
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

MediTrack - doctors, examinations and medical reports

Marília Maurell Assad

Ing. Zdeněk Rybola, Ph.D.

Informatics

Software Engineering 2021

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

MediTrack is a Java web application serving as a personal health tracker, including

functions to track individual medicines, their stock, planning their application and

tracking its history.

The goal of the bachelor thesis is the extension of the application with the following

functionality:

- keeping record of various user's doctors and other specialists

- planning doctor appointments and other examinations

- keeping reports and results of the appointments and examinations

The thesis realization should follow the best practices of software engineering. The

thesis should consist of:

- analysis of the current functionality of the MediTrack application

- analysis of existing solutions to similar domain

- analysis of the new requirements

- design of the solution

- implementation of selected requirements based on an agreement with the thesis

supervisor

- appropriate testing of the implemented functionality

- appropriate documentation

Electronically approved by Ing. Michal Valenta, Ph.D. on 15 January 2024 in Prague.

Bachelor’s thesis

MEDITRACK –
DOCTORS,
EXAMINATIONS AND
MEDICAL REPORTS

Maŕılia Maurell Assad

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Zdeněk Rybola, Ph.D.
June 27, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Maŕılia Maurell Assad. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Maurell Assad Maŕılia. MediTrack – doctors, examinations and medical reports.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

Acronyms ix

1 Introduction 1
1.1 Motivation . 1
1.2 Structure . 2

2 Analysis 3
2.1 Original implementation . 3
2.2 Architecture . 5

2.2.1 System architecture . 5
2.2.2 Logical architecture . 6

2.3 Technologies . 7
2.4 New requirements . 8
2.5 Use cases . 9
2.6 Existing solutions . 13

3 Design 15
3.1 Domain model . 15
3.2 Technology analysis . 17

3.2.1 User authentication . 17
3.2.2 Calendar . 19
3.2.3 Notification service . 19
3.2.4 File storage . 20

3.3 Database . 21
3.4 Architecture . 22
3.5 Authentication design . 24

4 Implementation 27
4.1 Features . 27

4.1.1 Homepage . 27
4.1.2 Date manipulation . 27
4.1.3 Filtering data . 28
4.1.4 Calendar . 29
4.1.5 Authentication . 30
4.1.6 Mailing service . 33
4.1.7 File upload and download . 34

4.2 Testing . 36
4.2.1 Automated tests . 36

iii

iv Contents

4.2.2 User tests . 36
4.3 Project organization . 38

4.3.1 Workflow and version management . 38
4.3.2 Static code analysis . 40
4.3.3 Documentation . 40

5 Conclusion 43
5.1 Future work . 43

Contents of enclosed media 49

List of Figures

2.1 Domain model of original implementation . 4
2.2 System architecture . 5
2.3 Package diagram . 6
2.4 Use cases for authentication . 10
2.5 Use cases for doctor . 11
2.6 Use cases for appointment . 11
2.7 Use cases for report . 12
2.8 Use cases for mailing service . 12

3.1 Domain model of current implementation . 16
3.2 Database for new implementation . 22
3.3 Backend package diagram on new implementation 23
3.4 Login sequence diagram . 24
3.5 Authenticated request sequence diagram . 25

4.1 Homepage with dropdown menu . 28
4.2 Example of table with filter . 29
4.3 Calendar with events . 29
4.4 Decoding a JWT Token . 31
4.5 Sign up form . 32
4.6 Email notification for appointments . 33
4.7 File upload dialog from edit page . 35
4.8 File download from detail page . 35
4.9 Issue example . 39
4.10 CI/CD pipeline . 39
4.11 SonarQube analysis for client source code . 41
4.12 SonarQube analysis for server source code . 41

List of code listings

4.1 Security configuration properties . 30
4.2 Method to add token on authentication header 32
4.3 Schedule appointment check . 34
4.4 File upload event . 35
4.5 Authenticated user mock on tests . 36

v

I would like to thank my supervisor Ing. Zdeněk Rybola, Ph.D. for
his support and guidance throughout not only this thesis process,
but also for the past two years. I thank my friends and colleagues
who worked with me on our group project: your enthusiasm and
collaborative spirit initiated this project and made the entire process
enjoyable and memorable. Special thanks to my family, for their
unconditional love and support.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Czech Technical
University in Prague has the right to conclude a licence agreement on the utilization of this thesis
as a school work pursuant of Section 60 (1) of the Act.

In Prague on June 27, 2024

vii

Abstract

The aim of this Bachelor thesis is to expand an existing Java Web application MediTrack with
new functionalities. The application is a personal health tracker, including functions to track
individual medication, their stock, planning their intake and tracking its history. New functional-
ities consist of user authentication; keeping record of various user’s doctors and other specialists;
planning appointments or examinations with notifications; and storing reports and results of
appointments and examinations with file uploads.

Keywords Meditrack, web application, Java, React, health tracker

Abstrakt

Ćılem této bakalářské práce je rozš́ı̌rit stávaj́ıćı webovou aplikaci MediTrack v jazyce Java o nové
funkce. Aplikace je osobńı zdravotńı tracker, který obsahuje funkce pro sledováńı jednotlivých
lék̊u, jejich zásob, plánováńı jejich už́ıváńı a sledováńı jejich historie. Nové funkce spoč́ıvaj́ı v
autentizaci uživatele, evidenci r̊uzných lékař̊u a daľśıch specialist̊u uživatele, plánováńı sch̊uzek
nebo vyšetřeńı s upozorněńımi a ukládáńı zpráv a výsledk̊u sch̊uzek a vyšetřeńı s nahráváńım
soubor̊u.

Kĺıčová slova Meditrack, webová aplikace, Java, React, sledováńı zdravotńıho stavu

viii

Acronyms

API Application Programming Interface
BLOB Binary Large Object
CI/CD Continuous Integration, Continuous Delivery
CLOB Character Large Object
CRUD Create, Read, Update and Delete
CSRF Cross-site Request Forgery
LOB Large Object

HMAC Hash-based Message Authentication Code
HTTP Hypertext Transfer Protocol
IMAP Internet Message Access Protocol
JDBC Java Database Connectivity

JPA Java Persistent API
JSON JavaScript Object Notation
JWT JSON Web Token
MVC Model-View-Controller
NPM Node Package Management

OAuth Open Authorization
ORM Object Relational Mapping
REST Representational State Transfer
SMTP Simple Mail Transfer Protocol

SSL Secure Sockets Layer
TLS Transport Layer Security

UTC Coordinated Universal Time
XSS Cross-site Scripting

ix

x Acronyms

Chapter 1

Introduction

In today’s fast-paced world, managing personal health effectively has become increasingly chal-
lenging. Many individuals, particularly those with chronic conditions, need to keep track of
multiple medications, their dosages, and schedules. Furthermore, coordinating appointments
with various doctors and maintaining health records adds to the complexity. To address these
challenges, a web application was conceived – MediTrack – aimed at providing users with a
convenient and user-friendly platform to monitor their medication intake, set reminders, and
manage their medication history.

1.1 Motivation
Initially, the project was developed with the supervision of Ing. Zdeněk Rybola, PhD, in the
subjects of BIE-SP1 and BIE-SP2. The initial work consisted of analyzing the requirements
necessary to implement such a project and execute its basic functionalities: setting up a database
with medications and packages for each user, creating intake plans with recurring occurrences and
registering individual medication usages. The project continues to be developed by a different
group of students, in the same subject.

This aim of this thesis is to improve MediTrack by implementing new useful functionalities.
First feature to be implemented is user authentication, which enables secure access to personal
health data: it ensures only authorized individuals can access sensitive health information, and
guarantees user-specific data segregation.

Another enhancement is to keep records of various healthcare providers, including doctors and
other specialists. Users are able to plan and schedule doctor appointments and other medical
examinations, ensuring they never miss an important check-up. The application includes a
notification system that sends reminders about upcoming appointments and examinations; these
notifications are sent via email, providing timely reminders.

Finally, the new functionalities allow users to store and manage reports and results from their
medical appointments and examinations, providing a centralized location for all their health-
related information. Users can attach documents, such as lab reports, medical imaging results,
and doctor’s notes, directly to their records within the application. This feature ensures that
all pertinent health information is easily accessible and well-organized, enabling users to have a
comprehensive view of their medical history.

1

2 Introduction

1.2 Structure
Chapter 2 provides an analysis of the initial state of the project and what is needed to implement
these new functionalities. It includes an overview of the original technologies and architecture,
new requirements to be developed and use cases that will result from those requirements. The
chapter concludes with a comparison of existing market solutions.

Chapter 3 outlines the necessary changes to the project’s domain model and database, new
architectural design to be implemented and a study of the design for certain functionalities.
Additionally, the chapter brings an analysis of potential technologies that could be employed in
the system as part of the proposed solution.

In chapter 4, an overview of implementation details is given, highlighting key aspects and
processes involved in realizing the project. It also discusses the testing strategies used to evaluate
the application and the project’s organization concerning version management, code analysis and
documentation.

Finally, chapter 5 brings suggestions for future work and the conclusions of the thesis, sum-
marizing the findings and potential directions for further development.

Chapter 2

Analysis

In this chapter, the application requirements are defined and discussed. An analysis of the
current iteration of MediTrack is performed; it aims to provide insight into the current state of
the application, present its functionalities and examine its limitations and overall condition.

A summary of new features is presented, in relation to what was done before, highlighting
possible enhancements and advancements. This step is crucial to outline the trajectory of de-
velopment, shaping the definition of next steps and future priorities. From this study, a series
of use cases is designed, detailing how users will interact with the system to achieve the defined
goals.

At last, the chapter ends with the exploration of other market solutions within the same
domain. This comparative analysis serves to benchmark MediTrack against existing competitors,
drawing insights into industry best practices, innovative features, and potential gaps that can be
addressed to further enhance the application’s competitiveness and user experience.

2.1 Original implementation
Given that this thesis builds upon an existing and functional framework, it is essential to describe
the initial setup and how the current work used this software architecture as its foundation. This
context will provide a clear understanding of the prior work and the enhancements made in this
thesis.

The original implementation allows users to register medications with various administration
methods, track inventory of associated packages, and plan medication usage. Its key feature is
the ability to create schedules for specific medicines; these intake plans can be customized by
frequency, specific times and/or days of consumption, quantity, and the full treatment period
length. This process automatically generates future intake events, which users can mark as taken
or missed. Both upcoming and completed intakes are displayed in a list format, helping users
track their compliance with the medication plan.

