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The liberalization of the energy sector and the continuous development of intermittent 
renewable energy sources (RES) has promoted advanced approaches to energy storage. Battery 
energy storage systems (BESS) offer satisfactory parameters of storage; however, high initial 
capital cost has been restricting more significant spread of the technology. The effect of high 
capital cost is worsened by the inadequate valuation processes used for this type of investment. 
BESS projects are implemented under high uncertainty, stemming mainly from high volatility 
of energy prices. At the same time, management typically possesses flexibility when it comes 
to the scope and timing of BESS projects. Traditional discounted cashflow (DCF) methods do 
not recognize these aspects properly, which can lead to undervaluation of the project. Real 
options analysis (ROA) recognizes both uncertainty and flexibility inherent in these types of 
projects, and offers an enhanced method of valuation. However, the ROA approach cannot be 
perceived as a complete substitute for the traditional DCF method, but rather as its extension.  

This dissertation recognizes importance of both the DCF and ROA methods, and develops 
a valuation framework covering both approaches, designated specifically for BESS projects. 
The DCF method is based on a robust, mixed-integer linear programming (MILP) model, 
which maximizes net cashflow generated by deploying a BESS for arbitrage on the day-ahead 
market. The MILP model is solved without considering the degradation process of the BESS 
in the first Scenario, which leads to an extensive degradation of the BESS. As a result, 
the investment in a BESS under current market conditions cannot be justified, when valued 
with net present value (NPV). In the second step, the initial MILP model is extended with 
a degradation process, which ensures that the battery dispatch balances net cashflow with 
degradation cost. The improvement in the pattern of dispatch is reflected in a significant 
improvement in NPV, as demonstrated by the case study in Section 11 in Scenario 2. 

In the third step, ROA is introduced to extend the NPV value from the preceding step with 
the value of uncertainty and flexibility inherent in a BESS project. A literature review of ROA 
in the field of BESS projects provides the grounds for deploying a multiple-criteria decision 
analysis (MCDA) in the next step. Eight decision criteria are proposed, based on extensive 
research in the field, in order to facilitate selection of the suitable ROA method. The created 
valuation framework enables practitioners to select the ROA method which best meets specific 
valuation requirements. The valuation framework is applied in a case study, where the Cox-
Ross-Rubinstein binomial option pricing model (CRRM) received the highest score out of 
the three ROA methods considered. For calculating the volatility of a project, simulation of 
future project cashflow is demonstrated as a useful alternative to other methods, such as implied 
volatility determined on a derivatives market, or volatility predicted with (Generalized) Auto 
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Regressive Conditional Heteroskedasticity (G)ARCH family models. The case study shows 
the positive value of postponing the investment in a BESS project, and shows that even a BESS 
project with negative NPV can have a positive value, when being valued with ROA. Most 
importantly, it confirms the functionality and benefits of the proposed BESS valuation 
framework. 
 



 1 

The energy sector has undoubtedly been a volatile environment recently. Liberalization of 
the market and the development of intermittent sources of energy – or supply shocks – are 
some of the drivers of price volatility on the energy markets. With the commitment to deceasing 
the global volume of CO2 emitted into the atmosphere, this trend in the energy sector cannot 
be expected to end any time soon. Instead, we can expect to see more photovoltaic (PHV) 
power plants and wind turbines, and more energy stored in different forms, such as chemical 
batteries, or H2. 

At the same time, technology develops rapidly, bringing new solutions to the market. 
These solutions offer new sources of energy, decrease production costs, and provide more 
environment friendly approach to extraction, transformation, and storage of energy. Storage 
solutions play an especially important role in supporting the spread of renewable sources of 
energy, including wind or PHV, which are referred to as intermittent sources, because energy 
supply from these sources cannot be easily matched with the demand. Grid-scale batteries are 
an efficient way of overcoming this problem, since they have a high round-trip efficiency [1], 
are easy to deploy, and their cost has continuously decreased [2], all of which have made their 
use economically viable. 

The rapid evolution of the energy sector does not seem to be always reflected in the way 
investments in the sector are evaluated. Traditionally, DCF methods such as NPV, IRR or 
payback period are used. These methods discount the future cashflow using a factor which 
reflects the riskiness of the project, and assume that future cashflow is certain. However, 
in reality, actual cashflow can vary in volume and time, as events which were unexpected 
during the planning phase of the project can occur. For the investments in grid-scale batteries, 
revenues are a function of prices on the respective markets. Using NPV for valuation of such 
a project, and predicting cashflow with certainty, may lead to unrealistic assumptions, 
generating a significant valuation error. Instead, determination of a volatility of the future 
cashflow based on observation of the market may be a more realistic approach. Alternatively, 
the potential of the ever-growing power derivatives market can be leveraged to determine 
the future volatility of the cashflow as the best expectation of the market. In both cases, 
analyzing the investment with a clearly defined uncertainty over the future project cashflow 
provides decision makers with better information, and thus better starting position, than simply 
expecting clarity over the future cashflow, and then periodically updating the NPV.  

A suitable investment valuation method for grid-scale batteries should also not ignore 
the decision power that management possesses during all the phases of the project. As new 
information emerges, management can approve changes to the project as it reacts to 
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the information. For example, in a situation of low market volatility, the BESS project can be 
abandoned or moved to a more profitable market. On contrary, the scale of the project can be 
extended to benefit from positive market evolution. Such decisions are rational and thus 
expected, and their omission from the investment analysis can result in an unrealistic model. 
The real options analysis (ROA) addresses both the uncertainty and flexibility inherent 
in projects, and in the case of grid-scale batteries, these are undoubtedly attributes significantly 
influencing the quality of the investment appraisal process. Additionally, ROA can provide not 
only a more realistic valuation result, but can also serve as a contingency plan which enables 
the effective management of project risks (rather than ignoring them). 

ROA does not replace DCF. Instead, ROA should be perceived as a method extending 
the traditional DCF method, whereby NPV is extended with an option value, to estimate 
the uncertainty and flexibility inherent in the project. Calculation of NPV for grid-scale 
batteries is specific to their technical properties and constitutes a separate topic, itself. 
Researching them in isolation, however, is not optimal, given the uncertainty and flexibility 
this type of project typically entails. 

Motivation for this work arises from the necessity of an advanced valuation framework 
for investments in grid-scale batteries, one that integrates both NPV and ROA to harness 
the synergies between these methods. This need is a response to the ongoing changes in 
the energy sector. 

The dissertation is divided into three parts. The first part provides the theoretical 
background and introduces the key components of the BESS valuation topic. Section 1 
introduces the object of the capital investment valuation framework developed in this 
dissertation: BESS. The main characteristics of BESS are described, followed by its 
applications, with a focus on arbitrage. BESS is the object of the two key valuation methods—
DCF and ROA. While the former (DCF) is described in Section 2, ROA process and its sub-
processes are subject of the Sections 3-4. Types of real options are followed by popular 
valuation methods for financial options, namely BSM, CRRM, and MCS. These options are 
analyzed in relation to ROA. Once ROA has been introduced conceptually, a detailed review 
of ROA as applied to BESS projects is covered in Sub-section 4.1. Importance of the review 
lies in mapping of the current trends in ROA in the field of grid-scale batteries, which is 
subsequently used as an input for Part II. MCDA, used for selecting the suitable ROA method, 
is presented in Section 5. Section 6 sets the goals for the dissertation, presents the author’s 
hypothesis, and describes study’s research methods.  

The second part proposes the advanced BESS valuation framework. The dissertation is 
concluded with the third part summarizing the findings of the dissertation. 
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PART I 

Theoretical background 
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Near the end of 2021, new capacity of renewable power sources were on track to set 
another annual record, driven mainly by the improved policies and climate goals set at the 2021 
UN Climate Change Conference, held in the United Kingdom. This trend is forecast to continue 
in the coming years, with up to 95% of the global power capacity covered by RES [3].  

Renewable sources of energy, such as wind or solar power, are intermittent sources, in 
contrast to conventional energy sources that can be dispatched upon demand. Thus, 
the increasing supply of energy from non-dispatchable renewable energy sources exerts 
pressure on electrical grid operators, who must guarantee the balance between the supply and 
demand for electricity. To avoid losing the potential energy generated by intermittent sources, 
their electrical power can be transformed into a different form and stored.  

Distinctions can be made between mechanical, electrical, thermochemical, chemical, 
thermal, and electrochemical electrical energy storage (EES) systems [4]. The latter group, 
more specifically the battery electricity storage systems (BESS), has been enjoying 
a substantial increase in popularity recently, due in part to their scalability [5]. 

Pumped hydroelectric energy storage (PHES) generated 8500 GWh in 2020, accounting 
for around 90% of the total global electricity storage capacity. Despite this fact, BESS is 
predicted to gain the highest share of future growth in electricity storage capacity. By the end 
2021, BESS capacity accounted for around 16 GW, and 6 GW of this capacity was added in 
the very same year [5]. The strong trend is confirmed by plotting the grid-scale battery additions 
of the last years in Fig. 1, which also confirms the leading position of USA and China in new 
BESS installations, when measured by GW of capacity. 

IEA predicts the grid-scale battery capacity to increase up to 680 GW by 2030, with yearly 
capacity additions of 80 GW in the years between 2022 and 2030. This trend will be 
predominantly driven by decarbonization of the electricity system, with BESS providing 
balancing services.  

The European Commission expects BESS to play an important role in the “European 
Green Deal,” a strategy paving the path towards carbon neutrality in the EU by enabling 
integration of RES [6]. 

1. Storage of electrical energy 

1.1. BESS 
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Fig. 1. Annual grid-scale battery storage additions [7]. 

To create a base for BESS in the EU, the energy union has introduced a comprehensive 
governance framework and the European Commission has issued a strategic action plan on 
batteries. Additionally, the European Commission, together with stakeholders in the battery 
industry, launched the European technology and innovation platform, which focuses on 
competitiveness in the global battery sector [8]. 

The market offers a wide range of battery types. Based on the material used for electrodes 
and electrolytes, rechargeable batteries can be divided into lead-acid, alkaline, metal-air, high 
temperature, and lithium-ion batteries [9]. Lithium-ion batteries can be further categorized in 
accordance to the material of a cathode into different battery types: e.g., LiFePO4, LiCoPO4, 
LiCoO2, LiNiO2, among others [10]. 

Lithium iron phosphate (LiFePO4) BESS, a subset of lithium-ion batteries, is expected to 
represent the main battery chemistry in this trend [5]. The positive aspects of LiFePO4 batteries 
are not only excellent electrochemical performance, long cycle life and good safety measures 
but also the fact the mineral resources required for their production are in abundance [11]. 
While the market share of LiFePO4 batteries was 27% in 2020, it is predicted the market share 
will be 64% in 2025 [11]. 
When comparting battery types, the main characteristics or criteria to consider include: 

• Energy storage capacity – the amount of energy (kWh) that can be stored in the battery. 
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• Energy density – the amount of energy per volume (Wh/L) or weight (Wh/kg) stored 
by a battery. 

• Rated power capacity – the output of a battery (MW). 

• Discharge time (C-rate) – a measure of the speed with which can a battery 
discharge/charge fully. 1C rate means that a battery can discharge/charge fully in one 
hour.  

• Round-trip efficiency – the amount of energy discharged back to the grid, expressed as 
a percentage of the energy initially taken from the grid. A round-trip efficiency of 95% 
means that the loss from charging and discharging the battery was 5%, i.e., 1MWh was 
taken from the grid to charge the battery, but only 0.95 MWh out of this energy could 
be discharged back to the grid. The remaining 0.05 MWh accounted for a loss caused 
by the conversion. 

• Self-discharge – batteries vary in their ability to store energy, long term.  Continuous 
changes in the chemistry of a battery result in the inevitable loss of a certain percentage 
of energy stored. 

• Cost – unit cost of a battery can relate to energy (EUR/MWh) or power 
(EUR/EUR/MW). It is necessary to distinguish the scope of the cost; as depicted in 
Fig. 2, BESS consists not only of battery cells but other components, such as 
a transformer or inverter. Further, deployment of BESS cannot be accomplished 
without a piece of land, which must be either bought or leased. Besides initial capital 
costs, a BESS requires regular maintenance. 

The popularity of lithium-ion BESS stems from significant advantages of lithium-ion 
batteries, such as their high specific energy, specific power, and nominal voltage. They also 
provide round-trip efficiency of close to 100%, low self-discharge rate, no memory effect, and 
low maintenance costs [9]. This combination of properties makes lithium-ion batteries the most 
popular form of chemical EES by capacity in the world, showing exponential growth in 
popularity [12]. 

Besides facilitating integration of intermittent renewable sources of energy, EES can be 
used for other applications, such as [13]: 

• Short term power supply – providing power back-up for critical customers or 
facilitating black-start [13]. 

• Price arbitrage on the spot market1 – exploiting the price difference between peak and 
off-peak hours. By time shifting the energy on the grid, revenues are generated. This 

 
1 In this work, the term 'spot market' encompasses both the intraday market, facilitating real-time electricity 
trading, and the day-ahead market, which involves transactions for delivery on the following day. 
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application favors BESS with a high energy capacity [14]. The price arbitrage can be 
performed on the intraday market [15] as well as on the day-ahead market [16]. For 
example, the Energy Exchange of Austria (EXAA) provides auction trading on the day-
ahead market, and both auction trading and continuous trading on the intraday market. 
The day-ahead auctions are divided into two blocks: independent classic auction (at 
10:15) providing the first price signal for the given trading day, and European market 
coupling at 12:00. During the auction at 10:15 it is possible to trade 24 individual hours, 
96 quarter hours and 15 different blocks. During the auction at 12:00 it is possible to 
trade the 24 individual hours and the 15 blocks. There is also a designated auction for 
green power certified with the European Energy Certificate System [17]. The market 
participants submit their orders in which they express their willingness to buy/sell 
the stated volume for all the price ticks between the minimum and maximum prices of 
the auction. Once the market participants send their orders and the order book is closed, 
the algorithm creates both a supply and demand curves, and determines the market 
clearing price (MCP) at the intersection of the curves which applies to both buyers and 
sellers. All buyers who submitted volumes at a price higher than the MCP are executed 
for these volumes and pay the MCP, and all sellers who submitted volumes priced lower 
than the MCP are executed for these volumes and receive the MCP. In this way, 
the volume with the delivery on the following day is traded. In contrast to it, there is 
also a continuous trading on the intraday market where the trade with the delivery on 
the very same day is executed once the buy- and sell-orders match [18]. The exact rules 
for auctions, and power trading on the exchange in general, can vary among exchanges 
and markets, and it is thus crucial to get familiar with the rules applied on the selected 
exchange. 

• Power quality improvement – maintaining voltage levels within boundaries [19]. 

• Ancillary services – including load following, operational reserve, or frequency 
regulation [13]. The frequency regulation and the price arbitrage are considered the 
most popular applications of lithium-ion BESS [14]. In case of frequency imbalance, 
the BESS can be immediately charged for down-regulation or discharged for up-
regulation. The exact requirements for frequency regulation depend on the specifics of 
countries and power regulators [20]. In contrast to the BESS used for the price arbitrage, 
the maximal capacity is not necessarily the main characteristics of interest, as changes 
in the state of charge of the battery are not typically significant because the aim is to 
remove fluctuations in the electrical grid, requiring changes in power direction and 
magnitude within seconds [14]. 

BESS does not have to provide one service only. It can combine several of the above 
applications to maximize its profitability, referred to as value-stacking [21]. 
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Fig. 2. Main components of BESS and its relation to an energy exchange, where DC is a direct current, LV 
AC is a low voltage alternating current and HV AC is a high voltage alternating current.  

When solving the dispatch problem of BESS as an optimization problem, authors typically 
develop optimization models for either the price arbitrage [15, 16, 22, 23, 24], ancillary services 
[20, 25], or both price arbitrage and ancillary services simultaneously [26-27]. Recent literature 
suggests the frequency regulation yields higher revenues compared to price arbitrage, although 
price arbitrage remains necessary for balancing energy surplus or deficit [14]. Currently, BESS 
is not economically feasible for spot price arbitrage due to the high cost of lithium-ion batteries 
and/or the need for electricity prices to become more volatile to achieve a positive NPV, 
justifying investment in BESS [15, 22]. However, cashflow from the investment can be 
enhanced by participating in the reserve market, including frequency regulation, which offers 
higher profit potential [28]. 

With the spread of electric vehicles (EVs), the idea of using BESS for price arbitrage has 
been re-evaluated, especially as it relates to a vehicle-to-grid (V2G) system. This system 
enables an EV battery to discharge back to the grid and perform price arbitrage. Hand- in-hand 
with the proliferation of EVs, the V2G system shows promise for gaining importance.  

The cost of four-hour lithium-ion BESS is predicted to decrease from 345 USD/kWh in 
2020 to as little as 99 USD/kWh in 2046 [2]. Also, the spot price of electricity (or more 
precisely, its variance) is expected to evolve in a positive direction. Schöniger and Morawetz 
[29] investigated seven European electricity markets using a regression analysis, with 
the authors concluding that the relationship between the share of RES and price variance takes 
a U-shaped curve: for RES shares between 10% and 40%, the price variance is low, but it grows 
rapidly outside these boundaries. The highest price variance is achieved with a share of RES 
approaching 100%. However, there are tools such as PHES for exporting and importing 
electricity, which can mitigate the effect of high RES share. However, these do not necessarily 
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work well in practice, as shown by the case of the German-Austrian bidding zone; bottlenecks 
in the transmission capacity in Central Europe limited the flow of electricity from the offshore 
wind power regions located in the North of Germany to the Austrian PHES [30]. 

Additionally, the ongoing penetration of RES into an energy mix is expected to lead to 
a higher frequency of negative prices in the day-ahead market [31], which imbodies more 
opportunity for price arbitrage. 

Recent developments, such as the pandemic and the war in Ukraine, have introduced 
additional factors influencing prices on the European day-ahead market. In [32], the authors 
analyzed the profitability (measured by NPV) of a lithium-ion BESS focused solely on price 
arbitrage across 22 European day-ahead markets. Using a time series spanning from 2016 to 
2022 for analysis, they found that while profits from dispatch were relatively consistent 
between 2016 and 2020, there was a notable market shift in 2021 and 2022. Profit doubled on 
the British day-ahead market and quadrupled on the Romanian day-ahead market. Although 
a positive NPV was not achieved, the study highlights a positive trend in BESS profitability 
across the European continent. 

There are several reasons why price arbitrage may be considered more desirable than 
frequency regulation (or ancillary services in general). Ancillary services markets typically 
have smaller volumes compared to the spot market, leading to quicker saturation [33]. 
Additionally, the smaller size of these markets increases sensitivity to individual market 
participant actions, necessitating complex price prediction models [34]. While recent literature 
suggests higher profit potential in ancillary services markets compared to the spot market, this 
trend is expected to be short-lived due to increasing BESS installations, flexible loads, and 
improved forecast accuracy of renewable energy generation [34-36]. Some ancillary services 
markets, like the one operated by the Pennsylvania-Jersey-Maryland Interconnection, have 
already experienced saturation, resulting in significant drops in market clearing prices since 
2014 [37-38]. 

Similar trends are observed in Europe, with an influx of new participants saturating 
the frequency regulation market and necessitating the stacking of multiple services provided 
by BESS to maintain profitability. This shift from initially more profitable but shallow markets, 
like ancillary services, to deeper but less profitable markets, such as the wholesale market, is 
already evident in the UK and is expected to occur in other European countries in the coming 
years [39-40]. 

Considering the potential growth in arbitrage opportunities in the future, this study focuses 
primarily on price arbitrage. Another reason for this focus is the higher complexity of 
determining prices in ancillary services markets compared to the spot market. Frequent and 
extreme price spikes in ancillary services markets make price prediction challenging [41], 
while the spot price has been more thoroughly studied and understood [42]. The solid empirical 
evidence on the behavior of the spot price can be then leveraged later in this work, when ROA 
is applied, to analyze the consistency between the characteristics of the spot price and 
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the assumptions entering the ROA. This is perceived as an important step when utilizing ROA 
for pricing of an asset where the spot price of energy is a key determinant of the revenues. 

BESS is considered as an emerging technology, which is riskier than the conventional 
energy asset projects. Lack of information and tools which would fully assess potential of 
BESS limits the flow of funds into these types of projects [21]. This doctoral dissertation seeks 
to improve the situation by providing a complex valuation tool recognizing the uncertainty 
bound to BESS projects, which can at the same time be translated into an opportunity for 
investors, when properly assessed. 
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Because the DCF method is a vital part of the capital investment valuation process, and it 
can be also used as an input for the ROA methodology, it is necessary to describe the method 
in the first step. 

The DCF method is based on the concept of the time value of money; 1000 EUR at time 
𝑡(0) and 1000 EUR at a future time 𝑡(𝑛) are not of the same value, due to the interest rate. If 
we assume a 10% per annum (p.a.) interest rate on the market, by investing the 1000 EUR, we 
can receive 1100 EUR at the end of the year. Alternatively, the 1000 EUR can be spent on new 
machinery, which results in lost interest. In other words, investing results in a lost opportunity 
of earning investment. The metrics based on the time value of money help determine the reward 
needed to compensate for the lost opportunity [43]. 

The relationship between the present value PV and future value FV is expressed in Eq. (1) 
[44]: 

𝑃𝑉 =
𝐹𝑉

(1 + 𝑟)2 

	

(1)	
	

where, r is an interest rate, or in the case of a BESS project, a cost of capital which is used as 
a discount factor, and n is the number of time periods. 

The time value of money is leveraged by two popular methods: NPV and Internal Rate of 
Return (IRR) 

From the NPV perspective, a project can be considered worth undertaking when the sum 
of the discounted cashflows generated is higher than the amount of capital I required at 
the onset, as shown in the Eq. (2) [44]. 

𝑁𝑃𝑉 =jk
𝐹𝑉(𝑖)
(1 + 𝑟)!m −

2

!34

𝐼 

	

(2)	
	

2. DCF method 

2.1. Time value of money 

2.2. NPV 
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Three different results are possible [43]: 

• NPV>0: accept the project. 

• NPV<0: reject the project. 

• NPV=0: the project is acceptable, but no discounted cashflow above project cost is 
provided. 

The rationale behind the IRR method stems from the fact that decision makers may feel 
more comfortable measuring an investment project using relative, rather than absolute, metrics 
[43]. IRR can be understood as the discount rate at which NPV equals 0. This occurs in 
situations where the present value of all future cashflow matches the initial capital outlay I, as 
shown in Eq. (3). 

jk
𝐹𝑉(𝑖)

(1 + 𝐼𝑅𝑅)!m −
2

!34

𝐼 = 0 

	

(3)	

Eq. (3) is solved by guessing at the discount rate in iterations until the equation is valid. If 
a computer cannot be used, the manual process based on discount tables can provide 
a reasonably close first guess [43].  
The IRR method can provide three possible outcomes [43]: 

• 𝐼𝑅𝑅 > cost of capital: accept the project. 

• 𝐼𝑅𝑅 < cost of capital: reject the project. 

• 𝐼𝑅𝑅 = cost of capital: the project is acceptable, but no surplus is provided. 

