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Abstract

This dissertation proposes a hybrid modelling approach for the design of

a digital twin of a mechanical structure. The concept integrates the con-

nection of the finite element method and the graph neural network. The

advantages of the physical-based method of accurately simulating complex

physical and structural behaviour are extended by the possibility of effective

data acquisition and, thus, expand the compact understanding of the given

mechanical structure. The work aims to answer whether regressors based on

graph neural networks can effectively build a digital twin. Studies supporting

this methodology are presented in this work to suggest a perspective on how

challenges relate to establishing digital twins. Designed experiments on the

training of a regressor and its validation are addressed to ensure the accuracy

and generality of the hybrid model as a whole mechano-digital framework.
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Abstrakt

Tato disertační práce navrhuje hybridní modelovací přístup pro návrh di-

gitálního dvojčete mechanické struktury. Koncepce integruje propojení me-

tody konečných prvků s grafovou neuronovou sítí. Výhody první metody

přesně simulovat složité fyzikální strukturální chování je rozšířeno o mož-

nost efektivní datové akvizice, která rozšiřuje kompaktní porozumění o dané

mechanické struktuře. Hlavním cílem práce je odpovědět na otázku, zdali re-

gresor grafových neuronových sítí může být efektivním nástrojem po stavbu

digitálního dvojčete. Studie podporující tuto metodologii jsou představeny

v této práci a slouží tak k navrhnutí pohledu, jak mohou být řešeny výzvy

související s vytvořením digitálního dvojčete. Dále je pomocí navržených

experimentů ověřena možnost trénování a validace regresoru tak, aby byla

zajištěna přesnost a obecnost hybridního modelu jakožto celku mechanicko-

digitální struktury.
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1 Introduction

1.1 What Digital Twin might be
There are various perceptions of what a digital twin (DT) is. The DT con-

cept can be defined as an adaptive model of a physical asset. A digital rep-

resentation of behaving like the original system can be built with various

mathematical modelling techniques. The benefits of state-of-the-art tech-

nologies additionally alter this. Multi-physical-based solvers, cybernetics of

big data, artificial intelligence, and augmented and virtual reality are well-

known technologies today. However, the mutual collaboration of tools within

the architecture of DT is not yet evident in many fields.

The subject of DT is relatively new in comparison to other simulation

methods; the number of articles already published is thousands per year

(2020, 2023).

The DT might be defined as another milestone in the evolution of sim-

ulations in the physical world, where it is expected to be in combination

with current technologies. The milestone is well surveyed at [3] and is ex-

pected to be a successor of the Product Life-cycle Management (PLM) tool,

which can be understood as an approach to managing databases of specific

mathematical models of a product.

1.2 Hybrid modelling
The hybrid modelling technique (HM) can be understood as a union of

Physical-Based (PM) and Data-Driven (DD) modelling (there can also be

a perception of modelling between multiple mathematical approaches). Fur-

thermore, this approach might be understood as a fundamental pillar for

building a DT of a specific system, for instance, mimicking structural me-

chanic behaviour.

The basic proposition of the argument for the feasible adaptation of the

HM technique to build a DT is the expectation that the following method can

enhance a primary driving modelling approach describing observed specific

complex structures.
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Chapter 1. Introduction

1.3 Challenges in Building Regressor to derive DT
Constructing a DT architecture to mimic mechanical structures can be per-

ceived as a regression task. This endeavour involves bridging methods from

FEMs through graph theory to graph neural networks (GNN), presenting

unique challenges and opportunities.

One of the fundamental challenges lies in effectively integrating con-

cepts from FEMs, graph theory, and GNNs. While FEMs provide a robust

framework for modelling mechanical structures, graph theory offers insights

into structural relationships, and GNNs provide powerful tools for learning

from graph-structured data. However, bridging these three domains requires

carefully considering their strengths and limitations.

The challenge of extracting high-value knowledge from a FEM and in-

corporating it into a graph structure remains uncommon, with no existing

dataset available to further elaborate on such a methodology. This under-

scores the need to explore alternative approaches beyond GNNs and consider

the integration of other multi-input-output regressors. This premise opens

avenues for innovative capabilities of DT architectures for mimicking me-

chanical structures.

