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Abstract

This dissertation proposes a hybrid mod-
elling approach for the design of a digi-
tal twin of a mechanical structure. The
concept integrates the connection of the
finite element method and the graph
neural network. The advantages of the
physical-based method of accurately sim-
ulating complex physical and structural
behaviour are extended by the possibility
of effective data acquisition and, thus, ex-
pand the compact understanding of the
given mechanical structure. The work
aims to answer whether regressors based
on graph neural networks can effectively
build a digital twin. Studies supporting
this methodology are presented in this
work to suggest a perspective on how chal-
lenges relate to establishing digital twins.
Designed experiments on the training of a
regressor and its validation are addressed
to ensure the accuracy and generality of
the hybrid model as a whole mechano-
digital framework.

Keywords: Digital Twin, Hybrid
Modelling, Finite Element Method,
Graph Neural Networks, Supervised
Learning
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Abstrakt

Tato disertační práce navrhuje hybridní
modelovací přístup pro návrh digitálního
dvojčete mechanické struktury. Koncepce
integruje propojení metody konečných
prvků s grafovou neuronovou sítí. Vý-
hody první metody přesně simulovat slo-
žité fyzikální strukturální chování je roz-
šířeno o možnost efektivní datové akvi-
zice, která rozšiřuje kompaktní porozu-
mění o dané mechanické struktuře. Hlav-
ním cílem práce je odpovědět na otázku,
zdali regresor grafových neuronových sítí
může být efektivním nástrojem po stavbu
digitálního dvojčete. Studie podporující
tuto metodologii jsou představeny v této
práci a slouží tak k navrhnutí pohledu,
jak mohou být řešeny výzvy související
s vytvořením digitálního dvojčete. Dále je
pomocí navržených experimentů ověřena
možnost trénování a validace regresoru
tak, aby byla zajištěna přesnost a obec-
nost hybridního modelu jakožto celku
mechanicko-digitální struktury.

Klíčová slova: Digitální dvojče,
Hybridní modelování, Metoda konečných
prvků, Grafové neuronové Sítě, Učení s
učitelem

Překlad názvu: Digitální dvojče
mechanického Systému - Hybridní
modelování digitálního dvojčete metodou
konečných prvků a grafových
neuronových sítí — Hybridní modelování
Digitálního Dvojčete Mechanické
Struktury Metodou Konečných Prvků a
Grafových Neuronových Sítí
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Symbol Meaning

DT Digital Twin
HM Hybrid model / technique
PM Physical-based model / technique
DD Data-driven model / technique
GNN Graph Neural Network
Γ Geometry PM
Ω Solid Physical Based Model
E Material elasticity parameter of PM
ν Material Poisson’s constant of material PM
e a finite element piece (certaion typography) of FEM structure
n node of finite element or graph
σn Maximal Principal stress at dedicated node
δ simulation step for calculation PM
D Dataset generated via FE
G Graph
G′ Reduced G
v vertice (edge) of G
A Adjacency matrix of G
D Degree matrix of G
L Laplacian matrix of G
D Dataset to train a regressor
LR Linear regression
MLR Multi-input-outpuT linear regressor framework
FFNN Feed-Forward Neural Networks
FN Regressor based on multi-layer neural feed-forward neural

network
GCN Regressor defined by multiple graph convolutional operational

neural neural network
SAGE Regressor based on SAGE aggregation layers for graph neural

neural network
L loss function for regressor training
e error value between target and prediction
MD Model Diagnostic
GT Ground Truth
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Introduction

This thesis explores the concept of mechanical digital twins, focusing on their
status quo and advancements in physical modelling, data-driven modelling,
and the emerging field of hybrid modelling. Digital twins are virtual replicas
of physical objects, systems, or processes that enable real-time monitoring,
analysis, and optimization. They have gained significant attention recently due
to their potential in various industries, including manufacturing, healthcare,
smart cities, etc.

The first part of this thesis will examine the current state of digital twins,
examining their definition, key components, and underlying technologies. It
will also provide an overview of the challenges and opportunities associated
with their implementation.

The initial part of the thesis will also specifically investigate advancements
in digital twin modelling techniques, focusing on physical modelling, data-
driven modelling, and integrating both approaches through hybrid modelling.
Physical modelling involves creating a digital replica of the physical sys-
tem using mathematical equations, while data-driven modelling leverages
large datasets to develop predictive models. Hybrid modelling combines the
strengths of both approaches, allowing for a more accurate and comprehensive
representation of the physical system.

The second part of this thesis focuses on the numerical demonstration of
mechanical digital twins, explicitly investigating the process of distilling data-
driven models from datasets obtained through physical-based models. This
experimental approach aims to compare different frameworks and establish a
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............................................
baseline for effectively extracting data-driven models from the information
generated by physical models.

In this part of the thesis, a series of experiments will be conducted to
compare various frameworks for distilling data-driven models from datasets
obtained from physical-based models. The physical-based models serve as
the baseline for generating the datasets, which are then used to develop
data-driven models. These data-driven models are evaluated and compared
in terms of their accuracy, efficiency, and suitability for representing the
behaviour of the mechanical system.

This research aims to provide insights into the effectiveness of different
frameworks for extracting data-driven models from physical-based models by
conducting these experiments. The findings will contribute to understanding
how to leverage the advantages of physical and data-driven modelling in
developing hybrid models for mechanical digital twins.

The results of this study will be beneficial for researchers and practitioners
in mechanical engineering and digital twins as the guidebook for selecting
appropriate frameworks for distilling data. By analyzing and comparing
these modelling approaches, this research aims to provide insights into the
strengths and limitations of each method and identify the potential synergies
that can be achieved through hybrid modelling. The findings of this study
will contribute to the existing knowledge in the field of digital twins and offer
valuable guidance for practitioners and researchers interested in leveraging
digital twins for enhanced system understanding and optimization.
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Part I

Hybrid Modelling of Digital Twins
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Chapter 1

Status Quo of Digital Twin Concept

The Digital Twin technique (DT) concept can be defined as an adaptive
model of a physical asset. A digital representation of behaving like a real-time
mechanical structure can be built with a combination of various mathematical
modelling techniques. Therefore, an original mechanical system is additionally
altered by the benefits of state-of-the-art technologies. Multi-physical-based
solvers, cybernetics of big data, artificial intelligence, and augmented and vir-
tual reality are well-known technologies today. Yet, the mutual collaboration
within DT is probably not evident in many fields.

The subject of DT is relatively new in comparison to other simulation
methods; for instance, the number of already published articles is around
fifteen thousand per two years (2020, 2023) only in the Science Direct database.
Below are further representative papers to build a brief picture of the research
vision.

DT might be defined as another milestone in the Evolution of simulations of
the physical world, where a combination with current technologies is expected.
The milestone is well surveyed at [38] and is expected to be a successor of
the Product Lifecycle Management (PLM) tool, which can be understood
as an approach to managing databases of specific mathematical models of a
product as depicteded at Fig.1.1.

The most likely pioneering publication [39] mentioning the DT concept
yet again only as a sub-group of PLM also suggests further definitions of
individual components to be aggregated in a DT model. Although the article

7 ctuthesis ©MarekCiklamini;



1. Status Quo of Digital Twin Concept...........................
absorbs the DT concept as a batch of PLM approach, the primary definition
of designing via available and compiled information characteristic for the
specific system has already been pinpointed.

Figure 1.1: Simulation waves [38]

The effect of the article on the dissertation thesis is in the specification of
main types of DT which are at least worthy of mentioning as fruitful:

. DT Prototype (DTP) is a physical description of the system by necessary
information and prerequisites. These might cover its 3D model, material
behaviours, etc. Information collection can be voluntarily altered, for
example, by measurement data..DT Instance (DTI) is a type of DT corresponding to an individual
physical asset for its whole lifecycle.. DT Aggregate (DTA) basis is into connection by separatable DT instances
and, contrary to DTI, should be independent of data structure and can
actively probe information from sensors and let them, for example,
correlate with prognosis of specific DTI.. DT Environment (DTE) aims at uniting a multiphysical description of a
product. Such integration has a prime objective for forecasting system
behaviour from various perspectives.

Although the initial definition of principal components and their labels
is well distinguished and provides a broad overview, it would be helpful to
study some potential requests on the DT further.
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The following article [40] provides a more comprehensive overview of DT-
connected aspects. The complete definition describes the whole concept to
apply an entire DT concept as a valuable tool for making the right decisions
throughout various parties in an organisation using specific DT. Discussed
and highlighted are fields that have already started using the approach to
some extent, for instance, in industry, healthcare, meteorology, and even
education with individualised and adaptive student plans.

Additionally, in this article, DT is understood as an adaptive model,
surprisingly enhanced as a metamodel of complex physical systems with a
specific organisation and labelled as a state-of-the-art asset. Interestingly,
a brief introduction of one possible view of assessing DT as a component
of Industry 4.0 is made with pipelines to connect technologies such as the
Internet of Things to create advanced applications. The suggested method of
DT usage could be easily applied since multi-functional sensors are already
available and are expected to be even more affordable due to the effect of
technology on demand. This sharp image also leads to the involvement
of other technologies, starting with Tensor Processing Units (TPU), used
widely in machine learning applications, or even further used with Quantum
Processing Units (QPU), where the price of those technologies is also expected
to decrease due to the Moor law. The mentioned units have a primary high
potential to make the required calculation needed for DT imitation of a
physical asset faster, and the response of a model should be immediately
available, for example, if connected with a 5G telecommunication network.

Logically, too many open questions remain to be solved for this fresh
scientific sub-field, for instance, a question concerning cyber safety, since
leakage of data from a DT might be at least expected. Another vital issue
is the pre-processing of data heading to the DT model, and this is from
the practical aspect of false predictions of a system by a designed model,
which might lead to fatal errors. Making a complete list of unresolved topics
affecting the DT concept would be fruitful.

9 ctuthesis ©MarekCiklamini;



1. Status Quo of Digital Twin Concept...........................
1.1 Representative DT applications

The first best application to start with is a project named "The Living Heart"
[41] from Dassault, which shows how DT could be helpful in healthcare as
illustrated by Fig.1.2 and Fig.1.3. The application does not necessarily aim to
build the DT model of the human heart explicitly. Still, the approach of usage
is intuitively well suited to be an example of how a finite element model as
DTP can be a helpful tool to make a goal-oriented decision in succeeding with
planning and then executing the procedure of cardiostimulator implantation
for an individual patient. Another example within the DDI context can
be the calibration of a model ventricle to correctly describe parameters of
a new material imitating biological tissue of the heart [42], which might
have the potential for further usage as a DDA component. The approaches
mentioned above can already be distinguished as the correct connection
between components of DT architecture.

Figure 1.2: Living heart [41] Figure 1.3: Procedure planning [42]

The company Rolls Royce is usually identified as a pioneer in bringing
DT application to the real world with their product of jet engines used in
aeroplanes [43]. The "Intelligent engine" tool is probably the first industry
application to predict engine conditions. The state of an engine is monitored
in real-time and evaluated based on available data received from developed
models of other engines and, therefore, an agile decision of subsequent actions
can be made, for example, whether a plane has to be guided from air to service
check immediately with an object collision as illustrated in Fig.1.4. This DT
product imitation of a physical engine can be used for other purposes, such
as maintenance planning, estimation of reliability, or predicting the engine
state under a specific weather forecast for a planned air route.
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Figure 1.4: Intelligent Engine [43]

In the Industry 4.0 domain, great effort is usually put into making a pro-
duction process more effective economically and beyond. Suggested article
[46] describes an approach to solving this aspect by the method of artificial
intelligence, by Reinforcement Learning (RL), with agents designed to con-
verge to a solution of ideal autonomous industry management. The core of
the idea is to connect the supply chain and warehouse into one architecture
to create an adaptive system within this industry environment. Prerequisites
for this application are defined as two groups of agents, with a fixed policy of
learning and an agile policy. The first group of agents is learning based on
separate data from the environment, which can be natural or synthetic. The
next group of agents understands the architecture simultaneously from both
data batches acting within the same system and expects stochastic events to
be considered; therefore, the dynamically changed policy function is required.
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1.2 Challenges of DT

The initial figurative preferential selection of the favourite representative
subjects of DT applications could not be completed even at the meta-study
since the number of applications is growing exponentially. Therefore, it is
worth making a preliminary conclusion about what a DT might be. The
goal of creating DT is obvious: "it" should imitate a real system as closely as
possible. In a best-case scenario, the design of such a virtual system considers
the variability of parameters in its dynamics.

Previous points imply requests that are not aimed only at virtual testing.
In the best case scenario, a specific product model is built with workflow
and main items described in paragraph Evolution in the world of simulations.
A pretty important expectation for DT is some level of synergy between
physical-based modelling and data-driven modelling. Both mathematical
approaches must be mutually validated with the latest data to guarantee a
strong correlation. Continuous observation of correlations between modelling
approaches and real assets is needed to indicate new items contributing to
the whole architecture of specific DT. Interoperability is probably one of the
significant implications of the previous text. Cooperation of various single
DTs describing specific domains of physic The safety of DD in terms of correct
prediction is a fundamental question, namely how to define a particular metric
that would, for example, indicate when the overall DD model is overtrained
or if any new information is available that was not yet shown to the model.

Last but not least, it is worth defining an approach where the architecture
of the entire solution concept is cloud-based. This can be characterised by an
example where a new design point (new information) is immediately included
in the model database, and the model is re-trained immediately with this
new information.
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1.3 Hybrid Modelling

The Hybrid Modelling technique (HM) can be described as a union of
physical-based and data-driven modelling (there can also be a perception
of modelling between multiple mathematical approaches) as illustrated in
Fig.1.5. Furthermore, this approach might be understood as a fundamental
pillar for building a DT of a specific system, for instance, mimicking structural
mechanic behaviour.

The basic proposition upon the argument of feasible adaptation of HM
technique to build a DT is expected when the following method can enhance
a primary driving modelling approach describing observed specific complex
structure.

Figure 1.5: Venn diagram to depict union of Physical- based and Data-Driven
modelling techniques

To illustrate how potential architecture based on different modelling tech-
niques might look alike, let us consider an example of a prototype aeroplane.
The plane’s wings are measured at multiple locations by sensors, and the main
objective is to investigate if the design of the entire aircraft is in safe condi-
tions. Unfortunately, the decision of risks cannot be made on a physical-based
model since the technique is mainly computationally demanding. Therefore,
the delayed results for further plane control would not be valuable at a spe-
cific flight moment. The solution might be to build a model based on data
transferred from the knowledge of a large physical model, and this distilled
data-driven model is then utilized to control the loop.

In fundamental perception, HM combines two or more different models,
such as a regressor based on neural networks or another, to create a more
robust and accurate model. As a result, the combined model is often more
precise than the individual models alone. In addition, hybrid models usually
use data from multiple sources and leverage the strengths of both models to
provide better predictions.
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1.3.1 Possible Use Cases

The following applications are divided into applications using artificial
intelligence in conjunction with physical modelling and applications using
metamodelling techniques.

SMARTFEM

Investigating of Composite Structures presented by dissertation [53] sug-
gests and explores the SMARTFEM. The solution is a very inspiring publi-
cation in terms of applying feed-forward neural networks to FE modelling,
especially in terms of applying these elements to sub-modelling or refining the
model of a specific location on an extensive global model. In this work, the
ambitious goal is to design a predictive tool that could be used to prepare the
structure of new materials, such as composites or new metallic materials. At
the same time, it is emphasized that heterogeneity in the spatial dimensions
of these materials should be considered.

Dimensional variations are often intractable by conventional classical tech-
niques due to nonlinear properties. Moreover, practices capable of this task
of finite element multi-dimensioning are only applicable to specific problems
because they are very computationally intensive as they are highly dependent
on detailed modelling of the internal elements and their displacement fields
(note, for example, the rotation of the fibres). Therefore, a machine learning
method is proposed that considers a direct relationship between an element’s
state (finite element) and its force action to find its displacement. The author
solved this aspect by designing "SMART elements."

Balistic Limit of Laminate Structure

Measurements incorporated to FE [44] describing the following example as
a classical approach frequently seen in recent years. It combines building on
experimental measurements and a finite element model. For example, this
approach has been used to evaluate the effect of a laminate sequence on the
ballistic limit. The publication mentioned investigates laminate composites
subjected to high-velocity impacts. The standard approach for studying
these materials is to evaluate the experimental data and the physical explicit
dynamics model separately, which the authors see as inappropriate. Therefore,
they propose developing a DD model involving a classical feed-forward neural
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network to produce a more representative estimate to improve the composite
properties. This model is trained on a data set where the experimental
measurements complement the results from FEM simulations to account for
the different energy absorption behaviour in differently rotated fibres of the
composite.

Dynamic System - Surrogate

Although the issue of DD was discussed in the previous section, here is
an additional example. The reported approach of metamodelling a dynamic
system using surrogate models [45] should be mentioned in this chapter. This
paper describes a damped discrete dynamical system to discover a suitable DD
concept using surrogate models (SM). The exciting aspect is the comparison
of SM, such as a Gaussian process emulator, on a system that varies its
stiffness and mass. Other data quality factors, such as sampling rate, are also
included, which is crucial for developing a DT and subsequent behaviour.

