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ABSTRACT. We present a method for computing the stochastic operational matrix of integration
to advance the study of stochastic Volterra-Fredholm integral equations (SVFIEs) based on delay
arguments. First, the method evaluates the combined effects of the delay and its parameters on
the accuracy improvement of the convergence rate. Our results can be applied to SVFIEs, with
the operational delay matrices of the block pulse function simplified to algebraic ones. Numerical
calculations were performed on a PC using Python 3 programs. Results also demonstrate the accuracy
of approximate solutions; arithmetic operations are carried out without the need for derivation or
integration.

KEYWORDS: Stochastic Volterra-Fredholm integral equations, block-pulse functions, It6 integral, delay
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1. INTRODUCTION

Stochastic Volterra-Fredholm integral equations are an essential class of multi-dimensional integral equations
that can rarely be solved exactly, and the computational complexity of mathematical operations is a critical
obstacle in solving high-dimensional stochastic integral equations. Stochastic differential equations have various
applications in various fields, such as medicine, economics, and social sciences, as well as engineering, biology,
and financial mathematics. These equations play a crucial role in modelling population growth, where the
stochastic Volterra-Fredholm integral equation is fundamental; see [IHT7]. A stochastic Volterra-Fredholm integral
equations can be modeled using several types of stochastic differential equations or, in more complicated cases,
nonlinear stochastic differential equations of the It6 type [8HI0]. There are some difficulties in finding exact
solutions for SVIEs or SVFIEs, so the researchers have resorted to finding approximate solutions using numerical
methods [111 [12].

SVFIEs with delay are used in applied sciences for modelling functions that contain time memory, such as
mechanical systems, dynamical systems, and electric circuits, as well as in physical models, option pricing, and
population growth [I3]. On the one hand, in the theory of automatic systems, delay-differential equations are
obtained [14HI6].

On the other hand, some systems, such as the integral equations [I'7, [I8], which were based on the operational
matrices of integration, were estimated using polynomials. These included block pulse systems, the Fourier
series, Legendre polynomials, Chebyshev polynomials, and Laguerre polynomials. Using numerical methods to
approximate the solutions to such equations is often desirable since they cannot always be solved explicitly [19-27].
The Volterra integral equations with delay have received very little attention. We have developed approximation
methods for SVFIEs with delay arguments. A stochastic operational matrix with time delay is presented to find
an approximate solution of the Stochastic Volterra-Fredholm integral equations.

Our focus is on the SVFIE:

B

X(@t)=f(t)+ M\ / k1(t,8)X (s — 7)ds + A2 /0 ko(t,8)X (s — T7)ds + A3 /0 ks(t,s)X (s — 7)dB(s),

«
where t € [0,T), T € [o, 8], T € [0, ).

In the above descriptions, X (¢), f(t), k1(¢, s), ko(t, s) and ks (¢, s), for ¢, s € [0,T"), are the stochastic processes
defined on the same probability space (2, F,P), and X (t) is unknown. B(t) is a one-dimensional standard
Brownian motion process and fot ks(t,s)X (s — 7)dB(s) is the Itd integral. Both the j and k represent the
Volterra kernel. The parameter in the variable of the function is calculated as 7 = (¢ + A)h with an integer
g > 0 and a fraction 0 < X\ < 1, chosen to approximate a function with a time delay.

Following is an outline of the paper. A description of the fundamental properties of block-pulse functions
is provided in Section [2| as well as the approximation of functions using block-pulse parts and an operational
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integration matrix. A stochastic integration functional matrix is introduced in Section [3] The stochastic
integration active matrix is used to solve stochastic delay Volterra integral equations in Section [d] We present
the error estimation and rate of convergence in Section [5} The proposed scheme is accurate, which is proved by
using numerical examples to demonstrate its effectiveness in Section[6}] A brief conclusion is given in Section [7}

2. BLOCK-PULSE FUNCTIONS (BPFs)

This section covers the notations, definitions, known results, and formulas related to BPFs, which are relevant
to this paper. These details have been extensively discussed in [20] 21].

The block-pulse functions (BPF) ®; over the unit interval [0,1) is defined as follows: for 0 < i < m, and
me{1,2,...}:

q)i(t):{1 (i—1)h <t <ih, W

0 otherwise,

with t € [0,T),4=1,2,...,m,and h = L.

