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Abstract
Although quantum computers that can
outperform conventional computers are
still in development, it is crucial to ad-
vance our understanding and development
of quantum algorithms to prepare for the
future of quantum computing. This bach-
elor project explores the growing field of
quantum programming and simulation on
currently available quantum computers.
We study the basics of quantum comput-
ing and summarize the commonly used
principles used in the field. We theoreti-
cally describe quantum walks with a spe-
cial emphasis on discrete-time variants,
which constitute the core part of this the-
sis. Furthermore, we introduce an op-
timized method for the efficient imple-
mentation of discrete-time quantum walks
suitable for the current quantum com-
puter architecture. We show that this
method is more successful in examining
quantum walk related aspects like spread-
ing dynamics and perfect state transfer
compared to conventional methods.

Keywords: quantum algorithm,
quantum simulation, quantum walk

Supervisor: Iskender Yalcinkaya, Ph.D.
Katedra fyziky,
Fakulta jaderná a fyzikálně inženýrská
ČVUT v Praze

Abstrakt
Přestože kvantové počítače, které mohou
překonat konvenční počítače, jsou stále
ve vývoji, je pro přípravu na budouc-
nost kvantové výpočetní techniky zásadní,
abychom pokročili v porozumění a vývoji
kvantových algoritmů. Tento bakalářský
projekt zkoumá rozvíjející se oblast kvan-
tového programování a simulace na aktu-
álně dostupných kvantových počítačích.
Studujeme základy kvantového počítání
a shrnujeme běžně používané principy po-
užívané v této oblasti. Teoreticky popisu-
jeme kvantové procházky s klíčovým důra-
zem na varianty s diskrétním časem, které
tvoří stěžejní část této práce. Dále předsta-
vujeme optimalizovanou metodu pro efek-
tivní implementaci kvantových procházek
v diskrétním čase vhodnou pro současnou
architekturu kvantových počítačů. Uka-
zujeme, že tato metoda je ve srovnání s
běžnými metodami úspěšnější při zkou-
mání aspektů souvisejících s kvantovými
procházkami, jako je dynamika šíření a
dokonalý přenos stavu.

Klíčová slova: kvantový algoritmus,
kvantová simulace, kvantová procházka

Překlad názvu: Programování a
simulace na kvantových počítačích
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Chapter 1
Introduction

The concept of quantum computing was first proposed by Richard Feynman in
1981 when he suggested that extraordinary properties of quantum computers
might be exponentially more efficient for simulating natural phenomena than
classical computers. Since then, the journey from Feynman’s initial vision to
the development of practical quantum computers has been marked by several
key milestones:..1. Deutsch’s quantum Turing machine (1985): David Deutsch described

the concept of a universal quantum computer that can perfectly simulate
any Turing machine. Furthermore, Deutsch demonstrated that certain
physical systems can be simulated with a universal quantum computer
but are beyond the capabilities of a universal Turing machine [1]...2. Deutsch-Jozsa algorithm (1992): David Deutsch and Richard Jozsa
introduced an algorithm that can determine if a function is constant or
balanced with one query, demonstrating an exponential speed up over
classical algorithms [2]...3. Shor’s algorithm (1994): Peter Shor introduced a quantum algorithm
for integer factorization, providing an exponential speedup over classical
algorithms. This breakthrough has significant implications for cryptog-
raphy, as it can potentially break widely used encryption systems like
RSA1 [3]...4. Grover’s algorithm (1996): Lov Grover introduced a quantum algorithm
for searching unsorted databases quadratically faster than any classical
algorithm, showcasing a practical application of quantum computing [4].

The ongoing development of practical quantum algorithms continues to
advance, with the aim of harnessing the unique capabilities of quantum
computers. In recent years, the idea of employing quantum walks has been
explored intensively in various fields. Quantum walks, analogous to classical
random walks, have shown potential in developing new quantum algorithms

1RSA is a widely used encryption algorithm that relies on the difficulty of factoring
large integers, making Shor’s algorithm a potential threat to its security.
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1. Introduction .....................................
that may outperform their classical counterparts in solving problems such as
database searching.

This thesis consists of both theoretical and implementation parts. It is
organized as follows: Chapter 2 provides an overview of the notation and
important concepts in quantum computing, such as quantum state tomography
and universal quantum computing. This is followed by a discussion of the
theoretical background of two historically significant quantum algorithms: the
Deutsch-Jozsa algorithm and Grover’s algorithm. In Chapter 3, we describe
quantum walks and related topics such as spreading dynamics, state transfer,
and disorder. Chapter 4 covers the simulation of these algorithms and the
properties of quantum walks on IBM’s quantum computers.

In conclusion, by combining a comprehensive theoretical foundation with
practical implementation on contemporary quantum hardware, this project
aims to demonstrate the current capabilities and future potential of quantum
computing. Through the exploration of quantum walks and their applications,
we hope to contribute to the ongoing development of efficient quantum
algorithms and inspire further advancements in the field.

2



Chapter 2
Basics of quantum computing

In this chapter, we introduce fundamental concepts and important algorithms
in quantum computing. Studying the necessary formalism and tools described
here will provide the foundation needed to understand the quantum algorithms
and more complex properties discussed in the following chapters.

2.1 Isolated quantum systems

An isolated quantum system is a quantum mechanical system that does
not interact with its environment. This means that no information, energy,
or particles are exchanged between the system and its surroundings. Such
systems are described by the following features.

State

A quantum system is described by a quantum state that encapsulates all the
information necessary to describe the properties and behavior of the system.
In case of an isolated system, mathematically, a state (or a pure state) is a
unit vector living in a d-dimensional Hilbert space Hd defined in complex
numbers C. The bra-ket notation is very useful for expressing the system’s
state, as it provides an easier and clearer way to write expressions in quantum
mechanics. This notation was created by P. A. M. Dirac in the publication
A New Notation for Quantum Mechanics [5], where a “ket”, denoted by |ψ⟩,
represents the state of the quantum system with the following properties:. For two different states |ψ⟩ and |ψ′⟩, the linear combination of these

states a |ψ⟩ + b |ψ′⟩ is also a state, where a, b ∈ C..The inner product, ⟨ψ|ψ′⟩ → C, is defined so that it matches every pair
of quantum states with a complex number. Every ket in a given vector
space coexists with a “bra”, denoted by ⟨ψ|, which is an element of the
vector space H∗ (complex conjugate of the space H) dual to H. If two
states are orthogonal, then their inner product returns zero..The norm of the quantum state is defined as |ψ| = ⟨ψ|ψ⟩1/2. Then, a
normalized state has a unit norm, |ψ| = 1. Therefore, an overall phase (or

3



2. Basics of quantum computing .............................
it is called a global phase), |eiθ |ψ⟩ | = | |ψ⟩ | has no physical significance
since a quantum state is defined as a state with unit norm..The dimension d is the maximum number of linearly independent vectors
that can be defined in the vector space Hd. Therefore, each state
|ψ⟩ (and its dual) can be written as a linear combination of these d
linearly independent vectors as |ψ⟩ =

∑d−1
i=0 = ci |i⟩ where ci ∈ C are

the components. Vectors |i⟩ are called a basis for the Hilbert space Hd.
All algebraic operations, such as addition, scalar multiplication, inner
product, etc., defined for states in Hd can be done in terms of the vector
components. Physically, the dimension indicates the number of possible
states that a quantum system can occupy..According to the Gram-Schmidt theorem, an orthonormal basis can
be created out of a linearly independent basis. By convention, an
orthonormal basis, ⟨i|j⟩ = δij is chosen to describe the vectors. We will
call this basis a natural basis or computational basis throughout the
thesis. Any state can be expressed by column and row vectors in the
computational basis |i⟩ ↔ (0, . . . , 0, 1, 0, . . . , 0)T as 1

|ψ⟩ ↔ (c1, . . . , cd)T , ⟨ψ| ↔ (c∗
1, . . . , c

∗
d), (2.1)

|ψ⟩ ↔


c1
c2
...
cn

 = c1


1
0
...
0

+ c2


0
1
...
0

+ cn


0
0
...
1

 . (2.2)

Given a basis, all vector/matrix operations are valid among row and
column vectors. For example, we can express an inner product in terms
of the components of the vectors as

⟨v|w⟩ = (⟨v|)(|w⟩) ↔
(
v∗

1 v∗
2 · · · vd∗

)

w1
w2
...
wd

 = v∗
1w1 + . . .+ v∗

dwd.

(2.3)

Observable

In general, an operator Y is a linear map from vectors to vectors, expressed
as |ψ⟩ → Y |ψ⟩. From this perspective, an observable is a physical quantity
that can be measured during an experiment and is represented by Hermitian
(or self-adjoint) operators to ensure that their eigenvalues, which correspond
to possible measurement outcomes, are real numbers. In a given basis in Hd,
an observable A can be represented by a d× d matrix, where the elements

1The transpose operation, T , flips a matrix over its diagonal. In case of vectors, it
replaces a row vector with a column vector, or vice versa.

4



............................... 2.1. Isolated quantum systems

satisfy the property ⟨i|A|j⟩ = ⟨j|A|i⟩∗ due to hermiticity. Additionally, the
eigenvectors of an observable are mutually orthogonal, ensuring that any
state in Hd can be written as a linear combination of the d eigenvectors of
the observable.

Dynamics

When we are given a quantum state |ψ(t)⟩ at time t, the time evolution of
this state is described by a unitary operator U(t′, t), the final state at time t′
is expressed as

|ψ(t′)⟩ = U(t′, t) |ψ(t)⟩ (2.4)

where the unitary operator U(t′, t) satisfies the property U † = U−1 = I,
which means the transpose conjugate of U equals its inverse. Here, I is the
identity operator. The Schodinger equation describes how a given state |ψ⟩
evolves in time as

iℏ
d

dt
|ψ(t)⟩ = H |ψ(t)⟩ (2.5)

where H is called the Hamiltonian of the system with the solution for a
time-independent H

U(t′, t) = exp
[
− i

ℏ
H(t′ − t)

]
. (2.6)

Measurement

When a measurement is performed on a quantum system, or in other words,
when an observable is measured, the state of the system is transformed
into one of the eigenvectors of the observable. From a mathematical point
of view, before we make the measurement, we think of the state of the
quantum system as being expressed in terms of the eigenvectors |ai⟩ of
the observable A we want to measure, as |ψ⟩ =

∑
i ci |ai⟩. Therefore, the

measurement projects the quantum state onto one of the directions defined
by the eigenvectors of the observable A. The result we obtain after this
measurement is probabilistic due to the nature of quantum systems, such
that the measurement transforms the quantum state |ψ⟩ into a particular
eigenvector |ai⟩ with probability P (ai) = | ⟨ai|ψ⟩ |2. Therefore, a measurement
can be associated with a projection operator Ei = |ai⟩ ⟨ai|, which is a matrix
in a given basis. Then, the probability of obtaining the state |ai⟩ can be
expressed as P (ai) = ⟨ψ|Ei|ψ⟩.

