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Introduction

The field of graph theory is a crucial part of modern computer science and many other seemingly
unrelated fields. This is due to its immense versatility and ability to model various problems. Graphs are
without a doubt an extremely useful tool. It is then no surprise that the field is well studied and actively
developing. An obvious way to move forward is to employ a parallel approach and focus on parallel
solutions to graph problems. This has been, of course, the direction in which the field is moving for
some time now.

The goal of this thesis is to select, describe, test, implement, and benchmark parallel algorithms for
solving common graph problems - finding maximal independent set, (strongly) connected components,
and minimal spanning tree (forest). Final solutions are to be implemented as a part of TNL library and
utilize parallel computing on a GPU to be more efficient.

The first chapter lays out graph theory, TNL library, and GPU programming background relevant to
this work. Following chapters (2 - 5) each focus on a given graph problem and its solution. Chapters
6 and 7 comment on unit testing, the benchmarking process, and results, followed by conclusion and
discussion regarding the thesis as a whole.
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Chapter 1

Preliminaries

1.1 Graphs

This section briefly lays out the terminology and explains terms later used when formulating graph
problems and their solutions.

(Directed) Graph

A graph is an ordered set G = (V,E) where V is a set of vertices. An element of E, called an edge, is an
ordered unique pair of vertices (u, v) | u, v ∈ V. This edge denotes a directed connection from u to v.

Undirected Graph

An undirected graph is defined as a graph G = (V,E) where E contains unordered unique pairs of vertices
{u, v} | u, v ∈ V. This means that an edge {u, v} ∈ E denotes a bi-directional connection between u and v.
If {u, v} ∈ E, then there is an edge from u to v and v to u.

Weighted Undirected Graph

A weighted undirected graph is an ordered set G = (V,E, w : E → N+) where V is a set of vertices, E
is a set of undirected edges, and w is a weight function. w is a projection of edges onto positive integers,
assigning each edge {u, v} ∈ E weight w({u, v}) ∈ N+.

Graph Weight Sum

Suppose there is a weighted undirected graph G = (V,E, w : E → N+). Let us define e = {u, v} and∑
e∈E w(e) =W as the sum of weights of all edges on G.

Vertex Adjacency

Suppose there is an undirected graph G = (V,E). Vertices u, v ∈ V are adjacent (neighbours) if and only
if they are connected by a single direct edge {u, v} ∈ E. We show this using the notation u ∼ v.
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Vertex Reachability

Suppose there is a directed or undirected graph G = (V,E). Vertices u, v ∈ V are mutually reachable if
and only if there exists a sequence of edges ((u, a), (a, b), . . . , (x, v)) ∈ E. We consider every vertex to be
reachable by itself.

Vertex Degree

Suppose there is a directed or undirected graph G = (V,E). For every vertex n ∈ V, we define degree
d(n) as the number of vertices adjacent to it (ie. reachable over a single direct edge).

Tree

Suppose there is an undirected graph G = (V,E). G is a tree if and only if for any two vertices u, v, there
exists exactly one path (sequence of edges) that connects them.

Spanning Tree

Suppose there is an undirected graph G = (V,E). A subgraph T = (V′,E′) is a spanning tree if and only
if it is a tree and V = V′.

Adjacency Matrix

Let us represent graph G with n vertices by a matrix AG of size n×n where Auv , 0 if and only if (u, v) ∈
E. For a weighted graph H = (V,E, w : E→ N+), the value Auv = i denotes the weight of (u, v) ∈ E.

1.2 GPU

GPU (Graphics Processing Unit) is a hardware component initially developed for accelerated image
rendering and computer graphics. While CPUs have been optimized extensively for mostly sequential
execution with highly sophisticated tools such as branch predicting, GPUs excel at parallel workloads.
This is because GPUs allocate much more of their resources to the actual data processing, at the cost
of finer control over each individual core it has (see figure 1.1). This makes GPUs ideal for executing
thousands of threads at once in parallel [Nvi24]. They can be heavily utilized when solving problems
that are embarrassingly parallel (well suited for parallel execution).

Note that a GPU, being its own hardware component, usually has its own onboard memory and memory
space separated from that of a CPU (DRAM and cache memory in figure 1.1). This is important to con-
sider, as to reap the benefits of executing code in parallel on the GPU, you want to mostly work within
this space. Otherwise, you will face the slowdown caused by frequent communication between CPU and
GPU, which is much slower than just local communication between parts of GPU.
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Figure 1.1: Comparison of CPU and GPU architecture. Note the much higher number of cores a single
control unit oversees in GPUs [Nvi24]

1.3 CUDA

CUDA is a general-purpose parallel computing platform and programming model made by Nvidia
for Nvidia GPUs [Nvi24]. Its goal is to allow, simplify, and improve the development of applications
leveraging parallelism. It supports several high-level programming languages, including C++. CUDA
abstracts technical details, such as hardware specifications, to create a programming model with a low
learning curve. It also allows for scalability and enables a compiled CUDA program to execute on any
number of streaming multiprocessors.

When working with CUDA, the user will write a kernel to be executed on the GPU. This is simply a
function that, when called, is executed N times in parallel by N CUDA threads. These threads have
unique IDs, which can be used for directly assigning tasks to them. Having this sort of access to them
allows us to essentially map our problems onto our GPU’s computing units. Threads can be grouped into
blocks with shared memory. These blocks can in turn also be grouped into block clusters with shared
memory, which lay on a cluster grid with the global memory (see figure 1.2).
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Figure 1.2: CUDA Memory Hierarchy [Nvi24]

1.4 TNL

TNL is an open-source library with the goal of creating a user-friendly and flexible toolkit for the
development of efficient numerical solvers and HPC algorithms. It is predominantly written in C++ and
leverages templates, lambda functions, abstraction, and other modern paradigms. It also provides native
support for modern hardware architectures and allows the user to manage and write code for different
memory spaces through a single unified interface. In turn, this allows for the creation of code capable
of running on multiple hardware architectures and memory spaces, all of which remains mostly hidden
from the user behind a layer of abstraction, making the work easier and much less tedious. In an ideal
scenario, this allows the user to write hardware-agnostic code. TNL supports parallelism on both GPU
(using CUDA, HIP, or ROCm) and CPU (using OpenMP) [OKF21] [KOFv22].

1.4.1 TNL data structures

TNL contains a vast number of structures for storing data. Some structures relevant in the context of
this work are:

• TNL::Containers::Vector

• TNL::Matrices::SparseMatrix
11



• TNL::Graphs:Graph

These are templated classes defined within TNL and are used in the algorithm implementations described
in this work.

Vector has 3 template parameters:

• Real being the type of data stored in Vector

• Device being the device where the Vector is allocated (Sequential or Host for CPU, CUDA for
GPU)

• Index being the type used for indexing the elements of Vector

SparseMatrix is one of two main matrix representations in TNL (other one being DenseMatrix). As
the name suggests, it is aimed at storing matrices with a small number of non-zero elements relative to
the matrix size. In TNL, various formats for the storage of SparseMatrix non-zero segments exist.
When working with sparse matrices, using SparseMatrix is more efficient in terms of storage.

Since our work revolves around graphs, and their matrix representation is usually sparse, we decided to
focus on this data structure in our implementations. Furthermore, code written to work with SparseMatrix
representation should also handle DenseMatrix.

Graph has 2 template parameters:

• Matrix being the type of Matrix used for the representation of the graph.

• GraphType being the type of graph (Undirected or Directed)

1.4.2 TNL Views

Another important part of TNL worth talking about is the way it handles passing data between de-
vices. Since we are free to allocate objects to different memory spaces (see section 1.2), the need for
handling cross-device references arises. Deep copy of said object could simply be created on the device
we want to access it from but this is very slow and won’t update the original on the other device. TNL
overcomes this issue via View types defined for its containers. View is a kind of lightweight reference
object which makes only a shallow copy of itself in copy constructor. It can be captured by value in
lambda functions, making it the primary (and for us only) means of modifying data of a given object on
a different device.

For most intents and purposes, View serves the role of a reference to an object across devices and can
be used to change the object. Copying View between devices is much cheaper than doing the same with
the whole object. This allows for a very efficient way of working across memory spaces. User must only
ensure that the View is still valid and referencing said object. Causing re-allocation, for example when
resizing the object, invalidates its View [Tem24].

1.4.3 Lambda functions

The process of writing code for the GPU and for the CPU is vastly different in general. For GPUs,
we must often write lengthy kernels with a lot of necessary code to configure them. This adds a lot of
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lines to it every time we need to sum up some data, for example. Debugging kernels is also a chore.

As was already stated, TNL aims to abstract as many differences between hardware architectures and
memory spaces from the user as possible. One way they do this is by offering skeletons or patterns of
frequently used routines or functions. These are then combined with user defined lambda functions to
perform even fairly contextual tasks with ease. Writing a lambda function is much less tedious than
configuring a kernel. Furthermore, code implemented using this approach can be executed on both GPU
and CPU. This also allows for easier debugging, as we can fall back onto the CPU execution for it. Then,
modifying the code to work on both devices usually requires little to no changes. Note that inside of
lambda functions, we must use View of an object to interact with it.

The main routine skeleton (in TNL::Algorithms namespace) relevant to this work is parallelFor.
It is a parallel for-loop function for one dimensional range with integer indexing. A general way of using
it would be

parallelFor< Device >( begin, end, f );

where Device specifies whether the code is executed on the GPU or CPU, begin and end denote
the range on which parallelFor is performed, and f is the user-defined lambda function. Based on
Device, this routine is then called from either a CUDA kernel, processed by OpenMP threads, or done
sequentially. The following code snippet tries to show a common usage of parallelFor - performing
an operation on vectors in parallel.

1 /*
2 ...
3 TNL vectors 'v1', 'v2', and 'result' defined with same size
4 'Device' defined
5 ...
6 */
7 auto size = v1.getSize();
8 //fetching views
9 auto v1_view = v1.getView();

10 auto v2_view = v2.getView();
11 auto result_view = result.getView();
12

13 auto f = [=] __cuda_callable__ (int i) mutable {
14 result_view[i] = v1_view[i] + v2_view[i];
15 };
16 TNL::Algorithms::parallelFor<Device>(0,size,f);

Here, __cuda_callable__ is an umbrella term defined by TNL. When creating a lambda function, we
need to specify the Device it should be executed on. Since we aim for all devices, this term covers
all 3 - Sequential, Host, and CUDA. Based on what Device we provide in the parallelFor call, an
appropriate term is slotted in.

reduce is another commonly utilized routine. It is a way to reduce some set of elements into just a
single one using user-specified operation on per-element basis. It is usually called like

reduce< Device >( begin, end, fetch, reduction, id );

where Device, begin, and end serve the same purpose as for parallelFor. User-defined lambda
functions fetch and reduction specify the way we want to capture values and the reduction operation
used on them, respectively. When using custom reduction functions, we also need to specify the identity
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element id. It simply denotes the identity for given reduction operation, such as 1 for multiplication or
0 for addition. In the snippet below you can see how reduction would be used to sum vector elements.

1 /*
2 ...
3 'v1' and 'v1_view' defined
4 'Device' defined
5 ...
6 */
7 auto size = v1.getSize();
8 auto fetch = [=] __cuda_callable__ (int i) -> double {
9 return v1_view[i];

10 };
11

12 auto reduce = [] __cuda_callable__ (const double& a, const double& b) {
13 return (a + b);
14 }
15 double sum = TNL::Algorithms::reduce<Device>(0,size,fetch,reduce,0);

TNL also contains some baked-in reductions, such as TNL::Plus{}, TNL::Min{}, TNL::Max{}, and
others with identity elements already specified, so you can simply call them like

reduce< Device >( begin, end, fetch, predefined_reduction );

1.4.4 Breadth first search

Later in our implementation, we lean on some graph-specific functions and routines already present
in the TNL library. One such function, utilized in section 3.5, is Breadth-first-search [HT73], also
referred to as BFS. In the context of our work, it is used to traverse and explore graphs from a given
starting vertex. Note that Depth-first-search could be used in its place, but due to it being inherently
sequential [Rei85], we are much better off with BFS. In TNL, it is in TNL::Graphs namespace and is
called like

breadthFirstSearch( graph, start, distances );

where graph is self explanatory, start is index of the vertex we want to start searching from. Results
are stored in distances vector in the form of relative distance of each vertex from the start vertex.
For unweighted graphs, each edge gets a weight of 1. The start vertex itself gets a distance of 0 in the
distances vector. Unreachable vertices get -1. It implicitly follows that the size of distances vector
must be equal to the number of vertices of graph (see figure 1.3).

Figure 1.3: Running BFS on the following graph, starting from vertex 1, results in the distances vector
shown below

1 2 3

4 5 6

0, 1, 2, 2, 3, −1

( )
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In our code, we use breadthFirstSearchTransposed, which is a slightly modified version of the
breadthFirstSearch function. It takes the internal adjacency matrix representation of the graph as a
parameter.
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Chapter 2

Connected Components

2.1 Theory

Suppose an undirected graph G = (V,E). Connected Component CC is defined as a subset of V in
which all vertices are mutually reachable. This can be expressed as

CC ⊆ V where ∀u, v ∈ CC | ({u, x1}, {x1, x2} . . . {xn, v}) ∈ E

We also require that ∀u ∈ CC, there are no reachable vertices that are outside of CC. Using this def-
inition, finding connected components is equivalent to uniquely partitioning the graph into its maximal
connected subgraphs (see figure 2.1).

Figure 2.1: Color coding valid connected components of a graph.

1 2 3

4 5 6

2.2 Problem definition

Identify all connected components of an undirected unweighted graph G = (V,E).

2.3 Sequential algorithm

Identifying all connected components of a graph sequentially can be done very easily using either a
depth-first-search or a breadth-first-search [HT73]. Such an algorithm can look as follows:

16



Algorithm 1 Sequential CC
Input: undirected graph G = (V,E)
Output: set of connected components CC

1: Initialize CC = ∅
2: while V , ∅ do
3: select a vertex n ∈ V
4: explore all vertices reachable from n using depth/breadth-first-search
5: ccn = BFS(G,n) (BFS on G starting from n)
6: add ccn to CC
7: remove ccn from V
8: end while
9: return CC

Inner workings of the algorithm are very much apparent and intuitive. Both depth and breadth first search
end up fully exploring vertices reachable from a given vertex n, therefore each iteration finds a connected
component to which n belongs. By then removing our newfound component from available vertices, we
ensure that in next iteration, a vertex from another component will be selected. Once we run out of
vertices, we return vector of connected components CC.

2.4 Parallel algorithm

For our implementation, we propose a version of FastSV Algorithm [ZAH20], [ZAB20] which is
an efficient simplification of the much older SV Algorithm [SV82].

Algorithm 2 FastSV
Input: undirected graph G = (V,E)
Output: component vector p

1: Initialize vectors p, gp to track parents and grandparents of each vertex
2: Assume ∀n ∈ V to be rooted tree→ pn = gpn = n
3: repeat
4: for all {u, v} ∈ E (in parallel) do
5: if gpu > gpv then
6: set ppu = gpv (stochastic hooking)
7: set pu = gpv (agressive hooking)
8: end if
9: end for

10: for all n ∈ V (in parallel) do
11: if pn > gpn then
12: set pn = gpn (shortcutting)
13: end if
14: end for
15: for all n ∈ V (in parallel) do
16: set gpn = ppn (updating gp)
17: end for
18: until vector gp stops changing
19: return p
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The core idea behind FastSV is as follows - let us represent each connected component of a graph using
a rooted tree, where the root of each component is the lowest index vertex in it. We represent this by a
parent vector p, where pn denotes a parent of vertex n, and root vertices are their own parents (see figure
2.2). We also define a grandparent vector gp, where gpn = ppn .

Initially, knowing nothing about the graph, we assume every vertex to be its own connected component,
making them all root vertices (line 2). Then, we repeat 3 steps until convergence - hooking, shortcutting,
and updating.

In the hooking step, we join (hook) together vertices that are part of the same connected component.
By hooking u to v, we mean changing the parent (pu) and grandparent (ppu) of u to a grandparent (gpv)
of v (lines 6 and 7). Let us now elaborate on why we do this. First of all, note that hooking is performed
in parallel over all edges (line 4) - this means that we only ever try to hook vertices that are actually
reachable, therefore part of the same component. Now for the hooking condition (line 5) - our goal is to
hook all vertices of a component to the lowest index vertex in it. By hooking u to v only when gpu > gpv,
we make sure to always hook higher index vertex to a lower index one. In combination with shortcutting,
this eventually leads to every vertex of a component hooking to the lowest index one.

In shortcutting step (lines 10-14), we go over all vertices in parallel and try to reduce tree height of
our current connected components represented by rooted trees in the p vector. If a vertex n has a lower
index grandparent than parent, we can move it up a level by making pn = gpn. This reduces the height
of trees that represent our connected components, which is crucial, as it allows for finding new smaller
index vertices to hook in the next iteration.

In update step (lines 15-17), we simply update gp to reflect the hooking and shortcutting of this iter-
ation.

These steps are repeated, until gp converges, at which point vector p represents a collection of stars
corresponding to connected components (see figure 2.2). This is because of the shortcutting, which flat-
tens the trees so that vertices can find smaller and smaller indexed parents, until they all share the smallest
indexed vertex in a component.