The examples mentioned above collectively convey a strong sense of es-
tablishment within fields such as machine learning for physics, instilling
confidence in the well-founded nature of the overall concept [4].

1.4 Physical-Based Modelling

Physical-based technique models (PM) are an essential component of
techniques aimed at creating DT through hybrid approaches that combine
data-driven and physics-based methods. By incorporating fundamental physi-
cal principles, PM models provide a deeper insight into the system’s behaviour
being modelled, allowing for accurate predictions of its response to various
stimuli. This might be particularly important in complex systems where
more than data-driven models (further Section 1.5) are needed to capture
the underlying physics. Integrating data-driven and PM models in a hybrid
approach makes it possible to create more accurate and robust DTs that can
be used for various applications, such as optimization, control, and decision-
making. Furthermore, developing and using PM models can lead to new
insights and discoveries in the field, driving innovation and progress in various
industries.

PM models are established through analytical reconstruction of physical
phenomena, ranging from simple linear relationships to more complex mathe-
matical tools such as Partial Differential Equations (PDEs) that describe the
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modelled physical system. However, PDEs often require enormous computing
power to solve a problem precisely and capture the observed system. This
computational capacity can be a disadvantage in some applications, whether
the solution is implicit or explicit. Nevertheless, PM models based on PDEs
can still provide valuable insights into the behaviour of physical systems and
serve as a basis for developing numerical models. By combining analytical
and numerical techniques, powerful models can be created to understand and
predict physical systems’ behaviour.

1.4.1 Overview of Solving PDEs for a PM

There are several methods to solve partial differential equations (PDEs)
numerically [37; 2], including:

. Finite Difference Method (FDM): This method involves approximating
the derivatives in the PDE using finite differences and then solving the
resulting system of algebraic equations. FDM is a straightforward and
efficient method for solving PDEs, but it is limited by its accuracy and
its ability to handle complex geometries.. Finite Element Method (FEM): This method involves dividing the domain
of the problem into small finite elements and then approximating the
solution within each element using a polynomial function. The equations
governing the behaviour of each element are then assembled into a system
of algebraic equations and solved numerically. FEM is a versatile method
that can handle complex geometries and boundary conditions, but it
can be computationally expensive and requires significant expertise to
implement.. Finite Volume Method (FVM): This method involves dividing the domain
of the problem into small finite volumes and then applying a conservation
law to each volume. The equations governing the behaviour of each
volume are then assembled into a system of algebraic equations and
solved numerically. FVM is particularly useful for solving problems
involving fluid dynamics and heat transfer, and it can handle complex
geometries and boundary conditions.. Spectral Methods: This method involves approximating the solution to
the PDE using a set of basis functions, such as Fourier series or Chebyshev
polynomials. The coefficients of the basis functions are then determined
by minimizing the residual error in the PDE. Spectral methods are highly
accurate and efficient, but they can be limited by their ability to handle
complex geometries and boundary conditions.
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Naturally, each method has its strengths and weaknesses, and the choice of
method depends on the problem being solved and the resources available for
computation.

1.4.2 Fields Excerpts of PM

Physical modelling has so many approaches, and the publications that have
been written would be too overwhelming for this thesis to touch even the
tip of the iceberg of the PM topic. Therefore, only a few of the standard
techniques of PM are listed:

Structural Mechanics

Poisson’s law, in relation to Hooke’s law, describes the behaviour of mate-
rials under deformation essential for structural mechanics [1]. For example,
Poisson’s law describes a material’s lateral contraction or expansion occurring
when it is stretched or compressed. In contrast, Hooke’s law describes the
linear relationship between stress and strain in an elastic material.

Poisson’s law states that when a material is stretched or compressed in one
direction, it will experience a corresponding contraction or expansion in the
perpendicular directions. The ratio of the transverse strain to the longitudinal
strain is called the Poisson’s ratio, ν, and it is a material property that can
be used to describe the deformation behaviour of materials.

A simple example of a material bar being stretched in one direction shows
the relationship between Poisson’s ratio and Hooke’s law. When the bar
is stretched, it experiences a longitudinal strain (change in length per unit
length) in the direction of the applied force. At the same time, the material
experiences a transverse strain (change in width per unit width) in the
perpendicular direction.

The relationship between the longitudinal and transverse strains can be
expressed as: ϵL = −νϵT where ϵL is the longitudinal strain, ϵT is the
transverse strain, and νis the Poisson’s ratio. By substituting this expression
into Hooke’s law, we get: σ = EϵL = −νEϵT This shows that Poisson’s ratio
is related to Young’s modulus, which can be used to predict the behaviour
of materials under different loading conditions. In summary, Poisson’s law
can be used in conjunction with Hooke’s law to describe the deformation
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behaviour of materials and design structures that can withstand the stresses
and strains they will experience during use.

Multi-Body Systems

The primary law governing the behaviour of Multi-Body Systems (MBS)
simulations is Newton’s second law of motion [22], which states that the force
acting on an object is equal to its mass times its acceleration: F = ma. In
MBS simulations, this law is applied to each rigid body in the system, and the
resulting equations of motion are solved numerically to predict the system’s
behaviour over time.

While MBS simulations are based on Newton’s second law, the equations of
motion can be formulated using different approaches, such as the Lagrangian
or Newton-Euler methods. These methods differ in mathematical formulation,
but they all rely on the fundamental principles of mechanics and physics to
describe the system’s behaviour.

The Lagrangian method is a mathematical approach commonly used to
derive the equations of motion for mechanical systems. It is based on the
principle of most minor action, which states that the path taken by a me-
chanical system between two points in time minimizes the functional action.
The Lagrangian method can be used to derive the equations of motion for
complex mechanical systems with multiple degrees of freedom, such as robots
and vehicles.

In summary, while MBS simulations primarily insist on being governed
by Newton’s second law of motion, the mathematical formulation of the
equations of motion can be done using different approaches, such as the
Lagrangian or Newton-Euler methods.

System simulations

System simulations based on PM can be beneficial in a variety of appli-
cations. By simulating the behaviour of a system based on known physical
laws and relationships, these simulations can provide valuable insights into
the system’s behaviour under different conditions without the need for costly
and time-consuming experimental testing [21].
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PM can also design and optimize systems, allowing engineers to explore
different configurations and operating conditions before building physical
prototypes. This can reduce the risk of costly design errors and shorten the
design cycle.

Moreover, system simulations can help develop control strategies for com-
plex systems, allowing engineers to optimize the system’s performance and
stability under a wide range of operating conditions.

Overall, system simulations based on PM can provide a cost-effective and
efficient means of exploring the behaviour of complex systems, optimizing
their design and operation, and developing control strategies to achieve desired
performance objectives.

This section presents a comprehensive introduction to PM as a powerful tool
for understanding, designing, and optimizing complex systems by simulating
their behaviour based on known physical laws and relationships.

The selected representation is based on three main approaches to physical
modelling: Hookean, MBS, and system simulations. Hookean models are
based on the linear relationship between mechanical stress and strain and
can be used to predict the behaviour of materials under different loading
conditions. On the other hand, MBS describes the behaviour of interconnected
rigid or flexible bodies and is often used in designing mechanical systems such
as vehicles and robots. Finally, system simulations based on physical-based
modelling can provide a cost-effective means of exploring the behaviour of
complex systems, optimizing their design and operation, and developing
control strategies to achieve desired performance objectives.

By understanding the principles of physical-based modelling and its different
approaches, tools might provide valuable insight into the behaviour of complex
systems, optimize their designs, and improve their performance.

1.5 Data-Driven Modelling

Contrary to the previous section, there is a powerful technique for describing
observed systems via fine-tuned complex mathematical and statistical models
where knowledge of a system, in contrast to physical modelling, is not required
for the first steps. Is that appropriate? This question could lead to another
dissertation thesis. Let us assume that the Data-Driven model (DD) is crucial
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to model phenomena that are hard to handle via partial derivatives. DD
modelling is a powerful technique for extracting meaningful information and
insights from data. It involves using methods to analyse large datasets and
build models that can be used to make predictions or decisions based on
the data. Furthermore, applying various techniques, such as Reinforcement
Learning, can significantly enhance these processes, exemplified by their
utilization in swiftly optimizing structural design, as highlighted in article
[71].

In recent years, the explosion of big data has led to an increased interest in
DD modelling. With the help of advanced algorithms and machine learning
techniques, DD models can now solve complex problems in various fields,
such as finance, healthcare, engineering, and more.

DD modelling typically involves several steps, including data collection
and preparation, model selection, training and testing, and model validation.
These steps require careful consideration of the data quality, model complexity,
and appropriate evaluation metrics to ensure the model’s accuracy and
reliability.

DD has proven a valuable tool for businesses and organisations seeking
insights and making informed decisions based on large datasets.

The title is self-explanatory. DD is a technique in which a created model
is perpetuated by information collected from a specific environment, system,
process, and more.

At first glance, defining a suitable DT model does not matter whether data
as the main asset are collected from the real environment by sensors, cameras
or other technologies.

1.5.1 Fundamenatal Methods to Create Regressor for DD

When creating a regressor suited for DD modelling, it might be useful to
consider the following basic techniques:

.Multi-Input-Output Linear regression: Linear regression is a simple
and widely used technique for regression modelling. It assumes a linear
relationship between the input features and the target variable. The
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model estimates the coefficients for each feature to minimise the sum of
squared errors between the predicted and actual target values.. Polynomial regression: Polynomial regression extends linear regression
by incorporating polynomial terms of the input features. It allows for
capturing non-linear relationships between the features and the target
variable. By including higher-order terms, the model can capture more
complex patterns in the data.. Surrogate modelling, also known as response surface modelling, is a
technique used in engineering, optimisation, and simulation to create a
computationally efficient approximation (surrogate) of a complex and
computationally expensive model or system. It aims to capture the
relationship between the inputs and outputs of the original model/system
using a more straightforward and faster-to-evaluate surrogate model. The
surrogate model is trained using a set of input-output data obtained from
the original model/system. The data points typically cover a range of
input values and corresponding output values. The surrogate model can
be of various types, including regression models (e.g., linear regression,
polynomial regression), Gaussian processes, support vector machines, or
artificial neural networks.. Ensemble methods: Ensemble methods combine multiple individual
regressors to create a more robust and accurate model. Techniques like
random forests and gradient boosting are popular ensemble methods
for regression. Random forests use an ensemble of decision trees, while
gradient boosting combines multiple weak regressors sequentially to form
a strong regressor.. Neural Networks: In recent years, using neural networks for multiple
input-output regression has gained significant popularity in DD mod-
elling. This technique has become a favourite among researchers and
practitioners due to the neural networks’ remarkable ability to capture
complex non-linear relationships within the data. With their intercon-
nected layers of neurons, neural networks excel at learning intricate
patterns and dependencies in multi-dimensional datasets. These models
approximate sophisticated mappings between input features and multi-
ple output variables by iteratively optimising their internal parameters
through advanced optimisation algorithms. As a result, neural networks
have emerged as a favoured choice for regression tasks involving multiple
variables, solidifying their prominence in recent years.

By combining these techniques and iteratively refining the model, a regressor
well-suited for DD modelling can be created. It can then capture the patterns
and relationships in the data and make accurate predictions.
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1.5.2 Balancing on DD and PM Modelling

The balance of each approach, accompanied by slight elaboration on fun-
damental aspects of strengths and weaknesses, is in the right place to get a
good perception of the two approaches to be primarily merged and used for
their essential characteristics.

Pros of DD modelling:

. Can handle complex relationships and patterns in data that may be
difficult to capture with physics-based models.. Can be more flexible and adaptable to changing data and real-world
conditions.. Can be more computationally efficient and faster to implement than
physics-based models.. Can provide insights and predictions that are difficult or impossible to
obtain through traditional physics-based modelling techniques.. Can be used in cases where PM models are not available or are not
feasible to use.

Cons of DD modelling:

.May not completely understand the underlying physical mechanisms and
processes that govern the modelled system..May not be able to extrapolate well beyond the range of data used to
build the model, which can limit its usefulness in predicting behaviour
under different conditions.. Can be sensitive to outliers, noise, and missing input data, leading to
inaccuracies in the model predictions..May require a large amount of data for training and testing, which can
be difficult to obtain in some cases..May require significant computational resources and expertise to build
and train the models.

Pros of PB modelling:

. Provides a fundamental understanding of the underlying physical mecha-
nisms and processes governing the modelled system.
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. Can be more accurate and reliable than DD models under certain condi-
tions.. Can provide insights into the system behaviour that can be used to guide
experimental design and further study.. Can extrapolate well beyond the range of data used to build the model,
which can be useful in predicting behaviour under different conditions.

Cons of PB modelling:

. Can be difficult and time-consuming to develop and implement, especially
for complex systems.. Can require detailed knowledge of the modelled system and the physical
principles involved.. Can be sensitive to uncertainties in the input parameters and assumptions
used in the model.. Can be computationally expensive to simulate, especially for large-scale
systems. It may not be able to capture all of the relevant physics and
may require simplifying assumptions that can limit its accuracy and
applicability.

1.5.3 GNNs for the use as DD

The architecture of the latest type of neural network is representative of the
DD modelling technique. What is quite interesting is Graph Neural Network
(GNN) might be understood as a more corresponding architecture similar
to the biological brain. The view stems from the lay notion that the brain
does not have an input and output layer of neurons, as with Feed-Forward
Neural Networks (FFNN), but has regions that are variously activated at any
given time. Specifically, specific clusters of neurons are activated by different
stimuli. Another comparison with FNs is that the biological brain is not made
up of neat layers of neurons but is more like a graph arrangement, where
specific neurons are connected to neighbouring ones.

GNN uses a node and edge modelling approach to model data instances.
Relationships between neighbouring nodes are modelled using edges, which
may or may not have a specified direction of information transfer. A graph
can be used to describe many systems, from social networks, for example, to
determining voting preferences or defining a map of a country to estimating
the weather, but obviously to be used for FEM connectivity. Nodes already
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describe a model built using FEM, and specific dependencies between them
are represented as well.

An interesting point to ponder is that applying GNN does not necessarily
stop at Euclidean applications. Since the relationships between nodes are
defined, there is no need to know their exact spatial position, as is the case,
for example, with FEMs, which depend, among other things, on the distance
of neighbouring nodes.

For an introduction to GNNs, starting with [7] (Relational inductive biases,
deep learning, and graph networks) discusses, among other things, why it is
appropriate to focus on GNN as the next milestone in AI development. Next,
the paper presents some of the first successful applications. An example of a
first application is modelling chemical structures, where nodes represent atoms
and their bonds are described by edges. Another example is the simulation
of a mechanical system formed by material point knots and the connecting
edges, which define the elasticity.

The paper describes four basic GNN topologies, which are similar to the
topologies used in standard forward networks:

. Recurrent Graph Neural Network. Convolutional Graph Neural Network.Graph AutoEncoders. Spatio-Temporal Graph Neural Network

The book is comprehensive and concise in terms of a fundamental description
of GNNs and is therefore recommended for a very first introduction to GNNs.

The paper [55] dealing with GNN adaptivity, computational structure and
their impact on memory describes the use of GNN for application in spatial
processes similar to graph structures. Also, identical to the FEM, the GNN
node’s spatial locations are assigned here, and a computational process is
used to define the relationship between the initial spatial function of a specific
space and the resulting function of the identical space.

The GNN is used here as a computational basis that shows the given
location of nodes in space and their interconnectedness, which can be focused
on very complex spatial tasks. Moreover, this representation strategy allows
us to learn the input-output relation to the generalized space and let the same
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model be computed at different levels of accuracy, thus choosing a compromise
to the computational effort. The overall approach is demonstrated on a
traditional partial differential equation problem for physical prediction in
robotics to learn and predict image scenes from new perspectives.

How powerful a tool GNN is is the aim of the paper [52], where GNN
is mentioned as an efficient tool for graph description. The neighbourhood
clustering scheme is highlighted here. This consists of a vector representation
of a given node, which is recursively computed to cluster and transform
the vectors of neighbouring nodes. It is pointed out that many variants
of GNN have already been proposed to achieve results in node and graph
classification. Despite this revolutionary description of graph learning, there
is still a limited understanding of GNN features and their limitations. This
fact is considered, and a theoretical approach is presented to analyze and
evaluate the performance of GNNs for different graph structures.

Interestingly, the results highlight the discriminative performance of popu-
lar GNN variants such as Graph Convolutional Networks and architecture
called GraphSAGE [54] and demonstrate that this type of GNN cannot learn
more straightforward graph representation other than the one they are pri-
marily built on. The paper presents a simple architecture developed for this
purpose, which the authors believe is the unique topology among GNNs. This
claim is based on the testing performed using the Weisfeiler-Lehman graph
isomorphism test [56; 54]. Thus, it is empirically verified that the proposed
architecture achieved high performance among other types of GNNs.