To support these functionalities, the domain model of the application plays a crucial role in
defining the relationships and behaviors of the different entities involved, such as medications,
packages, and intake schedules. A domain model serves as a conceptual representation that
incorporates both behavior and data, outlining how the various components of the system interact
[1].

Figure 2.1 illustrates how the initial five entities relate to each other: User, the main entity,
owns multiple medications, intake plans and usages; Medicine has multiple packages associated
to them, facilitating the tracking of stock levels for each medication. Finally, an intake plan can
generate multiple usage records, providing a detailed log and monitoring of medication usage.

3

4 Analysis

Figure 2.1 Domain model of original implementation

Based on the closeness of those entities, the original work can be divided into three parts.
The first part focuses on creating, editing, and deleting remedies alongside with their associated
packages. The second part involves generating usage plans and managing intakes, while the last
part refers to the user.

The medicine object represents a specific medication, defined by a unique combination of
name and type, which is restricted to six options: tablets, capsules, syrups, injections, inhalers
or cream. Additionally, it includes a threshold field that specifies the minimum quantity at which
the user receives a notification to replenish their inventory.

Packages represent a physical package of a specific medicine in the management system;
it contains information about current quantity, expiration date and location. Since they are
associated to one medication, they automatically inherit their unit type from it.

Intake plan represents a schedule for taking a specific medicine in the MediTrack system. It
contains information about the start and end dates, frequency, and dosage related to the medicine
intake. The frequency type is limited to a daily, weekly or monthly option, while the frequency
value represents how many times in one day the medicine should be taken; the combination of
frequency time and value is used to automatically generate recurring individual intakes.

Once the intake plan is defined and its usages are generated, the user has access to their
schedule. From this page, it is possible to mark if an existing intake was realized or skipped,
with the default behaviour being planned.

Another important feature in usage management is the ability to manually add a new usage
outside of the established intake plan schedule, accommodating one-time intakes the user wishes
to track. These packages have their stock automatically adjusted upon submission, after a
verification ensured sufficient inventory is available.

At last, the final entity to be contemplated in the original work is the user itself. This object
represents an individual who is using the MediTrack system to track and manage their medicine
intake. It contains information about the user’s personal details and serves as the central point

Architecture 5

for connecting the user to their medicines, intake plans, and medicine usage instances.
This entity stands to benefit the most from the upgrades proposed in this work. Firstly,

there were no frontend methods available for creating and adding a new user to the database;
secondly, there was no user authentication implemented, meaning a third party could read any
information in the user’s database if they had their username.

2.2 Architecture

2.2.1 System architecture
System architecture, in a software project, refers to the physical organization of software com-
ponents across various physical nodes, such as servers, computers or databases; it describes how
these components interact and communicate within the infrastructure. MediTrack’s system is
a three-tier application with thin client: it is separated into three physical components while
relying mostly on the server for processing.

A three-tier architecture is defined by a presentation layer, handled by client devices, an
application server that includes the business logic, and a data storage – usually, a database for
data persistence. A thin client, then, can be defined as a model where all significant business
logic and data processing occur on the server, leaving only presentation logic on the client side –
primarily user interface rendering and user input capture. The main advantage of this approach
is not requiring software installation on the client device, making deployment and maintenance
simpler and more centralized.

MediTrack’s client is built using React, a popular JavaScript library for building user inter-
faces; this layer uses a Node.js server to handle HTTP requests and present static files, together
with the Next.js framework. The server is implemented using Java 1.7 with Spring Framework
and the database is done in PostgreSQL. Figure 2.2 illustrates how those layers interact.

Figure 2.2 System architecture

6 Analysis

2.2.2 Logical architecture
Logical architecture can be defined as the organization of a system’s components and their in-
teractions, independent of physical implementation details. It focuses on defining the system’s
structure and relationships between different modules or subsystems. MediTrack’s logical archi-
tecture is a three-layer application, divided into presentation, business and data layers.

This multi-layered architecture is also known as Model-View-Controller (MVC). It is a widely
used software architectural pattern that separates an application into three interconnected com-
ponents: the Model, the View, and the Controller. The MVC pattern facilitates the separation
of concerns, allowing for modular development [2].

The data layer, or model, is responsible for communicating with the data storage, managing
the persistence and organization of data within the system. This layer provides the necessary
interfaces for accessing and manipulating data.

Business layer, or controller, contains the core functionality of the application, encapsulating
the contracts between data manipulation and application behaviour. It acts as an intermediary
between the presentation layer and the data layer, processing requests from the user interface
and orchestrating data operations.

At last, the presentation layer, or view, focuses on user interaction and interface design,
handling the display and interaction with data. By separating concerns into these three layers,
software systems can achieve scalability, and maintainability, facilitating easier development,
testing, and maintenance of complex applications [3].

A package diagram (figure 2.3) illustrates the layer division in the structure of the project.
Model is the data layer on server, while Controller includes both presentation and business layers
from backend; View consists of the whole frontend structure.

Figure 2.3 Package diagram

Technologies 7

To ensure isolation and re-usability in the system, the data layer was abstracted through
interfaces; the dao package is further divided into two, interfaces and jpa. The former defines
a contract between business and data layers, containing individual interfaces that specify the
persistence operations for each entity in the system. Meanwhile, the latter package provides
concrete implementations of JPA repositories for each entity – if, in the future, the system must
implement a different (or concurrent) type of repository, it can interact directly with the defined
interfaces, reducing the amount of rework in the system.

2.3 Technologies
Database

The chosen relational database management system was PostgreSQL [4], an open-source
database. It follows SQL standards, supporting complex queries and diverse data types.
Besides having an accessible documentation, this database provides scalability and reliability
at a low cost.
Additionally, PostgreSQL integrates with Java [5] applications through JDBC (Java Database
Connectivity) driver, allowing for straightforward database connectivity and operations. It
provides an efficient interface for executing SQL queries, managing transactions, and handling
database connections. Object-Relational Mapping (ORM) frameworks like Spring Data JPA
[6] further simplify the interaction, easily transforming database records into Java objects.

Backend

The application’s backend was built in Java, using Gradle [7] as the build automation tool
and Spring Boot framework. In addition to its previously cited database connectivity ad-
vantages, Java provides an extensive range of standard libraries that facilitate various stages
of development. For example, in the current implementation, Java libraries were used to
enhance security features and enable email sending functionality, showcasing its versatility
and capability to address diverse project requirements.
Furthermore, Java’s support for RESTful APIs allows communication with clients through
HTTP requests, making it easy to build and maintain web services. The combination of
Spring Boot and libraries for handling JSON objects guarantees efficient and scalable client-
server interactions.
Finally, it is necessary to highlight two Java features that help current and future students
working on this project in keeping the codebase understandable and organized: JavaDoc [8]
helps with API documentation, ensuring that developers have easy access to detailed and
structured information; testing with JUnit [9] enables thorough unit and integration testing,
helping maintain code quality and reliability.

Frontend

At last, the client side – from where the final user will interact with the whole application –
was done using React [10] with Next.js [11] framework. React is an open-source JavaScript
library with a component-based architecture, which promotes reusable user interface devel-
opment. The project is overseen by Npm (Node Package Manager) [12], the package manager
responsible for managing dependencies and integrating a vast array of third-party libraries.

Docker

Docker is an open-source engine that automates the deployment of applications into containers
[13]. By running a single application or process in each container, Docker[14] incentives a
service-oriented architecture and simplifies distribution.

8 Analysis

In this project, three containers were created – database, backend and frontend – using Docker
compose, a tool that simplifies the management of multi-container Docker applications by us-
ing a single configuration file to define and run multiple services. All containers communicate
between each other via HTTP requests.

Deployment
A CI/CD pipeline follows principles that aim to automate the processes of building, testing,
and deploying software applications [15]. Continuous Integration (CI) involves frequently
merging code changes from multiple developers into a shared repository, triggering automated
builds and tests to detect errors early. Continuous Deployment (CD) focuses on automating
the delivery to various environments after a successful integration, releasing reliable software
frequently.
The pipeline was setup with a Gitlab [16] environment as target, consisting of five different
stages: build, test, analyze, documentation and publish. The first stage automates the process
of creating Docker images for all three layers of the application; the second stage targets
backend functionalities, executing automated tests and saving their reports.
The analyze stage involves automated security testing and a static code analysis, done by a
third-party tool, SonarQube [17]; the documentation stage generates a JavaDoc file detailing
all backend functionalities. The last stage, publish, is triggered manually and publishes two
Docker images to a container registry, one of them with the latest code version.

2.4 New requirements
Having reviewed the original implementation, the next step is to outline additional requirements
aimed at enhancing or expanding the project’s functionalities. The first essential enhancement
is the implementation of user authentication to ensure secure access to sensitive patient data
and system functionalities. Another area that is missing is maintaining contacts to individual
doctors, as well as tracking past and future appointments and visits. Finally, one extra beneficial
addition would be to store all notes, symptoms and exam results in a single location. Next, a
list of functional requirements to achieve these goals will be defined.

FR1: User authentication and registration
Since the goal of this thesis is goal is to release the application for a beta-stage, the application
must be secured with authentication – with the simplest method being a check of the user’s
password and username against the stored credentials in the database. Additionally, the
frontend should include a registration form to facilitate the easy addition of new users to the
database.

NF1: User authorization
User authorization is a necessary non-functional requirement that must be added to the
project – it ensures users can only access their own data, protecting their privacy. To imple-
ment this non-functional requirement, it is crucial to define access control policies specifying
who can access what data. As briefly described in section 2.1, the authorization implemented
originally required the username as a path parameter, exposing user data to potential third-
party interception.

FR2: Record of doctors
A new entity should be added to the project, representing health care professionals. They
should be identified by their name and specialty, and could have other details, such as contact
information.

Use cases 9

FR3: Record of appointments
Another enhancement to the project would be to add an appointment entity and scheduling
consultations with doctors. This functionality should allow users to register appointments,
including details such as doctor’s name, location, date and time.

FR4: View appointments as calendar
The system should incorporate a feature allowing users to view appointments in a calendar
format. This calendar view will provide an intuitive and visual representation of scheduled
consultations, making it easier for users to manage and track their appointments. This
functionality could be repurposed for other existing pages with similar scheduling needs, such
as the medicine usage overview.

