Rate at which data is written to the Dynamic Ran-

dom Access Memory (DRAM).

Table 3.2: GPU Performance Metrics and Their Descriptions

3.2 Dense Matrix Multiplication

3.2.1 Kernel 1.1

The first kernel, which was already implemented in TNL, employs key optimization features to
achieve efficient matrix multiplication on GPUs. It starts by allocating 1D shared memory tiles des-
ignated for matrixA and matrixB, as well as for the resultant matrixC tile. Each tile is defined by a
dimension tileDim, which specifies the size of the square submatrix each tile represents.

1 // Shared memory tiles for matrix A, B, and C

2 shared RealType tileA[ tileDim * tileDim ];

3 shared RealType tileB[ tileDim * tileDim ];

4 shared RealType tileC[ tileDim * tileDim ];

Tile tileC is initialized to zero, ensuring a clean state for accumulation across all its elements. The
initialization is performed efficiently using a loop that increments by a block size specific to the rows,
tileRowBlockSize, allowing each thread to handle a specific element in the tile.

1 // Initialize the result tile to zero

2 for( IndexType row = 0; row < tileDim; row += tileRowBlockSize )

3 tileC[ ( row + threadIdx.y ) * tileDim + threadIdx.x ] = 0.0;

Next, the coordinates for the result tile are computed based on the grid and block indices.
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1 // Compute the result tile coordinates

2 const IndexType resultTileRow = ( gridIdx_y * gridDim.y + blockIdx.y ) * tileDim;

3 const IndexType resultTileColumn = ( gridIdx_x * gridDim.x + blockIdx.x ) * tileDim;

The kernel then iteratively loads matrixA and matrixB tiles into shared memory and computes the
dot product for each element in the result tile.

1 // Sum over the matrix tiles

2 for( IndexType i = 0; i < matrixAColumns; i += tileDim ) {

3 for( IndexType row = 0; row < tileDim; row += tileRowBlockSize ) {

4 ...

5 if( matrixARow < matrixARows && matrixAColumn < matrixAColumns )

6 tileA[ ( threadIdx.y + row ) * tileDim + threadIdx.x ] = matrixA( matrixARow, matrixAColumn );

7 ...

8 if( matrixBRow < matrixBRows && matrixBColumn < matrixBColumns )

9 tileB[ ( threadIdx.y + row ) * tileDim + threadIdx.x ] = matrixB( matrixBRow, matrixBColumn );

10 }

11 __syncthreads();

12 }

In the provided code snippet above, the loop variable i indexes across the columns of matrixA and
the rows of matrixB, advancing by tileDim with each iteration to cover all necessary segments of the
matrices for the multiplication.

Finally, the computed tile is written back to the global memory result matrix.

1 // Write the result tile to the result matrix

2 for( IndexType row = 0; row < tileDim; row += tileRowBlockSize ) {

3 const IndexType matrixCRow = resultTileRow + row + threadIdx.y;

4 const IndexType matrixCColumn = resultTileColumn + threadIdx.x;

5 if( matrixCRow < matrixCRows && matrixCColumn < matrixCColumns )

6 resultMatrix( matrixCRow, matrixCColumn ) = tileC[ ( row + threadIdx.y ) * tileDim + threadIdx.x ];

7 }

The kernel efficiently leverages 1D shared memory and optimized indexing to accelerate matrix
multiplication on GPUs, achieving high performance.

3.2.2 Kernel 1.2

In the optimization process for Kernel 1.2, the focus is on linear thread index calculation for more
efficient access to elements in shared memory. Each thread calculates its linear index and then determines
its row and column in the tile, simplifying indexing and increasing performance during data loading.

1 // Optimized index calculation

2 IndexType linearThreadIdx = threadIdx.y * blockDim.x + threadIdx.x;

3 row = linearThreadIdx / tileDim;

4 col = linearThreadIdx % tileDim;

This optimized calculation allows for direct mapping of threads to their respective elements in the
tile, enhancing the data loading process from global to shared memory and thus speeding up the overall
multiplication operation.
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The following table summarizes the performance metrics, providing a comparative analysis with the
percentage change from Kernel 1.1 to Kernel 1.2.

Metric Kernel 1.1 (Avg) Kernel 1.2 (Avg) Change (%)
Instr. per Warp 4626.0 4311.1 - 6.80718
Global Load Thr. (GB/s) 127.80 132.90 + 3.99061
Global Store Thr. (GB/s) 4.4548 4.6326 + 3.9912
SM Load Trans. Per Req. 1.940085 2.000000 + 3.08827
SM Store Trans. Per Req. 1.496247 1.984820 + 32.6532
Warp Exec. Eff. (%) 100.00 100.00 -
Issued IPC 0.407371 0.393491 -3.40721
Achieved Occupancy 0.846299 0.846157 - 0.01678
SM Utilization Low (2) Low (2) -
DRAM Read Thr. (GB/s) 8.9935 10.071 + 11.9809
DRAM Write Thr. (GB/s) 1.1111 1.1635 + 4.71605

Table 3.3: Comparative Performance Metrics and Percentage Increase (Kernel 1.1 vs Kernel 1.2)

The comparative analysis reveals significant improvements in memory handling efficiencies with
Kernel 1.2, particularly in Global Load Throughput and DRAM Throughput. These enhancements indi-
cate that Kernel 1.2 is more effective in handling memory-intensive operations.

3.2.3 Kernel 1.3

Kernel 1.3 introduces an optimization by 2D shared memory arrays for improved memory access
patterns keeping the linear thread index calculation from Kernel 1.2. Instead of 1D arrays, this approach
uses 2D for storing tiles of matrices in shared memory, allowing more efficient indexing within the matrix
multiplication process. Shared memory tiles tileA, tileB, and tileC are initialized for matrices A, B,
and the result respectively, with dimensions tileDim × tileDim.

1 // 2D shared memory usage

2 __shared__ RealType tileA[ tileDim ][ tileDim ];

3 __shared__ RealType tileB[ tileDim ][ tileDim ];

4 __shared__ RealType tileC[ tileDim ][ tileDim ]

By introducing 2D shared memory arrays, Kernel 1.3 enhances memory access efficiency, further
optimizing matrix multiplication performance on GPUs. The table below compares the performance
metrics.
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Metric Kernel 1.1 (Avg) Kernel 1.3 (Avg) Change (%)
Instr. per Warp 4626.0 4235.0 - 8.45223
Global Load Thr. (GB/s) 127.80 132.17 + 3.41941
Global Store Thr. (GB/s) 4.4548 4.6071 + 3.41878
SM Load Trans. Per Req. 1.940085 2.000000 + 3.08827
SM Store Trans. Per Req. 1.496247 1.984820 + 32.6532
Warp Exec. Eff. (%) 100.00 100.00 -
Issued IPC 0.407371 0.383543 - 5.84921
Achieved Occupancy 0.846299 0.846527 + 0.02694
SM Utilization Low (2) Low (2) -
DRAM Read Thr. (GB/s) 8.9935 8.9339 - 0.662701
DRAM Write Thr. (GB/s) 1.1111 1.1513 + 3.61804

Table 3.4: Comparative Performance Metrics and Percentage Increase (Kernel 1.1 vs Kernel 1.3)

The adjustment in shared memory arrays along with the linear thread indexing from Kernel 1.2 in-
creased the efficiency in Kernel 1.3 as evidenced by the enhanced Global Load and Store Throughputs.
The structured use of 2D shared memory contributes to the noted increases in SM Load and Store Trans-
actions per Request, reflecting a refined handling of data within GPU memory spaces.

3.2.4 Kernel 1.4

Kernel 1.4 implements a tile-based approach for matrix multiplication on GPUs, optimizing memory
access and computational efficiency.

Firstly, 2D shared memory arrays, tileA and tileB, are declared to store portions of the input
matrices A and B.

1 // Two-dimensional shared memory arrays

2 __shared__ RealType tileA[ tileDim ][ tileDim ];

3 __shared__ RealType tileB[ tileDim ][ tileDim ];

Secondly, instead of creating a separate shared memory tile, a local accumulator (CValue) is ini-
tialized to zero for each thread. This accumulator will hold the multiplication product results for the
elements of the result matrix C that the thread is responsible for computing.

1 // Initialize the accumulator for C

2 RealType CValue = 0;

In the indexing calculation each thread computes its unique row and column indices relative to the
overall matrix dimensions.

1 // Calculate thread and block indices

2 IndexType bx = blockIdx.x, by = blockIdx.y;

3 IndexType tx = threadIdx.x, ty = threadIdx.y;

4

5 // Calculate the row and column index

6 IndexType row = by * tileDim + ty;

7 IndexType col = bx * tileDim + tx;
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Then, the tile-based computation loop follows. In the loading phase, threads collaboratively load
elements from matrices A and B into tileA and tileB, including boundary checks. In the multiplication
phase, each thread calculates the dot product of the corresponding elements in tileA and tileB, accu-
mulating the results in CValue. Synchronization points are included as a barrier that ensures all threads
have completed loading their respective elements into shared memory before proceeding.

1 // Loop over the tiles of the input matrices

2 for (IndexType m = 0; m < (tileDim + matrixA.getColumns() - 1)/tileDim; ++m) {

3 // Load A and B tiles into shared memory

4 if (m * tileDim + tx < matrixA.getColumns() && row < matrixA.getRows())

5 tileA[ty][tx] = matrixA(row, m * tileDim + tx);

6 else

7 tileA[ty][tx] = 0.0;

8

9 if (m * tileDim + ty < matrixB.getRows() && col < matrixB.getColumns())

10 tileB[ty][tx] = matrixB(m * tileDim + ty, col);

11 else

12 tileB[ty][tx] = 0.0;

13

14 __syncthreads();

15

16 // Compute product for this tile

17 for (IndexType k = 0; k < tileDim; ++k)

18 CValue += tileA[ty][k] * tileB[k][tx];

19

20 __syncthreads();

21 }

And finally, after completing all iterations, each thread writes its accumulated value, scaled by
matrixMultiplicator, to the appropriate element in the result matrix C, provided the indices fall
within the bounds of C.

1 // Write the result to the global memory

2 if (row < resultMatrix.getRows() && col < resultMatrix.getColumns())

3 resultMatrix(row, col) = CValue * matrixMultiplicator;

The fourth kernel efficiently employs a tile-based approach, leveraging 2D shared memory tiles and
a local accumulator for optimized matrix multiplication on GPUs. The following table is for comparison.

34



Metric Kernel 1.1 (Avg) Kernel 1.4 (Avg) Change (%)
Instr. per Warp 4626.0 2591.5 - 43.9797
Global Load Thr. (GB/s) 127.80 210.23 + 64.4992
Global Store Thr. (GB/s) 4.4548 7.3284 + 64.5057
SM Load Trans. Per Req. 1.940085 2.000000 + 3.08827
SM Store Trans. Per Req. 1.496247 2.000000 + 33.6678
Warp Exec. Eff. (%) 100.00 100.00 -
Issued IPC 0.407371 0.375813 - 7.74675
Achieved Occupancy 0.846299 0.840715 - 0.659814
SM Utilization Low (2) Low (3) -
DRAM Read Thr. (GB/s) 8.9935 20.751 + 130.733
DRAM Write Thr. (GB/s) 1.1111 1.8462 + 66.1597

Table 3.5: Comparative Performance Metrics and Percentage Increase (Kernel 1.1 vs Kernel 1.4)

By utilizing tile-based computation and maintaining synchronization between threads, Kernel 1.4
significantly reduces Instructions per Warp indicating a more efficient execution strategy. Substantial
increases in Global Load and Store Throughputs suggest improved memory bandwidth utilization. The
most notable enhancement is in DRAM Read Throughput, emphasizing the kernel’s capacity to manage
large data volumes effectively.

3.2.5 Kernel 1.5

Kernel 1.5 builds on the tile-based approach of Kernel 1.4 by integrating padding in shared memory
to reduce bank conflicts.

1 // Two-dimensional shared memory arrays with added padding

2 __shared__ RealType tileA[ tileDim ][ tileDim + 1];

3 __shared__ RealType tileB[ tileDim ][ tileDim + 1];

This version strategically employs an additional element in the second dimension of the tile arrays, im-
proving memory access patterns among threads. This modification prevents simultaneous access to the
same memory bank, thereby avoiding performance degradation due to serialization of memory opera-
tions. The table below compares the performance metrics.
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Metric Kernel 1.1 (Avg) Kernel 1.5 (Avg) Change (%)
Instr. per Warp 4626.0 2592.5 - 43.9581
Global Load Thr. (GB/s) 127.80 227.18 + 77.7621
Global Store Thr. (GB/s) 4.4548 7.9193 + 77.77
SM Load Trans. Per Req. 1.940085 1.500000 - 22.6838
SM Store Trans. Per Req. 1.496247 2.000000 + 33.6678
Warp Exec. Eff. (%) 100.00 100.00 -
Issued IPC 0.407371 0.406589 - 0.191963
Achieved Occupancy 0.846299 0.839794 - 0.768641
SM Utilization Low (2) Low (2) -
DRAM Read Thr. (GB/s) 8.9935 22.791 + 153.416
DRAM Write Thr. (GB/s) 1.1111 1.9788 + 78.0938

Table 3.6: Comparative Performance Metrics and Percentage Increase (Kernel 1.1 vs Kernel 1.5)

The performance metrics demonstrate substantial improvements from the previous Kernel 1.4, with
notable reductions in shared memory load transactions per request and significant increases in global
memory load throughput. The overall performance improvement is evident, indicating the effectiveness
of the added padding strategy in optimizing memory access patterns and computational efficiency.