The designed regressor must be thoroughly validated to ensure the accu-

rate mimicking of the structure. This leads to the question of which diagnostic

tools are most suitable for this purpose. Addressing this query can establish

a comprehensive evaluation process, ensuring the efficacy and reliability of

the DT architecture in replicating mechanical structures with precision.
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2 The state of the art

2.1 Digital Twin of Mechanical Structural System
The most likely pioneering publication [1] mentioning the DT concept yet

again only as a sub-group of Product Lifecycle management (PLM) also sug-

gests further definitions of individual components be aggregated in a DT

model. Although the article absorbs the DT concept as a batch of PLM ap-

proach, the primary definition of designing via available and compiled infor-

mation characteristic for the specific system has already been pinpointed.

A more comprehensive overview of DT-connected aspects is provided in

the following article [2]. The complete definition describes the whole concept

to apply a whole DT concept as a valuable tool for making the right decisions

throughout various parties in an organisation using specific DT. Discussed

and highlighted are fields that have already started using the approach to

some extent, for instance, in industry, healthcare, meteorology, and even

education with individualised and adaptive student plans.

Additionally, in this article, DT is understood as an adaptive model, sur-

prisingly enhanced as a metamodel of complex physical systems within a

specific organisation and labelled as a state-of-the-art asset. Interestingly,

a brief introduction of one possible view of assessing DT as a component

of Industry 4.0 is made with pipelines to connect technologies such as the

Internet of Things to create advanced applications. The suggested method of

DT usage could be easily applied since multi-functional sensors are already

available and are expected to be even more affordable due to the effect of

technology on demand. This sharp image also leads to the involvement of

other technologies, starting with Tensor Processing Units (TPU) used widely

in machine learning applications, or even further is counted with Quantum

Processing Units (QPU), where the price of those technologies are also ex-

pected to decrease due to the Moor law. The mentioned units have a primary

high potential to make the required calculation needed for DT imitation of a

physical asset, even faster, faster and the response of a model should be im-

mediately available, for example, if connected with a 5G telecommunication

network.
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Chapter 2. The state of the art

2.2 Possible approaches to Twinning
The first best application to start with is a project named "The Living Heart"

[9] from Dassault, which shows how DT could be helpful in healthcare. Ap-

plication is not necessarily aiming at building explicitly the DT model of the

human heart, but the approach of usage is intuitively well suited to be an

example of how a FEM as DT can be a helpful tool to make a goal-oriented

decision in succeeding with planning and then executing procedure of car-

diostimulator implantation for an individual patient. Another example can

be the calibration of a model ventricle to describe correctly the parameters

of a new material imitating biological tissue of the heart [4]. Company Rolls

Royce is usually identified as a pioneer in bringing DT application to the real

world with their product of jet engines used in planes [5]. Tool “intelligent

engine” is probably the first industry application used to predict engine con-

ditions. The state of an engine is in real-time and The further application can

be found in, for instance, at industry [7] or in material development[6],[8].

2.2.1 Hybrid modelling

On the other hand, it focuses more on delivering digital assets as replicas

of their mechanical images. This is well introduced by [11], which might be

understood as an established milestone for the field of "Physical Machine

Learning Modelling" where the usually undividable aspect to deliver such

solution lays at mesh basis from physical model [12], understood as a mathe-

matical tool to solve Partial differential equations describing certain physical

phenomena.

Physical Based Modelling The PPoisson’sproblem can examine one of the

examples for the Physical-Based model (PM) of mechanical structure. Addi-

tionally, the problem might usually be set with fixed boundary conditions

U and specific solid geometry Γ, which may have the material parameters

consist of YYoungs’modulus E and PoPoisson’sonstant ν. The structure of Γ is

subject to a concentrated load F on the opposite side to boundary conditions,

together as the entire conditionΦ(U ,F ). The well-known equations [10] to

depict a governing of small elastic deformations of anΩ geometrical structure

can be written as:

−∇·σ= F ∈Ω,
σ=λtr(ε) I +2µε

ε= 1
2

(∇u + (∇u)T
) (2.1)
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2.3 Graphs & Graph Neural Networks

Where σ is the stress tensor, f is the body force per unit volume, λ and

µ are the elasticity parameters of the material in Ω, I is the identity tensor,

tr is the trace operator of a tensor, ϵ is the symmetric unitary strain tensor

(symmetric gradient), and u (or enhanced u(x, y)) is the displacement vector

field. In this problem, isotropic elastic conditions are assumed.