To reiterate, we start with each vertex being its own component (line 2). We then find and hook each
vertex to a smallest index one we can reach and see (lines 4-9). This creates newly joined components
represented by trees in p, which we try to flatten whenever we can (lines 10-14). We then update the gp
vector to reflect our changes (lines 15-17), and repeat the process from hooking onward. Once the gp
converges, we can return p as our result, representing all connected components of the graph.

Note that the decision to converge with smallest indexed vertices as roots of the components is arbi-
trary. The algorithm can be adapted to converge with the largest indexed vertices instead. We could also
use the p vector for the convergence condition, but it can be shown that checking gp is also valid and can
actually prevent one last redundant iteration of the algorithm loop [ZAB20].
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Figure 2.2: Pointer graph representation of vector p = [1, 1, 3, 1, 5, 3] of the graph shown in figure 2.1.
Every component is a star with its lowest index vertex being the root (its own parent).
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2.5 TNL implementation

We implement FastSV as a function TNL::Graphs::connectedComponents (also referred to as
CC_opt2 in subsections 7.5.1 and 7.6.1) defined with the following parameters:

1 template< typename GraphType, typename OutType >
2 void connectedComponents( const GraphType& g, OutType& ccV){/*code*/}

where g is an undirected graph and ccV is the vector to which we will save our results. Note that size of
ccV must be equal to the number of vertices of g. Our implementation has two main parts - declarative
and main iterative.

1 /*declarative part*/
2 //fetching type info
3 using DeviceType = typename GraphType::DeviceType;
4 using IndexType = typename GraphType::IndexType;
5 using IndexVectorType = TNL::Containers::Vector< IndexType, DeviceType, IndexType >;
6

7 const IndexType size = g.getNodeCount();
8

9 //fetching views of the input variables
10 auto ccVview = ccV.getView();
11 auto& adjMatrix = g.getAdjacencyMatrix();
12 const auto adjMatrixView = adjMatrix.getConstView();
13

14 OutType p( size ); //parent vector
15 OutType gp( size ); //grandparent vector
16 OutType gpOld( size ); //cpy of gp for convergence check
17 //views
18 auto pView = p.getView();
19 auto gpView = gp.getView();
20 auto gpOldView = gpOld.getView();
21

22 //# of edges - 2 counts per edge (each direction = 1)
23 auto totalEdges = adjMatrix.getSegments().getStorageSize();
24

25 IndexVectorType rowCapacities( size ); //# of neighbours of each vertex
26 adjMatrix.getRowCapacities( rowCapacities );//fetch the capacities
27

28 //vector holding indices partitioning the list of all edges
29 //so that each vertex has its own partition
30 IndexVectorType indices( size, -1 );
31 indices = rowCapacities;
32

33 //compute starting indices
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34 TNL::Algorithms::inplaceExclusiveScan( indices );
35 auto indicesView = indices.getView();
36

37 //vectors to store edges
38 IndexVectorType fromVector( totalEdges, -1 );
39 auto fromVectorView = fromVector.getView();
40 IndexVectorType toVector( totalEdges, -1 );
41 auto toVectorView = toVector.getView();
42

43 //initializion + fetching edges
44 auto init = [ = ] __cuda_callable__( IndexType rowIdx ) mutable
45 {
46 IndexType starting_index = indicesView[ rowIdx ];
47

48 const auto row = adjMatrixView.getRow( rowIdx );
49 for( IndexType i = 0; i < row.getSize(); i++ ) {
50 fromVectorView[ starting_index + i ] = rowIdx;
51 toVectorView[ starting_index + i ] = row.getColumnIndex( i );
52 }
53

54 pView[ rowIdx ] = rowIdx;
55 gpView[ rowIdx ] = rowIdx;
56 gpOldView[ rowIdx ] = rowIdx;
57 };
58 TNL::Algorithms::parallelFor< DeviceType >( 0, size, init );

In the declarative part, we first retrieve type information (DeviceType and IndexType) from templates.
We then note some important characteristics of g for later use, namely:

• size - number of vertices

• adjMatrix - adjacency matrix representation

• rowCapacities - number of outgoing edges from each vertex

• totalEdges total number of edges (counting each direction as a single edge)

We use size to declare vectors for tracking the (grand)parents of vertices during the algorithm - p, gp,
and gpOld.

We use rowCapacities and totalEdges to create an ordering of all edges, which we store in two
vectors - fromVector and toVector - of size totalEdges, where

fromVector[i] = u ∧ toVector[i] = v ⇐⇒ (u, v) ∈ E and is ith in our ordering

To create such an ordering, we need to map all edges of g onto our vectors. If we perform exclusive scan
on rowCapacities (storing results in indices to not modify g), we receive a way to partition our edge
vectors by vertices (see figure 2.3).
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Figure 2.3: Exclusive scan on rowCapacities vector (left) leads to a partition vector indices (top
right). This vector contains the beginning index for each vertex edge list segment in the edge vectors
(bottom right). First edge segment begins at index a and has a size of rc1. Second segment follows and
ends at index rc1 + rc2 (ie. has size of rc2), and so on...

rc1, rc2, . . . , rcn

( )
exclusive scan
−−−−−−−−−−→

0, rc1, rc1 + rc2, . . . , rcn−2 + rcn−1

( )

a, . . . , b, . . . , c, . . . , . . . , d, . . .

( )

Knowing this, we can fetch all the edges in the init lambda function. While this forces a sequential loop
to find all edges, it has to be done only once here, whereas the alternative would be forcing a sequential
loop later during each iterative step. Furthermore, we need to run init lambda at least once anyway to
initialize (grand)parent vectors.

1 /*main iterative part*/
2 do {
3 gpOldView = gpView;
4

5 //stochastic and agressive hooking
6 auto hooking = [ = ] __cuda_callable__( IndexType Idx ) mutable
7 {
8 if( gpView[ fromVectorView[ Idx ] ] > gpView[ toVectorView[ Idx ] ] ) {
9 pView[ pView[ fromVectorView[ Idx ] ] ] = gpView[ toVectorView[ Idx ] ];

10 pView[ fromVectorView[ Idx ] ] = gpView[ toVectorView[ Idx ] ];
11 }
12 };
13 TNL::Algorithms::parallelFor< DeviceType >( 0, totalEdges, hooking );
14

15 //shortcutting
16 auto shortcutting = [ = ] __cuda_callable__( IndexType rowIdx ) mutable
17 {
18 if( pView[ rowIdx ] > gpView[ rowIdx ] ) {
19 pView[ rowIdx ] = gpView[ rowIdx ];
20 }
21 };
22 TNL::Algorithms::parallelFor< DeviceType >( 0, size, shortcutting );
23

24 //grandparent update
25 auto gpUpdate = [ = ] __cuda_callable__( IndexType rowIdx ) mutable
26 {
27 gpView[ rowIdx ] = pView[ pView[ rowIdx ] ];
28 };
29 TNL::Algorithms::parallelFor< DeviceType >( 0, size, gpUpdate );
30

31 } while( gpView != gpOldView );
32 ccVview = pView;

In the main iterative part of the implementation, we perform hooking, shortcutting, and updating of gp,
each in their respective lambda function. We repeat these steps until gp converges. Note the parallelism
over all edges for the hooking lambda - without establishing fromVector and toVector, there would
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be an already mentioned forced sequential loop, as we would have to iterate in parallel over vertices
instead.

Once the grandparent vector gp stops changing, we terminate the iterative step, copying the parent vector
p into the result vector ccV.
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Chapter 3

Strongly Connected Components

3.1 Theory

Suppose a directed graph G = (V,E). Strongly connected component SCC is a subset of V where
all vertices are mutually reachable. In other words

SCC ⊆ V where ∀u, v ∈ SCC | ((u, x1), (x1, x2) . . . (xn, v), (v, y1), (y1, y2) . . . (yn, u)) ∈ E

We assume every vertex to be reachable by itself, as well as full exploration of any paths leading to
and from any given vertex to ensure SCCs being maximal. Note that for any two vertices to be mutu-
ally reachable, they must both be in a cyclic subgraph containing paths that connect them. Similar to
connected components on undirected graphs, strongly connected components uniquely partition a given
graph into parts (see 3.1).

Figure 3.1: Color coding valid strongly connected components of a graph.
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3.2 Problem definition

Identify all strongly connected components on a directed unweighted graph G = (V,E).

3.3 Sequential algorithm

Sequentially finding strongly connected components of a directed graph can be done with rather
well-known Tarjan’s SCC algorithm [Tar72], or with simpler (but slower) Kosaraju-Sharir’s algo-
rithm [Sha81]. For convenience (and its similarity to our parallel algorithm), let us focus on the latter
one.

First we have to introduce the notion of transposed graph. Assuming a directed graph G = (V,E),
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we define its transposed graph GT = (V,ET) as a graph with the same vertices and inverted edges (ie. in-
verted edge direction). Bi-directional edges stay the same. Knowing this, we can describe the algorithm
as follows:

Algorithm 3 Sequential SCC
Input: directed graph G = (V,E)
Output: set of strongly connected components SCC

1: initialize SCC = ∅
2: construct GT = (V,E′) (transpose graph)
3: while V , ∅ do
4: select a pivot vertex n ∈ V
5: explore vertices reachable from n on G using breadth-first-search
6: desc = BFS(G,n)
7: explore vertices reachable from n on GT using breadth-first-search
8: pred = BFS(GT,n)
9: vertices found in both are part of a strongly connected component

10: sccn = desc ∩ pred
11: remove sccn from G and GT

12: end while
13: return SCC

This algorithm hinges on the fact, that overlaying vertices reachable from n (desc) with vertices, from
which n is reachable (pred), results in a strongly connected component. This should intuitively make
sense, as in order for the vertices to be mutually reachable, we must be able to both reach them from
n, as well as reach n from them. In essence, this is equal to stating that all the vertices must be part of
a cyclic subgraph, so that any two vertices on it are reachable (see figure 3.3 for visual representation).
This is exactly the definition of a strongly connected component.

Because the graph is partitioned by strongly connected components, we can base the terminating condi-
tion on their removal.

3.4 Parallel algorithm

For finding strongly connected components, we propose a modified version of the Divide-and-
conquer Algorithm for Identifying SCCs proposed by Coppersmith, Fleisher, Hendrickson, and Pinar
[CFHP06]. The main modifications we’ve made was removing recursion and implementing coloring.

By coloring, we simply mean giving all vertices, that make up one strongly connected component, one
unique positive integer identifier, also known as color. We do this so that we can more easily store and
express all the strongly connected components of a graph - since each component is made of vertices
with one unique color, we just need to provide a vector of all vertices with their corresponding colors to
show all strongly connected components (see figure 3.2).
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Figure 3.2: Vector showing colored vertices of a graph in figure 3.1. Index of the vector element denotes
the vertex, and the element value its color.

scc = 1, 1, 2, 1, 3, 4

( )

Algorithm 4 CFHP (modified for TNL)
Input: directed graph G = (V,E)
Output: colored component vector scc

1: initialize vector scc and color c to track colored vertices
2: repeat
3: select an uncolored vertex n ∈ V
4: find predecessors and descendants of n→ pred, desc
5: for all u ∈ V (in parallel) do
6: if u ∈ pred ∧ u ∈ desc then
7: set sccu = c
8: end if
9: end for

10: increase c
11: until ∀v ∈ scc are colored
12: return scc

CFHP algorithm starts by initializing an uncolored vector scc representing the vertices of graph G = (V,E)
and a color c for coloring. We assume color of 0 to represent uncolored state and initialize color c to 1.

In its main iterative step, we select an uncolored vertex n ∈ scc and explore (via breadth-first-search)
all the vertices reachable from n (descendants) as well as all vertices from which n is reachable (prede-
cessors). This is done by exploring both the original graph, as well as the transpose graph. We note these
vertices (including n) in their respective boolean vectors - desc and pred, where

predi = true ⇐⇒ n is reachable from i

desci = true ⇐⇒ i is reachable from n

Then we compare these vectors to find vertices which appeared in both and color them with c. By doing
this, we have found and colored a strongly connected component. Last thing we do is increase c for the
next iteration (next component).

Algorithm terminates, once scc is fully colored.

3.5 TNL implementation

We implement CFHP algorithm as a function TNL::Graphs::scc defined with the following pa-
rameters:
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1 template< typename GraphType, typename OutType >
2 void scc( const GraphType& g, OutType& coloredSCCs ){/*code*/}

where g is our graph and coloredSCCs is the result vector. As the name suggests, it will store the
color of each vertex of g. Therefore, its size must be the same as the number of vertices in g. The
implementation is, once again, split up into declarative and main iterative part.

1 /*declarative part*/
2 coloredSCCs = 0; //assuming 0 = uncolored
3 auto coloredSCCsView = coloredSCCs.getView();
4

5 using DeviceType = typename GraphType::DeviceType;
6 using IndexType = typename GraphType::IndexType;
7 using matrixType = typename GraphType::MatrixType;
8

9 auto size = g.getNodeCount();
10 auto& adjMatrix = g.getAdjacencyMatrix();
11 //pre-fetch the matrix transposition
12 matrixType transposedMatrix;
13 transposedMatrix.getTransposition( adjMatrix );
14

15 IndexType pivot;
16 IndexType currColor = 1;
17 OutType pred( size );
18 auto predView = pred.getView();
19 OutType desc( size );
20 auto descView = desc.getView();

As there is little preparation to be done prior to the iterative step, we simply fetch template types and
use them to declare variables needed, namely the vectors pred and desc for storing predecessors and
descendants reachable from a given pivot vertex, respectively. We also initialize our color currColor
to be equal to 1, and uncolor the result vector by setting it to 0.

Lastly, we pre-fetch the adjacency matrix representation of g in adjMatrix, as well as transposition
in transposedMatrix. Finding the transposition of adjMatrix is equal to finding the transpose graph
(see section 3.3) of g.

1 /*main iterative part*/
2 while( ! TNL::all( coloredSCCsView ) ) {
3 pivot = 0;
4 pred = 0;
5 desc = 0;
6

7 //selecting a pivot - find the highest ID uncolored vertex via reduction
8 auto selectPivot = [ = ] __cuda_callable__( IndexType vertexIdx ) -> IndexType
9 {

10 return ( coloredSCCsView[ vertexIdx ] ? -1 : vertexIdx );
11 };
12 pivot = static_cast< IndexType >(TNL::Algorithms::reduce< DeviceType >( 0,
13 size,
14 selectPivot,
15 TNL::Max{}));
16

17 //finding predecessors and descendants (using BFS)
18 TNL::Graphs::breadthFirstSearchTransposed( adjMatrix, pivot, desc );
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19 TNL::Graphs::breadthFirstSearchTransposed( transposedMatrix, pivot, pred );
20

21

22 //finding SCC = pred && desc
23 auto identifySCC = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
24 {
25 //shift by +1 so that the pivot becomes 1 and is also casted as true
26 coloredSCCsView[ vertexIdx ] =
27 ( descView[ vertexIdx ] + 1 && predView[ vertexIdx ] + 1 )
28 ? currColor : coloredSCCsView[ vertexIdx ];
29 };
30 TNL::Algorithms::parallelFor< DeviceType >( 0, size, identifySCC );
31

32 //increase color for the next iteration
33 currColor++;
34 }

In the main part of the implementation, we start by resetting pivot, pred, and desc. Then we sim-
ply find an uncolored vertex to become our new pivot via a parallel reduction over all vertices (lines
8 - 15). We explore all descendants and predecessors using breadth-first-search on adjMatrix and
transposedMatrix, respectively (lines 18 - 19). Then, by coloring vertices found in both (including
pivot), we mark a new strongly connected component, as seen in figure 3.3.

Figure 3.3: Choosing 1 as our pivot, we color vertices reachable from 1 in red, those from which we can
reach 1 in blue, and those who satisfy both in yellow⇒ we have identified an SCC {1, 2, 3}.
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Lastly, we increase the color currColor and repeat the iterative step.

Algorithm terminates, once all vertices are colored. Since we find one component per iteration, we
know the iterative step will be performed exactly k times, where k is the number of strongly connected
components of g.
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Chapter 4

Maximal Independent Set

4.1 Theory

Suppose an undirected graph G = (V,E). Independent set IS is defined as a subset of V in which no
two vertices are adjacent. In other words

IS ⊆ V where ∀u, v ∈ IS | ¬(u ∼ v)

Requiring that no other vertices from V can be added to IS without breaking the adjacency rule defines
a maximal independent set MIS. Note that multiple subsets, for which this definition holds, can exist in
V and based on the selection of vertices, their size might vary. This makes maximal a term relative to
the selection of vertices, not to their count (see figure 4.1). To prove whether any given set MIS ⊆ V is
a valid maximal independent set, we simply need to verify the following:

∀v ∈ V \MIS there ∃u ∈MIS such that (u ∼ v)

∀v ∈MIS there ∄u ∈MIS such that (u ∼ v)

Note that verifying whether a given MIS is the largest possible one in terms of cardinality (vertex count)
is an NP-hard problem [LLRK80] and would require us finding all maximal independent sets on a given
graph.

Figure 4.1: Color coding two valid maximal independent sets of different sizes.
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4.2 Problem definition

Find a maximal independent set on an undirected unweighted graph G = (V,E).
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4.3 Sequential algorithm

To find a maximal independent sequentially, a simple algorithm can be used:

Algorithm 5 Sequential MIS
Input: undirected graph G = (V,E)
Output: boolean vector MIS

1: Initialize MIS = ∅
2: while V , ∅ do
3: choose a vertex n ∈ V
4: add n to MIS
5: remove n and its neighbours from V
6: end while
7: return MIS

This is a very intuitive approach. By removing the selected vertex along with its neighbours each itera-
tion, we simply must end up with a set of non-adjacent vertices in the end, which satisfy our definition
of a maximal independent set. Our parallel implementation hinges on the same idea.