The block-pulse functions have the following properties:

(1.) Disjointness: The BPFs are disjointed with each other in the interval ¢ € [0,T):
(1) P;(t) = 6i;Pi(1), (2)

where 4,5 = 1,2,...,m, and d;; denotes the Kronecker delta.

(2.) Orthogonality: The BPFs are orthogonal with each other in the interval ¢t € [0,T):

/T ®;(t)®; (t)dt = héjj, (3)
0

where 4,5 =1,2,...,m.

(3.) The third property is completeness: For every f € L2?[0,T), when m — oo , Parseval’s identity holds,
that is:

T 00
/O Ptydr =3 £20:(0)|1,
=1

where fi = + [T f(£)®,(t)dt.
The set of functions can be described by an m vector:
O(t) = (Ro(t), D1(t), -+, P (1)),

where t € [0,7).
Thus, we can write the relationship between BPFs and their integrals in the following matrix form. The
above representation and disjointness property follows:

Q) 0 0
0 Dy (t) 0
()07 (t) = . . ; (4)
O 0 (bm(t) mXxXm
additionally, we deduce:
T (H)d(t) =1,
and:
®()" (1) F" = Dpd(t), (5)
the diagonal matrix Dp corresponds to a constant vector F = (fi, fa,--- , fm)? whose diagonal entries are
related.
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2.1. FUNCTIONS APPROXIMATION
A real bounded function f(t), which f(t) € L?[0,T), can be expanded into a block pulse series as:

m

F(8) = fn(t) =D fi®i(t), (6)

i=1
where f; is the block pulse coefficient with respect to the ith BPF ®;(¢). The vector form is as follows:
f(t) =~ fm(t) = FT®(t) = ®T (1) F, (7)

where F' = (f17f2a e 7.f'rn)T'
Let k(t,s) € L%([0,T1) x [0,7%)). Similarly, it can be applied to BPFs such as:

k(t,s) = kn(t,s) = T (s) K®(t) = T (1) KTW(s), (8)
where ®(t) and ¥(s) are m; and mo dimensional BPFs vectors, respectively, and K = (ki;), ¢ =1,2,...,mq,
7 =1,2,...,mo is the my X mo block pulse coefficient matrix with:

1 T Ts
kij = / / k(t, S)\I/Z(t)(I)J(S)det,
hihy Jo  Jo
where hy = %1, ho = %’2 For convenience, we put m; = me = m.

2.2. INTEGRATION OPERATIONAL MATRIX

Computing fot ®,(s)ds follows:

. 0 0<t<(i—1)h,
/@i(s)ds: f—(i—Dh (i—Dh<t<ih, )
0 h ih<t<T.

Note that ¢ — (i — 1)h, equals to % at mid-point of [(i — 1)k, ih), thus we can approximate t — (i — 1)h, for
(i—1)h <t <ih, by &.
From [20], we have:

t
/ ®(s)ds = Po(1). (10)
0
As shown in the operational matrix of integration:
1 2 2 2
L 01 2 2
2 ..
o000 --- 1
mxXm
Accordingly, each integral of f(¢) can be approximated as follows:
t t
/ f(s)ds f_v/ FT®(s)ds ~ FTPd(t). (12)
0 0

2.3. THE OPERATIONAL MATRIX WITH TIME DELAY OF BPFSs

The delay time is 7 = (¢ + A)h with an integer ¢ > 0, and a fraction 0 < A < 1, where the operational matrix of
approximation is expressed as the time delay 7 = ¢h, yields:

o+ o ¢i+q(t) { S m —q,
6i(t — qh) = {0 S (13)
and the function containing time delay, yields:
Gitq(t) +Or(t — (i +@)h) —da(t = (i+q¢—1)h) i<m—gq,
Gi(t —7) = § Pitq(t) — Oa(t = (i +q—1)h) i=m-—g, (14)

0 it >m —q,
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alternatively, as vectors:
¢i(t —7)=ATHI®(t) — ATHI®\(t) + ATHIT @, (2).