The interest rate r used for discounting of future cashflows can be understood as the cost 
of capital outlay required for realization of the project. Depending on the source of the capital, 
various rates can be applied. In case all the funds are borrowed from a bank, the interest rate 
required from the bank is applied. If the funds are raised by issuing shares, the rate equals 
the dividend yield required by investors. If an organization’s own funds before paying 
dividends are used, then the cost of capital is the opportunity cost reflected in the dividend 
yield [43]. 

2.3. IRR 

2.4. Discount rate 
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In situations where the funds are sourced from both an issue of shares and a debt, 
the weighted average cost of capital (WACC) described in Eq. (4) can be used [45]: 

𝑊𝐴𝐶𝐶 = [𝐾( × (1 − 𝑟1) × (𝐵/𝑄)] + [𝐾& × (𝐸/𝑄)] 
	

(4)	
	

where, 𝐾( is the cost of debt, 𝑟1 is the tax rate, 𝐵 is the amount of debt, Q is the amount of debt 
and equity, 𝐾& is the cost of equity, and 𝐸 is the amount of equity.  

WACC in this form then equals the opportunity cost of capital: the rate of return a rational 
investor will require from an investment with a similar risk profile [45]. 

Kodukula [46] recommends to use WACC for discounting of cashflows which are subject 
to private risk. This approach is more adequate than a use of a risk-free rate which is only 
slightly increased.  

When cashflows are affected by a market risk, the risk needs to be recognized by adding 
risk premium to the risk-free rate, to calculate the expected return of a security, which can then 
be used as a discount factor. One way of doing this is applying the capital asset pricing model 
(CAPM), which was originally developed for securities, and which is expressed in Eq. (5) [46]:  

𝑟. = 𝑟/ + 𝛽.u𝑟0 − 𝑟/v 
	

(5)	
	

where, 𝑟. is an expected return of security a, 𝑟/ is risk-free rate, 𝑟0 is expected market return, 
and 𝛽. is beta of security a. 

As can be seen in Eq. (5), the product of a risk specific to the security 𝛽., and the difference 
between the market return and the risk-free rate is added to the risk-free rate 𝑟/. Because 𝛽 of 

the whole market equals 1, securities that are more volatile than the market have 𝛽 > 1, and as 
a result, a higher return is required. On the contrary, securities less volatile than the market 
have 𝛽 < 1, and as a result, require a lower return. Similarly, projects are believed to have 𝛽, 
which corresponds to their risk. To quantify project 𝛽, a publicly traded twin security, i.e., 
a security with a similar risk profile for future cashflows, can be used [46].  

When compared to WACC, CAPM provides a project-specific rate, while the WACC rate 
is applied to all projects in a company. However, the cost for this approach is the complexity 
of determining the project 𝛽 [47]. 

Another approach is to use a discount rate of benchmark projects with similar risk profiles. 
Projects from the same geographical area should be selected. It should be mentioned that 
the discount rate can vary across different stages of a project [48]. The benchmark discount 
rate is an expression of investor’s expectations when it comes to return on the investment, and 
risk. It holds that the benchmark discount rate is equal WACC [49]. 
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To apply the DCF method and calculate valuation metrics, such as NPV, it is necessary to 
first solve the dispatch problem of BESS, which determines the suitable BESS charge-and-
discharge strategy, and thus its cashflow.  

The optimal dispatch of BESS combined with DCF method have been analyzed in multiple 
literature sources.  

Metz and Saraiva [22] analyze an investment in BESS used for price arbitrage in the 15- 
and 60-minute German intraday market. The authors use NPV to assess the investment, and 
based on their sensitivity analysis, they conclude that a seven-fold (7x) increase in 
the probability and magnitude of price jumps would need to occur, in order to reach a positive 
NPV. Similarly, the authors in [15] used IRR to make an appraisal of BESS in seven (7) 
different US markets, coming to the conclusion that the capital cost of the analyzed lithium-
ion BESS would need to decrease to between 5% and 20 % of the original costs to achieve 10% 
IRR. (Their conclusion was based on costs from 2008.) 

Tarca et al. [26] analyzed the possibility to couple a wind farm with lithium-ion BESS to 
improve the penetration of intermittent RES into the Australian grid. For the dispatch problem, 
the authors used an incremental state-space model. The BESS supported time shifting, and 
provided an energy arbitrage and ancillary services. The model accounted for battery 
charge/discharge efficiency, but not for aging of the battery.  

Komorowska et al. [16] compared economic justification of hydrogen storage with 
lithium-ion BESS. For the comparison, the authors selected the day-ahead Polish market, where 
both types of storage are used for price arbitrage. The authors found that BESS provides 
a higher NPV than the H2 EES; while 1 MWh BESS generated NPV of -0.23 mil. EUR, H2 
EES generated only -4.85 mil. EUR. However, neither technology was able to reach a positive 
NPV. The decrease in capital cost was identified as the most probable future driver of profit 
for both technologies. 

Mustafa et al. [27] considered BESS deployed in a health sector in the UK. Considering 
an arbitrage in a day-ahead market only, the BESS was not able to generate a positive NPV. 
Extending the scope of the BESS with ancillary services, the NPV generated by the BESS 
significantly improved, reaching over 5 mil. GBP. 

Lamp and Samano [23] used a linear model to identify a profit-maximizing dispatch of 
a BESS. They included the technical constraints of the BESS, but did not include its aging, and 
the BESS investment did not generate a profit. The authors concluded that wholesale prices 
or/and initial capital costs would need to change to make the investment profitable. 
The analysis also confirmed the relationship between an increasing share of BESS on a given 
market and the decrease of an average, intra-day wholesale price spread. 

2.5. Review of BESS dispatch problem in the literature 
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McPherson et al. [24] claimed that the current literature on BESS dispatch in the day-
ahead market does not often consider market rules in its analysis.  This gap limits understanding 
of the process behind BESS revenues, and for that reason, should be subject to future studies. 
The same authors develop a MILP model, and compare storage bidding behavior in the day-
ahead market with a storage bidding behavior in the real-time market. They concluded that it 
is impossible to make generic conclusions about which market provides a higher revenue, since 
net revenues of BESS depend significantly on jurisdiction-specific factors, such as 
the respective price profiles or the implementation of nodal (versus zonal) designs. 

Gerini et al. [25] researched an optimization problem, including BESS providing multiple 
services to an electrical grid. They determined an optimal dispatch of the BESS in the day-
ahead market by proposing a robust optimization problem.  

Guo et al. [50] integrated BESS into a hydro-wind-PHV complementary system 
participating in a day-ahead market, to improve flexibility of the system. They concluded that 
the BESS significantly improves performance of the system: with 10% capacity configuration 
ratio, BESS improved system performance by 23.09%, and operational risks were reduced by 
98.18%. Additionally, the peak shaving performance increased by 3.98%, and the daily average 
delivered power increased by 0.55%, which demonstrates the broad range of improvements 
a BESS can provide. 

Alramlawi et al. [51] analyzed the role of BESS in a PHV-BESS-diesel microgrid. In their 
model, they considered BESS degradation, an active-reactive power generation cost, and a grid 
blackout problem. For the battery degradation, the authors used a simplified, weighted Ah 
battery-aging model. Including the battery degradation enabled the BESS to effectively 
minimize the total operation cost of the microgrid. 

Zhao et al. [52] integrated BESS into a system supplying electricity, cold energy, and heat 
energy. Using an optimization model of day-ahead dispatch, the integration of BESS decreased 
the total operation cost by 9.2%.  

Lai et al. [53] analyzed the integration of lithium-ion BESS into a system with PHV and 
a biogas power plant. Considering battery aging cost in the proposed dispatch problem, 
the authors concluded that, in order to generate a positive investment outcome, the BESS needs 
to participate in the short-term reserve market, while at the same time, its initial capital cost 
needs to drop to 200 USD/kWh.  

When solving a dispatch problem in the day-ahead market using forecasted prices, 
accuracy of the forecast model plays a key role; Campos et al. [54] analyzed revenues from 
a project into a system consisting of PHV and BESS, evaluating 11 solar forecast accuracies.  
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Real options, which were introduced by Myers in 1977 [55], address the limitations of 
the DCF method and include uncertainty and flexibility into a project value. If decision makers 
have flexibility to adjust a project after new information is revealed, this freedom is of value. 
An option provides the right of its holder to make decisions, without being obliged to do so.  

In contrast to traditional valuation methods, ROA is not a sheer valuation tool, but 
a complex framework, including strategic analysis by defining financial boundaries for 
decisions within the discovered options [56]. ROA should not be misinterpreted as a substitute 
for the traditional DCF method. It values the uncertainty and flexibility present in a project 
which can be added to the NPV. Thus, the DCF method still represents a starting point for 
analysis. 

To understand the successful application of ROA, it is necessary to get familiar with 
financial options theory, from which ROA evolved. The option theory recognizes two basic 
types of financial options: 

• Call option, which constitutes a right, but not an obligation, to buy an underlying 
asset at a predetermined price (premium) at a predetermined time. 

• Put option, which constitutes a right, but not obligation, to sell an underlying asset at 
a predetermined price (premium) at a predetermined time. 

European- and American-style options distinguish the exact time (or time frame) within 
which this right can be exercised. While the European option can be exercised (called) only at 
its termination date, the American option can be exercised (called) at any time before its 
expiration. Obviously, the latter option is more convenient, which is reflected in its higher 
price.  

These basic types are referred to as plain vanilla options. With the development of option 
theory, the market has required more complex types of contracts. Because options are traded 
not only on standardized exchanges but also on non-standardized, OTC (over-the-counter) 
markets, there are literally no limitations when it comes to constructing options. More complex 
option structures are referred to as exotic options, and include (but are not limited to) 
the following option types: 

• Bermuda option. An exotic option type falling between European and American 
options, since it can be exercised only on predetermined dates. This condition is also 
reflected in the option premium; this option is more expensive than a European one, but 

3. ROA 
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cheaper than an American one [57]. Jain et al. [58] use a Bermuda option to value a real 
option on sequential, modular small- and medium-sized reactors. 

• Barrier option. The option value is conditional on a certain barrier that the underlying 
asset must reach. These barriers either activate or deactivate the option, and are referred 
to as knock-in and knock-out options, respectively [59]. Jain et al. [58] value a barrier 
option on a large-scale infrastructure project on hydrogen fuel stations, with 
the possibility of an immediate project failure included into the valuation process. 

• Compound option. An option on another option. Such a structure has two strike prices 
and two exercise dates [60]. Ma et al. [61] construct a compound option, which is 
an option to delay on an option to expand, in order to evaluate subsidies for residential 
battery projects.  

• Spread option. The payoff from this option type is determined by the difference (spread) 
between two variables [60]. For example, to value an ethanol plant, Kirby and Davison 
[62] presented spread between the price of corn and the price of gasoline as a spark 
option. Correlation among the assets is an important parameter determining a value of 
the option. If two assets evolve together in the same direction—i.e., correlation between 
them is high—then the value of the option is lower. On the contrary, assets evolving in 
different directions are of a higher value. 

• Asian option. Payoff from this option type is dependent on the average of its underlying 
asset during the life of the option. Asian options can be distinguished as either 
arithmetic or geometric. The rationale for this option’s construction is mainly to lower 
the dependence of the payoff on one-time market events; any outlier effect is minimized 
by taking an average. Premiums for Asian options are lower than European options’ 
premiums, since the average of underlying asset prices has a lower volatility; thus, 
the option is worth less [63]. The use of Asian options in ROA was researched, for 
example, by [64]. 

• Basket option. As the name suggests, payoff for this option type is derived from a basket 
of underlying assets. Wörner and Grupp [59] used empirical evidence for 13 US bio-
pharmaceutical companies, concluding that the value of a basket option on a company’s 
R&D portfolio can be used to quantify their share price. 

Table 1 lists the most important variables necessary for valuation of financial options with 
their counterparts for ROA. These variables are used in the valuation methods presented in 
Section 3.2. While shares, commodities, and interest rates can all be examples of underlying 
assets for financial options, real options have real, underlying assets, or more specifically, 
returns from those assets. The value of a real option is then derived from the difference between 
a project’s returns and a project’s costs (strike price), which is determined by a volatility of 
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the returns (if we assume investment cost is a constant). Obviously, volatility plays a key role, 
and for that reason, volatility is analyzed in Section 9.4. 

Table 1. Differences between financial and real options. 

Variable Financial option Real option 

S Stock price Project’s returns 

K Strike price Investment costs 

T Time-to-maturity Investment horizon 

r Risk-free rate Risk-free rate 

𝜎 Standard deviation of stock returns Standard deviation of project’s returns 

The various financial options described at the beginning of Section 3 are used to create 
different types of real options, which have evolved to meet different scenarios a business 
typically faces when implementing a project. Real options include (but are not limited to) 
the following types:  

• Option to defer. If a project faces uncertainty, waiting for arrival of new information 
can be worthwhile, since it may resolve the uncertainty. The option to defer, also 
referred to as a time option, is by far the most popular option type in energy projects 
[65]. They can be constructed as call options, either of the European or American type, 
depending on whether early exercise is allowed for. Similarly, a Bermuda option could 
be used when considering an exercise on several dates. 

• Option to abandon. Projects that were initially profitable can turn into non-profitable 
endeavors. The option to abandon recognizes such a scenario and values the possibility 
of selling the non-profitable asset with the aim of recovering its salvage value. This is 
a put option, with a strike price set to the salvage value. Good practice combines 
the option to abandon with another option (e.g., the option to expand) in a compound 
option, not omitting the salvage value of the asset from an investment appraisal.  

• Option to switch. This option type values the flexibility of switching between 
inputs/outputs in an operation. For example, a nuclear power plant can switch between 
production of electricity and hydrogen. Similarly, switching between wind and 
photovoltaic power can be considered for optimal production of electricity. Option to 
switch can be constructed as a combination of a call option and put option [66]. 

  

3.1. Types of real options 
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• Option to expand/contract. The holder of this option may decide to expand or contract 
operations when market conditions are favorable or unfavorable, respectively. 
Similarly, as with a switch option, combination of a call and put option can be used for 
a construction of the option [66].  

• Option to stage. This option type, also referred to as a compound option, can be 
especially meaningful in the industry such as energetics where projects are typically 
divided into many stages. The option to stage recognizes this project setup and assumes 
implementation of a project within a series of dependent steps; another stage can be 
initiated only after the previous one has been successfully completed. The payoff from 
the option requires completion of all the steps [56]. Li and Cao [67] value a stage option 
on a photovoltaic-energy storage system. The project is divided into an investment stage 
and an operation stage to account for different types of options; whilst the investment 
stage includes options to delay and options to abandon, the operational stage uses 
options to delay and options to expand.  

Literature distinguishes the following, four main valuation techniques [46], [68]: 

• Partial differential equations (PDEs). PDEs with defined boundary conditions can be 
used to describe the change in an option value with respect to a given market variable 
[46]. However, many practitioners find PDEs and analytical methods in general too 
complex [56], [69]. The most famous exception is the Black-Scholes model (BSM), 
which solves Black-Scholes PDE for a closed-form solution that substantially 
simplifies option valuation. If a closed-form solution cannot be provided, 
computationally intensive and complex approximations and/or numerical methods, 
such as finite difference, must be used [46]. 

• Lattices. A lattice is a decision tree-like structure depicting evolution of an underlying 
asset that uses backward induction [56]. The structure of lattices can be of varying 
complexity, and lattices can be distinguished as binomial, trinomial, quadrinomial, or 
multinominal. The most popular example of a lattice model is the Cox-Ross-Rubinstein 
binomial option pricing model (CRRM). 

• Dynamic programming (DP). DP is a recursive optimization method allowing for 
identification of the optimal timing of an investment. The value of multiple investment 
scenarios is compared with a continuation value, i.e., the value of waiting, which is 
calculated using backward induction. The value of the scenario is determined by 

3.2. Real options valuation methods 
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a separate, real options valuation method [65]. DP problems are often solved by using 
PDEs which can substantially increase complexity of the method [69]. 

• Simulations. A numerical approach based on a simulation of an underlying asset’s price 
evolution. A large number of price paths must be simulated to arrive at the most 
probable values; the more time steps and paths are simulated, the more accurate result 
is calculated. Monte-Carlo simulation (MCS) is the most widely used simulation 
method [46]. For pricing of American options, the least squares Monte Carlo method 
(LSMC) can be used. The method recursively approximates the continuation value 
(a conditional expectation) by moving backward in time. This involves regressing 
the future optimal discounted cashflows against a set of basis functions of 
the underlying state variables at each time step [70]. Thus, LSMC can be considered 
more complex than MCS because of its additional step in the form of regression 
analysis. This also further increases its computational complexity. 

BSM, CRRM and MCS are the ROA methods considered in this work. Not only because 
they are the most popular ROA methods in general [56], [71] but also because they are widely 
used in projects where a spot price of electricity is a source of uncertainty determining project’s 
cashflow [68], [72].  

3.2.1. BSM 

Black and Scholes [73] provided a solution to pricing a European option in “The Pricing 
of Options and Corporate Liabilities,” a major development in option pricing. The Black-
Scholes PDE is based on a no-arbitrage concept, assuming a portfolio is set up, consisting of 
a derivative and a defined number of stocks. For example, a position in a call option can be 
hedged by a short position in a stock. If there are no arbitrage opportunities, the return from 
the portfolio must equal a risk-free interest rate r, thus risk preferences of investors have no 
effect on the option value: i.e., investors are risk-neutral. It may seem unrealistic to use a risk-
free rate for discounting, especially for some practitioners who are accustomed to including 
a risk premium in the discounting factor. However, when moving from a risk-neutral world to 
a risk-averse world, the stock price growth rate and discount rates change in such a way that 
they offset each other [60]. The concept ensures that two different assets should have the same 
present price, if their future cashflow and risk profile are identical [74], which is an important 
assumption for pricing of derivatives. The introduction of a risk-free rate r significantly 
simplifies the option pricing. If we know the future value of an asset, we can discount it using 
the risk-free rate r to obtain its present value [60]. 
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Hull [60] lists other assumptions used for deriving the Black-Scholes PDE:  

• Returns from a stock are log-normally distributed. 

• Short selling is allowed. 

• No transaction costs are considered. 

• No dividends during the life of the derivative are considered. 

• Trading is continuous. 

• The risk-free rate r is constant. 

Variations of the BSM allow for dividend-paying stocks. Dividends can be included in 
the model by subtracting the present value of the dividends, which are due prior to an expiration 
date, from the stock price [75]. However, this approach represents a modification of the original 
BSM, and for that reason is not considered in the present study. 

Eqs. (6)-(9) provide an interpretation of the BSM for calculating the value of call option 
C and the value of put option P, as provided in Hull [60]:  

𝐶 = 𝑆(0)𝑁(𝑑!) − 𝐾𝑒"#$𝑁(𝑑%)	 (6)	

𝑃 = 𝐾𝑒"#$𝑁(−𝑑%) − 𝑆(0)𝑁(−𝑑!)	 (7)	

𝑑! =
𝑙𝑛 7𝑆(0)𝐾 8 + 7𝑟 + 𝜎

%

2 8𝑇

𝜎√𝑇
	 (8)	

𝑑% = 𝑑! − 𝜎√𝑇	 (9)	
	

where, 𝑁(𝑑4) and 𝑁(𝑑5) represent the cumulative normal density functions of 𝑑4and 𝑑5, 
respectively, and K stands for a strike price. 

The BSM assumes the underlying asset follows the Geometric Brownian Motion (GBM) 
[76], which is described in Section 9.1. The original form of the BSM is limited to the pricing 
of a European option on a non-dividend paying stock. The BSM can be used for valuation of 
early-exercise options only in the special case of an American call option bearing no dividends 
which is never optimal to be exercised prior to its expiration date [60]. Other American options 
cannot be standardly valued by the BSM.  Approaches such as Black’s approximation must be 
employed to overcome this BSM limitation. Here, the value of a European option is calculated 
for exercise time T and an earlier time 𝑡2, to subsequently set the value of an American option 
to the greater of the two values [60]. In addition to this approach, numerical methods or 
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numerical approximations in combination with analytical methods have been developed to 
value American options using the Black-Scholes framework. However, these are complex and 
have limited accuracy [77]. For this reason, the present work considers only the original BSM 
framework.  

When applying the BSM to ROA, it is important to note that the model assumes that 
the revenues from an underlying asset are log-normally distributed. While the log-normal 
distribution is a widely accepted assumption in stocks and the financial markets in general [78], 
practitioners may have a hard time making the assumption that revenues of a real asset and all 
its drivers follow log-normal distribution. 

 Another questionable assumption when applying the BSM to ROA is the deterministic 
nature of the investment costs embodied by the strike price K. In reality, investment costs are 
stochastic. To determine an option value, it is then important to correlate volatility of project 
revenues with volatility of investment costs, since while there is a positive relationship between 
asset volatility and option value, the cost volatility has exactly the opposite effect, pushing 
the option value down. It is intuitive that highly uncertain project costs decrease the project’s 
value [56]. Brach [56] mentions other pitfalls of the BSM model in relation to ROA: 

• Constant project volatility can be an unrealistic assumption. Volatility of a real asset 
price can change over time, as the risk of the asset evolves. 

• Real assets do not necessarily have clearly defined expiration dates. ROA is often used 
for valuation of projects when the time horizon of the project is an unknown variable 
in the project’s initial stages. 

• Values of real assets do not have to follow a symmetric random walk; jumps can occur 
in the evolution of an asset’s price path. In such cases, the BSM underestimates 
the value of the asset. 

 

3.2.2. CRRM 

The Cox-Ross-Rubinstein pricing model option is a discrete binomial model, published 
by John Cox, Stephen Ross, and Mark Rubinstein [79]. Like the BSM, it is based on the no-
arbitrage argument and risk-neutral valuation [60]. At each node of the lattice, the underlying 
asset price can go either up with probability p, or down with probability 1-p, at a rate u and d, 
respectively. The Cox-Ross-Rubenstein value can be calculated using Eqs. (10)-(11) [60]. 
Fig. 3 shows evolution of a value of an asset using a binomial tree in four time steps.  
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𝑢 = 𝑒&√∆)	 (10)	

𝑑 = 𝑒"&√∆)	 (11)	

where, 𝜎 is the volatility of the underlying asset following GBM, and ∆𝑡 is the length of time 
step. p is a risk-neutral probability, as expressed in Eq. (12) [60]. 

𝑝 =
𝑒#∆) − 𝑑
𝑢 − 𝑑 	 (12)	

where, r is a risk-free rate. 

 
Fig. 3. Change of an asset value in a four-step recombining binomial tree.  

When the lattice with the underlying asset’s value has been constructed, the option value 
at terminal nodes can be calculated by comparing the value 𝑆6 of the underlying asset with 
a strike price K at that node, respecting whether the option is a call or a put option. If we assume 
a one-step binomial lattice with a payoff in the upper terminal node 𝑓7 and a payoff in the lower 
terminal node 𝑓8, then the value f of the node preceding these two nodes (which equals 
an option value in this case) can be calculated by discounting the risk-adjusted sum of the future 
values 𝑓7 and 𝑓8, as shown in Eq. (13) [60]. This method is referred to as backward induction. 
The process repeats itself, step-by-step, regardless of the number of steps used. 
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𝑓 = 𝑒"#∆)[𝑝𝑓* + (1 − 𝑝)𝑓+]	 (13)	

When the option is American, at each node the value given by Eq. (13) must be 
additionally compared with the value which would be gained by an early exercise. The greater 
of these two defines the value at the given node [60]. 