4.4 Parallel algorithm

For finding maximal independent set of a graph, we propose a variant of Luby’s algorithm. The
basis of this algorithm were proposed by Michael Luby in 1986 [Lub86]. It can be described as follows:

Algorithm 6 Luby
Input: undirected graph G = (V,E)
Output: boolean vector MIS

1: Initialize MIS = ∅
2: while V , ∅ do
3: Select random subset S ⊆ V , any n ∈ V is selected with the probability 1

2d(n)
4: for all {u, v} ∈ E (in parallel) do
5: if both endpoints are in S then
6: Remove endpoints with lesser d and break ties arbitrarily
7: end if
8: end for
9: MIS =MIS ∪ S

10: Remove S and its neighbours from V
11: end while
12: return MIS

Luby’s Algorithm iteratively builds a maximal independent set on graph G = (V,E) by selecting random
subsets of vertices, while favouring those with fewer neighbours. This is reflected by choosing the
probability of any given vertex n being selected to be 1

2d(n) , where d(n) is the degree of n. The idea
behind this specific selection bias is that by selecting vertices with fewer neighbours we:

1. Have a lower chance of choosing neighbouring vertices, as they are adjacent to a smaller number
of vertices
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2. Would like to maximize the size of our final MIS. By selecting vertices with less neighbours, we
eliminate less vertices for future iterations

A good example to demonstrate this on is a star graph. Star is a graph, where all vertices are adjacent
to one root vertex (see figure 4.2). Based on our initial selection, the size of our MIS can be either 1
or (n − 1) (assuming n vertices form the star). Using our bias here results in all vertices except the root
having a 1

2 chance of being selected, while the root vertex is selected with a probability of only 1
2n−2 .

Figure 4.2: Star graph with color coded MISs. Choosing root vertex 1 leads to a small MIS (pink), while
preferring vertices with less neighbours 2-9 leads to a large MIS (green).
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To prevent dividing by zero, we automatically add all solitary vertices to the maximal independent set,
as they will always end up there anyway.

Once a subset S is selected, if we selected any two vertices adjacent to each another, we remove the
one with lesser degree. When ties occur, we enforce an arbitrary rule - in our case, removing the lower
index vertex.

After the removal of neighbouring vertices, we have an independent set S which we add to our final
set MIS. We then remove S and its neighbours from the selection of vertices for next iteration.

Algorithm terminates once there are no more viable vertices left. As a result, we return a boolean vec-
tor MIS, which serves the role of a mask over the vertices of G, marking those present in the maximal
independent set.

4.5 TNL implementation

We implement Luby’s algorithm as a function TNL::Graphs::maximalIndependentSet (also re-
ferred to as MIS_opt3 in subsections 7.5.3 and 7.6.2) defined with the following parameters:

1 template< typename GraphType, typename VectorType >
2 void maximalIndependentSet(const GraphType& g, VectorType& mis){/*code*/}

where g is an undirected graph, and mis is the vector to which our resulting set will be saved. Each
element of mis corresponds to a vertex of g, with each vertex belonging to a maximal independent set
being marked. Implementation can be divided into two parts - declarative and main iterative.
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1 /*declarative part*/
2 //fetching type info
3 using ValueType = typename GraphType::ValueType;
4 using DeviceType = typename GraphType::DeviceType;
5 using IndexType = typename GraphType::IndexType;
6 using IndexVectorType = TNL::Containers::Vector< IndexType, DeviceType, IndexType >;
7 using BooleanVectorType = TNL::Containers::Vector< bool, DeviceType, IndexType >;
8

9 auto size = g.getNodeCount();
10

11 //fetching views of input variables
12 auto& adjMatrix = g.getAdjacencyMatrix();
13 auto adjMatrixView = adjMatrix.getConstView();
14 auto misView = mis.getView();
15

16 BooleanVectorType canBePicked( size ); //mask to track "pickable" vertices
17 auto canBePickedView = canBePicked.getView();
18 BooleanVectorType s( size ); //mask to track selected vertices
19 auto sView = s.getView();
20 IndexVectorType degs( size ); //degrees of vertices
21 auto degsView = degs.getView();
22

23 //# of edges - 2 counts per edge (each direction = 1)
24 auto totalEdges = adjMatrix.getSegments().getStorageSize();
25

26 IndexVectorType rowCapacities( size ); //# of neighbours of each vertex
27 adjMatrix.getRowCapacities( rowCapacities ); //fetch the capacities
28

29 //vector holding indices partitioning the list of all edges
30 //so that each vertex has its own partition
31 IndexVectorType indices( size );
32 indices = rowCapacities;
33

34 //compute starting indices
35 TNL::Algorithms::inplaceExclusiveScan( indices );
36 auto indicesView = indices.getView();
37

38 //vectors to store edges
39 IndexVectorType fromVector( totalEdges );
40 auto fromVectorView = fromVector.getView();
41 IndexVectorType toVector( totalEdges );
42 auto toVectorView = toVector.getView();

We first get type information from templates. We use these fetched types to correctly declare variables
needed for the algorithm, namely:

• canBePicked - boolean mask for tracking vertices, that can still be picked

• s - boolean mask for selecting vertices in current iteration

• degs - vector maintaining degree (number of adjacent vertices) of each vertex

We also declare variables needed for fetching all the edges of the graph (see section 2.5 and figure 2.3).

1 //initialize, get degrees + fetch edges
2 auto init = [ = ] __cuda_callable__( IndexType rowIdx ) mutable
3 {
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4 //calculate degrees
5 auto const row = adjMatrixView.getRow( rowIdx );
6 degsView[ rowIdx ] += row.getSize();
7

8 //add any vertex with degree 0 to mis
9 misView[ rowIdx ] = ! degsView[ rowIdx ];

10 canBePickedView[ rowIdx ] = degsView[ rowIdx ];
11

12 //get edges
13 IndexType starting_index = indicesView[ rowIdx ];
14

15 for( IndexType i = 0; i < row.getSize(); i++ ) {
16 fromVectorView[ starting_index + i ] = rowIdx;
17 toVectorView[ starting_index + i ] = row.getColumnIndex( i );
18 }
19 //init variables
20 sView[ rowIdx ] = false;
21 };
22 TNL::Algorithms::parallelFor< DeviceType >( 0, size, getDegrees );

Since we need to calculate degs only once, we do so here in the init lambda function. We also use this
function to immediately add solitary vertices to our final mis vector, as they must end up there eventually.
Lastly, we use init to fetch all graph edges.

1 /*main iterative part*/
2 while( TNL::any( canBePickedView ) ) {
3 //calculate, how many vertices can be picked -> switch approach based on that
4 auto fetchVertices = [ = ] __cuda_callable__( IndexType idx ) -> IndexType
5 {
6 return canBePickedView[ idx ] ? 1 : 0;
7 };
8 auto sumCanBePicked = TNL::Algorithms::reduce< DeviceType >(0,
9 size,

10 fetchVertices,
11 TNL::Plus{});
12 bool lessThanHalfCanBePicked = sumCanBePicked < (size * 0.5);
13

14 sView = s.getView();
15 if( lessThanHalfCanBePicked ) {
16 auto populateS = [ = ] __cuda_callable__( IndexType idx ) mutable
17 {
18 sView[ idx ] = canBePickedView[ idx ];
19 };
20 TNL::Algorithms::parallelFor< DeviceType >( 0, size, populateS );
21 }
22 else {
23 do {
24 auto populateS = [ = ] __cuda_callable__( IndexType idx ) mutable
25 {
26 if( canBePickedView[ idx ] ) {
27 double rNum = randDoubleGen( idx, size );
28 double prob = 1.0 / ( 2.0 * degsView[ idx ] );
29 sView[ idx ] = ( rNum < ( prob ) );
30 }
31 };
32 TNL::Algorithms::parallelFor< DeviceType >( 0, size, populateS );
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33 } while( sView == false );
34 }

In the main part of our implementation, we start by selecting a subset of available vertices and store it
in s. We employ adaptive approach to selecting vertices - selecting a random subset or selecting all
valid vertices. We do this based on how many valid vertices remain. This prevents waiting for vertices
to get randomly selected, when less than half remain. Note that opting for always choosing all available
vertices is a valid approach. This makes the algorithm deterministic, however, meaning that running the
algorithm on a given graph will always result in the same mis. This maximal independent set is referred
to as the lexicographically first MIS. We believe this to be undesirable, and so we combine this approach
with the random selection to retain the ability to produce different maximal independent sets. Switching
the approach after less than half of the vertices remain speeds up the algorithm substantially.

1 auto updateSetS = [ = ] __cuda_callable__( IndexType edgeIdx ) mutable
2 {
3 // For each edge (u, v)
4 IndexType u = fromVectorView[ edgeIdx ];
5 IndexType v = toVectorView[ edgeIdx ];
6

7 // Check if both endpoints are in set S
8 if( sView[ u ] && sView[ v ] ) {
9 IndexType degreeU = degsView[ u ];

10 IndexType degreeV = degsView[ v ];
11

12 // Remove the vertex of lower degree from S (or arbitrarily if degrees are equal)
13 if( degreeU < degreeV ) {
14 sView[ u ] = false; // Remove u
15 }
16 else if( degreeV < degreeU ) {
17 sView[ v ] = false; // Remove v
18 }
19 else {
20 sView[ u < v ? u : v ] = false;
21 }
22 }
23 };
24 TNL::Algorithms::parallelFor< DeviceType >( 0, totalEdges, updateSetS );
25

26 auto fetchN = [ = ] __cuda_callable__( IndexType edgeIdx ) mutable
27 {
28 IndexType u = fromVectorView[ edgeIdx ];
29 IndexType v = toVectorView[ edgeIdx ];
30 if( sView[ u ] ) {
31 misView[ u ] = true;
32 canBePickedView[ u ] = false;
33 canBePickedView[ v ] = false;
34 }
35 };
36 TNL::Algorithms::parallelFor< DeviceType >( 0, totalEdges, fetchN );
37 s = false;
38 }

After selecting s, we go over all edges in parallel in updateSetS lambda and check if both endpoints
were picked. If so, we proceed according to the algorithm and break ties based on vertex index.
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Lastly, in fetchN, we go over all edges in parallel and add each seleted vertex to our final set. We
then flag it and all its neighbours in canBePicked to not select them in future iterations. Algorithm
terminates once there are no valid vertices to select anymore.
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Chapter 5

Minimal Spanning Tree

5.1 Theory

Suppose a weighted undirected graph G = (V,E, w : E → N+). Minimal Spanning tree MST is a
spanning tree on G that has the smallest possible edge weight sum W. In case of G being disconnected,
a set of minimal spanning trees MSF = {T1,T2, . . . ,Tn} (one per component) called minimal spanning
forest is defined instead (see figure 5.1).

Figure 5.1: Color coding minimal spanning tree of a graph.

1 2 3

4 5 6

2 7

11

3 2

8 4

5.2 Problem definition

Find a minimal spanning tree (or forest) on an undirected weighted graph G = (V,E, w : E → N+)
with unique weights.

5.3 Sequential algorithm

To find minimal spanning tree or forest sequentially, we can use a plethora of well-known algorithms,
namely Borůvka’s algortihm [Bor26], Jarník’s algorithm (also known as Prim’s algorithm [Pri57]),
and Kruskal’s algorithm [Kru56]. Let us show Kruskal’s algorithm, which is essentially a greedy
algorithm with specific ordering of edges:
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Algorithm 7 Sequential MST
Input: undirected weighted graph G = (V,E, w : E→ N+)
Output: minimal spanning tree/forest MST = (V′,E′, w : E′ → N+)

1: initialize MST = (V′ = ∅,E′ = ∅, w)
2: re-order edges E so that w(e0) ≤ w(e1) ≤ w(e2) ≤ · · · ≤ w(en) (ascending order by weight)
3: for all edges e = {u, v} ∈ E (ordered) do
4: if adding edge {u, v} to MST does not create any cycles then
5: add u, v to V′ (if they are not there already) and the edge {u, v} to E′
6: end if
7: if V = V′ then
8: return MST
9: end if

10: end for
11: return MST

The algorithm works because of the ordering of edges we chose. Note that we could run this algorithm
with any ordering of edges and would still find a spanning tree or forest, but only the ascending order
ensures finding the minimal spanning tree or forest in the end.

5.4 Parallel algorithm

To find minimal spanning tree, we use a variant of Awerbuch-Shiloach algorithm [AS87] proposed
in [BKS22], which we have modified for TNL and our needs.

The main idea behind this algorithm is to initially view the graph as a collection of rooted trees (similar
to section 2.4). If these trees are stars (ie. of height at most 2), a minimal edge going out of each star is
found and propagated to its root. The root is then hooked based on this edge to the parent of its endpoint
outside of root star. After that, we check for potential loops and break them. Then we add edges found
in this iteration to the minimal spanning tree (between their original endpoints!) and the edge weight
sum W. Lastly, we shortcut the trees, so that they can become stars and be processed in future iterations.
Algorithm ends once the trees (represented in parent vector p) collapse into stars and stop changing, at
which point our MST is finished. If the graph is disconnected, we end up with a minimal spanning forest
MSF, where each tree is represented by a star in the final p vector. The algorithm can be described as
follows:
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Algorithm 8 TNL-adapted MST
Input: undirected weighted graph G = (V,E, w : E→ N+) (with unique weights)
Output: minimal spanning tree/forest MST = (V′,E′, w : E′ → N+), sum of edge weights W

1: assume ∀n ∈ V to be a rooted tree→ pn = n
2: initialize vectors to track minimal outgoing edges from vertex/star minV,minS
3: initialize MST = (V′ = ∅,E′ = ∅, w)
4: initialize edge weight sum W = 0
5: while p keeps changing do
6: for all n ∈ V (in parallel) do
7: if n is a part of star then
8: for all neighbours of n that are NOT in the same star do
9: find edge e = (n,neighbour,w) with the smallest weight w

10: minVn = e
11: end for
12: end if
13: end for
14: for all n ∈ V (in parallel) do
15: if n is a root of a star then
16: for all children of n do
17: find the smallest edge e among the children (if it exists)
18: minSn = e
19: end for
20: end if
21: end for
22: for all n ∈ V (in parallel) do
23: if n is a root of a star AND minSn , ∅ then
24: hook n with the parent of neighbour of the minSn edge
25: pn = pneighbour
26: end if
27: end for
28: for all n ∈ V (in parallel) do
29: if n is a root of a star AND n < pn AND n = ppn then
30: pn = n
31: end if
32: end for
33: for all n ∈ V (in parallel) do
34: if minSn , ∅ AND pn = pneighbour then
35: add edge in minSn to the MST
36: add edge weight w of edge in minSn to edge weight sum W
37: end if
38: end for
39: reset misV,misS
40: end while
41: return MST and W

Now, let us go over the algorithms in greater detail.
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First we set up our parent vector p with the assumption, that each vertex starts as its own parent - star
root (line 1). We then initialize our edge weight sum W, minimal spanning tree MST, and some helper
vectors to track minimal outgoing edges per vertex and per star root (lines 2 - 4). After that, the main
iteration step follows.

First thing we do each iteration is identify the smallest outgoing edge per each vertex inside of a star
(lines 6 - 13). By outgoing edge, we mean an edge which has 1 endpoint inside of a star and 1 endpoint
outside of it. So for any vertex n in a star, we look for the smallest weighted edge {n, x}, where x is not
part of the same star as n. In practice, this can be checked by going over all neighbours of n and checking
their parents in the p vector - it must not be the same as the parent of n in order to be a suitable edge.
Note that a suitable edge does not have to exist - n can have no edges going outside of the star.

Next we propagate the smallest of our newly found minimal edges to the roots of their stars (lines 14 -
21). For each star root vertex, we go through its children and find the smallest outgoing edge amongst
them. Once again, note that there may be no suitable edge.

Assuming there were suitable edges this iteration, we use them to hook the star root vertices (lines
22 - 27). By hooking, we mean changing the parent of the root in p vector, so that it now shares parent
with the endpoint of the smallest weighted outgoing edge. So if a star root n has a child vertex m with
the smallest weighted outgoing edge {m, x} of the star rooted in n, then pn = px.

After hooking, we check for cycles using the p vector and if we find some, we break them (lines 28
- 32).

Lastly, we add the minimal outgoing edge of each star to the minimal spanning tree, provided it did
not create a cycle (lines 33 - 38). We also reset vectors used for tracking potential minimal edges to add
to MST each iteration (line 39).

5.5 TNL implementation

First of all, let us state the following - unfortunately, we were unable to create a fully functional TNL-
adapted implementation the way we set out to. We have created multiple different seemingly working
implementations, but would later always discover that they can break and enter an infinite runtime loop.
This was frustrating, as all implementations seemed reliable for smaller graphs and would even pass unit
tests, but for larger graph sizes, they became unreliable and prone to breaking. Even after debugging and
trying to the best of our abilities, we were unable to remove the cause of this behaviour, which happens
seemingly at random, but is certainly more likely as the number of vertices and edges increase.