Composite systems

A composite system refers to a system that consists of multiple subsystems,
each of which can be described by its own quantum state. The general state
of the composite system is represented by the tensor product of the states of
its individual subsystems |ψ1⟩, |ψ2⟩, · · · , |ψn⟩ as

|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ . (2.7)

5



2. Basics of quantum computing .............................
This representation highlights the composite nature of the quantum regis-
ter and its corresponding Hilbert space. In the following text we will use
conventional notation to write tensor product of kets as follows

|i⟩ ⊗ |j⟩ ⊗ . . .⊗ |k⟩ ≡ |ij . . . k⟩ ≡ |i⟩ |j⟩ . . . |k⟩ . (2.8)

2.2 Density matrix

A density matrix generalizes the concept of a quantum state to include
statistical mixtures of pure states. It is particularly useful for describing the
behavior of a smaller part of a larger system (usually called an open system),
where the smaller part exchanges information with the rest of the system,
conventionally called the environment. Therefore, the rules we defined to
describe isolated systems in Sec. 2.1, such as states being unit vectors and
time evolution being unitary, are no longer valid. The density matrix ρ̂ is
defined as an operator that is Hermitian

(
ρ̂ = ρ̂†

)
, positive (ρ̂ ≥ 0), and has

a trace equal to one (Tr (ρ̂) = 1). Every density matrix can be written in the
form

ρ̂ =
∑

i

pi |ψi⟩ ⟨ψi| , (2.9)

where pi represents the statistical probability that the quantum system is
in the pure state |ψi⟩. Therefore, pi satisfy the normalization condition
(
∑

i pi = 1). The density matrix is a generalization of pure states such that it
involves the cases when we have an statistical ensemble of pure states. The
mixture of pure states expressed by a density operator is called a mixed state.
Hence, a pure state |ψ⟩ can be written in density matrix form as the outer
product

ρ̂ = |ψ⟩ ⟨ψ| , (2.10)

and its time evolution is expressed as ρ̂(t + 1) = U †ρ̂(t)U . Although the
density matrix formalism is essentially employed to describe the time evolution
of open quantum systems, via superoperators, we will omit it since that is out
of the scope of this thesis.

2.3 Qubit and Bloch sphere

A qubit, short for quantum bit, serves as the basic unit of information in
quantum computing. In contrast to classical bits, which are confined to
exist in either state 0 or 1, a quantum bit can exist in a linear combination,
commonly referred to as a superposition, of both states. The state of a qubit
can, therefore, be expressed as

|ψ⟩ = α |0⟩ + β |1⟩ , (2.11)

where |0⟩ and |1⟩ form an orthonormal basis in a Hilbert space H2, i.e.,
⟨i|j⟩ = δij with i, j = 0, 1. The complex numbers α and β represent probability

6



................................ 2.3. Qubit and Bloch sphere

amplitudes. As we explained in Sec. 2.1, when a measurement is made on the
quantum system expressed by the qubit state, the probabilities of finding the
system in state 0 or 1 are given by Born’s rule as |c|2 = | ⟨c|ψ⟩|2, c = α, β,
respectively. This rule implies condition for the probability amplitudes
according to the normalization of probabilities, expressed as |α|2 + |β|2 = 1.

A collection of n qubits used in quantum computations is referred to as a
quantum register of size n existing in a Hilbert space H as follows

H = Hn−1 ⊗ Hn−2 ⊗ · · · ⊗ H0. (2.12)

The state of n qubits |Ψ⟩ is then described through the tensor product of
their individual quantum states |ψ1⟩, |ψ2⟩, · · · , |ψn⟩ as

|Ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩ . (2.13)

The Bloch sphere (Figure 2.1) is a geometric representation used in quantum
computing to describe the state of a qubit. It is depicted as a unit sphere, with
all possible qubit states represented by points on its surface. Hence, we need
two spherical parameters to uniquely specify a given qubit state. However,
given a qubit state as described in Eq. (2.11), the complex coefficients α and
β can be rewritten as:

α = x1 + iy1,

β = x2 + iy2
(2.14)

where x1, x2, y1, y2 ∈ R. Contrary to what we claimed earlier, there appear
to be four independent parameters, but we will show in a moment that, in
fact, two of them can be eliminated.

x

y

z

Figure 2.1: The Bloch sphere. All qubit states can be represented by the points
on this unit sphere. In here, only the computational basis (|0⟩, |1⟩) and a random
qubit state |ψ⟩, which is uniquely defined by the spherical coordinates (ϕ, θ), are
shown.
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2. Basics of quantum computing .............................
Let us rewrite the parameters α and β by using polar coordinates

α = r1 (cos Θ1 + i sin Θ1) = r1e
Θ1 ,

β = r2 (cos Θ2 + i sin Θ2) = r2e
Θ2 ,

(2.15)

where r1, r2 ∈ [0, 1] and Θ1, Θ2 ∈ [0, 2π). If we rewrite Eq. (2.11) by using
this transformation

|ψ⟩ = eiΘ1{r1 |0⟩ + r2e
i(Θ2−Θ1) |1⟩}, (2.16)

the term eiΘ1 can be factored out. This term is called a global phase in
quantum mechanics and does not have any observable consequences. This is
because physical measurements in quantum mechanics are based on the inner
products of state vectors, and these inner products are unaffected by a global
phase. Therefore, one of the four independent variables can be eliminated
and the quantum state can be equivalently written as

|ψ⟩ = r1 |0⟩ + r2e
iΘ |1⟩ , (2.17)

where we replaced Θ2 − Θ1 with Θ since both Θ1 and Θ2 are independent
variables. Furthermore, when we switch back to Cartesian coordinates,

|ψ⟩ = z |0⟩ + (x+ iy) |1⟩ , (2.18)

and consider the normalization condition x2 + y2 + z2 = 1, we see that these
three parameters are not independent from each other and define a unit sphere.
This condition reduces the dependence to two real parameters. Finally, we
switch to the spherical coordinates x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ,

|ψ⟩ = cos θ |0⟩ + eiφ sin θ |1⟩ , (2.19)

where θ ∈ [0, π] and ϕ ∈ [0, 2π). Since the states in the lower half differ
from those in the upper half only by a global phase factor of −1, we use the
following transformation to neglect the states in the lower half and extend
the upper half to complete the unit sphere:

|ψ⟩ = cos θ2 |0⟩ + eiϕ sin θ2 |1⟩ . (2.20)

Therefore, Eq. (2.20) is the Bloch representation of a qubit state with two
independent variables, θ and ϕ.

2.4 Single-qubit gates

Quantum gates serve as fundamental building blocks of quantum circuits
and facilitate the manipulation of sets of qubits. These gates are essentially
unitary operators represented by 2n × 2n unitary matrices, with n denoting
the number of qubits on which the quantum gates operate.

In this section, for clarity, we will confine our focus to single-qubit gates
such as the Identity gate, X, Y , Z gates, the Hadamard gate, and phase-shift
gates.
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.................................. 2.4. Single-qubit gates

2.4.1 Identity gate

The identity gate is a single qubit gate and is typically denoted by I. In the
matrix form it is written as

I =
(

1 0
0 1

)
. (2.21)

When applied to a qubit, the identity gate has no effect on its state. However,
it holds significance in quantum computing as a reference point for quantum
operations.

2.4.2 X, Y, Z gates

The X, Y , and Z gates (also known as Pauli matrices, σx, σy, and σz)
operate on single qubits and are essential in quantum computing. In the
computational basis |0⟩, |1⟩, they are expressed as

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
. (2.22)

All three Pauli gates, when applied to a qubit, function as rotations around
their respective axes of the Bloch sphere by π radians. They are also involutory,
meaning that each Pauli gate is its own inverse:

I2 = X2 = Y 2 = Z2. (2.23)

The X gate is sometimes referred to as a bit-flip since it maps |0⟩ to |1⟩
and |1⟩ to |0⟩. Although it exhibits similar behaviour to the NOT gate in the
classical computing, considering them identical would be incorrect, as there
does not exist universal quantum NOT gate.

The Y gate changes the basis state and introduces phase to the quantum
state, expressed as Y |0⟩ = i |1⟩ or Y |1⟩ = −i |0⟩.

Lastly, the Z gate is often called phase-flip gate. Unlike the other two gates,
it does not alter the basis state but changes phase of the state as Z |0⟩ = i |0⟩
and Z |1⟩ = −i |1⟩.

2.4.3 Hadamard gate

The Hadamard gate could be seen as a rotation around the axis 1√
2 (x̂+ ŷ)

for the angle of π. Mathematically, the Hadamard matrix is involutory matrix
given by

H = 1√
2

(
1 1
1 −1

)
. (2.24)

The Hadamard gate transforms the computational basis into a superposition
of both states with equal probabilities. The transformation is represented as

9



2. Basics of quantum computing .............................
follows

H |0⟩ = 1√
2

(|0⟩ + |1⟩) ≡ |+⟩ ,

H |1⟩ = 1√
2

(|0⟩ − |1⟩) ≡ |−⟩ .
(2.25)

2.4.4 Phase shift gates

The shift gate introduces the phase eiφ to the state |1⟩, P |1⟩ = eiφ |1⟩), and
does not change the state |0⟩. The matrix representing the phase shift gate
is given by

P (φ) =
(

1 0
0 eiφ

)
. (2.26)

where φ ∈ [0, 2π). Notable examples of shift gates include the T gate for
φ = π

8 , the Swap gate (S) for φ = π
2 and the Z gate for φ = π.

2.5 Rotations on the Bloch sphere

As mentioned in Sec. 2.3, every qubit state can be represented by a point on
the Bloch sphere. The time evolution of the qubit state under the influence of
quantum gates or other quantum operations can be represented by rotations on
the Bloch sphere so that a quantum operation transforms a point on the Bloch
sphere into another point. These rotations are described by unitary operators,
and the angles and axes of rotation determine the specific transformation
applied to the quantum state.

2.5.1 Rotations about x, y, z axes

Firstly, we will discuss rotations on the Bloch sphere about the Cartesian
axes x, y, and z. The matrix exponential can be expanded in Taylor series
for a given general involutory matrix A and parameter θ representing the
rotation angle as follows:

eiθA = I + iθA− θ2I

2! − i
θ3A

3! + θ4I

4! + i
θ5A

5! + · · ·

=
(

1 − θ2

2! + θ4

4! + · · ·
)
I + i

(
θ − θ3

3! + θ5

5! + · · ·
)
A

= I cos θ + iA sin θ.

(2.27)

Rotations around the basis axes are then derived by substituting Pauli
matrices for the operator A. The result is three quantum single-qubit gates,
each describing a rotation around its respective basis axis, represented by a

10



................................... 2.6. Controlled gates

matrix

Rx(θ) = e− iθX
2 =

(
cos θ

2 −i sin θ
2

−i sin θ
2 cos θ

2

)
, (2.28)

Ry(θ) = e− iθY
2 =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
, (2.29)

Rz(θ) = e− iθZ
2 =

(
e−i θ

2 0
0 ei θ

2

)
, (2.30)

where X, Y , Z are Pauli matrices.