As with the BSM, the model uses continuous GBM as the underlying process; for 
a sufficiently large number of steps and/or short time intervals, the discrete CRRM 
approximates GBM. Mean and variance of CRRM then equal the mean and variance of 
the underlying GBM’s log-normal distribution [80]. While CRRM approximates an option 
value calculated by BSM [81], in contrast to BSM, CRRM offers more flexibility. While 
volatility is deterministic in BSM, it can be treated as a time-varying variable in CRRM [80]. 

Further, CRRM is capable of valuing both European and American options. By going 
backwards, it must be verified at each of the nodes, to determine if an early exercise can 
generate a value higher than the one calculated by Eq. (13). If the answer is yes, we replace 
the original value with the newly calculated payoff and continue backwards until we reach 
the initial node [60]. 

Boyle [82] also introduced a trinomial version of the lattice model. In addition to the two 
branches accounting for movements up and down, there is a third branch for situations in which 
the price is unchanged. This extra flexibility allows for a faster convergence on accurate values 
[83]. 

Another special type of a lattice is a quadrinomial lattice, which can be used to calculate 
the option value on a project which faces two sources of uncertainty. The main strength of 
the quadrinomial tree becomes apparent in situations where the two uncertainties are 
uncorrelated. The tree enables practitioners to translate the different evolutions of the two 
variables into the option value, and to separately evaluate the effects of the two variables over 
the option value. In contrast, MCS is typically used to provide an aggregated volatility as 
a product of the variables, which is then used as an input in an option-valuation model. As 
a result, the effect of the correlation over the option value cannot be assessed [46]. For cases 
with more underlying assets, exotic options such as a rainbow option are used [84].  

The downside of the quadrinomial tree is its high complexity, which grows exponentially 
with the number of time steps used. Lattices with more than four branches are referred to as 
multinomial lattices. The author of the present study believes that the complexity of such 
a lattice outweighs its benefits, and for that reason, multinomial models are not further 
discussed in this work. As with the BSM, since the underlying binomial distribution converges 
to a log-normal distribution, using the model in ROA assumes a log-normal distribution of 
revenues from a real asset, which may be assuming far too much for some types of real assets. 
Employing a stochastic volatility brings clear improvement to the model’s application to ROA, 
increasing the likelihood of it providing a more realistic valuation model. A new value of 
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volatility can be used to update the u and d parameters, and the strike price K can be adjusted 
at each time step to reflect changes in investment costs (which rarely stay fixed).  

Dividends are another aspect which are well covered by CRRM. Dividends can be 
understood as pay-outs, or forgone earnings, linked to the real asset, with an irreplaceable role 
in ROA [48]. In general, dividends reduce the value of the underlying asset, and as a result, 
decrease the value of a call option and increase a value of a put option. Dividends can be easily 
included in the CRRM by adjusting the risk-free rate r [85]. 

3.2.3. MCS 

MCS is a numerical method that leverages computer power to determine the future value 
of an asset. The method does not require knowledge of the probability distribution of the asset 
value at the time of expiration, as long as we understand the process driving the value [56]. 
This method was published by Phelim Boyle [86] in 1977 and has since gained popularity as 
a simple but powerful tool for option pricing. The simplicity of the tool stems from the use of 
basic laws, such as the laws of large numbers and the central limit theorem [87]. The latter 
explains that, if we have a large number N of independent and identically distributed (i.i.d.) 
variables, then their sum will be approximately normally distributed, regardless of their 
underlying distribution [88]. Distribution of the Monte Carlo estimator can then be 
approximated as 𝒩(𝜇, 𝜎5/𝑁), which explains the need for a sufficiently large number of 
samples [89]. 

The laws of large numbers—expressed in Eq. (14)—state that the sample mean 𝑥̅* 
approaches the population mean 𝜇 in the limit of N [90]. 

lim
*→:

𝑥̅* = 𝜇 (14)	

One drawback of MCS is its inability to directly value American options, since it generates 
forwards paths and does not include the backward induction necessary for pricing of American-
style options. The study [91] describes methods which can be used to overcome this limitation, 
including branching processes, a martingale optimization formula, the Least Squares Monte 
Carlo (LSMC) method, and quasi-random sequences in LSMC. LSMC integrates MCS with 
a least square regression [92], and provides the backward induction necessary for early-
exercise types of options. Since these approaches are modification of the original MCS, their 
methods are not considered in the present work. 

A strength of MCS in ROA is its significant versatility. Because an asset value is simulated 
for the whole life of an option, until the time of expiration, the method can be used for pricing 
of path-dependent options, such as Asian or barrier options. It can also be used in cases where 
an option value is dependent on more underlying assets. 
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While the BSM and CRRM assume GBM as the underlying process, MCS can be used to 
simulate any probability distribution, which can be especially desirable in ROA. MCS is used 
in ROA to not only value an option, but also as a supportive tool to quantify volatility of 
a project’s revenues. Project revenues determined by multiple sources of uncertainty can be 
sampled using MCS to calculate an aggregated volatility for a project, which can subsequently 
be used as an input in the option-valuation method [46]. 

Due to the computational intensity of MCS, it is viewed as a last resort by some authors 
when it comes to option pricing [93]. With the rapidly increasing computational power, this 
should no longer be the case, and its versatility should make MCS a promising valuation 
method to consider in ROA. 
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To better understand the current state of ROA applied to grid-scale batteries, the following 
literature was reviewed, employing the selection criteria below:  

• The paper contains the keywords “real options” and “battery”. 

• The paper was published by Elsevier, IEEE, or Springer. 

• The paper was published since 2016. 

4.1.1. Broad overview of the review 

Table 2 contains an overview of the review, specifying the valuation method and types of 
real options explored in the reviewed studies, with DP identified as the most popular method.  

Table 2. Overview of 9 studies that apply ROA to BESS. 

Authors Type of BESS ROA 
method/model 

Types of real 
options 

Electricity spot 
price model 

[49] Lithium BSM Option to defer GBM 

[92] Not defined DP 
LSMC 

Option to defer GBM 

[94] Lithium-ion DP Degradation option n/a 

[95] Not specified DP Option to defer n/a 

[96] Not specified DP Option to defer n/a 

[97] Lithium-ion DP 
LSMC 

Option to defer Own construction 

[61] Not specified DP 
LSMC 

Compound option n/a 

[98] Not specified DP 
LSMC 

Option to defer n/a 

[99] Not specified DP 
 

Option to defer ARMA model 

 

4. ROA applied to BESS projects 

4.1. Review of the literature on ROA applied to BESS projects 
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Table 2 identifies the option to defer as the most popular real option in BESS-related 
studies. 

In the ten reviewed BESS-related studies, the battery type is either a lithium battery or 
an unmentioned battery type.  

Electricity spot price was one of the uncertainties analyzed in the reviewed studies, and 
GBM was used most frequently as the model explaining its behavior [49], [92], [99]. 
Additionally, historical prices were the only way of determining the volatility of electricity spot 
prices, when volatility was a necessary input for the selected real options valuation model.  

4.1.2. Detailed overview of the review 

In [49], the authors analyzed investment in a lithium battery with a capacity of 10 MWh 
and a power rate of 5 MW, which can be installed overnight in Jilin province. The authors used 
ROA to value a wind-integrated energy storage project, and to identify the optimal time 
window for realization of the investment. The authors assumed that electricity price follows 
GBM, and used BSM as the ROA method to extend the base value of the investment calculated 
as NPV. Volatility, as the input parameter for BSM, was calculated from historical prices. 
The proposed models also incorporated battery loss induced by the operation; 0.06 % battery 
loss was assumed with each charge and discharge, at 90% DOD. 

Ma et al. [92] developed a mixed-integer quadratic program to determine the optimal 
sizing and dispatch of BESSs deployed in Australia. They extended the NPV calculation using 
the program with an option to defer, which is valued by combining a forward-looking MCS 
with a backward-looking least square regression. GBM is assumed for all the three random 
variables simulated in the study: power demand growth, electricity price, and BESS capital 
cost. 

Kelly and Leahy [94] also used DP to determine optimal timing and sizing of a project 
using a lithium-ion 100 MW BESS, operating in a day-ahead market in Ireland. The approach 
consists of two models: an operational hourly model, and a yearly planning model, which is 
solved by applying dynamic decisions. While the operational model is used to determine 
the optimal BESS dispatch strategy generating daily revenue, the long-term planning model is 
deployed to optimize timing and sizing of the BESS. The authors concluded that the initial 
capital outlay has a minimal effect on project timing, but is crucial for sizing of the BESS.  

Similarly, as the authors of the previous study, Bi and Lyu [95] decided to use DP to value 
an option to defer, which is modelled as an American call option. The study analyzes 
an investment into a BESS combined with PHV in a microgrid located in China. The model 
developed supports arbitrage, and it assumes electricity price subsidies. Initial capital cost, 
modelled as GBM, is identified as a major obstacle for the profitability of the project. Thus, 
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the authors expect the incentives to become a key driver in promoting reviewable sources of 
energy. 

Microgrids were also the object of research in [96], in which a BESS was combined with 
PHV, fuel-fired generator, and tank storage. The study proposed a dynamic methodology, 
including load growth and degradation of the model’s assets. The approach enabled the authors 
to determine the optimal sizing of the BESS not only at the project outset, but also in later 
project phases. 

Bakke et al. [97] applied ROA to a BESS project which was dispatched not only to perform 
time arbitrage in a spot market, but also to provide ancillary services. The study found that 
participation in the spot market with hourly contracts alone cannot justify the initial costs. 
The pivot point of the investment was reached only after simultaneous participation in 
the balancing market was considered. The case study presented was made more realistic by 
forecasting the spot price rather than using a historical time series. The model for a spot price 
consists of a deterministic, seasonal component combined with a residual, stochastic 
component. Capital costs were modelled using GBM with a negative drift. The proposed 
objective function maximizes the profit from participation in both the spot and balancing 
markets, while considering O&M costs. To value the flexibility inherent in the project, 
the authors considered an option to defer, which was modelled as a Bermudian call option, 
because only discrete time points were considered for exercising the option. The LSMC method 
was used to value the option; CF from operation of the BESS and initial capital cost were 
the two uncertainties simulated by the method. The authors concluded that operating the battery 
in both the UK and German markets generates a position option value. The results also show 
that the BESS participated most often in the balancing market, and only occasionally in the spot 
market. This was reflected in the structure of revenues, since 70% were generated in the former 
market. 

Similarly, the LSMC method was applied by Ma et al. [61] to value a compound option 
on a BESS residential project. The compound option consists of an option to defer and 
an option to expand. According to the traditional capital investment appraisal, an investment 
should be realized in the fifth year, without any subsequent expansion, yet ROA suggests 
carrying out both the investment and the expansion in various years, depending on 
developments with the identified uncertainties. 

Ma et al. [98] applied LSMC to value a compound option on an investment in a residential 
PHV-battery project. The analysis considered multiple, interacting options, including an option 
to defer and an option to expand. The option to expand could be exercised only after the option 
to defer had been exercised. The authors’ model projected uncertainties, such as power 
demand, diesel price, and the declining cost of PHV-BESS technology. The investment 
generated a negative NPV, and only after adding the option value could the investment be 
considered justifiable. The ROA results suggest that waiting for one year instead of 
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an immediate investment is a better investment strategy, since uncertainties evolve in favor of 
the project at that time. 

The objective in [99] was a study combining PHV with BESS, where the ARIMA model 
was applied to the project’s uncertainties, specifically, to electricity spot prices and renewable 
energy generation. The proposed ARIMA-based model considers important characteristics of 
the spot price for electricity, such as non-stationarity and heteroscedasticity. The BESS was 
dispatched in both the spot- and reserve-electricity markets in Germany. The authors chose 
a one-year time window for the optimization problem, to cover all seasonal-related dynamics 
of the electricity spot price. The authors applied DP to value an option to defer the dispatch. 
The postponement is made with the goal to delay the discharge until a time with more favorable 
prices. The authors concluded that operating a BESS in the electricity spot market and minute 
reserve electricity market cannot be economically justified, unless major increases in electricity 
price volatility take place, or unless the BESS also participates in the primary and secondary 
reserve markets. 
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There are multiple methods by which ROA can be used to value a real option, so it can be 
difficult for a practitioner to get oriented in the field and select the suitable method, especially 
if ROA is a completely new topic to the organization. In these instances, MCDA can be used 
to facilitate and standardize the ROA method selection process, ensuring a suitable approach 
to valuation of a BESS project. 

MCDA is likewise an effective tool in an environment with multiple options and multiple 
criteria. According to Fotr and Švecová [100], the decision process should be constituted by 
the following elements: the goal of the decision process, assessment criteria, the subject and 
object of the decision process, and finally, the generation of alternatives and scenarios. For 
the purposes of the present work, these elements are combined with the decision-making 
process steps defined by Ren [101] to form the following steps:  

• Determination of a goal for the decision process. 

• Determination of assessment criteria. 

• Determination of the subject and object of the decision process. 

• Generation of alternatives. 

• Criteria weighting. 

• Creation of a decision-making matrix. 

• Scoring and ranking. 

Decision processes can have a single or multiple goals, and these goals can be either 
complementary of conflicting. The time frames for such goals can likewise be short- or long-
term [102]. For the purposes of further work, it is important to distinguish between qualitative 
and quantitative goals. The existing literature recommends that proposed goals be SMART: 
Specific, Measurable, Achievable, Relevant, and Time-bound [100]. When defining goals, it is 
necessary to identify all key stakeholders who will be impacted by the goals, and to consider 
their expectations in the definition process. More details on the rules for goals determination 
can be found in [102]. 

5. Multiple criteria decision analysis (MCDA) 

5.1. Determination of a goal of a decision process 
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The next step is determining the criteria by which the defined alternatives may be assessed. 
Since criteria are derived from the defined goals, like those goals, the criteria can similarly be 
either quantitative or qualitative [100], [102]. When selecting the criteria, practitioners should 
keep in mind the expectations for fulfilling that criteria, in order to satisfy the subject of 
the decision process. In general, criteria creation is a complex task, with no clearly defined 
output, since any set of suitable criteria can vary, depending on timing or the organization’s 
current situation [102]. Multiple attributes may be used to categorize criteria [102]: 

• Number of criteria. A criteria set may consist of one criterion only. Such a set is referred 
to as monocriterial. On contrary, multiple criteria can constitute a set, which is then 
referred to as multicriterial. 

• Type of criteria. Criteria can be either cost- or revenues-related. Depending on whether 
only one type or both types are included in a set, the set can be referred to as 
homogenous or combined, respectively. 

• Character of criteria. Criteria can either substitute for or complement each other. 

• Significance to a subject of the decision process. From the subject’s perspective, 
the decision process criteria may be either different or indifferent, depending on 
the importance the subject places on them. 

Grasseová et al. [102] recommend the following four requirements when defining 
an appropriate set of criteria: 

• Complexity. The proposed set of criteria must provide a complex assessment of 
the defined alternatives. 

• Intelligibility. The criteria need to be clear and measurable. 

• Non-redundancy. The criteria should not overlap each other. 

• Minimalist approach. The number of criteria in a set should be kept as few as possible, 
in order not to complicate the assessment process beyond the number of alternatives 
necessary. 

 

 

5.2. Determination of assessment criteria 
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A subject is defined as a person or a group of persons who selects the winning alternative 
for realization. When the subject is a collective of people (the latter case), it is more complex, 
due to the necessary definition procedures for processing the votes of the deciding body as it 
selects the winning alternative [100]. The decision process must proceed through areas of 
the organization that will be impacted by the decision. 

Alternatives represent groups of activities leading to a decision. The subject of the decision 
process must first collect criteria data on the determined alternatives. A literature review, 
a simulation or the judgment of experts can all be used as information sources [101]. Grasseová 
et al. [102] list the most frequent mistakes practitioners make when defining alternatives: 

• Practitioners focus on one alternative. 

• The alternatives generation process is too simplified; only the usual alternatives are 
considered. 

• The alternatives generation process takes too much time, and the best alternatives are 
no longer available. 

• The alternatives generation process already includes a partial assessment of 
the alternatives, which can reject some alternatives at early stages, without proper 
assessment. 

• The alternatives generation process is ended abruptly, once an alternative that seems to 
satisfy the subject(s) of the decision process is found. 

The collected data, in combination with weighting criteria, then form the basis of 
the decision-making process. The numerically expressed weight of a criterion reflects its 
importance for the subject(s) of the decision process. To simplify working with weights, it is 
recommended that the weights be normalized to result in a sum of 1 or 100.  

The extant literature on MCDA provides multiple criteria weighting methods, which may 
be categorized as either subjective or objective. While the former methods rely on the opinion 
of the decision makers, the latter methods use statistical techniques [101].  

5.3. Determination of the subject and object of the decision process 

5.4. Generation of alternatives 

5.5. Criteria weighting 
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 In [102] the following methods are introduced: 

• A scoring method. 

• A pairwise comparison (Fuller’s triangle). 

• Saaty’s method. 

There are other, popular MCDA methods, such as the Technique for Order of Preference, 
by Similarity to Ideal Solution (TOPSIS), and the Analytic Network Process (ANP), which are 
described in [103]. 

5.5.1. Scoring method 

The scoring method is a type of weighting method in which the decision maker assigns 
a certain score to each of the determined criteria. The maximum score available depends on 
the scale being used. The starting point for scale definition should be the difference between 
the criteria with highest and lowest priority. One variation of the scoring method assumes that 
the scale consists of 100 points, which must be allocated among the criteria. The weight with 
the highest score then has the highest priority [100]. The normalized weights 𝑤" can be 
calculated from the score 𝑣" assigned to 𝑛 criteria by using Eq. (15) [102]. 

𝑤" =
𝑣"

∑ 𝑣"2
"34

 (15)	

5.5.2. Pairwise comparison (Fuller’s triangle) 

Pairs of criteria are compared to quantify preferences. In Fuller’s triangle, the number of 
preferences for each criterion is quantified, in relation to all other criteria. Fotr and Švecová 
[100] recommended using a matrix in which each criterion in a row is compared with a criterion 
in a column. If the criterion in the row is believed to have a higher priority than the criterion in 
the column, the decision maker adds the number one (1) into the cell intersecting the given row 
and column; otherwise, the decision maker enters a zero (0). If two criteria are indifferent, 
a value of 0.5 is entered. The number of cells containing a one (1) in each row is then summed 
and entered in the cell at the end of the row, to arrive at the number of preferences 𝑓" for each 
of the criteria. Normalized weights 𝑤" can be calculated with the use of Eq. (16), where 
the number of preferences of each criterion is increased by one (1), to overcome situations 
where one of the criteria has zero preferences. In such a situation, the weight would equal zero, 
unless each criterion is increased by one [100]. 
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𝑤" =
𝑓" + 1

𝑛 + ∑ 𝑓"2
"34

 (16)	

where, n is the number of criteria, and the number of realized comparisons is expressed in 
Eq. (17). 

j𝑓"

2

"34

=
𝑛(𝑛 − 1)

2  (17)	

In situations where two criteria achieve the same number of preferences, the preference 
selected for this pair decides which criterion scores a higher preference [100]. 

Fotr and Švecová [100] also note some drawbacks to the method, the most important of 
which is (likely) the fact that the method of the pairwise comparison only defines which 
criterion in a pair has a higher priority, but it does not express the size of the preference. This 
limitation is removed by the Saaty’s method, described in Section 5.5.3. However, the Fuller’s 
triangle method is still popular for its reliability and simplicity. 

5.5.3. Analytic Hierarchy Process (Saaty’s method) 

The first portion of Saaty’s method is similar to that of Fuller’s triangle, described in 
the previous section; preferences for each pair-wise combination of the criteria are determined 
in a Saaty matrix. In contrast to Fuller’s triangle, however, the comparison includes the size of 
preferences respecting the defined scoring scale. The authors in [100] propose to proceed in 
the three following steps when creating the scoring scale: 

1. Order the criteria in accordance to priority in a descending order. 

2. Define the range of the scale by defining how many times is the most preferable 
criterion is preferable to the least preferable criterion. 

3. The scale’s end points, determined in the preceding step, then define an interval which 
does not need to be an integer. 

Approximation can subsequently be used to determine the values of the weights 𝑤!; 
The authors in [100] distinguish between two approaches, based on their accuracy: 

• The less accurate method involves division of the sum of values in a given row by 
the sum of all values in the matrix. 
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• The more accurate method is based on a geometric mean GM of the rows in the Saaty 
matrix. The resulting geometric means are not normalized; thus, normalization needs 
to occur before using the weights. 

When the subject of the decision process is a group of people and not just one individual, 
the aggregated weight 𝑤" of a criterion j can be calculated as the geometric weighted mean 
𝐺𝑊𝑀" of the individual weights 𝑤"&, as shown in Eq. (18) [104]:  

𝑤" = 𝐺𝑊𝑀" =~u𝑤"&v
;!

2

&34

 (18)	

where, 𝑤& is a weight of expert e, and 𝑤"& is priority of criterion j from the point of view of 

the expert e. Here, it is assumed that the experts are not equally important; thus, the weights 
𝑤& of all n experts must be determined in the first step. It must hold that ∑ 𝑤&2

&34 . Either 
the weights can be assumed to be equal, or they can be estimated by a supra decision-maker 
[104]. 

If m alternatives 𝐴!, and 𝑛 criteria 𝐶" have been defined, it is possible to build the decision-
making matrix shown in the Eq. (19) [101]: 

𝐶4 ⋯ 𝐶2 
𝐴4
⋮
𝐴0

�
			𝑥44 ⋯ 𝑥42									
⋮ ⋱ ⋮

			𝑥04 ⋯ 𝑥02									
� 

				𝑤4 			…				𝑤2 

(19)	

where, 𝑥!" is the data of the j-th criterion 𝐶", related to the i-th alternative 𝐴!, and 𝑤" is 
the criteria weights of the j-th criterion 𝐶". 

Fotr and Švecová [100] introduce several simple scoring and ranking methods that differ 
in the extent to which they are suitable for quantitative and qualitative criteria.  

  

5.6. Creation of a decision-making matrix 

5.7. Scoring and ranking 
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Among the simple methods applicable to qualitative criteria, the following two methods can 
be applied: 

• Weighted order method (Section 5.7.1) 

• Direct assessment method (Section 5.7.2) 

Another group of scoring and ranking methods that can be used for qualitative criteria is 
a group of methods based on pair-wise comparison of alternatives. This group includes 
the Saaty’s method, which is analogous to the Saaty’s method used for criteria weighting 
described in Section 5.5.3. This method will be described further in Section 5.7.3. 

The three mentioned methods calculate ranking of an alternative as a weighted sum of 
individual rankings of the alternative for all criteria, as expressed in Eq. (20) [100]: 

𝑍! =j𝑤" × 𝑧"!
2

"34

 (20)	

where, 𝑍! is a total score of the i-th alternative, n is the number of criteria, 𝑤" is the weight of 

j-th criterion, and 𝑧"! is the score of the i-th alternative, in relation to the j-th criterion. The i-th 

alternative scoring the highest number of points 𝑍! is determined as the optimal alternative to 
pursue.  