We expand the function ¢;(t — 7) into its block pulse series to avoid the expression ®,(¢) in the above
equation:
¢1(t — T) = (Ci71 Ci2* " Cz’m)(I)(t) (15)
While ¢; ; (j =1,2---,m) are:

17 1 [k
Cij = g/o ¢i(t — 1), (t)dt = h/( ¢i(t — T)dt

j—1)h
1. 7 jh jh jh (16)
— TATH" / B(¢)dt — / By (t)dt + H B (1)dt
(G=1h (G=1h (G-1h

=AT((1 = NH?+  \HTHA,.

We can develop the whole block pulse function vector containing time delay 7 = (¢ + A)h into its block pulse
series in a vector form by noting that the expression A7 ((1 — A\)HY + AHI1)A; is just one entry of the matrix
((1 = N\)HY + AH9") with ith row and jth column:

Ot —7)=((1—NH?+  \HTHD(t). (17)

Usually, the matrix (1 — A\)HY + AH9T! is referred to as the delay operational matrix. To put it in more
concrete terms:

(g+ 1)th
————
0 0 1=\ A0 0
0 0 0 T—X A 0
Q=NHI+AH™ = | 4 ... 0 0 0 - A . (18)
0 0 0 0 0 11—\
0 0 0 0 0 0

It is possible to obtain the block pulse series of a function with time delay 7 = (¢ + A\)h by using Equation :
ft—7) = FTo(t—7) = FT((1 = \)H? + NXHT ) ®(1). (19)

3. STOCHASTIC INTEGRATION OPERATIONAL MATRIX
The integral of 1t6 of a single BPF ¢;(t) can be computed as follows:

. 0 0<t<(i—1)h,
[ ex(s)dBls) = { B - B -1, G-Dh<e<in (20)
0 B(ih) — B((i — 1)h), ih<t<T.

Now expressing fot ¢i(s)dB(s), in terms of the BPFs follows:

t m
/ ¢i(s)dB(s) ~ (B(ih/2) — B(i — 1)h/2) ¢(t) + (B(ih) — B((i = 1)h)) > ¢;(t). (21)
0 j=it1
Therefore: .
/ ®(s)dB(s) ~ Ps®(t). (22)
0
In this case, the stochastic operational matrix of integration can be expressed as follows:
Y1 pP1 P P2
0 v p2 - p2
Ps=| 0 0 v - p3 7 (23)
0 0 0 -

mXxXm
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where p; = B(ih) — B((i — 1)h), i =1,2,...,m —1; v; = B(ih/2) — B((i — 1)h/2), j =1,2,...,m.
This can be approximated by computing the It6 integral for every function f(t) as follows:

/Ot f(s)dB(s) ~ FT®(s)dB(s) ~ FT Ps®(t). (24)

4. SOLVING STOCHASTIC VOLTERRA-FREDHOLM INTEGRAL EQUATIONS WITH TIME
DELAY

The following linear stochastic Volterra-Fredholm integral equation is considered with a constant time delay
T>0:

B

X)) =f(t)+M / ki(t,8)X (s — 7)ds + )\2/0 ka(t,s)X (s — 7)ds + )\3/0 ks(t,s)X (s —7)dB(s), (25)

where t € [o, 5], 7 € (0,5 — ), t €[0,T).

X (t) is a stochastic process whose coefficients are X (t), f(t), k1(t, s), k2(t, s) and k3(t, s), for «, 8 € [o, ],
t,s € [0,T), defined on the same probability space (2, F, P). In addition, B(¢) is a Brownian motion process,
and fg k3(t,s)X (s — 7)dB(s) is integral for It6. To facilitate block pulse functions, we typically set a = 0.
Whenever a # 0 we set s = %T, where T' = mh. Using BPFs to approximate functions X (¢), f(t), Ki(¢, s),
Ks(t,s), and K3(t, s) by Equations (7)), (8), and gives the following result:

fit)~FTo(t) = oTF,

ki(t,s) ~ U () K1 ®(s) = ®T (s) KT W(t),
ko(t,s) ~ UT () Ky®(s) = T (s) KT W(¢),
ks(t,s) ~ UT () K3®(s) = ®T(s) KT W(t)

According to Equation , X (s — 7) can be approximated as follows:
X(s—7)~ XTW(s —7) = XT((1 = \)HI + AXHT) (1) T(5s),
and by letting Z = ((1 — \)H? + AH9™1), we can write:
X(s—7)~ XTZU(s). (26)
The above approximates define X and F' as stochastic block pulse coefficients vectors, respectively, and