2.5.2 Rotations about an arbitrary axis

Considering a real unit vector n̂ = nxx̂ + nyŷ + nz ẑ, where x̂, ŷ and ẑ are
unit vectors, the rotation about an arbitrary axis defined by vector n̂ by an
angle of θ is given by

Rn̂(θ) = e−i θ
2 n̂·σ⃗

= I cos θ2 − in̂ · σ⃗ sin θ2 .
(2.31)

The mathematical object σ⃗ = σxx̂ + σyŷ + σz ẑ is called the Pauli vector,
where σx, σy and σz are Pauli matrices as defined in Sec. 2.4.2.

2.5.3 Z-Y decomposition for a single qubit

The significance of rotations around arbitrary and basis axes is evident in a
phenomenon known as the Z-Y decomposition. This principle asserts that
for any unitary operator U acting on a single qubit, there exist four real
parameters α, β, γ and δ so the equation

U = eiαRz(β)Ry(γ)Rz(δ) (2.32)

is satisfied. Therefore, any unitary operation can be decomposed into three
sequential rotations about the z and y axes up to a phase constant. In matrix
form, Eq. 2.32 can be represented as

U =

ei(α− β
2 − δ

2 ) cos γ
2 −ei(α− β

2 + δ
2 ) sin γ

2
ei(α+ β

2 − δ
2 ) sin γ

2 ei(α+ β
2 + δ

2 ) cos γ
2

 . (2.33)

Since U is unitary, the rows and columns of U are orthonormal.

2.6 Controlled gates

Controlled gates are quantum gates that act on two or more qubits, where
the action taken on a target qubit depends on the state of one or more control
qubits. Let us consider a situation with two qubits; the possibilities with
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2. Basics of quantum computing .............................
more qubits would be analogous. The control gate C(U), when applied to a
system of two qubits, acts as a unitary operator U on the second qubit only
if the first qubit state is |1⟩. Mathematically, it is expressed by

C(U) =


1 0 0 0
0 1 0 0
0 0 U00 U01
0 0 U10 U11

 , (2.34)

where U00, U01, U10 and U11 are matrix elements of the operator U .
A typical example of a controlled gate is the controlled-NOT or CNOT

gate, which has as an input of two qubits. It works as an identity gate on
the target qubit, if the control qubit state is |0⟩ and as an NOT gate on the
target qubit, if the control qubit state is |1⟩. The matrix representation of
CNOT gate is

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.35)

2.7 Quantum circuits

A quantum circuit is a model for quantum computation in which a com-
putation is a sequence of quantum gates, each of which performs a specific
operation on a set of qubits. Quantum circuits are analogous to classical
logic circuits, but exploit the principles of quantum mechanics, such as
superposition and entanglement, to process information.

The quantum computer can be thought of as a finite collection of n qubits,
a quantum register of size n as seen in Fig. 2.2(a). Single- and multi-qubit
elementary operations, such as H, and CNOT , can be performed on single
qubits or pairs of qubits, and these operations may be combined in an ordered
way to produce any given complex quantum operation. The representation of
single- and multi-qubit gates is given in Figs. 2.2(b) and (c). The state of an
n-qubit quantum computer then can be written as

|ψ⟩ =
2n−1∑
i=0

ci |i⟩ =
1∑

in−1

. . .
1∑
i0

cin−1,...,c0 |in−1⟩ . . . |i0⟩ (2.36)

where i0, i1, . . . , in−1 ∈ {0, 1} are binary digits and i = in−12n−1+. . .+i12+i0
is the decimal representation of the binary number in−1 . . . i1i0.

To perform a quantum computation, one should be able to [x]:. Preparation: The quantum computer is initialized in a well-defined initial
state; usually it is |ψi⟩ = |0 . . . 00⟩..Manipulation: The initial state is manipulated by a unitary operation
U , which can be decomposed into a sequence of single and multi-qubit
gates.
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.................................... 2.8. The Bell basis

.Measurement: After the manipulation stage, all the qubits are measured
separately on a given basis and a single probabilistic result is obtained.
For example, if the quantum register consists of two qubits and we
measure on the computational basis {|0⟩ , |1⟩} only one of the four possible
results {00, 01, 10, 11} is obtained after measurement.

(b) (c)(a)

n
qu
bi
ts

Figure 2.2: (a) General scheme of a quantum circuit where preparation, manipu-
lation and measurement stages are represented. (b) Representation of single-qubit
gates; G can be any single qubit gate such as H and I as defined in previous
sections. (c) Representation of a CNOT gate where |c⟩ and |t⟩ are the control
and target qubits, respectively.

The above three steps are repeated for a predetermined number of iterations,
and a measurement statistic is obtained for 2n possible outcomes. This
statistic is the result produced by the quantum circuit and is evaluated
according to the desired purpose.

2.8 The Bell basis

A Bell basis is an orthonormal basis in the four-dimensional Hilbert space for
two qubits. It consists of four specific two-qubit states, often referred to as
Bell states. The Bell states

|Φ+⟩ = 1√
2

(|00⟩ + |11⟩) ,

|Φ−⟩ = 1√
2

(|00⟩ − |11⟩) ,

|Ψ+⟩ = 1√
2

(|01⟩ + |10⟩) ,

|Ψ−⟩ = 1√
2

(|01⟩ − |10⟩) ,

(2.37)

are entangled quantum states. If we measure either of the qubits we would
obtain the state |0⟩ with probability P (0) = 1/2 or the state |1⟩ with the same
probability. Although these measurement results seem independent, since
the quantum state of each particle cannot be described independently of the
state of the other, there is a correlation between them. Measurements to one
particle instantaneously affect the other, even if separated by large distances,
which is a phenomenon that A. Einstein famously called “spooky action at a
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2. Basics of quantum computing .............................
distance” [6]. Consider |Φ+⟩. If a measurement returns the result |0⟩, then
the second qubit can only be found in state |1⟩ with certainty. However, these
types of correlation still do not allow communication faster than the speed of
light [x].

The Bell states can be created through quantum circuits in many different
ways. The simplest may be via usage of the Hadamard, NOT, CNOT and
Pauli-Z gates, as shown in Fig. 2.3.

|0⟩ H
|Φ+⟩

|0⟩ X H
|Φ−⟩

|0⟩ |0⟩

|0⟩ H

|Ψ+⟩
|0⟩ H Z

|Ψ−⟩
|0⟩ X |0⟩ X Z

Figure 2.3: Creation of Bell states via quantum circuits

2.9 Phase kickback

In classical computing, logic gates operate independently of each other. How-
ever, in quantum computing, quantum gates, such as the CNOT gate, can
simultaneously affect multiple qubits due to the principles of superposition
and entanglement. This interconnected behavior is exemplified by the phe-
nomenon of phase kickback, where the state of one qubit indirectly influences
another qubit’s state through controlled gates, resulting in a change in the
second qubit’s phase.

A simple example of this effect is application of CNOT gate on a quantum
circuit where the control qubit is in the state |+⟩ = 1√

2 (|0⟩ + |1⟩) and the
target qubit is the state |−⟩ = 1√

2 (|0⟩ − |1⟩). This means that the initial state
is |+−⟩. Applying the CNOT gate results in the following state transformation

CNOT (|+−⟩) = CNOT

(1
2 (|00⟩ − |01⟩ + |10⟩ − |11⟩)

)
= 1

2 (|00⟩ − |01⟩ + |11⟩ − |10⟩) = |−−⟩ ,
(2.38)

where it is apparent that the controlled quantum gate, contrary to what was
expected, modifies only the state of the control qubit, leaving the target qubit
unchanged.

Phase kickback is a phenomenon that is highly utilized in quantum algo-
rithms. For example, in Grover’s algorithm, phase kickback is employed to
amplify the amplitude of the target state while simultaneously suppressing
the amplitudes of the non-target states. This selective amplification and
suppression are key to the efficiency of Grover’s search algorithm, as we will
discuss in Sec. 2.12.2.
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2.10 Universal quantum gates

In classical computation, a universal gate refers to a logic gate that can
implement any Boolean function without the need for any other type of gate.
Examples of universal gates include NAND2 and NOR3 gates, which both
have two input bits and one output bit.

In quantum computing, a set of quantum gates is considered universal
if any unitary operation can be approximated to arbitrary accuracy by a
quantum circuit that involves only those gates [7]. It can be shown that the
combination of single-qubit gates and the CNOT gate are universal gates for
quantum computation.

2.11 Notable 3-qubit gates

Although any quantum circuit can be constructed using a combination of
single-qubit and 2-qubit gates that together form a universal set of quantum
gates, it is valuable to highlight a few notable 3-qubit gates. These gates are
significant because of their historic importance, their connection to classical
computing, and their role in illustrating the decomposition of gates operating
on a larger number of qubits into single-qubit and 2-qubit gates.

2.11.1 Toffoli gate

The Toffoli gate, also known as the CCNOT gate, was introduced in 1980
by Tommaso Toffoli. This gate operates on three qubits: two control qubits
and one target qubit. The control qubits remain unchanged by the gate’s
action, while the state of the target qubit is flipped (i.e., a NOT operation is
applied) only if both control qubits are in the state |1⟩. The Toffoli gate is
significant because it is a universal reversible logic gate in classical computing.
Unlike many classical logic gates, such as NAND, which are irreversible, all
quantum logic gates must be unitary and thus inherently reversible. Although
classical circuits, which often rely on irreversible gates, cannot be directly
simulated by quantum circuits, any classical computation can be performed
by an equivalent circuit composed entirely of reversible gates, such as the
Toffoli gate.

As mentioned earlier, any quantum circuit can be implemented using
just the Hadamard, phase, CNOT, and π

8 gates. Consequently, a possible
implementation of the Toffoli gate in practical simulations on quantum
computers is depicted in Fig. 2.4.

2The NAND gate represents the complement of the AND operation with the algebraic
function F = (xy)′, where x and y are input bits.

3The NOR gate represents the complement of the OR operation with the algebraic
function F = (x + y)′, where x and y are input bits.
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≡

T

T T †

H T † T T † T H

Figure 2.4: Decomposition of the Toffoli gate into one- and two-qubit gates [7]

2.11.2 Fredkin gate

The Fredkin gate, also known as the controlled SWAP gate, was conceptualized
by Edward Fredkin and Tommaso Toffoli in 1982. The gate operates on three
qubits, where the first qubit is the control qubit, and the other two are the
target qubits. The gate swaps the states of the two target qubits only if
the control qubit is in the state |1⟩; otherwise, the target qubits remain
unchanged. Similarly to the Toffoli gate, the Fredkin gate is reversible and
can be decomposed using the same set of single-qubit and two-qubit gates, as
shown in one possible decomposition in Fig. 2.5.

≡

T

T † T T † T

H T T † H

Figure 2.5: Decomposition of the Fredkin gate into one- and two-qubit gates [8]

2.12 Quantum algorithms

Quantum algorithms represent a new milestone in the quest for efficient
solutions to various problems. They leverage the principles of quantum
mechanics and harness the unique properties of qubits. Although many
remarkable quantum algorithms have already been discovered, describing all
of them would be too broad for this project. Therefore, in this chapter, we
will select a few key algorithms, describe their working principles, and explore
their potential future applications.