If multiple experts are considered, the geometric weighted mean can be used to aggregate 
the individual scores [104], as expressed in Eq. (21): 

𝑧"! = 𝐺𝑊𝑀"! =~u𝑧&,"! v
;!

2

&34

 (21)	

where, 𝑧&,"!  is the score of the i-th alternative, in relation to the j-th criterion, as valued by the e-

th expert. The scores 𝑧"! must be subsequently normalized, so that ∑ 𝑧"!2
&34 = 1. 

5.7.1. Weighted order method 

In this method, preference of an alternative in relation to a single criterion is expressed to 

identify the most preferable alternative in relation to all criteria. The score 𝑧!
" of the i-th 

alternative in relation to the j-th criterion is determined, as expressed in Eq. (22) [100]: 

𝑧!
" = 𝑚 + 1 − 𝑝"!  (22)	

where, 𝑝!
" is the order of the i-th alternative in relation to the j-th criterion. 
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This method can be inaccurate, because it assesses only the order of alternatives in respect 
to a single criterion, and it does not consider the exact values of the criteria. For this reason, 
the method is recommended for MCDA with qualitative criteria [100]. 

5.7.2. Direct assessment method 

The direct assessment method places high demands on the person assessing the proposed 
alternatives, since this individual assigns scores directly to the alternatives. For this purpose, 
a scoring scale is established—a scale which can range, for example, from 1 to 10 points, or 
from 1 to 100 points—where the higher, the score the better the result. The decision maker 
proceeds through all the alternatives one by one, and assigns a score to the alternatives in 
respect to each criterion. An appropriately determined scale enables assessment of 
the respective alternatives’ priorities in a more accurate way than the previous, weighted order 
method, which considers only the order of the alternatives [100]. 

5.7.3. Analytic Hierarchy Process (Saaty’s method) 

Saaty’s method for ranking of alternatives is analogous to Saaty’s method for criteria 
weighting, as described in Section 5.5.3. The only difference is the object of comparison. 
Saaty’s matrix is created for each of the defined criteria to carry out pair-wise comparison. All 
available combinations of alternatives are created, covering all pairs of alternatives, and 
subsequently, the alternatives are compared in the pairs in an effort to define which of 
the alternatives have higher priority in relation to a given criterion [100]. 

A scoring scale can be determined for Saaty’s method, similar to the scale used for criteria 
weighting, by applying the three-step procedure. Thus, Saaty’s method can be used effectively 
for both criteria weighting and ranking of alternatives.  
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This project asks the following research questions: 
 
Q1: “Can ROA be recommended as an extension of the traditional DCF method for 
valuation of investments in BESS projects?” 
 
Q2: “What is the impact of initial capital cost on dispatch of the battery, and on 
the resulting value of the investment?” 
 
Q3: “What assessment criteria can be used for selection of ROA method used for capital 
investment valuation of BESS project out of the existing ROA methods?” 
 

The main goal of this dissertation is the creation of an ROA-based framework for 
advanced capital investment valuation of BESS projects. 
To meet this goal, the following sub-goals are considered: 

• Create an optimization program for a dispatch of BESS to maximize the NPV of 
the investment, which can then be used as one of the inputs for ROA. 

• Consider popular ROA methods in the proposed valuation framework and provide 
a method for selecting the suitable method for valuation of a BESS project, based on 
specific valuation requirements. 

• Verify functionality of the created framework through its application to a real-world 
business case. 

  

6. Goals 

6.1. Research questions 

6.2. Goals of the dissertation 
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The author defined the three hypotheses below to be accepted or rejected, based on 
the study’s findings: 
 
H1: The traditional DCF method undervalues investments in BESS projects, but results 
can be improved by applying ROA to value the uncertainty and flexibility inherent in 
these types of projects. 
 

The uncertainty stems from the characteristics of day-ahead prices for electricity, which 
make it difficult to predict future project cashflow. Similarly, the cost of a battery can be 
considered a stochastic variable. Flexibility is provided by the decision-maker’s ability to make 
changes to a project, in various phases of the project’s life.  

To evaluate the hypothesis H1, a comprehensive literature review is conducted to examine 
existing research on the valuation of BESS projects. Secondly, a case study analysis is 
undertaken to assess the practical implications of the hypothesis. 
 
H2: Including the battery cost in the optimization program will significantly improve 
quality of the battery dispatch, which results in an improved NPV of the investment. 
 

DCF is still considered an important part of the capital investment valuation process, 
which affects the final value calculated by ROA. Thus, the quality of calculation of NPV is 
an important factor in this dissertation. 

To evaluate the hypothesis H2, sensitivity of the developed dispatch model to battery cost 
is assessed in the case study. The model's sensitivity to cost variations is assessed by analyzing 
changes in the optimized dispatch decisions and the resulting NPV of the investment. By 
evaluating how the MILP model performs under different cost scenarios, the study aims to 
provide empirical evidence regarding the impact of battery costs on the quality of dispatch 
optimization and investment profitability. 

 
H3: Selection of a ROA method for a BESS project is a complex process that should be 
based on clear decision criteria, maximizing the probability that decision makers will 
accept the method’s results. 
 

There are multiple ROA methods available for valuation of real options. Selecting a ROA 
method suitable for BESS valuation is not a straightforward task, and it impacts the quality of 
a project’s valuation. 

6.3. Author’s Hypotheses 
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To evaluate the hypothesis H3, a comprehensive literature review is conducted. This helps 
to gather knowledge and insights on the current ROA methods and specifics of BESS projects. 
Assumptions on which the existing ROA methods are based should be compared with 
the identified specifics, to define a set of assessment criteria, which would help facilitate 
the selection process, and provide decent valuation of the project. Acceptance of the proposed 
assessment criteria is tested during MCDA in which the criteria are shared with subject-matter 
experts. 

This dissertation employs both qualitative and quantitative data. The qualitative secondary 
data was collected in the form of literature review. Quantitative primary data came from 
EXAA, which is used as the source for day-ahead prices of electricity [17]. The main research 
methods of the present study are a literature review, experiment, and case study.  

In the experiment, causation between project value as a dependent variable and  
independent variables, such as battery parameters or electricity prices, are examined. 
An important part of the experiment is an optimal dispatch of the battery, an optimization 
problem which is defined as an MILP model. The model is solved with the use of PuLP library 
in Python, a programming language (which is also used for all simulations in the Section 11). 

The literature review provides an overview of the existing methods and gaps in 
the research field, analyzing and synthesizing the collected scholarship in the context of 
the present study. 

Case study methodology is used not only to demonstrate the functionality of the proposed 
valuation framework with real-world data, but also to help answer the defined research 
questions. Case study methods provide in-depth understanding of the implications that initial 
battery costs have for project value. 
This dissertation uses the following research methods: 

• Analysis. 

• Synthesis. 

• Induction. 

• Deduction. 

• Comparison. 

• Analogy. 

6.4. Methods of Research 
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The DCF method is perceived as the cornerstone of the valuation framework, and as a key 
input of ROA. A robust MILP model-solving dispatch problem for BESS is described in 
Section 8. The MILP model is developed within two scenarios: the first maximized net 
cashflow generated by BESS without considering the degradation process of the battery; 
the second MILP model improved on this scenario by incorporating the degradation process 
into the model. The dispatch model becomes more selective, which is expected to be reflected 
positively in the resulting NPV. 

Components critical for ROA applied to BESS projects, such as important models 
explaining behavior of spot price of electricity, are analyzed in Section 9. 

The key component of MCDA in this thesis is my proposed list of assessment criteria in 
Section 10, which has been designed specifically for BESS projects. ROA practitioners are 
encouraged to use these criteria when valuing a BESS project in order to apply the most 
appropriate ROA model.  

To verify functionality of the developed valuation framework, Section 11 defines the case 
concept. Applying the model to real-world business requires considering an investment in grid-
scale lithium iron phosphate (LiFePO4) batteries, which enable not only testing of all processes 
and sub-processes of the valuation framework, but also help answer my research questions, and 
determine the acceptance or rejection of the defined hypotheses. 
  

6.5. Structure of Part II  
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PART II 

BESS Valuation Framework 
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As described in the Section 1, BESS can be used for multiple purposes, and depending on 
the exact purpose, the required characteristics of BESS can vary. Regardless of the purpose, 
revenues generated by BESS typically depend on the price of electricity, which can be 
classified by the market on which the electricity is traded. 

Accordingly, the investment in BESS faces high uncertainty: i.e., the revenues generated 
by the BESS can fluctuate significantly, depending on price variance. Similarly, the cost of 
the battery can be considered as a stochastic variable. Still, BESS projects can offer high 
flexibility; not only can management adjust the BESS project as new information arrives, its 
modular design adds extra flexibility.  

 
Fig. 4. BESS Valuation Framework: (a) High-level view of the valuation framework; (b) ROA process in 
detail. 

7. Introduction of the BESS Valuation Framework 
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Traditionally, energy assets have been valued with the use of the DCF method, which is 
popular for its simplicity and transparency. The expected future cashflow is discounted with 
the interest rate to receive a present value, and compared with a capital outlay. 

Traditional capital investment appraisal methods, including the DCF (and the above-
mentioned NPV and IRR), do not properly recognize uncertainty and flexibility properties. 
ROA addresses both uncertainty and flexibility, and values a project accordingly. Because 
ROA can be perceived as an extension of the DCF method, both the DCF and ROA methods 
are analyzed for the use of valuation of BESS projects, and both are integrated in the proposed 
valuation framework depicted in Fig. 4a. The valuation framework consists of two processes, 
DCF and ROA. The DCF process based on MILP model is described in Section 8. The ROA 
process depicted in Fig. 4b consists of the sub-process Option Valuation (described in 
Section 3), the sub-process Project Uncertainty Determination (described in the Section 9), and 
the sub-process MCDA (described in Section 5) leaning on the assessment criteria proposed in 
Section 10. 
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The BESS dispatch problem is solved with the MILP model developed by Hurta et al. 
[105]. The novelty of the model lies in the way it balances the maximization of net cashflow 
from arbitrage with battery degradation. It considers both cycle and calendar degradation 
induced by the operation. The construction of the model allows for an analysis of 
the relationship between DOD and NPV to identify the optimal DOD that results in 
the maximization of NPV for the BESS dispatch. 
The MILP model is based on the following assumptions: 

• No O&M costs. 

• No taxation. 

• No costs related to the land used for the BESS. 

• No transaction costs. 

• No external limits on the exchange between BESS and the electrical grid. 

• Zero BESS salvage value. 

• No temperature control system required. 

Hurta et al. [105] developed the MILP model in two scenarios; in the first scenario, 
the MILP does not include a battery degradation process, which is reflected negatively in 
the resulting NPV. The incorporation of the battery degradation process in the second scenario 
enabled the authors to find a balance between net cashflow and battery loss, which significantly 
improved the investment valuation result.  

The first part of the model to maximize net cashflow from the operation of a BESS, 
described by Hurta et al. [105], is expressed in Eqs. (23)-(33). 

Eq. (23) maximizes the differences between cash inflow and cash outflow; cash inflow is 
provided by injecting the amount of energy 𝑃+,-(𝑡) at the price 𝑆(𝑡) into the grid. On the other 
hand, cash outflow equals the amount of energy taken from the grid, multiplied by the spot 
price 𝑆(𝑡). 

8. BESS dispatch problem – MILP model  

8.1. Scenario 1 – BESS dispatch not constrained with battery degradation 
cost 
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𝑀𝐴𝑋HI𝑆(𝑡) × L𝑃,-$(𝑡) − 𝑃./(𝑡)MN
$

)0!

	 (23)	

The power inflow 𝑃)*(𝑡) and power outflow 𝑃+,-(𝑡) cannot exceed the rated power of battery 
𝑃#$%, as ensured by the conditions in Eqs. (24)-(25). The binary variables 𝑥(𝑡) and 𝑦(𝑡) are 
introduced in Eq. (26) to avoid situations when the battery would be charged and discharged at 
the same time, which is not considered as feasible given the current technology available on 
the market [105]. 

0 ≤ 𝑃./(𝑡) ≤ 𝑃123 × 	𝑥(𝑡)	 (24)	

0 ≤ 𝑃,-$(𝑡) ≤ 𝑃123 × 𝑦(𝑡)	 (25)	

𝑥(𝑡) + 𝑦(𝑡) ≤ 1	 R 𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔:	𝑥(𝑡) = 1, 𝑦(𝑡) = 0
					𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔:	𝑥(𝑡) = 0, 𝑦(𝑡) = 1	 (26)	

Eq. (27) ensures that the battery’s level of charge C(t) is neither negative nor exceeds its rated 
capacity, C=>?. 

0 ≤ 𝐶(𝑡) ≤ 𝐶123	 (27)	

The level of charge 𝐶(𝑡) of the battery is brought into relation with the power inflow 𝑃)*(𝑡) 
and power outflow 𝑃+,-(𝑡) in Eq. (28): 

𝐶(𝑡) − 𝐶(𝑡 − 1) = L𝑃./(𝑡) × √𝜀M + I𝑃,-$(𝑡) × L√𝜀M
"!
N , 𝑤ℎ𝑒𝑟𝑒, 𝑡 ∈ [2, 𝑇]		 (28)	

where, ε stands for the round-trip efficiency of the battery. 
Eq. (29) ensures that the BESS’s level of charge 𝐶(𝑡) is 0 at the beginning of the operation; 

thus, the first operation of the battery is charging.  

𝐶(1) = 0	 (29)	

In the next step, the DCF method is applied to calculate the NPV of the investment, as 
expressed in Eq. (30): 

𝑁𝑃𝑉 = −𝐶𝐹(0) +H
𝐶𝐹(𝑡)
(1 + 𝑟))

$

)0!

		 (30)	

where, r is the discount factor. 

The method takes the net cashflow 𝐶𝐹(𝑡) described in Eq. (31) as an input.  
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𝐶𝐹(𝑡) =HI𝑆(𝑡) × L𝑃,-$(𝑡) − 𝑃./(𝑡)MN
$

)0!

	 (31)	

The calculation of the initial capital outlay 𝐶𝐹(0) is expressed in Eqs. (32)-(33). To calculate 
the number of theoretical cycles	 𝑁𝑜𝐶(𝑇) performed within Δ𝑇, there are well established 
methods such as the average equivalent full cycles method or the rainflow method [106]. 
The approach in Eq. (33) calculates the number of theoretical cycles as the sum of energy 
charged and discharged, normalized by the available maximal battery capacity. Compared to 
the two above mentioned methods, this approach does not convert the theoretical cycles to 
equivalent full cycles, neither it counts explicitly the charge/discharge cycles. It is 
characterized by simplicity, at the same time enabling analysis for a selected DOD. 

𝐶𝐹(0) = 𝐼	 × 𝑀𝐴𝑋 7
𝑇
𝑅𝐿 ,

𝑁𝑜𝐶(𝑇)
𝐶𝐿 8	 (32)	

𝑁𝑜𝐶(𝑇) =
∑ eL𝑃./(𝑡) × √𝜀M + I𝑃,-$(𝑡) × L√𝜀M

"!
Nf$

)0!

2 × 𝐶123 × 𝐷𝑂𝐷
	 (33)	

where, I is the investment cost, RL is the battery calendar life, CL is the battery cycle life, and 
DOD is the depth of discharge of the battery. 

Battery degradation is an inevitable process. Once battery capacity drops to 80% of 
the nominal value, the battery is considered at the end of its life [107]. Without considering 
battery aging, they would be deployed in an excessive manner, exploiting small price 
differences, which would not justify the battery life loss caused by the arbitrage [105]. Battery 
life can be expressed either in years or cycles. A lithium-ion battery has typically a lifetime of 
between 10 and 15 years [19], a term not conditional on battery use, and thus corresponding to 
fixed costs. 

BESS management is not the only determinant of a battery life. There are other factors, 
such as ambient temperature and cumulative usage time, which are difficult to control [108]. 
Among the influenceable factors, the battery’s depth of discharge (DOD) is a critical parameter 
of the deployment strategy, as DOD is a determinant of battery life.  

Omar et al. [109] used a least-square fitting method on empirical data to capture 
the relationship between DOD and cycle life of a LiFePO4 battery. As can be seen in Fig. 5, 
the relationship between battery life and DOD is exponential. While a deployment strategy 
based on 100% DOD enables completion of only 2600 cycles, flat cycles provided by 20% 

8.2. Scenario 2 – BESS dispatch constrained with battery degradation cost 
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DOD increase the number of cycles to as many as 34957. Given that the function is exponential, 
one could assume that a deployment strategy using 20% DOD would provide operation with 
the highest NPV. However, there are two reasons why this does not necessarily apply. First, 
there is still the burden of fixed costs stemming from battery calendar life, costs weighing down 
the BESS operation. Put simply, the BESS should complete all the cycles within its calendar 
life, otherwise each unused cycle embodies lost opportunity, decreasing NPV generated by 
the BESS. The second reason may be less intuitive; price arbitrage uses a simple algorithm: 
energy is purchased at a time of low price, to be subsequently sold at a time of high price. If 
one theoretical cycle consists of one charging sequence and one discharging sequence, then we 
require that the number of charging/discharging sequences equals roughly one cycle life [105]. 
When we put these figures together, then: assuming a 20% DOD, 34957 cycles should be 
completed within 15 years. If we assume that with each charging/discharging sequence, 
the capacity of battery is charged/discharged fully, in order to maximize the profit, this process 
requires 34957 peak periods and 34957 off-peak periods within 15 years.  

According to Kovacevic et al. [110], there are typically between one and two peaks in 
the spot prices of electricity every day, depending on the season. This is in line with findings 
of Hurta et al. [105], who identified two peaks per day in day-ahead prices. If we return to our 
example and assume two peaks per day in day-ahead market prices, then within the calendar 
life of 15 years, there will be 10950 periods of high prices which can be used for discharging 
the battery. Given that the battery requires more than three (3) times that many discharging 
modes, the battery must also be discharged between peaks. However, this means that the profit 
realized from the additional cycle must exceed the lost caused by not completing the previous 
cycle during the daily maximum. Hurta et al. [105] concluded that the highest NPV was 
generated by a dispatch pattern with DOD set to 60%, since, out of the all DOD rates 
considered, the projected battery life of 10019 cycles is closest to the target number of 10950: 
specifically, 20%, 40%, 60%, 80% and 100%. 

In order to better analyze the effects of changing DOD over variable costs of the battery, 
it is possible to use the cost of the cycle COC and the levelized cost of the storage LCOS, as 
defined in Eqs. (34) and (35), respectively [111]: 

𝐶𝑂𝐶 =
𝐶𝐹(0)
𝐶𝐿 	 (34)	

where, 𝐶𝐹(0) is the initial capital cost and CL is the cycle life of the battery. 

𝐿𝐶𝑂𝑆 =
𝐶𝐹(0)

𝐶𝐿 × 𝐶123 × 𝐷𝑂𝐷 × 𝜀
	 (35)	

where, 𝐶#$% is the rated storage capacity and 𝜀 is a round-trip efficiency of the battery. 
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Fig. 5. Exponential relationship between the DOD and CL of the LiFePO4 battery [109]. 

Table 3 shows values of COC and LCOS for different DOD, assuming a 1MWh LiFePO4 
battery, where 𝐶𝐹(0) is 100000 USD, 𝜀 is 0.9604, and the EUR/USD exchange rate is set to 
0.86. 

Table 3. CL and COC of 1 MWh LiFePO4 battery. Source: [105]. 

DOD 
[%] 

CL 
[cycles] 

COC 
[EUR/cycle] 

LCOS 
[EUR/MWh] 

100 2600 35.66 43.17 

80 3221 28.78 43.56 

60 10019 9.25 18.67 

40 19985 4.64 14.04 

20 34957 2.65 16.05 

The difference between COC and LCOS is striking, for a battery with DOD set to 100% 
and 20%. Also, we can see that the cost of storage of 1 MWh varies minimally for DOD, in 
the range between 60% and 20%. This means that the highest NPV is generated using 
a dispatch strategy with a DOD set to 60%, as Hurta et al. [105] concluded.  

To include the degradation process of the battery in the MILP model, the objective 
function from the Scenario 1 shown in Eq. (23) is extended with the initial capital cost 𝐶𝐹(0) 
and the rate of degradation 𝜑, as shown in Eq. (36) [105]. 
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𝑀𝐴𝑋HI𝑆(𝑡) × L𝑃,-$(𝑡) − 𝑃./(𝑡)MN
$

)0!

− 𝐶𝐹(0) × 	𝜑	 (36)	

Battery life loss must reflect both the fixed costs arising from continuous, calendar aging, 
as well as variable-cycle aging, conditional on the intensity of operation; both are incorporated 
with the variable 𝜑, expressed in Eq. (37). While the former depends on the total time of 
operation Δ𝑇 and the calendar battery life RL, cycle aging tracks the number of theoretical 
cycles 𝑁𝑜𝐶 completed within the operation time Δ𝑇, out of the cycles CL, which constitute 
the total life of the battery [105]. 

𝜑 ≥ 𝑀𝐴𝑋 7
𝑇
𝑅𝐿 ,

𝑁𝑜𝐶(𝑇)
𝐶𝐿 8	 (37)	

	

DOD sets the lower boundary of the battery’s permissible level of charge 𝐶(𝑡), as defined 
by Eq. (38) [105]. 

(1 − 𝐷𝑂𝐷)𝐶123 ≤ 𝐶(𝑡) ≤ 𝐶123	 (38)	

The remaining constraints from Scenario 1 are unchanged.  
Applying the defined MILP problem to longer periods ∆𝑇 can require long computation 

times. One option for overcoming this problem, and for shortening the computation time, is 
dividing the MILP problem into a series of MILP sub-problems, as described by Metz and 
Saraiva [22], and applied by Hurta et al. [105]. The sub-problems overlap each other, and 
the overlapping window	𝜔 provides the necessary outlook into prices for the next sub-problem. 
Hurta et al. [105] recommend deriving the length of the window from a combination of market 
properties and battery properties. By performing a test run on a shorted MILP problem, 
the optimal window length can be determined within acceptable error boundaries.  

The MILP problem is divided into DT/m MILP sub-problems of the length D𝑡 = 𝑚 + 𝜔, 
where 𝑚 stands for the number of time points used for the subproblem [105]. The resulting 
MILP sub-problems cannot be solved completely in isolation; the level of charge 𝐶(𝑡) at 
the end of each sub-problem needs to be provided as an input for the next sub-problem, as 
follows: 𝐶(𝑚) = 𝐶(𝑚 + 1),	𝐶(2𝑚) = 𝐶(2𝑚 + 1), ... [105]. 
Ignoring the stored energy at the end of each sub-problem would otherwise lead to 
underestimation of the project value. 
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In Hurta’s [112] review, GBM and MRM were identified as the most popular models to 
explain the behavior of a spot price of electricity, when ROA is applied. Price and volatility of 
asset were found to be critical for ROA, when applied to BESS projects. These will be analyzed 
as follows: 

• Price of asset 

o GBM 

o MRM 

o Spot price of electricity – empirical evidence 

• Volatility 

o Historical 

o (G)ARCH 

o Volatility proxy 

o Implied volatility 

o Educated guess 

Geometric Browning Motion (GBM) is popularly used to explain movements on stock 
markets, but the motion also laid the groundwork for options theory, which used the concept 
to construct major valuation models. In fact, GBM is the most frequently used stochastic 
process in ROA [113]. As discussed in Section 3.2.1, BSM assumes the underlying asset 
follows GBM. CRRM uses a binomial distribution, but as the number of time steps grows, it 
approximates GBM as well. Thus, understanding GBM is a prerequisite for a successful 
application of ROA. 