The variational formulation of 2.1 consists of taking the inner product of

2.1 and a test vector function v belonging to V̂ , where V̂ is a vector-valued test

function space. Then, integrating over the domainΩ the following equation

is obtained:

−
∫
Ω

(∇·σ) ·υdx =
∫
Ω

f ·υdx (2.2)

With all the necessary information and after a few more steps (com-

prehensively described in the thesis), the stress tensor requirements for the

structure can be calculated. For instance Von Mises stress as:

σ=
√

3
2 s : s, where s is deviatoric tensor

s =σ− 1
3 tr (σ)I

(2.3)

Data-Driven Modelling In data-driven (DD) modelling, the tasks are typ-

ically supervised learning characters, with several essential steps encom-

passing data collection, preparation, model selection, training, testing, and

validation. These crucial stages necessitate meticulous attention to factors

such as data quality, model complexity, and suitable evaluation metrics to

guarantee accuracy and reliability. Furthermore, applying various techniques,

such as Reinforcement Learning, can significantly enhance these processes,

exemplified by their utilization in swiftly optimizing structural design, as

highlighted in article [36]. Approaches to creating a DD model are limited

only by a practitioner’s mind, and the first look at those keywords in a scien-

tific database supports this statement as far from false. Thesis condensate

routes lead to graph neural network utilization, where the initial sources are

for their comprehensive overview supported by [14].

2.3 Graphs & Graph Neural Networks
Graph theory might be for someone’s exciting branch of mathematics that

studies how to apply graphs to various problems in many different fields, in-

cluding mathematics, computer science, physics, chemistry, and economics.

In the field, a graph G is a collection of objects (called vertices or nodes) con-
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Chapter 2. The state of the art

nected by lines (called edges). Hence, at first glance, a FEM has a structure

similar to graphs; it is crucial to introduce this theory of graphs, for instance,

by [20; 19] As The graph is at least minimum consisting of source and target

nodes N connected by edges V (at pure graph theory used nodes U and ver-

tices V notatin, to make synergy between domains, the notation is therefore

slightly modified), where each node connects only one, the proper way to

extract a suitable graph G

G = (N ,V ) (2.4)

Graph Neural Networks A Graph Neural Network (GNN) architecture is

one of the latest types of neural networks that is representative of the DD

modelling technique. Interestingly, GNN might be understood as a more

corresponding architecture similar to the biological brain. The view stems

from the lay notion that the brain does not have an input and output layer

of neurons, as with feed-forward neural networks [21], but has regions that

are variously activated at any given time [22]. Specifically, specific clusters

of neurons are activated by different stimuli. Another comparison is made

with Feed-Forward Neural Network (FFNN), where the biological brain is

not made up of neat layers of neurons but is more like a graph arrangement,

where specific neurons are connected to neighbouring ones. The initial real-

world example of analogical implementation could not be better studied than

[13; 17; 16]. Overall comparisons and an overview of various techniques are

provided with [15].

2.3.1 Message Passing

Message passing [23] is a fundamental concept in GNN [22] and propagates

information between nodes in a graph. In message passing, each node sends

a message to its neighbouring nodes, which then update their states based

on the received messages. This process is typically repeated multiple times,

allowing information to propagate throughout the graph.

The initial model, to begin with, is an analogy of linear regression adapted

to multi-input-output tasks,

ŷ = WX+b (2.5)

where ŷ is the predicted target vector of dataset nodes, W is matrix of weights,

input features from dataset X and bias vector b.
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2.3 Graphs & Graph Neural Networks

What distinguishes the forward pass equation from the abovementioned

multi-linear regression is that Neural Networks apply non-linear activation

functions [21]. For the first hidden layer (i = 0), the equation can be rewritten

as follows:

H1 =σ
(
WT

0 X+b0
)

, (2.6)

the chosen activation function for the further experiment is Rectified lin-

ear unit σ = max(0, X ) or others (sigmoid, tangent hyperbolic). Message

passing is demonstrated as well for gated version [24] or even for quantum

computation [25].