While this is unfortunate, we can still at least provide 2 different implementations of the algorithm,
which work the best. From what we tested, the first one - tnlMSF1 - seems to always give a correct
result, provided it actually finishes. Second implementation - tnlMSF2 - uses looping over edges and
is perhaps more readable because of it, but it was introduced significantly later in the implementation
process. It could therefore not be 100% correct in its results, when it finishes. It also uses some CUDA
atomic operations, so it would have to be tweaked to work on CPU. Due to the reasons mentioned above,
we will omit this graph problem from the following chapters. We provide the following implementations
for the completeness of our work and to show current progress made.
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Starting with tnlMSF1, it is defined with the following parameters:

1 template<
2 typename inGraphType,
3 typename outGraphType = inGraphType,
4 typename OutType = typename inGraphType::RealType
5 >
6 void
7 tnlMSF1( const inGraphType& inGraph, outGraphType& outGraph, OutType& sum ){/*code*/}

where inGraph is the graph we are finding minimal spanning tree on, outGraph is the graph we are
going to store the tree into, and sum is the sum of edge weights of the minimal spanning tree. Code itself
can be split into 2 main parts - initialization and main iterative part.

1 /*init part*/
2 using DeviceType = typename inGraphType::DeviceType;
3 using IndexType = typename inGraphType::IndexType;
4 using RealType = typename inGraphType::MatrixType::RealType;
5 using IndexVectorType = TNL::Containers::Vector< IndexType, DeviceType, IndexType >;
6 using RealVectorType = TNL::Containers::Vector< RealType, DeviceType, IndexType >;
7 using BoolVectorType = TNL::Containers::Vector< bool, DeviceType, IndexType >;
8

9 //to be sure
10 sum = 0;
11 RealVectorType sumV( 1, 0 );
12

13 auto& adjMatrix = inGraph.getAdjacencyMatrix();
14 auto adjMatrixView = adjMatrix.getConstView();
15 auto const size = inGraph.getNodeCount();
16

17 //setting up the outgoing graph
18 outGraphType tempGraph;
19 tempGraph.setNodeCount( size );
20 TNL::Containers::Vector< IndexType, DeviceType, IndexType > nodeCapacities( size );
21 inGraph.getAdjacencyMatrix().getRowCapacities( nodeCapacities );
22 tempGraph.setNodeCapacities( nodeCapacities );
23

24 auto& tempGraphMatrix = tempGraph.getAdjacencyMatrix();
25 auto tempGraphMatrixView = tempGraphMatrix.getView();
26

27 //helper vector to track # of edges added to each row
28 RealVectorType rowCapacitiesTracker( size, 0 );
29 auto rowCapacitiesTrackerView = rowCapacitiesTracker.getView();
30

31 IndexVectorType p( size );
32 BoolVectorType star( size, true );
33 BoolVectorType starRoot( size, true );
34

35 BoolVectorType T( size );
36 auto TView = T.getView();
37

38 auto starView = star.getView();
39 auto starRootView = starRoot.getView();
40 auto pView = p.getView();
41

42 //initialize parents -> each vertex is a star with it being its own parent
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43 auto f = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
44 {
45 pView[ vertexIdx ] = vertexIdx;
46 };
47 TNL::Algorithms::parallelFor< DeviceType >( 0, size, f );
48

49 IndexVectorType pOld( size, -1 );
50 auto pOldView = pOld.getView();
51

52 //Weights of the minimal outgoing edges (ie edges going to a different star)
53 RealVectorType minOutWeights( size, -1 );
54 RealVectorType minOutWeightsFrom( size, -1 );
55 IndexVectorType minOutWeightsTo( size, -1 ); //Destinations of the minimal outgoing edges
56

57 auto minOutWeightsView = minOutWeights.getView();
58 auto minOutWeightsFromView = minOutWeightsFrom.getView();
59 auto minOutWeightsToView = minOutWeightsTo.getView();
60

61 //define starCheck - routine to update the star status of all vertices
62 //(the vector must be reset to true prior to calling this)
63 auto starCheck = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
64 {
65 bool isRoot = pView[ vertexIdx ] == vertexIdx;
66 bool isDirectChild = pView[ pView[ vertexIdx ] ] == pView[ vertexIdx ];
67

68 starView[ vertexIdx ] = isRoot || isDirectChild;
69

70 // If a vertex is part of a star and is its own parent, it's a star root
71 starRootView[ vertexIdx ] = starView[ vertexIdx ] && isRoot;
72 };

During initialization, we:

• retrieve variable types and device from the parameters

• set provided sum to 0, just in case

• retrieve adjacency matrix representation of the graph

• set up a temporary graph tempGraph for the minimal spanning tree. This is done because as far
as we are aware, there is no way to change certain graph attributes, namely node capacities (ie.
number of non-zero elements of each row of the adjacency matrix representation), without wiping
its data. Because of this, we need to build tempGraph and count the new node capacities, then set
them for outGraph and copy the tempGraph to it.

• declare and initialize vectors needed to track parent and star status of vertices - p, star, and
starRoot - as well as helper vectors for keeping track of minimal outgoing edges and loops for
loop breaking - minOutWeights, minOutWeightsFrom, minOutWeightsTo, and T

• Define a lambda function used to update star status of vertices - starCheck

After initialization, the main iterative part of the algorithm is repeated, until parent vector p stabilizes.

1 /*main part*/
2 do {
3 pOldView = pView;
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4

5 starView = true;
6 TNL::Algorithms::parallelFor< DeviceType >( 0, size, starCheck );
7

8 //calculate minimal outgoing edge from each vertex that is part of a star
9 auto findMinimalOutEdge = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable

10 {
11 if( starView[ vertexIdx ] ) {
12 RealType minWeight = -1;
13 IndexType minTo = -1;
14 IndexType minFrom = -1;
15 RealType min = std::numeric_limits< RealType >::max();
16

17 auto const row = adjMatrixView.getRow( vertexIdx );
18 for( IndexType i = 0; i < row.getSize(); i++ ) {
19 if( row.getValue( i ) < min
20 && pView[ vertexIdx ] != pView[ row.getColumnIndex( i ) ]) {
21 min = row.getValue( i );
22 minWeight = min;
23 minTo = row.getColumnIndex( i );
24 minFrom = vertexIdx;
25 }
26 }
27 minOutWeightsView[ vertexIdx ] = minWeight;
28 minOutWeightsToView[ vertexIdx ] = minTo;
29 minOutWeightsFromView[ vertexIdx ] = minFrom;
30 }
31 };
32 TNL::Algorithms::parallelFor< DeviceType >( 0, size, findMinimalOutEdge );
33

34 //propagate the min of outgoing edges in a star to its root
35 auto minPerStar = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
36 {
37 if( starRootView[ vertexIdx ] ) {
38 RealType minWeight = -1;
39 IndexType minTo = -1;
40 IndexType minFrom = -1;
41 RealType min = std::numeric_limits< RealType >::max();
42

43 for( IndexType i = 0; i < size; i++ ) {
44 if( ( pView[ i ] == vertexIdx )
45 && ( minOutWeightsView[ i ] < min )
46 && ( minOutWeightsView[ i ] > -1 ) ) {
47 min = minOutWeightsView[ i ];
48 minWeight = min;
49 minTo = minOutWeightsToView[ i ];
50 minFrom = minOutWeightsFromView[ i ];
51 }
52 }
53 minOutWeightsView[ vertexIdx ] = minWeight;
54 minOutWeightsToView[ vertexIdx ] = minTo;
55 minOutWeightsFromView[ vertexIdx ] = minFrom;
56 }
57 };
58 TNL::Algorithms::parallelFor< DeviceType >( 0, size, minPerStar );
59

60 //hook the stars using min edges
61 auto starHook = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
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62 {
63 if( starRootView[ vertexIdx ] && minOutWeightsToView[ vertexIdx ] > -1 ) {
64

65 pView[ vertexIdx ] = pOldView[ minOutWeightsToView[ vertexIdx ] ];
66 }
67 };
68 TNL::Algorithms::parallelFor< DeviceType >( 0, size, starHook );
69

70 //identify edges to remove
71 //(smaller index edge of the two will be removed)
72 auto breakLoops = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
73 {
74 if( starRootView[ vertexIdx ]
75 && ( vertexIdx < pView[ vertexIdx ] )
76 && ( vertexIdx == pView[ pView[ vertexIdx ] ] ) ) {
77 TView[ vertexIdx ] = true;
78 }
79 else {
80 TView[ vertexIdx ] = false;
81 }
82 };
83 TNL::Algorithms::parallelFor< DeviceType >( 0, size, breakLoops );
84

85 //remove edges
86 auto breakLoops2 = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
87 {
88 if( TView[ vertexIdx ] ) {
89 pView[ vertexIdx ] = vertexIdx;
90 }
91 };
92 TNL::Algorithms::parallelFor< DeviceType >( 0, size, breakLoops2 );
93

94 //fetch unique weights
95 RealVectorType uniqueWeights( size, -1 );
96 auto uniqueWeightsView = uniqueWeights.getView();
97 auto fetchUnique = [ = ] __cuda_callable__( IndexType weightIdx ) mutable
98 {
99 if( ! TView[ weightIdx ]

100 && minOutWeightsView[ weightIdx ] > -1
101 && starRootView[ weightIdx ] ) {
102 uniqueWeightsView[ weightIdx ] = minOutWeightsView[ weightIdx ];
103 }
104 };
105 TNL::Algorithms::parallelFor< DeviceType >( 0, size, fetchUnique );
106

107 //Cuda
108 if constexpr( std::is_same< DeviceType, TNL::Devices::Cuda >::value ) {
109

110 auto sumView = sumV.getView();
111 auto updateTree = [ = ] __cuda_callable__( IndexType weightIdx ) mutable
112 {
113 if( uniqueWeightsView[ weightIdx ] > -1 ) {
114 auto i = atomicAdd(
115 &rowCapacitiesTrackerView[ minOutWeightsFromView[ weightIdx ] ], 1 );
116

117 auto j = atomicAdd(
118 &rowCapacitiesTrackerView[ minOutWeightsToView[ weightIdx ] ], 1 );
119
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120 auto rowFrom = tempGraphMatrixView.getRow( minOutWeightsFromView[ weightIdx ] );
121 auto rowTo = tempGraphMatrixView.getRow( minOutWeightsToView( weightIdx ) );
122

123 if( ! ( rowFrom.getValue( i ) ) ) {
124 atomicAdd( &sumView[ 0 ], uniqueWeightsView[ weightIdx ] );
125

126 rowFrom.setElement(
127 i,
128 minOutWeightsToView[ weightIdx ],
129 uniqueWeightsView[ weightIdx ] );
130

131 rowTo.setElement(
132 j,
133 minOutWeightsFromView[ weightIdx ],
134 uniqueWeightsView[ weightIdx ] );
135 }
136 }
137 };
138 TNL::Algorithms::parallelFor< DeviceType >( 0, size, updateTree );
139 sum = sumView.getElement( 0 );
140 }
141 //host and seq
142 else {
143

144 for( int i = 0; i < size; i++ ) {
145 if( uniqueWeightsView.getElement( i ) > -1 ) {
146 auto from = minOutWeightsFromView.getElement( i );
147 auto to = minOutWeightsToView.getElement( i );
148 auto weight = uniqueWeightsView.getElement( i );
149

150 if( tempGraphMatrixView.getElement( to, from ) == 0 ) {
151

152 rowCapacitiesTrackerView.setElement(
153 from,
154 rowCapacitiesTrackerView.getElement( from ) + 1 );
155

156 rowCapacitiesTrackerView.setElement(
157 to,
158 rowCapacitiesTrackerView.getElement( to ) + 1 );
159

160 sum += weight;
161 tempGraphMatrixView.setElement( from, to, weight );
162 tempGraphMatrixView.setElement( to, from, weight );
163 }
164 }
165 }
166 }
167

168 //starCheck
169 starView = true;
170 TNL::Algorithms::parallelFor< DeviceType >( 0, size, starCheck );
171

172 auto shortCut = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
173 {
174 if( ! starView[ vertexIdx ] ) {
175 pView[ vertexIdx ] = pView[ pView[ vertexIdx ] ];
176 }
177 };
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178 TNL::Algorithms::parallelFor< DeviceType >( 0, size, shortCut );
179

180 } while( pView != pOldView );
181

182 //update outgraph
183 outGraph.setNodeCapacities( rowCapacitiesTracker );
184 outGraph = tempGraph;

In the main part of the implementation, we follow the algorithm description by first updating star status
of vertices, then finding the minimal outgoing edge from each vertex that is in a star. This is done in the
lambda function findMinimalOutEdge (lines 9 - 32). Note the sequential loop inside - looping over
the edges removes the need for it, as can be seen later in tnlMSF2. Very similar process happens in the
minPerStar lambda (lines 35 - 58), where we propagate the smallest outgoing edge of each star to its
root.

These edges are then used to hook the stars (lines 61 - 68). By hooking, we mean updating star root
vertex parent to be the same as the parent of the endpoint vertex of the smallest outgoing edge from that
star (line 65).

After hooking, we need to verify that no loops were created by it. We first try to identify loops and
then break them (lines 72 - 92). A loop is found by simply checking, whether a star root vertex is also
its grandparent - this would mean we hooked it onto a vertex whose parent is the star root vertex itself.
Since we only hook by star roots, we do not need to check any other vertices.

After breaking loops, we note edges used for hooking (lines 95 - 105) and add them to our minimal
spanning tree. This part of implementation is different based on device (lines 108 - 140 for GPU, and
142 - 166 for CPU). We still perform same things in both of them:

• identify endpoints of the edge and update their respective row capacities. These will be then used
to set node capacities of the outGraph.

• add the edge itself to tempGraph

• add the edge weight to sum

Lastly, we update star status of vertices and shortcut those that are not a part of a star, so that they can
become part of a star in future iterations (lines 169 - 178).

If vector p stopped changing, we are done and just set the appropriate node capacities of outGraph,
then just copy tempGraph into it (lines 183 - 184).

Second implementation - tnlMSF2 - is declared as:

1 template<
2 typename inGraphType,
3 typename outGraphType = inGraphType,
4 typename OutType = typename inGraphType::RealType
5 >
6 void
7 tnlMSF2( const inGraphType& inGraph, outGraphType& outGraph, OutType& sum ) {/*code*/}
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where all the parameters are the same as for tnlMSF1. However, this implementation has 3 main parts -
initialization, main iterative part, and final tree building.

1 /*initialization*/
2 using DeviceType = typename inGraphType::DeviceType;
3 using IndexType = typename inGraphType::IndexType;
4 using RealType = typename inGraphType::MatrixType::RealType;
5 using IndexVectorType = TNL::Containers::Vector< IndexType, DeviceType, IndexType >;
6 using RealVectorType = TNL::Containers::Vector< RealType, DeviceType, IndexType >;
7 using BoolVectorType = TNL::Containers::Vector< bool, DeviceType, IndexType >;
8

9 sum = 0;
10

11 auto& adjMatrix = inGraph.getAdjacencyMatrix();
12 auto adjMatrixView = adjMatrix.getConstView();
13 auto const size = inGraph.getNodeCount();
14

15 //internal graph setup
16 outGraphType tempGraph;
17 tempGraph.setNodeCount( size );
18 TNL::Containers::Vector< IndexType, DeviceType, IndexType > nodeCapacities( size );
19 inGraph.getAdjacencyMatrix().getRowCapacities( nodeCapacities );
20 tempGraph.setNodeCapacities( nodeCapacities );
21

22 auto& tempGraphMatrix = tempGraph.getAdjacencyMatrix();
23 auto tempGraphMatrixView = tempGraphMatrix.getView();
24

25 //needed to then correctly set capacities of the outgraph
26 RealVectorType rowCapacitiesTracker( size, 0 );
27 auto rowCapacitiesTrackerView = rowCapacitiesTracker.getView();
28

29 //edge fetch setup
30 auto totalEdges = adjMatrix.getSegments().getStorageSize();
31 IndexVectorType indices( size, -1 );
32 indices = nodeCapacities;
33 TNL::Algorithms::inplaceExclusiveScan( indices );
34 auto const indicesView = indices.getConstView();
35

36 IndexVectorType fromVector( totalEdges, -1 );
37 auto fromVectorView = fromVector.getView();
38 IndexVectorType toVector( totalEdges, -1 );
39 auto toVectorView = toVector.getView();
40 RealVectorType weightVector( totalEdges, -1 );
41 auto weightVectorView = weightVector.getView();
42

43 BoolVectorType edgeMask( totalEdges, false );
44 auto edgeMaskView = edgeMask.getView();
45

46 BoolVectorType loopMask( size, false );
47 auto loopMaskView = loopMask.getView();
48

49 IndexVectorType minOutEdge( size, -1 );
50 auto minOutEdgeView = minOutEdge.getView();
51 RealVectorType minOutEdgeWeight( size, std::numeric_limits< RealType >::max() );
52 auto minOutEdgeWeightView = minOutEdgeWeight.getView();
53

54 IndexVectorType minOutEdgeRoots( size, -1 );
55 auto minOutEdgeRootsView = minOutEdgeRoots.getView();
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56 RealVectorType minOutEdgeWeightRoots( size, std::numeric_limits< RealType >::max() );
57 auto minOutEdgeWeightRootsView = minOutEdgeWeightRoots.getView();
58 IndexVectorType p( size ); //parent vector
59 auto pView = p.getView();
60 IndexVectorType pOld( size );
61 auto pOldView = pOld.getView();
62

63 BoolVectorType star( size, true ); //star vector
64 auto starView = star.getView();
65 BoolVectorType starRoot( size, true ); //star root vector
66 auto starRootView = starRoot.getView();
67

68 auto starCheck = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
69 {
70 bool isRoot = pView[ vertexIdx ] == vertexIdx;
71 bool isDirectChild = pView[ pView[ vertexIdx ] ] == pView[ vertexIdx ];
72

73 starView[ vertexIdx ] = isRoot || isDirectChild;
74

75 // If a vertex is part of a star and is its own parent, it's a star root
76 starRootView[ vertexIdx ] = starView[ vertexIdx ] && isRoot;
77 };
78

79 auto init = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
80 {
81 pView[ vertexIdx ] = vertexIdx; //assume each vertex to be its own parent
82

83 //fetching edges
84 const auto row = adjMatrixView.getRow( vertexIdx );
85 auto starting_index = indicesView[ vertexIdx ];
86 for( IndexType i = 0; i < row.getSize(); i++ ) {
87 fromVectorView[ starting_index + i ] = vertexIdx;
88 toVectorView[ starting_index + i ] = row.getColumnIndex( i );
89 weightVectorView[ starting_index + i ] = row.getValue( i );
90 }
91 };
92 TNL::Algorithms::parallelFor< DeviceType >( 0, size, init );

Initialization is similar to that of tnlMSF1, with the addition of fetching graph edges to loop over. This
is done the same way as for other graph problems (see section 2.5), but we also track edge weights.
Identification of edges is done in the init lambda function (lines 79 - 92). 2 different helper vectors are
initialized - edgeMask and loopMask. These are simple boolean vectors for flagging edges to add to the
final spanning tree and edges that caused a loop, respectively.