FR5: Send appointment notification
Users should be notified about their upcoming consultations, in an effort to reduce missed
appointments and improve punctuality. In the context of this thesis, the events contemplated
by the notification service primarily include upcoming appointments; however, this function-
ality can also be extended to broader applications in the future, such as alerting users about
expired products, low inventory or reminding them to take medications on time.

FR6: Record of reports and related files
A report entity would allow users to document descriptions related to their consultations, such
as symptoms, feelings, or other relevant observations. Users should also have the capability
to attach pertinent files, such as medical records, lab results, or images, to these reports.
Each report will be directly linked to a specific appointment, providing a comprehensive
record of the consultation. This integration ensures that all relevant information is in one
place, facilitating better communication between patients and doctors.

2.5 Use cases
After defining the new functional requirements, use cases can provide a clear and structured
way to implement these requirements, describing how users interact with the system to achieve
specific goals. This section details all use cases identified in section 2.4, outlining the expected
interactions between users and the system.

User authentication and registration
The use case diagram for user management in the MediTrack’s system consists of three
primary use cases: Log in, Create account, and Log out. Figure 2.4 illustrates the mentioned
use cases.
Log in use case enables an unauthenticated user to access the system by entering their
credentials. User input their valid username and password; upon successful authentication,
the user gains access to the system’s functionalities and their personal data.
Create account or Sign up allows a new user to register and create an account within the
system. During this process, the user provides necessary information, such as username,
password, and other details. The system validates the provided information and creates a
new user profile, if all requirements are met.
The last use case, Log out can only be executed by an authenticated user: after clicking a Log
Out button, the user terminates their session, preventing unauthorized access to their data.
This use case ensures that user sessions are properly managed and that sensitive information
is protected when the user is no longer actively using the system.

10 Analysis

Figure 2.4 Use cases for authentication

Doctor management
The use case diagram for doctor management presents a set of functionalities that authenti-
cated users can perform to manage their doctor information (see figure 2.5).
Add new doctor allows authenticated users to input and store new doctor information in the
system; this involves entering details such as the doctor’s name, specialty, email, and phone
number.
See list of doctors use case provides authenticated users with a view of all doctors stored
in the system; from this page, other use cases can be derived.
Edit doctor enables users to update existing doctor information, changing doctor’s details
and keeping the database accurate.
Delete doctor allows authenticated users to remove a doctor’s information from the system,
granted they don’t have any associated appointments in the database.
It is also expected the list view to allow other data manipulation such as filtering, sorting
and searching doctors by their attributes – name or specialty, for example.

Appointment management
The appointment management system has similar use cases functionalities and behavior pat-
terns to those in doctor management system, and is detailed in 2.6.
Add new appointment creates a new appointment by inputting date, title and a registered
doctor; View appointments as list presents a list of all user’s appointments – from this
page, it should be possible to edit (Edit appointment), delete (Delete appointment) or
filter/sort/search appointments. Delete is only possible if the appointment has no associated
reports.
At last, the final use case, View appointment as calendar allows authenticated users to
see appointments in a calendar format and should be independent from the list view.

Use cases 11

Figure 2.5 Use cases for doctor

Figure 2.6 Use cases for appointment

Report management
Report management has use cases similar to appointment management (figure 2.7). Add
new report creates a new report with a title, description and associated appointment; View
reports as list presents a list of all user’s reports – and this page allows other use cases
such as Edit, Delete and filter/sort/search features.
The last two use cases, Add attachment and Delete attachment refer to the file storage
functionality; since the attachment is linked to a specific report, these operations should be
integrated with the report editing interface. A design decision was made to restrict visibility
of files in the user database, allowing users to see files only when associated with a specific
report.

12 Analysis

Figure 2.7 Use cases for report

Mail notification
The use case diagram for mail notifications, illustrated in figure 2.8, contains only an auto-
mated email sending functionality within the MediTrack system. The system is designed to
automatically send emails to users – in this work, it is used only for appointment notifications,
but it can be reused in other functionalities.

Figure 2.8 Use cases for mailing service

Existing solutions 13

2.6 Existing solutions
In this section, we will compare our project with existing solutions in the Czech Republic market,
focusing on their strengths and weaknesses. By examining key features, user experiences, and
overall effectiveness, it is possible to identify areas where this application can differentiate itself.

1. MyTherapy
MyTherapy is a popular application designed to support users in managing their medication
regimens and health routines. It offers a suite of features, including medication reminders,
symptom tracking, and health diary functionalities, which help users follow their prescribed
treatments. The app supports a wide range of medications and allows users to log doses,
track their progress, and receive push up notifications [18].
Additionally, MyTherapy includes a feature for generating health reports of the metrics mea-
sured by the system (medication plan, intakes, measurements and symptom diary). These
reports can be shared with doctors, facilitating better communication and informed decision-
making.
The application is free to use with no ads, but accepts a voluntary one-time contribution of
CZK 75 or CZK 150. They cooperate with partners such as pharmaceutical companies and
healthcare institutes, and vow to not share its user data.
In comparison to this thesis, MyTherapy does not present a list or calendar view of appoint-
ments, limiting itself to sending two reminders – one for the day before and another two hours
before the appointment. It also lacks a feature to add reports as files, forcing the users to
manually input lab values and measurements.

2. Medisafe
Medisafe is a medication management application, whose key features include personalized
medication reminders with customizable schedules and dosage instructions. The app offers
pill identification, medication interaction alerts, and refill reminders to prevent missed doses
and promote safety. Medisafe also supports family and caregiver features, allowing users to
share their medication schedules and health updates [19].
The app is free for download and use, but contains a subscription option – CZK 130 monthly
or CZK 950 annually – that includes unlimited friends, access to more health measurements
and choice of different reminder sounds.
In comparison to this work, Medisafe lacks a built-in calendar management and instead relies
on third-party applications like Google Calendar for notifications. It also limits users to
adding only textual notes to appointments.

3. Dosecast
DoseCast is a medication reminder application with customizable medication reminders, in-
cluding options for dosage instructions and timing preferences, ensuring users take their
medications on schedule even when traveling between timezones. The app supports a medi-
cation list where users can input detailed information about each medicine, including dosage
strength and frequency [20].
It operates on a subscription model, offering monthly payments of CZK 66 or an annual
contribution of CZK 625. This subscription includes multi-device synchronization, more
types of medication, intake history report and refill alerts.
The application focus heavily on medication management, not contemplating other func-
tionalities covered by this thesis, such as doctor management, appointment scheduling and
detailed reports.

14 Analysis

4. TOM
TOM is a daily medication reminder with an integrated medicine list and medication log;
the app also records activities and other measurements. It has a pill reminder system as well
as graphs and integrated statistics between metrics. The application is completely free and
much like Dosecast, focuses primarily on medication tracking [21].

The conclusion of this comparison is that, while medication tracking is not a new concept and
numerous competitors offer similar functionalities, this project stands out through its integration
of medication organization, appointment scheduling and detailed report management.

Some positive aspects from competitors that could be incorporated in the future include a
focus on mobile apps with user-friendly interfaces and reminder systems. Another improvement
could be the capability to export metrics as a PDF report, providing users with a convenient
summary of their health data for easy sharing and reference. MediTrack could also expand the
range of metrics measured to offer more comprehensive health tracking.

On the other hand, many competitors lack robust features for integrating detailed consulta-
tion reports and file attachments. Moreover, while some market leaders offer advanced analytics
and insights, they may also come with higher costs or more complex user experiences. By ad-
dressing these gaps and building on the strengths observed in other applications, this project
aims to deliver a more complete and accessible solution for users.

Chapter 3

Design

This chapter covers the changes necessary to implement the defined new requirements. It will
explore the design considerations and strategies required to integrate these new features into the
application, including domain model, database, architecture and technologies. Each following
section will detail those specific changes and the rationale behind their selection.

3.1 Domain model
To meet the expanded functionalities and new requirements of the project, it was necessary to
introduce additional entities into the system. These new entities are: doctors, appointments,
reports and files. The user entity also had to be updated to support new functionalities. Figure
3.1 illustrates the changes made in the domain model, with affected entities in a different colour.

The Doctor entity includes fields such as name, specialty, phone number, and email contact
– with the latter two being optional – and has a many-to-one association with the user entity.
Appointment will require attributes for date, time, location and note – where the user can
questions or symptoms to discuss during the visit –, while being associated to one doctor from
the database. Their status field takes into consideration if the given appointment was carried
out, missed or is yet to take place.

Report entity is linked to one appointment and features a description field for detailed doc-
umentation from the patient’s perspective, as a result of the appointment or examination. The
last new entity, File, is responsible for storing any type of documentation related to a specific
report; the fields name and type ensure that the byte data is restored to the correct format.

The User entity has a one-to-many relationship with doctors, appointments, and reports,
facilitating efficient querying of all data related to a single user. Two new fields have been added
to this entity: password, used for authentication, and timezone, utilized by the notification
service as will be further explained in chapter 4.

15

16 Design

Figure 3.1 Domain model of current implementation

Technology analysis 17

3.2 Technology analysis
In this section, various technological solutions are explored, with the goal of finding the better
suited options to address the functional requirements outlined for the MediTrack application on
section 2.4. This discussion overviews a range of tools and frameworks for implementing user
authentication, calendar presentation, email notifications and file management.

3.2.1 User authentication
Authentication and authorization are two fundamental concepts in information security, often
used together but serving distinct purposes. Authentication is the process of verifying the identity
of a user, ensuring that the entity attempting to gain access is indeed who it claims to be;
authorization is the process of determining what an authenticated user is allowed to do, through
permissions and access levels [22].

In the context of this work, authorization ensures that users can access only their own data,
protecting the privacy of each user’s information. Authentication, on the other hand, guarantees
that only registered users can access the system, preventing unauthorized access and ensuring
that all interactions within the application are performed by verified individuals. Both methods
are expected in a secure application, as defined in functional requirement FR1 in section 2.4.

Several approaches to user authentication are commonly used, each with its unique features
and benefits. Four common alternatives were considered: Basic Authentication, OAuth, Cookie-
session Authentication and Token Based Authentication. Next, a brief description of the original
implementation will be given, followed by a discussion over each proposed solution.

3.2.1.1 Original Authentication
In the original implementation, authorization was done using the user identifier — specifically,
the username — as a parameter in all REST requests, leading to unsafe data handling. For
example, to access all medicines for a user, the server expected a GET request in the format
/medicine/username/{username}, with this same approach applied to all other CRUD opera-
tions. This meant that if a third party obtained a user’s username, they could potentially access,
read, and modify any information in the user’s database.