2.3.2 Graph Convolutional Layer

[27] The following graph network architecture comprises a graph convo-

lutional layer (GCN). The graph convolutional neural network [27] can be

understood as the enhancement of the Feed Forward Neural Network (FFNN)

with classical notation [21] and so by the graph-structured data described,

taking into account the adjacency matrix A. The forward pass for the first

hidden layer is then

H1 = D̂−1/2 · Â · D̂−1/2 ·X ·W0 +b0, (2.7)

where Â = A+ I adjacency matrix with self loop and and D̂ is its degree matrix

[26; 27].

2.3.3 Graph Sample and Aggregated Embeddings Layer

The second approach we used is built on Sample and Aggregated Embed-

dings (SAGE). It is a neural network layer designed to aggregate information

from neighbouring nodes in a graph structure [28]. By incorporating Sage

layers, the promising target lies in capturing complex relationships and de-

pendencies between nodes in the graph representation of the mechanical

structure, providing a flexible and practical approach to graph modelling. In

SAGE layers, the node embeddings of neighbouring nodes are computed and

aggregated to generate a new node embedding. This aggregated embedding

is then used to update the embedding of the target node, and the process is

repeated until all nodes in the graph have been updated. As a type of GNN

layer, SAGE layers aggregate information from a node’s neighbourhood to

7



Chapter 2. The state of the art

generate a node representation. The forward pass is expressed as

H1 = [AGG (X) ||X]W0 +b0, (2.8)

where AGG is a function aggregating neighbourhood nodes with a certain

aggregation method (for instance: sum, mean, min, max) [29].

2.4 Problem statement
The central hypothesis of this dissertation thesis is to answer whether GNN

can be applied as an effective DT modelling technique to store and evaluate

information from the PM description of a mechanical system. The main goal

is to achieve a similarity of experimental data of a structural mechanic system

such that the resulting interpretability for the user will be similar to that of an

extracted FEM.

It is also assumed that a GNN is a suitable architecture compared to

classical deep-learning neural networks. The assumption is based on fact;

GNN can use the information of nodes and the relationships between them

using a 3D model initialized and essential in FEM.

The mechanical stress results of the loaded system in FEM are suitable for

creating a dataset for training GNN, which will be faster for load classification

as a result of specific nodes of the mechanical system.

8



3 Thesis objectives

For the dissertation, it is proposed to investigate and clarify the following

issues to develop a methodology applicable to establishing a digital twin of a

mechanical system by combining various modelling techniques.

1. How to design a methodology for predicting a particular mechanical

system for authentic and accurate operation and overall establish a

Digital Twin architecture of a mechanical system with the combination

of techniques FEM and GNN?

2. How to extract information from an FE model representing a mechani-

cal system and compile it so that thegraphs required to train a particular

regressor are properly defined?

3. How to train regressors optimally so that they can be used to perform

regression tasks on nodes of graphs reflecting a physical-based model,

and What FEM data will be chosen to build the training dataset?

4. How can the overall DT model be diagnosed to avoid false system

predictions based on a GNN regressor so that DT mimics data that

will potentially be taken from sensors in the regular operation of the

physical asset?

9



4 Developed methodology

4.1 Method Description
The thesis proposes a novel approach by integrating graph theory into FEM,

utilizing graphs extracted from FEMs as dynamic structural blueprints and

a foundation for training GNNs. This approach combines white box mod-

elling with machine learning and has succeeded in various domains, such as

medical imaging and physics-performed machine learning.

At the core of our methodology is the integration of GNNs, transcending

traditional simulation boundaries by learning intricate relationships embed-

ded in structural graphs and predicting behaviours beyond conventional

modelling.

Further, the synergy between graph reduction and GNNs is pivotal in

achieving an accurate DT. By distilling complex structural representations

into reduced graphs, we empower neural networks to predict with unprece-

dented accuracy, optimize computational efficiency, and establish a robust

framework for real-time predictive modelling.