K,, K5, and K3 as stochastic block pulse coefficients matrices.
Equation is improved by substituting the above approximation:

XTo(t) ~ FTo(t)+ XTZ(\ /Omh U(s)UT (5)ds) K1 D(t)
+ XTZ(\, /Ot\Il(s)\IlT(s)ds)KgfI)(t) (27)
+XTZ(\s /Ot ()07 (s)dBs)K3D(t).
Let K}, j = 1,2,3, be the ith row of the constant matrix Kj, for j = 1,2,3. R’ be the ith row of the

integration operational matrix P, R% be the ith row of the stochastic integration operational matrix Ps, D, be
J

diagonal matrices with K J’, for j =1,2,3, as its diagonal entries. By the relation fomh ®T®(s)ds = hl, previous
relations, and assuming m; = mso, we have:

</mh \I/(s)\I/T(s)ds> K ®(t) = hIK,®(t) = B, ®(t), (28)
0
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where By = hK7, also:

</thf(s)qu(s)ds> K19(t) = </th>(s)q)T(s)dS) Ko (1)

R'®(t)Ki®(t) R'Dy;
R*®(t)K30(t) R?Dy:>
_ o _ e (29)
R™O(t) K5 ®(t) R™Dpen
= By®(t),
where: ) ) i )
kv 2kiy 2kiz - 2ki,
L 0 k2, 2/52%3 2k§m
B, = 5 0 0 k3g oo 2k, , (30)
0 0 0 e k2 s
also, we can consider the integral term It6:
t t
(/ \Il(s)\IlT(s)dB(s)> K3®(t) = (/ <I>(s)<I>T(s)dB(s)> K3®(t)
0 0
R'®(t)Ki®(t) R§ D
2 2 2
_| meoxieq) | _| miDi | 31)
RIO(t) K5 () RE Dy
= B3®(t),
where: 5 5 5 5
kivy  kiap kisp - ki pmp
0 k%zW kgsz . k%mp
Bs=| 0 0 kypy oo kyup(m—2) (32)
0 0 0 - E,v(m—=1)

By substituting Equations , and in , we get:
XTo(t) ~ FTO(t) + XTZMB1®(t) + YT ZXoBo®(t) + XT Z\3B3D(1).

Then:
XT(I — Z(\ By 4 \oBo + M\3B3)) ~ FT.

So, by setting M = (I — Z(A1B1 + A2B2 + A3Bs)) and replacing ~ by =, we deduce:
MTX =F. (33)

It consists of a linear system of equations with lower triangular coefficients that yields the approximate block
pulse coefficient of the stochastic process X (t).

5. ERROR ESTIMATION AND RATE OF CONVERGENCE

The proposed method shows the fastest convergence rate for integral equations with time delay. There is
a high-level agreement between the exact solution and numerical results.

Theorem 1. Let f(t) be any arbitrary real bounded function, which is square integrable within the interval
[0,1), and e(t) = f(t) — fm(t),t € I =[0,1), where f,,,(t) =Y i~ fi¢i(t) is the block pulse series of f(t). Then:

le(@®I < (34)

h_
775 1 s

M

in this case, [|e(t)]| = ( I e dt)
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Proof. See [23].

Theorem 2. Assume f(t,s) € L2([0,1) x [0,1)) and e(t,s) = f(t,s) — fm(t,s), (t,s) € A =[0,1) x [0,1),
which f,(t,s) = >, > iy fiji(t)®;(s) is the block pulse series of f(t,s). Then:

lett, )l < === (1A% + 1£1%) (35)

2f

Nl

where ||e( (fo fo e(t,s 2dsdt)

Proof. Let:

is(t, ) = { flt,s) = fi (t,s) € Ay, .