GBM 𝐺(𝑡), followed by a spot price 𝑆(𝑡), is expressed in Eq. (39). It describes the return 
that an asset with the price S provides in a very short time. The right side of the equation consist 
of two terms: the is the expected value of the return, and the second is a stochastic component 
[60]. 

The exponential relationship between the GBM 𝐺(𝑡) and Brownian motion 𝑊(𝑡) is shown 
in Eq. (40) [114], [115]: 

9. Components critical for ROA applied to BESS projects 

9.1. GBM 
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𝑑𝑆(𝑡)
𝑆(𝑡) = 𝜇𝑑𝑡 + 𝜎𝑑𝑊(𝑡)	 (39)	

𝐺(𝑡) = 𝑒4())	 (40)	

where, 𝜇 is a drift parameter and 𝑊 is the Brownian motion. 
GBM is an exponential lognormal process, growing at the rate 𝜇 + 𝜎/2 [115]. Because 

GBM is an exponential function, it can take positive numbers only, unlike the standard 
Brownian motion [115]. This is especially desirable in a stock market that does not allow for 
negative values, but can be less desirable in ROA. 

The model is a Markov process; the next step depends on the current step only, so 
the history of the process has no relevance to its future development [113]. 

As can be seen in Eq. (39), volatility is assumed to be constant. As mentioned above, this 
can be limiting in ROA, because volatility of project’s revenues can vary. 

To demonstrate some of the above-mentioned properties of GBM, MCS is used to simulate 
10000 random paths following GBM. The result is plotted in the Figs. 6-7. Both simulations 
start at the value of 20. The first example uses a higher volatility of 29.26 to show that 
the model can simulate positive values only. This is obvious, especially in Fig. 6b, with 
the distinctive cut-off at 0. The simulation in Fig. 7, on the other hand, has volatility set to 5.39, 
which ensures that the histogram in Fig. 7b already resembles a lognormal probability density 
function, with its distinctive right tail. The exponential growth can be observed in both Fig. 6a 
and Fig. 7a. 

 
Fig. 6. 10000 paths generated by MCS, assuming GBM expressed in Eq. (39) as the underlying process, 
where 𝜎 is 29.26: (a) Plot of 10 samples; (b) Histogram of the distribution of 10000 paths with a distinctive 
cut-off at 0, caused by the log-normal property. 
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Fig. 7. 10,000 paths generated by MCS assuming GBM expressed in Eq. (39) as the underlying process, 
where 𝜎 is 5.39: (a) Plot of 10 samples; (b) Histogram of the distribution of 10,000 paths, with the distinctive 
right tail. 

GBM is not only used as an assumption in major real options valuation methods, but also 
as an explanation of the movement of the spot price of electricity, as reviewed by Hurta [112]. 

MRM is one of the most popular models used for electricity prices [112], [116]. Popular 
MRM is the Ornstein-Uhlenbeck (OU) process described by Ornstein and Uhlenbeck [117] 
and Vasicek [118]. It describes a situation when a stochastic price fluctuates around its mean. 

OU process can be expressed in the form of the stochastic differential equation in Eq. (41) 
[119]: 

𝑑𝑆(𝑡) = 	𝛼L𝜇 − 𝑆(𝑡)M𝑑𝑡 + 𝜎𝑑𝑊(𝑡)	 (41)	

where, 𝛼>0 is the speed of reversion at which price 𝑆(𝑡) converges to its long-term value 𝜇, σ 
is a constant volatility, u𝜇 − 𝑆(𝑡)v is a drift component, and 𝑑𝑊(𝑡) is the Brownian motion. 

As shown in Fig. 8, the numbers generated by the OU process can be both positive and 
negative, standing in contrast to GBM, which allows for non-negative numbers only. 

9.2. MRM 
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Fig. 8. 10000 paths generated by MCS assuming OU process expressed in Eq. (33) as the underlying process, 
where 𝜎 is 20.14: (a) Plot of 10 samples; (b) Histogram of the distribution of 10000 paths. 

Either the maximum likelihood estimation or the least-square estimation can be used for 
estimating the parameters of the OU process. Time series can be tested for stationarity and for 
presence of the mean-reversion effect by using the unit root test.  

Another possibility is to use the property of MRM, which says that the variance of returns 
grows as a function of time. While this property holds for MRM, it does not for a random walk, 
a fact which is used in the construction of the variance ratio test. Variances of two time periods 
are compared. A variance equaling one means reject the random walk hypothesis [120]. 

Some authors believe the mean-reverting jump-diffusion model (MRJM)—a combination 
of MRM and jumps—captures the empirical properties of energy prices even better. As a result 
of demand shocks, energy commodities prices often experience rapid price changes, followed 
by mean reversion, which can be better modelled with MRJM than MRM [60]. However, as 
the review carried out by Hurta [112] shows, MRM has a strong place in ROA. The present 
work follows the findings of the review and uses the standard MRM.  

A majority of researchers model fuel prices as MRM. However, this model cannot be used 
as a rule; the process describing the same type of fuel prices can change from MRM to GBM—
and vice versa—as time passes [121]. A low speed of mean reversion and constant implied 
volatility can be seen as indicators that a random walk (rather than an MRM) will not lead to 
considerable errors in the valuation process. This holds, even if unit root tests and variance 
ratio tests confirm a mean-reversion effect in the prices [122].  

It is also important to consider the different treatment of negative prices in the models. 
While it is desirable in stock markets not to allow for negative prices, the same conditions can 
be less realistic in energy markets [123]. 
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The profitability of investments in a BESS used for price arbitrage is strongly determined 
by the properties of the input prices. It is necessary to understand empirical properties of 
electricity price, to compare these with the assumptions made in real options valuation 
methods, and to evaluate the expected accuracy of the methods.  

Electricity is part of the commodities asset class, which has properties distinctive from 
equities (including stocks), an important fact to highlight, since stocks are the asset type used 
to create the major real options valuation methods, such as the BSM. Thus, applying 
the methods of real assets to the electricity price can risk a serious departure from the original 
assumptions, and impact the credibility of the entire valuation method. 

Spot prices of commodities have the following empirical properties [119]: 

• Mean reversion with a seasonal central tendency. 

• Heteroscedasticity. 

• Jumps. 

• Seasonality—not only in spot prices, but also in volatility of the prices. 

Electricity stands out among other commodities because of its non-storability. While crude 
oil or natural gas can be kept in storage facilities, electricity cannot be stored directly. As 
a result, electricity cannot be held as an investment. Instead, it must be consumed immediately, 
so the spot price of electricity is considered a consumption good, instead. This classifies 
electricity as a non-asset, rather than an asset. The spot price of electricity is determined not 
only by an immediate demand, but also by location [119]. 

When it comes to an electricity price, it can be distinguished between a spot price, 
a forward price, and a futures price. Spot price can be defined as a t+1 price, determined in 
a day-ahead market. Market participants ask for available trading products (15-min blocks, 60-
min blocks, multiple-hour blocks, etc.) for the following day(s), and send their bids to 
an auction, where these are matched using the merit order to set the price. The differences 
between the settled volume and the actual supply and demand are covered by the intraday 
market, on which trading takes place immediately after the closing of the day-ahead auction 
[17]. The intraday market acts as a correction market, removing imbalance from the market, 
caused by inaccurate forecasts. To set the price, the intraday market does not use a clearing 
price but the first-come, first-serve principle [124].  

A special type of electricity-regulating market is the balancing market. The market’s 
objective is to process imbalances from the previous 24 hours. The transmission system 
operator is the only participant on the supply side who participates in the market, with the goal 

9.3. Spot price of electricity – empirical evidence 
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to reach a balance in the electricity grid [125]. The intraday market is smaller than the day-
ahead (spot) market, but it can provide higher revenues from the arbitrage. Some authors 
recommend participation in the balancing market to improve on a negative economic result 
from arbitrage performed in the spot market [22, 28]. 

In addition to a spot price, settled on a day-ahead market, there are forward and futures 
prices, settled on derivative markets. These are long-term contracts used by speculators or 
hedgers. Both forwards and futures electricity price contracts are fixed at current time t for 
delivery at a future time T. While forwards are settled at OTC markets, futures are standardized 
contracts traded on specialized energy exchanges. In essence, both types of contracts are 
similar, but the non-standardization of forwards enables it to meet the specific requirements of 
a counterparty by customizing the trade. 

Prices of derivatives such as forwards and futures are derived from their underlying asset. 
Compared to spot prices, they have distinctive properties and dynamics, which are beyond 
the scope of the present work.  

The spot price of electricity can vary not only in accordance with the location and time of 
delivery, but also in accordance with the origin of the electricity. In addition to the electricity 
generated by non-specified energy sources, the energy exchanges also trade electricity 
generated by RIS, which is referred to as green electricity. On the contrary, electricity from 
conventional energy sources is labelled as gray [17].  In 2012, EXAA became the first 
European energy exchange which offered trading of green energy, which is certified with 
the European Energy Certificate System (EECS), guaranteeing its origin [126]. Fig. 9 captures 
the substantial differences in price between green and gray energy.  

It is clear from Fig. 9 that the price of gray electricity traded negatively many times within 
the time period analyzed. In September 2008, the European Energy Exchange (EEX) was 
the first European energy exchange allowing negative prices [123]. Negative prices occur in 
situations where supply is higher than demand, and a supplier prefers to pay the price rather 
than shut down the generation unit. The supplier can do so for the following reasons [127]: 

• Technical constraints prohibiting the supplier from decreasing output. 

• Anticipation of higher prices in a short future, in a combination with a long process for 
changing output. 

• Bilateral purchase contracts are not impacted by the wholesale price of electricity. 

• Regulation of utilities. 

• Production incentives. 
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Fig. 9. Spot price of electricity generated by conventional and renewable energy sources: (a) Hourly 
contracts on gray electricity for the German (DE) market in the long term (1 October 2019–30 September 
2020); (b) Hourly contracts on gray electricity for the German (DE) market in the short term (1 June 2020–
31 August 2020); (c) Hourly contracts on green electricity for the German (DE) market in the long term 
(1 October 2019–30 September 2020); (d) Hourly contracts on green electricity for the German (DE) market 
in the short term (1 June 2020–31 August 2020) [112]. 

Volatility 𝜎 is a key parameter determining the value of a real option. The higher 
the volatility, measured as a standard deviation of underlying real asset’s revenues, the higher 
the option value. 

Volatility of commodity returns present some specific behavior, such as [128]: 

• Changes in time 

• Conditionality on previous returns 

• Clustering 

• Mean reversion 

If we assume the price of a commodity such as electricity as a key determinant of 
the project’s revenues, we can expect these properties to be translated into the project’s 
volatility. 

The above properties are not always recognized in option-valuation models, which are 
built on simplified assumptions. In BSM, volatility 𝜎 is necessary to quantify the parameters 
𝑑4 and 𝑑5 in Eqs (8)-(9). Here it is assumed that volatility is constant. In CRRM, knowledge 

9.4. Volatility 
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of volatility is required to calculate the rate of up and down movements, as expressed in Eqs. 
(10) and (11), respectively. The rate of the movements can be adjusted within any time step, to 
account for changes in volatility. Nor can volatility be avoided in MCS, when GBM or MRM 
are used for modelling of the stochastic process, as can be seen in Eqs. (39) and (41). 

While other input parameters in the option models are, in general, easy to acquire, this is 
not the case with volatility. With its significant impact on an option value, incorrect 
determination of volatility can result in undermining the whole valuation framework, which 
can jeopardize the acquisition of buy-in from decision makers. 

In order to quantify the future volatility, the following approaches can be used: 

• Historical volatility (Sub-section 9.4.1) 

• (G)ARCH (Sub-section 9.4.2 and Sub-section 9.4.3) 

• Volatility proxy (Sub-section 9.4.4) 

• Implied volatility (Sub-section 9.4.5) 

• Educated guess (Sub-section 9.4.6) 

9.4.1. Historical volatility 

A time series of historical volatility is used, with the expectation that historical changes in 
prices can also explain future volatility. Simple models and metrics can be used, including 
a random walk, the historical average, the moving average, or the exponential weighted moving 
average. 

This work employs a logarithmic returns approach to determine volatility from historical 
prices; standard deviation of the natural logarithm of returns 𝑟(𝑡) is calculated as expressed in 
Eqs. (42)-(43): 

𝜎 = �∑ (𝑟(𝑡) − 𝜇)5-
634

𝑇  (42)	

𝑟(𝑡) = ln
𝑆(𝑡)

𝑆(𝑡 − 1) (43)	

where, 𝜇 is a mean and 𝑆(𝑡) is a price at time t. 
The calculated volatility is linked to the frequency of data, which was used for its 

calculation, and the value must be annualized before applying it as an input in the option 
valuations model. Annualized volatility 𝜎$ can be calculated from the non-annualized volatility 
𝜎, with the use of the relationship in Eq. (44), where N equals the number of periods used for 
𝜎 fittings in one year. If 𝜎 is a daily volatility and we assume a year has 252 business days, 
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then N equals 252; if 𝜎 is a weekly volatility, then N equals 52; if 𝜎 is a monthly volatility, then 
N equals 12, and so on. 

𝜎$ = 𝜎 ∗ √𝑁 (44)	

9.4.2. ARCH 

An autoregressive conditionally heteroscedastic (ARCH) model was introduced by Engle 
[129], with the main improvement being a move from constant volatility to time-dependent 
volatility in returns. Volatility is now modelled as a stochastic process that is prone to 
clustering. The ARCH(m) model uses m preceding time steps (lags) to explain future volatility. 
In the single-lag ARCH(1) model, the return 𝑟(𝑡) and variance 𝜎(𝑡)5 can be expressed as in 
Eqs. (45) and (46), respectively: 

𝑟(𝑡) = 𝜎(𝑡)𝜖(𝑡) (45)	

𝜎(𝑡)5 = 𝛼(0) + 𝛼(1)𝑟(𝑡 − 1)5 (46)	

where, 𝜖(𝑡) ~ i.i.d. N(0,1) is the standard Gaussian white noise and 𝛼(0) and 𝛼(1) are 
parameters that can be estimated by a conditional maximum likelihood estimation [130]. 

Obviously, in the ARCH(1) model, the variance 𝜎(𝑡)5 at t is conditional on the previous 
return 𝑟(𝑡 − 1), and there is a positive relationship between the size of the variance 𝜎(𝑡)5 and 
the absolute value of previous return 𝑟6@4. This results in clustering, of a length determined by 
the order m; a large swing in 𝑟(𝑡 − 1)  is followed by large swing in 𝑟(𝑡) [131]. 

The general ARCH(m) model can be used for order m>1, and expresses the return just as 
the ARCH(1) model, but the variance 𝜎(𝑡)5 is conditional on m previous returns, as shown in 
Eq. (47) [131]: 

𝜎(𝑡)5 = 𝛼(0) + 𝛼(1)𝑟(𝑡 − 1)5 +⋯+ 𝛼(𝑚)𝑟(𝑡 − 𝑚)5 (47)	

9.4.3. GARCH 

The generalized ARCH (GARCH) model was published by Bollerslev [132]. 
The basic GARCH(1,1) model has a return 𝑟(𝑡) modelled in the same way as the ARCH model 
expressed in Eq. (45), but the relationship for the variance 𝜎(𝑡)5 has been extended into 
the form of Eq. (48) [130]. 
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𝜎(𝑡)5 = 𝛼(0) + 𝛼(1)𝑟(𝑡 − 1)5 + 𝛽(1)𝜎(𝑡 − 1)5 (48)	

Here, variance 𝜎(𝑡)5 is conditional not only on the previous return 𝑟(𝑡 − 1), which is 
the ARCH term, but also on the variance itself. 

Similarly, GARCH(m,n) extends Eq.(48) into Eq. (49) [130]. 

𝜎(𝑡)5 = 𝛼(0) +j𝛼(𝑗)𝑟(𝑡 − 𝑗)5 +j𝛽(𝑗)𝜎(𝑡 − 𝑗)5
2

"34

0

"34

 (49)	

While the 𝛼(𝑗) parameter expresses the sensitivity of volatility to market shocks, 𝛽(𝑗) is used 
to define the persistence of the shocks [133]. 

Several authors have modified the G(ARCH) model to accommodate more empirical 
properties of volatility, such as non-linearity, asymmetry, or long memory. These 
modifications are referred to as EGARCH, GJR-GARCH, AGARCH, and TGARCH models 
[134].  

9.4.4. Volatility proxy 

Stock volatility among companies that operate a similar business can be used as a proxy 
for a project’s volatility [56]. Another possibility is using the volatility of revenues from 
already implemented projects. 

9.4.5. Implied volatility  

When we know prices of exchange-traded options, we can use those prices to solve for 
volatility in the BSM defined in Eqs. (6)-(9). Such a volatility is referred to as implied volatility. 
Whereas volatility calculated from historical returns is backward-looking, implied volatility is 
forward looking, embodying the expectations of the market.  

In this way, the risk that market participants can expect is determined. In contrast to 
historical volatility, implied volatility typically includes a premium required by option traders 
[135]. Electricity options traders assume a higher probability of significant price increases, and 
this expectation is reflected in a higher option price [136]. It is unclear whether an implied 
volatility forecasts a volatility with a higher accuracy than the time series models such as 
GARCH [135]. 
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9.4.6. Educated guess 

As a last resort, decision makers can provide an estimate of a project’s volatility according 
to previous experience from projects with similar risk profiles. Due to fact, ROA is often used 
for novel projects, this method can be of limited use. 
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Hurta [112] proposed seven assessment criteria to select the suitable ROA valuation 
method for a project in the energy sector, where a spot price of electricity is a key determinant 
of the project’s cashflow. The present study extends the list of proposed decision criteria, 
adding volatility as the eighth criterion, and analyzes the decision criteria for use in valuation 
of BESS projects, in order to accommodate the specifics of these types of projects. 
The following decision criteria were set and analyzed: 

• Expected acceptance by management. 

• Early exercise. 

• Negative prices. 

• Time horizon. 

• Volatility. 

• Ability to value popular types of real options. 

• Number of sources of uncertainty. 

• Speed of option value calculation. 

As explained in Section 3.2, this work considers the three most popular ROA methods: 
BSM, CRRM, and MCS. Neither the DP method nor the LSMC method is analyzed due to 
their potential complexity, which could pose an obstacle for practitioners adopting them. Given 
that complexity is one of the primary reasons why ROA has not been more widely adopted in 
practice [137], this work aims to limit the calculus requirements associated with the methods 
analyzed. Only the three above methods are thus reflected in the subsequent analysis of 
the assessment criteria. 

Due to the complexity of large energy projects, the time horizon of an investment project 
is undoubtedly a parameter that must be considered, and for that reason, time horizon should 
be one the proposed decision criteria. An energy project typically consists of several phases, 
such as engineering, procurement, transport, construction, precommissioning, commissioning, 
and performance tests [138]. Since the BESS can be contained in easy-to-deploy containers, 

10. Assessment criteria for selection of suitable ROA method used 
for capital investment valuation of BESS project 

10.1. Time horizon  
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a project’s implementation time can be significantly reduced; however, BESS projects are often 
combined with other energy assets, such as wind or PHV plants, which can prolong a project’s 
implementation time. Thus, time plays an important role in BESS projects. During the time 
required for completion of a project, uncertainties can evolve significantly, and the assumptions 
which were used for valuation of the project at its onset may no longer be valid. When selecting 
an ROA method, it is necessary to understand the assumptions of the model, which must be 
accepted for project revenues upon the model’s adoption. 

Hurta [112] concluded that the spot price of electricity was the most recognized project 
uncertainty. As explained in Section 9.3, spot prices of commodities are, in general, considered 
mean-reverting and seasonal, which is reflected by the majority of researchers who model fuel 
prices as MRM [121]. In a BESS project, daily seasonality of a spot price of electricity is of 
great importance, because it is the main driver of revenues. Just how the pattern of spot price 
movement is reflected in the revenues of the BESS project depends on the optimization model 
used for the dispatch problem. Depending on the strength of the mean-reversion of a spot price 
of electricity—and especially on how strongly the mean reversion effect is transferred into 
the project revenues as a result—different ROA methods have been proposed.  

Fig. 10 depicts the effect of the speed of mean reversion and investment horizon on 
the selection of an ROA method. When the mean-reversion effect present in the project 
revenues is high, MCS is recommended as the suitable ROA method, regardless of 
the investment horizon. This enables practitioners to essentially use any model (including 
MRM) for modelling project revenues. If BSM or CRRM were used instead, it would be 
assumed project revenues follow GBM; thus, the revenues would not tend toward their long-
term optimum, and the variance of the relative revenue changes would grow exponentially. 
The latter effect is why MCS is also recommended in the long investment horizon, even when 
the rate of mean reversion is low. Use of BSM or CRRM under such market conditions would 
result in an increase in the model’s deviation, due to empirical behavior, which would 
inevitably decrease the accuracy of the option value provided. 

 

Fig. 10. Selection of an ROA method according to the rate of mean reversion and investment horizon [112]. 
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Volatility is a key determinant of an option value, and for that reason, it should be one of 
the decision criteria in an ROA method selection process. In ROA, it is important to distinguish 
between the volatility of a project and the volatility of the uncertainties driving project value. 
While the former can be expressed as the volatility of project revenues, the latter measures 
the standard deviation of various variables, such as commodity price or initial capital cost. As 
described in Section 9.4, the volatility of commodity returns exhibits stochastic, time-varying 
behavior. Depending also on volatility behavior of other project uncertainties, and on 
the correlations between them, the stochastic behavior is then (to varying extents) transformed 
into the volatility of the project. 

 As identified in Section 4.1, the spot price of electricity and battery cost are the two most 
recognized uncertainties considered in BESS projects. Battery costs are popularly modelled 
with GBM (again, as in Section 4.1). In such a case, the volatility of battery cost is treated as 
a constant. On the other hand, the volatility of a spot price of electricity can hardly be 
considered as constant, as explained in Section 9.4.  

When deciding which model to use for option valuation, it is important to understand how 
the model treats volatility. While the BSM assumes deterministic volatility, volatility can be 
time-varying in CRRM and MCS, which provides more flexibility—especially in situations 
where there is an overlap between project duration and distinctive changes in market volatility. 
Otherwise, the project value can be significantly undervalued—or, conversely, overvalued. 
Implied volatility can be used as a valuable indicator when evaluating future market volatility. 
Calculation of implied volatility from derivatives with different tenors (to get a volatility 
surface) can help practitioners understand the evolution of volatility that the market expects, 
and thus support their decision in model selection.  