The GNN transforms the properties of each neighbouring edge into a vector
representation of that edge. Similarly, each edge representation is used to
predict its value. This standard procedure implicitly assumes that edge labels
are independently conditioned on their neighbourhoods. This assumption
is essential in a paper dealing with residual correlation [6], and real-world
examples are presented to show that this assumption is valid. By focusing on
regression problems, conditional independence is discovered to be a limiting
predictive power in several assumptions, which should not be surprising,
according to the author, for the chosen traditional graph methods based on
learning with or without a teacher, such as propagating edge labelling in the
opposite direction using explicit modelling. According to the paper, there is
a correlation between the predictions’ output and

At this point, the authors note a problem with interpretability and effi-
ciency and recommend improving GNN architecture by including correlation
structure in the regression residuals. It is partially modelled using a multi-
variate Gaussian distribution applied in the residuals played by the GNN.
The parameters are then estimated by maximizing the marginal likelihood
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of the observed edges. The authors say this approach is more accurate than
the selected baseline architectures. The most significant advantage is that
the learned parameters can be further interpreted as an amplified correlation
between neighbouring edges.

Another contribution may be the developed linear time algorithm for
low variance, which estimates unbiased parameters so that they can be
incorporated into more extensive and complex GNN structures.

As may be evident at first glance, GNN is still evolving, even fundamentally,
where testing processes that have been around for decades in classical deep
learning networks are only being standardized. Standardization as an essential
aspect is addressed in a paper on performance measurement [57], which
proposes the primary datasets (dataset) on which it is recommended to test
future architectures of these new neural networks. For example, the chemical
dataset ZINC [30], which contains real-world molecular graphs, is a tool to
test the effectiveness and identify the most appropriate architecture for graph
classification or regression tasks. It is proposed to use the well-known dataset
MNIST [29] and CIFAR [31] for graph-constructed images using superpixels.

1.6 Distinct Possible Applications Based on GNN

For example, a geometric representation suitable for demonstrating graph
structure could be an "ice cube". However, this is not just any ice cube
but the South Pole Neutrino Observatory, whose primary goal is to study
the high-energy neutrinos produced by particle accelerators that produce
high-energy cosmic rays. The paper [58] applies GNN to classify more than 5k
signals detecting Cherenkov radiation as the response of high-energy neutrinos
acting on Arctic ice. Experimentation with GNN is compared against the
physical modelling of this problem, where the GNN method can classify the
submitted signals up to 3 times better. At the same time, the method can
evaluate up to 6 times the signal volume of the standard evaluation approach.
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Figure 1.6: Visualization data of Ice Cube experiment for detection of neutrino
particles [58].

It would be a pity not to complement the work with another human system,
as a representative of DTI 1, namely a publication dealing with constructing
a model of the human lung based on CT scans [59]. Graph refinement based
on the obtained sub-graphs to complete the overall graph can be applied to
many problems. In the presented work, tree or sub-tree-shaped structures
are extracted from the image data to derive a graph representation of the
volumetric data, which is further refined.

Figure 1.7: From CT scan to the virtual representation of biological system [59].

One of the most exciting publications is a paper dealing with the regression
problem of dynamically changing GNN patterns [49]. Here, the issue of nodes
being variously connected over time is addressed by using a unique neuron,
the gated diffusive unit as depicted on Fig.1.8. The unit has a time stamp
involved and can temporally describe the inputs to neighbouring nodes of
GNN. The proposed approach is only at the theoretical level so far and has
yet to be applied to a real example.
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Figure 1.8: Graph Neural Lasso for Dynamic Network Regression [49].

There is no better application to conclude a brief GNN overview than
combining DT with reinforcement learning techniques. Dynamic scheduling
of flexible production based on Petri nets [48] is broadly understood by the
authors of this paper. The goal here is to propose a policy for scheduling the
operation of an intelligent plant using a combination of the mentioned DD
techniques demonstrated by Fig.1.9.
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Figure 1.9: Petri-net-based dynamic scheduling of flexible manufacturing system
via deep reinforcement learning with graph convolutional network [48].

Self-optimizing GNN [5]is included in the application so that a Petri Net
can be used to describe what and how resources are shared in production.
What is surprising about this approach is that aspects such as whether
flexible production paths can be used and even if the aspect of stochastic
material delivery for production is included. The proposed architecture using
a Petri Net for their characterization of the Bipartite (even) graph is an
elegant solution, as the manufacturing unit is modelled using a sequential
topology, and no unnecessary large sponge convolutional network is applied,
as often seen in similar applications. The authors do not propose any new
technique for reinforcement learning to optimize the strategy as demonstrated
at Fig.1.10. Instead, the classical deep Q net is used here, where PSs are
defined as a Markov decision process.
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Figure 1.10: Petri-net-based dynamic scheduling of flexible manufacturing
system via deep reinforcement learning with graph convolutional network [5].

1.7 Conclusion on The State-of-The-Art

In the previous three sections, the main blocks for finding inspiration for
the thesis have been described. The examples of real-world applications
described in each block were presented to the reader to outline the primary
intention as much as possible, namely in compiling all three topics into one
DD design methodology. The creation of a DT using a PM, for example,
with the help of FEM and, in particular, the use of this information to build
graphical neural networks.

In the first part, the main purpose was to determine the status quo and,
therefore, examine the broader definition of the DD concept. The definition
is still unclear, but the core of the matter is clear from the beginning.

Virtual imitation of a physical system with the help of some mathematical
approaches has been an essential tool in the development of various products
for several decades. However, the DD concept is only understood as another
milestone in the field of simulation rather than an entirely new scientific
field, as it might seem at first glance. This chapter also identified other
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characteristics a DD should have, which are summarised at the end of this
chapter. The following part of the state-of-the-art was conceived as a reser-
voir of inspiration for linking different mathematical modelling approaches.
Combining PM and DD techniques is expected to provide advantages with
both methods. Thanks to PM, a fast DD should be obtained from the PM
technique, which might be used further and retrospectively interpretably.

The final section of the study describes GNNs to provide an introduction
and brief link to the following chapter, which deals with the basis for the
entire idea of the dissertation thesis. GNNs are presented as a new type of
milestone in the field of neural networks and, therefore, in the DD technique.

Publications are selected so that the reader can derive an initial insight
into this new subfield of artificial intelligence. It is implicitly highlighted that
even though a GNN is still taking shape, some challenges for standard FFNN
were efficiently handled by GNN.

1.8 Problem statement

The central hypothesis of this dissertation thesis is to answer whether GNN
can be applied as an effective DT modelling technique to store and evaluate
information from the physical description of a mechanical system. The main
goal is to achieve similiarity of experimental data of a structural mechanic
system such that the resulting interpretability for the user will be similar to
that of an extracted FEM.

It is also assumed that a GNN is a suitable architecture compared to
classical deep-learning neural networks. The assumption is based on the fact
that GNN can use the information of nodes and the relationships between
them using a 3D model initialized and essential in FEM.

The mechanical stress results of the loaded system in FEM are suitable for
creating a dataset for training GNN, which will be faster for load classification
as a result of specific nodes of the mechanical system.
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Chapter 2

Hypothesis and Goals of Dissertation Thesis

2.1 Formulation of a hypothesis

The central hypothesis of this dissertation thesis is to answer whether
GNN can be applied as an effective DT modelling technique to store and
evaluate information from the PM-based description of a mechanical system.
The main goal is to achieve similarity of experimental data of a structural
mechanic system so that the resulting interpretability for the user will be
similar to extracted FEM.

It is also assumed that a GNN is a more suitable architecture than classical
deep-learning neural networks. This is because GNN can use the information
of nodes and the relationships between them using a 3D model initialized
in FEM. The mechanical stress results of the loaded system in FEM are
suitable for creating a dataset for training GNN, which will be faster for load
classification as a result of specific nodes of the mechanical system.
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2.2 Thesis Objectives

For the dissertation, it is proposed to investigate and clarify the follow-
ing issues to develop a methodology applicable to establishing a DT of a
mechanical system by combining various modelling techniques...1. How to design a methodology for predicting a particular mechanical

system for authentic and accurate operation and overall establish a
Digital Twin architecture of a mechanical system with the combination
of FEM and GNN techniques?..2. How to extract information from an FE model representing a mechanical
system and compile it to ensure that the graphs required to train a
particular regressor are properly defined?..3. How to train regressors optimally so that they can be used to perform
regression tasks on nodes of graphs reflecting a PM, and what FEM data
will be chosen to build the training dataset?..4. How can the overall DT model be diagnosed to avoid false system
predictions based on a GNN regressor so that DT mimics data that will
potentially be taken from sensors in the regular operation of the physical
asset?
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Chapter 3

Methods for Hybrid Modelling of Digital
Twin

To address the problem of predicting physical behaviour and characteristics of
complex systems, several computational methods have been required to define
them. These methods range from mathematical modelling to numerical simu-
lations and machine learning algorithms. In the following lines, a combination
of FE analysis as the tool for physical modelling and neural graph networks
will be employed to model the behaviour of a physical system subject to
the Poisson boundary. Specifically, the variational problem formulation is
to derive a set of partial differential equations that describe the system’s
behaviour and then discretise these equations using finite element analysis
to solve them numerically. Additionally, extracting a graph representation
of the mechanical system will be described with the aim of further use in
GNNs. The objective is to learn the relationship between the mechanical
system’s behaviour and its underlying structure. Combining these methods
aims to develop a more comprehensive understanding of the physical system
and provide accurate predictions of its behaviour.

The optimal strategy to do so, the following structure, was identified. To
appropriately set the overview of methods required to have the background
on building a DD model with a hybrid approach, the focus is targeted on
three main topics.

Firstly, a description of Poisson’s problem for finite element variational
formulation, which is a fundamental method for modelling physical systems, is
taking place. Then, this topic will be enhanced by incorporating graph theory
and DD modelling, focusing on GNNs. Despite the apparent incoherence
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between these topics at first glance, the chapter is organized to provide a
proper technique for building a DD model by combining a PM approach with
stored knowledge of the mechanical system. This aims to comprehensively
understand the system’s behaviour and provide accurate predictions for its
performance.

Figure 3.1: Illustrative example of
physical model Ω based on tetra-
hedral elements building specific
FEM.

Figure 3.2: Illustrative example of di-
rected graph G extracted from struc-
ture Ω.

The following paragraphs are devoted to the topic of designing DT by the
usage of GNNs with a combination of FEM to store knowledge of the PM
mechanical systems. For this purpose, it is necessary to define the whole
mechanical system in FEM software. Then, this representation Fig.3.1 can
be transferred to the graph as illustrated with Fig.3.2 and further to a neural
network. Further utilisation targets training a GNN to closely imitate a real
system’s behaviour.
The first three subsections aim to describe the essential topics of DT, GNN
and FEM briefly. Those are necessary ingredients for the final compilation of
a hybrid mechanical system model. The following section then describes how
to pre-process and create GNN based on the geometry extracted from the
FEM model representation.

3.1 Physical-based Modelling via Finite Element
Technique

Physical-based modelling via FEM technique has proven to be an effec-
tive method for modelling complex physical systems. In this technique, the
physical system is divided into small elements, and a set of partial differen-
tial equations is derived to describe the behaviour of each element. These
equations are then discretized and solved numerically using the FEM, which
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involves approximating the solution over the entire domain of the physical
system. This approach allows for capturing the system’s behaviour with
high accuracy, considering the effects of various physical phenomena such as
stresses, strains, and temperature variations. The primary keys are mathe-
matical tools in the form of Poission’s and Boundary condition problems.

3.1.1 Poission Problem

The Poisson problem is a fundamental mathematical equation that can be
applied to specific physical phenomena. They are named after the French
mathematician Siméon Denis Poisson. The most common type of Poisson
equation is the Laplace equation, which describes the behaviour of a static
electric field. However, the equation can also be used to model a variety of
physical contexts, including solid mechanics, heat conduction, fluid flow, and
diffusion.

For instance, the Poisson problem with fixed boundary conditions U and
specific solid geometry Γ, may be introduced on the two-dimensional square
beam with sides of length and width a, b, and the material parameters consist
of Youngs’ modulus E and Poisson’s constant ν. The beam is subject to a
concentrated load F on the opposite side to boundary conditions, together
as the entire condition Φ(U, F ) per Fig.3.3. The equations governing small
elastic deformations of an Ω geometrical structure can be written as:

Figure 3.3: Accompanying example of two-dimensional beam for Poisson problem
description

−∇ · σ = F ∈ Ω (3.1)

σ = λtr (ε) I + 2µε (3.2)
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ε = 1
2

(
∇u + (∇u)T

)
(3.3)

Where σ is the stress tensor, f is the body force per unit volume, λ and
µ are the elasticity parameters of the material in Ω, I is the identity tensor,
tr is the trace operator of a tensor, ϵ is the symmetric unitary strain tensor
(symmetric gradient), and u (or enhanced u(x, y)) is the displacement vector
field. In this problem, isotropic elastic conditions are assumed [1; 2].

If we combine two previous 3.2, 3.3 equations than we obtaine:

σ = λ (∇ · u) I + µ
(
∇u + (∇u)T

)
(3.4)

Note that equations 3.1-3.3 can be easily transformed into a single vector
of PDEs for u, which is the PDE for the unknown u (Navier’s equation) [2].
However, it is convenient to keep the equations separate, as above, in deriving
the variational formulation.

3.1.2 Variational Formulation

The variational formulation of 3.1-3.3 consists of taking the inner product of
3.1 and a test vector function v belonging to V̂ , where V̂ is a vector-valued test
function space. Then, integrating over the domain Ω the following equation
is obtained:

−
∫

Ω
(∇ · σ) · υdx =

∫
Ω

f · υdx (3.5)

The gradient of σ contains second-order derivatives of the primary unknown
u, which is integrated into this term by parts (although there is a similarity
with integration by parts, what is done is to apply Green’s theorem, which is
why integral over the boundary appears):

−
∫

Ω
(∇ · σ) · υdx =

∫
Ω

σ : ∇υdx−
∫

∂Ω
(σ · n) ds (3.6)

The symbol : represents the inner product between tensors (the sum of the
element-wise product), and n is the unit normal pointing outward on the
boundary. The quantity σṅ is known as the traction or stress tensor on
the boundary and is often prescribed as a boundary condition. Here, it is
assumed that it is specified on a part of the boundary as T . On the remaining
part of the boundary, we assume that the displacement values are given as a
Dirichlet boundary condition[2; 3]. Then is obtained:∫

Ω
σ : ∇υdx =

∫
Ω

f · υdx +
∫

∂Ω
T · υds (3.7)
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Inserting the expression 3.4 for sigma gives the variational form with u as the
unknown. Note that the boundary integral on the remaining part disappears
due to the Dirichlet condition. The variational formulation can be summarized
as follows: find u belonging to V so that:

a (u, v) = L (v) ∀v ∈ V̂ (3.8)

Where,
a (u, v) =

∫
Ω

σ : ∇υdx (3.9)

σ (u) = λ (∇ · u) I + µ
(
∇u + (∇u)T

)
(3.10)

L (v) =
∫

Ω
f · υdx +

∫
∂Ω

T · υds (3.11)

Suppose the gradient is expressed of v as a sum of its parts. In that case, only
the symmetric part will survive the product between sigma and the gradient
of v because sigma is a symmetric tensor. Therefore, replacing the gradient
of u with the symmetric gradient of u’s strain tensor, ϵ, yields the following
slightly different variational form:

a (u, v) =
∫

Ω
σ(u) : ε (v) dx (3.12)

Where epsilon of v is the symmetric part of the gradient of v:

ε (v) = 1
2

(
∇v + (∇v)T

)
(3.13)
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As all the necessary information is in place, the stress requirements for the

structure can be calculated. For instance, Von Mises’s stress is expressed as:

σ =
√

3
2s : s (3.14)

where s is the deviatoric tensor

s = σ − 1
3 tr(σ)I (3.15)

The deviatoric tensor is the basis for deriving other stress values, such as the
maximal principle stress visualized at Fig.3.4, shear stress, and hydrostatic
stress [3].

Figure 3.4: Stress distribution on accompanying descriptive example of two-
dimensional beam

The mathematical tool discussed here is a robust framework for analyzing
structural mechanics and defining stress tensors. By leveraging an under-
standing of known physical phenomena, such as dynamics and transient
temperature variations, these further phenomena might be seamless and
easily adapted into the analysis. This versatility allows for a more accurate
and realistic structural performance assessment, paving the way for enhanced
design, optimization, and reliability in various engineering applications.

3.2 Graph Theory and Poisson Problem

Graph theory might be for someone exciting branch of mathematics that
studies applying graphs to various problems in many fields, including mathe-
matics, computer science, physics, chemistry, and economics. In the field, a
graph is a collection of objects (called vertices or nodes) connected by lines
(called edges). Hence FEM has, at first glance, a structure similar to graphs;
it is worth introducing to this theory. Furthermore, this foundation will be
helpful to the section dealing with graph neural networks.
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A tool for mutual interaction must be identified to transfer the Poisson
problem from a mechanical engineering context to a graph theory. The
problem can be represented using a graph. Specifically, it can be created as a
graph where the nodes represent the vertices of a specific element from a finite
mesh of structure Ω, and the edges represent the connections between the
nodes. Furthermore, the applicability to other geometrical shape topologies
of the element (Voxel, Hexahedral, Pentagonal, Hexagonal) might be quickly
adopted.