3.2.6 Kernel 1.6

Kernel 1.6 employs register blocking technique with inspiration from the previously discussed article
[14]. The kernel begins by setting up the thread block and grid dimensions, and initializing 2D shared
memory arrays with padding to prevent bank conflicts.

1 // Shared memory for submatrices of A and B

2 __shared__ RealType sharedA[ 64 ][ 16 + 1 ];

3 __shared__ RealType sharedB[ 16 ][ 64 + 1 ];

4

5 // Each thread computes a 4x4 block of the result matrix

6 IndexType row = blockIdx.y * 64 + threadIdx.y * 4;

7 IndexType col = blockIdx.x * 64 + threadIdx.x * 4;

8

9 // Local storage for the result of a 4x4 block

10 RealType CValue[ 4 ][ 4 ] = { 0 };

Then, each thread loads a 4 × 4 block of the resulting matrix, utilizing shared memory effectively
to enhance data access speed. One of the key optimizations in Kernel 1.6 is the precomputation of tile
numbers and boundary conditions. By calculating numTiles, the kernel determines how many iterations
are required to cover all data in matrix A and B, minimizing out-of-bounds checks during execution.
Similarly, maxARow and maxBCol ensure that threads do not attempt to load or compute beyond the
actual dimensions of the matrices involved, which is critical for handling matrices that are not perfectly
divisible by the block size.

1 // Precompute the number of tiles

2 const IndexType numTiles = ( matrixAColumns + 15 ) / 16;

3

4 // Precompute the maximum valid iterations for aRow and bCol
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5 IndexType maxARow = min( 4, matrixARows - row );

6 IndexType maxBCol = min( 4, matrixBColumns - col );

7

8 // Iterate through each tile

9 for( IndexType m = 0; m < numTiles; ++m ) {

10 IndexType aCol = m * 16 + threadIdx.x;

11 IndexType bRow = m * 16 + threadIdx.y;

12

13 // Load valid data from global memory into shared memory for matrix A

14 if( aCol < matrixAColumns ) {

15 for( IndexType i = 0; i < maxARow; ++i ) {

16 IndexType aRow = row + i;

17 sharedA[ threadIdx.x ][ threadIdx.y * 4 + i ] = AValues[ aCol * matrixARows + aRow ];

18 }

19

20 for( IndexType i = maxARow; i < 4; ++i ) {

21 sharedA[ threadIdx.x ][ threadIdx.y * 4 + i ] = 0.0;

22 }

23 }

24 else {

25 #pragma unroll

26 for( IndexType i = 0; i < 4; ++i ) {

27 sharedA[ threadIdx.x ][ threadIdx.y * 4 + i ] = 0.0;

28 }

29 }

30

31 // Load valid data from global memory into shared memory for matrix B

32 if( bRow < matrixBRows ) {

33 for( IndexType i = 0; i < maxBCol; ++i ) {

34 IndexType bCol = col + i;

35 sharedB[ threadIdx.x * 4 + i ][ threadIdx.y ] = BValues[ bCol * matrixBRows + bRow ];

36 }

37

38 for( IndexType i = maxBCol; i < 4; ++i ) {

39 sharedB[ threadIdx.x * 4 + i ][ threadIdx.y ] = 0.0;

40 }

41 }

42 else {

43 #pragma unroll

44 for( IndexType i = 0; i < 4; ++i ) {

45 sharedB[ threadIdx.x * 4 + i ][ threadIdx.y ] = 0.0;

46 }

47 }

48 __syncthreads();

49

For matrix A, each thread loads a column of 4 elements into the sharedA array. If the column index
exceeds the matrix bounds, the thread sets those elements to zero. For matrix B, each thread loads a row
of 4 elements into the sharedB array, with similar boundary checks and zero-padding.

Once the necessary data is in shared memory, each thread first loads the data into registers for in-
creased speed. Each thread uses 8 registers to temporarily store 4 elements from sharedA and 4 elements
from sharedB. After loading the data into registers, the threads perform the multiplication operation.
The results of these multiplications are accumulated in CValue.
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1 // Compute the matrix multiplication for this tile

2 for( IndexType k = 0; k < 16; ++k ) {

3 RealType regA[ 4 ], regB[ 4 ];

4 for( IndexType i = 0; i < 4; ++i ) {

5 regA[ i ] = sharedA[ threadIdx.y * 4 + i ][ k ];

6 regB[ i ] = sharedB[ k ][ threadIdx.x * 4 + i ];

7 }

8 for( IndexType i = 0; i < 4; ++i ) {

9 for( IndexType j = 0; j < 4; ++j ) {

10 CValue[ i ][ j ] += regA[ i ] * regB[ j ] * matrixMultiplicator;

11 }

12 }

13 }

Finally, the computed results are stored back to the result matrix using coalesced writes to optimize
memory bandwidth usage.

1 // Store the result into the result matrix

2 for( IndexType i = 0; i < maxARow; ++i ) {

3 for( IndexType j = 0; j < maxBCol; ++j ) {

4 IndexType cRow = row + i;

5 IndexType cCol = col + j;

6

7 IndexType index = cCol * matrixARows + cRow;

8 resultValues[ index ] = CValue[ i ][ j ];

9 }

10 }

The performance of Kernel 1.6 is profiled in the table below.

Metric Kernel 1.1 (Avg) Kernel 1.6 (Avg) Change (%)
Instr. per Warp 4626.0 24903 + 438.327
Global Load Thr. (GB/s) 127.80 47.254 - 63.025
Global Store Thr. (GB/s) 4.4548 4.3926 - 1.39625
SM Load Trans. Per Req. 1.940085 4.500000 + 131.949
SM Store Trans. Per Req. 1.496247 5.000000 + 234.169
Warp Exec. Eff. (%) 100.00 100.00 -
Issued IPC 0.407371 0.158391 - 61.1187
Achieved Occupancy 0.846299 0.253719 - 70.0202
SM Utilization Low (2) Low (1) -
DRAM Read Thr. (GB/s) 8.9935 2.7453 - 69.4746
DRAM Write Thr. (GB/s) 1.1111 1.5252 + 37.2694

Table 3.7: Comparative Performance Metrics and Percentage Increase (Kernel 1.1 vs Kernel 1.6)

The performance profiling between Kernel 1.1 and Kernel 1.6 clearly demonstrates the impact of the
enhanced register use. The dramatic increase in Instructions per Warp indicates a higher computational
complexity per warp. Despite this, there are significant declines in Global Load Throughput and DRAM
Read Throughput, suggesting that the kernel’s intense computational focus may compromise memory
access efficiency.
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3.3 Dense Matrix Transposition

3.3.1 OutOfPlace Transposition

3.3.1.1 Kernel 2.1

The Kernel 2.1, which was already implemented in TNL, is segmented into aligned and non-aligned
versions. The choice between the use of these implementations is determined by the matrix alignment
needs, with each version tailored to optimize specific scenarios in matrix transposition operations. Both
kernels leverage the same fundamental structure but differ in how they handle memory accesses.

Each kernel begins by allocating a 1D shared memory tile to store a sub-matrix of the input. This
enables efficient reuse of data, reducing global memory accesses.

1 // Shared memory tile for the input matrix

2 __shared__ Real tile[ tileDim * tileDim ];

To ensure coalesced memory access, the kernels map blocks diagonally, adjusting the block indices
(blockIdx_x and blockIdx_y) based on whether the matrix is square or rectangular.

1 // Diagonal mapping of the CUDA blocks

2 Index blockIdx_x, blockIdx_y;

3 if( columns == rows ) {

4 blockIdx_y = blockIdx.x;

5 blockIdx_x = ( blockIdx.x + blockIdx_y ) % gridDim.x;

6 } else {

7 Index bID = blockIdx.x + gridDim.x * blockIdx.y;

8 blockIdx_y = bID % gridDim.y;

9 blockIdx_x = ( ( bID / gridDim.y ) + blockIdx_y ) % gridDim.x;

10 }

The tiles of the input matrix are loaded into shared memory in blocks of tileRowBlockSize rows,
enabling efficient reading from the input matrix.

1 // Read the tile to the shared memory

2 const Index readRowPosition = ( gridIdx_y * gridDim.y + blockIdx_y ) * tileDim + threadIdx.y;

3 const Index readColumnPosition = ( gridIdx_x * gridDim.x + blockIdx_x ) * tileDim + threadIdx.x;

4 for( Index rowBlock = 0; rowBlock < tileDim; rowBlock += tileRowBlockSize ) {

5 tile[ Backend::getInterleaving( threadIdx.x * tileDim + threadIdx.y + rowBlock ) ] =

6 inputMatrix( readRowPosition + rowBlock, readColumnPosition );

7 }

The differences between the two kernels appear in how each reads and writes tiles based on alignment.
In the aligned kernel, the tile is read directly into shared memory assuming aligned access.

1 for (Index rowBlock = 0; rowBlock < tileDim; rowBlock += tileRowBlockSize) {

2 tile[Backend::getInterleaving(threadIdx.x * tileDim + threadIdx.y + rowBlock)] =

3 inputMatrix(readRowPosition + rowBlock, readColumnPosition);

4 }

However, in the non-aligned kernel, additional checks are performed for non-aligned memory access.
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1 if (readColumnPosition < columns) {

2 for (Index rowBlock = 0; rowBlock < tileDim; rowBlock += tileRowBlockSize) {

3 if (readRowPosition + rowBlock < rows)

4 tile[Backend::getInterleaving(threadIdx.x * tileDim + threadIdx.y + rowBlock)] =

5 inputMatrix(readRowPosition + rowBlock, readColumnPosition);

6 }

7 }

In writing back to global memory, the non-aligned kernel ensures non-aligned writes are valid.

1 if (writeColumnPosition < rows) {

2 for (Index rowBlock = 0; rowBlock < tileDim; rowBlock += tileRowBlockSize) {

3 if (writeRowPosition + rowBlock < columns)

4 resultMatrix(writeRowPosition + rowBlock, writeColumnPosition) =

5 matrixMultiplicator * tile[Backend::getInterleaving(

6 (threadIdx.y + rowBlock) * tileDim + threadIdx.x)];

7 }

8 }

Despite these differences in handling memory access patterns, both implementations aim to optimize
the transposition of matrices efficiently on GPUs by utilizing shared memory and structured data access
patterns.

3.3.1.2 Kernel 2.2

The Kernel 2.2 combines the approaches of the aligned and the non-aligned transposition kernels
listed above. The optimized approach uses a boolean parameter - isAligned to dynamically select the
appropriate transposition strategy based on the alignment of the matrix dimensions with the tile size. This
flexibility allows the kernel to handle both cases without the need for separate kernels. This is achieved
by conditional checks within the memory access patterns, ensuring that only valid memory locations are
read from or written to, thus avoiding out-of-bounds memory access and ensuring the integrity of the
transposition process.

1 // Read the tile to the shared memory

2 const Index readRowPosition = ( gridIdx_y * gridDim.y + blockIdx_y ) * tileDim + threadIdx.y;

3 const Index readColumnPosition = ( gridIdx_x * gridDim.x + blockIdx_x ) * tileDim + threadIdx.x;

4 if( isAligned || readColumnPosition < columns ) {

5 for( Index rowBlock = 0; rowBlock < tileDim; rowBlock += tileRowBlockSize ) {

6 if( isAligned || ( readRowPosition + rowBlock < rows ) ) {

7 tile[ Backend::getInterleaving( threadIdx.x * tileDim + threadIdx.y + rowBlock ) ] =

8 inputMatrix( readRowPosition + rowBlock, readColumnPosition );

9 }

10 }

11 }

12 __syncthreads();

13

14 // Write the tile to the global memory

15 const Index writeRowPosition = ( gridIdx_x * gridDim.x + blockIdx_x ) * tileDim + threadIdx.y;

16 const Index writeColumnPosition = ( gridIdx_y * gridDim.y + blockIdx_y ) * tileDim + threadIdx.x;

17 if( isAligned || writeColumnPosition < rows ) {

18 for( Index rowBlock = 0; rowBlock < tileDim; rowBlock += tileRowBlockSize ) {
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19 if( isAligned || ( writeRowPosition + rowBlock < columns ) ) {

20 resultMatrix( writeRowPosition + rowBlock, writeColumnPosition ) =

21 matrixMultiplicator * tile[ Backend::getInterleaving(

22 ( threadIdx.y + rowBlock ) * tileDim + threadIdx.x ) ];

23 }

24 }

25 }

The following table provides a detailed comparison of the performance metrics between Kernel 2.1
and Kernel 2.2. The values presented in the table for Kernel 2.1 are computed as averages between the
aligned and non-aligned transposition strategies from earlier kernels.