There are two important uncertainties to consider in a BESS project: spot price of 
electricity and capital cost. Additional sources of uncertainty can be considered, depending not 
only on the project’s external factors, but also on its configuration. As an example of external 
factors, subsidies in the form of cash payments or tax reduction can be considered. Regarding 
project configuration, a BESS is often projected in combination with other energy assets, such 
as renewable sources of energy, P2G systems, or heat generation. Such complex systems 
require consideration of a broader list of uncertainties, including, for example: solar radiation, 
wind power, or the price of hydrogen and the price of heat. It is not necessary that the model 
capture all uncertainties, especially if the complexity of the model outweighs its benefits. It is 

10.2. Volatility 

10.3. Number of sources of uncertainty 
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always necessary to consider the purpose and audience of the model, when determining its 
accuracy and its number of uncertainties.  

It is important to identify the sources of uncertainty at the beginning of the capital 
investment appraisal process, since the number of project uncertainties impacts the choice of 
a suitable ROA model, as shown in Fig. 11.  

 
Fig. 11. Relationship between the number of uncertainties and the suitable ROA model [112]. 

Focusing on the number of project uncertainties, Hurta [112] only recommended using 
the BSM for energy projects with one uncertainty, unless the uncertainties are correlated. When 
the BSM is used for valuation of projects with multiple, uncorrelated uncertainties, there is no 
link between option value and the multiple uncertainty sources; thus, only the aggregated effect 
of all the uncertainties over the option value can be analyzed.  

For projects with one or two sources of uncertainty, Hurta [112] recommended using 
a binomial or quadrinomial tree model, respectively. With the latter option, the tree provides 
a pair of branches for each of the two uncertainties, which enables practitioners to clearly track 
both uncertainties over time—and at the same time, to track the effect uncertainties have over 
option value.  

If there are more than two uncertainties in the BESS project, MCS offers an effective way 
of simulating all the uncertainties. Since MCS is forward-looking, employing it may require 
combining the method with a backward-looking one, in situations where it is allowed, for 
an early exercise of the option. 

As can be seen in Figs. 6-7, the spot price of electricity simulated with GBM cannot be 
negative. This is evidenced by the histograms, plotted with the distinctive cut-off at 
0 EUR/MWh. On the other hand, simulations based on MRM, as can be seen in Fig. 8, allow 

10.4. Negative prices 
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for negative values. Hurta [112] emphasized the role of negative electricity prices in BESS 
projects; revenues from BESS projects depend on peak-valley spreads, and curbing the lower 
extremes by not allowing for negative prices can result in significant undervaluation of 
the project. 

It is important to start the project evaluation with an analysis of market uncertainties. If 
the spot price of electricity (as one of the uncertainties considered in the BESS project) settles 
frequently in negative territory, and this behavior is reflected similarly in revenues, then GBM 
cannot be considered an accurate model for the price. In such cases, MRM can offer a more 
accurate alternative to GBM. MRM can be further extended with jumps, if necessary, to capture 
the rich dynamics of the spot price. 

As explained in Section 9.1, both BSM and CRRM assume the underlying asset follows 
GBM. On the contrary, MCS is flexible enough to accommodate other models, including 
MRM.  

At this point, we need to distinguish between: 1) modelling of the spot price of electricity 
as one of the project uncertainties, and 2) modelling of project revenues as a result of project 
uncertainties. The latter is decisive when selecting an ROA method. When the spot price of 
electricity trades frequently in the negative, and at the same time effects the project revenues 
to such an extent that the revenues can also evolve negatively, then neither BSM nor CRRM 
can be recommended as an accurate ROA method to value an option on such a project. Instead, 
MCS in combination with a model other than GBM can be recommended as the most suitable 
valuation method. 

In a business environment where discounting cashflow is still the main valuation method 
for capital investments, it can be difficult to get buy-in from management for a project valued 
using ROA. Hurta [112] proposed three criteria for consideration, in order to increase the 
likelihood of acceptable results using ROA-based valuation: treatment of time, graphical 
representation, and complexity of calculus. 

 
Treatment of time. As one of the constraints of the project management triangle, time plays 

a key role in projects. Projects involving a BESS, especially those in combination with other 
energy assets, can span over several years, which places specific demands on the way time is 
measured in the project. 

Based on whether we measure time in a discrete or continuous manner, we distinguish 
between CRRM and the remaining two methods, respectively [112]. The CRRM approach, 
where the project horizon is divided into discrete time points, can be deemed more realistic by 
management, since the CRRM time points can correspond to milestones in the project. 

10.5. Expected acceptance by management 
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Management may also be accustomed to using discrete-time-based capital valuation, from 
methods such as NPV. In such cases, a transition from discrete time to continuous time may 
decrease the probability of management buy-in. Thus, the discrete/continuous time evaluation 
should include an assessment of the maturity of the current capital appraisal method, with 
respect to the time framework. 

 
Graphical representation. The manner in which information is conveyed plays 

an important role in the acceptance of valuation method results. Similar to the case with time, 
evaluation of the representation criterion should include assessment of the maturity of the 
current capital valuation process. If an organization currently employs graphical 
communication approaches to conveying information, then CRRM is the most suitable method 
for project valuation [112]. CRRM clearly depicts the evolution of the value of both 
the underlying asset and the option in time, making it is easier for management to comprehend 
value of the option (i.e., the project), based on the graphical representation of the lattice.  

BSM can be defined as the exact opposite: the model provides no graphical representation,  
and as a result, management can find the closed-form solution of BSM difficult to comprehend. 
In this respect, MCS represents a transition between the two preceding methods: that is, 
a simulation of the sources of uncertainty still provides a graphical explanation of the logic 
behind the option value. The method can be subsequently combined with another ROA method 
to further enhance the graphical representation of the results [112]. 

 
Complexity. When a capital valuation method is too complex, managerial decision makers 

may be reluctant to adopt the method, and may reject the results provided. 
Of the three methods considered here, CRRM is considered the least complex ROA 

approach [112]. As can be seen in Eqs. (10)-(13), the method requires only basic mathematics, 
and can easily be explained to management. 

Since BSM offers a closed-form solution, the process of option valuation is considerably 
simplified. The BSM formulas are expressed in Eqs. (6)-(9). Hurta [112] concluded that 
the closed-form formulas are not intuitive, and to understand them, the practitioner should 
derive the formulas themselves—a process requiring knowledge of PDEs, which some 
practitioners can find too complex. For this reason, BSM cannot be regarded as less complex 
than CRRM. The derivation step can be also avoided by applying MCS, which is (as explained 
in Section 3.2.3) based on more intuitive laws, such as the laws of large numbers, and 
the central limit theorem.  
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As technology and computation power evolve, the speed of calculation criterion may seem 
less important; however, there are still distinct differences among the ROA methods when it 
comes to the time required to value an option.  

Clearly, the closed-form solution of BSM enables valuation of options very quickly. 
CRRM may be considered the more time-intensive valuation method, depending on how many 
nodes and branches are modelled, but the lattice can be plotted by computer, which 
significantly simplifies the work. Computational time requirements for MCS depend on 
the number of uncertainties being modelled, but also on the time range, and on the model being 
used as an input for the simulation. In general, MCS is considered the most computationally 
intensive method of the three, and for that reason is usually considered as a last resort [119]. 

The possibility of exercising an option early significantly impacts the ROA method 
selection process, but its impact depends on whether an option bears any dividends. As 
explained in Section 3.2, dividends can be incorporated into the ROA model to include pay-
outs or foregone earnings linked to the real asset. While practitioners often omit dividends from 
ROA models [112], the inclusion of dividends can undoubtedly provide a more realistic model, 
and clarification on whether dividends will be included is necessary at this point in the process. 
When dividends are not considered, the BSM can value both European-and American-style 
call options on a stock, which are never optimal to exercise early when they bear no dividends 
[60]. It should be stressed here, however, that the same holds true for stocks. 

When early exercise may be desirable, BSM in its basic form cannot be applied for 
valuation of American options on complex real assets. On the other hand, CRRM can provide 
a reasonable alternative to BSM, since the backward induction used in CRRM is well-suited to 
valuation of American options.  

MCS in its basic form, as explained in Section 3.2.3, is forward looking, and cannot value 
early-exercise options. Therefore, MCS should be combined with other methods—for example 
within LSMC—but such extensions are not considered in the present work. 

Table 2 shows that the option to defer has been the most frequently applied real option 
type in BESS projects. Similarly, Hurta [112] identified the option to defer as the most popular 

10.6. Speed of option value calculation 

10.7. Early exercise 

10.8. Ability to value popular types of real options 
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option in the field of energetics, as can be seen in Table 4. Since the option to defer can be 
constructed as a call option, all three analyzed models can be used for valuation of the option. 

Table 4. Overview of 20 studies that: 1) employ ROA in the energy sector, and 2) identify a spot price of 
electricity as one of the project uncertainties [112]. 

 Type of asset ROA 
method/model 

Types of real 
options 

Electricity spot price 
model 

1 PHES Simulation Option to defer Customized ARIMA 
model with jumps 

2 Wind DP 
CRRM 

Option to abandon MRM with jumps 

3 Photovoltaic DP Option to defer ARMA model 

4 Photovoltaic MCS Option to defer Other 
GARCH 

5 PHES DP Option to defer GBM 

6 Coal 
Gas 

DP 
MCS 

Spark spread 
option 

AR model with jumps 

7 Nuclear DP 
MCS 

Option to defer GBM 

8 Biogas CRRM Other (regulatory) MRM with jumps 

9 Photovoltaic DP 
PDE 

Option to defer GBM 

10 Coal 
Gas 

DP 
MCS 

Option to defer MRM 

11 Nuclear hydrogen DP 
MCS 

Option to switch GBM 

12 Coal CRRM 
MCS 

Option to stage GBM 

13 Wind 
Photovoltaic 

CRRM 
MCS 

Option to switch 
Option to defer 

MRM with jumps 

14 Photovoltaic MCS Option to defer GBM 

15 Compressed air CRRM Option to defer MRM 

16 PHES CRRM 
MCS 

Option to defer GBM 

17 PHES MCS Option to defer Other 

18 Wind BSM Option to defer GBM 

19 Lithium battery BSM Option to defer GBM 

20 Hydropower DP 
MCS 

Option to defer GBM 

 
Still, application of BSM and MCS for valuation of a deferral option may be seen as far 

too restrictive by some practitioners, because they do not allow for early exercise. Early 
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exercise is also a reasonable requirement in the case of other types of real options, such as 
the option to switch or the option to abandon [112]. As described in Section 10.7, CRRM is 
the preferred method for valuation of such options. 

MCS is a meaningful method for valuation of path-dependent exotic options, such as 
the Asian or barrier options that may be considered marginal in ROA applied to the energy 
sector [112]. MCS is still valuable, in combination with other ROA methods, to simulate 
the possible paths an underlying asset can take, where it plays an irreplaceable role. 
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Fig. 12. Structure of the Case study: (a) Scenario 1 – MILP model without battery degradation process; (b) 
Scenario 2 – MILP model with battery degradation process; (c) Scenario 3 – ROA process. 

11. Case study 
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A real-world case study was formulated to verify the proposed valuation framework 
depicted in Fig. 4. The study tests the functionality of the methodology, helps answer 
the research questions raised at the beginning of the study, and ultimately leads to either 
accepting or rejecting the defined hypotheses. 

The proposed real-world Case study assumes the company ‘Energy4’ is considering 
an investment in the LiFePO4 BESS, used for price arbitrage in the day-ahead market for 
electricity at the end of the year 2020. Lithium iron phosphate batteries are still the preferred 
choice for grid-scale storage, due to their favorable ratio between cost and energy density [5]. 
The exponential relationship between the DOD and cycle life (shown in Fig. 5) was used for 
the purposes of this study. While the LiFePO4 BESS was selected specifically for this study, 
the key conclusions should be applicable to other battery types as well. 

Based on findings of Hurta et al. [105], Germany was selected as the location for 
the LiFePO4 BESS in the case study; in their study, the investment deploying the BESS in 
the German day-ahead market with gray electricity was able to provide a positive NPV. 
The positive outcome was facilitated by setting the capital cost to the forecasted value of 100 
USD/kWh, but this setting does not overvalue the potential of the German day-ahead market; 
the ongoing increase of wind energy in the German energy mix is expected to be reflected in 
the continued increase in volatility of the electricity spot price, which creates potential for 
the investment. 

This case study considers a 1 MWh containerized LiFePO4 BESS from the company 
GreensunSolar [139], with parameters defined in Table 5. 

To determine the size of the discount factor r, various methods such as WACC, CAPM or 
benchmark projects can be utilized, as explained in Section 2.4. However, applying WACC 
assumes knowledge of the company’s financing, which may be a complex task beyond the 
scope of this work. Similar complexity can be encountered when trying to find a twin security 
for the BESS project. For these reasons, the benchmark projects are analyzed to determine 
a realistic discount rate for the project. In the Energy Storage Benefit-Cost Analysis prepared 
by the Applied Economics Clinic in December 2022, the discount rate for BESS reported in 
recent years ranges from 8 to 10% [140]. The International Renewable Energy Agency, in its 
analysis on the cost of financing for renewables [141], provides the cost of capital based on 
surveys carried out in 45 countries in 2020/2021. The cost of capital ranges from 1.1% to 12%, 
depending not only on the exact type of project but especially on the country. Although BESS 
was not subject of the survey, the wide range demonstrates the variability of the discount rate 
applied to energy projects, where the country of installation plays a major role. For this study, 
the discount rate 𝑟 is set to 9% p.a. / 0.75% p.m., which falls within the ranges of both the cited 
analyses. The monthly cashflows are discounted with the monthly discount rate to determine 
the present value of the cashflows. 
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Table 5. Parameters of the LiFePO4 BESS used in the Case study. 

Parameter Value Reference 

C"#$ 1.0 MWh [139] 

P"#$ 1.0 MW [139] 

ε 0.96 [1] 

CL 2600 - 34957 cycles [109] 

Calendar life 15 years [109] 

I  345 USD/kWh [2] 

r 9% p.a. [140-141] 

The initial capital outlay is set to 345 USD/kWh, which was a valid cost level for the year 
2020 [2]. The exchange rate as of September 11, 2022 was 1 EUR/USD [142], a figure used to 
convert the values to EUR-denominated costs. 

No energy storage grid fees are considered. The rationale behind this assumption is 
the fragmented treatment of the energy storage across the EU when it comes to grid fees. 
The European Union Agency for the Cooperation of Energy Regulators (ACER) issued a report 
on electricity tariff methodologies across Europe in 2021 [143] in which it states that there is 
no common understanding of the term “distribution tariffs”. Given there is a significant number 
of different tariffs in place, they conclude that any comparison would be difficult and 
potentially misleading [144]. The fragmentation can be better explained on the example of 
Germany which is the only assessed country applying a “negative injection charge”. By this 
instrument, a distribution system operator can avoid the amount of electricity from 
the upstream grids that is injected into their grid by decentralized generators. The decentralized 
generators then receive “avoided network charges” [143]. BESS that went into operation before 
January 1st 2023 belong currently among the energy assets being remunerated [145]. Including 
such charges in the analysis would complicate a potential use of the model and its results on 
different markets. In none of the 13 studies reviewed in Section 2.5, grid fees were considered. 

Similarly, any fees related to trading on the exchange such as transaction fees, annual fees 
or technical fees are not considered, as these are specific to the selected exchange. See for 
example the price list applied by EXAA [146]. 

Zero taxation is assumed to avoid added complexity introduced by varying tax regimes 
across different countries. O&M costs are also assumed to be zero because these can be 
significantly varying depending on the country or the size of a company. Additionally, no 
maintenance downtime is considered, and inflation rate is assumed to be zero. These 
assumptions aim to enhance focus on the dispatch problem. 

To calculate NPV, the prices of gray energy on the DE day-ahead market operated by 
EXAA [17] are used. As the consideration is made at the end of the year 2020, prices from 
the period 2020-01-01 to 2020-12-31 are selected. The selection of the one-year time series 
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should provide representative behavior of the market while respecting constraints such as data 
availability and computational complexity. 

As shown in Fig. 12, the Case study is divided into three Scenarios. While Scenarios 1 and 
2 verify functionality of the DCF process, Scenario 3 is dedicated to the ROA process. Scenario 
1 solves the defined Case study as a BESS dispatch problem unconstrained by the battery 
degradation costs described in Section 8.1, while Scenario 2 solves it as a problem constrained 
by the battery degradation costs described in Section 8.2. Scenario 3 uses the results of 
the more mature model from Scenario 2 as an input for ROA.  

In Scenario 3, the company ‘Energy4’ is aware of the uncertainty in the day-ahead market 
shown in Fig. 13, and wants to quantify the value of deferring the investment until a later time. 
The company can reserve the necessary resources until the year 2025, and it possesses 
the flexibility to provide those resources to invest in any year until 2025. There is flexibility to 
carry out project changes related to scope, cost, and time in all phases of the project. 
The company perceives the future day-ahead price of electricity as the main driver of 
the project’s cashflow, and thus as the only important uncertainty of the project. It is not 
required to consider pay-outs or foregone earnings, so dividends do not need to be included in 
the analyses. The ROA method is required to provide decently accurate results; however, high 
accuracy at simplicity’s expense is not desirable, as the company currently uses the DCF 
method as its valuation method for capital investments.  

Management of the company demands an update presentation as soon as possible, with 
results of the capital investment appraisal from Scenario 2 with ROA. Thus, there is time 
pressure to deliver the results, and to support the investment decision process.  

The project can be perceived as an option to wait. Given the flexibility possessed by 
management, an American call option should be used to value the option, and MCDA is used 
to select a suitable valuation model for this option. Of the three methods described in Section 
5.5, Saaty’s method is selected for criteria weighting. In contrast to the Scoring method, it 
makes comparisons between all the criteria. Because it also enables expressing the size of 
the preference, Saaty’s is preferred to Fuller’s triangle, and was also selected as the preferred 
method for ranking of alternatives and for determining the weights of the experts. This choice 
is in line with the high popularity of the Saaty’s method as an MCDA technique [147-148]. 

The case study is segmented into 3 Sections. Section 11.1 presents results of the DCF 
method process, which is followed by the ROA process; Section 11.2 is dedicated to the MCDA 
sub-process, and Section 11.3 (specifically Sections 11.3.1 and 11.3.2) to two sub-processes: 
project uncertainty determination and sub-process option valuation, respectively. 
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Fig. 13. Evaluation of the DE gray day-ahead price of electricity in the year 2020 [17]. 

The results of the DCF method process are divided into Scenario 1 (in 9.1.1), and Scenario 
2 (9.1.2). As shown in Fig. 12, Scenario 1 does not consider aging of the BESS, a factor 
improved in Scenario 2 by incorporating the battery degradation process into the MILP model. 

11.1.1. Scenario 1 

The discounted net cashflow and NPV of the BESS project in Scenario 1 are presented in 
Fig. 14 and Table 6. The sum of the discounted net cashflow generated in 2020 equals 
12794 EUR. To generate the cashflow, as much as 28.8% of the cycle life was used up just 
during the one year, which can be translated into 99360 EUR as the initial capital outlay. This 
inevitably leads to a negative NPV of -86566. The result does not justify investment in 
the BESS project.  

 

11.1. DCF 
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Fig. 14. Scenario 1 – Discounted net cashflow and cumulative NPV from a BESS dispatch ignoring the 
battery degradation process in the dispatch model. 

Table 6. Scenario 1 – Results of the BESS dispatch. 

Parameter Value 

Accumulation [MWh] 806 

Generation [MWh] 774 

Sum of PV net CF [EUR] 12794 

NoC(T) 748 

NoC(T)/CL 0.288 

T/RL 0.067 

NPV [EUR] -86566 

11.1.2. Scenario 2 

In comparison to the previous Scenario, in Scenario 2 the dispatch model has been 
extended to consider the degradation process of the battery. As can be seen in the objective 
function described in Eq. (36), the degradation factor 𝜑 guarantees that the operation of 
the BESS does not only pursue maximization of net cashflow, but also considers both cycle 
and calendar degradation, with the goal of finding an optimum between the two variables. 
The key driver of cycle degradation is DOD, thus sensitivity of the model to this variable is 
evaluated. The results are presented in Fig. 15 and in Table 7. 

When comparing Fig. 14a with Fig. 15a, it is clear that discounted net cashflow has 
decreased significantly, peaking at 841 EUR in September in Scenario 2, instead of 1460 EUR 
in Scenario 1. However, the more selective dispatch has been positively rewarded by 
the increase of NPV, as can be seen by comparing Figs. 14b and 15b. While NPV totaled at -
86414 in Scenario 1, NPV significantly improved in Scenario 2, reaching the value of - 15635 
EUR (for 60% DOD). 
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When evaluating sensitivity of the model to DOD, the highest NPV has been generated 
when dispatching the battery at 60% DOD. This finding is in line with the conclusions of Hurta 
et al. [105], and it stems from the typical pattern in the selected day-ahead prices with two 
peaks a day. When the battery is constrained with the calendar life of 15 years, and the cycle 
life equals 10019 cycles, then the battery should perform 1.83 cycles a day to fully utilize its 
cycle life within the calendar life. Out of all the DOD considered, in case of 60% DOD is this 
minimal utilization coefficient closest to the 2 peaks a day, which balances best cycle aging 
with calendar aging. More shallow cycling (40% DOD or even 20% DOD) requires performing 
on average more than two cycles a day, which cannot be justified on the current price level 
with only two peaks a day. 

 

 
Fig. 15. Scenario 2 – Discounted net cashflow and cumulative NPV from a BESS dispatch respecting 
the battery degradation process in the dispatch model. Sensitivity of the dispatch model to DOD. 

Table 7. Scenario 2 – Sensitivity of the dispatch model to DOD. 

 DOD=20% DOD=40% DOD=60% DOD=80% DOD=100% 

Accumulation [MWh] 162 322 402 160 159 

Generation [MWh] 155 310 387 153 152 

Sum of PV net CF [EUR] 2561 5121 7480 5569 6069 

NoC(T) 761 754 626 188 149 

NoC(T)/CL 0.022 0.038 0.062 0.058 0.057 

T/RL 0.067 0.067 0.067 0.067 0.067 

NPV [EUR] -20554 -17994 -15635 -17546 -17046 

Obviously, when battery degradation process was not part of the defined MILP, the BESS 
was dispatched at high frequency, which is reflected in (among other factors) the relatively 
higher accumulation and generation in Scenario 1; the cycle degradation (NoC(T)/CL) exceeded 
the calendar degradation (T/RL), which proved to be economically unjustifiable, looking at 
the negative NPV. 
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After the introduction of the battery degradation process in Scenario 2, the MILP model 
has substantially improved financial expectations from the investment. 

In the next step, sensitivity of the model to the size of investment costs is analyzed. Five 
different investment costs are considered. The highest investment costs, the baseline scenario, 
are 345 USD/kWh. In the following sensitivity scenarios, the investments costs are reduced up 
to 10 EUR/kWh. For the sensitivity analysis, 100% DOD is selected to enable comparison of 
the results also with Scenario 1. The results are presented in Fig. 16 and Table 8. As 
the investment costs decrease, the frequency of dispatch goes up, which results in the increase 
of accumulation, generation, sum of cashflow, number of cycles and cycle degradation. In 
the last sensitivity scenario (10 USD/kWh), the value of cycle degradation exceeds the calendar 
degradation, and it approaches the value from Scenario 1, but in contrast to Scenario 1, 
the increase in the degradation is justified by the positive NPV. 