User authentication was not implemented in the original work. The login page was inadequate
for security: it merely checked if the username existed in the database, as users had no password
information stored, and redirected to the homepage in case of a match.

3.2.1.2 Basic Authentication
Basic authentication is the simplest form of authentication: the client sends HTTP requests
with a header containing the concatenation of the user’s username and password in a base64-
encoded string, which is then compared with the information stored in the database. Despite its
simplicity, Basic Authentication has notable security drawbacks, primarily because the encoding
is easily reversible and the credentials can be intercepted if not sent over a secure connection.
Therefore, while it is useful for internal applications, it is generally recommended to use more
secure authentication methods for production environments [23].

3.2.1.3 OAuth2
On the opposite spectrum, OAuth2 (Open Authorization) is considered one of the most robust
authorization frameworks. It delegates user authentication to an external identity provider, which
verifies the user’s credentials and issues an access token without exposing those credentials to the
client application [24]. This approach enhances security by minimizing the exposure of sensitive

18 Design

information. Moreover, OAuth2 supports granular access control through scopes, allowing clients
to request limited access to specific resources on behalf of the user.

However, the main disadvantage of this approach – and the reason it was not chosen for
implementation in this project – is that it requires either a custom identity provider or the user
to have an account with a specific identity provider. This would translate to demanding users
have accounts on platforms such as Google, Facebook, Github or Linkedin, which are among the
most widely used providers in Java.

3.2.1.4 Cookie Authentication
Cookie-session authentication uses HTTP cookies to authenticate client requests and maintain
session information. After a successful login, the server generates a unique session identifier and
store it in a cookie, with other relevant information; then the client needs to attach this cookie
in all subsequent requests to the server, in order to authenticate the user. Finally, on the logout
operation, the server sends back a header that causes the cookie to expire, invalidating future
requests with this specific cookie [25].

Though cookie authentication is straightforward to implement, it comes with two major
drawbacks: it is susceptible to cross-site scripting (XSS) and cross-site request forgery (CSRF)
attacks. On the first type of attack, a malicious script is injected on the user’s browser, through
inputs that are improperly sanitized or validated [26]. The script can be either stored on the
server or executed immediately, potentially stealing data or performing actions on behalf of the
users.

The second type of attack, CSRF, is also known as a one-click attack or session riding, as the
attack takes advantage of the user’s previously authenticated session. A malicious site tricks the
user into making a legitimate request and steals the cookie sent for authentication, being able to
impersonate them from there on [27].

Both types of attack can be avoided by implementing secure coding practices: output encoding
and HTML sanitization for XSS and other techniques such as generating unique tokens for each
user session, checking if cookies were sent from same site or using signed double submit cookies
with a secret key known only to the server for CSRF. It is also crucial to ensure that any sensitive
information stored within cookies is encrypted, to avoid exposing user data that could be used
later in a different attack.

3.2.1.5 Token Authentication
Finally, the last type of authentication considered for this project was Token Based Authentica-
tion, done with JWT (JSON Web Tokens). It involves using a token with all information needed
for verification and identification – typically, details about the user and their permissions, token’s
expiration time and other metadata, all encoded as a Base64 string [28]. Finally, the last step
is to create a signature by combining the encoded header and payload with a secret key using
either digital signatures or HMAC algorithms (Hash-based Message Authentication Code).

These signed tokens are stored in a local or session storage, on the client side, and sent
with each request; this results in a stateless process, since the server does not need to keep a
record of each active session but rather know only the secret key and algorithm necessary for
encoding/decoding tokens, improving scalability.

However, token-based systems can be more complex to implement, and storing tokens in local
storage exposes them to XSS attacks. Token invalidation can be challenging, requiring strategies
like token expiration, where a token automatically becomes invalid after a short period of time,
used in combination with refresh tokens, where a special token is responsible for requiring new
access tokens when the current one expires.

If a token needs to be revoked – for example, after a password change or a logout – it requires
additional mechanisms like token blacklists, a list that keeps track of tokens that are no longer
valid, even if they have not yet expired [29].

Technology analysis 19

3.2.1.6 Conclusion
Considering the pros and cons of each authentication strategy, token-based authentication was
chosen as the most suitable for this project. Tokens are particularly advantageous because they
are stateless and self-contained; additionally, they can be used across different platforms and
devices, making them ideal for a web application intended to be used in distinct environments.

3.2.2 Calendar
The project could benefit from a visual representation of multiple time-based recurring data sets,
as outlined in functional requirement FR4 (section 2.4). To display data in a calendar format, a
new component was required on frontend. This calendar functionality was expected to support
various views (monthly, weekly, and daily), handle recurring events, allow for easy event creation
and editing, and provide a customizable interface to match the application’s design.

Given the complexity of implementing a full-featured calendar from scratch, open-source
options were considered: calendar functionalities are not an uncommon demand for this type of
project. Two popular libraries emerged as strong candidates:“react-big-calendar” available from
npm [30], and “FullCalendar” [31].

“react-big-calendar” is a React-specific solution that offers different views, drag-and-drop
event management and localization support. It’s known for its React-friendly API and good per-
formance with large datasets. However, it has a smaller community compared to “FullCalendar”
and less feature updates.

“FullCalendar”, on the other hand, is a more established and widely-used library that supports
multiple frameworks, including React. It offers set of features such as various views (monthly,
weekly, daily, and even timeline), handling of recurring events and advanced timezone support.
“FullCalendar” also provides extensive theme options and a larger number of (paid) plugins for
additional functionality.

It’s worth noting that “FullCalendar” served as the inspiration for “react-big-calendar”, sug-
gesting its approach has been validated by other developers and consolidating itself as the choice
for this project.

3.2.3 Notification service
Users expect MediTrack to notify them about urgent or important events, as described in func-
tional requirement FR5, section 2.4. Given that this project is a web application, the most
efficient way to reach our users is through email notifications. In Java environment, there are
two recognized libraries for achieving this: JavaMail[32], a standard Java library, and Simple-
JavaMail[33], a wrapper built on top of the former library, providing a higher-level API.

The selected framework for this thesis was JavaMail, who sends emails via Simple Mail
Transfer Protocol (SMTP) server; retrieving messages would require a different protocol, Internet
Message Access Protocol (IMAP), which is not covered in this project. The SMTP server is
responsible for processing the email request and actually delivering the email – to do so, it
requires a valid email address as an anti-spam measure, to verify the identity of the sender.

To send an email using JavaMail, the application needs to create a Session object, which
encapsulates the properties and configurations necessary for establishing a connection with the
mail server, such as address and password. Next, a Message object is created and populated
with the necessary information, such as the sender, recipients, subject, and message body. Then,
a Transport class is used to send the email by connecting to the mail server using the specified
SMTP protocol and delivering the Message object.

At last, as a final step, to guarantee a secure connection between the application and the
SMTP server, a cryptographic protocol should be established – either TLS (Transport Layer
Security) or SSL (Secure Sockets Layer). They encrypt the data exchanged, protecting the

20 Design

email content and any sensitive information it may contain from being intercepted and read by
unauthorized parties.

While SSL and TLS serve the same purpose of secure communication, TLS is the successor of
SSL and considered more secure, being the recommended protocol to use in modern applications
[34]. TLS incorporates improvements and fixes for known vulnerabilities in SSL, offers better
encryption algorithms, and provides better protection against various types of attacks, being
therefore the choice of protocol for this thesis.

3.2.4 File storage
The MediTrack system should allow users to store their examination results as an attachment
to reports, as specified in functional requirement FR6 in section 2.4. There are multiple ways to
save files in this project, each with its own pros and cons. The primary options are storing files
in a local file system, in the cloud, or in the database itself. Each approach has unique benefits
and challenges that need to be considered.

3.2.4.1 Local file system
For an application deployed using Docker containers, saving files to a local system involves using
volumes [35]. They allow data persistence, ensuring data is not lost when containers are stopped
or recreated. A dedicated volume for file storage would need to be created and configured to
communicate with the appropriate containers.

To properly retrieve these files from the volume, the database stores a symbolic link that acts
as a “pointer” to the file’s storage location. This approach supports very large files (greater than
100 MB), but introduces several complications: the database user must have permissions to write
outside the database, which is not a default option for PostgreSQL environments; an interface
is needed to keep track of externally attached files, and there is a risk of files and the database
becoming out of sync, since operations are no longer transactional. Additionally, an extra security
layer must be implemented to restrict volume manipulation exclusively to authorized users.

3.2.4.2 Cloud storage
Another viable option is using cloud object storage providers like Amazon Simple Storage Service
S3, Azure Blob Storage or IBM Cloud Object Storage. The main advantages of this approach
are being able to access files with just an internet connection and being able to scale the service
without requiring additional infrastructure [36].

This approach, however, creates a dependency on third-party services, making the project
reliant on their availability and policies. Moreover, costs can increase proportionally with usage,
potentially making it expensive as data storage and retrieval needs grow.

3.2.4.3 Database storage
The last option is to store the file in the database itself. For this, a manipulation of the file is
necessary: transform it into a binary string (bytea) [37] or a binary large object (LOB)[38]. The
first approach involves encoding the file content into a byte array and storing it directly in a
column of type bytea in the database table; this means storing and accessing those entries works
in a similar way as accessing any other data type. The main drawback with this data type is its
size limitation: PostgreSQL can store up to 1 GB of data per entry.

A binary large object, on the other hand, requires special handling due to its size. To
manage large objects efficiently, PostgreSQL breaks them into smaller, manageable chunks and
stores these chunks in rows within the database. Each chunk is uniquely identified by an Object
Identifier (OID), which serves as a reference to that specific part of the large object.

Database 21

In regards to storage capacity in large objects, PostgreSQL can hold up to 4 TB per entry. It
is also possible to seek over entries, which allows search for words inside files. Moreover, LOBs
eliminate the need for encoding of data, simplifying the storage and retrieval processes.

The large object can be further split into two classifications: a character large object (CLOB),
used to store large text data, or a binary large object (BLOB), for storing binary data like image,
audio, or video. Hibernate uses the appropriate large object type based on the Java type of the
attribute – strings defaults to CLOB, while array of bytes defaults to BLOB, for example.

3.2.4.4 Conclusion
For this project, the binary large object approach was selected, as it strikes a good balance
between high storage capacity and ease of implementation and integration with the existing
infrastructure.