Metric Kernel 2.1 (Avg) Kernel 2.2 (Avg) Change (%)
Instr. per Warp 161.259375 168.161458 + 4.28011
Global Load Thr. (GB/s) 226.185 237.51 + 5.00696
Global Store Thr. (GB/s) 226.185 237.51 + 5.00696
SM Load Trans. per Req. 1.996032 2.000000 + 0.198794
SM Store Trans. per Req. 1.988281 1.998677 + 0.522864
Warp Exec. Eff. (%) 99.71 99.89 + 0.180524
Issued IPC 0.255455 0.285753 + 11.8604
Achieved Occupancy 0.716286 0.645097 - 9.93863
SM Utilization Low (1) Low (1) -
DRAM Read Thr. (GB/s) 88.771 87.755 - 1.14452
DRAM Write Thr. (GB/s) 86.960 84.177 - 3.20032

Table 3.8: Comparative Performance Metrics and Percentage Increase (Kernel 2.1 vs Kernel 2.2)

The analysis shows that Kernel 2.2 improves on several key performance metrics, such as Global
Load and Store Throughputs and Issued IPC, indicating better computational efficiency and faster mem-
ory operations. However, the decline in Achieved Occupancy and DRAM Throughputs could reflect
the kernel’s increased complexity, which potentially impacts its overall memory efficiency and resource
utilization.

3.3.1.3 Kernel 2.3

Kernel 2.3 introduces a highly optimized approach to matrix transposition.
A tile of shared memory is declared with dimensions tileDim x (tileDim + 1). The extra col-

umn in the declaration (tileDim + 1) is used to avoid shared memory bank conflicts, which can signif-
icantly degrade performance due to serialization of memory accesses.

1 __shared__ Real tile[ tileDim ][ tileDim + 1 ];

By using shared memory effectively, the kernel minimizes the slow global memory accesses, thus
speeding up the transposition process.

The kernel retrieves the number of columns and rows from the input matrix to ensure that threads do
not attempt to access out-of-bounds elements. The direct mapping of thread indices to shared mem-
ory locations for loading and writing eliminated the need for complex indexing calculations. Each
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thread calculates its corresponding row and column in the input matrix, scales the matrix element by
matrixMultiplicator, and stores it in the shared memory tile.

1 const Index matrixColumns = inputMatrix.getColumns();

2 const Index matrixRows = inputMatrix.getRows();

3

4 Index row = blockIdx.y * tileDim + threadIdx.y;

5 Index col = blockIdx.x * tileDim + threadIdx.x;

6

7 if( row < matrixRows && col < matrixColumns ) {

8 tile[ threadIdx.y ][ threadIdx.x ] = inputMatrix( row, col ) * matrixMultiplicator;

9 }

10

11 __syncthreads();

The __syncthreads() function is called to ensure that all threads have completed their reads and
writes to shared memory before proceeding to write back to the result matrix. After that, the threads
use transposed indices (swapping blockIdx.x with blockIdx.y) to write the transposed and scaled
elements back to the result matrix.

1 // Adjust writing based on result matrix organization

2 row = blockIdx.x * tileDim + threadIdx.y;

3 col = blockIdx.y * tileDim + threadIdx.x;

4

5 if( row < matrixColumns && col < matrixRows ) {

6 resultMatrix( row, col ) = tile[ threadIdx.x ][ threadIdx.y];

7 }

Conditional checks for row and col ensure that the kernel does not perform out-of-bounds memory
accesses, which could lead to incorrect results and possible crashes.

This implementation reduces the size of the kernel, improving readability and maintainability while
maintaining robust performance and flexibility. The performace can be observed in the table below.

Metric Kernel 2.1 (Avg) Kernel 2.3 (Avg) Change (%)
Instr. per Warp 161.259375 39.299805 - 75.6294
Global Load Thr. (GB/s) 226.185 329.33 + 45.6021
Global Store Thr. (GB/s) 226.185 164.66 - 27.2012
SM Load Trans. per Req. 1.996032 2.000000 + 0.19880
SM Store Trans. per Req. 1.988281 1.123047 - 43.5167
Warp Exec. Eff. (%) 99.71 99.97 + 0.260756
Issued IPC 0.255455 0.799932 + 213.14
Achieved Occupancy 0.716286 0.761484 + 6.31005
SM Utilization Low (1) Low (1) -
DRAM Read Thr. (GB/s) 88.771 79.054 - 10.9461
DRAM Write Thr. (GB/s) 86.960 77.767 - 10.5715

Table 3.9: Comparative Performance Metrics and Percentage Increase (Kernel 2.1 vs Kernel 2.3)

The significant reduction in Instructions per Warp showcases the simplicity and efficiency of Kernel
2.3. The increase in Global Load Throughput reflects the kernel’s enhanced capability to access memory
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faster. Additionally, a notable surge in Issued IPC indicates that kernel 2.3 can execute significantly more
instructions per cycle.

3.3.2 InPlace Transposition

3.3.2.1 Kernel 2.4

Kernel 2.4 builds upon the approach utilized in Kernel 2.3, employing a shared memory tile to facil-
itate matrix transposition. The primary enhancement in Kernel 2.4 is its capability to transpose matrices
in-place, specifically designed for square matrices, thus eliminating the need for additional storage space
required by out-of-place methods.

The significant difference between Kernel 2.4 and Kernel 2.3 lies in how the transposed data is
written back. Instead of writing to a separate output matrix, Kernel 2.4 writes the data back into the
original matrix, enabling in-place transposition.

1 __shared__ Real tile[ tileDim ][ tileDim + 1 ];

2

3 Index xIndex = blockIdx.x * tileDim + threadIdx.x;

4 Index yIndex = blockIdx.y * tileDim + threadIdx.y;

5

6 if( xIndex < matrixColumns && yIndex < matrixRows ) {

7 tile[ threadIdx.y ][ threadIdx.x ] = matrix( yIndex, xIndex ) * matrixMultiplicator;

8 }

9

10 __syncthreads();

11

12 // The indices for writing back are transposed

13 xIndex = blockIdx.y * tileDim + threadIdx.x;

14 yIndex = blockIdx.x * tileDim + threadIdx.y;

15

16 if( xIndex < matrixRows && yIndex < matrixColumns ) {

17 matrix( yIndex, xIndex ) = tile[ threadIdx.x ][ threadIdx.y ];

18 }

This adaptation to write back transposed data directly into the input matrix is what allows Kernel 2.4
to operate in-place, which improves the memory efficiency when dealing with large matrices. However,
it is restricted to square matrices to maintain the integrity of the row and column dimensions post-
transposition.
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Metric Kernel 2.1 (Avg) Kernel 2.4 (Avg) Change (%)
Instr. per Warp 161.259375 45.000000 - 72.0946
Global Load Thr. (GB/s) 226.185 314.06 + 38.8509
Global Store Thr. (GB/s) 226.185 157.03 - 30.5745
SM Load Trans. per Req. 1.996032 2.000000 + 0.19880
SM Store Trans. per Req. 1.988281 2.000000 + 0.58940
Warp Exec. Eff. (%) 99.71 100.0 + 0.290843
Issued IPC 0.255455 0.398982 + 56.1848
Achieved Occupancy 0.716286 0.632813 - 11.6536
SM Utilization Low (1) Low (1) -
DRAM Read Thr. (GB/s) 88.771 49.225 - 44.5483
DRAM Write Thr. (GB/s) 86.960 72.069 - 17.1240

Table 3.10: Comparative Performance Metrics and Percentage Increase (Kernel 2.1 vs Kernel 2.4)

Kernel 2.4 retains the simplicity of Kernel 2.3, evidenced by a 72% reduction in Instructions per
Warp. This kernel also sees a notable improvement in Global Load Throughput, enhancing its ability to
access memory more quickly and efficiently.
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Chapter 4

Testing and Benchmarks

4.1 Testing

4.1.1 Roofline model

The Roofline model is a powerful tool for performance analysis, providing a visual representation
of the performance limits of a given hardware architecture. It helps in identifying whether a kernel’s
performance is constrained by the computational capabilities (compute-bound) or by the memory transfer
speeds (memory-bound) of the system. The model plots operational intensity (operations per byte of
memory traffic) against performance (operations per second), allowing identification of bottlenecks and
areas for optimization [19].

For this analysis, we used the Quadro P6000 GPU described in Table 3.1. The GPU has a peak
performance of 8.9 TFLOPs and a memory bandwidth of 432 GB/s. The Roofline model was constructed
by plotting the performance and computational intensity of the multiplication and transposition kernels.

To understand the Roofline model, it is essential to comprehend the key metrics used in the analysis.
Table 4.1 summarizes these metrics and their descriptions.

Metric Description
FLOPs Number of floating-point operations performed,

including all types of floating-point operations
such as add, multiply, and FMA (fused multiply-
add).

Total Bytes Moved (Bytes) Total number of bytes read and written during the
execution.

Operational Intensity (FLOPs/Bytes) Ratio of floating-point operations to the total
number of bytes moved. It indicates the compu-
tational intensity of the kernel.

Table 4.1: GPU Performance Metrics and Their Descriptions

4.1.1.1 Performance Metrics for Multiplication Kernels

Table 4.2 summarizes the performance metrics for the multiplication kernels. These metrics provide
insights into the efficiency and computational intensity of each kernel.
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Metric Kernel 1.1 Kernel 1.2 Kernel 1.3 Kernel 1.4 Kernel 1.5 Kernel 1.6
FLOPs 631428437 618397696 618397696 53712486 417432258 625475584
Bytes 32556419 34807468 31419641 1068275 44893557 13954115
FLOPs/Bytes 19.39490 17.76624 19.68188 50.27964 9.29827 44.82373

Table 4.2: Performance Metrics for Roofline Model (Multiplication Kernels)

The following graph 4.1 illustrates the Roofline model for the dense matrix multiplication kernels,
where each kernel is represented by a distinct point. The memory bound line represents the maximum
performance limited by the memory bandwidth of the GPU. A kernel is considered optimized when it
approaches this line, showing that it is efficiently utilizing the available memory bandwidth.

Figure 4.1: Roofline Model for Multiplication Kernels

The roofline model for multiplication kernels shows they have high operational intensities and are
mostly compute-bound, effectively utilizing the GPU’s peak performance. Kernels 1.1, 1.2, 1.3, and
1.4 reach performance levels close to the GPU’s computational limits, indicating efficient use of the
hardware’s processing power.

4.1.1.2 Performance Metrics for Transposition Kernels

Similarly, Table 4.3 summarizes the performance metrics for the transposition kernels. These metrics
help in understanding the efficiency and computational intensity of each kernel in the context of matrix
transposition operations.
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Metric Kernel 2.1 Kernel 2.2 Kernel 2.3 Kernel 2.4
FLOPs 417382 354304 216064 314456
Bytes 10503660 8207226 3292400 3846542
FLOPs/Bytes 0.03974 0.04317 0.06563 0.01561

Table 4.3: Performance Metrics for Roofline Model (Transposition Kernels)

Figure 4.2 presents the Roofline model for the dense matrix transposition kernels.

Figure 4.2: Roofline Model for Transposition Kernels

The transposition kernels, although lower in operational intensity, are well-optimized for their pur-
pose. Kernels 2.1, 2.2, 2.3, and 2.4 fall within acceptable performance ranges, indicating that their
memory-bound nature is expected and well-handled.

4.1.2 UnitTests

With the aid of the GoogleTest library, which is extensively utilized in the TNL extension, unit tests
were created to confirm the accuracy of the implementation. These tests covered matrix multiplication
and transposition across different matrix types and memory organizations. The following scenarios were
tested:

• Multiplication with Identity Matrix - to ensure that the original matrix is returned.

• Empty Matrices - to ensure that the operations return an empty matrix.

• Multiplication with Zero Matrix - to confirm that any matrix multiplied by a zero matrix returns
a zero matrix.
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• Single-Element Matrices - to ensure that the operations return the same matrix.

• Single-Row or Single-Column Matrices - to ensure the correct handling of one-dimensional
matrices.

• Transposition States in Matrix Multiplication - to ensure computational correctness in all trans-
position states (none, transposing the first matrix, the second matrix, or both).

• Small and Large Matrices - to test computational correctness and efficiency.