0 (t,S)GA*Aij,

WhereAij:{(t,s):(if1)h§t<ih,(j71)h§s<jh,h:%}, andi,j=1,2,--- ,m. Fori,j=1,2,--- ,m,
thus, we get:

eij(t,s) = f(t,s) / / f(z,y)dydz = / / — f(x,y)) dydx,
i69) = 02 Jacon J-nn B2 J i J i 1>h 9)

now, by mean-value theorem, we deduce:

eij(t,s) / - /(J - ((t =) f{(ni,m5) + (s — y) fo(nis ;) dydz
= sitnon) (14 (=4 3)0) + sttmany) (s+ (= 3) 1)
where (t,s), (1:,1;) € Aqj; then:

4
less (8, )1 /( N /( exs ()2 st = T (7 (i) + 17 (i), (37)

where (1;,m;) € Aij, 4,5 =1,2,.
Consequently, we have:

o= [ [ o= | |

i/ /01 ”(t,s)dsdt

15=170 i=1 j=1 (38)

iiew t,s ) dsdt
i=1

j=1

h2
< ( sup | fi(z,y)]> + sup |f§(9€71/)|2>,

(z,y)€A (z,y)€A

or:

et 5)l < = (LA + 101%)

2f
hence, |le(s,t)|| = O(h). O

Theorem 3. Let X (t) and X (¢) be solutions of Equations and (26]), respectively, and let || X (t)|| < C
and ||k;|| < C for i =1,2,3. Then:

A

B(xt - x| < o).
where ¢t € [0,T), 7 € [0,1); and:
e (8(x(0 - 20| )t = o,

where ¢t € [0,T), 7 € [0,1].
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Proof. We then conduct an error analysis in two ways:

(1.) On the basis of Equation , which we express as:

X(t)—X(@t)=ft)— f(t)+ (/tkl(ts (s tsXST))d

_7) /k
(/ths (s—7) /léts S—T)>d8
(/kgts /kg,ts)dB)

and taking into account the Euclidean norm:
EHX( — X(t) —EHf 0 +(/k1ts (s—1) /kAts s—T))ds

(/ ka(t, s) X (s — 1) /kAtS S—T))ds

</ ks(t,s) / kg t,s ) (s)

and (a + b+ c+d)? < 4(a? + b? + ¢® + d?), we obtain:

)

2

<4( E f(t)—f(t)2+ k1t3 (s —7)— k(t,s)f((s—T) ds
H | ;
+E /kg(t )X (s—71) — /15( $)X(s—71) ds
—I—E/kgts /k3ts dB )

The final parts are then obtained, one by one:

= R ll + [zl

/k‘lts (s—171) /k;lts (s—71)

—EH( i kl(t,s)X(sz)f/O iél(t,s)X(ST)> + (/(:lél(t,s)X(ST)/Otiél(t,s))?(sﬂ)

/0 s (¢, ) — Ko (t, )] X (5 — 7)ds

- B ds

2

ng’ 2+2EH/$1(7:,3>[X(5—T)—X(S—T)ds]Hz.

gc/o E||k1(t7s)—El(t,s)|\2ds+0/o (EHX(S—T)—X(S—T)H)ds
< C-O(h*) +C-O(h*) = O(h*).

lk2|| is omitted since the steps are similar to ||k1]|.
And:

IL=E /Ot ks (t, 5) — Fa(t, 5) 2st - /OtE(Hkg(t,s) - Eg(t,s)H)ds < o(hY),

(It6 isometry).
Therefore:

A

E HX(t) ~ X ds < 401 + O(h) + O(h) + O(h1),

E HX(t) - X(t)H < C.O(h?).
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(2.) We express Equation (25)) as the basis for the analysis:

X (1) - X(t) = (/1) (/’Mts (s—7)

(Akaaw (s—7)—
+ (/Ot ka(t, )X (s — 7) —

in addition to getting the Euclidean norm:

~

3 (t,5)X (s — T)ds)

t

~

Fao(t, 8) X (s — T>ds>

t

~

ks(t,s)X (s — T)> dB(s),

c\c\c\

2

lx@ - x| =170 - fe+ /knts (=) [ Kt )X (s~ 7)ds

2

+ / ko(t, )X (s —7) — 15 (t,s)X (s — 7)ds

0

2
dB(S)a

t

ks(t, )X (s = 7)

c\c\c\

+ /Ot ks(t, )X (s — 1) —

and:

E(HX(t) - X(t)HQ) <4 ( E|lf() - 0|2+ E /Ot kot s)X (s — 7) — /Ot ku(t, )X (s — 7)ds