To summarize the proposed methodology as shown Fig. 4.1 can be:

1. Identify physical phenomena to model and monitor in real product

2. Define geometrical model Γ to required spatial precision

3. Creation of FEMΩ based on requirements of the first and second step

4. Extract calculated physical attributes D of converged model

5. Train and Validate Graph Regressor f (G )

6. Replacement of FEM by DT based on Regressor of GNN

7. Optimize graph by reduction of DT complexity

10



4.2 Data Acquistion from Physical Based Model

Figure 4.1: DT of mechanical structure lifecycle

Figure 4.2: Process of DT creation from FEM to Graph representation with
further graph reduction process; from left: mechanical model, FEM, fully
connected graph, reduced graph (shortest path), reduced graph (closed path)

4.2 Data Acquistion from Physical Based Model

Accurately distilling information from simulations of PMs presented, partic-

ularly those established via the FE, is of utmost importance. These models

are invaluable tools for understanding complex phenomena, predicting out-

comes, and making informed decisions. However, their reliability hinges on

a rigorous validation process. This involves subjecting the model to knowl-

edgeable critical inspection by experts in the respective field and supporting

it with real-world laboratory experiments. By adhering to this validation

framework, we can ensure that the distilled knowledge from the model aligns

with empirical evidence, enhancing its accuracy, robustness, and overall cred-

ibility. This, in turn, empowers us to unravel the intricacies of the natural

world, optimize designs, mitigate risks, and ultimately make well-informed

decisions for a better future. This is visualized by simple Fig. 4.2.

11



Chapter 4. Developed methodology

4.2.1 Extraction of data from FE simulations

Once the FEM is established, its geometric and domain description is doc-

umented through a computational environment, which defines the spatial

configuration of each node ni within a particular element ei , as well as the

mutual connectivity between the elements. The graph model G can be ob-

tained as follows:

f :Ω(Γ(e,n),E ,ν,F ) →GF E M
(
N ,V ,X(F),y(σ)

)
(4.1)

All nodes and edges in the resulting graph adhere to the logic of the

original FEM. The nodes acquire data from the converged FEM, with input

parameters X capturing reaction forces Fi of the selected nodes ni ∈ S

simulating distributed sensors S . The target output y represents structural

mechanical stress for all nodes σ. This approach was introduced at [37].

4.3 The Graph Finite Dataset (GF dataset)
For further exploration on methodology, the GF dataset: Mesh-Based Graphs

Dataset for a DT of a Mechanical Systems [34], was established as a collection

of subsets data DI DS generated from PMs created as FE structural mechanics

simulation Fig. 4.3. Each sub-dataset is distinguished with an identifier. Sub-

Dataset I DS ∈ {
b2,b3, f s, pl

}
. Those models have characteristically precise

geometry (mesh without exception) with specific boundary conditions to

clarify while exploring feasible strategies to build a DD model.

• Db2 ... Beam2D: Encastred and loaded 2D beam.

• Db3 ... Beam3D: analogy of Beam2D at 3D.

• D f s ... Fibonacci’s Spring: analogy of 3D beam with slightly compli-

cated geometry.

• Dpl ... Plane: Symmetrically cut geometry of RC plane loaded with

pressure on the wing.

12



4.4 Experiments for Training of Regressor

Figure 4.3: GFdataset: Visualized each FE model from D introduced at [34] by
its graph with randomly specified weights of nodes. From top left: Beam2D,
Beam3D, Fibonacci spiral, Airplane

4.4 Experiments for Training of Regressor
The GF dataset is thoroughly described above and is also extracted in a man-

ner that can be used for training specific DD models. The following tech-

niques suitable for the nodes regression tasks are listed due to their potential

to contribute sufficiently to the distillation of a well-performing represen-

tation. Visually, all the frameworks are analogies of architecture based on

Fig. 4.4.

• Multilinear regression model (MLR) is selected from the pure interest

in how can be the overall task handled with slight naiveness. Multiple

input and output functions of the selected input nodes for the sub-

dataset will be evaluated.

• Designed Multi-layer FFNN architecture (FN) is in the next step se-

lected to have intermediate insight into the performance of the neural

network model applied to this specific task.

Framework: 2 layers with ReLu units with 150 hidden nodes, one final

linear unit

• And the final approach dedicated to GNN with frameworks usually

lately applied across the projects are Framework one: 2 layers with Sage

13



Chapter 4. Developed methodology

convolutional layer and one final linear unit.