Each matrix type was tested for both row-major and column-major layout to verify that all cases are
handled correctly under different conditions. The tests can now be run as part of the library compilation
because they were incorporated into TNL.

4.1.3 Utilizing Norms

A structure denseMatricesResult was defined to hold the benchmark outcomes of operations on
dense matrices of our benchmark libraries listed in the following section. The structure is templated on
the real number type, device type (e.g., CPU, GPU), and index type to ensure flexibility across different
computational environments.

1 // Compute and append differences for each benchmark result

2 for( const auto& benchmarkMatrix : benchmarkResults ) {

3 // Check if dimensions match

4 auto diff = referenceResult.getValues() - benchmarkMatrix.getValues();

5 elements << TNL::maxNorm( abs( diff ) ) << TNL::l2Norm( diff );

6 }

The results include detailed comparisons between the reference implementation and the benchmark
libraries. Differences are calculated using TNL::maxNorm and TNL::L2Norm for accuracy assessments.
All the implemented kernels have been tested through this method and all of them performed well.

4.2 Benchmarks

4.2.1 Benchmark Setup

The benchmark is designed to assess the performance of dense matrix multiplication and transposi-
tion, dynamically adapting to different computational environments.

The implementation utilizes template programming to handle various data types and index sizes,
which enhances the flexibility and reusability of the code. The primary template parameters are defined
for the data type (Real) and matrix indices (Index).

1 template<typename Real = double, typename Index = int>

2 ...

A wide range of settings can be adjusted to fine-tune the benchmark, including the choice of com-
putational device, the number of iterations, and the logging specifics. These configurations are managed
using the TNL::Config::ConfigDescription object.
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The benchmark’s execution is initiated by the runBenchmark() function. This function configures
logging, determines the computation device, and performs numerous tests across various configurations.
The results are systematically recorded for analysis.

The framework is structured to manage metadata and execute optimized computational kernels. The
metadata setup, kernel launch, and benchmark execution phases are provided below.

1 // Metadata configuration for recording benchmark specifics

2 benchmark.setMetadataColumns({

3 { "index type", getType<Index>() },

4 { "device", device },

5 { "algorithm", "SpecificAlgorithm" },

6 { "matrix1 size", to_string(matrix1Rows) + "x" + to_string(matrix1Columns) },

7 { "matrix2 size", to_string(matrix1Columns) + "x" + to_string(matrix2Columns) }

8 });

9

10 // Resetting matrix values before execution

11 resultMatrix.getValues() = 0;

12

13 // Lambda function for optimized kernel execution

14 auto matrixOperationBenchmarkOptimized = [ & ]() mutable {

15 launchMatrixOperationKernel(denseMatrix1, denseMatrix2, resultMatrix);

16 };

17

18

19 // Differences, calculated using TNL::maxNorm and TNL::L2Norm

20 std::vector< MatrixType > benchmarkMatricesOptimized = {

21 Library1ResultMatrix, Library2ResultMatrix, Library3ResultMatrix

22 };

23

24 // Timing the execution of the matrix operation benchmark

25 benchmark.time< DeviceType >(device, matrixOperationBenchmarkOptimized, ResultOfBenchmark);

This setup illustrates a systematic approach for configuring the metadata that characterizes each
test scenario, including matrix sizes and computational algorithms. The lambda function encapsulates
the optimized kernel launch for either multiplication or transposition, ensuring maximum performance
across various computational libraries. The execution time is measured, and the metadata and results are
recorded for each test, allowing comprehensive performance analysis and comparison between different
computational devices and libraries.

4.2.2 Environment

The benchmarks were conducted on two different systems equipped with NVIDIA CUDA environ-
ments. These systems will be referred to as HELIOS and GP1. The specifications for GP1 are listed in
Table 3.1, and the specifications for HELIOS are listed below.
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System Component Specification
Hostname helios.fjfi.cvut.cz
CPU Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz
Cores 16 cores per CPU, 32 threads total
CPU Cache 22528 KB
RAM 376 Gi
GPU NVIDIA Tesla V100, 32 GiB

Table 4.4: System specifications for HELIOS

We decided that it is beneficial to test the kernel on two different architectures. GP1 has a Pascal
architecture GPU, while HELIOS is equipped with a Tesla architecture GPU. The benchmarks will be
performed using the exact same matrix sizes on both systems to ensure a consistent and fair comparison
of performance.

4.2.3 Benchmark Libraries

This section introduces the libraries used for benchmarking and testing the performance of the de-
veloped kernels. Benchmarking against widely recognized libraries is essential for understanding the
efficiency and effectiveness of this work in comparison to established standards. We focused on selecting
libraries that offer functions performing the same operations as our kernels.

4.2.3.1 CuBLAS

The NVIDIA CUDA Basic Linear Algebra Subprograms (CuBLAS) library is a GPU-accelerated
library providing efficient linear algebra subroutines. It offers APIs for matrix and vector operations in
GPU memory, including a flexible API for General Matrix Multiply (GEMM) operations. This flexibility
allows for various matrix data layouts and computational optimizations [4]. We utilized the CuBLAS
GEMM function and used TNL templates for the benchmarking setup, ensuring compatibility.

1 // Perform the matrix multiplication using cuBLAS

2 if constexpr(std::is_same_v<RealType, float>) {

3 cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha,

4 matrix1.getValues().getData(), lda,

5 matrix2.getValues().getData(), ldb, &beta,

6 resultMatrix.getValues().getData(), ldc);

7 } else if constexpr(std::is_same_v<RealType, double>) {

8 cublasDgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m, n, k, &alpha,

9 matrix1.getValues().getData(), lda,

10 matrix2.getValues().getData(), ldb, &beta,

11 resultMatrix.getValues().getData(), ldc);

12 }

Key parameters for the cublasSgemm or cublasDgemm function calls are as follows.

• handle: Manages CuBLAS operation resources.

• TRANSA and TRANSB: Specify matrix operations; ‘CUBLAS_OP_N‘ means no transpose.

• m, n, k: Dimensions of the matrices involved in the multiplication.

50



• alpha and beta: Scalars for scaling the matrix product and the input matrix C, respectively.

• A and B: Input matrices, with lda and ldb indicating their leading dimensions.

• C: The result matrix, with ldc as its leading dimension.

This setup ensures efficient matrix multiplication leveraging GPU capabilities for enhanced performance.

4.2.3.2 MAGMA

The Matrix Algebra on GPU and Multicore Architectures (MAGMA) library provides high-performance
linear algebra operations on heterogeneous computing systems, combining the power of multi-core CPUs
and GPUs. It offers an interface compatible with existing linear algebra frameworks, facilitating the effi-
cient utilization of hybrid computing resources [16]. In the benchmarks, we used the MAGMA GEMM
function, adapting it to specific configurations to align with the requirements of our benchmark.

1 // Perform the matrix multiplication using MAGMA

2 if constexpr( std::is_same_v<RealType, float> ) {

3 magma_sgemm(MagmaNoTrans, MagmaNoTrans, m, n, k, alpha,

4 matrix1.getValues().getData(), lda,

5 matrix2.getValues().getData(), ldb,

6 beta, resultMatrix.getValues().getData(), ldc, queue);

7 } else if constexpr( std::is_same_v<RealType, double> ) {

8 magma_dgemm(MagmaNoTrans, MagmaNoTrans, m, n, k, alpha,

9 matrix1.getValues().getData(), lda,

10 matrix2.getValues().getData(), ldb,

11 sbeta, resultMatrix.getValues().getData(), ldc, queue);

12 }

Key parameters for the magma_sgemm or magma_dgemm function calls are as follows.

• MagmaNoTrans: Specifies no transpose operation for the input matrices.

• m, n, k: Dimensions of the matrices involved in the operation, representing rows and columns in
a manner similar to the CuBLAS parameters.

• alpha and beta: Scaling factors for the matrix multiplication and addition operations, respectively.

• A and B: The input matrices for the multiplication, with their dimensions specified by lda and ldb.

• C: The output matrix, with ldc indicating its leading dimension.

• queue: A queue to manage execution of the operation, facilitating asynchronous execution and
resource management.

MAGMA is the only library among those used that offers a direct function for matrix transposition.
The code snippet below illustrates how matrix transposition is performed using MAGMA.

1 // Perform the matrix transposition using MAGMA

2 if constexpr(std::is_same_v<RealType, float>) {

3 magmablas_stranspose(m, n, d_input, m, d_transposed, n, queue);

4 } else if constexpr(std::is_same_v<RealType, double>) {

5 magmablas_dtranspose(m, n, d_input, m, d_transposed, n, queue);

6 }
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Key parameters for the magmablas_stranspose or magmablas_dtranspose function calls, as
used in the matrix transposition operations, are outlined below.

• m and n: Specify the dimensions of the matrix to be transposed. m is the number of rows, and n
is the number of columns in the input matrix.

• d_input: Pointer to the input matrix in the device (GPU) memory that is to be transposed.

• d_transposed: Pointer to the output matrix in the device memory where the transposed matrix
will be stored.

• queue: A handle to a queue that manages the execution of the operation. This parameter allows for
asynchronous execution and effective resource management, similar to other MAGMA operations.

4.2.3.3 CUTLASS

CUTLASS is a collection of CUDA C++ templates for dense linear algebra operations, emphasizing
high performance through customization for various NVIDIA GPUs. It provides a flexible API for
configuring matrix multiplication operations (GEMM) according to different data types, layouts, and
computing capabilities [17]. CUTLASS’s GEMM functionality was integrated, utilizing its template
mechanism to ensure optimal performance and compatibility with the benchmarking setup.

1 // Perform matrix multiplication using CUTLASS

2 using CutlassGemm = cutlass::gemm::device::Gemm< ElementA,

3 LayoutA,

4 ElementB,

5 LayoutB,

6 ElementC,

7 LayoutC >;

8 CutlassGemm gemm_operator;

9

10 typename CutlassGemm::Arguments args(

11 {m, n, k},

12 {matrix1.getValues().getData(), lda},

13 {matrix2.getValues().getData(), ldb},

14 {resultMatrix.getValues().getData(), ldc},

15 {resultMatrix.getValues().getData(), ldc},

16 {1.0, 0.0}

17 );

Key parameters for the cutlass::gemm::device::Gemm function call are as follows.

• ElementA, ElementB, ElementC: Data types for matrices A, B, and C, respectively, allowing for
mixed precision operations.

• LayoutA, LayoutB, LayoutC: Memory layouts of matrices A, B, and C, which can significantly
affect performance.

• m, n, k: Define the problem size, similar to other libraries, indicating the matrix dimensions.

• alpha and beta: Scalars used to scale the operands in the GEMM operation, akin to their roles in
CuBLAS and MAGMA.
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• Data pointers: Pointers to the matrices in GPU memory, specifying the inputs and outputs for the
operation.

• Leading dimensions: Specified for each matrix, critical for memory access patterns and perfor-
mance.

4.2.4 Graphical Representation

The graphs below use a logarithmic scale for the y-axis which represents the execution time in
seconds. This axis is inversely oriented, meaning higher points indicate shorter execution times and
enhanced performance. The x-axis enumerates various matrix size combinations used in the multiplica-
tions, providing a spectrum from small to large matrices.

All graphs were generated using a custom Python script that employs the matplotlib library for
plotting. This script processes benchmark log data, which includes execution times for different matrix
sizes and algorithms. It reads the log data, organizes them by algorithm, and plots each algorithm’s
performance across the matrix sizes. The script is designed to highlight the performance differences and
trends that are critical for optimizing CUDA-based matrix multiplication. Below is a simplified overview
of the script’s functionality.

1 import matplotlib.pyplot as plt

2 import json

3

4 def read_log_files(file_path):

5 # Function to read and parse log data

6 ...

7

8 def process_data_for_plotting(log_entries, algorithms_to_plot=None):

9 # Function to organize data for plotting

10 ...

11

12 def plot_combined_graph(data_for_plotting):

13 plt.figure(figsize=(14, 10))

14 # Plotting function including labels, legend, and log scale settings

15 ...

16

17 if __name__ == "__main__":

18 log_file_path = 'path_to_log_file.log'

19 log_entries = read_log_files(log_file_path)

20 data_for_plotting = process_data_for_plotting(log_entries)

21 plot_combined_graph(data_for_plotting)

This approach ensures that the visualizations are both accurate and informative, providing a clear
representation.

4.2.4.1 Speedup Factor

The speedup factor, ranging from 0 to infinity, measures the relative performance improvement of
one algorithm over another, calculated by

Speedup Factor =
Execution Time of Base Algorithm

Execution Time of Compared Algorithm
.
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This metric is used in the tables below to quantify and compare the efficiency of different algorithms
against the base algorithm. A speedup factor greater than one indicates that the compared algorithm is
faster than the base, whereas a factor less than one shows it is slower.

4.2.5 Dense Matrix Multiplication

This subsection evaluates the performance of our dense matrix multiplication kernels on both HE-
LIOS and GP1. We compare them with cuBLAS, Magma, and Cutlass, demonstrating their computa-
tional efficiency in different scenarios.