2

2

+E /tk2(ts)X(s—T) /tlé( $)X (s — 7)ds

—l—E/kgts (s —17) /kgts (s—171) dB(s)).
The It6 isometry property [22] and Rolle’s theorem lead to the following results:
T
<oz (|0 - sl )
t . N 2
_4/E< (k1(t,s) — k1(t,8))(X (s —T) )ds— (HkltS(X(S—T)—X(S—T))H>
0

+6/OtE( (ka(t, 5) — Fa(t, $))(X (s — 7) )ds+ <Hk2 t,5) (X(S—T)—X(S—T))HQ>
—4/(:E< (ks(t, s) — Ks(t, ) X (s — 1) H >d / <Hk3 (t,8)(X(s — 7) —X(s—T))H2> ds.

Based on the problem:

~ 2
< CE(|1t) - fo)||)

—403/0tE< (k1(t,s) — Ku(t, 5)) 2) ds—4C3/0tE< X(s)—X'(s)HZ) ds

+6C? /OtE< (ka(t, s) — Fa(t, 5)) 2) ds + 6C? /OtE( X(S)X(S)HQ) ds

—403/0tE< (ks(t,5) — Fa(t, 5)) 2) ds—403/OtE< (X(s—r)—f((s—f))‘f) ds,

and the proof is complete. Hence:

6. NUMERICAL EXAMPLES

To illustrate the method stated in Section [5} we consider the following examples. The computations associated
with the examples were performed using Python 3. Let X; denote the block pulse coefficient of the exact solution
in the given examples, and let Y; be the block pulse coefficient of computed solutions by the presented method.

We compute the values of approximate and exact solutions at selected points defined as 7 = (¢ + A\)h and
1Bl = maxici<m [Xi — Yil.
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95 % confidence interval
n XE SE for mean of E
Lower Upper

50  0.00382054 0.00283136  0.00330007 0.00434101
100  0.00370446  0.00263633 0.00337978 0.00402914
150  0.00371797  0.00263859  0.00345360 0.00398234
200 0.00376432 0.00271663  0.00352496 0.00400368
250  0.00377341 0.00266278  0.00356629 0.00398054
300 0.00376643 0.00253417  0.00348075 0.00495210

TABLE 1. Mean, standard deviation, and mean confidence interval for error in example 1 with m =32, ¢ =0, A = 0.1.

95 % confidence interval
n XE SE for mean of E
Lower Upper

o0 0.19111046 0.10332342 0.16174627 0.22047465
100 0.19936926  0.09891785 0.17974181 0.21899671
150  0.19952633 0.09352666 0.18443667 0.21461600
200 0.19786280 0.09228118  0.18499526 0.21073033
250 0.19378207 0.08840576 0.18276985 0.20479428
300 0.19387334 0.08744348 0.18393814 0.20380853

TABLE 2. Mean, standard deviation, and mean confidence interval for error in example 1 with m =64, ¢ =0, A = 0.1.

10
approximate solution approximate solution
+ exact solution + exact solution
08
08
06 06
3 =<
04 0.4
0.2 0.2
00 0.0
- T T T T T T - - - T - - . - - T T T T T T
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FIGURE 1. The trajectory of the approximate solution and exact solution of Example |l| for m = 32, m = 64, n = 50,
q=0,A=0.5.

Example 1 [16]. Counsider the following stochastic Volterra Integral equation with (constant) time delay

7> 0:

4 3 7.2

X(t) = _E+%T+(1—3)t2+/0 (t—s)X(s—1)ds, (39)

where s,t € [0,T], 7 € (0,T); with the exact solution X (t) = t2, for 0 <t < T.

In Tables[T}2] the numerical results are presented. The computations of mean, standard deviation, and mean
confidence interval of error for n, Xg, and Sg are provided in Tables[IH2] An approximate solution is depicted
in Figure [I] as a trajectory based on the presented approach. The variation process of error is represented
by curves in Figure [2l We observe a perfect agreement between the exact solution and the numerical results,
achieving full convergence.

Example 2 [16]. Consider the following Fredholm integral equation with (constant) time delay 7 > 0:
T
X(t) =t(Tcos(T — 1) —sin(T — 7) — sin(7)) + sin(t) + / (ts)X (s — 7)ds, (40)
0
where s,t € [0,T], 7 € (0,T); with the exact solution X (¢) = sin(t), for 0 < ¢t < T. The numerical results

are presented in Table The trajectory of the approximate solution and exact solution are represented in

Figures
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FIGURE 2. Variation trend of error in Example |l|for m = 32, n = 50, n = 100, ¢ = 0, A = 0.5.