Framework one: 2 layers with graph convolution layer one final linear

unit.

Multiple (10 per framework and sub-dataset) experiments were set to get

a more accurate estimate of the performance of the chosen model’s frame-

work. The main intention was to reduce the influence of any randomness or

variance in the data and allow a better understanding of the true performance

of a single model.

Figure 4.4: Representative examples of the frameworks used at benchmarking
experiment

4.5 Graph Reduction to Optimize Regressor
Once the Regressor is trained and fully diagnosed, an additional tuning step

involves reducing the graph size [18], thereby reducing the time required

for training [32]. The proposed research [35] harnesses graph theory utiliz-

ing graphs extracted for the following foundations of training GNNs. This

approach combines white box modelling with machine learning, as demon-

strated in various domains such as medical imaging and physics-performed

machine learning [30]. However, the increasing scale and complexity of engi-

neering projects pose challenges in computational intensity associated with

detailed FEMs. Addressing this challenge, the research focuses on graph re-

duction to streamline computational complexity and lay the groundwork for

efficient GNN training [31]. At the methodology’s core lies the integration of

Graph Neural Networks, transcending traditional simulation boundaries by

learning intricate relationships embedded in structural graphs and predict-

ing behaviours beyond conventional modelling. The synergy between graph

reduction and GNNs is pivotal in achieving an accurate DT, empowering

neural networks to predict with unprecedented accuracy, optimize computa-

tional efficiency, and establish a robust framework for real-time predictive

14



4.6 Regressors Diagnostic

modelling.

4.6 Regressors Diagnostic
Ground Truth evaluation of DT is the paramount importance of visualiza-

tion for operators utilizing the DT in decision-making. By enabling operators

to visually observe the ground truth representation of the trained Regres-

sor on the physical-based dataset, they can clearly understand the actual

behaviour of the simulated structure. This visual insight becomes crucial

for informed decision-making processes, as operators can confidently rely

on accurate visualization to make critical assessments and take appropriate

actions.

Quantile-quantile plot When developing a DT based on GNN, one of the

crucial factors to consider is the validation of the regressors. Validation

techniques such as quantile-quantile plots can be employed as possible

policies or strategies to assess the performance and accuracy of the regressors.

In the results

Heteroskedacity and Homoskedacity is one of the critical assumptions

under which the Ordinary Least Squares gives an unbiased estimator, and

the Gauss–Markov Theorem applies. To interpret heteroskedasticity [33] can

be used as a scatter plot of the residuals against the predicted values or the

independent variable(s). Suppose the scatter plot shows a funnel shape, with

the spread of the residuals increasing or decreasing as the predicted values

or independent variable(s) increase. In that case, heteroskedasticity is likely

present.

accuracy and training history Visualizing the training plot to observe the

loss metric as a representative value of accuracy and convergence on the

validation set is a standard evaluation practice. However, it is essential in this

context since the experimental frameworks are specifically designed for the

thesis, and the behaviour is unknown beforehand. Monitoring the loss value

throughout learning epochs is necessary to obtain fruitful insights into the

overall concept proposed by this thesis.
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5 Results

The aim of Chapter 4 was to introduce the design strategy for evaluating

a particular DT with identified metrics. Those compiled suggestions on

evaluation tools and metrics are fruitful for initiating the proper deployment

of a DT.

To obtain a more accurate estimate of the performance of the chosen

model’s framework, multiple experiments were conducted, with ten exper-

iments per framework and sub-dataset as mentioned in section 4.4. This

approach aimed to reduce the influence of randomness or variance in the

data and provide a clearer understanding of the faithful performance of each

model.

Box plots were utilized as a valuable visualization tool to compare the

models’ performance across these multiple experiments. By examining the

distribution of the Mean Squared Error (MSE) metric, which provides insights

into the spread of model predictions on the validation set, the box plots

depicted the performance variations among the different sub-datasets.

5.1 Models Ranking
Multiple experiments were conducted, with 10 experiments per framework

and sub-dataset, to obtain a more accurate estimate of the chosen model’s

framework’s performance. This approach aimed to reduce the influence of

randomness or variance in the data and provide a clearer understanding of

each individual model’s true performance.