2.12.1 Deutsch-Jozsa algorithm

The Deutsch-Jozsa algorithm, developed by David Deutsch and Richard Jozsa
in their 1992 paper [2], addresses the following problem: given a Boolean
function f : {0, 1}n → {0, 1} provided as an oracle4, determine whether the
function is constant or balanced. A function is constant if it produces the
same output (either 0 or 1) for all possible inputs. In contrast, it is balanced
if it outputs 0 for half of the possible inputs and 1 for the other half. The

4In quantum computation, an oracle is a subroutine that represents an unknown function
f(x), which is provided as an input and returns an output based on a predetermined rule.
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objective is to determine which of these two cases describes the function,
using as few function queries as possible.

Classically, solving the Deutsch-Jozsa problem requires the function f(x) to
be queried 2n−1 + 1 times in the worst-case scenario. However, on a quantum
computer, the Deutsch-Jozsa algorithm can solve the problem with just one
function evaluation.

We will focus solely on the quantum version of the algorithm. The algorithm
starts with (n+ 1) qubits initialized in the state |ψ0⟩ = |0⟩⊗n |1⟩, where n is
the number of input qubits in the state |0⟩, and the remaining qubit in the
state |1⟩ is introduced as an ancillary qubit to facilitate computation. Next,
a Hadamard gate is applied to each qubit to create a superposition of states
|0⟩ and |1⟩, which can be expressed as

|ψ1⟩ = H⊗n |0⟩⊗n ⊗H |1⟩ = 1√
2n+1

2n−1∑
x=0

|x⟩ (|0⟩ − |1⟩) , (2.39)

where x represents the n-bit strings from 0 to 2n − 1. The next step in-
volves applying the oracle function (or black-box function) Uf to |ψ1⟩. The
oracle function flips the phase of the state |x⟩ if and only if f(x) = 1[9].
Mathematically, this can be represented as

Uf : |x⟩ |y⟩ → |x⟩ (|y ⊕ f(x)⟩) , (2.40)

where ⊕ represents addition modulo 2. After applying the oracle, the state
becomes

|ψ2⟩ = Uf |ψ1⟩ = 1√
2n+1

2n−1∑
x=0

|x⟩ (|f(x)⟩ − |1 ⊕ f(x)⟩)

= 1√
2n+1

2n−1∑
x=0

(−1)f(x) |x⟩ (|0⟩ − |1⟩) ,
(2.41)

where the phase (−1)f(x) is “kicked back” from the ancillary qubit to the
input qubits. To determine whether the function is constant or balanced,
the ancillary qubit 1√

2 (|0⟩ − |1⟩) can be omitted from further measurements.
Then, a Hadamard gate is applied to the n input qubits, leading to the
quantum state

|ψ3⟩ =
2n−1∑
y=0

[
1
2n

2n−1∑
x=0

(−1)f(x) (−1)x·y
]

|y⟩ , (2.42)

where the probability of obtaining state |y⟩ from the measurement corresponds
to

P (y) =
∣∣∣∣∣ 1
2n

2n−1∑
x=0

(−1)f(x) (−1)x·y
∣∣∣∣∣
2

. (2.43)

For illustration, considering the case where |y⟩ = |0⟩⊗n, the probability of
obtaining this state simplifies due to x · y = 0. Thus, we obtain

P (y) =
∣∣∣∣∣ 1
2n

2n−1∑
x=0

(−1)f(x)
∣∣∣∣∣
2

. (2.44)
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This probability equals 1 if the f(x) is constant, due to constructive inter-
ference, and 0 if f(x) is balanced, due to destructive interference. In other
words, the final measurement result will be |0⟩⊗n with unit probability if f(x)
is constant and we will not obtain |0⟩⊗n at all if the f(x) is balanced.

Although the Deutsch-Jozsa algorithm demonstrates a task that can be
solved more efficiently with a quantum computer than with its classical
counterpart, a practical application for distinguishing between constant or
balanced functions is not yet known.

n|0⟩⊗n
H⊗n

Uf

H⊗n

|1⟩ H

x x

y y ⊕ f(x)

|ψ1⟩ |ψ2⟩ |ψ3⟩

Figure 2.6: Quantum circuit diagram of Deutsch-Jozsa algorithm quantum [7]

2.12.2 Grover’s algorithm

Grover’s algorithm, also known as the quantum search algorithm, offers
a quadratic speed-up over classical algorithms for searching an unsorted
database. The problem addressed by this algorithm is as follows: Given
an unsorted database containing N elements, where only one specific item
(that is, the marked item) has to be retrieved/found. In classical computing,
an average algorithm involves examining the items in the database one by
one. Thus, the process would require the test of N

2 items on average. In
contrast, Grover’s algorithm can achieve the same result in only O

(√
N
)

steps, representing a quadratic speed up.
The first step in Grover’s algorithm initializes the quantum state to rep-

resent all possible solutions. This is done by using Hadamard gates, which
puts the system into a uniform superposition over computational basis as

|ψ⟩ = 1√
N

N−1∑
x=0

|x⟩ . (2.45)

For the following step, lets consider that a function f : {0, 1, . . . , N} → {0, 1},
where the domain represents indices in the database, and f(x) = 1 only for
the index that satisfies the search criterion. This function is implemented
in the algorithm through a unitary operator Uw known as Grover’s oracle,
which acts as follows

Uw |x⟩ = (−1)f(x) |x⟩ . (2.46)
This operation introduces the phase π to the basis state which is being
searched for, leaving all other bases states unchanged. Essentially, this
operator “marks” the target state in the search space. Following this, the
diffusion operator is applied, which can be represented as

UG = 2 |ψ⟩ ⟨ψ| − I. (2.47)
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The diffusion operator amplifies the amplitude of the desired state while
simultaneously reducing the amplitudes of all other states. This operation
increases the likelihood of finding the target state upon measurement. Both
operators Uw and UG are applied multiple times before the desired state is
found. The number of Grover iterations k depends on the size of the searched
database, specifically k = π

4
√
N for the case of the database with only one

target item. This ensures that we can find the marked item with very high
probability in O

(√
N
)

steps. Grover’s algorithm can be modified for the
situations where there is more than one target item. The number of necessary
iterations is then reduced to k = π

4

√
N
M , where M stands for the number of

targeted items.

one iteration

. . .

. . . . . .

. . .

|0⟩⊗n

|0⟩ H

Uw

H

2 |0n⟩ ⟨0n| − In

H

|0⟩ H H H

Figure 2.7: Scheme of the Grover’s algorithm quantum circuit

Geometrical interpretation

To have more intuition on how Grover’s algorithm works, we can examine
it from a geometrical point of view. Considering a two-dimensional space
spanned by the initial vector |ψ⟩ and the state consisting of a uniform
superposition of solutions to the search problem and the general initial state

|ψ⟩ =

√
N −M

N
|α⟩ +

√
N

M
|β⟩ , (2.48)

whereN is the number of all indexes, M represents the number of solutions and
|α⟩, |β⟩ are balanced superposition of all states p and all states representing
solution s defined as

|α⟩ = 1√
N −M

∑
p

|p⟩ (2.49)

|β⟩ = 1√
M

∑
s

|s⟩ , (2.50)

the effect of applying Grover iteration G = UGUw can be understood as that
the oracle operation Uw performs a reflection about the vector |α⟩ and |β⟩ in
the plane defined by |α⟩ and |β⟩ as follows

Uw (a |α⟩ + b |β⟩) = a |α⟩ − b |β⟩ . (2.51)

Reflection in the plane defined by |α⟩ and |β⟩ about vector |ψ⟩ is also per-
formed by the Grover diffusion operator UG = 2 |ψ⟩ ⟨ψ| − I as shown on a
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general initial state:

UG

∑
i

αi |i⟩ =
∑

i

(2⟨α⟩ − αi) |i⟩ . (2.52)

The Grover iteration is then given as a product of two reflections which is
a rotation, therefore the state Gk |ψ⟩ after k ∈ N iterations remains in the
space spanned by the vectors |α⟩ and |β⟩. Consider now cos θ

2 =
√

N−M
N and

sin θ
2 =

√
M
N , the initial state can be rewritten as

|ψ⟩ = cos θ2 |α⟩ + sin θ2 |β⟩ , (2.53)

where θ/2 is the angle between vectors |ψ⟩ and |α⟩. The application of Grover
iteration on a state |ψ⟩ leads to state

G |ψ⟩ = cos 3θ
2 |α⟩ + sin 3θ

2 |β⟩ , (2.54)

and the k times repeated application results in a state

Gk |ψ⟩ = cos (2k + 1) θ
2 |α⟩ + sin (2k + 1) θ

2 |β⟩ , (2.55)

which implies that the angle of the rotation equals to a real number θ ∈ ⟨0, 2π⟩.

2.13 Quantum state tomography

At the end of each quantum circuit or algorithm, information from the
simulated system is obtained by measurement, which in quantum mechanics
produces probabilistic outcomes. For example, measuring a qubit in the
computational basis (|0⟩ and |1⟩) provides the probability of finding the qubit
in one of these states, and gives very little information about the actual
quantum state, which could be a superposition or an entangled state. To
obtain more information about the state, we need to implement quantum
state tomography. This technique aims to reconstruct the density matrix of
a quantum state by performing a series of measurements on multiple copies
of the system.

Quantum state tomography typically involves three key steps: preparation,
measurement, and reconstruction. First, the quantum state is prepared in the
state designated for measurement. Since quantum states cannot be directly
observed without altering them, multiple identical copies of the system are
prepared to ensure accurate measurements. In practice, it means running
the exact same experiment several times. Next, a set of measurements is
performed on these copies in chosen bases, often the Pauli measurement bases.
For example, for a single qubit, measurements might be made in the σx, σy

and σz, requiring at least 3 copies of the measured system. This generalizes
to an n-qubit system, which would require 3n copies for measurement in the
Pauli measurement bases. After collecting the measurement data, the final
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.............................2.14. Universal quantum simulation

step is the reconstruction of the density matrix. Various algorithms have
already been studied for this purpose, including linear inversion, maximum
likelihood estimation, and Bayesian interference.

In practice, the density matrix obtained from quantum state tomography
will be influenced by errors that inevitably occur during the simulation on
a quantum device. The quality of the obtained results can be quantified by
fidelity, which is a measure of state overlap. Considering two states described
by density matrices ρ̂1 and ρ̂2, the fidelity of these states is given by

F (ρ1, ρ2) =
[
Tr
(√√

ρ1ρ2
√
ρ1

)]2
. (2.56)

If ρ̂1 or ρ̂2 is a pure state, the equation simplifies to F (ρ1, ρ2) = Tr (ρ1ρ2)
[10].