3.3 Database
Building upon the foundation established by the domain model (section 3.1) and the subsequent
technology discussion (section 3.2), it is now possible to design the necessary changes into the
project’s database. The domain model provided a conceptual framework of the entities, their
attributes and their relationships, while the technology analysis delimited the capabilities and
constraints of the model.

The same relational database from the original implementation is being used, with added
entities and relations. Figure 3.2 illustrates the changes in the database and how the new entities
will relate with one another. For simplification, only the changed entities are represented in the
image.

User now has two non null-able new fields, password and timezone, responsible for aiding au-
thentication implementation and correctly showcasing the user’s timezone regardless of machine
setup – both fields are set up as strings. User is still the central entity of the model, having
One to Many relations with Doctor, Appointment and Report.

Doctor has a unique identifier doctorId defined as a bigserial – in PostrgreSQL, this
defines a large integer that is automatically incremented each time a new row is inserted in
the database. The entity includes attributes like name, specialty, email and phone number, all
defined as strings with the last two being optional. A Doctor can have multiple Appointments
and is related to one single User.

Appointment is also identified by a bigserial unique appointmentId; other attributes in-
clude date, location, note and status, with the first being a date (without timezone information)
and the others, strings. This entity is connected to both User and Doctor entities via foreign
keys, ensuring it is associated with a specific user and doctor.

Report, like the previous entities, is identified by a unique reportId. The entity contains
title and description, both strings but with a greater size for the latter. A Report is related to
one User and one Appointment and may have multiple File.

The last entity, File, is identified by a unique fileId, with attributes like name (string),
type (string) and data, defined as a LOB. File entity is linked to Report entity through the
reportId foreign key, enabling the storage of multiple files relevant to a specific medical report.

22 Design

Figure 3.2 Database for new implementation

3.4 Architecture
The physical architecture described in section 2.2 remains the same; the logical architecture,
however, will require some enhancements to its package organization. Figure 3.3 displays only
the newly introduced classes and packages, for simplicity.

The new mail package is responsible for configuring the mail provider; this includes setting up
properties such as the SMTP server address, port, and authentication details. These properties
are centralized within configuration classes, ensuring they are not scattered throughout the code
and enhancing code maintainability.

Similarly, the new security package is responsible for configuring the authentication provider.
This configuration ensures secure access to the application by setting up properties related to
user authentication, authorization mechanisms, and security protocols.

For each new entity added to the database, specific controllers are implemented to create
endpoints for CRUD (Create, Read, Update, Delete) operations and other custom functionalities.
These controllers handle HTTP requests and responses, ensuring that the application can interact
with the database efficiently. Appointment, Doctor and Report controllers implement basic
functionalities like creating/editing/deleting an entity, searching one specific entity or searching
all entities that satisfy certain conditions.

File controller needs to approach the file creation in a slightly different manner, as creating
a new file includes uploading it to the database with the approach defined in section 3.2.4.
This controller must also incorporate a method to manage file downloads, ensuring that files are
retrieved and served in their correct format.

Architecture 23

Figure 3.3 Backend package diagram on new implementation

Mail controller serves as a specialized interface to handle various email sending scenarios,
including both individual and bulk email dispatches. For individual emails, the interface should
support personalized content, specific recipient addressing and, in the future, attachment han-
dling. This functionality is appropriate for user-specific notification or account-related messages.

The bulk email interface, on the other hand, should be designed to manage the sending of a
template message with personalized content for multiple recipients. This feature is particularly
useful for system-wide announcements or large-scale notifications.

At last, the Authentication controller is responsible for handling user authentication and
authorization processes. It serves as the entry point for authentication-related requests, provid-
ing endpoints for login, logout, and potentially other security-related operations. This controller
is separated from the User controller, a best practice in software design, as it delimits specific
responsibilities for each one: Authentication deals with username, password and token manage-
ment, while User handles CRUD operations on user profiles, with more details (email, timezone,
name, etc).

The service layer acts as an intermediary between the controllers and the repositories; there-
fore, new classes are needed for the added entities. The Appointment, Doctor, and Report
service classes handle the previously defined CRUD operations, while the File class implements
methods for file upload and download.

Authentication service verifies the username and password, and also handles password en-
cryption to protect user data in case of a database compromise. Jwt service is responsible for
token management, including token generation and extracting its claims such as username and
expiry date.

24 Design

Mail service provides email-sending functionality. Notification service, then, utilizes the
Mail service for specific tasks, such as scheduling emails related to appointments. Equivalent
to the pair User and Authentication, the separation between the Mail and the Notification
is a design choice that follows the principles of modularity and separation of concerns, creating
loosely coupled, highly cohesive components that can be easily understood, modified, and reused.

Finally, the data layer must implement the new entities from the domain model – Appointment,
Doctor, Report and File –, as well as the AuthenticationUser entity. This ensures that the
database schema supports the new functionalities and entities.

3.5 Authentication design
Based on the analysis of the proposed solution, the most significant change in the original ap-
plication is the introduction of user authentication. This enhancement will alter how requests
are sent and processed between the client and server. To illustrate this change, two sequence
diagrams are provided in this section, detailing the execution of the login process and one read
operation in the new implementation.

Figure 3.4 illustrates the overall login process discussed in section 3.2.1.5. In this scenario,
the user submits their credentials (username and password) to the login endpoint. The server
verifies these credentials against the information stored in the database; if the credentials are
valid, the server generates a signed token and returns it to the client. The client then stores this
token and render the homepage.

Figure 3.4 Login sequence diagram

Once a user has successfully logged in, every subsequent request must demonstrate that it
is from an authenticated user and must also identify the user making the request. Figure 3.5
illustrates a simple read operation in the system, where the user requests information on a specific
entity, and how authentication and authorization are applied throughout the process.

First, the user sends a GET request to the endpoint /doctor/id to retrieve information about
a specific doctor in their database; this request has attached to it the token generated during
login. JwtAuthFilter – a class from Spring Security framework – intercepts the incoming request

Authentication design 25

before it reaches any controllers and decrypts the token to verify three key aspects: whether the
token’s signature is valid – ensuring the message has not been tampered with –, if the token’s
expiry date is still valid, and, in case the two previous checks are successful, the username
contained within the token. All this information is then stored in the security context, to be
accessed by any class that needs it.

Next, DoctorController checks if the context username is authorized to make this request.
Specifically, it verifies whether the doctor in question belongs to the user making the request.
This authorization check is performed by the service layer, which queries the repository to confirm
that the user column of the doctor entity matches the username in the token.

If the authorization check is successful, the service layer retrieves the doctor entity from the
repository and returns it to the controller. The controller then prepares the entity and sends it
back to the client. Finally, the client renders the correct page with the requested information.

Figure 3.5 Authenticated request sequence diagram

26 Design

Chapter 4

Implementation

Following the discussion of the original codebase and the necessary changes to meet the new
requirements, this chapter presents the implementation phase of the project. It will outline the
approach taken to integrate the identified features, refactor existing components and address any
technical challenges that appeared during the development cycle.

4.1 Features

4.1.1 Homepage
The first step of implementation phase was to update the homepage of the web application to
incorporate links to the newly added entities. The new additions integrate with the existing
user interface, resulting in a consistent experience, and are represented on figure 4.1. “Add”
links redirect to a form to create new entities, “View” links present a list of all entities for
the currently authenticated user and “Calendar” presents all appointments in a calendar view.
Additionally, a dropdown menu was introduced at the top of the page, providing a centralized
navigation system; all links on dropdown menu redirect to “View” pages.

4.1.2 Date manipulation
The original implementation had some technical debt regarding date manipulation. On frontend,
date objects were handled as strings when being modified by user input; this method was unsafe
due to potential errors in string manipulation, leading to unreliable date handling. To address
this, the new implementation employs the DatePicker [39] and TimePicker [40] components from
MUI, ensuring that all dates are managed as date objects and correctly validated. Additionally,
a global configuration guarantees all dates are presented in the same format, as day/month/year
with two digits for the first two variables and four digits for the year.

A second issue with dates was coming from backend: all dates were previously defined as
LocalDateTime. JavaScript’s method to serialize a Date object into a JSON string transforms
it into a ISO 8601 format while also converting it into UTC timezone [41]. Java then would
re-transform the date into LocalDateTime, save it in the database and send it back to the client
without any timezone information.

The end result was a miscommunication between the frontend and backend: the client inter-
preted the received local time as UTC and wrongly adjusted it once more to local time. The
solution was to change all LocalDateTime to ZonedDateTime in the Java code, which carries the
timezone information and would no longer transform before saving into the database [42].

27

28 Implementation

Figure 4.1 Homepage with dropdown menu

4.1.3 Filtering data
The next improvement implemented in the project was using a third party component to sort,
filter, search and paginate all pages containing lists of entities. Previously, these functionalities
were implemented manually; for example, pagination for packages involved fetching all data at
once and then using custom functions to divide it into buckets of a certain size for navigation.
Similarly, search functionality relied on simple string matching between the target value and the
entity field. This approach resulted in multiple redundant functions that had to be copied and
slightly adapted for each page requiring these features.

The same library used for DatePicker, MUI, contains a component for manipulating a set of
data into rows and columns, DataGrid [43]. This project uses the MIT license, which comes with
basic features like editing, pagination, column grouping, and single-column sorting and filtering.
Limitations of the license are: pagination is restricted to pages with a maximum of 100 rows —
users can choose to display 10, 20, 50, or 100 items per page — and both sorting and filtering
are limited to one column at a time.

Figure 4.2 illustrates one of the pages using the component, with a filter selection enabled.
The component was designed to be generic, allowing different pages to customize the table
according to their specific needs while maintaining project consistency. The table supports any
number of columns that can be filtered and sorted, except for the last column, which contains
only buttons. This final column is neither sortable nor filterable and expects predefined behaviors
for each button.

Features 29

Figure 4.2 Example of table with filter

4.1.4 Calendar

Similar to the table component, the calendar was built in a generic way to be implemented in
different pages. The component was adapted from FullCalendar with minor modifications. Users
can switch between weekly and monthly views using the “week” and “month” buttons located
at the top left, while the “today” button resets the view to the current date. Additionally, two
custom buttons are available at the top right: the “add” button redirects users to the appointment
creation form, and the “list” button leads to a table view of all the user’s appointments.

Figure 4.3 Calendar with events

30 Implementation

Figure 4.3 showcase a weekly view of the Calendar, displaying three different types of events.
For each event, the title displays the doctor’s name, while the body includes their specialization
and the appointment location. Event colors change based on the appointment status: red for
skipped, green for completed, and grey for default. This behavior is defined in a global CSS file,
implemented by other students in the Team Software Project group.