As the graph at least minimum consists of source and target nodes N
connected by edges V (at pure graph theory used nodes U and vertices V
notatin, to make synergy between domains, the notation is therefore slightly
modified), where each node connects only one, the proper way to extract a
suitable graph G

G = (N, V ) (3.16)

To solve the Poisson problem using graph theory and graph neural networks,
the graph Laplacian operator is a useful matrix that describes the graph’s
connectivity. The graph Laplacian can be used to define a discrete version of
the Poisson equation on the graph:

Lu = −f (3.17)

where L is the graph Laplacian matrix, u is the vector of nodal displace-
ments, and f is the vector of nodal loads. The boundary conditions can be
incorporated into the graph Laplacian matrix by modifying the appropriate
entries.

To solve this equation using graph neural networks, We can use a neural
network to learn the nodal stress (strain, displacement), given the graph
Laplacian matrix and the nodal loads. The neural network can be trained
using supervised learning, where examples of known nodal values and cor-
responding loads are provided, and the network learns to generalize to new
examples.

This approach has the advantage of allowing us to solve Poisson’s problem
on irregular meshes or graphs, which may be more efficient or easier to work
with than a traditional FEM. Additionally, graph neural networks can learn to
generalize to new meshes or graphs, making them useful for solving Poisson’s
problems in various settings.
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Lnorm = L0
∥L0∥

= LT
0 · ∥L0∥−1 (3.18)

The graph Laplacian version of the Poisson equation in a tetrahedral domain
represented as a graph can be written as:

Lu = −f (3.19)

where L is the graph Laplacian matrix (more at 3.4.4), u is the vector of
nodal displacements, and f is the vector of nodal loads.

The boundary conditions can be incorporated into the graph Laplacian
matrix by modifying the appropriate entries to reflect the fixed displacement
at the boundary nodes.

The goal of using a graph neural network is to learn the mapping from
the nodal loads to the nodal displacements. This can be represented using a
neural network f as:

u = f(L, f), (3.20)

where f is a neural network that takes as input the graph Laplacian matrix
L and the nodal loads f , and outputs the nodal displacements u. The neural
network can be trained using supervised learning, where there are examples
of known nodal values (displacements, stresses, strains) and corresponding
loads. The network is then trained to learn and generalize to new examples.

3.3 Graph Extraction from Physical Based Model

Once the physically based model Ω is established, its geometric and domain
description is documented via a protocol called the usual input file. Such
a protocol has consistently described each node ni and element ei from a
spatial perspective and mutual connectivity between elements.

f : Ω(Γ(e, n), E, ν, F )→ G (u, v) (3.21)
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Two main approaches can be identified for graph extraction strategies suit-
able for storing and transporting information from a physically based model
built using the FEM technique. Identified possible appropriate strategies for
graph extraction from input files are:

.Graph extraction based on nodal structure presented in [72].Graph extraction from element centroids [23]

3.3.1 Graph Extraction from Nodal Structure of an Element

The primary goal of this strategy is to use the information available to
each element from the mesh, which is a discretisation of the entire geometric
structure. The main idea is to use each node of the element as a node of the
graph, with the links between graph nodes being established based on edges
for the specified element.

Typically, the protocol has written the node information on a row-by-row
basis. A row starts with a numerically labelled specific node and continues
for its spatial position within the structure.
** Structure (Omega)
*Node

1, 0., 0.
2, 5.5, 0.
3, 11., 0.
4, 16.5, 0.
5, 22., 0.
6, 27.5, 0.
7, 33., 0.

Listing 3.1: Excerpt of Node section from input file

Similarly, all structure-defining elements are written to their respective
input file section. The section begins by specifying element typology, which
usually differs from software (in the following listing, the CPS4 is the 2D
element used in Abaqus terminology). Still, from the logical perspective,
element shape is the primary information for graph creation. Here, for each
element with a label, the set of nodes that make up the element is specified
and is written to the element’s row.
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*Element, type=quadralirela element

1, 1, 2, 13, 12
2, 2, 3, 14, 13
3, 3, 4, 15, 14
4, 4, 5, 16, 15
5, 5, 6, 17, 16

Listing 3.2: Excerpt of Element section from input file

The algorithm intended to provide the graph is crucial in providing all
necessary compilation from physically based structure defined via its nodes
and elements. For the graph regression on the nodes, as for the task objective,
the direction of the edges is not essential; the key is only on the connectivity
between all the nodes within an element, which is the only necessary aspect
to be considered. For this reason, the algorithm is designed, for example, for
a structure consisting of a tetra-element as follows

Algorithm 1 Graph extraction from structure based on tetrahedral element
Ensure: G = Graph

1: for ndi in nodes do
2: src← ndi ▷ source node
3: srcpos ← [src[x], src[y], src[z]]
4: G← addNode(srcpos)
5: end for
6: for i in elements do
7: ei ← nodesi

8: eai← reshape(ei, 2, 2).T
9: ebi← reshape(ei, 2, 2)

10: eci← roll(ei, 1)
11: G← addEdges(eai)
12: G← addEdges(ebi)
13: G← addEdges(eci)
14: end for
15: return G

Furthermore, the algorithm used to generate the graph for the DT based
on the tetra-element can also be applied similarly to the hexahedral typology.
In a hexahedral element, each node is connected to the other three close
neighbourhood nodes within the element. This can be represented in a graph
format similar to the tetra-element. Therefore, the algorithm can be extended
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to consider the hexahedral (sometimes as qu) typology by considering the
connectivity between the nodes within each hexahedral element.

Algorithm 2 Graph extraction from structure based on hexagonal element
Ensure: G = Graph

1: for ndi in nodes do
2: src← ndi ▷ source node
3: srcpos ← [src[x], src[y], src[z]]
4: G← addNode(srcpos)
5: end for
6: for i in elements do
7: ei ← nodesi

8: eai← reshape(ei, 2, 4).T
9: ebi← reshape(ei(0:4), 2, 4)

10: eci← reshape(ei(4:end), 2, 4)
11: edi← roll(ebi, 1)
12: eei← roll(eci, 1)
13: G← addEdges(eai)
14: G← addEdges(edi, eei)
15: end for
16: return G

Quadrilateral elements are commonly used in two-dimensional FEM simula-
tions, while tetrahedral and hexahedral elements are used in three-dimensional
FEM simulations. However, hexahedral elements are often preferred over
quadrilateral elements when simulating structures with more complex geome-
tries and require more accurate behaviour modelling. Another difference is
quadrilateral elements can only deform in a plane, while hexahedral elements
can deform in three dimensions. This means that hexahedral elements can
provide more accurate simulations of three-dimensional structures, while
quadrilateral elements are better suited for analysing two-dimensional struc-
tures [47]. Since the next chapter dealing with numerical demonstration
considers one use case- beam 2D, consisting of quadrilateral elements- the
following algorithm has been established similarly to previous typologies
suited for 3D structures.
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Algorithm 3 Graph extraction from structure based on quadraliteral element
Ensure: G = Graph

1: for ndi in nodes do
2: src← ndi ▷ source node
3: srcpos ← [src[x], src[y]]
4: G← addNode(srcpos)
5: end for
6: for i in elements do
7: ei ← nodesi

8: eai← roll(ei, 1)
9: G← addEdges(eai)

10: end for
11: return G

The other typologies of elements used for discretising the structure can
be easily adapted in the same way as presented for the three main ones
mentioned above. Since the graphs are derived, the structure representation
of Ω can be further stored in an adjacency list or matrix.

3.4 Initial Tools From Graph Theory To Establish
Synergy With Finite Element Technique

As mentioned in the previous section, a graph is at least minimally composed
of source and target nodes N connected by edges V , where each node connects
only one, the correct way to extract a suitable graph G with connections
written in the adjacency matrix A [61].

Graph preparation based on the FE model can be approached from multiple
perspectives. One way is to store information such as material properties
and element types as scalars to differentiate connections. Contact or joint
definitions can also be prescribed on vertices, further enhancing the graph
representation. This consistent and reliable approach ensures a robust rep-
resentation of the FE model and facilitates accurate analysis in subsequent
experiments.

G = (N, V, A) (3.22)
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3.4.1 Adjacency Matrix

The adjacency matrix A defines the mutual relationship between specific
nodes. For example, the Directional heterogeneous graph as the fundamental
input to GNN has its directions defined via this matrix. The adjacency matrix
of a graph represents the connections between nodes in the graph. It is a
binary matrix where the element in row i and column j is one if there is an
edge connecting node i and node j, and 0 otherwise. The adjacency matrix
can be represented as A. Adjacency matrix, for example, of tetra element per
Fig.3.5, would look as follows for the undirected element graph.

Atetra =

∣∣∣∣∣∣∣∣∣
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

∣∣∣∣∣∣∣∣∣

Figure 3.5: Tetra element represents
as as undirected graph G by adja-
cency matrix A

The directional graph of the accompanying Fig.3.6 has the Atetra then
expressed as follows:

Atetra =

∣∣∣∣∣∣∣∣∣
0 1 1 0
0 0 1 0
0 0 0 1
1 1 0 0

∣∣∣∣∣∣∣∣∣ . (3.23) Figure 3.6: Tetra element repre-
sented as directed graph A

3.4.2 Adjacency List

An adjacency list is a collection of unordered lists used to represent a
finite graph. Each unordered list within an adjacency list describes the set
of neighbours of a particular vertex in the graph. The adjacency list is the
optimal way to store graphs for further processes [24; 61].
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3.4.3 Degree Matrix

A degree matrix D is a valuable tool in neural graph networks because
it contains information about the local structure of the graph. The degree
matrix is a diagonal matrix where the i− th diagonal entry is the degree of
the i-th node in the graph, i.e., the number of edges incident to the node.
The degree matrix can be used in several ways, which is further important
in GNN usage. One common approach is normalising the adjacency matrix
by the degree matrix to obtain a row-normalised adjacency matrix. This
normalisation helps to account for the varying degrees of nodes in the graph
and prevents nodes with higher degrees from dominating the representation of
the graph. Another way to use the degree matrix in GNNs is to incorporate
it into the node embeddings. Specifically, the degree matrix can be used as
a diagonal weight matrix to scale the node embeddings before feeding them
into the GNN. This scaling can help to balance the importance of low-degree
and high-degree nodes in the representation of the graph.

The expression of the previous tetra-directed graph example is then for
Out degree (Dout) and In degree Din matrixes expressed as:

Dout =

∣∣∣∣∣∣∣∣∣
2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 2

∣∣∣∣∣∣∣∣∣ (3.24) Din =

∣∣∣∣∣∣∣∣∣
1 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

∣∣∣∣∣∣∣∣∣ (3.25)

3.4.4 Laplacian Matrix

The Laplacian matrix L of a graph is derived from the adjacency, and the
degree matrix represents the graph’s structure. The Laplacian matrix is a
positive semi-definite matrix that reflects the connectivity and topology of
the graph [60].

L = D −A (3.26)
The Laplacian matrix is often used in GNNs [63] to encode the graph structure
and capture information about node relationships. It is also used as a
regularisation term to smooth the signals across the graph.

In summary, the adjacency matrix represents the connections between
nodes in a graph, while the Laplacian matrix, which is derived from the
adjacency matrix, represents the graph’s structure. The Laplacian matrix is
often used in GNNs to encode the graph structure and capture information
about node relationships.
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3.5 Graphs Reduction

State of the art in Graph Reductions is constantly evolving. Recent
advances have focused on developing algorithms for graph reduction that
are more efficient and accurate than traditional methods. These advances
include techniques such as graph simplification, graph sparsification, graph
clustering, and graph summarisation. In addition, researchers have been
exploring machine learning and deep learning techniques to improve graph
reduction algorithms further elaborated at [24].

Figure 3.7: Process of DT creation from FEM to Graph representation with
further graph reduction process; from left: mechanical model, FEM, fully con-
nected graph, reduced graph (shortest path), reduced graph (closed path)

There are many different types of graph reductions, and the choice of
reduction technique depends on the problem being solved. Some common
types of graph reductions include:

.Vertex elimination: Removing a vertex and all its incident edges while
preserving the connectivity of the remaining graph.. Edge contraction: Replacing two adjacent vertices and their incident
edges with a single vertex while preserving the connectivity of the re-
maining graph.. Subgraph extraction: Identifying a smaller subgraph within a larger
graph with certain desired properties and removing all other vertices
and edges.. Simplification: Removing vertices and edges that do not affect certain
properties of interest, such as the existence of a Hamiltonian cycle or the
chromatic number of the graph.

Graph reduction can be a powerful tool for simplifying complex graphs and
making them easier to incorporate into DT. However, it’s important to choose
the right reduction technique for the problem at hand and to ensure that the
reduction doesn’t inadvertently change the properties of interest.
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For FEM extracted graph, the edge reduction type of task is taken place

to have all nodes connected at least once into a graph. The graph structure
incorporation can be adapted to graph reduction using graph simplification,
graph sparsification, graph clustering, and graph summarisation algorithms.
These techniques can be used to reduce the complexity of FEM and improve
the accuracy of their results. In addition, machine learning and deep learning
techniques can be applied further to enhance the accuracy and efficiency of
FEM techniques. The following main methods were identified as suitable for
further elaboration:

. Shortest Path (GShP ),. Solution for Traveling Salesman (GT rS),. Random Laplacian Reduction (GL1),.Weighted Laplacian Reduction (GW L1) ,.Weighted Laplacian Reduction II. (GW L2).

Shortest Path

The shortest path connectivity is introduced to streamline the structural
information. This involves assigning weights to the edges of the graph
GShP based on the final step of the FEM simulation. The weights are
determined considering the stress, strain, or other relevant parameters from
the simulation results. This ensures that the graph weights reflect the
structural characteristics observed in the FEM simulation’s concluding phase.
The implementation of the Dijkstra method in the NetworkX library [20] is
used to calculate the shortest weighted path between two nodes in a graph.
The graphical overview of graph creation and pruning is shown in Fig.3.7.

Traveling Salesman Problem Solution for Graph reduction

This approach is based on reducing only the edges in the graphs while
keeping all the nodes. Therefore, this reduced graph is cyclic, and its creation
is similar to solving a well-known travelling salesman problem (TSP). This
problem is generally defined as finding the shortest possible route that visits
each node of the original graph and returns to the starting node. In the
context of graph reduction, the TSP solution aims to identify a subset of
edges from the original graph that form a cycle traversing all nodes with
minimal total edge weight.
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The TSP can be solved in nondeterministic polynomial time, which makes it
an NP-hard problem. Therefore, searching for the best solution by brute-force
testing all solutions is not feasible. Thus, it is possible to obtain only an
approximate solution. This study uses the default algorithm for the directed
TSP solution (Threshold accepting [18]) implemented in the NetworkX library.
The algorithm optimises the route by minimising the total distance travelled
or the cost incurred when visiting each node exactly once.

It is important to note that, in the context of FEMs, the values associated
with the edges often represent information regarding the mechanical stress
distribution, such as the maximum principal stress. These values are derived
from the elements of the FEM and provide crucial insight into the structural
behaviour of the system.

Once the TSP solution is obtained, the selected subset of edges forms
the reduced graph, which retains the original graph’s essential connectivity
while reducing computational complexity. With stress distribution informa-
tion encoded in its edges, this reduced graph can then be used for various
applications, such as optimisation, network analysis, or machine learning
tasks.

Spectral Reduction

The third method in our investigation involves the application of the
Laplacian Matrix for Dimensionality Reduction inspired by [16]. By leveraging
the eigenvalues of the Laplacian Matrix, we aim to distil the inherent structures
of the FEM graph. This reduction not only simplifies the computational
complexity but also retains the essential characteristics of the structural
interconnections. Our exploration of Laplacian-based reduction is guided by
the notion that critical structural information can be efficiently preserved
within a lower-dimensional representation. Additionally, We coarsen graph
edges v by a similar approach [19] where a threshold γ is used to distinguish
the importance of an edge weight.

In the spectral reduction approach, we first calculate the eigenvalues and
eigenvectors of the Laplacian matrix, which is derived from the graph’s
adjacency matrix. The Laplacian matrix is Hermitian [60], allowing us
to compute its eigenvalues and eigenvectors efficiently. These eigenvectors
capture essential structural characteristics of the graph. We then sort the
eigenvectors based on their corresponding eigenvalues and select the largest
ones, representing the graph’s dominant modes. The number of eigenvectors
to retain is determined by a reduction factor, which specifies the desired size
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of the reduced graph. By discarding the smallest eigenvectors, we effectively
reduce the dimensionality of the graph while preserving its essential structural
features.