1 /*main part*/
2 do {
3 pOldView = pView;
4

5 starView = true;
6 TNL::Algorithms::parallelFor< DeviceType >( 0, size, starCheck );
7

8 auto minPerVertex = [ = ] __cuda_callable__( IndexType edgeIdx ) mutable
9 {

10 auto u = fromVectorView[ edgeIdx ];
11 auto v = toVectorView[ edgeIdx ];
12 auto w = weightVectorView[ edgeIdx ];
13
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14 // u must be in a star
15 // v must not be in a star OR be in a different star than u
16 if( ! starView[ u ] || pView[ pView[ u ] ] == pView[ pView[ v ] ] ) {
17 return;
18 }
19 else {
20 RealType currMinWeight = atomicMin( &minOutEdgeWeightView[ u ], w );
21 if( w <= currMinWeight ) {
22 atomicExch( &minOutEdgeView[ u ], edgeIdx );
23 }
24 }
25 };
26 TNL::Algorithms::parallelFor< DeviceType >( 0, totalEdges, minPerVertex );
27

28 auto minPerStar = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
29 {
30 if( starRootView[ vertexIdx ] ) {
31 // Iterate through all vertices to propagate the minimal edge to the root
32 for( IndexType u = 0; u < size; u++ ) {
33 if( pView[ u ] == vertexIdx ) {
34 RealType w = minOutEdgeWeightView[ u ];
35 IndexType edgeIdx = minOutEdgeView[ u ];
36

37 // Use atomic operations to update the root's minimal edge
38 RealType currMinWeight = atomicMin(
39 &minOutEdgeWeightRootsView[ vertexIdx ], w );
40 if( w <= currMinWeight ) {
41 atomicExch( &minOutEdgeRootsView[ vertexIdx ], edgeIdx );
42 }
43 }
44 }
45 }
46 };
47 TNL::Algorithms::parallelFor< DeviceType >( 0, size, minPerStar );
48

49 auto hook = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
50 {
51 //hook star roots with minimal outgoing edges
52 if( starRootView[ vertexIdx ] && minOutEdgeRootsView[ vertexIdx ] > -1 ) {
53 auto edge = minOutEdgeRootsView[ vertexIdx ];
54 auto v = toVectorView[ edge ];
55 pView[ vertexIdx ] = pView[ v ];
56 edgeMaskView[ edge ] = true;
57 }
58 };
59 TNL::Algorithms::parallelFor< DeviceType >( 0, size, hook );
60

61

62 auto findLoops = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
63 {
64 loopMaskView[ vertexIdx ] =
65 ( starRootView[ vertexIdx ]
66 && ( vertexIdx < pView[ vertexIdx ] )
67 && ( vertexIdx == pView[ pView[ vertexIdx ] ] ) );
68 };
69 TNL::Algorithms::parallelFor< DeviceType >( 0, size, findLoops );
70

71 auto breakLoops = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
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72 {
73 if( loopMaskView[ vertexIdx ] ) {
74 IndexType expected = pView[ vertexIdx ];
75 if( atomicCAS( &pView[ vertexIdx ], expected, vertexIdx ) == expected ) {
76 auto edgeIdx = minOutEdgeRootsView[ vertexIdx ];
77 if( edgeIdx != -1 ) {
78 edgeMaskView[ edgeIdx ] = false;
79 }
80 }
81 }
82 };
83 TNL::Algorithms::parallelFor< DeviceType >( 0, size, breakLoops );
84

85

86 starView = true;
87 TNL::Algorithms::parallelFor< DeviceType >( 0, size, starCheck );
88

89 auto shortcut = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
90 {
91 if( ! starView[ vertexIdx ] ) {
92 pView[ vertexIdx ] = pView[ pView[ vertexIdx ] ];
93 }
94 };
95 TNL::Algorithms::parallelFor< DeviceType >( 0, size, shortcut );
96

97 minOutEdgeView = -1;
98 minOutEdgeWeightView = std::numeric_limits< RealType >::max();
99 minOutEdgeRootsView = -1;

100 minOutEdgeWeightRootsView = std::numeric_limits< RealType >::max();
101

102 } while( pView != pOldView );

The main part of this implementation is once again similar to the first one, but it has been modified to
utilize looping over edges, and the tree building has been taken out. We once start by finding a minimal
outgoing edge per vertex and then per star, each in its respective lambda function (lines 8 - 47). Note the
use of atomic functions, namely atomicMin and atomicExch for updating of the currently considered
minimal outgoing edge.

Hooking follows (lines 49 - 59). Since we have a list of all edges on hand in this implementation,
we are able to mark the edges we use for hooking, hence the edgeMask vector.

Next step is to find and break loops that we might have created (lines 62 - 83). We use another atomic
operation - compare and swap - to break the loops (line 75) and if we do so, we simply unmark the edge
responsible for the loop in the edgeMask.

Lastly, a shortcutting identical to that in tnlMSF1 is performed, as well as a reset of some helper variables
for future iterations.

1 /*Final tree building*/
2 RealVectorType sumV( 1, 0 );
3 auto sumVView = sumV.getView();
4

5 auto buildTree = [ = ] __cuda_callable__( IndexType edgeIdx ) mutable
6 {
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7 if( edgeMaskView[ edgeIdx ] ) {
8 auto u = fromVectorView[ edgeIdx ];
9 auto v = toVectorView[ edgeIdx ];

10 auto w = weightVectorView[ edgeIdx ];
11

12 auto i = atomicAdd( &rowCapacitiesTrackerView[ u ], 1 );
13 auto j = atomicAdd( &rowCapacitiesTrackerView[ v ], 1 );
14

15 auto rowFrom = tempGraphMatrixView.getRow( u );
16 auto rowTo = tempGraphMatrixView.getRow( v );
17

18 rowFrom.setElement( i, v, w );
19 rowTo.setElement( j, u, w );
20

21 atomicAdd( &sumVView[ 0 ], w );
22 }
23 };
24 TNL::Algorithms::parallelFor< DeviceType >( 0, totalEdges, buildTree );
25

26 outGraph.setNodeCapacities( rowCapacitiesTracker );
27 outGraph = tempGraph;
28 sum = sumVView.getElement( 0 );

Once parent vector p stops changing, we assume that we are done and begin the last part - building of the
tree. We do so in buildTree lambda function, where we simply add all edges marked by the edgeMask
vector to the empty tempGraph. While doing this, we count individual row capacities and the edge
weight sum. After this, we simply set the node capacities of outGraph and copy our tempGraph into it,
ending the algorithm.
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Chapter 6

Unit tests

Unit test is an additional code designed to test the latest version of implementation after making some
changes. Using this code, the latest implementation of our algorithm is executed with a range of inputs
and the results are then compared against expected correct values. We have created unit tests for all the
algorithms mentioned in this work. In some cases, we created general verification functions to verify the
result for any given graph. Overall, unit tests for all the algorithms were implemented, while verification
functions for 2 algorithms were made.

6.1 Verification functions

For some of our algorithms, namely for finding maximal independent sets and connected compo-
nents, we have created boolean functions isMIS and isCC to confirm algorithm correctness for any
given graph g.

6.1.1 isMIS

To confirm, whether a result vector mis marks a maximal independent set of g, 2 things have to be
verified:

1. If v is in MIS, none of its neighbours are in MIS. If this is not the case, MIS is not an independent
set.

2. If v is not in MIS, at least one of its neighbours is in MIS. If this is not the case, MIS is not
maximal.

In order to confirm this, we go over all vertices in parallel and perform checks. Our implementation is
seen in the following code snippet

1 template< typename GraphType, typename VectorT >
2 bool
3 isMIS( const GraphType& g, VectorT& mis )
4 {
5 using DeviceType = typename GraphType::DeviceType;
6 using IndexType = typename GraphType::IndexType;
7

8 auto& adjMatrix = g.getAdjacencyMatrix();
9 auto size = g.getNodeCount();

10 auto matrixView = adjMatrix.getConstView();
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11 auto misView = mis.getConstView();
12

13 auto testNeighbours = [ = ] __cuda_callable__( IndexType idx ) -> bool
14 {
15 auto row = matrixView.getRow( idx );
16 //if the vertex IS in MIS - cant have neighbours in MIS
17 if( misView[ idx ] ) {
18 for( IndexType i = 0; i < row.getSize(); i++ ) {
19 if( row.getValue( i ) ) {
20 if( misView[ row.getColumnIndex( i ) ] ) {
21 return true;
22 }
23 }
24 }
25 }
26 //if NOT in MIS - must have at least one neighbour in MIS
27 else {
28 for( IndexType i = 0; i < row.getSize(); i++ ) {
29 if( row.getValue( i ) ) {
30 if( misView[ row.getColumnIndex( i ) ] ) {
31 return false;
32 }
33 }
34 }
35 return true;
36 }
37 return false;
38 };
39

40 return !TNL::Algorithms::reduce< DeviceType >(0, size, testNeighbours, TNL::LogicalOr());
41 }

6.1.2 isCC

In order to verify that a given vector cc represents a set of connected components of g, we need to
check each component. We find the root of each component and run breadth-first-search from it to see
all reachable vertices. We then compare this set to that stored in cc. If all components match, cc is valid.
Implementation code is shown below

1 template< typename GraphType, typename OutType >
2 bool
3 isCC( const GraphType& g, OutType& cc )
4 {
5 using IndexType = typename OutType::IndexType;
6 using RealType = typename OutType::RealType;
7 using DeviceType = typename GraphType::DeviceType;
8 using BooleanVectorType=TNL::Containers::Vector< bool, DeviceType, IndexType >;
9 using IndexVectorType=TNL::Containers::Vector< IndexType, DeviceType, IndexType >;

10

11 //identify roots of components
12 BooleanVectorType componentGroups( cc.getSize(), false );
13 auto ccView = cc.getView();
14 auto componentGroupsView = componentGroups.getView();
15

16 //(set indices of all vertices in cc to true)
17 auto identifyRoots = [ = ] __cuda_callable__( IndexType vertexIdx ) mutable
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18 {
19 if( ! componentGroupsView[ ccView[ vertexIdx ] ] ) {
20 componentGroupsView[ ccView[ vertexIdx ] ] = true;
21 }
22 };
23 TNL::Algorithms::parallelFor< DeviceType >( 0, cc.getSize(), identifyRoots );
24

25 //use BFS on each root and verify the results
26 while( TNL::any( componentGroups ) ) {
27 //fetch the largest vertex root
28 auto fetchMinIndex = [ = ] __cuda_callable__( IndexType vertexIdx ) -> IndexType
29 {
30 if( componentGroupsView[ vertexIdx ] ) {
31 return vertexIdx;
32 }
33 return -1;
34 };
35 auto root = TNL::Algorithms::reduce< DeviceType >( 0,
36 cc.getSize(),
37 fetchMinIndex,
38 TNL::Max{});
39

40 //perform BFS
41 IndexVectorType reachableFromRoot( cc.getSize(), false );
42 TNL::Graphs::breadthFirstSearch( g, root, reachableFromRoot );
43

44 //compare
45 auto reachableFromRootView = reachableFromRoot.getView();
46 auto fetchCompare = [ = ] __cuda_callable__( IndexType vertexIdx ) -> bool
47 {
48 //if current vertex is reachable via BFS, ccView[vertexIdx] must == root
49 if( reachableFromRootView[ vertexIdx ] >= 0 ) {
50 return ( ccView[ vertexIdx ] == root );
51 }
52 //if current vertex is NOT reachable via BFS, ccView[vertexIdx] must != root
53 return ( ccView[ vertexIdx ] != root );
54 };
55 bool isValidComponent = TNL::Algorithms::reduce< DeviceType >( 0,
56 cc.getSize(),
57 fetchCompare,
58 TNL::LogicalAnd{});
59

60 if( ! isValidComponent ) {
61 return false;
62 }
63

64 //remove current root from selection
65 auto clearRoot = [ = ] __cuda_callable__( IndexType rootIdx ) mutable
66 {
67 if( rootIdx == root ) {
68 componentGroupsView[ rootIdx ] = false;
69 }
70 };
71 TNL::Algorithms::parallelFor< DeviceType >( 0, cc.getSize(), clearRoot );
72 }
73 //if we get here, it means no component check failed
74 return true;
75 }
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6.2 Gtest

For implementing unit tests, we use rather well-known GoogleTest (Gtest) [Goo24] - Google’s C++
testing and mocking framework. To verify our algorithms, we use TYPED_TEST_SUITE environment
with individual TYPED_TESTs in it. We do this to test multiple graph and device configurations (different
template types) using the same algorithm interface.

Each algorithm has its own TYPED_TEST_SUITE with TYPED_TESTs. Inside of each TYPED_TEST, we
perform our algorithm on a test graph and compare the result to the expected result using ASSERT_EQ.
Unit tests roughly use the following structure:

1 // other includes
2 #include <gtest/gtest.h>
3

4 // test fixture for typed tests
5 template< typename Matrix >
6 class GraphTest : public ::testing::Test
7 {
8 protected:
9 using MatrixType = Matrix;

10 using GraphType = TNL::Graphs::Graph< MatrixType >;
11 };
12

13 // types for which MatrixTest is instantiated
14 using GraphTestTypes = ::testing::Types</*Matrix types to test*/>
15 TYPED_TEST_SUITE( GraphTest, GraphTestTypes );
16

17 TYPED_TEST( GraphTest, test )
18 {
19 using GraphType = typename TestFixture::GraphType;
20 using DeviceType = typename GraphType::DeviceType;
21 using IndexType = typename GraphType::IndexType;
22

23 /*
24 Declaring a test graph and result
25 Running Algorithm
26 */
27

28 ASSERT_EQ( /*result*/, /*expected result*/ );
29 }
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Chapter 7

Benchmarks

Benchmarking process is crucial when it comes to high performance code. Benchmark is an ad-
ditional code designed to measure and log performance of our code. In order to assess whether some
change in the code leads to more efficient algorithm, we log things such as runtime and memory usage.
As part of our work, we have implemented benchmarks for all our algorithms, except the minimal span-
ning tree algorithm. Note that we utilized an already established graph benchmark files, present in TNL,
as a baseline for ours.

7.1 Benchmarks structure

In our benchmark script, we have modified TNLs implementation of the environment. By default,
user can specify the graphs to run algorithms on via --input-file parameter, where you load in
the file containing the graph. An output file for storing the benchmark log can be specified using
--output-file. In TNLs default configuration, each algorithm is measured 10 times per matrix
storage format kernel per supported device type. Number of runs and device can be specified using
--loops and --device parameters, respectively. While TNL offers multiple kernels for multiple stor-
age formats, in our work and all our benchmarking efforts, we focus solely on CSR related ones, namely
CSRScalar, CSRVector, CSRLight, and CSRAdaptive kernels. This is due to 3 main reasons:

1. CSR format is considered standard

2. CSRScalar is the only kernel currently usable on all 3 devices

3. While some versions of our algorithms work with all storage formats supported by TNL, optimized
versions seem to be unreliable when using Ellpack storage format kernels. To be more specific,
the pre-fetching of edges and looping over them in parallel (see sections 2.5 and 4.5) sometimes
lead to wrong results. At other times, it is correct and actually faster than with CSR, but reliability
and correctness are of higher priority.

From this point onward, any results and conclusions are drawn from benchmarks performed using
CSRScalar, unless stated otherwise.

When we log performance of our algorithms, we note:

• device - device the algorithm is performed on

• format - storage format kernel used
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• algorithm - name

• performer - same as device

• time - time averaged from all runs of the algorithm

• loops - number of runs given to each algorithm

• bandwidth - memory bandwidth

and few other variables. For those algorithms, for which we have made a general verification function,
results are verified after each run.

Lastly, we would like to closer specify the 3 devices we are going to perform benchmarks on - CPU,
HOST, and GPU. By CPU, we mean sequential execution on the CPU using a single thread. By HOST,
we mean parallel execution on the CPU using OpenMP configured to use 16 threads. GPU means parallel
execution using a GPU (see section 7.4 for more details).