4.1.5 Authentication
Authentication is the most crucial feature implemented in this thesis, transforming MediTrack
into a secure platform. As previously described in section 3.2.1, a token-based authentication
system was employed. Implementing a JWT authentication system in a Java project involves
setting up a series of configurations and classes that work together to secure the application and
manage user authentication.

The process begins with configuring security settings through a dedicated class, which extends
the features provided by the Spring Security framework. This configuration specifies which
endpoints are publicly accessible and which endpoints require authentication. In this work, login
and sign-up endpoints are left unauthenticated since the user has not yet had the opportunity
to authenticate. Endpoints related to the mailing service are restricted to one authenticated
’admin’ user. Currently, this verification is done via username; however, a future improvement
would be to incorporate roles into the database, allowing any user with an ’admin’ role to access
these methods.

The security configuration class also ensures the application does not maintain session state
by setting the session management policy to stateless, which is crucial for token-based systems,
where each request must be authenticated independently. Code 4.1 illustrates the main method
in this class, incorporating the previously described properties.

@Bean
public SecurityFilterChain securityFilterChain(HttpSecurity http) throws

Exception {
return http

.cors().and().csrf().disable ()

.authorizeHttpRequests (auth -> auth
.requestMatchers("/users/signup", "/auth /**").permitAll ()
.requestMatchers("/css/**", "/js/**", "/images /**").

permitAll ()
.anyRequest ().authenticated ())

.sessionManagement(session -> session.sessionCreationPolicy(
SessionCreationPolicy.STATELESS))

.authenticationProvider(authenticationProvider)

.addFilterBefore(jwtAuthFilter ,
UsernamePasswordAuthenticationFilter.class)

.build ();
}

Code listing 4.1 Security configuration properties

Next, an authentication provider is responsible for processing any incoming authentication
request. It performs the authentication logic by validating user credentials against the database.
In this step, the password sent from the user is encrypted; the choice for this work was BCrypt,
an industry standard on Spring Security. This hashing algorithm incorporates the salt into
the stored password, protecting it against rainbow table attacks and increasing the necessary
computational process for a brute-force attack [44].

Features 31

The authentication provider communicates with a user details service, who loads user-specific
data. This service interacts with the user repository to fetch information based on the provided
username during login; it is important to have a separate user service for authentication, rather
than using the already implemented user service directly, for a better separation of concerns and
integration with Spring Security.

Once the user credentials have been checked and approved, the system generates a JWT
token; this string includes claims such as the username and expiration date, and is signed using
a HS256 (HMAC with SHA-256) algorithm, to prevent tampering with the message. Figure 4.4
display the decryption of a token generated by MediTrack for the dev-env user. The tokens
are set to expire in thirty minutes and the secret key for signing them is stored in the Docker
environment.

Figure 4.4 Decoding a JWT Token

The generated token is then sent back to the client, which saves it in the local storage.
For each subsequent request to protected endpoints, the client must include the token in the
Authorization header, as exemplified in code 4.2.

Regarding user registration, the sign-up endpoint does not require any authorization in the
header and the raw password sent from the client is also encrypted with BCrypt before being saved
to the database. This ensures the password remains secure even if the database is compromised.
However, this approach has a drawback: password recovery is not implemented in the current
stage, so if a user forgets their password, they will lose access to their account. This additional
functionality is planned for realization in the future.

32 Implementation

setAuthHeader () {
const token = localStorage.getItem(’token ’);
if (token) {

//Check if token expired
const tokenData = JSON.parse(atob(token.split (’. ’)[1]));
const expirationTime = tokenData.exp * 1000;
if (Date.now() >= expirationTime) {

localStorage.removeItem(’token ’);
window.location.href = ’/’;

}
else {

this.headers[’Authorization ’] = ‘Bearer ${token}‘;
}}}

Code listing 4.2 Method to add token on authentication header

To create a profile, users provide first name, last name, and email – which is validated for
correct formatting, ensuring the presence of an @ symbol followed by text, a dot, and more text.
Additionally, two fields are used to confirm the password, making sure they match. Since the
username is the unique identifier, the system checks the database to ensure it is not already
in use. The timezone, as explained in section 4.1.6, is also set during this process. Figure 4.5
illustrates an example of sign up form.

Figure 4.5 Sign up form

Features 33

4.1.6 Mailing service
The mailing service was built using JavaMail library, which provides a lot of customization
options. First, a mail configuration class (MailConfig) was created to set up general properties
such as the sender’s address, password, SMTP’s host and cryptography algorithm – TLS, as
described in section 3.2.3.

A new email account, meditrackcvut@outlook.com, was created for this project; the pass-
word is stored as an environment variable in GitLab and injected only at deployment. This
approach is safer because it keeps sensitive information out of the source code and repository
history, reducing the risk of accidental exposure and unauthorized access. Gitlab provides an
additional layer of security by making sure only authorized users and processes can access the
environment variables.

Next, a service class (MailService) was developed to handle the sending of various types of
emails, allowing for reuse with different notification types. In this class, the subject is sanitized
by replacing any newline (\n) or carriage return (\r) characters with an empty string, preventing
SMTP header injection. This type of attack involves manipulating email headers by injecting
unauthorized code into the message, leading to serious issues such as email spoofing — where
the attacker alters the sender’s address — and email hijacking, which can redirect or duplicate
emails to unintended recipients.

Finally, the email body is interpreted as HTML text, which correctly identifies all special
characters in the Czech language, such as š or ř, ensuring proper display and formatting of the
email content.

As discussed on section 4.1.2, all dates stored in the database are saved in a UTC format. This
initially resulted in the email service losing the user’s local time information; to address this issue,
a new field – timezone – was added to the User entity to store this local region. This information
is set up during user creation (sign up form on figure 4.5) and is automatically gathered from
the local system using JavaScript’s Intl.DateTimeFormat().resolvedOptions().timeZone
method [45]. Whenever the email body is constructed with dates, it is possible to convert
the UTC dates to the user’s local timezone stored in the database.

With the mailing service configured, the final step is to create a notification service, capa-
ble of automatically triggering emails whenever specific conditions are met. To alert users of
their upcoming appointments, a scheduled task runs daily at 12:01 AM, checking all appoint-
ments within the next seven days and grouping them by user. Code 4.3 illustrates how those
appointments are processed, while figure 4.6 displays the final email result for a user.

Figure 4.6 Email notification for appointments

34 Implementation

@Scheduled(cron = "00␣01␣00␣*␣*␣*")
public void checkAppointments () {

ZonedDateTime startDate = ZonedDateTime.now();
ZonedDateTime endDate = startDate.plusDays (7);

List <Appointment > appointments = appointmentService
.readAllBetweenDates(startDate , endDate);

Map <User , List <Appointment >> appointmentsByUser =
appointments
.stream ()
.collect(Collectors.groupingBy(Appointment :: getUser));

for (User user : appointmentsByUser.keySet ()) {
List <Appointment > userAppointments =
appointmentsByUser.get(user);

try {
sendAppointmentEmail(user , userAppointments);

} catch (MessagingException e) {
e.printStackTrace ();

}}}

Code listing 4.3 Schedule appointment check

Since the scheduled task runs according to the server’s local time – which is set to UTC in the
current Docker deployment –, users in different time zones might receive their email notifications
too late in the day. A possible future solution to this issue is to add a service that periodically
converts the user’s timezone to UTC midnight, allowing the notification method to be triggered
at appropriate times for each user. An endpoint that manually runs checkAppointments() was
created in MailController class, both for testing purposes and for this potential future implemen-
tation.

4.1.7 File upload and download
As previously discussed, file storage in the database was implemented using LOB (Large Object)
data types, where the file content is stored as a string of bytes. Each file is limited to 5 MB to
prevent excessive memory usage in the database.

To enable file uploads through the report editing page, the Fetch API was used. This API
handles the file upload process by sending the file data through a FormData object, who encodes
the contents of the file – along with any other necessary form fields – as a multipart payload
in an HTTP request. This format allows files to be transmitted efficiently over the network,
maintaining their integrity and ensuring compatibility with server-side handling of file uploads.

Still on the client side, document selection is done through the operating system’s file selection
dialog, triggered by the click() method on a file input element (see code listing 4.4). An event
listener is attached to detect the change event – when the user finally selects one file – which
enables the Fetch operation with the first selected file. Figure 4.7 illustrates this upload process
on the web page, showcasing the file selection dialog.

For file downloads, a similar approach is adopted. Using the Fetch API, files are fetched from
the server’s response payload as byte arrays; the filename is transmitted in the response headers
via the Content-Disposition field, allowing the operating system to accurately reconstruct and
save the file with its proper extension. Figure 4.8 shows the download of the file uploaded on
figure 4.7.

Features 35

const handleUpload = () => {
file.current.click ();
file.current.addEventListener(’change ’, () => {

uploadFile(reportId , file.current.files [0]);})
}

Code listing 4.4 File upload event

Figure 4.7 File upload dialog from edit page

Figure 4.8 File download from detail page

36 Implementation

4.2 Testing

Testing the developed software is a crucial phase in the software development lifecycle, ensuring
the application’s reliability, functionality and scalability. This section focuses on automated and
users testing, beginning with a description of the unit and integration tests implemented in the
code, followed by a listing of user tests that cover basic functionalities.

4.2.1 Automated tests
Automated tests are a critical tool for early bug detection, code quality improvement and scala-
bility, since they act as documentation of expected behaviour and are particularly effective when
combined with continuous integration processes. In this project, all automated tests were inte-
grated into the CI/CD pipeline, ensuring they would run on every commit to the repository; this
ensures failing code does not pass this stage, preventing the merging of incorrect code into the
main project branch, while also helping developers to quickly identify injected errors.

The technologies used for testing in this work were JUnit and Mockito [46]: the former
facilitated the creation and execution of unit tests, while the latter was employed to mock
objects, allowing for the isolation of the unit under test.

Before writing tests for the new functionalities, some of previous tests had to be refactored
to take into consideration the newly implemented user authentication. For all tests on the
presentation layer, it was necessary to add a mocked authenticated user before doing any CRUD
operations – see code 4.5 for an example on MedicinePackageControllerTest.