Weighted Spectral Reduction

In our approach to spectral reduction with edge weights, we utilise pruning
techniques to refine the reduced graph while preserving essential structural
features. In our approach to spectral reduction with edge weights, we utilise
pruning techniques to refine the reduced graph while preserving crucial
structural features. Our pruning method does not require iteration of the
training line in [17], and We incorporate an Inclusion of mechanical stress
values Σ ∈ vi(σ) as edge weights provide valuable information on the system’s
load distribution and stress concentrations. This is compared to the approach
using edge pruning with saliency matrix [14] or pruning all the nodes and
edges as it is at [15], which is, for our purposes, not feasible. By setting a
threshold parameter γ, we establish criteria for pruning the graph, removing
edges with insignificant weight contributions. This pruning ensures that
only the most influential edges are retained in the reduced graph, leading
to a more focused representation of the structural dynamics. Furthermore,
considering the eigenvalues and eigenvectors derived from the Hermitian
matrix representation of the weighted graph, we identify the most significant
structural modes and prioritise their preservation during the reduction process.
Through this combined approach of spectral reduction and pruning, we
achieve a balance between computational efficiency and structural precision,
enabling efficient analysis and simulation of complex mechanical systems. It
is introduced and compiled to pseudo-algorithm 4 for better clarity under the
suggested approach.

3.6 Graph Neural Networks

As mentioned in the first part of the thesis, Graph Neural Network (GNN)
is the youngest Artificial Neural Network technique. It is characterised by
the need to have and see specific patterns that a model with a particular
architecture could learn, in this case, in the form of graphs. Since the previous
sections cover all the necessary background, the transition with fundamentals
to this exciting topic is uncovered by a brief description of tasks that GNN
can reliably handle. The most common techniques for defining a GNN will
then be presented.
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3.6.1 Tasks Covered by GNNs

. graph classification: probably the most likely in the chemistry industry
to find a new potential required chemical compound. graph node classification: for instance, in sociology, a voting preference
in the public sector. graph link-edge prediction: similar to the previous. regression on nodes or edges: the task well suited to create a digital twin
distilled from PM knowledge

3.6.2 Message Passing

Message passing is a fundamental concept in GNNs that propagates in-
formation between nodes in a graph. In message passing, each node sends
a message to its neighbouring nodes, which then update their states based
on the received messages. This process is typically repeated multiple times,
allowing information to propagate throughout the Graph. Message passing
in GNNs typically requires the following processes:..1. Node Embedding: Represent each node in the Graph as a vector of

features...2. Aggregation: Compute a representation of the neighbourhood of each
node by aggregating the node embeddings of its neighbours...3. Update: Update the node embedding for each node based on the aggre-
gated neighbourhoods of its neighbours...4. Readout: Compute a graph-level representation from the updated node
embeddings.

Message passing [50] [51] is similar to forward propagation, well known in
classical feed-forward neural networks. Probably the most initial model, to
begin with, is linear regression adapted to multi-input/output tasks,

ˆYIDS = W ·XIN + b (3.27)

where ˆYIDS is the predicted target vector of dataset nodes, W is matrix of
weights, input features from dataset XIN (further, only X0) and bias vector
b.
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Both techniques involve propagating information through a network of

nodes. In forward propagation, the information is propagated from input to
output nodes. In message passing, the information is propagated between
nodes in a graph structure, where the nodes can have different relationships.
The basic equation for message passing is for the first hidden layer of GNN,
then (i = 0) can be rewritten as follows:

H1 = σ
(
WT

0 ·X + b0
)

(3.28)

, where the chosen activation function for the further experiment is Rectified
linear unit σ = max(0, X) or others (sigmoid, tangent hyperbolic).

3.6.3 Fundamental Layers for GNN

. Graph convolutional Layer Graph Convolutional Neural Network [8] can
be understood as the enhancement of FFNN by the graph-structured
data described with consideration of adjacency matrix A. The forward
pass for the first hidden layer is then

H1 = D̂−1/2 · Â · D̂−1/2 ·X ·W0 + b0 (3.29).Graph Sample and Aggregated Embeddings Layer
The SAGE layer is a type of GNN layer that aggregates information
from a node’s neighbourhood to generate a node representation.
The Sage layer first computes the node embeddings of the neighbouring
nodes, then aggregates them to generate a new node embedding. The
aggregated embedding is then used to update the target node embedding.
This process is repeated until all nodes in the Graph have been updated.
As a type of GNN layer, the sage layer [9; 10] aggregates information
from a node’s neighbourhood to generate a node representation. The
forward pass is expressed

H1 = [AGG (X) ||X] W0 + b0 (3.30)

, where AGG is a function aggregating neighbourhood nodes with a
certain aggregation method (sum, mean, min, max)..The Chebyshev layer [11] is characterised by its utilisation of Chebyshev
polynomials as basis functions for convolutional operations. It applies
spectral filtering to capture local and non-local dependencies in the input
data while learning filter weights through training.

H1 = σ

K−1∑
k=0

J−1∑
j=0

Tk ·Wkj ·XIN ·TT
j + b

 (3.31)

where σ is the activation function applied element-wise to the output, and
Tk Wj are the Chebyshev polynomials of degree k and j respectively.
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The main difference between Chebyshev, Graph Convolutional Layers, and
SAGE is how they process data. Chebyshev layers use polynomial approxi-
mation to perform convolutions on graph data, Graph Convolutional Layers
use graph-structured filters to capture local neighbourhood information, and
SAGE (or GraphSage) uses aggregated neighbour features to learn node-level
features.

3.7 Graph Reduction to Optimise Size of Regressor

Once the regressor is trained and fully diagnosed, an additional tuning
step involves reducing the graph size [60], thereby reducing the time required
for training [66]. The proposed research [70] harnesses graph theory utilising
graphs extracted for the following foundations of training GNNs. This ap-
proach combines white box modelling with machine learning, as demonstrated
in various domains such as medical imaging and physics-performed machine
learning [64]. However, the increasing scale and complexity of engineering
projects pose challenges in computational intensity associated with detailed
FEMs. Addressing this challenge, the research focuses on graph reduction
to streamline computational complexity and lay the groundwork for efficient
GNN training [65]. At the methodology’s core lies the integration of GNNs,
transcending traditional simulation boundaries by learning intricate rela-
tionships embedded in structural graphs and predicting behaviours beyond
conventional modelling. The synergy between graph reduction and GNNs
is pivotal in achieving an accurate DT, empowering neural networks to pre-
dict with unprecedented accuracy, optimising computational efficiency, and
establishing a robust framework for real-time predictive modelling.

3.8 Summary for HM via FEM and GNN Methods

A few key factors can impact the performance of a GNN model with a
simple architecture compared to a FFNN. Here are a few examples:

.Data complexity: If the data is more complex or has more underlying
patterns and relationships, a GNN model may be more effective at
capturing these patterns and performing well on the task. On the other
hand, if the data is relatively simple, an FFNN may be sufficient..Amount of data: The amount of data available for training can also
impact the performance of the two models. In general, more data can
help to improve the performance of both GNNs and FFNNs, but the
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relative benefit of additional data may be more significant for GNNs due
to their ability to capture complex patterns in the data.

.Model architecture: The specific architecture of the GNN and FFNN
models can also impact their performance. For example, a GNN model
with a more complex or profound architecture may perform better than
a simpler GNN model but may also be more challenging to train and
require more data.

.Task complexity: The complexity of the task being performed can also
impact the performance of the two models. If the task is relatively simple,
an FFNN may be sufficient, but if the task is more complex and requires
the ability to capture more complex patterns in the data, a GNN may
be more effective.

A number of factors can impact the performance of a GNN model with a
simple architecture when compared to an FFNN. These include the complexity
of the data, the amount of data available, the model architecture, and the
complexity of the task being performed.

3.9 Dataset Acquisition

Accurately distilling information from simulations of PM presented, particu-
larly those established via the FE, is of utmost importance. These models are
invaluable tools for understanding complex phenomena, predicting outcomes,
and making informed decisions. However, their reliability hinges on a rigorous
validation process. This involves subjecting the model to knowledgeable
critical inspection by experts in the respective field and supporting it with
real-world laboratory experiments. By adhering to this validation framework,
we can ensure that the distilled knowledge from the model aligns with em-
pirical evidence, enhancing its accuracy, robustness, and overall credibility.
This, in turn, empowers us to unravel the intricacies of the natural world,
optimize designs, mitigate risks, and ultimately make well-informed decisions
for a better future. This is visualized by demonstrative Fig.3.8.
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Figure 3.8: Data workflow of DT

The accompanying image illustrates the workflow of a DT for an authentic
product, highlighting the integration of a regressor trained on a physical-based
model. The workflow begins with developing a physical-based model that
captures the real product’s behaviour and characteristics. This model is the
foundation for training the regressor, which learns the relationships between
input variables and output predictions. Once the regressor is trained, the DT
enters an operational phase, where it can make predictions and simulate the
behaviour of the real product in a virtual environment. However, a closed
loop is established to ensure the DT’s accuracy and reliability. This loop
incorporates the expectation of real-time measurements from the physical
product.

Assuming the regressor remains current, the DT can continuously compare
its predictions with real-time measurements. This enables the system to adjust,
validate the model’s accuracy, and refine its predictions over time. In addition,
the closed-loop feedback mechanism ensures that the DT remains aligned
with the physical product’s actual behaviour, enhancing its effectiveness
as a virtual replica. The depicted workflow showcases the integration of a
regressor trained on a physical-based model within a DT framework. This
enables the DT to leverage real-time measurements and maintain its accuracy
and reliability, providing valuable insights and predictive capabilities for
optimizing the real product’s performance and maintenance.

This closed-loop feedback mechanism plays a crucial role in maintaining
the DT’s fidelity. It allows for continuous validation and refinement of the
physical-based model, ensuring it remains aligned with the real product’s
behaviour as it evolves and changes over time. This, in turn, enables more
accurate predictions, better decision-making, and improved optimization of
the physical system.
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Recent articles exploring this topic [12], [13] have delved into various as-

pects of closed-loop DT workflows, including techniques for sensor integration,
data processing and analysis, model updating and adaptation, and the overall
impact on system performance and maintenance. These articles provide
valuable insights into the advancements and challenges associated with imple-
menting closed-loop feedback in DT systems, contributing to this promising
technology’s ongoing development and refinement.

Once the FEM is established, its geometric and domain description is
documented through a computational environment, which defines the spatial
configuration of each node ni within a particular element ei, as well as
the mutual connectivity between the elements. The graph model G can be
obtained as follows:

f : Ω(Γ(e, n), E, ν, F )→ GF EM (N, V, X(F), y(σ)) (3.32)

All nodes and edges in the resulting graph adhere to the logic of the
original FEM. The nodes acquire data from the converged FEM, with input
parameters X capturing reaction forces Fi of the selected nodes ni ∈ S
simulating distributed sensors. The target output y represents structural
mechanical stress for all nodes σ in light of Fig.3.9. This approach were
introduced at [72].

Figure 3.9: Data workflow from Physical model distiling information
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3.9.1 Synthetic Data

DTn is from the primary intrinsic goal understood as a tool giving a user
immediate information. Still, for establishing DT, the detailed information is
based on assumptions, premises, hypotheses, and overall requirements, and
obviously, the distilled model is imprecise from the beginning. This might be
solved by building information models [33].

Usually, the accuracy of the regressor is strongly influenced by the data
density from the physically based model. The data obtained are, on the one
hand, pseudo-accurate, but on the other hand, the noise is not depicted in
any form. Therefore, the raised assumption of noise depicted in the natural
mechanical system is welcomed, along with the additional minor aspect that
the synthetically increased dataset density might help improve a regressor’s
robustness. The inspiration to distil further data-free knowledge can be
gained at [32; 34].

The data mainly used to control the mechanical system is usually very
expensive to acquire, as it can be obtained from actual measurement processes
via sensors or physics-based models. Therefore, the dataset created is very
demanding from a cost of training computational time perspective compared
to applications such as image object detection and language models.

3.9.2 Synthetic Data: Strategies to Enhance Knowledge
Base of DT

One approach to creating synthetic data that is interpolated between
existing values in a dataset is to use a "generative modelling" technique.
Generative models are machine learning algorithms that learn to generate
new data similar to a given dataset.

One popular type of generative model is a Variational AutoEncoder (VAE)
[25]. A VAE consists of two parts: an "encoder" that maps the input data
to a lower-dimensional "latent" space and a "decoder" that maps points in
the latent space back to the original data space. During training, the VAE
learns to encode the input data into a distribution in the latent space and
then sample from that distribution to generate new, synthetic data. To use a
VAE to create synthetic data that is interpolated between existing values in a
dataset would first train the VAE on the existing dataset. Then, to generate
new synthetic samples, it would choose two or more points in the latent space
corresponding to nearby data points in the original dataset and interpolate
between them by sampling from the distribution.
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One potential challenge with this approach is that the VAE may not learn

to generate samples that are exactly in between existing values in the dataset
but rather samples that are close to current values in some sense (e.g., in
terms of their overall distribution or statistical properties). To mitigate this
issue, it can be used a more complex generative model, such as a Generative
Adversarial Network" (GAN), specifically designed to generate high-quality,
realistic samples.

A variant of the standard VAE architecture called Graph VAE or Graph
Autoencoder (GAE) can adapt VAEs for graph node regression tasks. GAEs
extend the standard VAE architecture to work with graph-structured data
by encoding the graph structure and node features into the latent space and
decoding the latent representation back into the original graph structure and
node features [26].

The high-level overview of how it can adapt VAEs for graph node regression
stays in the definition of an encoder network that takes as input the graph
structure and node features, outputs the mean and standard deviation of a
Gaussian distribution in the latent space, and then samples a point from the
Gaussian distribution using the reparameterization trick [25]. After defining
a decoder network that takes the sampled point from the latent space as
input and outputs a predicted graph structure and node features, the whole
architecture is set and prepared to create synthetic data.

By combining the VAE and the trained regressor, the VAEs might have
leveraged the ability to generate synthetic data and the regressor’s capability
to fine-tune and refine the interpolated samples [35].
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3.10 Loss Functions for Neural Networks

The evaluation metric is inevitably the primary aspect to focus on when
training an artificial neural network, and for GNN, the following rule is also
applicable. Loss function L is used to optimize the hyperparameters of a
framework with the objective of zero gradients.

The task of preparation of a DT of a mechanical system has the character-
istic of a multiple input-output regression task on nodes of the graph. Since
the graph G can vary from a very small to an enormous number of nodes,
the right strategy might be where a slight variation of errors on the targeted
nodes is expected.

For example, the importance of selecting a metric for a model with optimal
accuracy in a task where the primary task is to classify images from the
Internet (e.g., MNIST) is probably not as crucial as in the DT of a crane
that imitates a physical asset in operation with expensive goods in docks,
where the main purpose is to operate such a crane with a high expectation of
safety standards.

The first cohesive way anyone would probably start with is preferably
standard metrics suitable for regressions tasks collected from [67; 62; 63]:

.Mean Absolute Error (MAE):
LMAE(y, ŷ) = 1

N

∑N
i=1 abs (ŷi − yi)2. Root Mean Squared Error (RMSE):

LRMS(y, ŷ) = 1
N

∑N
i=1

√
(ŷi − yi)2.Mean Absolute Percentage Error (MAPE):

LMAPE(y, ŷ) = 100%
N

∑N
i=1 abs

(
yi−ŷi

yi

)
. R-Squared (R2):
LR2(y, ŷ) =

∑N

i=1(ŷi−yi)
2∑N

i=1(yi−ŷi)2.Mean Squared Error (MSE):
LMSE(y, ŷ) = 1

N

∑N
i=1 (ŷi − yi)2.Mean Absolute Percentage Error (MAPE):

LMAPE(y, ŷ) = 100%
N

∑N−1
i=0

|yi−ŷi|
|yi|.Mean Squared Logarithmic Error (MSLE):

LMSLE(y, ŷ) = 1
N

∑N−1
i=0 (loge(1 + yi)− loge(1 + ŷi))2
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Moreover, a custom metric should be reconsidered when contemplating

whether a standard metric is appropriate for a DT. One of the most relevant
scenarios is that the critical variable, for example, mechanical stress, as in the
example of the crane mentioned above, is most likely to be considered, and
to obtain more conservative predictions, the overall metric should take this
aspect into account. Therefore, the following suggested metric considering
maximal error and loss L function is then:

. Root Max Square Error (RMAXSE)

LRMAXSE(y, ŷ) = 1
N

N∑
i=1

√
max (ŷi − yi)2 (3.33)

3.10.1 Optimizers

Since the main loss function and metric might be well set, the following
step is to recognize a suitable optimizer. The most commonly used optimizers
for training GNNs are:

. Stochastic Gradient Descent (SGD): This is a famous optimizer for
training GNNs. It updates the weights of the network in the opposite
direction of the gradient of the loss function concerning the weights.
SGD can suffer from local minima, slow convergence, and other issues..Adam: This optimizer is an extension of SGD that uses adaptive learning
rates. It adjusts the learning rate for each weight based on the history
of gradients for that weight. Adam is known for its fast convergence and
good performance on various tasks..Adagrad: Adagrad adapts the learning rate of each weight based on the
historical gradient of that weight. It performs well on sparse datasets
and is often used in natural language processing tasks..Adadelta: This optimizer is similar to Adagrad but uses a moving
window of gradients to adapt the learning rate. Adadelta can handle
sparse datasets well and is less sensitive to the initial learning rate.. RMSprop: This optimizer also adapts the learning rate based on the
historical gradients but uses a moving average of the squared gradients
instead of the sum. RMSprop can handle non-stationary objectives and
is often used in deep learning.
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These are just a few of the most commonly used optimizers for training GNNs.
More can be found at [63; 62]. The choice of optimizer can depend on the
specific task and the dataset being used.