7.2 External libraries

Initially, we had plans to benchmark our implementations against other libraries, namely Graph-
BLAST (part of Gunrock [WPD+17]) and cuGraph [AI24]). Unfortunately, we have had problems
with setting them up for one reason or another. For the issues that we were unable to solve, we have
submitted bug reports. This is quite unfortunate, as it would have provided a much needed comparison
and framing for our results. We comment on this further in the thesis conclusion, but aside from techni-
cal difficulties, poor time management and putting higher priority on other aspects of the thesis certainly
played a role in why we were unable to complete what we have set out to do in regards to external
libraries. These are wrong decisions we have made, and we acknowledge them.

7.3 Benchmarking procedures

Due to unforeseen problems regarding external libraries and time constrains, we have decided to
settle on the following benchmarking procedures:

• CPU × GPU - since TNL allows us to employ somewhat hardware-agnostic approach, we can
directly compare running the same code sequentially, using OpenMP, and on a GPU. We can
explore which graph characteristics lead to performance gains or drops. Furthermore, we can find
the point at which the overhead associated with GPU execution is overshadowed by the benefit of
running in parallel.

• Optimizations - After implementing the algorithms, we went through an iterative process of modi-
fying them to improve their (GPU) performance and to better adapt them for TNL. We can measure
speedups or slowdowns caused by these changes and comment on why that may be.

For our benchmarks, we have generated a handful of directed graphs of varying size and edge density. By
size, we mean the number of vertices in a graph. By edge density, we denote the percentage of directed
edges present out of all the possible ones. In other words, how close the graph is to a complete graph of
the same size.
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If a directed graph is provided, an undirected counterpart with all one-sided edges filled in to be bi-
directional is created automatically. For algorithms performed on an undirected graph, it is then used
instead. All figure graphs shown are using logarithmic scale.

For tables with times, we use the following layout:

Table for Density 0.XX
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE

where:

• Table for Density 0.XX - States the edge density of graphs we measured the times on. We use
0.1, 0.45, and 0.65

• Size - Column stating graph size (ie. number of vertices).

• Time - Columns with the actual times measured. Each device has its own column.

• Comparison - Columns comparing devices - when comparing 2 devices a × b, we calculate b
a (ie.

performance of a compared to b). Result shows how much faster or slower a is compared to b as
a baseline. So if b

a < 1, a is slower. We use e notation to compact the numbers and to highlight the
orders of magnitude.

• TE - Thread Efficiency. In this column, we are trying to show the efficiency of a single thread
performance, when running on CPU versus on HOST. We calculate it as CPU Time

HOST Time * 16 . The idea
here is to show whether HOST, which uses 16 threads using OpenMP, manages to use them better
than CPU its 1 thread. In other words, HOST must perform at least 16 times better than CPU for
it to be more thread efficient.

7.4 Benchmark specification

For benchmarking, we have used a high performance computing cluster HELIOS at the Department
of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in
Prague. Hardware information in tables 7.1 and 7.2 were filled in based on information accessible in
HELIOS cluster documentation [Str24].

System Component Specification
CPU Intel XEON Gold 6134 @ 3.20GHz
Cores 8 cores per CPU, 8 threads total
CPU Cache 24.75 MB L3
RAM 384 GB
GPU ×

Table 7.1: System specification for the CPU benchmarks
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System Component Specification
CPU Intel XEON Gold 6130 @ 2.10GHz
Cores 16 cores per CPU, 16 threads total
CPU Cache 22 MB L3 Cache
RAM 384 GB
GPU 4x NVIDIA Tesla V100 SXM2

Table 7.2: System specification for the GPU benchmarks

For completeness, we would like to also provide .jsonmetadata files generated alongside our bench-
marks, which capture relevant information about the system and benchmarking setup. For the CPU and
HOST benchmarks, files contained the following relevant information;

1 {
2 "CPU cache sizes (L1d, L1i, L2, L3) (kiB)": "32, 32, 1024, 25344",
3 "CPU cores": "8",
4 "CPU max frequency (MHz)": "3201.000000",
5 "CPU model name": " Intel(R) Xeon(R) Gold 6134 CPU @ 3.20GHz",
6 "CPU threads per core": "1",
7 "OpenMP enabled": "yes",
8 "OpenMP threads": "16",
9 "architecture": "AMD64",

10 "compiler": "g++ v11.3.0",
11 "system": "Linux",
12 "system release": "3.10.0-862.el7.x86_64"
13 }

Note that, while enabled, OpenMP was not used when performing sequential benchmarks. For the GPU,
the file looks roughly like this:

1 {
2 "CPU cache sizes (L1d, L1i, L2, L3) (kiB)": "32, 32, 1024, 22528",
3 "CPU cores": "16",
4 "CPU max frequency (MHz)": "3700.000000",
5 "CPU model name": " Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz",
6 "CPU threads per core": "1",
7 "GPU CUDA cores": "5120",
8 "GPU architecture": "7.0",
9 "GPU clock rate (MHz)": "1530.000000",

10 "GPU global memory (GB)": "16.928342",
11 "GPU memory ECC enabled": "1",
12 "GPU memory clock rate (MHz)": "877.000000",
13 "GPU name": "Tesla V100-SXM2-16GB",
14 "OpenMP enabled": "no",
15 "OpenMP threads": "0",
16 "architecture": "AMD64",
17 "compiler": "Nvidia NVCC (11.7.99)",
18 "system": "Linux",
19 "system release": "3.10.0-1127.el7.x86_64"
20 }
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7.5 CPU × GPU

For comparison of CPU and GPU performance, we have measured the performance of our algorithms
when executed sequentially (CPU), in parallel on the CPU using OpenMP with 16 threads (HOST), and
in parallel using CUDA (GPU). Naturally, we used the same set of graphs for all devices.

7.5.1 CC

For connected components, we have focused on 2 implementations of our algorithm:

• CC_base - Initial implementation, which does not utilize parallel loops over edges, but rather over
vertices. This implementation is not shown here, as we believe it is inferior to the optimized one,
considering our focus on the GPU execution performance (see figure 7.13). Note, however, that it
should work with all storage format kernels.

• CC_opt2 - Implementation shown in section 2.5.

For comparison between them, see section 7.6.1. Regarding their CPU × GPU performance, some trends
can be seen from the results.

For CC_base, We can see that GPU performs better than sequential execution across various graph
densities, while achieving various results when compared to HOST (see figures 7.1 and 7.2).

GPU being faster than sequential execution seems like a sound conclusion, as CC_base implementa-
tion does not iterate over edges in its hooking phase, but rather over vertices. This forces a sequential
loop for each vertex to go through its neighbours. This has much worse impact on the CPU, because
GPU (and HOST to some extend) can at least perform these sequential loops for multiple vertices at
once. Sequential CPU execution is, on average, forced to perform a nested loop of size m in a loop of
size n, where m is the average degree of a vertex in a given graph, and n is the size of that graph. For a
worst case scenario - complete graph - hooking on a CPU would have time complexity of O(n2).

From the times measured we can see, that for sparse graphs, GPU outperforms other devices. As the
edge density increases, its performance becomes more and more comparable to that of HOST, While
CPU execution is always the slowest one.

For CC_opt2, GPU clearly outperforms both CPU executions by a landslide, as can be seen in figures
7.3 and 7.4. This makes sense, as looping over edges removes the inner forced sequential loop for each
vertex during hooking phase. While there are almost certainly more edges than vertices (ie. the hooking
phase loop is larger now), this way all can be done fully and efficiently in parallel with no nested loops,
which benefits the GPU extensively. As the edge density increases, so does the amount of edges to loop
through, which in turn makes the GPU performance even more pronounced.
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Figure 7.1: Comparison of CC_base algorithm performance on all devices on different edge densities
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Figure 7.2: Tables for CC_base graphs in figure 7.1
Table for Density 0.1

Time (s) Comparison
Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 1.64e-02 5.73e-03 3.63e-02 4.52e-01 2.86e+00 6.34e+00 0.0282
1500 5.28e-02 1.04e-02 2.33e-02 2.27e+00 5.10e+00 2.25e+00 0.1417
2000 1.17e-01 2.08e-02 5.15e-02 2.28e+00 5.65e+00 2.48e+00 0.1425
2500 2.19e-01 3.10e-02 8.23e-02 2.66e+00 7.07e+00 2.66e+00 0.1664
3000 3.88e-01 5.42e-02 1.17e-01 3.30e+00 7.15e+00 2.17e+00 0.2064
3500 6.02e-01 7.80e-02 1.52e-01 3.97e+00 7.72e+00 1.94e+00 0.2484
4000 9.20e-01 9.88e-02 1.93e-01 4.78e+00 9.31e+00 1.95e+00 0.2986
4500 1.32e+00 8.83e-02 1.92e-01 6.87e+00 1.49e+01 2.17e+00 0.4291
5000 1.83e+00 2.48e-01 2.44e-01 7.49e+00 7.39e+00 9.86e-01 0.4679
5500 2.52e+00 1.56e-01 2.92e-01 8.65e+00 1.62e+01 1.87e+00 0.5404
6000 3.30e+00 2.12e-01 4.04e-01 8.16e+00 1.56e+01 1.91e+00 0.5102
6500 4.35e+00 2.71e-01 4.86e-01 8.95e+00 1.60e+01 1.79e+00 0.5594
7000 5.46e+00 2.74e-01 5.94e-01 9.19e+00 1.99e+01 2.17e+00 0.5741
7500 7.01e+00 5.65e-01 7.41e-01 9.45e+00 1.24e+01 1.31e+00 0.5906
8000 8.60e+00 3.38e-01 8.82e-01 9.75e+00 2.54e+01 2.61e+00 0.6093

Table for Density 0.45
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 1.87e-01 1.15e-01 4.59e-02 4.08e+00 1.63e+00 4.00e-01 0.2550
1500 6.38e-01 1.04e-01 1.11e-01 5.76e+00 6.16e+00 1.07e+00 0.3601
2000 1.51e+00 4.77e-01 1.73e-01 8.69e+00 3.16e+00 3.64e-01 0.5431
2500 2.81e+00 7.15e-01 2.49e-01 1.13e+01 3.93e+00 3.49e-01 0.7043
3000 4.97e+00 7.68e-01 3.80e-01 1.31e+01 6.47e+00 4.95e-01 0.8176
3500 8.51e+00 9.14e-01 5.29e-01 1.61e+01 9.31e+00 5.79e-01 1.0046
4000 1.27e+01 5.26e-01 7.86e-01 1.61e+01 2.41e+01 1.49e+00 1.0071
4500 1.82e+01 1.12e+00 1.06e+00 1.71e+01 1.62e+01 9.49e-01 1.0664
5000 2.54e+01 1.31e+00 1.46e+00 1.74e+01 1.94e+01 1.11e+00 1.0880
5500 3.38e+01 2.74e+00 2.01e+00 1.68e+01 1.23e+01 7.35e-01 1.0489
6000 4.36e+01 1.62e+00 2.57e+00 1.69e+01 2.69e+01 1.59e+00 1.0585
6500 5.41e+01 2.20e+00 3.02e+00 1.79e+01 2.46e+01 1.38e+00 1.1173
7000 6.89e+01 3.78e+00 3.66e+00 1.88e+01 1.82e+01 9.70e-01 1.1743
7500 8.30e+01 1.98e+00 4.63e+00 1.79e+01 4.19e+01 2.33e+00 1.1219
8000 1.03e+02 2.38e+00 5.12e+00 2.02e+01 4.34e+01 2.15e+00 1.2618

Table for Density 0.65
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 2.96e-01 6.98e-02 1.06e-01 2.79e+00 4.24e+00 1.52e+00 0.1741
1500 9.88e-01 3.44e-01 1.19e-01 8.31e+00 2.87e+00 3.45e-01 0.5195
2000 2.35e+00 5.60e-01 2.13e-01 1.10e+01 4.20e+00 3.81e-01 0.6891
2500 4.49e+00 5.90e-01 3.55e-01 1.27e+01 7.61e+00 6.01e-01 0.7919
3000 8.26e+00 1.41e+00 5.34e-01 1.55e+01 5.84e+00 3.77e-01 0.9667
3500 1.35e+01 1.76e+00 7.88e-01 1.71e+01 7.63e+00 4.46e-01 1.0688
4000 2.02e+01 2.10e+00 1.30e+00 1.56e+01 9.64e+00 6.19e-01 0.9731
4500 2.81e+01 2.57e+00 1.49e+00 1.89e+01 1.10e+01 5.80e-01 1.1796
5000 3.87e+01 2.68e+00 2.11e+00 1.84e+01 1.44e+01 7.85e-01 1.1498
5500 5.24e+01 2.71e+00 3.05e+00 1.72e+01 1.93e+01 1.12e+00 1.0749
6000 6.74e+01 2.48e+00 3.84e+00 1.75e+01 2.71e+01 1.55e+00 1.0968
6500 8.63e+01 2.88e+00 4.79e+00 1.80e+01 2.99e+01 1.66e+00 1.1252
7000 1.10e+02 3.43e+00 5.52e+00 1.99e+01 3.20e+01 1.61e+00 1.2419
7500 1.34e+02 4.04e+00 6.76e+00 1.99e+01 3.33e+01 1.67e+00 1.2411
8000 1.62e+02 6.40e+00 8.22e+00 1.97e+01 2.53e+01 1.28e+00 1.2337
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Figure 7.3: Comparison of CC_opt2 performance on all devices on different edge densities
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Figure 7.4: Tables for CC_opt2 graphs in figure 7.3
Table for Density 0.1

Time (s) Comparison
Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 1.83e-02 6.22e-04 2.16e-02 8.48e-01 2.94e+01 3.47e+01 0.0530
1500 6.01e-02 9.18e-04 2.46e-02 2.44e+00 6.54e+01 2.68e+01 0.1528
2000 1.35e-01 1.02e-03 4.19e-02 3.22e+00 1.32e+02 4.11e+01 0.2015
2500 2.54e-01 1.18e-03 7.70e-02 3.30e+00 2.16e+02 6.53e+01 0.2064
3000 4.53e-01 1.32e-03 8.87e-02 5.11e+00 3.43e+02 6.71e+01 0.3194
3500 7.20e-01 1.66e-03 9.87e-02 7.29e+00 4.33e+02 5.95e+01 0.4556
4000 1.11e+00 1.90e-03 1.39e-01 7.99e+00 5.83e+02 7.30e+01 0.4991
4500 1.65e+00 2.15e-03 1.72e-01 9.63e+00 7.69e+02 7.98e+01 0.6021
5000 2.37e+00 2.23e-03 2.36e-01 1.00e+01 1.06e+03 1.06e+02 0.6268
5500 3.17e+00 2.56e-03 2.78e-01 1.14e+01 1.24e+03 1.09e+02 0.7131
6000 4.31e+00 2.94e-03 3.67e-01 1.17e+01 1.47e+03 1.25e+02 0.7340
6500 5.71e+00 3.48e-03 4.91e-01 1.16e+01 1.64e+03 1.41e+02 0.7265
7000 7.14e+00 3.98e-03 5.43e-01 1.31e+01 1.80e+03 1.37e+02 0.8215
7500 9.21e+00 4.39e-03 6.80e-01 1.36e+01 2.10e+03 1.55e+02 0.8469
8000 1.13e+01 5.05e-03 7.75e-01 1.46e+01 2.24e+03 1.54e+02 0.9124

Table for Density 0.45
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 2.20e-01 1.21e-03 4.68e-02 4.70e+00 1.82e+02 3.87e+01 0.2936
1500 7.54e-01 1.67e-03 9.08e-02 8.31e+00 4.51e+02 5.43e+01 0.5193
2000 1.85e+00 2.17e-03 1.65e-01 1.12e+01 8.50e+02 7.60e+01 0.6989
2500 3.65e+00 2.74e-03 2.49e-01 1.47e+01 1.33e+03 9.07e+01 0.9185
3000 6.61e+00 3.39e-03 4.10e-01 1.61e+01 1.95e+03 1.21e+02 1.0090
3500 1.08e+01 4.59e-03 5.39e-01 2.01e+01 2.36e+03 1.17e+02 1.2562
4000 1.62e+01 5.56e-03 8.53e-01 1.90e+01 2.91e+03 1.53e+02 1.1876
4500 2.30e+01 6.91e-03 1.05e+00 2.20e+01 3.33e+03 1.51e+02 1.3723
5000 3.22e+01 8.58e-03 1.52e+00 2.11e+01 3.75e+03 1.77e+02 1.3205
5500 4.20e+01 1.09e-02 1.86e+00 2.25e+01 3.86e+03 1.71e+02 1.4091
6000 5.55e+01 1.31e-02 2.54e+00 2.19e+01 4.24e+03 1.94e+02 1.3678
6500 6.96e+01 1.59e-02 3.00e+00 2.32e+01 4.39e+03 1.89e+02 1.4513
7000 8.75e+01 1.87e-02 3.73e+00 2.34e+01 4.67e+03 1.99e+02 1.4647
7500 1.05e+02 2.21e-02 4.39e+00 2.39e+01 4.73e+03 1.98e+02 1.4918
8000 1.31e+02 2.60e-02 5.19e+00 2.53e+01 5.05e+03 1.99e+02 1.5821