Box plots 5.1 were utilized as a valuable visualization tool to compare the

performance of the models across these multiple experiments. By examining

the distribution of the Root Max Squared Error (RMAXMSE) metric, which

provides insights into the spread of model predictions on the validation set,

the box plots clearly depicted the performance variations among the different

sub-datasets.
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5.1 Models Ranking

Figure 5.1: GF benchmarking: Boxplots to depict Comparison of particular
regressor framework to distinguish on performance via the metric of loss
function LRM AX MSE

Table 5.1: Mean square error of validation sets

Methods Db2 Db3 D f s Dpl

MLR 8E+0±8E+0 2E-10±8E-11 3E-7±1E-7 1E-4±9E-5
FFNN 5E-4±3E-4 7E-10±5E-10 2E-5±1E-5 8E-6±1E-5
GCN 4E+0±5E+0 2E-7±3E-7 1E+0±2E+0 2E-4±1E-4
SAGE 1E-1±3E-1 5E-6±9E-6 4E-2±3E-2 3E-4±4E-4
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Chapter 5. Results

5.2 Ground Truth Validation
In DT models, the validation of ground truth stands as a cornerstone, accentu-

ating the pivotal role of visualization for operators. A profound understanding

of the simulated structure’s actual behaviour is achieved by providing opera-

tors with a lucid visual representation of the trained regressor’s performance

on physical-based datasets.

This visual clarity becomes indispensable in decision-making, as opera-

tors can confidently rely on precise visualization to make critical assessments

and execute appropriate actions. Accurate visualization serves as a beacon, il-

luminating the path to informed decision-making and amplifying the efficacy

of DT implementations in sophisticated decision-support systems.
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5.2 Ground Truth Validation

Figure 5.2: Ground Truth Visualization of Plane dataset for specific Input
Force applied on wing accompanied with Target and Prediction. Last evalu-
ated column (right) residues on the structure.

Figure 5.3: Detailed visualization of the plane dataset for specific input force
applied to the wing is accompanied by target and prediction, where the
primary detailed focus is at the bottom of the wing. Evaluated residues on
the structure are visible as well.
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Chapter 5. Results

5.3 Model Diagnostic via Heteroskedacity of Re-

gressors
Heteroskedasticity [33] is a crucial diagnostic tool for validating a DT devia-

tion from the assumption of constant variance in regression models and is

pivotal for accurate model diagnostics. Detecting heteroskedasticity involves

scatter plot analysis or formal tests like the Breusch-Pagan or White tests.

Its presence can bias standard errors, affecting coefficient significance and

reducing regression efficiency.

Addressing heteroskedasticity involves techniques like weighted least

squares, robust standard errors, or generalized least squares regression, which

adjusts standard errors for accurate estimates.

Nonlinear heteroskedasticity, indicated by a logarithmic shape in residu-

als against predicted values, poses challenges. Transformation techniques,

such as logarithmic or variable transformations, may mitigate it. However,

persisting nonlinear heteroskedasticity demands advanced techniques like

generalized least squares regression.

In multi-input multi-output regression, nonlinear heteroskedasticity’s

interpretation varies. It could signify model misspecification, influential

outliers, or unobserved variables. Addressing these complexities requires

meticulous analysis and consideration of alternative models and techniques.
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5.3 Model Diagnostic via Heteroskedacity of Regressors

Figure 5.4: Model Diagnostic for DT regressor based on FFNN of Fibonacci
spring shows via Quantile-quantile plot (left) required linear trend depicting.
The right plot represents nonlinear heteroskedasticity.