Each of the graphs presented in this subsection visually illustrates the performance outcomes for
different matrix sizes. Directly beneath each graph, corresponding tables detail the execution times and
speedup factor versus cuBLAS for selected matrix sizes.

4.2.5.1 HELIOS

The graph below presents the performance of the multiplication kernels of square matrices. The
analysis primarily focuses on comparing our kernels against the benchmarking libraries.

Figure 4.3: Square Matrix Multiplication (HELIOS)
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100x100×100x100
Kernel Time (s) Speedup

cuBLAS 1.984529e-04 Base
Magma 4.309488e-04 -
Cutlass 5.808045e-05 -

Kernel 1.1 1.819620e-05 10.91
Kernel 1.2 1.726845e-05 11.49
Kernel 1.3 1.729075e-05 11.48
Kernel 1.4 1.640175e-05 12.10
Kernel 1.5 1.606900e-05 12.35
Kernel 1.6 5.692355e-05 3.49

1300x1300×1300x1300
Kernel Time (s) Speedup

cuBLAS 8.776071e-04 Base
Magma 1.092818e-03 -
Cutlass 9.687090e-04 -

Kernel 1.1 4.144436e-03 0.21
Kernel 1.2 4.051583e-03 0.22
Kernel 1.3 4.050027e-03 0.22
Kernel 1.4 3.933084e-03 0.22
Kernel 1.5 3.358497e-03 0.26
Kernel 1.6 2.226371e-03 0.39

2500x2500×2500x2500
Kernel Time (s) Speedup

cuBLAS 4.491389e-03 Base
Magma 4.693396e-03 -
Cutlass 4.593031e-03 -

Kernel 1.1 2.898556e-02 0.15
Kernel 1.2 2.833413e-02 0.16
Kernel 1.3 2.831249e-02 0.16
Kernel 1.4 2.747724e-02 0.16
Kernel 1.5 2.340984e-02 0.19
Kernel 1.6 1.411427e-02 0.32

3700x3700×3700x3700
Kernel Time (s) Speedup

cuBLAS 1.383658e-02 Base
Magma 1.402894e-02 -
Cutlass 1.481735e-02 -

Kernel 1.1 9.284642e-02 0.15
Kernel 1.2 9.079028e-02 0.15
Kernel 1.3 9.071090e-02 0.15
Kernel 1.4 8.798600e-02 0.16
Kernel 1.5 7.476492e-02 0.19
Kernel 1.6 4.499732e-02 0.31

5000x5000×5000x5000
Kernel Time (s) Speedup

cuBLAS 3.369595e-02 Base
Magma 3.388870e-02 -
Cutlass 3.646766e-02 -

Kernel 1.1 2.475856e-01 0.14
Kernel 1.2 2.427144e-01 0.14
Kernel 1.3 2.423779e-01 0.14
Kernel 1.4 2.354888e-01 0.14
Kernel 1.5 2.021816e-01 0.17
Kernel 1.6 1.130343e-01 0.30

Table 4.5: Execution Times and Speedups versus cuBLAS for Selected Matrix Sizes in Figure 4.3

It is evident from Figure 4.3 that Kernels 1.1 to 1.5 demonstrate a competitive edge over the bench-
marking libraries for smaller matrix sizes, particularly up to approximately 1000× 1000. However, as
the matrix size increases beyond this point, their execution times begin to lengthen. Notably, Kernel 1.5
shows a substantial improvement in performance for larger matrices compared to Kernels 1.1 to 1.4, sug-
gesting effective optimizations through the tile-based approach and the shared memory padding. Among
our implementations, Kernel 1.6 emerges as the fastest, especially for the largest matrix sizes tested. This
superior performance is attributed to its innovative use of the register blocking technique.

The subsequent figures, 4.4, 4.5 and 4.6, show the performance of CUDA kernels during the mul-
tiplication of rectangular matrices, exploring variations with incremental width and height expansions
respectively.

55



Figure 4.4: Wide Matrix Multiplication with Incremental Width Expansion (HELIOS)

100x50×50x100
Kernel Time (s) Speedup

cuBLAS 2.580858e-04 Base
Magma 6.313587e-04 -
Cutlass 3.743810e-05 -

Kernel 1.1 1.397670e-05 18.47
Kernel 1.2 1.390565e-05 18.56
Kernel 1.3 1.390685e-05 18.56
Kernel 1.4 1.390960e-05 18.56
Kernel 1.5 1.287530e-05 20.05
Kernel 1.6 3.747340e-05 6.89

1300x650×650x1300
Kernel Time (s) Speedup

cuBLAS 6.093547e-04 Base
Magma 1.104328e-03 -
Cutlass 5.013439e-04 -

Kernel 1.1 2.017711e-03 0.30
Kernel 1.2 1.974541e-03 0.31
Kernel 1.3 1.977299e-03 0.31
Kernel 1.4 1.911685e-03 0.32
Kernel 1.5 1.627211e-03 0.37
Kernel 1.6 1.102072e-03 0.55

2500x1250×1250x2500
Kernel Time (s) Speedup

cuBLAS 2.360265e-03 Base
Magma 2.561863e-03 -
Cutlass 2.332852e-03 -

Kernel 1.1 1.421160e-02 0.17
Kernel 1.2 1.389100e-02 0.17
Kernel 1.3 1.389008e-02 0.17
Kernel 1.4 1.349161e-02 0.17
Kernel 1.5 1.147134e-02 0.21
Kernel 1.6 6.928284e-03 0.34

3700x1850×1850x3700
Kernel Time (s) Speedup

cuBLAS 7.081138e-03 Base
Magma 7.290077e-03 -
Cutlass 7.486675e-03 -

Kernel 1.1 4.538069e-02 0.16
Kernel 1.2 4.432301e-02 0.16
Kernel 1.3 4.430013e-02 0.16
Kernel 1.4 4.286869e-02 0.17
Kernel 1.5 3.637342e-02 0.19
Kernel 1.6 2.170774e-02 0.33

5000x2500×2500x5000
Kernel Time (s) Speedup

cuBLAS 1.708849e-02 Base
Magma 1.723424e-02 -
Cutlass 1.839945e-02 -

Kernel 1.1 1.194838e-01 0.14
Kernel 1.2 1.170084e-01 0.15
Kernel 1.3 1.168582e-01 0.15
Kernel 1.4 1.135885e-01 0.15
Kernel 1.5 9.705805e-02 0.18
Kernel 1.6 5.678837e-02 0.30

Table 4.6: Execution Times and Speedups versus cuBLAS for Selected Matrix Sizes in Figure 4.4
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Figure 4.5: Tall Matrix Multiplication with Incremental Height Expansion (HELIOS)

50x100×100x50
Kernel Time (s) Speedup

cuBLAS 2.481409e-04 Base
Magma 5.100682e-04 -
Cutlass 5.709680e-05 -

Kernel 1.1 1.720255e-05 14.42
Kernel 1.2 1.686000e-05 14.72
Kernel 1.3 1.686780e-05 14.71
Kernel 1.4 1.587955e-05 15.63
Kernel 1.5 1.522170e-05 16.30
Kernel 1.6 5.524410e-05 4.49

650x1300×1300x650
Kernel Time (s) Speedup

cuBLAS 5.270255e-04 Base
Magma 7.940489e-04 -
Cutlass 4.885556e-04 -

Kernel 1.1 1.097866e-03 0.48
Kernel 1.2 1.077016e-03 0.49
Kernel 1.3 1.065280e-03 0.49
Kernel 1.4 1.038286e-03 0.51
Kernel 1.5 8.531341e-04 0.62
Kernel 1.6 7.406615e-04 0.71

1250x2500×2500x1250
Kernel Time (s) Speedup

cuBLAS 1.316508e-03 Base
Magma 1.580323e-03 -
Cutlass 1.835531e-03 -

Kernel 1.1 7.236771e-03 0.18
Kernel 1.2 7.073846e-03 0.19
Kernel 1.3 7.066941e-03 0.19
Kernel 1.4 6.846133e-03 0.19
Kernel 1.5 5.851904e-03 0.22
Kernel 1.6 4.200364e-03 0.31

1850x3700×3700x1850
Kernel Time (s) Speedup

cuBLAS 3.863503e-03 Base
Magma 4.021961e-03 -
Cutlass 4.053717e-03 -

Kernel 1.1 2.284243e-02 0.17
Kernel 1.2 2.245615e-02 0.17
Kernel 1.3 2.241748e-02 0.17
Kernel 1.4 2.172074e-02 0.18
Kernel 1.5 1.825795e-02 0.21
Kernel 1.6 1.186037e-02 0.33

2500x5000×5000x2500
Kernel Time (s) Speedup

cuBLAS 8.646138e-03 Base
Magma 8.845528e-03 -
Cutlass 9.122770e-03 -

Kernel 1.1 6.019382e-02 0.14
Kernel 1.2 5.897396e-02 0.15
Kernel 1.3 5.886967e-02 0.15
Kernel 1.4 5.712306e-02 0.15
Kernel 1.5 4.878342e-02 0.18
Kernel 1.6 2.807671e-02 0.31

Table 4.7: Execution Times and Speedups versus cuBLAS for Selected Matrix Sizes in Figure 4.5
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Figure 4.6: Random Growth Matrix Multiplication (HELIOS)

20x80×80x60
Kernel Time (s) Speedup

cuBLAS 3.187681e-04 Base
Magma 8.094483e-04 -
Cutlass 4.654310e-05 -

Kernel 1.1 1.639695e-05 19.44
Kernel 1.2 1.620260e-05 19.67
Kernel 1.3 1.607265e-05 19.83
Kernel 1.4 1.539845e-05 20.70
Kernel 1.5 1.423195e-05 22.40
Kernel 1.6 4.030835e-05 7.91

260x1040×1040x780
Kernel Time (s) Speedup

cuBLAS 4.081724e-04 Base
Magma 8.965029e-04 -
Cutlass 3.920705e-04 -

Kernel 1.1 5.672858e-04 0.72
Kernel 1.2 5.127146e-04 0.80
Kernel 1.3 5.117773e-04 0.80
Kernel 1.4 4.935519e-04 0.83
Kernel 1.5 3.990912e-04 1.02
Kernel 1.6 3.641580e-04 1.12

500x2000×2000x1500
Kernel Time (s) Speedup

cuBLAS 6.173699e-04 Base
Magma 8.339090e-04 -
Cutlass 7.430282e-04 -

Kernel 1.1 3.226742e-03 0.19
Kernel 1.2 3.163629e-03 0.20
Kernel 1.3 3.167241e-03 0.20
Kernel 1.4 3.094795e-03 0.20
Kernel 1.5 2.651307e-03 0.23
Kernel 1.6 2.240721e-03 0.28

740x2960×2960x2220
Kernel Time (s) Speedup

cuBLAS 1.566608e-03 Base
Magma 1.783317e-03 -
Cutlass 2.159620e-03 -

Kernel 1.1 1.031852e-02 0.15
Kernel 1.2 1.008389e-02 0.16
Kernel 1.3 1.007599e-02 0.16
Kernel 1.4 9.740718e-03 0.16
Kernel 1.5 8.437294e-03 0.19
Kernel 1.6 4.979483e-03 0.31

1000x4000×4000x3000
Kernel Time (s) Speedup

cuBLAS 3.587794e-03 Base
Magma 3.788730e-03 -
Cutlass 4.358139e-03 -

Kernel 1.1 2.600388e-02 0.14
Kernel 1.2 2.540506e-02 0.14
Kernel 1.3 2.538266e-02 0.14
Kernel 1.4 2.458283e-02 0.15
Kernel 1.5 2.132744e-02 0.17
Kernel 1.6 1.140153e-02 0.31

Table 4.8: Execution Times and Speedups versus cuBLAS for Selected Matrix Sizes in Figure 4.6

As observed in Figures 4.4, 4.5 and 4.6, the performance trends are similar to those seen in Figure 4.3.
Kernel 1.6 consistently outperforms the other kernels for larger matrices.