2.14 Universal quantum simulation

A universal quantum simulator is a theoretical device capable of simulating
any physical quantum system with high efficiency and accuracy. The need
for such a device was first proposed by the physicist Richard Feynman in
1982 [11]. Feynman suggested that classical computers might not be able
to simulate quantum phenomena due to the exponential scaling of time and
memory resources required to accurately describe the dynamics of physical
variables as the system size increases. He also established a rule for simulation:
the number of computer elements required to simulate a large physical system
should only be proportional to the space-time volume of the physical system.
Thus, any simulation with exponential complexity violates this rule. Since
nature behaves quantum mechanically, only a computing machine (quantum
simulator) that obeys the same quantum mechanical laws would be able to
simulate physical systems efficiently.

Two different types of quantum simulators have been proposed: analog
and digital. Analog quantum simulators often use continuous variables such
as the position and momentum of quantum particles. A key characteristic
of analog quantum simulators is their utilization of continuous evolution
to reproduce the simulated quantum system in the simulating system as
closely as possible. As a result, the Hamiltonian of the simulated systems
is made as similar as possible to the Hamiltonian of the analog quantum
simulator. In contrast, digital quantum simulators decompose the evolution
associated with a complex Hamiltonian of the simulated system in terms
of efficiently implementable single-qubit and two-qubit gates. To illustrate
why this decomposition is possible, consider a quantum system governed by
Schrödinger’s equation:

iℏ
d

dt
|ψ⟩ = H |ψ⟩ (2.57)

with a solution for a time-independent Hamiltonian H

|ψ (t)⟩ = e−iHt |ψ (0)⟩ , (2.58)
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where we have absorbed ℏ into H. For most of the physical system of n
particles, the Hamiltonian can be rewritten as a sum over local interactions
as follows

H =
L∑

k=1
Hk, (2.59)

where each Hamiltonian Hk acts on at most a constant c number of systems,
and L is polynomial in n [7]. Finally, by utilizing the Trotter-Suzuki expansion

e−iHt ≃
(
e

−iH1t

l . . . e
−iHM t

l

)
+
∑
i<j

[Hi, Hj ] t2

2l , (2.60)

where l represents the total number of Trotter steps and the increase in
the value of l increases the accuracy of digitized dynamics, we obtain the
described decomposition. This approximation implies that to achieve accept-
able fidelities, the number of digital steps must increase with the simulation
time due to the error in the approximation that scales with t2

l . The main
benefit of digital quantum simulators is their ability to incorporate quan-
tum error correction techniques to improve the accuracy of simulations over
long timescales. However, achieving practical scalability for digital quantum
simulators remains rather difficult.
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Chapter 3
Quantum walks

Quantum walks are quantum analogues of classical random walks, and have
become an important research topic in recent years [12]. In classical random
walks, a particle moves step by step in a certain direction with certain
probabilities, and after a given number of steps it follows a certain trajectory.
In contrast, quantum walks take advantage of the principles of quantum
mechanics, particularly superposition and interference, which lead to different
and often more powerful behaviors in fulfilling certain tasks. Unlike in classical
random walks where the walker would move randomly, in a quantum walk,
the walker can exist in a superposition in position space, allowing the walker
to explore multiple paths simultaneously. Two main models of quantum
walks have been formulated based on the approach to dealing with time:
discrete-time quantum walks and continuous-time quantum walks.

In this chapter, we examine quantum walks that can be effectively realized
using available quantum computers. Our exploration is framed by current
technological constraints, particularly the complexity of quantum circuits
that contemporary quantum computers can simulate with acceptable fidelity.
Despite these challenges, significant progress has been made in identifying and
simulating physical systems within the reach of existing quantum computers.
We will first define classical random walks for completeness and for comparison
with quantum walks in the following sections. Then, we will briefly describe
the continuous variant of quantum walks. Finally, we will define discrete-time
quantum walks that we will be simulating on a quantum computer.

3.1 Random walks

Random walks model the motion of a particle consisting of a succession of
random steps in a discrete space, such as points in a regular lattice or integers
on a line. The simplest random walk is a one-dimensional walk on an integer
line Z. Suppose that the particle starts at position 0 and with each step
it moves one position left or right based on the result of a coin toss. After
the N number of steps, the probability P of finding the particle at position
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3. Quantum walks....................................
m ∈ Z is given by the following expression.

P (m,N) = N !(
N+m

2

)
!
(

N−m
2

)
!
p

1
2 (N+m)q

1
2 (N−m), (3.1)

where p be the probability of right step and q = 1 − p is the probability of a
left step. This probability can be expressed by a binomial distribution of a
form

b(n, p, k) =
(
n

k

)
pk(1 − p)n−k (3.2)

that calculates number of successes in n fixed trial. The p then stands for
probability of success and k is the number of successes. Considering the fact
that n = 1

2 (N +m), the probability P (m,N) can be then rewritten as

P (m,N) =
(
N

n

)
pnqN−n. (3.3)

Based on the probabilities p and q the random walk can be either balanced
when p = q, thus the probabilities of walker going right or left are equal, or
unbalanced random walk when those probabilities differ. A balanced random
walk embodies symmetry and often manifests in scenarios such as unbiased
coin flipping or the diffusion of particles in a homogeneous medium. In
contrast, unbalanced random walk entails the disruption of symmetry and
introduction of bias.

The final image of the probability distribution of the random walk also
depends on the number of steps taken, because of the fact that the distribution
spreads over time, which can be quantified by the standard deviation in a
form

σ(N) =
√

⟨n2⟩ − ⟨n⟩2. (3.4)

Since the binomial distribution (3.3) can be approximated with normal
distribution

w(n) = 1√
2πσ2

exp −(n− n)2

2σ2 (3.5)

with the same mean n and variance σ2 as n gets large. The variance increases
linearly as shown on Fig. 3.1 and 3.4.
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Figure 3.1: Probability distribution of a classical random walk on a line with
the initial position n = 0 after t number of steps.

3.2 Continuous-time quantum walks

In this model of quantum walks, the entire evolution of the state of the
walker takes place in the position space Hp. The model of a continuous-time
quantum walk takes inspiration from the continuous-time classical random
walk on a graph G = (V,E) where V is the vertex set in which some pairs
are connected by links E. In order to define continuous evolution of a state
in time, we need to introduce the adjacency matrix A of the graph G, which
is a square n× n matrix containing information about links between vertices
with elements given as

Ajk =
{

1 if (vj , vk) ∈ E
0 if (vj , vk) /∈ E

. (3.6)

and the Laplacian of the graph, which is a diagonal matrix of the degrees of
each vertex defined as

L = D −A, (3.7)
where Djk = deg(vj)δjk.

Suppose now that the particle has a probability rate γ of jumping to
the neighboring vertices and that the transition can occur at all times. The
infinitesimal generator matrix H describing the transition of a particle between
vertices is then given by H = −γL. If we now utilize the idea of Fahri and
Gutmann [13], then the generator matrix can be considered as the Hamiltonian
of the process which generates an evolution U(t) as

U(t) = exp(−iHt). (3.8)

Thus, considering an initial state |ψ0⟩, the time evolution of this state is then
given by

|ψt⟩ = e−iHt |ψ0⟩ (3.9)

25



3. Quantum walks....................................
and the probability of measuring the particle at a position m at time t > 0 is
given by

Pn,m(t) = | ⟨m| e−iHt |n⟩ |2. (3.10)

0 20 40 60 80 100
N
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0.02
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0.06

P(
n,

t)

Figure 3.2: Probability distribution of continuous-time quantum walk with time
step t = 0.1 till t = 100 and hoping rate γ = 0.25.

3.3 Discrete-time quantum walks

Discrete-time quantum walks (or simply quantum walks), akin to their clas-
sical random-walk counterparts, involve discrete steps between neighboring
positions on a lattice or graph. Unlike continuous-time quantum walks, the
total Hilbert space in discrete-time quantum walks consists of a coin space
Hc as well as a position space Hp. Also, the time evolution of discrete-time
quantum walks takes place in discrete-time steps, contrary to continuous-time
quantum walks. First, a unitary operator is applied solely to the coin space
(analogous to a coin toss), and then a step is taken according to the coin
state. From this perspective, there is a direct analogy between discrete-time
quantum walks and classical random walks.

For simplicity, we will define the model only in one dimension, corresponding
to a walk on a line or a circle. The Hilbert space Hp is spanned by the natural
basis states {|n⟩ | n ∈ Z} representing the possible positions in which the
walker can be found. Since there are two possible directions to move in one
dimension, the coin space Hc is chosen to be two-dimensional and is spanned
by {|0⟩ , |1⟩} representing an internal degree of freedom corresponding to the
directions in which the walker can move. Thus, the total state |ψ⟩ lies in
the Hilbert space H = HC ⊗ HP. A step of a quantum walk Us = S(C ⊗ I)
consists of a consecutive application of a coin operator C in the coin space
and a shift operator S in the total space. The most general coin operator can
be written as

C (θ, ϕ1, ϕ2) =
(

cos θ sin θeiϕ1

sin θeiϕ1 − cos θei(ϕ1+ϕ2)

)
(3.11)
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............................. 3.3. Discrete-time quantum walks

There are many options in which this operator can be defined, but the popular
choice is H = C(π

4 , 0, 0) which represents the Hadamard coin operator

H = |0⟩ ⟨0| + |0⟩ ⟨1| + |1⟩ ⟨0| − |1⟩ ⟨1|√
2

. (3.12)

We will use Hadamard coin operator throughout the thesis. The conditional
shift operator is given by

S =
+∞∑

n=−∞
(|0⟩⟨0| ⊗ |n+ 1⟩⟨n| + |1⟩⟨1| ⊗ |n− 1⟩⟨n|), (3.13)

which acts on both the coin and position space simultaneously moving the
walker one position right when the coin component is in the state |0⟩ and one
position left when the coin state is |1⟩. The unitary evolution of a quantum
walk in discrete time is specified by the product of the coin flip operator C
and the conditional shift operator S, which are applied repeatedly as follows:

|ψ(t)⟩ = [S(C ⊗ I)]t |ψ(0)⟩ = U t
s |ψ(0)⟩ , (3.14)

where |ψ(0)⟩ is the initial state and |ψ(t)⟩ is the evolved state after t steps.
The coin operator only acts on the coin state. Although there is no restriction
on the choice of the initial position state, we usually start with a quantum
walker localized in a specified position with an arbitrary initial coin state as

|ψ(0)⟩ = |ψc⟩ ⊗ |0⟩ , (3.15)

where the origin is chosen to be the initial position of the quantum walker.
Although the time evolution of a discrete-time quantum walk is deterministic,
the random nature of the discrete quantum walk comes from measurement.
If we consider a state after t steps

|ψ(t)⟩ =
∑
c,n

ac,n(t) |c, n⟩, (3.16)

where ac,n(t) stands for the site amplitude and c ∈ {0, 1}. Then the probability
of finding walker on any position at time t is given by summation over the
probabilities in the coin space as follows

Pn(t) =
∑

c

|ac,n(t)|2. (3.17)

The most commonly used measure for determining how fast quantum walks
propagate in position space is the variance of the position distribution, defined
as

σ2(t) =
∑

n

(xn − x̄)2Pn(t), (3.18)

where xn represents the position, x̄ is the mean position, and Pn(t) is the
probability of being at position xn at time t.
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Figure 3.3: Probability distribution of a discrete-time quantum walk (blue) and
random walk (grey) on a line for a walker which is localized at the position n = 0
at time t = 0 after 100 steps. The graph shows only nonzero values of Pn(100).