Table for Density 0.65
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 3.49e-01 1.42e-03 6.72e-02 5.19e+00 2.45e+02 4.73e+01 0.3243
1500 1.17e+00 1.95e-03 1.18e-01 9.95e+00 6.01e+02 6.04e+01 0.6216
2000 2.93e+00 2.65e-03 2.09e-01 1.40e+01 1.11e+03 7.91e+01 0.8733
2500 5.96e+00 3.40e-03 3.72e-01 1.60e+01 1.75e+03 1.09e+02 1.0005
3000 1.07e+01 4.39e-03 5.57e-01 1.93e+01 2.45e+03 1.27e+02 1.2056
3500 1.76e+01 5.91e-03 8.07e-01 2.18e+01 2.97e+03 1.37e+02 1.3608
4000 2.59e+01 7.62e-03 1.31e+00 1.98e+01 3.40e+03 1.72e+02 1.2399
4500 3.61e+01 9.16e-03 1.76e+00 2.06e+01 3.94e+03 1.92e+02 1.2846
5000 4.96e+01 1.13e-02 2.07e+00 2.39e+01 4.37e+03 1.83e+02 1.4960
5500 6.57e+01 1.44e-02 3.02e+00 2.17e+01 4.56e+03 2.10e+02 1.3588
6000 8.48e+01 1.74e-02 3.83e+00 2.21e+01 4.87e+03 2.20e+02 1.3828
6500 1.08e+02 2.10e-02 4.79e+00 2.25e+01 5.13e+03 2.28e+02 1.4044
7000 1.36e+02 2.45e-02 5.35e+00 2.54e+01 5.53e+03 2.18e+02 1.5848
7500 1.73e+02 2.90e-02 6.52e+00 2.65e+01 5.97e+03 2.25e+02 1.6588
8000 2.03e+02 3.39e-02 7.82e+00 2.60e+01 6.00e+03 2.31e+02 1.6261
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7.5.2 SCC

For strongly connected components, we benchmarked our implementation shown in section 3.5.
From the results in figures 7.5 and 7.6, we can conclude that CPU outperforms GPU for small sparse
graphs, but GPU soon overtakes it. This seems logical, as the 2 core parts of the algorithm - BFS and
comparing of predecessors and descendants (see section 3.4) - should benefit from parallel execution,
although this is not reflected in the HOST results.
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Figure 7.5: Comparison of SCC algorithm performance on CPU × GPU on different edge densities
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Figure 7.6: Tables for the SCC algorithm graphs in figure 7.5
Table for Density 0.1

Time (s) Comparison
Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 4.66e-04 9.89e-04 8.00e-03 5.83e-02 4.72e-01 8.10e+00 0.0036
1500 1.03e-03 1.21e-03 8.69e-03 1.19e-01 8.52e-01 7.16e+00 0.0074
2000 1.79e-03 1.74e-03 1.07e-02 1.68e-01 1.03e+00 6.14e+00 0.0105
2500 2.83e-03 2.11e-03 1.22e-02 2.32e-01 1.34e+00 5.78e+00 0.0145
3000 3.93e-03 2.45e-03 1.75e-02 2.25e-01 1.61e+00 7.13e+00 0.0141
3500 5.42e-03 3.27e-03 1.95e-02 2.78e-01 1.66e+00 5.96e+00 0.0174
4000 7.01e-03 3.32e-03 2.49e-02 2.81e-01 2.12e+00 7.52e+00 0.0176
4500 8.98e-03 3.71e-03 2.99e-02 3.00e-01 2.42e+00 8.08e+00 0.0187
5000 1.15e-02 4.00e-03 3.78e-02 3.05e-01 2.89e+00 9.46e+00 0.0191
5500 1.43e-02 4.64e-03 4.49e-02 3.18e-01 3.08e+00 9.67e+00 0.0199
6000 1.72e-02 4.82e-03 5.13e-02 3.36e-01 3.58e+00 1.07e+01 0.0210
6500 2.05e-02 5.27e-03 6.06e-02 3.39e-01 3.90e+00 1.15e+01 0.0212
7000 2.40e-02 5.58e-03 6.81e-02 3.53e-01 4.30e+00 1.22e+01 0.0221
7500 2.80e-02 5.87e-03 7.58e-02 3.69e-01 4.77e+00 1.29e+01 0.0231
8000 3.25e-02 6.27e-03 8.70e-02 3.73e-01 5.19e+00 1.39e+01 0.0233

Table for Density 0.45
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 3.25e-03 2.49e-03 1.33e-02 2.45e-01 1.30e+00 5.32e+00 0.0153
1500 7.27e-03 3.82e-03 2.20e-02 3.30e-01 1.90e+00 5.76e+00 0.0206
2000 1.26e-02 5.01e-03 3.38e-02 3.73e-01 2.52e+00 6.75e+00 0.0233
2500 2.04e-02 6.34e-03 5.12e-02 3.99e-01 3.22e+00 8.08e+00 0.0249
3000 2.96e-02 7.70e-03 7.27e-02 4.07e-01 3.84e+00 9.43e+00 0.0255
3500 4.10e-02 9.56e-03 1.00e-01 4.10e-01 4.29e+00 1.05e+01 0.0256
4000 5.36e-02 1.09e-02 1.41e-01 3.79e-01 4.94e+00 1.30e+01 0.0237
4500 6.85e-02 1.25e-02 1.53e-01 4.49e-01 5.49e+00 1.22e+01 0.0281
5000 8.56e-02 1.40e-02 1.89e-01 4.54e-01 6.10e+00 1.34e+01 0.0283
5500 1.03e-01 1.57e-02 2.31e-01 4.43e-01 6.54e+00 1.48e+01 0.0277
6000 1.24e-01 1.73e-02 2.66e-01 4.68e-01 7.18e+00 1.53e+01 0.0293
6500 1.50e-01 1.94e-02 3.10e-01 4.84e-01 7.75e+00 1.60e+01 0.0303
7000 1.67e-01 2.05e-02 3.62e-01 4.63e-01 8.16e+00 1.76e+01 0.0289
7500 1.89e-01 2.25e-02 4.11e-01 4.59e-01 8.37e+00 1.82e+01 0.0287
8000 2.19e-01 2.44e-02 4.66e-01 4.71e-01 8.98e+00 1.91e+01 0.0294

Table for Density 0.65
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 4.19e-03 3.47e-03 1.94e-02 2.15e-01 1.20e+00 5.59e+00 0.0135
1500 9.40e-03 5.07e-03 3.38e-02 2.78e-01 1.85e+00 6.67e+00 0.0174
2000 1.71e-02 6.92e-03 5.38e-02 3.18e-01 2.47e+00 7.76e+00 0.0199
2500 2.73e-02 8.55e-03 7.95e-02 3.44e-01 3.20e+00 9.30e+00 0.0215
3000 3.92e-02 1.07e-02 1.12e-01 3.49e-01 3.67e+00 1.05e+01 0.0218
3500 5.72e-02 1.29e-02 1.56e-01 3.66e-01 4.43e+00 1.21e+01 0.0229
4000 7.10e-02 1.50e-02 1.99e-01 3.56e-01 4.73e+00 1.33e+01 0.0223
4500 8.99e-02 1.70e-02 2.47e-01 3.64e-01 5.28e+00 1.45e+01 0.0227
5000 1.10e-01 1.94e-02 3.09e-01 3.58e-01 5.69e+00 1.59e+01 0.0224
5500 1.32e-01 2.16e-02 3.65e-01 3.60e-01 6.09e+00 1.69e+01 0.0225
6000 1.60e-01 2.92e-02 4.32e-01 3.71e-01 5.49e+00 1.48e+01 0.0232
6500 1.83e-01 2.66e-02 5.08e-01 3.60e-01 6.87e+00 1.91e+01 0.0225
7000 2.31e-01 2.86e-02 5.90e-01 3.92e-01 8.08e+00 2.06e+01 0.0245
7500 2.49e-01 3.17e-02 6.72e-01 3.70e-01 7.86e+00 2.12e+01 0.0231
8000 3.01e-01 3.45e-02 7.56e-01 3.98e-01 8.72e+00 2.19e+01 0.0249
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7.5.3 MIS

For maximal independent set, we have focused on 3 implementations (for comparison between them,
see section 7.6.2):

• MIS_base - Initial implementation, which does not utilize parallel loops over edges, but rather
over vertices. It should work with all storage format kernels (not only CSR related ones).

• MIS_lex3 - An alternative approach to the problem, where we assume that you just want a single
maximal independent set of a given graph, and do not care about much more than that. This
implementation is deterministic and always finds the same maximal independent set on a given
graph (called lexicographically first MIS). This inherently makes it very likely to be the fastest, as
there is no random selection of vertices, just finding the maximal independent set.

• MIS_opt3 - Implementation shown in section 4.5.

Regarding MIS_base implementation, we would first like to note that we had to add a fail-safe of sorts to
prevent large inconsistent spikes in runtime for both CPU executions. Because of the somewhat random
selection process employed in the algorithm (see section 4.4), we can sometimes end up with a collection
of unpicked vertices with high degrees (ie. very low chance of being selected). In our base implemen-
tation, this can lead to a long stall, where no vertices are selected over many iterations. To prevent this,
we have created a counter which counts these failed selections, and if there is enough of them one after
another, all remaining vertices are selected. This does not make the implementation deterministic, how-
ever, as triggering this fail-safe is almost sure to happen only after a substantial amount of vertices were
already processed. While we believe this issue could happen on any device, it has never once been the
case while performing the algorithm on the GPU.

Coming back to the performance of MIS_base, we can see in figures 7.7 and 7.8 that GPU manages
to outperform other executions by up to 2 orders of magnitude. For more dense graphs, this performance
gap decreases slightly, but it is still more than an order of magnitude in size at all times.

Moving on to MIS_lex3 (see figures 7.9 and 7.10), GPU once again manages to stay ahead almost
all the time. Only for the smallest sparse graphs are the CPU executions somewhat comparable. For the
rest, though, GPU is an order of magnitude faster.

When looking at MIS_opt3 (see figures 7.11 and 7.12), we see behavior similar to what we talked
about in regards to MIS_base. Here, however, stall should not occur, as we are changing our approach
to selecting vertices based on how many viable vertices remain. This perhaps points to an incorrect con-
figuration of OpenMP, or some other issue related to it, as CPU seems to be more or less stable. GPU
once again outperforms both CPU and HOST and is also the most stable one.
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Figure 7.7: Comparison of MIS_base algorithm performance on all devices on different edge densities
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Figure 7.8: Tables for MIS_base graphs in figure 7.7
Table for Density 0.1

Time (s) Comparison
Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 1.32e-01 9.97e-03 5.31e-01 2.48e-01 1.32e+01 5.33e+01 0.0155
1500 2.15e-01 1.19e-02 1.05e+00 2.05e-01 1.80e+01 8.79e+01 0.0128
2000 2.83e-01 1.33e-02 1.16e+00 2.43e-01 2.12e+01 8.74e+01 0.0152
2500 3.59e-01 1.53e-02 8.40e-01 4.27e-01 2.34e+01 5.48e+01 0.0267
3000 4.40e-01 1.78e-02 1.27e+00 3.47e-01 2.47e+01 7.13e+01 0.0217
3500 5.16e-01 1.94e-02 1.69e+00 3.05e-01 2.66e+01 8.71e+01 0.0191
4000 6.35e-01 2.17e-02 1.96e+00 3.24e-01 2.92e+01 9.01e+01 0.0203
4500 7.15e-01 2.42e-02 2.24e+00 3.20e-01 2.95e+01 9.25e+01 0.0200
5000 8.47e-01 2.53e-02 2.33e+00 3.63e-01 3.35e+01 9.24e+01 0.0227
5500 8.83e-01 2.57e-02 2.53e+00 3.49e-01 3.44e+01 9.85e+01 0.0218
6000 1.00e+00 2.89e-02 2.89e+00 3.46e-01 3.46e+01 1.00e+02 0.0216
6500 1.08e+00 3.32e-02 3.22e+00 3.34e-01 3.24e+01 9.69e+01 0.0209
7000 1.21e+00 3.38e-02 3.45e+00 3.52e-01 3.59e+01 1.02e+02 0.0220
7500 1.40e+00 3.64e-02 3.78e+00 3.72e-01 3.86e+01 1.04e+02 0.0232
8000 1.46e+00 3.64e-02 4.06e+00 3.60e-01 4.01e+01 1.11e+02 0.0225

Table for Density 0.45
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 3.56e-02 3.72e-03 2.04e-01 1.75e-01 9.57e+00 5.48e+01 0.0109
1500 4.69e-02 5.29e-03 2.84e-01 1.65e-01 8.86e+00 5.37e+01 0.0103
2000 7.34e-02 5.74e-03 3.77e-01 1.95e-01 1.28e+01 6.56e+01 0.0122
2500 8.16e-02 7.27e-03 2.61e-01 3.13e-01 1.12e+01 3.59e+01 0.0196
3000 1.14e-01 8.04e-03 3.65e-01 3.12e-01 1.42e+01 4.54e+01 0.0195
3500 1.35e-01 9.48e-03 4.38e-01 3.07e-01 1.42e+01 4.63e+01 0.0192
4000 1.85e-01 1.12e-02 4.95e-01 3.73e-01 1.66e+01 4.44e+01 0.0233
4500 1.57e-01 1.15e-02 4.23e-01 3.72e-01 1.37e+01 3.68e+01 0.0233
5000 2.31e-01 1.27e-02 6.74e-01 3.42e-01 1.82e+01 5.31e+01 0.0214
5500 2.23e-01 1.45e-02 5.90e-01 3.78e-01 1.54e+01 4.08e+01 0.0236
6000 2.50e-01 1.56e-02 6.57e-01 3.82e-01 1.60e+01 4.19e+01 0.0238
6500 3.04e-01 1.71e-02 7.72e-01 3.94e-01 1.77e+01 4.50e+01 0.0246
7000 2.90e-01 1.76e-02 7.12e-01 4.08e-01 1.65e+01 4.05e+01 0.0255
7500 3.55e-01 1.80e-02 9.00e-01 3.95e-01 1.97e+01 4.98e+01 0.0247
8000 3.42e-01 2.00e-02 8.48e-01 4.03e-01 1.71e+01 4.23e+01 0.0252

Table for Density 0.65
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 2.07e-02 2.65e-03 1.68e-01 1.23e-01 7.79e+00 6.34e+01 0.0077
1500 3.18e-02 3.15e-03 1.96e-01 1.62e-01 1.01e+01 6.22e+01 0.0102
2000 4.37e-02 4.57e-03 1.55e-01 2.82e-01 9.57e+00 3.39e+01 0.0176
2500 5.59e-02 5.08e-03 1.68e-01 3.32e-01 1.10e+01 3.31e+01 0.0208
3000 7.16e-02 6.05e-03 1.95e-01 3.67e-01 1.18e+01 3.23e+01 0.0229
3500 9.18e-02 6.61e-03 2.91e-01 3.15e-01 1.39e+01 4.41e+01 0.0197
4000 9.81e-02 7.21e-03 2.54e-01 3.87e-01 1.36e+01 3.52e+01 0.0242
4500 1.37e-01 9.35e-03 3.68e-01 3.72e-01 1.46e+01 3.94e+01 0.0232
5000 1.29e-01 9.88e-03 3.38e-01 3.82e-01 1.31e+01 3.42e+01 0.0239
5500 1.45e-01 9.76e-03 3.39e-01 4.27e-01 1.48e+01 3.47e+01 0.0267
6000 2.21e-01 1.17e-02 5.83e-01 3.79e-01 1.89e+01 4.99e+01 0.0237
6500 2.20e-01 1.27e-02 4.98e-01 4.43e-01 1.74e+01 3.93e+01 0.0277
7000 2.33e-01 1.31e-02 5.20e-01 4.48e-01 1.78e+01 3.97e+01 0.0280
7500 2.50e-01 1.45e-02 5.46e-01 4.57e-01 1.72e+01 3.75e+01 0.0286
8000 2.70e-01 1.50e-02 5.81e-01 4.65e-01 1.80e+01 3.87e+01 0.0291
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Figure 7.9: Comparison of MIS_lex3 algorithm performance on all devices on different edge densities.
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Figure 7.10: Tables for MIS_lex3 graphs in figure 7.9
Table for Density 0.1

Time (s) Comparison
Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 8.65e-04 9.77e-04 4.03e-03 2.15e-01 8.86e-01 4.13e+00 0.0134
1500 1.88e-03 1.11e-03 2.47e-03 7.62e-01 1.69e+00 2.21e+00 0.0476
2000 3.30e-03 1.26e-03 1.35e-03 2.45e+00 2.62e+00 1.07e+00 0.1534
2500 5.15e-03 1.36e-03 4.49e-03 1.15e+00 3.78e+00 3.30e+00 0.0716
3000 7.84e-03 1.44e-03 2.01e-03 3.89e+00 5.44e+00 1.40e+00 0.2433
3500 1.35e-02 1.68e-03 2.13e-03 6.36e+00 8.07e+00 1.27e+00 0.3974
4000 1.57e-02 2.12e-03 2.57e-03 6.10e+00 7.37e+00 1.21e+00 0.3812
4500 2.00e-02 2.37e-03 2.34e-03 8.56e+00 8.45e+00 9.87e-01 0.5348
5000 2.51e-02 2.43e-03 2.63e-03 9.53e+00 1.03e+01 1.08e+00 0.5957
5500 3.92e-02 2.56e-03 3.11e-03 1.26e+01 1.53e+01 1.21e+00 0.7872
6000 4.07e-02 3.06e-03 4.37e-03 9.31e+00 1.33e+01 1.43e+00 0.5817
6500 4.46e-02 3.38e-03 4.42e-03 1.01e+01 1.32e+01 1.31e+00 0.6297
7000 7.80e-02 3.58e-03 6.21e-03 1.26e+01 2.18e+01 1.73e+00 0.7851
7500 6.70e-02 4.16e-03 6.44e-03 1.04e+01 1.61e+01 1.55e+00 0.6509
8000 8.70e-02 4.52e-03 9.91e-03 8.78e+00 1.92e+01 2.19e+00 0.5489