The following figures illustrate the performance of the kernels when handling extremely thin matrix
multiplication.
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Figure 4.7: Extremely Thin Matrix Multiplication 1 (HELIOS)

1x100×100x1
Kernel Time (s) Speedup

cuBLAS 2.306094e-04 Base
Magma 7.846315e-04 -
Cutlass 5.720200e-05 -

Kernel 1.1 1.609795e-05 14.33
Kernel 1.2 1.577330e-05 14.62
Kernel 1.3 1.577265e-05 14.62
Kernel 1.4 1.446040e-05 15.95
Kernel 1.5 1.450180e-05 15.90
Kernel 1.6 4.935695e-05 4.67

12x1200×1200x12
Kernel Time (s) Speedup

cuBLAS 2.909985e-04 Base
Magma 7.705508e-04 -
Cutlass 4.459676e-04 -

Kernel 1.1 8.109390e-05 3.56
Kernel 1.2 7.647685e-05 3.80
Kernel 1.3 7.650700e-05 3.80
Kernel 1.4 6.523880e-05 4.46
Kernel 1.5 5.914245e-05 4.92
Kernel 1.6 3.674766e-04 0.79

25x2500×2500x25
Kernel Time (s) Speedup

cuBLAS 2.136234e-04 Base
Magma 4.188335e-04 -
Cutlass 9.179343e-04 -

Kernel 1.1 1.553242e-04 1.38
Kernel 1.2 1.482717e-04 1.44
Kernel 1.3 1.469067e-04 1.45
Kernel 1.4 1.228667e-04 1.74
Kernel 1.5 1.105505e-04 1.93
Kernel 1.6 7.698886e-04 0.28

36x3600×3600x36
Kernel Time (s) Speedup

cuBLAS 2.148083e-04 Base
Magma 4.284218e-04 -
Cutlass 1.315318e-03 -

Kernel 1.1 2.402200e-04 0.89
Kernel 1.2 2.299845e-04 0.93
Kernel 1.3 2.281640e-04 0.94
Kernel 1.4 1.941776e-04 1.11
Kernel 1.5 1.766797e-04 1.22
Kernel 1.6 1.109534e-03 0.19

50x5000×5000x50
Kernel Time (s) Speedup

cuBLAS 3.310832e-04 Base
Magma 5.512668e-04 -
Cutlass 1.822532e-03 -

Kernel 1.1 3.131439e-04 1.05
Kernel 1.2 2.985052e-04 1.11
Kernel 1.3 2.964971e-04 1.12
Kernel 1.4 2.501058e-04 1.32
Kernel 1.5 2.250437e-04 1.47
Kernel 1.6 1.630874e-03 0.20

Table 4.9: Execution Times and Speedups versus cuBLAS for Selected Matrix Sizes in Figure 4.7

In Figure 4.7, Kernels 1.1 to 1.5 outperform the benchmarking libraries for the outer product of
two extremely thin matrices, with Kernel 1.5 leading in execution speed and being even faster then the
benchmarking libraries. Notably, Kernel 1.6, which generally excels in larger matrix configurations,
shows decreased performance in this scenario.
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Figure 4.8: Extremely Thin Matrix Multiplication 2 (HELIOS)

100x1×1x100
Kernel Time (s) Speedup

cuBLAS 1.697587e-04 Base
Magma 4.073414e-04 -
Cutlass 1.726265e-05 -

Kernel 1.1 1.117585e-05 15.19
Kernel 1.2 1.112365e-05 15.26
Kernel 1.3 1.071265e-05 15.85
Kernel 1.4 1.143750e-05 14.84
Kernel 1.5 1.116295e-05 15.21
Kernel 1.6 2.022535e-05 8.39

1200x12×12x1200
Kernel Time (s) Speedup

cuBLAS 1.968918e-04 Base
Magma 4.132536e-04 -
Cutlass 4.037955e-05 -

Kernel 1.1 6.517600e-05 3.02
Kernel 1.2 6.411310e-05 3.07
Kernel 1.3 6.462995e-05 3.05
Kernel 1.4 6.803665e-05 2.89
Kernel 1.5 6.217610e-05 3.17
Kernel 1.6 9.079455e-05 2.17

2500x25×25x2500
Kernel Time (s) Speedup

cuBLAS 2.656855e-04 Base
Magma 4.802173e-04 -
Cutlass 1.300928e-04 -

Kernel 1.1 3.438627e-04 0.77
Kernel 1.2 3.366878e-04 0.79
Kernel 1.3 3.368511e-04 0.79
Kernel 1.4 3.697045e-04 0.72
Kernel 1.5 3.190552e-04 0.83
Kernel 1.6 3.470997e-04 0.77

3600x36×36x3600
Kernel Time (s) Speedup

cuBLAS 3.728953e-04 Base
Magma 5.948661e-04 -
Cutlass 2.821611e-04 -

Kernel 1.1 1.110312e-03 0.34
Kernel 1.2 1.088539e-03 0.34
Kernel 1.3 1.088801e-03 0.34
Kernel 1.4 1.202460e-03 0.31
Kernel 1.5 1.049321e-03 0.36
Kernel 1.6 8.453369e-04 0.44

5000x50×50x5000
Kernel Time (s) Speedup

cuBLAS 6.520912e-04 Base
Magma 8.741802e-04 -
Cutlass 6.242091e-04 -

Kernel 1.1 2.636753e-03 0.25
Kernel 1.2 2.583512e-03 0.25
Kernel 1.3 2.585248e-03 0.25
Kernel 1.4 2.819973e-03 0.23
Kernel 1.5 2.429158e-03 0.27
Kernel 1.6 1.749444e-03 0.37

Table 4.10: Execution Times and Speedups versus cuBLAS for Selected Matrix Sizes in Figure 4.8

Figure 4.8 shows that Kernels 1.1 to 1.5 maintain superior performance over Kernel 1.6 in multiplying
matrices up to 2500x25× 25x2500. As matrix sizes increase, Kernel 1.6 slightly improves its relative
speed. Notably, Cutlass exhibits the best performance overall, while our kernels remain competitive with
Magma and cuBLAS for a significant portion of the tested matrix sizes.
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Overall, on the device specified in 4.4, our multiplication kernels showcased competitive and adapt-
able performance across diverse matrix configurations. Kernels 1.1 to 1.5 excelled for smaller matrices
up to 1000x1000, while Kernel 1.6 dominated in larger matrix scenarios. Notably, Kernel 1.5 out-
performed benchmarking libraries in extremely thin matrix tests, highlighting the effectiveness of our
optimization strategies across varying computational demands.

4.2.5.2 GP1

The graphs below illustrate the performance of our multiplication kernels on the GP1 device, provid-
ing a comparative analysis against the HELIOS device.

Figures 4.9 to 4.12 present the results for square and various rectangular matrix configurations (wide,
tall, and random growth), respectively.

Figure 4.9: Square Matrix Multiplication (GP1)
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100x100×100x100
Kernel Time (s) Speedup

cuBLAS 4.081895e-04 Base
Magma 6.065724e-04 -
Cutlass 3.129970e-04 -

Kernel 1.1 3.759330e-05 10.86
Kernel 1.2 3.698110e-05 11.04
Kernel 1.3 3.773420e-05 10.82
Kernel 1.4 2.852165e-05 14.31
Kernel 1.5 2.729625e-05 14.95
Kernel 1.6 2.065424e-04 1.98

1300x1300×1300x1300
Kernel Time (s) Speedup

cuBLAS 1.413625e-02 Base
Magma 1.443936e-02 -
Cutlass 1.696084e-02 -

Kernel 1.1 3.106995e-02 0.45
Kernel 1.2 3.009823e-02 0.47
Kernel 1.3 3.010516e-02 0.47
Kernel 1.4 1.868727e-02 0.76
Kernel 1.5 1.750033e-02 0.81
Kernel 1.6 3.075797e-02 0.46

2500x2500×2500x2500
Kernel Time (s) Speedup

cuBLAS 8.954067e-02 Base
Magma 9.055234e-02 -
Cutlass 9.124815e-02 -

Kernel 1.1 2.186193e-01 0.41
Kernel 1.2 2.117630e-01 0.42
Kernel 1.3 2.116808e-01 0.42
Kernel 1.4 1.310077e-01 0.68
Kernel 1.5 1.210994e-01 0.74
Kernel 1.6 1.996307e-01 0.45

3700x3700×3700x3700
Kernel Time (s) Speedup

cuBLAS 2.762528e-01 Base
Magma 2.766087e-01 -
Cutlass 2.793153e-01 -

Kernel 1.1 7.056310e-01 0.39
Kernel 1.2 6.834065e-01 0.40
Kernel 1.3 6.836959e-01 0.40
Kernel 1.4 4.220297e-01 0.65
Kernel 1.5 3.903197e-01 0.71
Kernel 1.6 6.158302e-01 0.45

5000x5000×5000x5000
Kernel Time (s) Speedup

cuBLAS 6.929490e-01 Base
Magma 6.933283e-01 -
Cutlass 7.022150e-01 -

Kernel 1.1 1.735417e+00 0.40
Kernel 1.2 1.681039e+00 0.41
Kernel 1.3 1.680823e+00 0.41
Kernel 1.4 1.036679e+00 0.67
Kernel 1.5 9.616447e-01 0.72
Kernel 1.6 1.539299e+00 0.45

Table 4.11: Execution Times and Speedups versus cuBLAS for Selected Matrix Sizes in Figure 4.9

Figure 4.10: Wide Matrix Multiplication with Incremental Width Expansion (GP1)
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100x50×50x100
Kernel Time (s) Speedup

cuBLAS 4.149670e-04 Base
Magma 7.060486e-04 -
Cutlass 1.770556e-04 -

Kernel 1.1 2.655980e-05 15.62
Kernel 1.2 2.580260e-05 16.08
Kernel 1.3 2.593020e-05 16.00
Kernel 1.4 2.275040e-05 18.24
Kernel 1.5 2.191160e-05 18.94
Kernel 1.6 1.218854e-04 3.40

1300x650×650x1300
Kernel Time (s) Speedup

cuBLAS 7.301026e-03 Base
Magma 7.586739e-03 -
Cutlass 8.555414e-03 -

Kernel 1.1 1.565428e-02 0.47
Kernel 1.2 1.516158e-02 0.48
Kernel 1.3 1.520322e-02 0.48
Kernel 1.4 9.374832e-03 0.78
Kernel 1.5 8.779180e-03 0.83
Kernel 1.6 1.535488e-02 0.48

2500x1250×1250x2500
Kernel Time (s) Speedup

cuBLAS 4.591308e-02 Base
Magma 4.597054e-02 -
Cutlass 4.585048e-02 -

Kernel 1.1 1.094561e-01 0.42
Kernel 1.2 1.060087e-01 0.42
Kernel 1.3 1.059902e-01 0.42
Kernel 1.4 6.605146e-02 0.70
Kernel 1.5 6.103240e-02 0.75
Kernel 1.6 1.008036e-01 0.46

3700x1850×1850x3700
Kernel Time (s) Speedup

cuBLAS 1.387915e-01 Base
Magma 1.391940e-01 -
Cutlass 1.400576e-01 -

Kernel 1.1 3.528659e-01 0.39
Kernel 1.2 3.418122e-01 0.41
Kernel 1.3 3.418136e-01 0.41
Kernel 1.4 2.110148e-01 0.66
Kernel 1.5 1.951196e-01 0.71
Kernel 1.6 3.100027e-01 0.45

5000x2500×2500x5000
Kernel Time (s) Speedup

cuBLAS 3.473582e-01 Base
Magma 3.477916e-01 -
Cutlass 3.517793e-01 -

Kernel 1.1 8.676185e-01 0.40
Kernel 1.2 8.405639e-01 0.41
Kernel 1.3 8.404142e-01 0.41
Kernel 1.4 5.197686e-01 0.67
Kernel 1.5 4.805611e-01 0.72
Kernel 1.6 7.719532e-01 0.45

Table 4.12: Execution Times and Speedups versus cuBLAS for Selected Matrix Sizes in Figure 4.10

Figure 4.11: Tall Matrix Multiplication with Incremental Height Expansion (GP1)
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50x100×100x50
Kernel Time (s) Speedup

cuBLAS 4.107780e-04 Base
Magma 6.443246e-04 -
Cutlass 3.122314e-04 -

Kernel 1.1 2.691720e-05 15.26
Kernel 1.2 2.659260e-05 15.45
Kernel 1.3 2.580000e-05 15.92
Kernel 1.4 2.132940e-05 19.26
Kernel 1.5 2.082000e-05 19.73
Kernel 1.6 1.992544e-04 2.06

650x1300×1300x650
Kernel Time (s) Speedup

cuBLAS 4.100579e-03 Base
Magma 4.355892e-03 -
Cutlass 6.738631e-03 -

Kernel 1.1 7.861985e-03 0.52
Kernel 1.2 7.614052e-03 0.54
Kernel 1.3 7.624921e-03 0.54
Kernel 1.4 4.738672e-03 0.87
Kernel 1.5 4.383328e-03 0.94
Kernel 1.6 1.023081e-02 0.40

1250x2500×2500x1250
Kernel Time (s) Speedup

cuBLAS 2.676374e-02 Base
Magma 2.712074e-02 -
Cutlass 2.600989e-02 -

Kernel 1.1 5.542298e-02 0.48
Kernel 1.2 5.368690e-02 0.50
Kernel 1.3 5.372770e-02 0.50
Kernel 1.4 3.320181e-02 0.81
Kernel 1.5 3.077677e-02 0.87
Kernel 1.6 5.186124e-02 0.52