An important feature of a discrete-time quantum walk is that the variance
σ2has a quadratic dependence on the number of steps, which is significantly
faster than the linear dependence on time observed in classical random walks.
This speedup is one of the main reasons why quantum walks have been studied
so extensively in recent years. Their applications include the development of
quantum search algorithms based on quantum walks [x].

10 100
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1000

2 (
t)

Quadratic fit: t2

Linear fit: t
Discrete-time QW
Random walk

Figure 3.4: Comparison of a variance for a discrete-time quantum walk and a
random walk for first t = 100 steps. Plot shown on a graph with logarithmic
scales.

28



.....................3.4. Circuit diagrams for discrete-time quantum walks

3.4 Circuit diagrams for discrete-time quantum
walks

To realize a quantum walk on a quantum computer, we first need to determine
how to define the position space. As explained in Sec. 2.7, for a quantum
register of size n, the total Hilbert space is 2n dimensional and is spanned
by the computational basis |n⟩ where n ∈ {0, . . . , 2n − 1}. In this way, the
shift operator will perform binary addition and subtraction over this space,
corresponding to the shift-right and shift-left operations, respectively. Since
the shift operator depends on the coin space, as discussed in Sec.3.3, we also
require an additional quantum register for the coin state as seen in Fig. 3.5(a).
Therefore, the total dimension of Hilbert space is 2n+1. Given a quantum
register of size n for the position space, we will restrict our attention to
N -cycles, where N = 2n. This is a natural choice when N is the total number
of discrete positions that a quantum walker can occupy on a cycle. Here, a
cycle is a one-dimensional discrete space with periodic boundary conditions.

(a) (b)

P
os
it
io
n

re
gi
st
er

C
oi
n
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Figure 3.5: The circuit diagram for a discrete-time quantum walk in one
dimension with a Hadamard coin operator and initial coin state |ψc⟩. The step
operator Us consists of a coin operator H acting only on the coin register and a
shift operator S acting on the position register, controlled by the coin register.
Once the quantum circuit is run and the individual qubits are measured, the
classical information obtained provides information about the position and coin
state of the quantum walk. For example, for n = 3, a possible outcome of the
quantum circuit could be 0101. If the coin register corresponds to the most
significant bit in the measurement result, then this result indicates that the
quantum walker is found at position 6 with coin state |0⟩. After running the
quantum circuit many times, a statistical distribution is obtained for 24 = 16
possible outcomes. (b) A schematic description of a 4-cycle and the association
of positions with quantum states. The |0⟩ (|1⟩) coin state represents clockwise
(counterclockwise) direction.

For simplicity, let us consider 4-cycles as shown in Fig. 3.5(b). However, the
discussions here can be generalized to any N -cycles with N = 2n. In general,
as long as we keep track of which position corresponds to which position
state, the positions in a 4-cycle can be associated with position quantum
states randomly. However, in Fig. 3.5(b), we have enumerated the positions
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: :

One step

q[0]:

q[1]:

q[2]:

(a)

(b)

Figure 3.6: (a) Circuit diagram of the single step of quantum walk on 4-cycle with
initial coin state |ψc⟩ and initial position |00⟩. (b) Basis state transformations
with periodic boundary conditions for shift-right Sr and shift-left Sl operators.

with increasing position states in a clockwise direction for simplicity. The
shift operator as given in Eq. 3.12, consists of two parts: the shift-right (shift-
clockwise) operator Sr =

∑
n |n+ 1⟩ ⟨n|, and shift-left (shift-counterclockwise)

operator Sl =
∑

n |n− 1⟩ ⟨n|. In Fig. 3.6(b), the proper basis transformations
for Sr and Sl operators are given. For Sl, we see that if the coin state is |1⟩,
q[1] is always flipped, and q[2] is flipped only if the new state of q[1] is |1⟩.
For Sr, if the coin state is |0⟩, q[1] is always flipped, and q[2] is flipped only if
the new state of q[1] is |0⟩. These transformations are binary subtraction and
addition operations, respectively, are given in Fig. 3.6(a). Note that in the
figure, q[1] and q[2] are the least significant and the most significant qubits,
respectively.

In Sec. 2.10 we discussed that single-qubit gates and two-qubit CNOT gate
are enough to realize any unitary operation up to an arbitrary approximation.
We also stated in Sec. 2.11 that we need 6 CNOT gates and 9 single-qubit
gates to implement a Toffoli gate. Therefore, a single step of quantum
walk can be realized with 14 CNOT gates and 23 single-qubit operations.
This is very costly when implementing a quantum walk on a noisy quantum
computer with non-negligible error rates in the realization of quantum gates
and readouts. Therefore, to perform quantum walks on a quantum computer,
we need to find optimized methods that depend on certain initial conditions.
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3.5 Optimized formulation of discrete-time
quantum walks on cycles

The shift operator, as defined in Eq. 3.12 splits the position space into two
distinct subspaces: one containing only odd-numbered positions and the other
containing only even-numbered positions. If the quantum walk is initially
localized in either of these subspaces, the system’s total quantum state will
switch between the two subspaces at each step. For simplicity, consider a
quantum walk on a cycle with four vertices as shown in Fig. 3.5(b), where the
walker begins at position 0 with the initial state |00⟩. To realize a discrete-time
quantum walk on this cycle, we need an 8-dimensional Hilbert space because
the coin and position spaces are two- and four-dimensional, respectively.
Thus, the realization of this quantum walk on a quantum computer requires
log2 8 = 3 qubits. However, the quantum walker can occupy only half of the
sites in the positional space at any given step, reducing the positional space
to two dimensions and the necessary Hilbert space to four dimensions. By
closely analyzing how the probability amplitudes are transformed between
these subspaces during the walk, we can effectively describe the quantum walk
as occurring within a space half the original size. Therefore, we can optimally
simulate a discrete-time quantum walk on a 4-cycle with log2(4) = 2 qubits.

o

e

Figure 3.7: Schematic description of the optimized discrete-time quantum walk

A simple demonstration of how we keep track of the probability amplitudes
in each step is given in Fig. 3.7. Given that the walker starts its motion
from |00⟩, it can be found either in 0 and 2, or 1 and 3. The probability
amplitudes (a, b), (c, d), (a′, b′), and (c′, d′) are associated with positions 0,
2, 3 and 1, respectively. These amplitudes are actually nothing but the
coin states associated with the corresponding position ac,n(t) as given in
Eq. 3.16. Therefore, we divide the total wave function into two parts living
in complementary subspaces and define the states |ψe⟩ and |ψo⟩, where the
subindices indicate the even and odd vertices. These states are described by
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the following column vectors:

|ψe⟩ ≡


a
b
c
d

 , |ψo⟩ ≡


a′

b′

c′

d′

 . (3.19)

Therefore, a step in the quantum walk transforms the state |ψe⟩ to |ψo⟩, or
the state |ψo⟩ to |ψe⟩ depending on how the walker was initially localized,

|ψe⟩ Ueo−−→ |ψo⟩ , |ψo⟩ Uoe−−→ |ψe⟩ (3.20)

where Ueo and Uoe are transformation operators between the subspaces. After
applying the coin operator as given in Eq. 3.11, the correct transformation
between these states are given as

a
b
c
d

 Ueo−−→


c cos θ + d sin θeiϕ1

a sin θeiϕ2 − b cos θei(ϕ1+ϕ2)

a cos θ + b sin θeiϕ1

c sin θeiϕ2 − b cos θei(ϕ1+ϕ2)

 =


a′

b′

c′

d′

 , (3.21)

and 
a′

b′

c′

d′

 Uoe−−→


a′ cos θ + b′ sin θeiϕ1

c′ sin θeiϕ2 − d′ cos θei(ϕ1+ϕ2)

c′ cos θ + d′ sin θeiϕ1

a′ sin θeiϕ2 − b′ cos θei(ϕ1+ϕ2)

 =


a
b
c
d

 . (3.22)

Therefore, the transformation matrices are given as

Ueo =


0 0 cos θ sin θeiϕ1

sin θeiϕ2 − cos θei(ϕ1+ϕ2) 0 0
cos θ sin θeiϕ1 0 0

0 0 sin θeiϕ2 − cos θei(ϕ1+ϕ2)

 (3.23)

and

Uoe =


cos θ sin θeiϕ1 0 0

0 0 sin θeiϕ2 − cos θei(ϕ1+ϕ2)

0 0 cos θ sin θeiϕ1

sin θeiϕ2 − cos θei(ϕ1+ϕ2) 0 0

 . (3.24)

Assuming that we start with the initial state |ψe(0)⟩ at time t = 0, the
time evolution of the optimized quantum walk is given as

|ψo(1)⟩ = Ueo |ψe(0)⟩
|ψe(2)⟩ = Uoe |ψe(1)⟩
|ψo(3)⟩ = Ueo |ψe(2)⟩

...

(3.25)
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The step operators in Eqs. 3.23 and 3.24 can be realized by one CNOT
gate and four single-qubit operations. Compared to the straightforward
implementation of the shift operator as given in Sec. 3.4 where we needed 14
CNOT gates and 23 single-qubit operations, optimized method significantly
simplifies the quantum circuits for discrete-time quantum walks. Furthermore,
the optimization method we introduced in this section for 4-cycles can be
generalized to N -cycles with N = 2n where n = log2N . The reduction
in the number of qubits is important in quantum programming because it
significantly reduces the number of quantum gates needed to complete each
step of a quantum walk. The practical implementation of each quantum logic
gate in the quantum computer introduces unwanted noise that devalues the
measured results. The current architecture of quantum computers permits
only single- and 2-qubit gates, so all operators operating on higher dimensions
need to be decomposed into gates operating with only 1 or 2 qubits. This
decomposition requires more quantum gates as the dimension of the necessary
Hilbert space increases.

IBM’s quantum processing units are composed of transmon qubits which
are a type of superconducting charge qubit. The main benefit of the transmon
is its reduced sensitivity to charge noise, achieved by using a Josephson
junction 1 in combination with the shunting capacitor. This setup significantly
increases the qubit coherence time2 by reducing the sensitivity to charge
noise. Despite this, transmon qubits still behave like open quantum systems,
interacting with their environment to some extent. These interactions lead
to decoherence, the process by which quantum information is lost over time
due to the entanglement of the qubit states of the environment.

3.6 Perfect state transfer

The transfer of a quantum state from one location to another without inter-
rupting the encoded information is an important challenge for future quantum
technologies. Since its first proposal by Bose [14], perfect state transfer has
found applications in communication between quantum processors and in
other areas such as the implementation of universal quantum gate sets using
both continuous-time and discrete-time quantum walks [15, 16].