@Test
@Transactional
@WithMockUser("test -user")
void searchValidPackagesByMedicineId (){

MedicinePackage mp = medicinePackageRepository.findById (1L).
orElseThrow ();

Collection <MedicinePackageDto > list = medicinePackageController.
getUserValidInventory(mp.getMedicine ().getId ());

assertEquals (123l, ((MedicinePackageDto) list.toArray ()[0]).
getPackageSerialId ());

assertEquals (0l, ((MedicinePackageDto)list.toArray ()[1]).
getPackageSerialId ());

}

Code listing 4.5 Authenticated user mock on tests

4.2.2 User tests
User tests are an important phase in software engineering where end-users evaluate a software
system to ensure it meets business requirements and is ready for deployment. They focus on val-
idating functionality and usability under real-world conditions. Next, the following list presents
a set of tests designed to validate the functionalities implemented in this project.

Sign up

1. On the login screen, click “Sign up” button located at bottom right corner

2. Fill the required information – all fields are mandatory

Testing 37

3. Click button “Submit”
If email address is not in the format text@text.text, a red warning box at the bottom
of the page notifies Invalid email address and the form is not submitted
If password and password check do not match, a red warning box at the bottom of the
page notifies Passwords do not match and the form is not submitted

4. System checks if username already exists in the database – if it does, a red warning box
at the bottom of the page alerts Username already in use and the user is not added to
the system

Incorrect Login

1. On the login screen, click “Log in” button
2. Write an unregistered username or valid username with incorrect password
3. Red error box at the bottom of the page warns Incorrect username or password

Add a new doctor

1. After login, on Homepage, click “Add” on Doctor section
2. Fill doctor’s name – if email and/or phone number are left empty, doctor is registered

without that information
If any character is added to email, it checks if it complies to format text@text.text
If any character is added to phone number, it checks if it complies to E.164 international
format [47] – an optional + character at the beginning, followed by three up to fifteen
digits.

3. If any field fails to comply to expected format, they are marked in red and the form is
blocked from submission

Add report without appointment

1. After login, on Homepage, click “Add” button on Report section
2. Pick a date without any appointments – Doctor selection shows message No Doctor

available

3. Click “Submit” button
4. Doctor field is marked in red and form is blocked from submission

Edit or delete a REALIZED appointment

1. After login, click “View” link on Appointment section
2. Find one appointment with status REALIZED

3. Click button “Delete” – a toast error message states Failed to delete

4. Alternatively, click button “Edit” and try to submit form on the next page – a toast error
message states Failed to submit form

Upload a file too big

1. After login, click “View” link on Report section
2. Select one report and click “Edit” button
3. Click “Upload” button at bottom right
4. Select a file exceeding the predetermined size limit - for this project, it was set at 5 MB
5. A toast error message states File exceeds size limit

38 Implementation

Download file

1. After login, click “View” link on Report section
2. Select one report with attachments and click “Detail” button
3. Select one file from the list of attachments and click “Download”
4. Browser prompts to either save the file to a default location or open it directly – depending

on file type and browser settings

Send one email

1. Sign up a user with username admin

2. Login as admin

3. Using any API testing tool (such as Postman [48]), issue a POST request to endpoint
/mail/send as the user admin. This request must include a form-data object with recipi-
ent’s email address, subject line, and message body.

4. Recipient receives the defined email coming from address meditrackcvut@outlook.com

Send appointments notification

1. Sign up a user with username admin

2. Login as admin

3. As the user admin, use an API testing tool to issue a POST request to endpoint
/mail/schedule/appointment, with no body

4. The system automatically verifies upcoming appointments and delivers the correspondent
email to all affected users

4.3 Project organization
Industry-standard software development practices were implemented during the execution of
this project. This section details the development process, such as the use of Gitlab for version
control, project management and CI/CD pipeline, as well as application of static code analysis
and documentation.

4.3.1 Workflow and version management
Gitlab is a DevOps platform that combines software development with project management
tools. In this project, its main functionalities included version control, issue tracking, code
review processes and continuous integration/continuous deployment (CI/CD).

For version control, the project adhered to a structured Git workflow. Issues were created
to address bugs or implement new features, each labeled and described to clarify the task (see
figure 4.9). When a team member took on an issue, they created a new branch named after the
ticket number and title. Once the work was completed, a merge request was opened, allowing
other team members to review, test, and approve the changes. Finally, the branch was merged
into an iteration branch or the master branch at the end of the sprint. This structured approach
ensures organized, consistent and efficient collaboration, helping team members manage changes
and maintain code quality.

Project organization 39

Figure 4.9 Issue example

Regarding the CI/CD pipeline, as briefly described in section 2.3, the project follows a five-
stage flow of commands that are automatically executed whenever new commits are pushed to
the repository. The process starts with building both the backend and frontend components of
the project, ensuring the latest code changes are compiled and ready for testing. Once the build
is complete, backend tests are executed, to verify that the new code functions correctly and does
not introduce any problems, catching issues early in the development cycle.

After the tests, an analysis job is run, using SonarQube and other static analysis tools to
assess code quality and security – this step helps identify potential vulnerabilities and code
smells. Next, a Javadoc document is generated and saved as an artifact; the final step in the
pipeline is a manual publishing job, which creates versioned artifacts ready for deployment. This
whole process ensures that all code changes are tested, analyzed, documented, and packaged for
release; figure 4.10 illustrates the process in Gitlab.

Figure 4.10 CI/CD pipeline

40 Implementation

4.3.2 Static code analysis
Static code analysis is an automated process that examines source code without executing it,
identifying potential bugs, vulnerabilities, code smells and style violations. By catching these
issues before they reach production, static analysis reduces the cost and effort associated with
bug fixes and refactoring.

As described in section 2.3, SonarQube was used in this project as a static code analysis
platform. SonarQube analysis was integrated into the continuous integration pipeline, ensuring
that every commit underwent thorough examination, as detailed in Section 4.3.1. Figures 4.11
and 4.12 present the results of the most recent code analysis conducted on this project, showcasing
the quality metrics for the client-side and server-side source code, respectively.

4.3.3 Documentation
Documentation is an important tool for knowledge transfer, maintenance and collaboration; it
acts as a guide to help new team members and maintains a collective understanding of the
system’s functionalities. In this project, three different types of documentation are employed:
model documentation, code documentation and a wiki repository.

The model documentation was done using the software Enterprise Architect [49]: the platform
generates models of system architecture, business processes and software designs. The tool was
used to create UML diagrams (activity, class and sequence diagrams), use case models, model
domain and requirements documentation. All diagrams, in conjunction, provide clear visual
representation of the system’s structure and expected behaviour.

The code documentation is automatically generated through a pipeline job (detailed in Sec-
tion 4.3.1) using JavaDoc. This tool process comments with a specific syntax to produce a
well-structured documentation that is both human-readable and machine-processable, aiding de-
velopers to understand the expected inputs, outputs and general behaviour of all methods. By
automating this process, the code documentation remains consistently up-to-date with the latest
changes in the codebase.

The wiki repository is kept by team members and serves as a centralized knowledge repository,
facilitating easy access to crucial information for all team members. It contains more broad
information, such as design decision and practical tutorials – including guides on using Postman
for API requests or accessing the project’s Enterprise Architect model. The combination of those
three documentation approaches ensures coverage of both technical details and high-level project
knowledge.

Project organization 41

Figure 4.11 SonarQube analysis for client source code

Figure 4.12 SonarQube analysis for server source code

42 Implementation

Chapter 5

Conclusion

The main goal of this thesis was to improve and expand the existing Java Web application,
MediTrack, in order to get it ready for a beta release. The application now includes user authen-
tication and authorization, ensuring secure access and personal data separation: the user must
insert their username and password before being able to access any of their own data.

A registration form was implemented with a final user interface, allowing the addition of new
users into the system database through the client application. Additionally, the system now
manages three new types of records: doctors, appointments, and reports – with the homepage
updated to reflect these changes.

The original implementation was also improved by converting manual date manipulation,
filtering, sorting and pagination into global components, capable of being reused. This guarantees
consistency throughout the project, with different pages looking and behaving in similar way.
The system also features a global calendar view that can be reused by any entity needing to
present data over time.

Date information is now stored in UTC timezone in the database, a best practice in the
industry. Additionally, users now can receive email notifications – as a first step, it is being used
for automatic and scheduled appointment reminders. Finally, the last implemented change is the
ability to upload and download files into the system.

5.1 Future work
For future work, more enhancements on user authentication should be a priority, to improve
the system’s security. The first change could be implementing role-based profiles, separating
clients and administrators, resulting in tailored access and functionality based on roles. Next,
implement a client feature to enable users to edit their profiles, allowing individuals to update
their personal information as needed – including changing password and timezone information.
Finally, users should be able to recover their accounts if they forget their passwords by setting a
new password through a secure channel.

Email functionalities can be expanded: first, during the sign-up process, a confirmation email
should be sent before completing registration, to ensure the validity of user accounts. Secondly,
the email service could include attachments – such as reports – to improve data sharing within
the application. At last, it should be possible to send other types of notifications, such as warning
users of low medicine inventory or expired packages.

43

44 Conclusion

Finally, updating the frontend to utilize the timezone set in the database, rather than the
local machine’s timezone, will ensure consistent time displays even if the user is traveling. Other
improvement on the client application includes transforming all relevant information in the view
pages into links, so the user can quickly navigate based on attributes – finding all appointments
related to one doctor by clicking on its name, for example.

These improvements will continue the work implemented in this thesis, expanding its func-
tionalities and making MediTrack more secure and user-friendly.

Bibliography

1. FOWLER, Martin. Patterns of Enterprise Application Architecture. Addison-Wesley Pro-
fessional, 2003. isbn 0321127420.

2. GAMMA, Erich. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994. isbn 0201633612.

3. RICHARDS, Mark. Software Architecture Patterns, 2nd Edition. O’Reilly Media, Inc., 2022.
isbn 9781098134273.

4. PostgreSQL: The World’s Most Advanced Open Source Relational Database. 2024. Available
also from: https://www.postgresql.org/. Online.

5. Java. 2024. Available also from: https://www.java.com/en/. Online.
6. Spring. 2024. Available also from: https://spring.io/. Online.
7. Gradle Build Tool. 2024. Available also from: https://gradle.org/. Online.
8. javadoc – Generates HTML pages of API documentation from Java source files. 2024. Avail-

able also from: https://docs.oracle.com/javase/8/docs/technotes/tools/windows/
javadoc.html. Online.