1850x3700×3700x1850
Kernel Time (s) Speedup

cuBLAS 7.122932e-02 Base
Magma 7.161114e-02 -
Cutlass 7.718647e-02 -

Kernel 1.1 1.770758e-01 0.40
Kernel 1.2 1.715653e-01 0.42
Kernel 1.3 1.715790e-01 0.42
Kernel 1.4 1.060529e-01 0.67
Kernel 1.5 9.804100e-02 0.73
Kernel 1.6 1.554374e-01 0.46

2500x5000×5000x2500
Kernel Time (s) Speedup

cuBLAS 1.807691e-01 Base
Magma 1.798234e-01 -
Cutlass 1.820425e-01 -

Kernel 1.1 4.369935e-01 0.41
Kernel 1.2 4.233834e-01 0.43
Kernel 1.3 4.231624e-01 0.43
Kernel 1.4 2.612904e-01 0.69
Kernel 1.5 2.416050e-01 0.75
Kernel 1.6 3.984211e-01 0.45

Table 4.13: Execution Times and Speedups versus cuBLAS for Selected Matrix Sizes in Figure 4.11

Figure 4.12: Random Growth Matrix Multiplication (GP1)
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20x80×80x60
Kernel Time (s) Speedup

cuBLAS 4.063626e-04 Base
Magma 6.290272e-04 -
Cutlass 2.432350e-04 -

Kernel 1.1 2.327800e-05 17.46
Kernel 1.2 2.261660e-05 17.97
Kernel 1.3 2.280720e-05 17.82
Kernel 1.4 1.830900e-05 22.19
Kernel 1.5 1.789160e-05 22.71
Kernel 1.6 1.420094e-04 2.86

260x1040×1040x780
Kernel Time (s) Speedup

cuBLAS 2.416288e-03 Base
Magma 2.682960e-03 -
Cutlass 2.711322e-03 -

Kernel 1.1 3.272803e-03 0.74
Kernel 1.2 3.149111e-03 0.77
Kernel 1.3 3.148750e-03 0.77
Kernel 1.4 1.980184e-03 1.22
Kernel 1.5 1.781123e-03 1.36
Kernel 1.6 4.566019e-03 0.53

500x2000×2000x1500
Kernel Time (s) Speedup

cuBLAS 9.579462e-03 Base
Magma 9.882397e-03 -
Cutlass 1.040493e-02 -

Kernel 1.1 2.144290e-02 0.45
Kernel 1.2 2.077706e-02 0.46
Kernel 1.3 2.077181e-02 0.46
Kernel 1.4 1.280077e-02 0.75
Kernel 1.5 1.191610e-02 0.80
Kernel 1.6 2.326026e-02 0.41

740x2960×2960x2220
Kernel Time (s) Speedup

cuBLAS 3.159405e-02 Base
Magma 3.194780e-02 -
Cutlass 3.083724e-02 -

Kernel 1.1 6.904851e-02 0.46
Kernel 1.2 6.676215e-02 0.47
Kernel 1.3 6.676156e-02 0.47
Kernel 1.4 4.117048e-02 0.77
Kernel 1.5 3.805485e-02 0.83
Kernel 1.6 6.135010e-02 0.51

1000x4000×4000x3000
Kernel Time (s) Speedup

cuBLAS 7.409793e-02 Base
Magma 7.448496e-02 -
Cutlass 7.285081e-02 -

Kernel 1.1 1.681367e-01 0.44
Kernel 1.2 1.626889e-01 0.46
Kernel 1.3 1.629660e-01 0.46
Kernel 1.4 1.003698e-01 0.74
Kernel 1.5 9.275250e-02 0.80
Kernel 1.6 1.537992e-01 0.48

Table 4.14: Execution Times and Speedups versus cuBLAS for Selected Matrix Sizes in Figure 4.12

The figures 4.9 to 4.12 exhibit very similar performance, warranting a combined analysis. Unlike
on HELIOS, Kernel 1.6 is not the best performer on GP1. Instead, Kernels 1.4 and 1.5 lead our im-
plementations, outperforming benchmarking libraries for smaller matrices and maintaining competitive
performance for larger matrices. Kernel 1.5, with added padding, consistently surpasses Kernel 1.4.

Below are Figures 4.13 and 4.14 illustrating the performance for extremely thin matrices.

Figure 4.13: Extremely Thin Matrix Multiplication 1 (GP1)
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1x100×100x1
Kernel Time (s) Speedup

cuBLAS 4.174446e-04 Base
Magma 6.911668e-04 -
Cutlass 3.124926e-04 -

Kernel 1.1 2.649900e-05 15.75
Kernel 1.2 2.580800e-05 16.18
Kernel 1.3 2.575120e-05 16.21
Kernel 1.4 2.146280e-05 19.45
Kernel 1.5 2.161760e-05 19.31
Kernel 1.6 1.969714e-04 2.12

12x1200×1200x12
Kernel Time (s) Speedup

cuBLAS 4.329318e-04 Base
Magma 7.036666e-04 -
Cutlass 3.117458e-03 -

Kernel 1.1 1.806498e-04 2.40
Kernel 1.2 1.742016e-04 2.49
Kernel 1.3 1.722254e-04 2.51
Kernel 1.4 1.154104e-04 3.75
Kernel 1.5 1.101730e-04 3.93
Kernel 1.6 1.811358e-03 0.24

25x2500×2500x25
Kernel Time (s) Speedup

cuBLAS 5.121798e-04 Base
Magma 7.989602e-04 -
Cutlass 6.497798e-03 -

Kernel 1.1 3.714784e-04 1.38
Kernel 1.2 3.564402e-04 1.44
Kernel 1.3 3.557368e-04 1.44
Kernel 1.4 2.360404e-04 2.17
Kernel 1.5 2.235238e-04 2.29
Kernel 1.6 3.777255e-03 0.14

36x3600×3600x36
Kernel Time (s) Speedup

cuBLAS 5.671834e-04 Base
Magma 9.544672e-04 -
Cutlass 9.333862e-03 -

Kernel 1.1 5.358032e-04 1.06
Kernel 1.2 5.151700e-04 1.10
Kernel 1.3 5.111838e-04 1.11
Kernel 1.4 3.377816e-04 1.68
Kernel 1.5 3.206178e-04 1.77
Kernel 1.6 5.394775e-03 0.11

50x5000×5000x50
Kernel Time (s) Speedup

cuBLAS 8.364764e-04 Base
Magma 1.084482e-03 -
Cutlass 1.297283e-02 -

Kernel 1.1 7.696240e-04 1.09
Kernel 1.2 7.404746e-04 1.13
Kernel 1.3 7.341410e-04 1.14
Kernel 1.4 5.045064e-04 1.66
Kernel 1.5 4.789112e-04 1.75
Kernel 1.6 7.755272e-03 0.11

Table 4.15: Execution Times and Speedups versus cuBLAS for Selected Matrix Sizes in Figure 4.13

Figure 4.14: Extremely Thin Matrix Multiplication 2 (GP1)
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100x1×1x100
Kernel Time (s) Speedup

cuBLAS 4.092408e-04 Base
Magma 6.709350e-04 -
Cutlass 3.981080e-05 -

Kernel 1.1 1.291980e-05 31.68
Kernel 1.2 1.275700e-05 32.08
Kernel 1.3 1.289480e-05 31.74
Kernel 1.4 1.475120e-05 27.74
Kernel 1.5 1.449440e-05 28.23
Kernel 1.6 4.254640e-05 9.62

1200x12×12x1200
Kernel Time (s) Speedup

cuBLAS 5.315040e-04 Base
Magma 7.750456e-04 -
Cutlass 2.056302e-04 -

Kernel 1.1 2.610522e-04 2.04
Kernel 1.2 2.516972e-04 2.11
Kernel 1.3 2.686534e-04 1.98
Kernel 1.4 2.326226e-04 2.28
Kernel 1.5 1.978738e-04 2.69
Kernel 1.6 4.342042e-04 1.22

2500x25×25x2500
Kernel Time (s) Speedup

cuBLAS 1.635547e-03 Base
Magma 1.861891e-03 -
Cutlass 1.262913e-03 -

Kernel 1.1 2.238492e-03 0.73
Kernel 1.2 2.152749e-03 0.76
Kernel 1.3 2.152854e-03 0.76
Kernel 1.4 1.702564e-03 0.96
Kernel 1.5 1.577944e-03 1.04
Kernel 1.6 2.884250e-03 0.57

3600x36×36x3600
Kernel Time (s) Speedup

cuBLAS 3.487033e-03 Base
Magma 3.840732e-03 -
Cutlass 3.202283e-03 -

Kernel 1.1 6.637966e-03 0.53
Kernel 1.2 6.371678e-03 0.55
Kernel 1.3 6.371485e-03 0.55
Kernel 1.4 5.210599e-03 0.67
Kernel 1.5 4.822324e-03 0.72
Kernel 1.6 8.291719e-03 0.42

5000x50×50x5000
Kernel Time (s) Speedup

cuBLAS 8.505293e-03 Base
Magma 8.867052e-03 -
Cutlass 8.220526e-03 -

Kernel 1.1 1.779696e-02 0.42
Kernel 1.2 1.709922e-02 0.50
Kernel 1.3 1.709909e-02 0.50
Kernel 1.4 1.337232e-02 0.64
Kernel 1.5 1.236803e-02 0.69
Kernel 1.6 2.063878e-02 0.41

Table 4.16: Execution Times and Speedups versus cuBLAS for Selected Matrix Sizes in Figure 4.14

Figure 4.13 is remarkable because it demonstrates that Kernels 1.4 and 1.5 outperform not only
our implementations, but also the benchmarking libraries. Figure 4.14 further highlights the advantage
of Kernels 1.4 and 1.5, which are faster for smaller matrices and maintain competitiveness with the
benchmarking libraries for larger sizes.

Overall, on the GP1 device, Kernel 1.5 emerges as the fastest, outperforming the other kernels and
benchmarking libraries in most scenarios. This highlights the effectiveness of our optimization strategies,
particularly for extremely thin matrices. Kernel 1.5’s consistent performance demonstrates its adaptabil-
ity and efficiency across various matrix configurations. In comparison to the HELIOS device, Kernel
1.5 on the GP1 device shows a significant improvement, being more competitive with the benchmarking
libraries and often surpassing them in performance, especially for smaller and extremely thin matrices.
This difference underscores the impact of architectural variations, as Kernel 1.6, which utilizes register
blocking, was the best on HELIOS. The GP1 architecture appears to handle these optimizations differ-
ently, favoring the tiling technique employed in Kernel 1.5.

4.2.6 Dense Matrix Transposition

This subsection evaluates the performance of our dense matrix transposition kernels against Magma
on both the HELIOS and GP1. Each graph in this subsection visually illustrates the performance of
different kernels across a range of matrix sizes. Beneath each graph, tables are provided that detail the
execution times and the speedup factors versus Magma for selected matrix sizes.

4.2.6.1 HELIOS

The graph below evaluates the performance of our transposition kernels, including Kernel 2.4 for
in-place transposition, against the benchmarking libraries during the transposition of square matrices.
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Figure 4.15: Square Matrix Transposition (HELIOS)

100x100
Kernel Time (s) Speedup

MAGMA 6.360937e-04 Base
Kernel 2.1 1.326925e-05 47.94
Kernel 2.2 1.236090e-05 51.46
Kernel 2.3 1.880590e-05 33.82
Kernel 2.4 1.037435e-05 61.31

5000x5000
Kernel Time (s) Speedup

MAGMA 1.133390e-03 Base
Kernel 2.1 1.714383e-03 0.66
Kernel 2.2 1.591544e-03 0.71
Kernel 2.3 9.660831e-04 1.17
Kernel 2.4 6.838526e-04 1.66

10000x10000
Kernel Time (s) Speedup

MAGMA 3.093129e-03 Base
Kernel 2.1 7.205122e-03 0.43
Kernel 2.2 6.498019e-03 0.48
Kernel 2.3 3.821392e-03 0.81
Kernel 2.4 2.667357e-03 1.16

Table 4.17: Execution Times and Speedups versus MAGMA for Selected Matrix Sizes in Figure 4.15

Figure 4.15 demonstrates that all kernels significantly outperform Magma for matrices up to approx-
imately 4000×4000. Beyond this size, Kernels 2.1 and 2.2 experience a slowdown, whereas Kernels 2.3
and 2.4 maintain competitive performance, with Kernel 2.4 slightly outpacing Magma, highlighting the
efficiency of its in-place transposition implementation.