One of the most common scenarios for perfect state transfer involves
quantum systems organized in a network, such as a line, a n-cycle, or a
more complex graph structure. Given such a graph G = (V,E) with vertices
a, b ∈ V (G) and a quantum walker that is initially localized at a vertex a.
Than graph G has perfect state transfer from vertex a to vertex b at time t
for a continuous-time quantum walk if∣∣∣⟨b| e−iHt |a⟩

∣∣∣ = 1, (3.26)

1A Josephson junction is a device constructed by a thin layer of a non-superconducting
material between two layers of a superconducting material. According to the Josephson
effect, current flows continuously across the device without any voltage applied.

2Time over which the quantum information is preserved.
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3. Quantum walks....................................
where H is the Hamiltonian described in Sec. 3.2, and for a discrete-time
quantum walk if ∑

c,c0

| ⟨b, c|Uk |a, c0⟩ | = 1, (3.27)

where c are coin states at vertex b, c0 are the chosen initial coin states on
vertex a and U is the evolution operator from section 3.3. In other words, the
conditions (3.26) and (3.27) mean that fidelity, defined in (2.56), between the
initial state at vertex a and the final state at vertex b is equal to one. In prac-
tical implementations, the perfect state transfer condition may be unreachable
due to errors occurring with implementation of quantum gates. Thus, for the
purpose of our simulations, we will consider a high amplitude transfer, where
we will consider a lower bound λ = 0.9 for the transmitted amplitude as a
sufficient level of a transfer [17]. The the conditions for continuous-time and
discrete-time quantum walks can be rewritten as follows

| ⟨b| e−iHt |a⟩ | ≥ λ
∑
c,c0

| ⟨b, c|Uk |a, c0⟩ | ≥ λ. (3.28)

Additionally, a graph G is periodic in case of a continuous quantum walk
if for any state |ψ⟩ exists time t > 0 so that | ⟨ψ| e−iHt |ψ⟩ | = 1 [18]. Same
definition applies for discrete-time quantum walk if exists k steps after which
condition

∑
c,c0 | ⟨ψ, c|Uk |ψ, c0⟩ | = 1 is fulfilled.

In recent years, there have been studied many types of graphs that would
enable perfect state transfer, but simulating all of them would be above the
capacity of this project, therefore we are going to restrict ourselves on the
study of a perfect state transfer in n-cycle graphs. An n-cycle graph, denoted
Cn, is a graph with n vertices where each vertex i is connected to vertices
(i− 1) mod n and (i+ 1) mod n. The evolution of a initial quantum state
of the walker is given by a Hamiltonian H = A, where A is the adjacency
matrix A. For an n-cycle graph A is an symmetric n× n matrix with entries
defined as follows

Aij =
{

1 if vertices i and j are adjacent
0 otherwise

(3.29)

The eigenvalues λk of this matrix are

λk = 2 cos
(2πk

n

)
, k = 0, 1, . . . , (n− 1) (3.30)

with the corresponding eigenvectors

vk =
(
1, ωk, ω2k, . . . , ω(n−1)k

)T
, (3.31)

where ω = e
2πi
n is the nth root of unity [19]. The time evolution operator U

can then be expressed in terms of the eigenvalues and eigenvectors as

U = e−iHt =
n−1∑
k=0

e−iλkt |vk⟩ ⟨vk| (3.32)
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and the condition (3.26) for perfect state transfer from vertex a to vertex b
can be rewritten as follows

| ⟨b|U |a⟩ | = 1
n

n−1∑
k=0

e−iλktωk(b−a). (3.33)

In the case of n-cycles the condition (3.33) is not satisfied by every arbitrary
n, few examples where the perfect state transfer is enabled are n = 4,
8. Additionally, the number of steps that is required for a perfect state
transfer depends not only on the size of the graph but also often on the
chosen coin operator. Example given in [20] include Hadamard coin operator
H = C

(
π
4 , 0, 0

)
when the perfect state transfer occurs after 4 steps.

3.7 Disorder

In the context of the quantum walks on a lattice or graph structure, disorder,
manifesting as random potential fluctuations or irregularities in the lattice
spacing, can lead to phenomena like particle localization at certain vertices
of the graph. The disorder can be introduced through the evolution operator
U of the discrete-time quantum walk, either through a position-dependent
coin operator or a disorder operator.

The position-dependent coin operator C is a method in which a different
coin operator is applied at each vertex. The variability in the coin operator
introduces disorder into the quantum walk by altering the transition probabil-
ities at each step depending on the particle’s location. For example, consider
a quantum walk on a 1-dimensional lattice with vertices labeled n ∈ N. An
illustrative position-dependent coin operator at vertex n could be represented
by the matrix

Cn =
(

cos θn sin θn

sin θn − cos θn

)
, (3.34)

where θn ∈ [−π, π] is a random angle specific to each vertex n.
The second method involves expanding the evolution operator U with

the disorder operator D as U = D (S · C), where S is the shift operator
and C represents coin operator described in Sec. 3.3. At each step of the
discrete-time quantum walk, the disorder operator modifies the evolution
by adding random phases to the probability amplitudes of different states,
altering the particle’s propagation behavior. For a quantum walk on a graph
with vertices labeled as n ∈ N, an illustrative disorder operator D could be
represented by a diagonal matrix

D =
(

1 0
0 1

)
⊗


eiϕ1 0 0 · · · 0
0 eiϕ2 0 · · · 0
0 0 eiϕ3 · · · 0
...

...
... . . . ...

0 0 0 · · · eiϕn

 , (3.35)
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where each diagonal element is a phase factor eiϕn with ϕn ∈ [−π, π] being a
random phase associated with vertex n.

The study of disorder in quantum walks can be categorized into two
distinct scenarios: static disorder and dynamic disorder. In the static disorder
scenario, the phase shifts introduced by the disorder operator remain constant
throughout the evolution of the quantum walk. As discovered by Anderson in
1958 [21] and later experimentally verified by [22], static disorder leads to an
absence of diffusion and localization of the particle’s wave function as shown
on Fig. 3.8, where the quantum walker on the line keeps being localized at
the initial position. From a physical perspective, localization in condensed
matter physics refers to the confinement of waves, such as those of electrons
or photons, within a medium exhibiting potential fluctuations. In a perfectly
ordered medium, waves propagate without significant scattering. However,
introducing disorder, such as impurities or defects, disrupts the propagation,
causing waves to become trapped in localized regions.
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Figure 3.8: Probability distribution P (n, t) for a quantum walk on a line initially
localized in the origin with static disorder after t = 200, t = 500 and t = 1000
steps on a line with positions n ∈ Z.

In the case of temporal disorder, the disorder operator is step-dependent,
as the phase shifts change over time. Temporal disorder disrupts the co-
herence of the quantum walk by introducing randomness into the system,
thus suppressing interference effects. As a result, with increasing steps, the
quantum walk begins to behave more like a classical random walk. As shown
in Fig. 3.9, the probability distribution exhibits a loss of ballistic peaks within
a small number of steps and transitions to diffusive behavior over a larger
number of steps. For a large number of steps, the shape of the probability
distribution approaches a Gaussian distribution as in the classical random
walk.
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Figure 3.9: Probability distribution P (n, t) for a quantum walk on a line with
temporal disorder after t = 100, t = 1000 and t = 2000 steps on a line with
positions n ∈ Z. The disorder was multiplied by a factor of 0.05 to make the
transition to diffusive behavior more noticeable.
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Chapter 4
Simulations with a quantum computer

In this chapter, we present the results obtained from our realizations of the
theoretical topics we described in previous chapters. These experiments were
conducted on currently available IBM quantum computers, utilizing their
advanced quantum hardware and software platforms. We also provide analysis
of the data, including error rates and algorithmic efficiency.

4.1 Deutsch-Jozsa algorithm

As mentioned in Sec. 2.12.1, the Deutsch-Jozsa algorithm determines whether
a given function is balanced or constant using an oracle. We realized this
algorithm with a 4-qubit register for both a balanced and a constant function.
The results, displayed in Fig. 4.2, convincingly demonstrate the ability to
identify the type of function in both scenarios. We repeated each experiment
ten times for each type of function and calculated the average and the
standard deviation. The consistent detection of the function type across
these simulations highlights the robustness and accuracy of the Deutsch-Jozsa
algorithm when applied to a 4-qubit register.

(a) (b)
q0

q1

q2

q3

q0

q1

q2

q3 X

Figure 4.1: The quantum circuits for (a) balanced and (b) constant oracles.

4.2 Grover’s algorithm

To verify theoretical assumptions, we realized Grover’s algorithm, described
in Sec. 2.12.2, on IBM Fez quantum computer. The experiment utilized an
8-qubit register and a targeted state |101⟩. Based on the initial size of the
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Figure 4.2: Simulation of the Deutsch-Jozsa algorithm on a 4-qubit register. (a)
For a balanced function, where only the state |111⟩ can be measured. (b) For a
constant function, where only the state |000⟩ can be measured. The simulations
were performed on an IBM Fez quantum computer. The “rest” is calculated by
the summing over the probabilities for all the other results.

register and the number of target states, the optimal number of iterations
was calculated as k = ⌊π

4

√
8
1⌋ = 2. The experiment was repeated ten times,

after which we calculated the average probability and standard deviation for
each state.

The results shown in Fig. 4.3 confirm the theoretical prediction. After two
iterations of Grover’s algorithm, the probability of measuring the target state
|101⟩ was significantly higher than that of any other state, demonstrating the
algorithm’s efficiency in locating the target state within the search space.
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Figure 4.3: Realization of the Grover’s algorithm with one target state |101⟩ and
size of the database N = 8. Simulated on the IBM Fez quantum computer.

4.3 Discrete-time quantum walks

Building on the introduction of discrete-time quantum walks presented in
Chapter 3, we now present our results from the implementation of discrete-
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time quantum walks on IBM quantum computers. Our experiments on
quantum walks will cover the time dynamics of the walk, probability distri-
bution, perfect state transfer, and the effects of static and temporal disorder
on quantum walk dynamics.

4.3.1 Probability distribution and the comparison of
conventional and optimized methods

We realized discrete-time quantum walks on quantum computers using the
methods described in Sec. 3.4 and Sec. 3.5. We will refer to these as the
conventional and optimized methods, respectively. For both methods, we
performed 10 experiments for each step, and the probability averages and
their standard deviations at each position were calculated and displayed in the
Fig. 4.4. We see that the probability distributions obtained by the optimized
method closely match the expected theoretical probability distributions on
a 4-cycle, unlike those of the conventional method. These results meet our
expectations, as the optimized method significantly reduces the number of
quantum gates and the depth of the circuit, as detailed in Table 4.1. We
note here that the number of gates given in this table for conventional and
optimized methods is much higher than what we have mentioned in Sec. 3.4
and 3.5. For example, to realize one step of the discrete-time quantum walk
with optimized method, we need 30 gates, which looks contrary to what
we claimed in Sec. 3.5 that we only need one CNOT gate and four single-
qubit operations. The reason for this is that the four single-qubit unitary
operations are decomposed into the single-qubit gates that are available in
the architecture of the quantum processor. This is automatically done in an
optimized way by the IBM API (Qiskit).