Table for Density 0.45
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 2.99e-03 1.50e-03 3.18e-03 9.39e-01 1.99e+00 2.12e+00 0.0587
1500 5.31e-03 1.69e-03 2.34e-03 2.26e+00 3.14e+00 1.39e+00 0.1415
2000 1.06e-02 2.24e-03 3.84e-03 2.76e+00 4.72e+00 1.71e+00 0.1724
2500 2.37e-02 2.57e-03 4.49e-03 5.29e+00 9.23e+00 1.74e+00 0.3305
3000 2.74e-02 3.06e-03 3.81e-03 7.19e+00 8.97e+00 1.25e+00 0.4495
3500 4.08e-02 3.73e-03 4.55e-03 8.96e+00 1.09e+01 1.22e+00 0.5597
4000 5.24e-02 4.48e-03 6.87e-03 7.62e+00 1.17e+01 1.53e+00 0.4764
4500 9.14e-02 4.67e-03 9.55e-03 9.57e+00 1.95e+01 2.04e+00 0.5981
5000 8.99e-02 5.24e-03 1.40e-02 6.40e+00 1.72e+01 2.68e+00 0.4000
5500 1.07e-01 6.14e-03 1.44e-02 7.46e+00 1.75e+01 2.34e+00 0.4662
6000 1.66e-01 7.29e-03 1.80e-02 9.26e+00 2.28e+01 2.46e+00 0.5786
6500 1.38e-01 8.91e-03 1.77e-02 7.81e+00 1.55e+01 1.98e+00 0.4881
7000 1.57e-01 9.88e-03 2.04e-02 7.69e+00 1.59e+01 2.07e+00 0.4805
7500 1.88e-01 1.24e-02 2.39e-02 7.85e+00 1.52e+01 1.94e+00 0.4908
8000 2.93e-01 1.31e-02 4.41e-02 6.64e+00 2.24e+01 3.37e+00 0.4151

Table for Density 0.65
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 2.83e-03 1.54e-03 1.17e-02 2.41e-01 1.83e+00 7.60e+00 0.0151
1500 7.09e-03 1.89e-03 1.52e-03 4.66e+00 3.75e+00 8.05e-01 0.2911
2000 1.37e-02 2.43e-03 1.14e-02 1.20e+00 5.63e+00 4.69e+00 0.0750
2500 1.67e-02 2.95e-03 3.10e-03 5.36e+00 5.64e+00 1.05e+00 0.3353
3000 4.27e-02 4.11e-03 8.42e-03 5.07e+00 1.04e+01 2.05e+00 0.3166
3500 4.82e-02 5.11e-03 6.92e-03 6.96e+00 9.43e+00 1.36e+00 0.4348
4000 8.21e-02 5.55e-03 9.98e-03 8.23e+00 1.48e+01 1.80e+00 0.5143
4500 9.50e-02 5.18e-03 1.29e-02 7.37e+00 1.83e+01 2.48e+00 0.4609
5000 7.26e-02 5.96e-03 1.47e-02 4.95e+00 1.22e+01 2.46e+00 0.3092
5500 1.23e-01 7.81e-03 2.25e-02 5.46e+00 1.57e+01 2.88e+00 0.3412
6000 1.80e-01 9.14e-03 2.45e-02 7.36e+00 1.97e+01 2.68e+00 0.4597
6500 2.77e-01 1.14e-02 3.45e-02 8.03e+00 2.44e+01 3.03e+00 0.5021
7000 2.13e-01 1.19e-02 3.20e-02 6.66e+00 1.79e+01 2.69e+00 0.4164
7500 2.30e-01 1.40e-02 3.99e-02 5.77e+00 1.65e+01 2.86e+00 0.3604
8000 2.62e-01 1.71e-02 4.41e-02 5.94e+00 1.53e+01 2.58e+00 0.3715
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Figure 7.11: Comparison of MIS_opt3 algorithm performance on all devices on different edge densities
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Figure 7.12: Tables for MIS_opt3 graphs in figure 7.11
Table for Density 0.1

Time (s) Comparison
Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 1.07e+03 1.30e-03 3.11e-01 3.45e+03 8.27e+05 2.40e+02 215.7109
1500 6.24e+02 1.74e-03 1.46e+02 4.28e+00 3.59e+05 8.38e+04 0.2678
2000 6.53e+02 1.74e-03 1.64e+01 3.98e+01 3.75e+05 9.43e+03 2.4886
2500 1.33e+03 1.85e-03 2.23e+02 5.95e+00 7.20e+05 1.21e+05 0.3719
3000 5.95e+02 2.01e-03 4.30e+01 1.38e+01 2.96e+05 2.14e+04 0.8651
3500 1.36e+03 2.67e-03 2.01e+02 6.75e+00 5.08e+05 7.53e+04 0.4218
4000 7.85e+02 2.75e-03 1.04e+02 7.56e+00 2.85e+05 3.77e+04 0.4728
4500 1.37e+03 2.82e-03 7.22e+01 1.90e+01 4.86e+05 2.56e+04 1.1848
5000 4.33e+02 2.96e-03 4.32e+01 1.00e+01 1.46e+05 1.46e+04 0.6270
5500 1.67e+03 3.26e-03 1.80e+02 9.26e+00 5.12e+05 5.53e+04 0.5787
6000 1.96e+03 3.83e-03 3.85e+02 5.10e+00 5.13e+05 1.01e+05 0.3186
6500 6.03e-02 4.18e-03 1.11e+02 5.45e-04 1.44e+01 2.64e+04 0.0000
7000 5.48e+02 4.52e-03 2.42e+02 2.27e+00 1.21e+05 5.34e+04 0.1417
7500 2.31e+03 4.90e-03 9.12e+01 2.53e+01 4.71e+05 1.86e+04 1.5829
8000 2.34e+01 5.45e-03 4.33e+01 5.40e-01 4.29e+03 7.94e+03 0.0337

Table for Density 0.45
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 4.23e-03 1.60e-03 3.44e+01 1.23e-04 2.65e+00 2.15e+04 0.0000
1500 9.10e-03 2.02e-03 2.21e-02 4.11e-01 4.49e+00 1.09e+01 0.0257
2000 1.65e-02 2.38e-03 4.47e+01 3.69e-04 6.94e+00 1.88e+04 0.0000
2500 1.95e-02 2.76e-03 8.74e+01 2.23e-04 7.08e+00 3.17e+04 0.0000
3000 5.22e-02 3.18e-03 6.64e+01 7.86e-04 1.64e+01 2.09e+04 0.0000
3500 5.30e-02 4.05e-03 1.61e-02 3.28e+00 1.31e+01 3.99e+00 0.2051
4000 6.33e-02 4.34e-03 6.20e+01 1.02e-03 1.46e+01 1.43e+04 0.0001
4500 9.38e-02 5.60e-03 9.05e-02 1.04e+00 1.67e+01 1.62e+01 0.0648
5000 2.89e+02 5.54e-03 2.97e+01 9.71e+00 5.21e+04 5.36e+03 0.6069
5500 2.54e+02 6.94e-03 6.53e+01 3.89e+00 3.66e+04 9.41e+03 0.2432
6000 4.56e+02 7.31e-03 3.37e+02 1.35e+00 6.24e+04 4.62e+04 0.0845
6500 1.76e+03 9.56e-03 4.79e+01 3.68e+01 1.84e+05 5.01e+03 2.2995
7000 2.44e+03 1.06e-02 4.37e+02 5.58e+00 2.30e+05 4.11e+04 0.3488
7500 3.85e+03 1.33e-02 6.95e-02 5.53e+04 2.90e+05 5.24e+00 3458.5100
8000 3.75e+02 1.41e-02 7.52e+02 4.99e-01 2.67e+04 5.34e+04 0.0312

Table for Density 0.65
Time (s) Comparison

Size CPU GPU HOST HOST × CPU GPU × CPU GPU × HOST TE
1000 3.88e-03 1.83e-03 5.46e-03 7.10e-01 2.11e+00 2.98e+00 0.0444
1500 1.03e-02 2.14e-03 1.54e-02 6.70e-01 4.84e+00 7.23e+00 0.0419
2000 1.53e-02 2.74e-03 8.44e+00 1.82e-03 5.58e+00 3.07e+03 0.0001
2500 2.53e-02 3.13e-03 3.55e+01 7.13e-04 8.09e+00 1.13e+04 0.0000
3000 4.68e-02 3.70e-03 3.84e-02 1.22e+00 1.27e+01 1.04e+01 0.0762
3500 5.27e-02 4.59e-03 3.27e-02 1.61e+00 1.15e+01 7.12e+00 0.1009
4000 8.14e-02 5.19e-03 5.00e-02 1.63e+00 1.57e+01 9.64e+00 0.1017
4500 9.02e-02 7.52e-03 3.73e+02 2.41e-04 1.20e+01 4.97e+04 0.0000
5000 6.64e+02 6.55e-03 7.19e-02 9.24e+03 1.01e+05 1.10e+01 577.5891
5500 2.41e+03 8.00e-03 5.74e+02 4.19e+00 3.01e+05 7.18e+04 0.2620
6000 1.69e+03 9.10e-03 6.46e+01 2.62e+01 1.86e+05 7.10e+03 1.6363
6500 2.52e+03 1.05e-02 7.99e-02 3.16e+04 2.40e+05 7.61e+00 1975.3964
7000 2.50e+03 1.17e-02 1.64e+02 1.52e+01 2.14e+05 1.40e+04 0.9513
7500 1.11e+03 1.40e-02 4.29e+02 2.58e+00 7.89e+04 3.06e+04 0.1614
8000 1.40e+03 1.64e-02 1.01e+01 1.38e+02 8.50e+04 6.16e+02 8.6230
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7.6 Optimizations

7.6.1 CC

For connected components, we are going to compare 2 implementations of our algorithm:

• CC_base - Initial implementation, which does not utilize parallel loops over edges, but rather over
vertices. This implementation is not shown here, as we believe it is inferior to the optimized one.
Note, however, that it should work with all storage format kernels. For exact times, see table 7.2.

• CC_opt2 - Implementation shown in section 2.5. For exact times, see table 7.4.

When we look at how they perform side-by-side, we discover that each device is affected differently by
the changes made between implementations (see figure 7.13).

While CC_opt2 represents a major improvement for the GPU, it actually hinders sequential execution
performance sightly. HOST seems to not be affected much. Considering the huge performance im-
provement for the GPU, which is the main focus of our work, we believe CC_opt2 to be the better
implementation of the 2.
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Figure 7.13: Comparing CC_base graphs with CC_opt2 graphs.

7.6.2 MIS

For maximal independent set, we are going to compare 3 implementations of our algorithm:
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• MIS_base - Initial implementation, which does not utilize parallel loops over edges, but rather
over vertices. It should work with all storage format kernels (not only CSR related ones).

• MIS_lex3 - An alternative approach to the problem, where we assume that you just want a single
maximal independent set of a given graph, and do not care about much more than that. This
implementation is deterministic and always finds the same maximal independent set on a given
graph (called lexicographically first MIS). This inherently makes it very likely to be the fastest, as
there is no random selection of vertices, just finding the maximal independent set.

• MIS_opt3 - Implementation shown in section 4.5.

For readability and convenience, let us split comparisons into pairs.

When comparing MIS_base with MIS_opt3 (see figure 7.14), we can see that MIS_opt3 improves
the performance on the GPU by roughly an order of magnitude for less dense graphs. As edge density
increases, both implementations become more and more comparable to each other. A huge difference be-
tween the two, however, can be seen on CPU. We can observe that MIS_opt3 seems to exhibit unreliable
performance using OpenMP, as the edge density increases. Inconsistencies in performance are somewhat
puzzling, as using the adaptive approach to vertex selection (see section 4.5) should in theory prevent this
behaviour. This could perhaps hint at some mistake in OpenMP configuration, as sequential benchmark
seems to not behave like this. While MIS_opt3 offers better performance on the GPU, MIS_base seems
to offer more reliable performance overall. Should someone be certain to use GPU, however, MIS_opt3
seems to have no drawbacks when running on it.

Next, let us compare MIS_base with MIS_lex3 (see figure 7.15). It can be observed, that MIS_lex3 is
faster than MIS_base, which is to be expected. With increasing graph size and edge density, we can see
both implementation become more and more comparable in all cases except for HOST, where MIS_lex3
manages to stay significantly faster than MIS_base.

Lastly, when comparing MIS_opt3 with MIS_lex3 (see figure 7.16), we can see that MIS_lex3 is faster
and more reliable in terms of performance, especially on both CPU executions. Because of the large y
axis range, GPU results are somewhat skewed, so they are shown on their own in figure 7.17. There,
it can be seen, that they are quite comparable, especially for dense graphs. So while on both CPU ex-
ecutions, MIS_lex3 performs much better than MIS_opt3 (and also quite better than MIS_base), GPU
performance looks about the same for both. This is interesting, as it implies, that the overhead associated
with random selection of vertices is different on each device. It is very small on the GPU, while it is
much larger on the CPU based executions.

Overall, MIS_lex3 seems like the fastest option for both HOST and CPU, but comes with the draw-
back of always resulting in the same set on a given graph. Should a random set be required, MIS_base
seems to be the best option for HOST and CPU. For the GPU, MIS_opt3 performs the best, while offer-
ing random result.
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Figure 7.14: Comparing MIS_base graphs with MIS_opt3 graphs.
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Figure 7.15: Comparing MIS_base graphs with MIS_lex3 graphs.
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Figure 7.16: Comparing MIS_opt3 graphs with MIS_lex3 graphs.
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Figure 7.17: Comparing MIS_opt3 graphs with MIS_lex3 graphs on GPU.
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Conclusion

Goal of this project was to select, describe, test, implement, and benchmark parallel algo-
rithms for solving common graph problems, namely finding maximal independent set, (strongly)
connected components, and minimal spanning tree (forest).

To summarize, we have managed to create fully working and well-performing implementations for 3
out of the 4 proposed graph problems, with (hopefully) comprehensive descriptions. For the last prob-
lem - minimal spanning tree - we at least offered our work in progress implementations, which are not
100% reliable, but they provide some value and can be used. These implementations also add function-
ality to the TNL library, as they will become part of it. Note that no implementations were present in
TNL to solve these problems before. Furthermore, some tools created for the purposes of this work, such
as a Python script for generating visualizations of graph benchmark results, can be used for future graph
algorithms. We would also like to point out the theoretical parts and algorithm descriptions, which we
believe were well written and illustrated, offering understandable and concise summary of these graph
problems and solutions. All implementations and code produced in the process of making this thesis can
be freely accessed on GitLab [cic24], where it is currently in branch RC/GraphAlgorithms, awaiting
merging procedure. In the future, it is assumed to be present as official part of TNL.

Still, it is unfortunate, that not every goal was accomplished. To address our shortcomings, we would
like to list some parts of our work that we feel perhaps lack the depth and detail they deserve, whether it
be due to unexpected problems, not ideal time management, or any other reason:

• External libraries - We consider this to probably be the most severe part that is lacking, as having
any sort of comparison with another library would elevate the whole benchmarking discussion and
provide better, more objective, and more informative comparison, allowing us to better frame our
implementation performances. We were simply unable to make the libraries function on our system
and within our benchmarking environment in a timely manner, when it came to benchmarking. A
clear lesson was taken from this - allocate more time to first confirm the functionality of and
prepare the libraries on the system benchmarks are measured on, even if it means that there will be
less time to tweak or work on the implementations of various algorithms or other parts of thesis.
It would perhaps be better to have a more complete comparison with external libraries, even at the
cost of not being able to develop our implementations as much.

• Sequential algorithm benchmarking - We could have created and measured standard sequential
only implementations to compare with out parallel focused ones to get a clearer comparison be-
tween the 2 hardware architectures. To be fair, this was not the main focus of our work, as we were
more hoping to explore the parallel implementations and focus on GPU performance. Since we
were unable to compare with external libraries, though, the lack of clear CPU to GPU comparison
also becomes problematic, as all of our implementations should implicitly favor parallel execution,
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because their logic is based around it. Comparing against an implementation made with sequential
execution in mind could have provided better device comparison.

• Measuring with real graphs - We did not perform the benchmarks on any organic graphs from
real data, mainly due to time constrains. While we believe measuring on generated graphs offers
better conditions for observing performance impact of certain graph characteristics, a valid argu-
ment can be made about how the performance measured holds up when using our algorithms on
real graphs.

With the ability to now reflect on the process of creating this thesis, we still firmly believe that our ded-
ication to and time spend on it was respectable, but that different decisions would perhaps lead to better
and overall more complete results. Mainly, spending less time on the implementation development and
optimization, and more time on the measuring part of the work. This way, a more complete and better
framed result could be presented, even if its not as developed or optimized. Should we continue to work
on the foundation we laid out in this thesis in the future, we would certainly apply the lessons learned
while making it, and try to improve the parts of it that were left behind, starting with putting more em-
phasis on and dedicating more time to the benchmarking part of the work.

Despite not being able to achieve everything we have set out to do, we still consider this work
a successful and valuable endeavour, academic contribution, addition to the TNL library, and a
personal experience.
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