3.11 Evaluation of Regressor used as DT

All of the mentioned sections neatly defined key variational features to
explore mosaicking the workflow to establish the DT of the particular me-
chanical system. Without hesitation, validating the DD model is one of the
inevitable aspects and probably the most crucial one, which cannot be easily
excluded without consequences on the behaviour of targeted DT.

3.11.1 Ground Truth Validation

The central emphasis of Ground Truth (GT) evaluation of DT is the
paramount importance of visualization for operators utilizing the DT in the
decision-making process. By enabling operators to visually observe the ground
truth representation of the trained regressor on the physical-based dataset,
they can clearly understand the actual behaviour of the simulated structure.
This visual insight becomes crucial for informed decision-making processes,
as operators can confidently rely on accurate visualization to make critical
assessments and take appropriate actions.

3.11.2 Node Error

Evaluating the targets of a dataset composed of nodes from a FEM is crucial
for obtaining a comprehensive understanding of the model’s weaknesses. By
scrutinizing the target values associated with each node, areas where the
model may exhibit shortcomings or inaccuracies in capturing the system’s
actual behaviour can be identified. This evaluation allows us to gain insights
into specific regions or components of the structure that may require further
refinement or validation. Understanding the model’s weaknesses empowers us
to make informed decisions and focus our efforts on improving its performance
in critical areas, ultimately enhancing the overall accuracy and reliability of
the model.

Furthermore, evaluating target values offers a deeper understanding of the
model’s limitations and areas where uncertainties may arise. It enables us
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to assess the model’s sensitivity to various input parameters and boundary
conditions. By observing deviations between the predicted targets and the
actual values from the finite element model, we can identify discrepancies and
potential sources of error. This awareness is essential for model refinement
and improvement, as it directs our attention to specific aspects that require
attention and further investigation.

Additionally, evaluating target values facilitates effective communication
and collaboration between model creators and stakeholders of a physical asset.
By visualizing the discrepancies and weaknesses in the model, decision-makers
can grasp the limitations and potential risks associated with the digital twin.
This shared understanding enables informed discussions and aids in making
optimal decisions that consider the strengths and weaknesses of the model.
Ultimately, by evaluating the targets of the dataset, we gain valuable insight
into the performance of the regressor as DT

3.12 Validation of Regressor

When developing a DT based on GNNs, one of the crucial factors to
consider is the validation of the regressors . Validation techniques such as
quantile-quantile plots and Tukey-Anscombe diagrams can be employed as
possible policies or strategies to assess the performance and accuracy of the
regressors.

The quantile-quantile plot provides a graphical representation of the distri-
bution of the predicted values compared to the expected values. Plotting the
predicted values’ quantiles against the expected values’ quantiles, deviations
from a straight line can indicate discrepancies or errors in the regressor’s
predictions. This technique enables a visual assessment of the model’s per-
formance and its ability to capture the underlying patterns in the data
accurately.

The Tukey-Anscombe diagram is another valuable tool for validating regres-
sors in a DT based on GNNs. It involves plotting the residuals, the differences
between the predicted and actual values, against the expected values. This
plot helps identify any systematic patterns or trends in the residuals, indicat-
ing potential biases or shortcomings in the model. By visually examining the
scatter of the residuals, one can gain insights into the regressor’s performance
and reliability.

These validation techniques, namely the quantile-quantile plot and the
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Tukey-Anscombe diagram, provide valuable means to assess the accuracy and
quality of the regressors in the DT. By employing these policies or strategies
during the development and deployment stages, one can ensure that the DT
effectively represents the behaviour of the actual system.

3.12.1 Homoskedacity and Heteroskedacity

Homoskedasticity is one of the critical assumptions under which the Ordi-
nary Least Squares (OLS) gives an unbiased estimator, and the Gauss–Markov
Theorem applies. Linear regression modelling typically tries to explain the
occurrences with a single equation.

To interpret heteroskedasticity [36] can be used as a scatter plot of the
residuals against the predicted values or the independent variable(s). Suppose
the scatter plot shows a funnel shape, with the spread of the residuals
increasing or decreasing as the predicted values or independent variable(s)
increase. In that case, heteroskedasticity is likely present.

Another way to detect heteroskedasticity is to perform a formal test, such
as the Breusch-Pagan [28] test or the White test [27]. These tests examine
the relationship between the squared residuals and the independent variables
to determine whether there is evidence of heteroskedasticity.

Heteroskedasticity can have essential implications for regression analysis.
If it is present, the standard errors of the regression coefficients will be biased,
which can lead to incorrect conclusions about the statistical significance of
the coefficients. Additionally, heteroskedasticity can reduce the efficiency of
the regression estimates, making it more difficult to detect significant effects
of the independent variables on the dependent variable.

Techniques such as weighted least squares, robust standard errors, or
generalized least squares regression may be used to address heteroskedasticity.
These techniques account for heteroskedasticity by adjusting the standard
errors of the regression coefficients, which can improve the accuracy of the
regression estimates.
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3.12.2 Non-linear Heteroskedacity

If the scatter plot of the residuals against the predicted values shows a
logarithmic shape, it suggests the presence of non-linear heteroskedasticity.
This means that the residuals’ variability is not constant across the range
of values of the independent variable(s), and it increases (or decreases) non-
linearly.

In this case, transforming the data to reduce the non-linear heteroskedas-
ticity might be considered. One common approach is to apply a logarithmic
transformation to the dependent variable, which can help stabilize the residu-
als’ variance. Another method is transforming the independent variable(s) to
reduce the non-linear heteroskedasticity.

However, it’s important to note that non-linear heteroskedasticity can also
be caused by misspecification of the functional form of the regression model
[68], so it’s essential to carefully examine the model specification and consider
applicable alternative forms or nonlinear-models. Suppose the non-linear
heteroskedasticity persists even after transforming the data or modifying the
model. In that case, there is a need to use techniques such as generalized least
squares regression or weighted least squares regression, which are designed
to handle non-linear heteroskedasticity. These techniques can adjust the
standard errors of the regression coefficients to account for the non-constant
variance of the residuals, which can improve the accuracy of the regression
estimates.

Non-linear heteroskedasticity in a multi-input, multi-output regression
model can be interpreted in several ways depending on the specifics of the
model and the data.

One possible interpretation is that the variance of the errors varies non-
linearly with the values of one or more of the independent variables, indicating
that the model is misspecified or that there are interactions between the
independent variables that have yet to be accounted for. In this case, it may
be necessary to re-specify the model or to include additional variables or
interaction terms to account for the non-linear heteroskedasticity.

Another possible interpretation is that outliers or influential observations
are driving the non-linear heteroskedasticity. Outliers can substantially
affect the estimated regression coefficients and increase the variability of the
residuals, which can lead to non-linear heteroskedasticity. In this case, it may
be necessary to identify, remove, or downweight the influential observations
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to improve the model fit and reduce the non-linear heteroskedasticity.

Finally, non-linear heteroskedasticity can also be caused by the presence of
unobserved variables or unmeasured heterogeneity in the data. In this case, it
may be necessary to use advanced statistical techniques, such as instrumental
variables regression or panel data models, may be required to account for the
unobserved variables and reduce the non-linear heteroskedasticity.

The interpretation of non-linear heteroskedasticity in a multi-input, multi-
output regression model will depend on the specific details of the modelled
structure and the data. It will require careful analysis and consideration
of alternative specifications and modelling techniques but should mainly be
avoided for DT.
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3.13 Methodology Definition

In this section, a proposed methodology is presented, as illustrated ab-
stractly in Fig.3.8 at section 3.9, for the invention of a DT based on a PM
of a mechanical structure. The methodology involves leveraging principles
from Poisson and Hook’s laws to establish a foundation for DT construction.
A systematic approach is outlined through this workflow, integrating physi-
cal modelling principles with digital techniques to develop a comprehensive
representation of the mechanical system...1. Identify physical phenomena to model and monitor actual observed

products and collect and process data. Gather all the data related to
the physical structure, including its dimensions, material properties, and
any other relevant parameters...2. Define geometrical model Γ to required spatial precision and build a
virtual model using computer-aided design (CAD) software to create
a virtual model of the mechanical structure. This model should be as
accurate as necessary for the physical structure...3. Creation of FEM Ω based on requirements of the first and second steps.
Then, simulate the structure’s mechanical behaviour. This can help
identify potential issues with the design and ensure that the virtual
model accurately represents the physical phenomenon of the observed
structure...4. Extract calculated physical attributes D of converged model. These
features could include stress, strain, displacement, and other mechanical
properties...5. Train and Validate Graph Regressor f (G) by using the extracted features
and training a GNN to learn the relationship between the features and
the mechanical behaviour of the structure. Test the trained GNN on new
data and evaluate its accuracy in predicting the structure’s mechanical
behaviour using tools...6. Replacement of FEM by DT based on regressor of GNN once it has
been successfully validated. Deploy the DT to monitor and predict the
behaviour of the physical structure in real-time...7. Optimize the Graph by reducing the DT complexity and continuously
updating the GNN architecture. As new data becomes available, contin-
uously update the DT to improve its accuracy and predictive capabilities.
This could involve retraining the GNN using the new data or adjusting
the monitoring equipment to collect more relevant data.
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Part II

Experimental Demonstration
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Chapter 4

Demonstration by Experiments

The dedicated part of the thesis aims to demonstrate the usage of distributed
knowledge from a PM suitable for a digital twinning task.

One primary task is to have representative performers acquire important
responses to see the state of the mechanical systems, for instance. A minor
approach would be to enhance knowledge of DP by meta-knowledge of DI to
achieve optimal design.

GNNs have emerged as powerful tools for modelling and analyzing complex
systems. By representing data as graphs, GNNs can capture relationships
and dependencies between entities, making them well-suited for various
applications, including regression and classification tasks, as comprehensively
emphasized in section 3.6. In this chapter, we present two case studies that
showcase GNNs’ potential in the context of finite element modelling.

The first case study focuses on benchmarking GNNs for regression on nodes
using the GFdataset [69], the graph mesh-based dataset from FEMs. The
exploration of the challenges of working with complex and heterogeneous
data, such as the variability in the number of nodes and edges in each model
and the need for feature engineering, is drawn. It discusses the design and
implementation of the GNN architecture and the evaluation of its performance
on various metrics. Through this case study, it is depicted as a demonstration
of the effectiveness of GNNs in modelling complex and non-linear relationships
in finite element models.
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The case study’s proof of concept highlights GNNs’ versatility and power

in FEM and demonstrates their potential for solving complex and challenging
problems. A detailed analysis of each case study provides insights into
the key challenges and considerations when working with GNNs in finite
element modelling. Additionally, it offers concise guidance for researchers
and practitioners interested in using these techniques in their work.
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Chapter 5

Methods

5.1 Methods for Knowledge Distillation
Experiments

The experiment design is accompanied by specific methods to gain a
proof of concept for the ideas proposed in this thesis. These methods are
carefully chosen to ensure the validity and reliability of the experimental
results. Implementing these methods aims to demonstrate the feasibility and
effectiveness of the suggested concepts in a practical setting. The experiment
design and accompanying methods serve as crucial components in validating
the proposed ideas and providing empirical evidence to support the claims
put forth in this thesis.

5.1.1 Extraction of Graphs

The graphs are extracted for all future physical models by specifically
choosing the full element nodes with single-direction connectivity. For more
detailed information on the visualization process (see section 3.3).

5.1.2 Frameworks of Baseline of DD Models

First, the critical framework of multi-input-output linear regression (MLR)
is utilized. This statistical modelling technique establishes a linear relationship
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between multiple input variables and multiple output variables. By leveraging
multi-input-output linear regression, the aim is to predict multiple output
variables simultaneously based on a set of input variables. This framework
offers interpretability and enables the estimation of coefficients representing
the influence of each input variable on its corresponding output variable.

Figure 5.1: framework MLR: Multi-linear input/output regression

Secondly, feed-forward neural networks, a fundamental type of artificial
neural network, are incorporated as a critical framework (FN). These networks
are known for their ability to learn complex patterns and relationships in
data, making them widely used in various fields, including image recognition,
natural language processing, and regression tasks. By including feed-forward
neural networks, the researcher aims to harness their powerful learning
capabilities and assess their effectiveness in predicting the behaviour of
mechanical structures within the proposed hybrid modelling approach.

Figure 5.2: framework FN: Feed-forward neural network with two hidden layers

As illustrated in the preceding Figs. 5.1 and 5.2, it is evident that all
frameworks, except for the graph-based ones, employ an initial operation of
Flatten to streamline the data in preparation for training meticulously. This
process involves isolating individual nodes within the graphs, each with their
respective input and output attributes, thereby facilitating efficient training
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Frameworks based on GNNs and variations on chosen layers are employed.
GNNs are specifically designed to handle data with graph structures, making
them well-suited for modelling interconnected components in mechanical
systems. By incorporating GNNs into the framework, the ability to capture
complex relationships and dependencies between nodes in the graph repre-
sentation of the structure is established. Additionally, exploring different
layer variations enhances the representation and information propagation
within the GNN, contributing to more accurate and effective modelling of
mechanical systems. The following framework (GCN) depicted at Fig.5.3 is
composed solely of graph convolutional layers.

Figure 5.3: framework GCN: two graph convolutional layers

Finally, the hybrid modelling approach introduces SAGE layers as a stan-
dalone framework illustrated by Fig.5.4. SAGE layers, or GraphSAGE, are
GNN layers that aggregate information from neighbouring nodes in a graph
structure. By incorporating sage layers, it is possible to capture complex
relationships and dependencies between nodes in the graph representation of
the mechanical structure. Sage layers provide a flexible and effective approach
for modelling graph.

Figure 5.4: Framework SAGE: two graph SAGE layers
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5.1.3 Scaling of a Dataset

Due to the potential dangers and critical implications associated with
scaling or transforming the dataset [73], further scaling is not considered in
this study. While it is not a conventional approach for data normalization,
such as MinMax or Standardization, a scaling method is only applied to
the input variables (specifically, deformations written to each node), while
the outputs remain unscaled. Consequently, the loss function may exhibit
high initial values due to the varying orders of mechanical parameters with
different units (e.g., mm, MPa, g). This decision acknowledges the potential
consequences of an unbalanced unit.

5.1.4 Data Splitting

As the dataset used in this study does not exhibit any time dependency,
it allows for the straightforward random shuffling of the entire dataset and
subsequent division into standard training and validation subsets. The process
involves randomly rearranging the data points to eliminate any inherent
order or sequence. By fractionally dividing the shuffled dataset, a portion is
allocated for training purposes while another amount is set aside for validation.
This standard splitting approach ensures a representative data distribution
and facilitates practical evaluation and validation of the models used in the
experiment.

5.1.5 Loss Functions and Optimizer

The loss function used in this study is the root max square error LRMAXSE ,
which calculates the maximum magnitude of errors between the predicted
and targeted values on the nodes of the structure, as discussed in the previous
chapter. This loss function provides a robust measure of the most signifi-
cant discrepancies between the predicted and desired values, allowing for a
more comprehensive evaluation of the model’s performance. The classical
ADAM optimizer is also chosen as the optimization algorithm for this loss
function. ADAM adapts the learning rate based on the gradients of the model
parameters, ensuring efficient and effective optimization during the training
process. The study aims to enhance the accuracy and convergence of the
hybrid modelling approach for mechanical structures by utilising the root
max square error loss function and the ADAM optimiser.
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5.2 Graph Reduction

In Section 3.5, various methods for graph reduction were meticulously
identified. Additionally, Algorithm 4 has been specifically designed and
will be utilized as a pivotal component in our experimentation process, as
further elaborated. These methods are deemed crucial in streamlining the
complexity of graph-based models, enabling more efficient processing and
analysis. By implementing these reduction techniques, efforts are made to
enhance the performance and scalability of our models, ultimately contributing
to advancements in graph-based data analysis and modelling.

5.3 GF dataset: Mesh-based Graph Dataset

Many data sets for supervised learning have been created throughout
the machine learning era, and without a doubt, many others are in the
evolution process. Graph neural network, the youngest artificial neural
network technique, is also characterised by a need to have and see specific
patterns that a model with a particular architecture might learn. The following
lines describe the dataset consisting of graphs with nodes of information
created based on simple FEM structural models (GF dataset) designed to
explore the possibilities of a specific hybrid modelling technique suggested as
a bridge connecting a FEM and a GNN into an effective tool for the purpose
to creating a Digital Twin of a mechanical system. The GF Dataset visualised
in Fig.5.5 was introduced at [69].