- Conventional Optimized
Step Gates Depth of circuit Gates Depth of circuit

1 260 155 30 18
2 517 324 57 35
3 669 412 84 52
4 968 583 111 69

Table 4.1: Number of quantum gates and depth of quantum circuits for sim-
ulation of first four steps of the discrete-time quantum walk on a 4-cycle with
conventional and optimized methods.

To see the success of the optimized method compared to the conventional
method, we use the following measure:

Σ(t) =
√

1
N

∑
n

[P ex
n (t) − P th

n (t)]2 (4.1)

This measure averages the difference between the experimental probability
values and the theoretical probability values at each position over the position.
Therefore, the more the experimentally obtained probability distribution is
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Figure 4.4: Probability distributions for the first four steps of a quantum walk
on the 4-cycle with a quantum walker initially localized at position 1 with initial
coin state |0⟩. Blue: simulation on an IBM Torino quantum computer with
conventional method, green: theoretical results, orange: simulation on IBM
Torino quantum computer using the optimized formulation.

incompatible with the theoretical values, the higher the value of this measure
will be. As shown in Fig. 4.5, the Σ(t) calculated for the conventional
method is generally higher and it fluctuates more compared to the optimized
formulation method. This discrepancy is due to the reduced number of
quantum gates required in the optimized approach, which in turn reduces the
introduction of decoherence and errors. We simulated only up to 20 steps due
to the limitations imposed by the number of quantum gates needed; however,
additional steps would likely show an increasing trend in standard deviation
due to growing decoherence, eventually stabilizing.

We clearly demonstrate that the optimized method for the n-cycles improves
the accuracy of the results compared to a straightforward implementation
of the quantum walk. The improvement results from a reduced number of
quantum gates in the circuit, minimizing noise and errors. Consequently, this
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Figure 4.5: The average of the differences between experimental and theoretical
results of quantum walk with a conventional (orange) and optimized method
(blue) for the first 20 steps t on a 4-cycle. Simulated on IBM Torino quantum
computer.

leads to more accurate measurements.
The reduction in the number of gates is also beneficial for quantum state

tomography, which is crucial for reconstructing quantum states. As detailed
in Sec. 2.13, the number of circuits required for tomography scales as 3n

with the number of qubits n. For a 4-cycle, this reduction means that only
9 2-qubit circuits are needed instead of 27 3-qubit circuits, enhancing the
accuracy of the density matrix reconstruction and increasing the state fidelity
between the measured and expected states, as illustrated in Fig. 4.6 and Tab.
4.2.

Method Expected final state State fidelity
Conventional |001⟩ 0.150

Optimized |01⟩ 0.925

Table 4.2: State fidelity between measured state and expected state after four
steps of a discrete-time quantum walk on a 4-cycle with initial state |000⟩,
respectively |00⟩. Simulated on IBM Sherbrooke quantum computer.

4.3.2 Perfect state transfer

To realize the perfect state transfer on a quantum computer for n-cycle, we
considered an example given in [20]. This example involves a 4-step quantum
walk on a 4-cycle with a Hadamard coin operator. To minimize potential noise
from quantum gates implemented on a real device, we utilized an optimized
method of discrete-time quantum walks on cycles. The quantum walk was
repeated nine times to prepare sufficient copies of the quantum circuit for
a quantum state tomography with three qubits, from which we obtained
density matrices for each initial coin state. The results in Table 4.3 show
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Figure 4.6: Real and imaginary amplitudes of density matrices of a quantum
walk on a 4-cycle after four steps with expected final position: (a) |001⟩ for a
conventional approach, (b) |01⟩ for a reduced Hilbert space approach.

that state fidelity between the obtained density matrices shown in Fig. 4.7
and theoretical density matrices satisfy the high amplitude transfer condition
(3.28) for any initial coin state. This proves perfect state transfer on a 4-cycle
after 4 steps.
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Initial coin state Expected final state State fidelity

|0⟩ |01⟩ 0.925

|1⟩ |11⟩ 0.952
1√
2 (|0⟩ + |1⟩) 1√

2 (|01⟩ + |11⟩) 0.961
1√
2 (|0⟩ + i |1⟩) 1√

2 (|01⟩ + i |11⟩) 0.956

Table 4.3: Results of the quantum state tomography for the perfect state transfer
on the 4-cycle after four steps with initial positional state |0⟩ and Hadamard
coin operator. State fidelity, defined in (2.56) shows overlap between expected
final state and state measured on a IBM Sherbrooke quantum computer.
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Figure 4.7: Real and imaginary amplitudes of density matrices for a discrete-
time quantum walk on a 4-cycle with initial positional state |0⟩. The initial coin
state was chosen as: (a) |0⟩, (b) |1⟩, (c) 1√

2 (|0⟩ + |1⟩) and (d) 1√
2 (|0⟩ + i |1⟩).

Simulations were conducted on IBM Sherbrooke quantum computer.
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Figure 4.7: (continued) Real and imaginary amplitudes of density matrices
for a discrete-time quantum walk on a 4-cycle with initial positional state
|0⟩. The initial coin state was chosen as: a) |0⟩, b) |1⟩, c) 1√

2 (|0⟩ + |1⟩) and
d) 1√

2 (|0⟩ + i |1⟩). Simulations were conducted on IBM Sherbrooke quantum
computer.

4.3.3 Disorder

In Sec. 3.7, we described two possible types of disorder in quantum walks:
static and temporal. To effectively simulate both scenarios on 16-cycles,
we utilized optimized formulation of discrete-time quantum walks on cycles,
introducing disorder via a disorder operator at each step of the quantum walk.
In both scenarios, the experiment was repeated forty times, with new random
disorder values in range [−π, π] generated each times. From the experimental
results averages and standard deviations at each position were calculated and
later presented in graphs.

In the case of static disorder, the same disorder values used for the first
step of the quantum walk were utilized for all following steps. The results
were measured after six steps of the discrete-time quantum walk on a 16-cycle
with initial position at position 9. As shown in Fig. 4.8, the probability
distribution from the simulation shows an expected peak at the initial position
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Figure 4.8: Probability distribution of a discrete-time quantum walk on a 16-
cycle after 6 steps with static disorder introduced at each position via disorder
operator. The initial position was at 9. Simulation was conducted on a simulator
of a quantum computer and an IBM Fez quantum computer.

followed by exponential decline on both sides, proving the localization of the
quantum walker. However, the results from the IBM Fez quantum computer
show no localization due to strong noise effects, that lead to measurements
with no outlier value.

In the case of temporal disorder, random disorder values were generated for
each step. After measuring the discrete-time of the quantum walk on 16-cycle
with initial position at 9, we expected a Gaussian probability distribution
centered at position 9, as shown by the simulator results in Fig. 4.9. However,
for the same reasons as in the static disorder scenario, the simulation on the
quantum computer yielded measurements heavily affected by noise.

To improve the quality of simulations with disorder, we need to implement
a solution with fewer quantum gates and lower circuit depth1 to reduce the

1Circuit depth is the maximum number of sequential operations on a qubit within a
quantum circuit, indicating its complexity and execution time.
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Figure 4.9: Probability distribution of a discrete-time quantum walk on a
16-cycle after 6 steps with temporal disorder introduced at each position via
disorder operator. The initial position was at 9. Simulation was conducted on a
simulator of a quantum computer and an IBM Fez quantum computer.

potential noise sources. We considered two possible solutions for this issue:
reducing the number of positions in the n-cycle (making the cycle smaller) or
introducing disorder at only one position.

Using the optimized formulation method, the first solution resulted in
insufficient data to prove localization. For an 8-cycle, we obtained only 4
nonzero values, and for a 4-cycle, only 2 nonzero values. The second solution,
introducing disorder at only one position, did not reduce the number of
required quantum gates from the implementation of the disorder operator.
Although a less complex disorder operator could be used, the disorder operator
itself represents only a small portion of the implemented code. Most of the
quantum gates come from the implementation of the shift operator matrices,
so this solution did not yield any improvements.

Overall, we did not develop sufficient improvements in the implementation
of discrete-time quantum walks with disorder on quantum computers that
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would be error-tolerant enough to show significant results on current IBM
quantum computers.
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Chapter 5
Conclusion

In this project, we explore both the theoretical foundations and main prin-
ciples of quantum computing. Through simulations on currently available
quantum computers, we investigated the current possibilities for realizing
some quantum algorithms and quantum walks. This work focuses particularly
on the simulation of quantum walks and related phenomena, such as perfect
state transfer and the effects of disorder in quantum walks.

Chapter 2 provides a broad introduction to quantum computing, starting
with the notation, the basics of quantum mechanics, and a description of
the commonly used quantum gates in quantum circuits. The chapter then
describes historically significant algorithms, namely the Deutsch-Jozsa algo-
rithm and Grover’s algorithm. It also covers essential concepts for a basic
theoretical understanding of quantum computing, such as quantum state
tomography and universal quantum simulations.

Chapter 3 is dedicated to the description and simulation of quantum
walks. It starts by discussing random walks as a classical predecessor to
quantum walks and proceeds to describe both discrete-time and continuous-
time quantum walks. The chapter also covers the phenomenon of perfect
state transfer and the impact of disorder in quantum walks.

In chapter 4 we simulated on real quantum computers all the concepts
described in the previous chapters. We compared our results for discrete-
time quantum walks on n-cycles realized with conventional and optimized
methods by examining the probability distributions, number of gates, depth of
circuits, deviations from expected theoretical values (Σ(t)) and state fidelities
via quantum state tomography. Based on our results, we suggest that the
optimized method may be beneficial in noise reduction in future applications
of quantum walks. Although the optimized method is more efficient in the
early steps of the quantum walk, requiring fewer resources to build quantum
circuits, current hardware capabilities are still insufficient for implementing
longer quantum walks. However, future improvements in reducing decoherence
in quantum computers may still take advantage of the optimized method to
realize quantum walks more effective on a larger scale.

Building on these findings, we used the optimized method to simulate
perfect state transfer and the effects of disorder in quantum walks. For
perfect state transfer, we verified the transfer of a quantum walker on a

51



5. Conclusion......................................
4-cycle after four steps with a Hadamard coin, as demonstrated by [20]. We
achieved high state fidelity (over 90%) between the expected final state and
the state measured with quantum state tomography for four different initial
coin states:

(
|0⟩ , |1⟩ , 1√

2 (|0⟩ + |1⟩) , 1√
2 (|0⟩ + i |1⟩)

)
.

Finally, we simulated a discrete-time quantum walk with disorder on a
quantum computer in the 16-cycle. However, due to the noise introduced
by the quantum computer after implementing several quantum gates, we
were unable to demonstrate the expected localization due to static disorder,
as observed in the experimental results by [22], or the expected Gaussian
probability distribution due to temporal disorder.

For future work, it may be beneficial to explore quantum algorithms based
on quantum walks that optimize the number of required quantum gates and
better control the occurrence of errors. This approach could further enhance
the simulation of complex physical systems.
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