The last two sensitivity scenarios (50 USD/kWh and 10 USD/kWh) resulted in a positive 
NPV, unlike the third sensitivity scenario (100 USD/kWh) with NPV close to the NPV 
breakeven point. To determine the breakeven point, the input investment costs are stepwise 
changed by the unit of 1 USD/kWh in the model to identify the first occurrence of investment 
costs generating a positive NPV. By this procedure the breakeven point is identified at 98 
USD/kWh. 

The sensitivity analysis of the model to investment costs confirmed the model is sensitive 
to the size of investment costs. Reduction of the initial capital outlay led ceteris paribus to 
a more frequent dispatch of the BESS, and to an increase of NPV. While the increase of 
the dispatch frequency was rather subtle until the NPV breakeven point, the sensitivity to 
investment costs has significantly increased when there was an incentive in the form of 
a positive NPV, i.e., beyond the NPV breakeven point.  

 

 
Fig. 16. Scenario 2 – Discounted net cashflow and cumulative NPV from a BESS dispatch respecting 
the battery degradation process in the dispatch model. Sensitivity of the dispatch model to investment costs. 
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Table 8. Scenario 2 – Sensitivity of the dispatch model to investment costs. 

 345 
USD/kWh 

150 
USD/kWh 

100 
USD/kWh 

50 
USD/kWh 

10 
USD/kWh 

Accumulation [MWh] 159 161 168 259 642 

Generation [MWh] 152 153 161 248 617 

Sum of PV net CF [EUR] 6069 6212 6546 8684 12625 

NoC(T) 149 151 158 242 597 

NoC(T)/CL 0.057 0.058 0.061 0.093 0.230 

T/RL 0.067 0.067 0.067 0.067 0.067 

NPV [EUR] -17046 -3838 -154 4034 10325 

 

The following Sub-sections correspond to the flow of MCDA sub-process, as described in 
Section 5. 

11.2.1. Determination of a goal of a decision process 

MCDA should help to identify the suitable ROA method, of the three methods considered, 
and fulfil the following qualitative goals: 

• Extend the NPV value quantified in Section 11.1 with a positive project value, 
stemming from the uncertainty of the project, and the fact the decision makers have 
the flexibility to make changes to the project in all of its phases. 

• Represent in graphical form the evolution of the extended project value, which can be 
easier to comprehend by the broad audience with different backgrounds. 

• Identify the optimal time point for the investment. 

• Provide a valuation method possessing a reasonable level of accuracy, keeping in mind 
that high accuracy at the expense of comprehensibility is not desirable. 

11.2.2. Determination of assessment criteria 

The assessment criteria defined in Section 10, which are recommended for use in selecting 
the suitable ROA method for valuation of a BESS project, are applied to fulfil the goals set in 
Section 6.2. These eight assessment criteria include: 

• Expected acceptance by management. 

11.2. ROA: MCDA 
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• Early exercise. 

• Negative prices. 

• Time horizon. 

• Volatility. 

• Ability to value popular types of real options. 

• Number of sources of uncertainty. 

• Speed of option value calculation. 

11.2.3. Determination of subject and object of the decision process 

For the purposes of this study, five experts were selected to act on behalf of the model 
company, to carry out MCDA. To select the suitable decision makers, three attributes have 
been considered: education, years of experience, and number of publications. All three 
attributes were evaluated in relation to the fields of financial derivatives, energetics and project 
management. 

 
Profile of Expert 1 (E1) – after graduating from the Prague University of Economics and 

Business in Finance, E1 started his career in one of the biggest Czech banks in 2009, working 
as a market risk specialist/manager. He has since gained knowledge across a variety of asset 
classes and trade types, including financial options. He has not published any publications so 
far. 

 
Profile of Expert 2 (E2) – received his master’s degree in finance from the Masaryk 

University in Brno in 2012. Since 2019 the expert has been working in the bank industry, where 
he is focusing on derivatives including option contracts. The expert has published three (3) 
publications, which include coverage of option theory.  

 
Profile of Expert 3 (E3) – graduated from the Faculty of Information Technology and has 

completed several business and finance related courses. Since 2019, the expert has been 
working in an international bank, being responsible for the development of applications used 
for monitoring credit risk. An expert with a strong IT background, E3 was selected to 
complement the group of experts with distinct IT skills, which can be beneficial when 
evaluating some of the defined assessment criteria, including expected acceptance by 
management and speed of option value calculation. 
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Profile of Expert 4 (E4) – graduated from the Faculty of Electrical Engineering and 
Communication. For 5 years, the expert has been an analyst in one of the leading Czech energy 
companies, where he values diverse energy assets including battery storage projects.  

 
Profile of Expert 5 (E5) – received his master’s degree in economics from the Charles 

University. Since 2013 the expert has been working as a project manager in a strategy and 
business development department of one of the leading Czech energy companies, where he is 
focusing on valuation of energy projects.  

 
In the first step, the weights of the respective expert opinions must be determined. The role 

of the supra decision-maker, who performs the Saaty’s method to analyze the experts, was 
performed by the author of the present study. Table 9 summarizes the criteria used as an input 
for Saaty’s method. The weights of criteria 𝒘𝒋 are set to 0.333, as they are believed to have 
the same priority. Results of the pair-wise comparison of the experts in respect to the three 
criteria, based on Eq. (18), are shown in Tables 15-17 of the Appendix A, and a summary is 
provided in Table 10. The expert E2 earned the highest score and, consequently, has the highest 
priority. In contrast, expert E3 achieved the lowest score and, therefore, holds the lowest 
priority. 

Table 9. Criteria used for determination of priority of the experts. 

 Education Years of experience Number of publications 

E1 3 14 0 

E2 3 4 3 

E3 1 4 0 

E4 3 5 0 

E5 3 10 0 
𝑤% 0.333 0.333 0.333 

Table 10. Scores of the experts with respect to the three criteria, including the resulting weights. 

 E1 E2 E3 E4 E5 𝒘𝒋 

𝑧'(  0.231 0.231 0.077 0.231 0.231 0.333 

𝑧)(  0.378 0.095 0.095 0.145 0.286 0.333 

𝑧*(  0.143 0.429 0.143 0.143 0.143 0.333 

𝑍( = 𝑤+ 0.250 0.252 0.105 0.173 0.220  

A capital investment appraisal process, which is under supervision of the investment 
controlling department, is defined as the object of the decision process. 
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11.2.4. Generation of alternatives 

The following three alternatives were analyzed: 

• BSM (A1) 

• CRRM (A2) 

• MCS (A3) 

These three ROA methods are considered the most popular valuation methods in energy 
projects, where a spot price of electricity is an important determinant of project’s cashflow 
[68], [72], [112]. The review conducted in Section 4.1 confirmed the popularity of both DP and 
LSMC, a finding that contradicted the conclusion of the above authors. For this reason, neither 
DP nor LSMC is analyzed in this work. Another reason for their omission is the generally 
higher complexity of these two methods compared to the three defined methods, as explained 
in Section 3.2. This work should provide a bridge between DCF and more quantitative 
approaches to valuation of capital investments; thus, only the three simpler methods were 
considered. 

The literature review carried out in Section 4.1 was used to compile criteria data for 
the defined alternatives. 

11.2.5. Criteria weighting 

In the first step, the criteria are ordered according to their assumed priority in a descending 
order, and they are assigned an ordinal number respecting this order, as can be seen in Table 11. 
The supra decision-maker (i.e., the author of the present study) believes that the expected 
acceptance by management is the most important criterion because it covers several sub-criteria 
which the existing literature considered especially important for business environments in 
which DCF is the preferred way of valuing capital investments. On the other hand, the speed 
of option value calculation was assessed as the least important criterion. The order can be 
changed, depending on the specific requirements and preferences of the organization carrying 
out this assessment. 

The ordered list of criteria in the Table 11 enables determination of the scoring scale in 
the next step. By assuming that the most preferable criterion C1 is eight times more preferable 
than the least preferable, criterion C8, the scoring scale is set to range from 1 to 8 points, where 
8 points is the maximum number of points available.  
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Table 11. Decision criteria order by priority, in descending order. 

Criterion Description 

C1 Expected acceptance by management 

C2 Early exercise 

C3 Negative prices 

C4 Time horizon 

C5 Volatility 

C6 Ability to value popular types of real options 

C7 Number of sources of uncertainty 

C8 Speed of option value calculation 

All pairs of criteria are compared in Saaty’s matrix, and one matrix was constructed for each 
expert. The resulting matrices, with expert scores, are found in Tables 18-22 of the Appendix B. 
A summary of the tables with normalized criteria weights is shown in Table 12, including the 
priority (weight) 𝑤"! of each criterion j from the view of each expert i. The resulting, prioritized 

criteria matches the order determined at the beginning of the analysis; Criterion C1 was viewed 
as the most important, while criterion C8  was seen as the least important.  

Table 12. Criteria weights from the perspective of the three experts. 

 C1 C2 C3 C4 C5 C6 C7 C8 

w,
' 0.330 0.200 0.160 0.130 0.070 0.050 0.030 0.030 

w,
) 0.275 0.161 0.157 0.137 0.077 0.102 0.055 0.037 

w,
* 0.319 0.251 0.095 0.090 0.086 0.057 0.053 0.050 

w,
- 0.314 0.240 0.100 0.095 0.085 0.058 0.054 0.054 

w,
. 0.305 0.233 0.104 0.099 0.082 0.062 0.057 0.058 

11.2.6. Creation of a decision-making matrix 

For each of the experts, a decision-making matrix such as the one in Eq. (50) can be 
constructed. Each of the metrices is a result of: 

• three alternatives Am, defined in Section 11.2.4,  

• eight criteria Cn, defined in Section 11.2.2 or more specifically in the Section 10, 

• eight weights wn, calculated in Section 11.2.5. 

  



 85 

𝐶4 ⋯ 𝐶B 
𝐴4
𝐴5
𝐴C
�
			𝑥44 ⋯ 𝑥4B									
⋮ ⋱ ⋮

			𝑥C4 ⋯ 𝑥CB									
� 

				𝑤4 			…				𝑤B 
 

(50)	

The variables x11 – x38 represent the data for all alternatives combined, including all criteria. In 
other words, each alternative must be analyzed from the perspective of each of the eight defined 
criteria. This data has been compiled as part of the analysis carried out in Section 10. 

11.2.7. Scoring and ranking 

Because Saaty’s method was used for criteria weighting, it was also used for scoring and 
ranking of the defined alternatives. For all criteria, the scoring scale was set to range from one 
to three points, which means that the most preferable alternative may be three times more 
preferable to the least preferable alternative, in relation to any of the criteria. 

All alternatives must be compared with each other, with respect to all criteria. Given 
the number of experts (in this case, five), a total of 40 metrices were required to perform the full 
comparison. The resulting metrices with expert scores, are provided in Tables 23-62 of 
the Appendix C. 

 In the tables’ last columns, the normalized scores 𝑧&,"!  are calculated by normalizing 𝐺𝑀&,"
!  

for the i-th alternative, j-th criterion, and e-th expert.  
Eq. (21) is applied to the normalized scores 𝑧&,"!  to aggregate the individual weights into 

the aggregated scores 𝑧"!, shown in Table 13.  

Table 13. Scores 𝑍7 of the alternatives, and the resulting ranking. 

 A1 A2 A3 

𝑧'(  0.173 0.534 0.293 

𝑧)(  0.204 0.578 0.218 

𝑧*(  0.288 0.430 0.282 

𝑧-(  0.293 0.399 0.308 

𝑧.(  0.239 0.409 0.352 

𝑧/(  0.258 0.365 0.377 

𝑧0(  0.320 0.447 0.233 

𝑧1(  0.539 0.284 0.177 

𝑍( 0.250 0.471 0.279 

Ranking 3 1 2 
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In the same table, Eq. (20) is applied to calculate normalized scores 𝑍! of the three alternatives. 
Based on the achieved scores, CRRM (A2) is the most preferred method, followed by MCS 
(A3) and BSM (A1). 

The results from Scenario 2 were used as inputs for Scenario 3, to calculate the value of 
waiting, and to determine the optimal timing of the investment. The assumptions defined at 
the beginning of Section 11, which were used for the previous Scenarios, remain unchanged. 
Before constructing the CRRM for valuation of the American call option in Section 11.3.2, 
project uncertainty must be determined, as shown in Fig. 4b. 

11.3.1. Volatility of project’s cashflow 

To calculate the u and d rates defined in Eqs. (10) and (11), respectively, and to 
subsequently calculate the risk-neutral probability p defined in Eq. (12), it was necessary to 
determine the volatility 𝜎 of the project’s cashflow. MCS was deployed to simulate 
the cashflow, and the process of the simulation is as follows: 

1. The future day-ahead spot price of gray electricity in the German market is the only 
source of uncertainty in the project. The MRM defined in Eq. (41) was selected as 
the model for the price, since it enables to model both negative prices and daily 
seasonality. To calibrate the model, the historical volatility approach described in 
Eqs. (42)-(43) was selected over the other methods explained in Section 9.4. because 
of its transparency, and because of the availability of the historical data. This approach 
is conservative and assumes the future volatility is derived from past movements. 
A total of 1000 simulations were performed to generate the expected future realizations 
of the price. More simulations were not performed, due to high computational time. 

2. For Scenario 3, the project’s cashflow for all the 1000 different sets of prices was 
calculated based on the defined MILP model, i.e. the MILP model was executed 1000 
times. The sensitivity analysis carried out in Section 11.1.2 identified 60% DOD as 
DOD generating the highest NPV, and, therefore, it is used in Scenario 3. 
The investment costs are set to 345 USD/kWh, which is the value from the baseline 
scenario (cost level of the year 2020). Similarly, as in the previous point, the logarithmic 
returns approach was applied to calculate volatility of the simulated weekly returns in 
Scenario 3. Weekly returns were preferred to hourly/daily returns, because they better 
reflect the changes driven by the behavior of the day-ahead prices. Hourly/daily returns 
were driven by the algorithm defined in the MILP program, which allowed some hours 

11.3. ROA: CRRM 
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of negative revenues, in order to generate positive revenues in the following hours. 
The volatility calculated from the hourly/daily revenues would then produce an 
overestimated value of project’s volatility. Weekly returns smooth these short-term 
negative revenues, i.e. they remove the noise, and better reflect the revenues profile as 
a result. The annualized volatility 𝜎 is calculated from the weekly volatility 𝜎D by 

annualization: 𝜎 = 𝜎D√52. 

Ad 1 
The initial price P0 of the process was set at 47.36 EUR, which was the price of the last 

hourly contract on gray power in the DE market in the year 2020 (2020-12-31 23:00). 
The prices of the same market in the year 2020 were used to calibrate the model, as follows: 

• 𝜎 = 16.86 

• 𝜇 = 30.35 

• 𝛼 = 9.71 

Prices of 8760 hourly contracts, which equals the length of one year, are simulated. Ten (10) 
out of the 1000 simulations performed are plotted in Fig. 17. 

 
Fig. 17. Simulations (totaling 1000) of the day-ahead price based on MRM: (a) Price plot of 10 simulations; 
(b) Histogram of 10 simulations. 

Ad 2  
The prices simulated in the preceding step were used for calculating the net cashflow in 

the next step. Ten (10) plots out of the 1000 simulations for Scenario 3 are plotted in Fig. 18. 
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Fig. 18. Scenario 3 – Net Cash Flow of 10 out of the 1000 simulations. 

In Scenario 3, 𝜎D calculated from the resulting weekly data equals 0.2050, so the annualized 
value 𝜎 equals 1.4783. 

11.3.2. Construction of CRRM 

The volatility of project cashflow calculated in the preceding step is used for construction 
of the CRRM. The parameters necessary for its construction are summarized in Table 14. 

The sum of discounted net cashflow generated in the year 2020 in Scenario 2 is used as 
the initial value of the underlying asset 𝑆E. The strike price K corresponds to the battery 
degradation accrued in the year 2020—i.e., the initial capital costs (345000 EUR) are 
multiplied by the rate of degradation (0.067). By this adjustment both the discounted net 
cashflow and the capital costs relate to the same period. The rate of up movement u and down 
movement d are calculated according to Eqs. (10) and (11), respectively. Similarly, the risk-
neutral probability p is calculated with Eq. (12). Just as in Scenario 2, the discount rate r is 
assumed to be 9%  p.a. 

The resulting lattice for the underlying asset, i.e., the net cashflow, is shown in Fig. 19. In 
the best scenario, when the underlying asset value evolves only upwards, the net cashflow 
equals 2766761.53 EUR in 2025. In the opposite situation, i.e., when the underlying asset value 
evolves only downwards, the net cashflow equals 20.22 EUR.  
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Table 14. Scenario 3 - values of the parameters used for the construction of CRRM. 

Variable Value 

𝑆(0) 7480.00 EUR 

K 23115.00 EUR 

𝜎 1.4783 

u 4.3855 

d 0.2280 

p 0.2083 

r 9% p.a. 

 

The lattice for the determination of the option value is presented in Fig. 20. The value in 
the first node corresponding to the option value equals 6018.33 EUR. In none of the nodes 
leading to the terminal nodes, the option value in the given node is greater than the intrinsic 
value in this node. This means it is not optimal to exercise the option before its maturity. 
Instead, it is optimal to continue holding the option until 2025. The investment 
recommendation for the lattice is plotted in Fig. 21 recommending investing only in two 
terminal nodes. In the remaining three terminal nodes, the same as in their three preceding 
nodes, the recommendation is to let the option expire as the option value is zero. Thus, given 
the market situation, the company should use its flexibility to postpone the investment until the 
end of the four-year period. As can be seen in Fig. 21, the company can abandon the investment 
plans prior to the year 2025, when the market evolves in an unfavorable direction, and direct 
the resources into different, more profitable, projects. 

The value of waiting can be determined by subtracting the NPV (-15635 EUR) calculated 
in Scenario 2 from the option value (6018.33 EUR). The positive value of waiting of 21653.33 
EUR quantifies the benefit of delaying the investment and provides an alternative to investing 
immediately quantified by NPV. It shows that counting solely on the traditional methods such 
as NPV would undervalue the investment by not including the value of waiting in the value of 
the investment.  
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Fig. 19. Scenario 3 – Value of the underlying asset. 

 
Fig. 20. Scenario 3 – Value of the American call option. 
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Fig. 21. Scenario 3 – Decision on the investment. 
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PART III 

Conclusions 
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The concluding chapter of this dissertation provides answers to the three defined research 
questions. 
 
Q1: “Can ROA be recommended as an extension of the traditional DCF method for 
valuation of investments in BESS projects?” 

 
ROA proved to be a capable tool for evaluating the uncertainty and flexibility inherent in 

BESS projects in both the literature review and the case study. Because the traditional DCF 
method excludes these two factors, it can undervalue a BESS project. The effect was striking, 
especially in the case study when comparing Scenario 2 with Scenario 3. When counting solely 
on NPV, the investment would be unlikely to earn management approval, given the negative 
NPV value. Valuation of the very same investment using ROA showed potential for 
the investment, given the high volatility on the day-ahead market. The chance that the market 
will evolve in a favorable direction is of value, especially when management has the power to 
reject the investment when the opposite situation arises. For the above reasons, BESS projects 
should be always valued with both the DCF method and ROA.  

 
Q2: “What is the impact of initial capital cost on dispatch of the battery, and on 
the resulting value of the investment?” 

 
As confirmed by the preceding case study (Section 11), lower initial costs lead, ceteris 

paribus, to a higher frequency of dispatch for BESS, reflected in the higher NPV value as 
shown in Scenario 2. The sensitivity to investment costs has significantly increased beyond 
the NPV breakeven point.  

 
Q3: “What assessment criteria can be used for selection of ROA method used for capital 
investment valuation of BESS project out of the existing ROA methods? 

 
Eight assessment criteria have been proposed: expected acceptance by management, early 

exercise, negative prices, time horizon, volatility, ability to value popular types of real options, 
number of sources of uncertainty, and speed of option value calculation. These assessment 
criteria help facilitate the process of selecting a ROA model for valuation of a BESS project. 

12. Evaluation and suggestions for future research 

12.1. Evaluation of research questions 
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The main goal of this dissertation, namely creation of an ROA-based framework for 
advanced capital investment valuation of BESS projects, has been achieved in Sections 7-
10. Functionality of the framework has been verified by performing the case study in 
Section 11. 
 
The sub-goals supporting the main goal have been achieved as follows: 

• Create an optimization program for a dispatch of BESS to maximize the NPV of 
the investment, which can then be used as one of the inputs for ROA. 
 

The program for dispatch of a BESS was defined with two versions of the MILP model, 
where the initial MILP maximizing net cashflow of a project was extended with 
a battery-degradation process in the second, more advanced, MILP. The extended 
version of the model was subsequently used as an input for ROA in the case study in 
Section 11. 

• Consider popular ROA methods in the proposed valuation framework and provide 
a method for selecting the suitable method for valuation of a BESS project, based on 
specific valuation requirements. 
 

MCDA was proposed as a suitable selection method. Eight assessment criteria were 
determined, based on the in-depth literature review, and defined as follows: expected 
acceptance by management, early exercise, negative prices, time horizon, volatility, 
ability to value popular types of real options, number of sources of uncertainty, and 
speed of option value calculation. These eight assessment criteria have been combined 
with three alternatives, representing the most popular ROA models: BSM, CRRM and 
MCS. This combination was used to create a decision matrix which can easily be re-
used and applied to any specific conditions and requirements to value a BESS project. 

• Verify functionality of the created framework through its application to a real-world 
business case. 
 

The case study in Section 11 confirmed that the proposed valuation framework is 
functional and that it can be used to: 

o Calculate NPV value of BESS project considering the battery degradation 
process. 

12.2. Evaluation of goals of the dissertation 
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o Select an ROA method for a BESS project which best meets the specific 
conditions and requirements of the valuation process. 

o Calculate the value of uncertainty and flexibility inherent in a BESS project. 

H1: The traditional DCF method undervalues investments in BESS projects, but results 
can be improved by applying ROA to value the uncertainty and flexibility inherent in 
these types of projects. 
 

The review of the literature on ROA applied to BESS projects in Section 4.1 showed that 
ROA can really improve the value of the investment, and that counting solely on the traditional 
methods such NPV could have otherwise led to rejecting the investment.  

The case study in Section 11 demonstrated that valuation of a BESS project relying solely 
on the DCF method undervalues the project and confirms the findings from the literature 
review. In Scenario 1, the project was unable to reach a positive NPV, generating NPV of only 
-86566 EUR. In Scenario 2, incorporation of the degradation process improved the project 
value significantly, resulting in the NPV of -15635 EUR for 60% DOD, and identified the NPV 
breakeven point for 100% DOD at 98 USD/kWh. By deploying ROA in Scenario 3, the project 
value increased even more, showing the positive value of waiting. Given that management 
possess flexibility to defer the project, the value of waiting in Scenario 3 equals 21653.33 EUR. 
By postponing the investment until 2025, management can profit from the high uncertainty on 
the market and realize a positive value for the company. 