Figure 5.5: GFdataset: Graphs of structres extracted from FE models D [69]

These compiled information of FEMs depicted at Fig.5.6 possess a distinct
feature of precise geometry, with meticulously crafted meshes and specific
boundary conditions. This precision allows for explicitly exploring feasible
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strategies to build a data-driven model. To facilitate replicating a given
geometrical structure, the repository includes the input file required to run
or enhance the FE model. The repository aims to support reproducibility
and further advancements in data-driven modelling for mechanical structures
by providing access to these resources.

. Db2 ... Beam2D: Encastred and loaded 2D beam.. Db3 ... Beam3D: analogy of Beam2D at 3D.. Dfs ... Fibonacci’s Spring: analogy of 3D beam with introducing slightly
complicated geometry.. Dpl ... Plane: Symmetrically cut geometry of RC plane loaded with
pressure on the wing.

Figure 5.6: GF dataset: Visualized each FE model from D in their final converged
state

The main goal of introducing the GF dataset is to demonstrate tasks
where the primary purpose is mainly to train various GNN architectures (not
only GNN but other strategies to train ML models are possible) based on
a sufficient amount of extracted data from a specific FE model mimicking
structural mechanic problem. The collection of data subsets consists of the
five compilations of generated data, gradually tackling complexity from the
perspective of their geometrical structures.

The graph structures available via the GF dataset store information re-
garding mechanical variables on each node of the specified structure. The
prepared data carrying the inputs and targets can be processed via GNN. The
FE models created for this purpose are described in the following subsection.
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The selected examples of physically driven models will not extol the virtues
of finite element modelling practices. However, the intention is to show simple
geometrical structures acting in a straightforward quasi-static environment
to easily distinguish whether the chosen strategy of creating a model driven
by extracted data has unique potential.

The presented dataset will be evaluated to create an initial benchmark.
The experiment set will consist of four basic frameworks to emphasise a
brief understanding of specific techniques’ limitations. As mentioned earlier,
MLR, FN architecture, and two different architectures of GNN are available
frameworks competing in benchmark experiments for GF datasets.

5.4 Use Case: Beam 2D

A seemingly simple 2D Beam example will describe the sequence for building
a specific data set. Finally, the following procedure in conjunction with Fig.5.7
is applied for the lately presented sub-datasets of the GF dataset group.

Figure 5.7: The workflow presented on Beam2D example: upper left: FE
discretisation with the highlight of boundary condition and load applied; bottom
left: Maximal Principal distribution at last frame; right: drawn bi-directional
heterogeneous graph created based on FE model mesh.

"Hello Beam", as the commonly known structural mechanic example, is
loaded and constrained on opposite sides in a usual manner. The left side of
the Beam has nodes fixed, and on the opposite side, the concentrated force
F is applied in the vertical direction heading down. The building sequence
of the dataset procedure consists of conventional steps in FE modelling and
additional data preparation of the data to embed the information gained from
the simulation into the graph. The sequence is relatively smooth:
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. Define geometry, mesh, material properties. Identify boundary and load conditions. Run and post-process analysis in a manner to create the basis for graph

structure. Compile FE simulation model information into the mesh-based graph
and store data on nodes

5.4.1 Geometry Material and Mesh

The two-dimensional beam structure used in this use case, Beam2D (B2),
is constructed entirely from steel. The structure’s geometry is partitioned
into quadrilateral elements, which allows for a more detailed and accurate
representation of the Beam’s shape and behaviour. The FE models can
effectively capture the steel beam’s structural response and deformation
characteristics by utilising quadrilateral elements.

ΩB2(E, Γ(e), E, ν) (5.1)

5.4.2 External Load and Boundary Conditions

The structure is subjected to a concentrated force applied on one side,
which linearly increases throughout the simulation. This loading condition
allows for examining Beam’s response to gradually intensifying forces. On
the opposite side, the entire structure is fully encastred, meaning that all
degrees of freedom of the side nodes are constrained. This constraint prevents
displacement or rotation at the fixed end, providing a fixed boundary condition
for the Beam. By imposing these loading and constraint conditions, the FE
models can accurately simulate the behaviour of the Beam under realistic
scenarios, enabling a comprehensive analysis of its structural response and
deformation characteristics.

5.4.3 Data acquired for Data-Driven Models

. Inputs: Reaction forces, represented as F , are measured at the con-
strained nodes using hypothetical force sensors placed at those specific
locations. These sensors allow direct measurement of the forces exerted
on the constrained nodes, providing valuable insights into the structural
response and stability under the given loading conditions.
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.Targets: The targets in this study refer to the values of maximal principal
stress obtained at each node of the structure during the data acquisition
process. These targets serve as valuable data points for understanding
the stress distribution across the structure and can provide insights into
areas of potential high-stress concentration.

5.5 Use Case: Beam 3D

The 3D beam in this context is an analogy to the previous example, where
the structure is still represented by a beam but in a three-dimensional space.
Like the previous example, the 3D beam is made of steel material and
partitioned into hexahedral elements to accurately capture its geometry and
behaviour. The loading conditions and constraints imposed on the beam are
adjusted accordingly to reflect the three-dimensional nature of the structure.
By utilizing this analogy, the research aims to extend the understanding
gained from the 2D beam example to three-dimensional mechanical structures,
allowing for a more comprehensive analysis and exploration of data-driven
modelling techniques.

The suggested fundamental 3D model of the beam depicted in Fig.5.8 has
only one goal: to be initially and quickly validated during the development
of higher-order geometrical typologies, which are usually essential for digital
twinning. The Beam3D is defined by the geometry Γ of 10x20 mm and by
the steel material property in the elastic area. Constraining (fixed face on
one side) and loading (force application on the opposite end of the beam,
F = 100N) were applied identically to the previous example.

Figure 5.8: Beam3D: On the left is FE discretization, the right demonstrates
the distribution of Maximal Principal stress at the final frame of simulation

81 ctuthesis ©MarekCiklamini;



5. Methods.......................................
5.6 use case: Fibonacci’s spring

Moreover, the presented example involves a slightly more complex 3D
topology inspired by the Fibonacci sequence visualised in Fig.5.9. This
topology is applied with a small contribution to mesh discretisation, allowing
for a more detailed representation of the structure. Specifically, the example
focuses on the geometry of a torsional spring, which is constrained on the inner
diameter and loaded on the opposite side. Further information regarding the
geometry and preprocessing of this graph based on the finite element mesh
can be found in the article dedicated to this topic. This article delves into how
the graph representation is derived from the finite element mesh, providing
valuable insights into the preprocessing steps involved in the data-driven
modelling approach [? ].

Figure 5.9: Fibonacci Spring: FE discretisation and Maximal Principal distribu-
tion at last frame

In the presented example, the inner end of the torsional spring is encastred,
meaning it is fully constrained and unable to undergo any displacement or
rotation. On the other hand, the opposite end of the spring is loaded similarly
to the previous example, with a concentrated force applied at a specific centre
node on the outer surface. This loading condition allows for the analysis of
the torsional behaviour of the spring and the examination of its response to
the applied force. By imposing these boundary conditions, the finite element
model accurately simulates the mechanical behaviour of the spring, enabling
a comprehensive study of its torsional characteristics and providing insights
into its performance under various loading conditions.
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5.7 Use case: Half Airplane - Symmetrically Cut

Lastly, the Plane dataset is an example, motivating further enhancements
in real-world applications. This dataset showcases a half 3D geometry per
Fig.5.10 representing the entire volume plane. It is important to note that the
FEM employed in this example may not be in the form typically expected for
complex and highly accurate aeroplane specifications. However, this example
is well-suited for handling large graphs. By utilizing this dataset, researchers
and practitioners can explore and develop optimal use-case applications,
leveraging the advantages of graph-based modelling techniques. The presented
example serves as a starting point for future advancements and improvements
in graph-based modelling and analysis of complex structures.

The plane wing is loaded by a pressure applied from the opposite direction
of gravity, while the influence of gravity itself is also considered. This
combined loading scenario creates a complex and realistic loading condition
that considers both the applied pressure and the effects of gravity. By
studying the plane’s response under this combined loading, valuable insights
can be gained into its structural behaviour, including the interaction between
the applied pressure and the gravitational forces. This use case provides a
practical example for investigating the performance of structures subjected
to multiple loading factors, which is crucial for designing robust and efficient
structures in various engineering applications.

Figure 5.10: Plane: FE discretization with boundary conditions and Maximal
Principal distribution at last frame

The main objective of this study is to measure the reaction forces at the end
of the wing, which provides valuable information about the structural response
to the applied loading. Additionally, a comprehensive stress map of the plane
is desired, which will help accurately represent the distribution and magnitude
of stresses throughout the structure. A more complete understanding of the
structural behaviour can be achieved by capturing these reaction forces and
obtaining a detailed maximal principal stress map. These measurements and
stress analyses are crucial for validating the computational models’ accuracy
and improving the plane’s design and performance.
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5.8 Summary of GF Dataset

The presented use cases of physical models, aimed at investigating the
behaviour of mechanical structures, are comprehensively summarized in a
dedicated table. This summary table provides a concise overview of each use
case, encompassing key aspects essential for further modelling and analysis.
It includes pertinent information such as the specific geometry, loading
conditions, objectives, and significant findings. The table is a valuable
resource for researchers and practitioners studying similar mechanical systems
by encapsulating these crucial details in a summarised format. It facilitates
easy comparison and identification of commonalities or differences among
the use cases, promoting a deeper understanding of structural behaviour and
guiding future modelling endeavours. The characteristics captured in the
table consist of the type of finite elements used to discretize the geometry
(Typeel.), the number of nodes within the dataset (No.Ns), the number of
elements (No.El), the maximal applied force on the structure (max(F )), and
the number of simulation frames (Sim.Frames).

FE mod-
els char.

Db2 Db3 Dfs Dpl

Type El. Quad Quad Quad Tet.
No. Ns 33 24 1524 4758
No. El. 12 8 321 5983
max(F) 100 N 200 N 0.5 N 10 MPa
Sim.
frames

500 500 200 200

Table 5.1: FE models summary by its statistics of structure features
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In addition to the use case summary table, a separate table is also estab-
lished to present the extracted graphs from the physical models. This table
provides a comprehensive overview of the graph structures obtained from
each model, including information such as the number of nodes, edges, and
connectivity patterns. It is a valuable reference for researchers interested
in graph-based modelling and analysis, allowing for easy comparison and
selection of appropriate graph structures for specific applications. This table
facilitates a deeper understanding of the data representation by capturing the
essential characteristics of the extracted graphs. It aids in developing graph
neural network models for further analysis and prediction tasks.

Graphs
char.

Db2 Db3 Dfs Dpl

G. Ns. 33 24 1426 4758
G. Es. 104 88 7518 48210
Feat. X S, U S, U S, U, Le S, U, Le
Feat. y S, U S, U S, U, Le S, U, Le

Table 5.2: Graphs statistics
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Chapter 6

Results of Baseline for DTs

This section introduces results on the methodology developed in Section 3.13
of this thesis. The designed experiments evaluate this methodology using
essential tools identified during its development. The overall evaluation
of results is conducted using the GF dataset, providing a comprehensive
representation of the methodology’s effectiveness.

Firstly, the ranking of each framework for regressors is determined based
on their performance across the validation datasets of subexperiments. This
is visualized using the most suitable identified tool, the boxplot. Addition-
ally, a similar evaluation of training time is conducted to understand the
computational demand required to develop certain DTs.

The subsequent evaluation focuses on validating ground truth in DT mod-
els, which serves as a cornerstone for understanding DT behaviour. Through
explicit visual representations of the trained regressor’s performance on
physical-based datasets, operators can gain profound insights into the sim-
ulated structure’s actual behaviour. The overall performance is further
assessed through Model Diagnostic, utilizing a quantile-quantile plot and
Tukey-Anscombe plot with unscaled residuals to examine the model’s be-
haviour across the entire operational range.
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The final analysis involves examining the training curve histories for all

experiments to depict the spread across the best-converged models. By
scrutinizing the training curves over iterations or epochs, insights into the
convergence patterns and stability of the models can be gleaned. This
comprehensive examination allows a thorough understanding of the training
process and its impact on model performance.

The methodology finishes with graph reduction, serving as both the initial
point and the recurring loop in the DT model lifecycle. Graph reduction is
demonstrated through experiments designed similarly to previous ones but
with variations introduced by reduction techniques outlined in Section 3.5,
altering the graph structure of specific datasets.
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6.1 Accuracy and Time training of Regressor

Within this subsection of the results section, model ranking based on
boxplot analysis was conducted. Boxplots proved invaluable as a visualisation
tool for comparing model performance across multiple experiments. By
examining the distribution of the RMAXMSE metric defined in section 3.10,
which offers insights into the spread of model predictions on the validation
set, the box plots clearly illustrated performance variations among different
sub-datasets in accordance with Fig.6.1. Summary Tab. 6.1 provides a
compiled view of the overall experiment.

Figure 6.1: GFdataset: Boxplot of RMAXSE to depict accuracy of a regressor
for DT implementation
Methods Db2 Db3 Dfs Dpl

LR 8E+0±8E+0 2E-10±8E-11 3E-7±1E-7 1E-4±9E-5
FN 5E-4±3E-4 7E-10±5E-10 2E-5±1E-5 8E-6±1E-5
GCN 4E+0±5E+0 2E-7±3E-7 1E+0±2E+0 2E-4±1E-4
SAGE 1E-1±3E-1 5E-6±9E-6 4E-2±3E-2 3E-4±4E-4

Table 6.1: Summary Table of RMAXSE on validation sets for GF dataset

Furthermore, similarly to the previous analysis, the training time required
to develop a regressor from the set of frameworks was evaluated. Boxplots
were again used as a valuable visualisation tool for comparing the training
time across different frameworks per Fig.6.2. By examining the distribution
of training times, insights were gained into each framework’s efficiency in
terms of computational resources required for model development. In addition

89 ctuthesis ©MarekCiklamini;



6. Results of Baseline for DTs...............................
to the boxplot, a detailed examination of the resulting training ranges is
provided by Tab. 6.2

Figure 6.2: GFdataset: Boxplot of overall training time required to establish
regressor for specific DT

Methods Db2 Db3 Dfs Dpl

LR 1.0E1±1.1E0 1.7E1±1.5E0 1.3E1±7.4E-1 6.8E1±3.2E-1
FN 1.4E1±1.1E0 2.3E1±1.0E0 1.4E1±9.8E-1 1.8E1±1.5E0
GCN 1.3E2±1.0E1 2.3E2±2.2E1 2.0E3±4.1E2 1.2E4±1.8E4
SAGE 1.1E2±4.6E0 1.6E2±4.8E0 1.2E3±5.0E1 1.2E4±1.8E4

Table 6.2: The training time required for an individual model in seconds
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6.2 Ground Truth Evaluation of Digitil Twins

The GF dataset’s Ground Truth (GT) results are presented, where the GT
and predicted values of graph regressors are visualised for all datasets. The
paramount of evaluation is to visualise the regressor performance of prediction
on a selected data point from a dataset referring to a particular load case
of mechanical structure. The results provide insight into their efficacy since
the regressors are potentially trained to be DT. Furthermore, by comparing
the predicted values to the ground truth, the accuracy of each regressor can
be assessed and determine which ones performed best. An additional minor
aspect is to examine the variability in performance across the GF datasets,
which sheds light on the generalizability of these models.
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6.2.1 GT Evaluation: Beam 2D

The plot by Fig.6.3 illustrates the regressor MLR model’s performance on
the original geometry, displaying individual samples alongside their input,
target output, model prediction, and associated error, characterised by e ∈
(−0.6, 0.0) [MPa] for visualised data point.

Figure 6.3: GT visualisation for the MLR framework of Beam2D DT for specific
data sample

Visualising by Fig.6.4 the performance of the regressor FN model on the
original geometric data, the plot showcases each sample along with its input,
target output, model prediction, and error, denoted by e ∈ (−0.6, 0.2) [MPa]
for visualised sample.

Figure 6.4: GT visualisation for the FN framework of Beam2D DT for specific
data sample
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Examining the regressor GCN model’s performance on the original ge-
ometric dataset, the plot by Fig.6.5 presents individual samples alongside
their input, target output, model prediction, and associated error, with
e ∈ (−0.15, 0.01) [MPa] for visualised sample.

Figure 6.5: GT visualisation for the GCN framework of Beam2D DT for specific
data sample

The plot provided by Fig.6.6 as a visual representation of the regres-
sor SAGE model’s performance on the original geometric data, depicting
each sample’s input, target output, model prediction, and error, where
e ∈ (−0.02, 0.05) [MPa] encapsulates the error range of data sample.

Figure 6.6: GT visualisation for the SAGE framework of Beam2D DT for specific
data sample
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6.2.2 GT Evaluation: Beam 3D

The plot by Fig.6.7 illustrates the regressor MLR model’s performance on
the original geometry, displaying individual samples alongside their input,
target output, model prediction, and associated error, characterised by e ∈
(−0.002, 0.002) [MPa] for visualised sample.