9. JUnit 5 User Guide. 2024. Available also from: https : / / junit . org / junit5 / docs /
current/user-guide/. Online.

10. React: The library for web and native user interfaces. 2024. Available also from: https:
//react.dev/. Online.

11. Next.js by Vercel – The React Framework. 2024. Available also from: https://nextjs.org/.
Online.

12. npm – Build amazing things. 2024. Available also from: https://www.npmjs.com/. Online.
13. TURNBULL, James. The Docker Book. 2014. isbn 0988820234.
14. Docker: Accelerated Container Application Development. 2024. Available also from: https:

//www.docker.com/. Online.
15. JEZ HUMBLE, David Farley. Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation. Addison-Wesley Professional, 2010. isbn 9780321601919.
16. Gitlab. 2024. Available also from: https://about.gitlab.com/platform/. Online.
17. SonarQube 10.5 Documentation. 2024. Available also from: https://docs.sonarsource.

com/sonarqube/latest/. Online.
18. My Therapy: Your personal pill reminder and medication tracker app. 2024. Available also

from: https://www.mytherapyapp.com/. Online, Accessed: 2024-03-13.

45

https://www.postgresql.org/
https://www.java.com/en/
https://spring.io/
https://gradle.org/
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html
https://junit.org/junit5/docs/current/user-guide/
https://junit.org/junit5/docs/current/user-guide/
https://react.dev/
https://react.dev/
https://nextjs.org/
https://www.npmjs.com/
https://www.docker.com/
https://www.docker.com/
https://about.gitlab.com/platform/
https://docs.sonarsource.com/sonarqube/latest/
https://docs.sonarsource.com/sonarqube/latest/
https://www.mytherapyapp.com/

46 Bibliography

19. Medisafe: Never miss another dose. 2024. Available also from: https://medisafeapp.com/.
Online, Accessed: 2024-05-25.

20. DoseCast: Pill Reminder App. 2024. Available also from: https://www.montunosoftware.
com/. Online, Accessed: 2024-05-25.

21. TOM: Medication Pill Reminder. 2024. Available also from: https://www.tommedications.
com/en/. Online, Accessed: 2024-05-26.

22. Spring Security. 2024. Available also from: https://docs.spring.io/spring-security/
reference/features/index.html. Online, Accessed: 2024-04-20.

23. Java HttpClient Basic Authentication. 2024. Available also from: https://www.baeldung.
com/java-httpclient-basic-auth. Online, Accessed: 2024-04-23.

24. What is OAuth 2.0. 2024. Available also from: https://auth0.com/intro-to-iam/what-
is-oauth-2. Online, Accessed: 2024-05-04.

25. KRISTOL, David M. HTTP Cookies: Standards, Privacy, and Politics. ACM Transacetions
on Internet Technology. 2001, vol. 1, no. 2. Available from doi: 10.48550/arXiv.cs/
0105018.

26. Cross Site Scripting Prevention Cheat Sheet. 2024. Available also from: https://cheatsheetseries.
owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html. On-
line, Accessed: 2024-06-14.

27. Cross-Site Request Forgery Prevention Cheat Sheet. 2024. Available also from: https://
cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_
Cheat_Sheet.html. Online, Accessed: 2024-06-13.

28. What Is Token-Based Authentication? 2024. Available also from: https://www.okta.com/
identity-101/what-is-token-based-authentication/. Online, Accessed: 2024-06-14.

29. How to invalidate a JWT using a blacklist. 2023. Available also from: https://dev.to/
chukwutosin_/how-to-invalidate-a-jwt-using-a-blacklist-28dl. Online, Accessed:
2024-06-14.

30. react-big-calendar. 2024. Available also from: https://www.npmjs.com/package/react-
big-calendar. Online, Accessed: 2024-02-05.

31. FullCalendar: The Most Popular JavaScript Calendar. 2024. Available also from: https:
//fullcalendar.io/. Online, Accessed: 2024-02-05.

32. Spring Framework: Email. 2024. Available also from: https://docs.spring.io/spring-
framework/docs/2.5.x/reference/mail.html. Online, Accessed:2024-04-02.

33. Simple Java Mail: Simple API, Complex emails. 2024. Available also from: https://www.
simplejavamail.org/. Online, Accessed:2024-05-31.

34. What’s the Difference Between SSL and TLS? 2024. Available also from: https://aws.
amazon.com/compare/the-difference-between-ssl-and-tls/. Online, Accessed:2024-
06-02.

35. Docker: Volumes. 2024. Available also from: https : / / docs . docker . com / storage /
volumes/. Online, Accessed: 2024-04-04.

36. Google Cloud: What is object storage. 2024. Available also from: https://cloud.google.
com/learn/what-is-object-storage. Online, Accessed: 2024-04-06.

37. Binary Files in Database. 2024. Available also from: https://wiki.postgresql.org/
wiki/BinaryFilesInDB. Online, Accessed:2024-04-04.

38. PostgreSQL: Large objects. 2024. Available also from: https://www.postgresql.org/
docs/current/largeobjects.html. Online, Accessed:2024-04-04.

https://medisafeapp.com/
https://www.montunosoftware.com/
https://www.montunosoftware.com/
https://www.tommedications.com/en/
https://www.tommedications.com/en/
https://docs.spring.io/spring-security/reference/features/index.html
https://docs.spring.io/spring-security/reference/features/index.html
https://www.baeldung.com/java-httpclient-basic-auth
https://www.baeldung.com/java-httpclient-basic-auth
https://auth0.com/intro-to-iam/what-is-oauth-2
https://auth0.com/intro-to-iam/what-is-oauth-2
https://doi.org/10.48550/arXiv.cs/0105018
https://doi.org/10.48550/arXiv.cs/0105018
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://www.okta.com/identity-101/what-is-token-based-authentication/
https://www.okta.com/identity-101/what-is-token-based-authentication/
https://dev.to/chukwutosin_/how-to-invalidate-a-jwt-using-a-blacklist-28dl
https://dev.to/chukwutosin_/how-to-invalidate-a-jwt-using-a-blacklist-28dl
https://www.npmjs.com/package/react-big-calendar
https://www.npmjs.com/package/react-big-calendar
https://fullcalendar.io/
https://fullcalendar.io/
https://docs.spring.io/spring-framework/docs/2.5.x/reference/mail.html
https://docs.spring.io/spring-framework/docs/2.5.x/reference/mail.html
https://www.simplejavamail.org/
https://www.simplejavamail.org/
https://aws.amazon.com/compare/the-difference-between-ssl-and-tls/
https://aws.amazon.com/compare/the-difference-between-ssl-and-tls/
https://docs.docker.com/storage/volumes/
https://docs.docker.com/storage/volumes/
https://cloud.google.com/learn/what-is-object-storage
https://cloud.google.com/learn/what-is-object-storage
https://wiki.postgresql.org/wiki/BinaryFilesInDB
https://wiki.postgresql.org/wiki/BinaryFilesInDB
https://www.postgresql.org/docs/current/largeobjects.html
https://www.postgresql.org/docs/current/largeobjects.html

Bibliography 47

39. MUI X: DatePicker. 2024. Available also from: https : / / mui . com / x / react - date -
pickers/date-picker/. Online, Accessed:2024-02-18.

40. MUI X : TimePicker. 2024. Available also from: https://mui.com/x/react- date-
pickers/time-picker/. Online, Accessed:2024-02-18.

41. JavaScript: Date.prototype.toJSON(). 2024. Available also from: https : / / developer .
mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toJSON.
Online, Accessed:2024-02-22.

42. Oracle: ZonedDateTime. 2024. Available also from: https://docs.oracle.com/javase/
8/docs/api/java/time/ZonedDateTime.html. Online, Accessed:2024-02-22.

43. MUI X Data Grid. 2024. Available also from: https://mui.com/x/react-data-grid/.
Online, Accessed:2024-02-18.

44. NIELS PROVOS, David Mazières. A Future-Adaptable Password Scheme. In: Proceedings
of the FREENIX Track: 1999 USENIX Annual Technical Conference. 1999. Available also
from: https://www.usenix.org/legacy/events/usenix99/provos/provos.pdf. Online,
Accessed: 2024-06-01.

45. Intl.DateTimeFormat.prototype.resolvedOptions(). 2024. Available also from: https : / /
developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/
Intl/DateTimeFormat/resolvedOptions. Online, Accessed:2024-06-12.

46. Mockito Tasty mocking framework for unit tests in Java. 2024. Available also from: https:
//site.mockito.org/. Online.

47. E.164. 2024. Available also from: https://en.wikipedia.org/wiki/E.164. Online.
48. Postman API platform. 2024. Available also from: postman.com. Online.
49. UML modeling tools for Business, Software,= and Systems. 2024. Available also from:

https://sparxsystems.com/. Online.

https://mui.com/x/react-date-pickers/date-picker/
https://mui.com/x/react-date-pickers/date-picker/
https://mui.com/x/react-date-pickers/time-picker/
https://mui.com/x/react-date-pickers/time-picker/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toJSON
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toJSON
https://docs.oracle.com/javase/8/docs/api/java/time/ZonedDateTime.html
https://docs.oracle.com/javase/8/docs/api/java/time/ZonedDateTime.html
https://mui.com/x/react-data-grid/
https://www.usenix.org/legacy/events/usenix99/provos/provos.pdf
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat/resolvedOptions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat/resolvedOptions
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl/DateTimeFormat/resolvedOptions
https://site.mockito.org/
https://site.mockito.org/
https://en.wikipedia.org/wiki/E.164
postman.com
https://sparxsystems.com/

48 Bibliography

Contents of enclosed media

source..Directory containing the source code
meditrack... Implementation source code
javadoc ... Documentation of source code

text...The thesis text directory
thesis.pdf..Thesis in PDF format

49

	Acknowledgments
	Declaration
	Abstract
	Acronyms
	Introduction
	Motivation
	Structure

	Analysis
	Original implementation
	Architecture
	System architecture
	Logical architecture

	Technologies
	New requirements
	Use cases
	Existing solutions

	Design
	Domain model
	Technology analysis
	User authentication
	Calendar
	Notification service
	File storage

	Database
	Architecture
	Authentication design

	Implementation
	Features
	Homepage
	Date manipulation
	Filtering data
	Calendar
	Authentication
	Mailing service
	File upload and download

	Testing
	Automated tests
	User tests

	Project organization
	Workflow and version management
	Static code analysis
	Documentation

	Conclusion
	Future work

	Contents of enclosed media