These findings enable the acceptance of the H1 hypothesis and confirm the significant role 
of ROA in the valuation of BESS projects. By extending the NPV method with ROA, 
practitioners can avoid situations where BESS projects are undervalued, and thus rejected.  
 
H2: Including the battery cost in the optimization program will significantly improve 
quality of the battery dispatch, which results in an improved NPV of the investment. 
 

Hypothesis H2 can be accepted based on the findings of Scenarios 1 and 2 in the case 
study; in the MILP model, failing to consider the impact of the dispatch on the degradation of 
the BESS led to high net cashflow. However, after assessment of the battery life loss as a direct 
impact of the arbitrage, the BESS investment resulted in a significantly negative NPV. In 
Scenario 2, net cashflow was balanced with the degradation effect of the BESS, to determine 
the optimal dispatch strategy. This approach provided a positive effect on NPV, which 
generated an improved NPV in Scenario 2, and provided a firm ground for valuation in 
Scenario 3. The sensitivity analysis of the model to investment costs confirmed the model is 

12.3. Evaluation of author’s hypotheses 
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sensitive to the size of investment costs. Reduction of the initial capital outlay led ceteris 
paribus to a more frequent dispatch of the BESS, and to an increase of NPV. While the increase 
of the dispatch frequency was rather subtle until the NPV breakeven point, the sensitivity to 
investment costs has significantly increased when there was an incentive in the form of 
a positive NPV, i.e., beyond the NPV breakeven point.  

 
H3: Selection of a ROA method for a BESS project is a complex process that should be 
based on clear decision criteria, maximizing the probability that decision makers will 
accept the method’s results. 
 

Comprehensive literature review on both ROA and BESS has been conducted. Compared 
to other projects, the BESS projects have some specifics which have been addressed in 
the review. The output of the literature review enabled to propose the set of eight assessment 
criteria which help to facilitate the selection process. Acceptance of the proposed assessment 
criteria has been positively tested in the MCDA. 

Without clear assessment criteria, a less-suitable ROA method could be chosen for 
valuation of a BESS, which would inevitably lead to a less accurate estimate and a lower 
probability of getting a buy-in from the decision makers. All of these findings support accepting 
H3. 

BESS is currently a trending topic with high potential for further research. While the case 
study in the present research assumed LiFePO4 BESS, new types of batteries are being 
developed. These may have better properties, and at the same time may become cheaper. 
Inclusion of new battery types into the present model should provide improved results. 

Another area of research that may result in the promotion of BESS as a profitable 
investment entails analyzing BESS not in isolation, but as a part of a complex energy system. 
Grid-scale BESS can be combined with assets generating electricity, such as wind turbines or 
PHV.  

Additionally, other types of energy storage, such as H2, can be considered. The MILP 
model, enriched with these assets, may point to new investment opportunities. These assets 
should not be analyzed solely with the DCF method, but—most importantly—also with ROA 
method, due to the significantly fluctuating prices of technologies and outputs (e.g. H2) over 
time. Further research should consider not only the option to wait, but also other option types, 
such as the option to switch. 

There are other, quality-determining aspects for future researchers to consider, including 
the models used for simulation of the uncertainties considered. Richer and more realistic 

12.4. Suggestions for future research 
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models may provide more accurate valuation results. Similarly, the identified real options can 
be valued with customized models, based on partial PDEs, which are (in general) more difficult 
to solve, but can provide more accurate results. 

While this research focused solely on the use of BESS for arbitrage on the day-ahead 
market in one country, future work might analyze more markets in parallel. In situations where 
cross-border electricity exchange is possible, the analysis of the interconnected European 
electricity market can point toward new market opportunities, further improving the value of 
a given BESS project. Similarly, other types of electricity markets (not just the day-ahead 
market), such as the reserve market, may be the subject of fruitful, future analysis. 
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Table 15. Pair-wise comparison of the experts with respect to criterion C1 using Saaty’s matrix. 

Ei E1 E2 E3 E4 E5 𝐺𝑀'
(  𝑧'(  

E1 1 1 3 1 1 1.246 0.231 

E2 1 1 3 1 1 1.246 0.231 

E3 1/3 1/3 1 1/3 1/3 0.415 0.077 

E4 1 1 3 1 1 1.246 0.231 

E5 1 1 3 1 1 1.246 0.231 

Table 16. Pair-wise comparison of the experts with respect to criterion C2 using Saaty’s matrix. 

Ei E1 E2 E3 E4 E5 𝐺𝑀)
(  𝑧)(  

E1 1 3 3 3 2 2.221 0.378 

E2 1/3 1 1 1/2 1/3 0.561 0.095 

E3 1/3 1 1 1/2 1/3 0.561 0.095 

E4 1/3 2 2 1 1/3 0.850 1.145 

E5 1/2 3 3 3 1 1.683 0.286 

Table 17. Pair-wise comparison of the experts with respect to criterion C3 using Saaty’s matrix. 

Ei E1 E2 E3 E4 E5 𝐺𝑀*
(  𝑧*(  

E1 1 1/3 1 1 1 0.803 0.143 

E2 3 1 3 3 3 2.408 0.429 

E3 1 1/3 1 1 1 0.803 0.143 

E4 1 1/3 1 1 1 0.803 0.143 

E5 1 1/3 1 1 1 0.803 0.143 

 
  

Appendix A: weighting of experts 
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Table 18. Saaty’s matrix used for criteria weighting from the perspective of expert E1. 

𝐶% C1 C2 C3 C4 C5 C6 C7 C8 𝐺𝑀%' 𝑤%' 

C1 1 3 3 4 4 4 7 8 3.660 0.330 

C2 1/3 1 1 2 4 5 6 6 2.160 0.200 

C3 1/3 1 1 1 3 3 5 5 1.720 0.160 

C4 1/4 1/2 1 1 2 3 4 5 1.400 0.130 

C5 1/4 1/4 1/3 1/2 1 2 3 3 0.810 0.070 

C6 1/4 1/5 1/3 1/3 1/2 1 2 2 0.570 0.050 

C7 1/7 1/6 1/5 1/4 1/3 1/2 1 2 0.380 0.030 

C8 1/8 1/6 1/5 1/5 1/3 1/2 1/2 1 0.300 0.030 

Table 19. Saaty’s matrix used for criteria weighting from the perspective of expert E2. 

𝐶% C1 C2 C3 C4 C5 C6 C7 C8 𝐺𝑀%) 𝑤%) 

C1 1 2 3 3 3 2 4 5 2.611 0.275 

C2 1/2 1 1 1 2 3 2 5 1.530 0.161 

C3 1/3 1 1 1 3 2 4 3 1.488 0.157 

C4 1/3 1 1 1 2 1 4 3 1.297 0.137 

C5 1/3 1/2 1/3 1/2 1 1 1 3 0.733 0.077 

C6 1/2 1/3 1/2 1 1 1 3 3 0.965 0.102 

C7 1/4 1/2 1/4 1/4 1 1/3 1 2 0.518 0.055 

C8 1/5 1/5 1/3 1/3 1/3 1/3 1/2 1 0.354 0.037 

Table 20. Saaty’s matrix used for criteria weighting from the perspective of expert E3. 

𝐶% C1 C2 C3 C4 C5 C6 C7 C8 𝐺𝑀%* 𝑤%* 

C1 1 4 4 3 4 4 4 4 3.245 0.319 

C2 1/4 1 4 4 3 5 6 5 2.552 0.251 

C3 1/4 1/4 1 1 1 2 2 3 0.965 0.095 

C4 1/3 1/4 1 1 1 2 3 1 0.917 0.090 

C5 1/4 1/3 1 1 1 2 2 1 0.872 0.086 

C6 1/4 1/5 1/2 1/2 1/2 1 1 2 0.578 0.057 

C7 1/4 1/6 1/2 1/3 1/2 1 1 2 0.537 0.053 

C8 1/4 1/5 1/3 1 1 1/2 1/2 1 0.504 0.050 

Appendix B: criteria weighting 
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Table 21. Saaty’s matrix used for criteria weighting from the perspective of expert E4. 

𝐶% C1 C2 C3 C4 C5 C6 C7 C8 𝐺𝑀%- 𝑤%- 

C1 1 4 3 4 4 4 3 4 3.130 0.314 

C2 1/4 1 4 3 4 5 6 3 2.394 0.240 

C3 1/4 1/4 1 1 1 2 2 3 1.000 0.100 

C4 1/4 1/3 1 1 1 2 4 1 0.951 0.095 

C5 1/4 1/4 1 1 1 2 2 1 0.841 0.085 

C6 1/4 1/5 1/2 1/2 1/2 1 1 2 0.578 0.058 

C7 1/3 1/6 1/2 1/4 1/2 1 1 2 0.537 0.054 

C8 1/4 1/3 1/3 1 1 1/2 1/2 1 0.537 0.054 

Table 22. Saaty’s matrix used for criteria weighting from the perspective of expert E5. 

𝐶% C1 C2 C3 C4 C5 C6 C7 C8 𝐺𝑀%. 𝑤%. 

C1 1 4 4 4 4 3 4 2 2.975 0.305 

C2 1/4 1 4 4 3 5 6 2 2.276 0.233 

C3 1/4 1/4 1 1 1 2 3 3 1.015 0.104 

C4 1/4 1/4 1 1 1 2 3 2 0.965 0.099 

C5 1/4 1/3 1 1 1 2 1 1 0.799 0.082 

C6 1/3 1/5 1/2 1/2 1/2 1 1 2 0.599 0.062 

C7 1/4 1/6 1/3 1/3 1 1 1 2 0.557 0.057 

C8 1/2 1/2 1/3 1/2 1 1/2 1/2 1 0.565 0.058 
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Table 23. Scoring of alternatives with respect to criterion C1 using Saaty’s matrix from the perspective of 
expert E1. 

Ai A1 A2 A3 𝐺𝑀''
(  𝑧''(  

A1 1 1/3 1/2 0.550 0.163 

A2 3 1 2 1.817 0.540 

A3 2 1/2 1 1.000 0.297 

Table 24. Scoring of alternatives with respect to criterion C2 using Saaty’s matrix from the perspective of 
expert E1. 

Ai A1 A2 A3 𝐺𝑀')
(  𝑧')(  

A1 1 1/3 1 0.693 0.200 

A2 3 1 3 2.080 0.600 

A3 1 1/3 1 0.693 0.200 

Table 25. Scoring of alternatives with respect to criterion C3 using Saaty’s matrix from the perspective of 
expert E1. 

Ai A1 A2 A3 𝐺𝑀'*
(  𝑧'*(  

A1 1 1 1 1.000 0.333 

A2 1 1 1 1.000 0.333 

A3 1 1 1 1.000 0.333 

Table 26. Scoring of alternatives with respect to criterion C4 using Saaty’s matrix from the perspective of 
expert E1. 

Ai A1 A2 A3 𝐺𝑀'-
(  𝑧'-(  

A1 1 1 1 1.000 0.333 

A2 1 1 1 1.000 0.333 

A3 1 1 1 1.000 0.333 

 

  

Appendix C: scoring of alternatives 
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Table 27. Scoring of alternatives with respect to criterion C5 using Saaty’s matrix from the perspective of 
expert E1. 

Ai A1 A2 A3 𝐺𝑀'.
(  𝑧'.(  

A1 1 1/2 1/2 0.630 0.200 

A2 2 1 1 1.260 0.400 

A3 2 1 1 1.260 0.400 

Table 28. Scoring of alternatives with respect to criterion C6 using Saaty’s matrix from the perspective of 
expert E1. 

Ai A1 A2 A3 𝐺𝑀'/
(  𝑧'/(  

A1 1 1/2 1 0.794 0.250 

A2 2 1 2 1.587 0.500 

A3 1 1/2 1 0.794 0.250 

Table 29. Scoring of alternatives with respect to criterion C7 using Saaty’s matrix from the perspective of 
expert E1. 

Ai A1 A2 A3 𝐺𝑀'0
(  𝑧'0(  

A1 1 1 2 1.260 0.400 

A2 1 1 2 1.260 0.400 

A3 1/2 1/2 1 0.630 0.200 

Table 30. Scoring of alternatives with respect to criterion C8 using  Saaty’s matrix from the perspective of 
expert E1. 

Ai A1 A2 A3 𝐺𝑀'1
(  𝑧'1(  

A1 1 2 3 1.817 0.540 

A2 1/2 1 2 1.000 0.297 

A3 1/3 1/2 1 0.550 0.163 

Table 31. Scoring of alternatives with respect to criterion C1 using Saaty’s matrix from the perspective of 
expert E2. 

Ai A1 A2 A3 𝐺𝑀)'
(  𝑧)'(  

A1 1 1/3 1 0.693 0.221 

A2 3 1 1 1.442 0.460 

A3 1 1 1 1.000 0.319 
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Table 32. Scoring of alternatives with respect to criterion C2 using Saaty’s matrix from the perspective of 
expert E2. 

Ai A1 A2 A3 𝐺𝑀))
(  𝑧))(  

A1 1 1/3 1 0.693 0.210 

A2 3 1 2 1.817 0.550 

A3 1 1/2 1 0.794 0.240 

Table 33. Scoring of alternatives with respect to criterion C3 using Saaty’s matrix from the perspective of 
expert E2. 

Ai A1 A2 A3 𝐺𝑀)*
(  𝑧)*(  

A1 1 1 1 1.000 0.327 

A2 1 1 2 1.260 0.413 

A3 1 1/2 1 0.794 0.260 

Table 34. Scoring of alternatives with respect to criterion C4 using Saaty’s matrix from the perspective of  
expert E2. 

Ai A1 A2 A3 𝐺𝑀)-
(  𝑧)-(  

A1 1 1/2 1 0.794 0.260 

A2 2 1 1 1.260 0.413 

A3 1 1 1 1.000 0.327 

Table 35. Scoring of alternatives with respect to criterion C5 using Saaty’s matrix from the perspective of 
expert E2. 

Ai A1 A2 A3 𝐺𝑀).
(  𝑧).(  

A1 1 1/2 1/2 0.630 0.196 

A2 2 1 2 1.587 0.493 

A3 2 1/2 1 1.000 0.311 

Table 36. Scoring of alternatives with respect to criterion C6 using Saaty’s matrix from the perspective of 
expert E2. 

Ai A1 A2 A3 𝐺𝑀)/
(  𝑧)/(  

A1 1 1/2 1 0.794 0.250 

A2 2 1 2 1.587 0.500 

A3 1 1/2 1 0.794 0.250 
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Table 37. Scoring of alternatives with respect to criterion C7 using Saaty’s matrix from the perspective of 
expert E2. 

Ai A1 A2 A3 𝐺𝑀)0
(  𝑧)0(  

A1 1 1/2 2 1.000 0.311 

A2 2 1 2 1.587 0.493 

A3 1/2 1/2 1 0.630 0.196 

Table 38. Scoring of alternatives with respect to criterion C8 using Saaty’s matrix from the perspective of 
expert E2. 

Ai A1 A2 A3 𝐺𝑀)1
(  𝑧)1(  

A1 1 3 3 2.080 0.594 

A2 1/3 1 2 0.873 0.249 

A3 1/3 1/2 1 0.550 0.157 

Table 39. Scoring of alternatives with respect to criterion C1 using Saaty’s matrix from the perspective of 
expert E3. 

Ai A1 A2 A3 𝐺𝑀*'
(  𝑧*'(  

A1 1 1/3 1/2 0.550 0.157 

A2 3 1 3 2.080 0.594 

A3 2 1/3 1 0.873 0.249 

Table 40. Scoring of alternatives with respect to criterion C2 using Saaty’s matrix from the perspective of 
expert E3. 

Ai A1 A2 A3 𝐺𝑀*)
(  𝑧*)(  

A1 1 1/3 1 0.693 0.200 

A2 3 1 3 2.080 0.600 

A3 1 1/3 1 0.693 0.200 

Table 41. Scoring of alternatives with respect to criterion C3 using Saaty’s matrix from the perspective of 
expert E3. 

Ai A1 A2 A3 𝐺𝑀**
(  𝑧**(  

A1 1 1/2 1 0.794 0.250 

A2 2 1 2 1.587 0.500 

A3 1 1/2 1 0.794 0.250 
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Table 42. Scoring of alternatives with respect to criterion C4 using Saaty’s matrix from the perspective of 
expert E3. 

Ai A1 A2 A3 𝐺𝑀*-
(  𝑧*-(  

A1 1 1 1 1.000 0.333 

A2 1 1 1 1.000 0.333 

A3 1 1 1 1.000 0.333 

Table 43. Scoring of alternatives with respect to criterion C5 using Saaty’s matrix from the perspective of 
expert E3. 

Ai A1 A2 A3 𝐺𝑀*.
(  𝑧*.(  

A1 1 1/2 1 0.794 0.260 

A2 2 1 1 1.260 0.413 

A3 1 1 1 1.000 0.327 

Table 44. Scoring of alternatives with respect to criterion C6 using Saaty’s matrix from the perspective of 
expert E3. 

Ai A1 A2 A3 𝐺𝑀*/
(  𝑧*/(  

A1 1 1 1 1.000 0.333 

A2 1 1 1 1.000 0.333 

A3 1 1 1 1.000 0.333 

Table 45. Scoring of alternatives with respect to criterion C7 using Saaty’s matrix from the perspective of 
expert E3. 

Ai A1 A2 A3 𝐺𝑀*0
(  𝑧*0(  

A1 1 1 1 1.000 0.327 

A2 1 1 2 1.260 0.413 

A3 1 1/2 1 0.794 0.260 

Table 46. Scoring of alternatives with respect to criterion C8 using Saaty’s matrix from the perspective of 
expert E3. 

Ai A1 A2 A3 𝐺𝑀*1
(  𝑧*1(  

A1 1 3 3 2.080 0.594 

A2 1/3 1 2 0.873 0.249 

A3 1/3 1/2 1 0.550 0.157 
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Table 47. Scoring of alternatives with respect to criterion C1 using Saaty’s matrix from the perspective of 
expert E4. 

Ai A1 A2 A3 𝐺𝑀-'
(  𝑧-'(  

A1 1 1/2 1/2 0.630 0.190 

A2 2 1 3 1.817 0.547 

A3 2 1/3 1 0.873 0.263 

Table 48. Scoring of alternatives with respect to criterion C2 using Saaty’s matrix from the perspective of 
expert E4. 

Ai A1 A2 A3 𝐺𝑀-)
(  𝑧-)(  

A1 1 1/3 1 0.693 0.210 

A2 3 1 2 1.817 0.550 

A3 1 1/2 1 0.794 0.240 

Table 49. Scoring of alternatives with respect to criterion C3 using Saaty’s matrix from the perspective of 
expert E4. 

Ai A1 A2 A3 𝐺𝑀-*
(  𝑧-*(  

A1 1 1/2 1 0.794 0.250 

A2 2 1 2 1.587 0.500 

A3 1 1/2 1 0.794 0.250 

Table 50. Scoring of alternatives with respect to criterion C4 using Saaty’s matrix from the perspective of 
expert E4. 

Ai A1 A2 A3 𝐺𝑀--
(  𝑧--(  

A1 1 1 1 1.000 0.327 

A2 1 1 2 1.260 0.413 

A3 1 1/2 1 0.794 0.260 

Table 51. Scoring of alternatives with respect to criterion C5 using Saaty’s matrix from the perspective of 
expert E4. 

Ai A1 A2 A3 𝐺𝑀-.
(  𝑧-.(  

A1 1 1/2 1 0.794 0.260 

A2 2 1 1 1.260 0.413 

A3 1 1 1 1.000 0.327 
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Table 52. Scoring of alternatives with respect to criterion C6 using Saaty’s matrix from the perspective of 
expert E4. 

Ai A1 A2 A3 𝐺𝑀-/
(  𝑧-/(  

A1 1 1 1 1.000 0.333 

A2 1 1 1 1.000 0.333 

A3 1 1 1 1.000 0.333 

Table 53. Scoring of alternatives with respect to criterion C7 using Saaty’s matrix from the perspective of 
expert E4. 

Ai A1 A2 A3 𝐺𝑀-0
(  𝑧-0(  

A1 1 1 1 1.000 0.327 

A2 1 1 2 1.260 0.413 

A3 1 1/2 1 0.794 0.260 

Table 54. Scoring of alternatives with respect to criterion C8 using Saaty’s matrix from the perspective of 
expert E4. 

Ai A1 A2 A3 𝐺𝑀-1
(  𝑧-1(  

A1 1 2 2 1.587 0.493 

A2 1/2 1 2 1.000 0.311 

A3 1/2 1/2 1 0.630 0.196 

 

Table 55. Scoring of alternatives with respect to criterion C1 using Saaty’s matrix from the perspective of 
expert E5. 

Ai A1 A2 A3 𝐺𝑀.'
(  𝑧.'(  

A1 1 1/3 1/3 0.481 0.135 

A2 3 1 3 2.080 0.584 

A3 3 1/3 1 1.000 0.281 

Table 56. Scoring of alternatives with respect to criterion C2 using Saaty’s matrix from the perspective of 
expert E5. 

Ai A1 A2 A3 𝐺𝑀.)
(  𝑧.)(  

A1 1 1/3 1 0.693 0.200 

A2 3 1 3 2.080 0.600 

A3 1 1/3 1 0.693 0.200 
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Table 57. Scoring of alternatives with respect to criterion C3 using Saaty’s matrix from the perspective of 
expert E5. 

Ai A1 A2 A3 𝐺𝑀.*
(  𝑧.*(  

A1 1 1/2 1 0.794 0.250 

A2 2 1 2 1.587 0.500 

A3 1 1/2 1 0.794 0.250 

Table 58. Scoring of alternatives with respect to criterion C4 using Saaty’s matrix from the perspective of 
expert E5. 

Ai A1 A2 A3 𝐺𝑀.-
(  𝑧.-(  

A1 1 1/2 1 0.794 0.250 

A2 2 1 2 1.587 0.500 

A3 1 1/2 1 0.794 0.250 

Table 59. Scoring of alternatives with respect to criterion C5 using Saaty’s matrix from the perspective of 
expert E5. 

Ai A1 A2 A3 𝐺𝑀..
(  𝑧..(  

A1 1 1 1 1.000 0.333 

A2 1 1 1 1.000 0.333 

A3 1 1 1 1.000 0.333 

Table 60. Scoring of alternatives with respect to criterion C6 using Saaty’s matrix from the perspective of 
expert E5. 

Ai A1 A2 A3 𝐺𝑀./
(  𝑧./(  

A1 1 1 1/3 0.693 0.200 

A2 1 1 1/3 0.693 0.200 

A3 3 3 1 2.080 0.600 

Table 61. Scoring of alternatives with respect to criterion C7 using Saaty’s matrix from the perspective of 
expert E5. 

Ai A1 A2 A3 𝐺𝑀.0
(  𝑧.0(  

A1 1 1/2 1 0.794 0.250 

A2 2 1 2 1.587 0.500 

A3 1 1/2 1 0.794 0.250 
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Table 62. Scoring of alternatives with respect to criterion C8 using Saaty’s matrix from the perspective of 
expert E5. 

Ai A1 A2 A3 𝐺𝑀.1
(  𝑧.1(  

A1 1 2 2 1.587 0.493 

A2 1/2 1 2 1.000 0.311 

A3 1/2 1/2 1 0.630 0.196 

 