Figure 5.5: Model Diagnostic for DT regressor based on GCN of Fibonacci
spring and depicting via Quantile-quantile plot (left) required linear trend.
Right plot highlighting nonlinear heteroskedasticity for low values of mechan-
ical stress σ, where for higher stresses homoskedacity is present
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Chapter 5. Results

5.4 Training Evaluation
The subsequent section is dedicated to the inspection of regressor training.

The best model achieved throughout the training epochs is probed during

this inspection. The experiment consists of ten training sessions, and by

closely examining the performance and behaviour of the trained regressors,

valuable insights can be obtained regarding their strengths, weaknesses, and

overall effectiveness. The inspection process involves analyzing various as-

pects of the models, including their predictive capabilities regarding root max

square error, convergence patterns, and generalization abilities. Through a

thorough inspection of the trained regressors, a deeper understanding of their

performance is gained, enabling informed decisions about their suitability

for specific applications. This inspection phase is crucial in refining and opti-

mizing the regressor models, ultimately resulting in improved accuracy and

reliability, particularly in predicting the target variable of maximal principal

stress.
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5.4 Training Evaluation

Figure 5.6: Visual representation depicting the monotonous trend of learning
regressor based on FN framework, where the curve illustrates a steady, un-
varying progression over time.

Figure 5.7: GCN framework training history with fast achieved convergency
of regressor.
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Chapter 5. Results

5.5 Summary
The results balancing section evaluates and ranks the model-centric approach

used in building and establishing a particular DT. The primary assessment

tool utilized in this section is the boxplot, which visually represents the distri-

bution and statistical characteristics of crucial metrics driving the maturity

of the DT development.

It is noteworthy that the more straightforward model frameworks, such

as Multilinear Regression (MLR) and Feedforward Neural Networks (FN),

generally outperformed the Graph Neural Network (GNN) frameworks. For

example, in the case of the complex structure of the Plane dataset, the FFNN

architecture was able to make more accurate predictions compared to the

GNN framework, with a difference of one order in performance also visible in

summary table 5.1.

As emphasized, the evaluation process must extend beyond the loss

metric L alone, necessitating a comprehensive examination of accuracy

across the entire geometry Ω of the DT. This critical evaluation is vividly

depicted in Fig. 5.2, with further insights meticulously detailed in Fig. 5.2.

A detailed evaluation of the model’s performance, including identifying

specific weaknesses in different loading scenarios of the mechanical structure,

can only be achieved through Skedacity plots of errors against true values

for the validation dataset. This nuanced analysis is aptly demonstrated by

the nonlinear heteroskedasticity shown in Fig. 5.4, characteristic of the FN

framework, and by the partially homoskedastic behavior depicted in Fig. 5.5

for the GCN framework.

Finally, the training history of each framework provides valuable insights

into the anticipated delivery time for the specified regressor. This compre-

hensive assessment of architecture considers potential training costs for

larger mechanical structures or complex physical domains, and such can be

a fruitful tool to balance alternative methods.
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6 Conclusion

This thesis aims to contribute comprehensively to the field by presenting a

well-described and supported idea for deriving DTHMFG. Valuable insights,

methodologies, and findings are offered by exploring the hybrid modelling

of digital twins for mechanical structures using FE methods and regressors

based on GNN. An initial foundation for future research and practical appli-

cations in DT modelling of mechanical structure is provided through careful

examination and experimentation, contributing meaningfully to accomplish-

ing the 1st Goal is set at Chapter 3.

While physical-based models can be computationally expensive, their

meticulous design yields invaluable insights into complex mechanical sys-

tems. Despite the computational demands, the knowledge gained from

these models offers significant advantages, particularly in accurately mim-

icking real-world behaviours. When crafted with care and attention to detail,

physical-based models serve as indispensable tools for understanding and

optimising mechanical systems, The established methodology reached the

Goal 2 by introducing a base to effectively reuse high-value knowledge from

an FE model to deliver a trained regressor.

The Chapter 4 provides insight into regressors as representative of data-

driven modelling to perform regression tasks on nodes of a graph reflecting a

physical-based model, utilising carefully chosen FEM data to construct the

training dataset.

Then, the hypothesis verification by suitable experiments was done to

establish a baseline of frameworks, facilitating the selection of optimally

performing regressors to fulfil the Objective 3.

In particular, the last goal is addressed in Chapter, especially by Chapter 5,

which provides insight into model diagnostic based on an overall experiment

to understand the performance model in the context of delivering compiled

correct transferred behaviour of a particular PM. This highlights assumptions

of false system predictions, and therefore, the set monitoring set of metrics

is utilised as essential to DTFMG mimicking a mechanical system. This

fulfilling Goal 4 aims to use DTHMFG at a regular operation of the physical

asset.
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