A=01 A=03 A=05 AX=07 X=0.9

m =8 0.007788 0.007251 0.006711  0.00727  0.008367

m =32 0.015303 0.015683 0.016064 0.016446 0.016827

m =64 0.017717 0.017918 0.01812 0.018321 0.018523
TABLE 3. Error in Examplewith q=0.
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FIGURE 3. The trajectory of the approximate solution and exact solution of Example |2| for m = 32, m = 64, n = 50,
q=0,A=0.1.
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FIGURE 4. The trajectory of the approximate solution and exact solution of Example [2| for m = 32, m = 64, n = 50,
q=0,A=0.3.
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FIGURE 5. The trajectory of the approximate solution and exact solution of Example for m = 32, m = 64, n = 50,

qg=0,A=0.5.
05
+ exact solution i
* approximate solution
od
: 03
St
o
c
P
£
0.1
0o

1) and XXt

K[

05

o4

03

02

oa

exact solution
approximate soluticn

DOB 005 010 015 020 025 03D 035 040 45 DSC

t

0Q0 003 010 QL5 020 025 030 033 040 045 050

t

FIGURE 6. The trajectory of the approximate solution and exact solution of Example |2 for m = 32, m = 64, n = 50,

q=0,A=0.7.
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FIGURE 7. The trajectory of the approximate solution and exact solution of Example for m = 32, m = 64, n = 50,

q=0,2=0.9.

Example 3 [28]. Consider the stochastic Volterra Fredholm integral equation with time delay 7 > 0:

X(t):—5T—t+12t2—tS—t4’7'+/0t(t—S)X(S—T)ds—l-/ol(t—l-s)X(S—T)dS-l—/OtSX(S—T)dB(S), (41)

where s,t € [0,T], 7 € (0,T); with the exact solution X (t) = exp ((6t +12t2)/2 + fot sdB(s)), {B(t):0<t<
T} is a Brownian motion process, and X (¢) is an unknown stochastic process defined on the probability space
(Q,F,P). Tables present numerical results for various values of m, for A = 0.5 to compute the 7.

7. CONCLUSION

It is possible to use a computational method based on the properties of BPFs with operational matrices to
convert the problem into a system of linear algebraic equations. As a result, this technique transforms nonlinear
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95 % confidence interval
n XE SE for mean of E
Lower Upper

50  0.19136844 0.06088437 0.17406529 0.20867159
100 0.18904432 0.06630608 0.17588776 0.20220088
150  0.18060058 0.06734891 0.16973445 0.19146671
200 0.18457774 0.07436710 0.17420811 0.19494736
250 0.18513391 0.07368228 0.17595571 0.19431210
300 0.18425841 0.07426964 0.17582001 0.19269681

TABLE 4. Mean, standard deviation, and mean confidence interval for error in Example [3| with m = 32, ¢ = 0,
A=0.5.

95 % confidence interval
n XE SE for mean of E
Lower Upper

50  0.18850030 0.07900637 0.16604694 0.21095366
100 0.19126831 0.07912381 0.17556843 0.20696819
150  0.19011608 0.08055573  0.17711915 0.20311301
200 0.19260138 0.08272020 0.18106700 0.20413575
250 0.18888323 0.08117339 0.17877191 0.19899455
300 0.18898994 0.08172767 0.17970417 0.19827572

TABLE 5. Mean, standard deviation, and mean confidence interval for error in Example [3| with m = 64, ¢ = 0,
A=0.5.

stochastic Volterra-Fredholm integral equations into a system of linear algebraic equations whose coefficients
represent BPFs that represent solutions to these equations. As well as error analysis, numerical examples
provide a solid basis for combined effects and observe a perfect agreement between the exact solutions and
the numerical results, achieving full convergence. These include stochastic integrals and ordinary differential
equations; arithmetic operations are carried out without requiring derivatives or integration. A Python 3
environment was used to perform the computations associated with the examples. We observe the auspicious
results and hope to extend the method to more general backward stochastic Volterra integral equations in
sequels.
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