Subsequent figures, 4.16 and 4.17, illustrate the performance of rectangular matrices.
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Figure 4.16: Wide Matrix Transposition with Incremental Width Expansion (HELIOS)

50x100
Kernel Time (s) Speedup

MAGMA 6.054758e-04 Base
Kernel 2.1 1.348820e-05 44.89
Kernel 2.2 1.374270e-05 44.06
Kernel 2.3 1.807510e-05 33.49

2500x5000
Kernel Time (s) Speedup

MAGMA 8.113358e-04 Base
Kernel 2.1 7.742828e-04 1.05
Kernel 2.2 7.429002e-04 1.09
Kernel 2.3 3.551663e-04 2.28

5000x10000
Kernel Time (s) Speedup

MAGMA 1.725197e-03 Base
Kernel 2.1 3.379470e-03 0.51
Kernel 2.2 3.066386e-03 0.56
Kernel 2.3 1.371727e-03 1.26

Table 4.18: Execution Times and Speedups versus MAGMA for Selected Matrix Sizes in Figure 4.16
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Figure 4.17: Tall Matrix Transposition with Incremental Height Expansion (HELIOS)

100x50
Kernel Time (s) Speedup

MAGMA 7.957498e-04 Base
Kernel 2.1 1.347945e-05 59.03
Kernel 2.2 1.281065e-05 62.11
Kernel 2.3 1.792200e-05 44.40

5000x2500
Kernel Time (s) Speedup

MAGMA 8.287412e-04 Base
Kernel 2.1 8.744578e-04 0.95
Kernel 2.2 8.440223e-04 0.98
Kernel 2.3 3.099267e-04 2.67

10000x5000
Kernel Time (s) Speedup

MAGMA 1.856964e-03 Base
Kernel 2.1 3.835175e-03 0.48
Kernel 2.2 3.554660e-03 0.52
Kernel 2.3 1.191753e-03 1.56

Table 4.19: Execution Times and Speedups versus MAGMA for Selected Matrix Sizes in Figure 4.17

Both Figures 4.16 and 4.17 show that Kernel 2.3 consistently outperforms Magma, making it the
most optimized solution for rectangular matrix transpositions.

Lastly, the performance of very thin matrices is tested in Figure 4.18.
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Figure 4.18: Extremely Thin Matrix Transposition (HELIOS)

100x1
Kernel Time (s) Speedup

MAGMA 5.122348e-04 Base
Kernel 2.1 1.204925e-05 42.51
Kernel 2.2 1.102865e-05 46.45
Kernel 2.3 1.823005e-05 28.10

5000x50
Kernel Time (s) Speedup

MAGMA 6.794136e-04 Base
Kernel 2.1 2.548490e-05 26.66
Kernel 2.2 2.542265e-05 26.72
Kernel 2.3 1.946810e-05 34.90

10000x100
Kernel Time (s) Speedup

MAGMA 5.189014e-04 Base
Kernel 2.1 6.009410e-05 8.63
Kernel 2.2 5.970145e-05 8.69
Kernel 2.3 3.311470e-05 15.67

Table 4.20: Execution Times and Speedups versus MAGMA for Selected Matrix Sizes in Figure 4.18

Figure 4.18 reveals that Kernels 2.1 and 2.2 are slightly more efficient than Kernel 2.3 for matrices up
to the size of approximately 4000× 40, after which Kernel 2.3 becomes faster. All kernels demonstrate
superior performance compared to Magma, emphasizing their effectiveness across varying dimensions
and configurations.

In conclusion, on the device specified in 4.4, the performance analysis reveals that our CUDA trans-
position kernels are highly effective, particularly in specialized configurations. Kernels 2.3 to 2.4 gener-
ally outperform the Magma, especially notable in Kernel 2.4’s superior in-place transposition for large
square matrices. Kernel 2.3 excels in managing rectangular matrices, consistently delivering optimal
performance. Even in challenging conditions with extremely thin matrices, our kernels maintain a com-
petitive edge.

4.2.6.2 GP1

The graphs below illustrate the performance of our transposition kernels on the GP1 device, allowing
for a comparative analysis against the HELIOS device.

Figures below present the results for square and various rectangular matrix configurations.
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Figure 4.19: Square Matrix Transposition (GP1)

100x100
Kernel Time (s) Speedup

MAGMA 6.626254e-04 Base
Kernel 2.1 1.344615e-05 49.27
Kernel 2.2 1.357220e-05 48.82
Kernel 2.3 2.109340e-05 31.41
Kernel 2.4 1.195765e-05 55.41

5000x5000
Kernel Time (s) Speedup

MAGMA 2.071773e-03 Base
Kernel 2.1 6.139651e-03 0.34
Kernel 2.2 5.266100e-03 0.39
Kernel 2.3 2.415373e-03 0.86
Kernel 2.4 1.937911e-03 1.07

10000x10000
Kernel Time (s) Speedup

MAGMA 8.081182e-03 Base
Kernel 2.1 2.396712e-02 0.34
Kernel 2.2 1.956313e-02 0.41
Kernel 2.3 9.526299e-03 0.85
Kernel 2.4 7.535703e-03 1.07

Table 4.21: Execution Times and Speedups versus MAGMA for Selected Matrix Sizes in Figure 4.19

In Figure 4.19, the transposition of square matrices shows that all kernels perform comparably, main-
taining consistent efficiency. Kernel 2.4, which performs an in-place transposition, is the best, outper-
forming the others.
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Figure 4.20: Wide Matrix Transposition with Incremental Width Expansion (GP1)

50x100
Kernel Time (s) Speedup

MAGMA 6.196810e-04 Base
Kernel 2.1 1.221605e-05 50.73
Kernel 2.2 1.205160e-05 51.42
Kernel 2.3 1.759010e-05 35.23

2500x5000
Kernel Time (s) Speedup

MAGMA 1.229944e-03 Base
Kernel 2.1 2.748773e-03 0.44
Kernel 2.2 2.405007e-03 0.51
Kernel 2.3 7.931828e-04 1.55

5000x10000
Kernel Time (s) Speedup

MAGMA 3.236129e-03 Base
Kernel 2.1 1.213547e-02 0.27
Kernel 2.2 9.921461e-03 0.33
Kernel 2.3 3.080433e-03 1.05

Table 4.22: Execution Times and Speedups versus MAGMA for Selected Matrix Sizes in Figure 4.20
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Figure 4.21: Tall Matrix Transposition with Incremental Height Expansion (GP1)

100x50
Kernel Time (s) Speedup

MAGMA 6.451399e-04 Base
Kernel 2.1 1.375110e-05 46.92
Kernel 2.2 1.380395e-05 46.74
Kernel 2.3 2.015850e-05 32.00

5000x2500
Kernel Time (s) Speedup

MAGMA 1.402077e-03 Base
Kernel 2.1 3.408027e-03 0.41
Kernel 2.2 2.933987e-03 0.48
Kernel 2.3 8.064713e-04 1.74

10000x5000
Kernel Time (s) Speedup

MAGMA 3.702901e-03 Base
Kernel 2.1 1.323696e-02 0.28
Kernel 2.2 1.133947e-02 0.33
Kernel 2.3 3.268887e-03 1.13

Table 4.23: Execution Times and Speedups versus MAGMA for Selected Matrix Sizes in Figure 4.21

In Figures 4.20 and 4.21, the kernels maintain similar performance levels, indicating that our imple-
mentations handle rectangular matrices effectively on the GP1 device.
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Figure 4.22: Extremely Thin Matrix Transposition (GP1)

100x1
Kernel Time (s) Speedup

MAGMA 6.599223e-04 Base
Kernel 2.1 1.247475e-05 52.90
Kernel 2.2 1.215480e-05 54.29
Kernel 2.3 2.063755e-05 31.98

5000x50
Kernel Time (s) Speedup

MAGMA 8.866718e-04 Base
Kernel 2.1 4.523585e-05 19.60
Kernel 2.2 4.571545e-05 19.40
Kernel 2.3 2.449925e-05 36.19

10000x100
Kernel Time (s) Speedup

MAGMA 6.634437e-04 Base
Kernel 2.1 2.004289e-04 3.31
Kernel 2.2 1.873964e-04 3.54
Kernel 2.3 4.526190e-05 14.66

Table 4.24: Execution Times and Speedups versus MAGMA for Selected Matrix Sizes in Figure 4.22

Figure 4.22 examines the performance for extremely thin matrices. Here, for smaller matrices, Ker-
nels 2.1 and 2.2 outperform Kernel 2.3, but for larger sizes, Kernel 2.3 becomes significantly faster. All
kernels demonstrate consistent efficiency, maintaining competitiveness with the benchmarking libraries.

Overall, the GP1 device shows that our transposition kernels exhibit performance characteristics sim-
ilar to those on the HELIOS device. This suggests that the architectural differences between GP1 and
HELIOS do not significantly impact the performance of our transposition kernels. Kernel 2.3, which
excelled in rectangular matrix transpositions on HELIOS, and Kernel 2.4, known for its in-place trans-
position efficiency, maintain competitive performance on GP1.
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Conclusion

The goal of this bachelor’s degree project was to explore and implement efficient parallel algorithms
for dense matrix operations, focusing specifically on multiplication and transposition. The project suc-
cessfully developed a comprehensive suite of optimized kernels, significantly improving upon initial
implementations (Kernel 1.1 and Kernel 2.1) by employing advanced techniques and methods.

These kernels were tested on both Tesla (HELIOS) and Pascal (GP1) architectures, confirming
their accuracy and efficiency across different hardware platforms. Performance comparisons with well-
established GPU libraries from NVIDIA demonstrated that our kernels exhibit competitive performance.
In particular, the multiplication kernels showed superior performance in smaller matrix sizes across both
platforms. Additionally, these kernels exhibited significantly better performance on the Pascal architec-
ture compared to Helios, underscoring the impact of architectural differences. In contrast, the transpo-
sition kernels demonstrated consistent performance on both architectures, nearly always outperforming
Magma.

The multiplication Kernel 1.5 has been developed into a function capable of handling both stan-
dard matrix multiplication and multiplication with transposed matrices. Additionally, functions for both
in-place and out-of-place matrix transposition have been developed from Kernel 2.3 and 2.4. These func-
tionalities, along with the entire benchmarking environment and all developed kernels, will be added to
the TNL library following this work’s publication. The update will also include documentation with
practical usage examples.

In conclusion, the algorithms developed in this thesis not only enhance the functionality of the TNL
library but also contribute valuable tools to the field of computational science.
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Appendix A

Acronyms

API Application Programming Interface

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

GPU Graphics Processing Unit

HIP Heterogeneous-compute Interface for Portability

TNL Template Numerical Library

WMMA Warp-level Matrix Multiply Accumulate
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Appendix B

Profiling Tables

Metric Kernel 1.1 (Avg) Kernel 1.2 (Avg) Kernel 1.3 (Avg) Kernel 1.4 (Avg) Kernel 1.5 (Avg) Kernel 1.6 (Avg)
Instr. per Warp 4626.0 4311.1 4235.0 2591.5 2592.5 24903
Global Load Thr. (GB/s) 127.80 132.90 132.17 210.23 227.18 47.254
Global Store Thr. (GB/s) 4.4548 4.6326 4.6071 7.3284 7.9193 4.3926
SM Load Trans. per Req. 1.940085 2.000000 2.000000 2.000000 1.500000 4.500000
SM Store Trans. per Req. 1.496247 1.984820 1.984820 2.000000 2.000000 5.000000
Warp Exec. Eff. (%) 100.00 100.00 100.00 100.00 100.00 100.00
Issued IPC 0.407371 0.393491 0.383543 0.375813 0.406589 0.158391
Achieved Occupancy 0.846299 0.846157 0.846527 0.840715 0.839794 0.253719
SM Utilization Low (2) Low (2) Low (2) Low (3) Low (2) Low (1)
DRAM Read Thr. (GB/s) 8.9935 10.071 8.9339 20.751 22.791 2.7453
DRAM Write Thr. (GB/s) 1.1111 1.1635 1.1513 1.8462 1.9788 1.5252

Table B.1: Comparative Performance Metrics of Dense Matrix Multiplication Kernels

Metric Kernel 2.1 (Avg) Kernel 2.2 (Avg) Kernel 2.3 (Avg) Kernel 2.4 (Avg)
Instr. per Warp 161.259375 168.161458 39.299805 45.000000
Global Load Thr. (GB/s) 226.185 237.51 329.33 314.06
Global Store Thr. (GB/s) 226.185 237.51 164.66 157.03
SM Load Trans. per Req. 1.996032 2.000000 2.000000 2.000000
SM Store Trans. per Req. 1.988281 1.998677 1.123047 2.000000
Warp Exec. Eff. (%) 99.71 99.89 99.97 100.0
Issued IPC 0.255455 0.285753 0.799932 0.398982
Achieved Occupancy 0.716286 0.645097 0.761484 0.632813
SM Utilization Low (1) Low (1) Low (1) Low (1)
DRAM Read Thr. (GB/s) 88.771 87.755 79.054 49.225
DRAM Write Thr. (GB/s) 86.960 84.177 77.767 72.069

Table B.2: Comparative Performance Metrics of Dense Matrix Transposition Kernels
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