Figure 6.7: GT visualisation for the MLR framework of Beam3D DT for specific
data sample

Visualising by Fig.6.8 the performance of the regressor FN model on the
original geometric data, the plot showcases each sample along with its input,
target output, model prediction, and error, denoted by e ∈ (0., 0.0015) [MPa].

Figure 6.8: GT visualisation for the FN framework of Beam3D DT for specific
data sample
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Examining the regressor GCN model’s performance on the original geo-
metric dataset, the plot by Fig.6.13 presents individual samples alongside
their input, target output, model prediction, and associated error, with
e ∈ (−0.002, 0.0.002) [MPa] representing the error range.

Figure 6.9: GT visualisation for the GCN framework of Beam3D DT for specific
data sample

The plot provides a visual representation of the regressor SAGE model’s
performance on the original geometric data, depicting each sample’s input,
target output, model prediction, and error, where e ∈ (−0.01, 0.015) [MPa]
encapsulates the error range of the sample.

Figure 6.10: GT visualisation for the SAGE framework of Beam3D DT for
specific data sample
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6.2.3 GT Evaluation: Fibonacci’s spring

The plot by Fig.6.11 illustrates the regressor MLR model’s performance
on the original geometry, displaying individual samples alongside their in-
put, target output, model prediction, and associated error, characterised by
e ∈ (−0, 350) [MPa] for the sample visualised. Visualising by Fig.6.12 the

Figure 6.11: GT visualisation for the MLR framework of Fibonacci’s spring DT
for specific data sample

performance of the regressor FN model on the original geometric data, the plot
showcases each sample along with its input, target output, model prediction,
and error, denoted by e ∈ (−0.45, 0.1) [MPa] for the sample visualised.

Figure 6.12: GT visualisation for the FN framework of Fibonacci’s spring DT
for specific data sample
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Examining the regressor GCN model’s performance on the original geo-
metric dataset, the plot by Fig.6.13 presents individual samples alongside
their input, target output, model prediction, and associated error, with
e ∈ (−0.5, 0.5) [MPa] representing the error range for the sample visualised.

Figure 6.13: GT visualisation for the GCN framework of Fibonacci’s spring DT
for specific data sample

The plot provides a visual representation of the regressor SAGE model’s
performance on the original geometric data, depicting each sample’s input,
target output, model prediction, and error, where e ∈ (−0.2, 0.2) [MPa]
encapsulates the error range for the sample visualised.

Figure 6.14: GT visualisation for the SAGE framework of Fibonacci’s spring
DT for specific data sample
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6.2.4 GT Evaluation: Plane

The plot by Fig.6.15 illustrates the regressor MLR model’s performance
on the original geometry, displaying individual samples alongside their input,
target output, model prediction, and associated error, characterised by e ∈
(0, 650) [MPa]

Figure 6.15: GT visualisation for the MLR framework of the Plane DT for
specific data sample

Visualising by Fig.6.16 the performance of the regressor FN model on the
original geometric data, the plot showcases each sample along with its input,
target output, model prediction, and error, denoted by e ∈ (−1.5, 0) [MPa]
for the sample visualised.

Figure 6.16: GT visualisation for the FN framework of the Plane DT for specific
data sample

ctuthesis ©MarekCiklamini; 98



........................ 6.2. Ground Truth Evaluation of Digitil Twins

Examining the regressor GCN model’s performance on the original geo-
metric dataset, the plot by Fig.6.17 presents individual samples alongside
their input, target output, model prediction, and associated error, with
e ∈ (−0.4, 0.05) [MPa] representing the error range for the sample visualised.

Figure 6.17: GT visualisation for the GCN framework of the Plane DT for
specific data sample

The plot provides a visual representation of the regressor SAGE model’s
performance on the original geometric data, depicting each sample’s input,
target output, model prediction, and error, where e ∈ (−0.05, 0.05) [MPa]
encapsulates the error range for the sample visualised.

Figure 6.18: GT visualisation for the SAGE framework of the Plane DT for
specific data sample

While visualising the ground truth and predicted values provides valuable
insights into the performance of suggested regressors, this evaluation form may
not be the most appropriate for documenting in a thesis. Furthermore, it is
well-known that relying solely on ground truth evaluation can be problematic
as it only provides information for a specific data point from the dataset.
Therefore, it is essential to use multiple evaluation methods to assess these
models’ performance comprehensively. For discussion, the focus on visualising
the ground truth and predicted values is for illustrative purposes only, and
future work should explore other evaluation techniques to provide a more
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comprehensive assessment of DT built with the hybrid approach.

6.3 Model Diagnostic of DTs

The Model Diagnostic (MD) results of the GF dataset are presented,
where the Model Diagnostic and predicted values of graph regressors are
visualised for all datasets. The paramount evaluation is visualising the
regressor performance of prediction on a selected validation data point from a
dataset referring to a particular load case of mechanical structure. The results
provide insight into their efficacy since the regressors are potentially trained
to be DT. Furthermore, by comparing the predicted values yhat to the Model
Diagnostic, the accuracy of each regressor can be assessed, and the results
can be determined as to which ones performed best. An additional minor
aspect is to examine the variability in performance across the GF datasets,
which sheds light on the generalizability of these models.
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6.3.1 MD Evaluation: Beam 2D

MD Summary: DT regressor based on framework MLR of Beam2D shows
per Fig.6.19 a required linear trend via Quantile-quantile plot (left). The right
plot represents a combination of homoskedasticity and heteroskedasticity with
a small relative error. DT would, for its simple framework, work properly.

Figure 6.19: MD for DT regressor based on MLR applied on Beam2D

MD Summary: Fig.6.20 illustrating behaviour for DT regressor based on
FN of Beam2D shows via Quantile-quantile plot (left) required linear trend
depicting. The right plot represents V-shaped nonlinear heteroskedasticity.
The prediction error is relatively reasonable.

Figure 6.20: MD for DT regressor based on FN applied on Beam2D
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MD Summary: DT regressor based on framework GCN of Beam2D depicted

in Fig.6.21 shows via Quantile-quantile plot shows proper behaving od DT.
Extreme is heteroskedasticity for small predicting values up to 100 MPa. The
model prediction would be questionable for small values.

Figure 6.21: MD for DT regressor based on GCN applied on Beam2D

MD Summary: for DT regressor based on framework SAGE of Beam2D shows
via Quantile-quantile plot by Fig.6.22 proper behaving of DT. Extreme is
heteroskedasticity for small predicting values up to 100 MPa. A deployed
model with a small prediction error would be the best framework choice for
the DT of Beam2D.

Figure 6.22: MD for DT regressor based on SAGE applied on Beam2D
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6.3.2 MD Evaluation: Beam 3D

MD Summary: DT regressor based on framework MLR of Beam3D shows
via Quantile-quantile plot shows per Fig.6.23 proper linear behaviour of DT.
At the right plot, homoskedasticity is visible; therefore, the model would be
the right fit for application.

Figure 6.23: MD for DT regressor based on MLR applied on Beam3D

MD Summary: DT regressor based on framework FN of Beam3D shows
by Fig.6.24 the proper linear behaviour of DT via Quantile-quantile plot.
Extreme nonlinear heteroskedasticity is present, especially for small stresses.
DT Model would behave properly with small error values across the whole
operation range.

Figure 6.24: MD for DT regressor based on FN applied on Beam3D
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MD Summary: DT regressor based on framework GCN of Beam3D shows

per Fig.6.25 the expected linear behaviour. The right plot depicts het-
eroscedasticity with the shape of a funnel. DT Model would behave properly
with small error values across the whole operation range.

Figure 6.25: MD for DT regressor based on GCN applied on Beam3D

MD Summary: DT regressor based on framework SAGE of Beam3D shows
by Fig.6.26 linear via Quantile-quantile plot. The right plot also depicts
heteroscedasticity with the shape of an extreme funnel. DT Model would
behave properly with small error values across the whole operation range.

Figure 6.26: MD for DT regressor based on SAGE applied on Beam3D
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6.3.3 MD Evaluation: Fibonacci’s spring

MD Summary: DT regressor based on framework MLR of Fibonacci’s
spring depicted in Fig.6.27 shows via Quantile-quantile plot amazing nonlinear
behaviour. The homoskedasticity is present, and there is small nonlinear
behaviour at the beginning.DT deployed is for this inappropriate.

Figure 6.27: MD for DT regressor based on MLR applied on Fibonacci’s spring

MD Summary: DT regressor based on FN of Fibonacci’s spring per Fig.6.28
shows via Quantile-quantile plot (left) required linear trend depicting. The
right plot represents nonlinear heteroskedasticity with reasonable error across
the operating range.

Figure 6.28: MD for DT regressor based on FN applied on Fibonacci’s spring
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MD Summary: DT regressor based on framework GCN of Fibonacci’s spring

shows via Quantile-quantile plot is expected to have the correct behaviour by
Fig.6.29. Heteroskedasticity in the initial range and homoscedasticity in the
rest are present. DT would not behave properly for small stress values.

Figure 6.29: MD for DT regressor based on GCN applied on Fibonacci’s spring

MD Summary: DT regressor based on framework SAGE of Fibonacci’s spring
shows via Quantile-quantile plot linear behaviour. The right plot depicts
extreme heteroskedasticity in the initial range as indicated by Fig.6.30. DT
would not behave properly for small stress values.

Figure 6.30: MD for DT-based regressor on SAGE applied on Fibonacci’s spring

ctuthesis ©MarekCiklamini; 106



............................... 6.3. Model Diagnostic of DTs

6.3.4 MD Evaluation: Plane

MD Summary: DT regressor based on framework MLR of Plane shows by
Fig.6.31 inappropriate non-linearities via Quantile-quantile plot and a right
plot showing extreme error. DT based on this regressor is qualified as not
feasible deploy to mimick system.

Figure 6.31: MD for DT regressor based on MLR applied on Plane

MD Summary: DT regressor based on FN for Plane DT shows by Fig.6.32
required linear via Quantile-quantile plot (left). The right plot represents
nonlinear heteroskedasticity.

Figure 6.32: MD for DT regressor based on FN applied on Plane
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MD Summary: DT based on framework GCN of Plane shows required

linear behaviour via Quantile-quantile plot. The right plot depicts extreme
absolute heteroskedasticity in the initial range as seen in Fig.6.33. DT would
not behave properly for small stress values, but for its relatively small error,
it is applicable.

Figure 6.33: MD for DT regressor based on GCN applied on Plane

MD Summary: DT regressor based on framework SAGE of Plane shows with
reference to Fig.6.34 proper expected linear behaviour via Quantile-quantile
plot. The right plot indicates relatively insufficient prediction for small values
of DT. A deployed model for its application would also be the best choice
from overall small errors across the whole range.

Figure 6.34: MD for DT regressor based on SAGE applied on Plane

While visualising the MD and predicted values provides valuable insights
into the performance of suggested regressors, this evaluation form may not
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be the most appropriate for evaluating the model’s overall performance.
Furthermore, relying solely on Model Diagnostic evaluation can be problematic
as it only provides information for a specific data point from the dataset.
Therefore, it is essential to use multiple evaluation methods to assess these
models’ performance comprehensively.

6.4 Regressor Training Evaluation

The subsequent section is dedicated to the inspection of regressor training.
The best models achieved throughout the training epochs are probed during
this inspection. The experiment consists of ten training sessions, and by
closely examining the performance and behaviour of the trained regressors,
valuable insights can be obtained regarding their strengths, weaknesses, and
overall effectiveness. The inspection process involves analysing various aspects
of the models, including their predictive capabilities regarding root max
square error, convergence patterns, and generalisation abilities. Through a
thorough inspection of the trained regressors, a deeper understanding of their
performance is gained, enabling informed decisions about their suitability
for specific applications. This inspection phase is crucial in refining and
optimising the regressor models, ultimately resulting in improved accuracy
and reliability, particularly in predicting the target variable of maximal
principal stress.
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6.4.1 Training Observation: Beam 2D

Training Summary: The MLR regressor training learning curves display
per Fig.6.35 a monotonous trend up to epoch 500, demonstrating consistent
improvement in performance. Beyond the epoch turning point, however,
the curve begins to flatten, indicating that the framework has converged
and is experiencing a slower rate of improvement. This suggests that it has
reached its maximum potential for training, and the best models are found
within this range. Training Summary: The FN regressor training learning

Figure 6.35: Experiments training history of MLR regressor on Beam2D dataset

curves exhibit almost no turning point and quickly converge to their limits,
indicating rapid and efficient training as shown in Fig.6.36. This suggests
that the framework reaches its maximum potential for training early on, with
little further improvement beyond the initial stages.

Figure 6.36: Experiments training history of FN regressor on Beam2D dataset
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Training Summary: The training learning curves for the GCN regressor
display by Fig.6.37 a similar pattern to the previous one, with a slight funnel-
shaped turning point occurring after epoch 150. Despite this slight deviation,
the curves still converge relatively quickly, suggesting efficient training with
early attainment of maximum potential

Figure 6.37: Experiments training history of GCN regressor on Beam2D dataset

Training Summary: The SAGE regressor follows a pattern similar to the
previous ones, with the first best models typically discovered later, often after
epoch 200. However, unlike previous regressors, a significant proportion of
the best models are found towards the end of the training process depicted
by Fig.6.38. This suggests that the framework requires more iterations to
identify optimal models, with a notable concentration of high-performing
models towards the latter stages of training.

Figure 6.38: Experiments training history of SAGE regressor on Beam2D dataset
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6.4.2 Training Observation: Beam 3D

Training Summary: The training learning curves per Fig.6.39 exhibit two
turning points for the MLR framework trained on the Beam 3D dataset. The
second turning point, around epoch 800, marks a significant change in trend,
after which all the best models are typically found.

Figure 6.39: Experiments training history of MLR regressor on Beam3D dataset

Training Summary: For the FN framework, the training learning curves
6.40 display almost no turning point, with the first models typically emerging
between epochs 150 to 500. However, a noticeable outlier is observed after
epoch 800. Additionally, a slight divergence is visible in the learning curves,
suggesting some variability in model performance during training.

Figure 6.40: Experiments training history of FN regressor on Beam3D dataset
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Training Summary: For the GCN framework, the training learning curves
demonstrate 6.41 almost no turning point, with the first models typically
emerging around epoch 150. The learning curves exhibit stability throughout
the training process, indicating consistent and reliable model performance.

Figure 6.41: Experiments training history of GCN regressor on Beam3D dataset

Training Summary: Similar to the previous regressor, the training learning
curves for the GCN regressor using the SAGE framework also demonstrate
almost no turning point, as Fig.6.42 shows. The first models typically emerge
around epoch 150, and the learning curves remain stable throughout the
training process, indicating consistent and reliable model performance.

Figure 6.42: Experiments training history of SAGE regressor on Beam3D dataset
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6.4.3 Training Observation: Fibonacci’s spring

Training Summary: The training learning curves for the MLR framework
trained on the Fibonacci spring dataset, the training learning curves exhibit no
turning points, as seen in Fig.6.43. However, the presence of outliers emerging
after epoch 200 suggests that the regressor may struggle to effectively capture
the characteristics of this dataset.

Figure 6.43: Experiments training history of MLR regressor on Fibonacci’ spring
dataset

Training Summary: For the FN framework, the training learning curves
at Fig.6.44 display a turning point around epoch 700 and subsequently, the
models converge after epoch 800, suggesting that optimal model performance
is achieved at this stage of training.

Figure 6.44: Experiments training history of FN regressor on Fibonacci’ spring
dataset
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Training Summary: For the GCN framework, the training learning curves
exhibit a turning point around epoch 50, indicating a change in the trend of
model performance as depicted by Fig.6.45. The first model typically emerges
around epoch 150, followed by discovering additional models over time.

Figure 6.45: Experiments training history of GCN regressor on Fibonacci’ spring
dataset

Training Summary: The training learning curves for the regressor, utilising
the SAGE framework, show by Fig.6.46 a pattern similar to the previous
regressor. The best models are typically found after epoch 200, indicating a
stable training process with consistent performance.

Figure 6.46: Experiments training history of SAGE regressor on Fibonacci’
spring dataset

115 ctuthesis ©MarekCiklamini;



6. Results of Baseline for DTs...............................
6.4.4 Training Observation: Plane

Training Summary: The training learning curves by Fig.6.47 are visualised
for the MLR framework trained on the Plane dataset, and the learning curves
exhibit a pattern similar to the MLR regressor trained on the Fibonacci
dataset. There are no discernible turning points, and the models may be
found as outliers, suggesting potential difficulty in capturing the characteristics
of the Plane dataset with the MLR framework. Training Summary: For the

Figure 6.47: Experiments training history of MLR regressor on Plane dataset

FN framework, the training learning curves exhibit a shape resembling an
inverse sigmoid function, typically converging after epoch 800. This pattern
suggests a gradual improvement in model performance over time, with optimal
models usually achieved in the later stages of training as depicted in FIg.6.48.

Figure 6.48: Experiments training history of FN regressor on Plane dataset

ctuthesis ©MarekCiklamini; 116



............................. 6.4. Regressor Training Evaluation

Training Summary: For the GCN framework, the training learning curves
exhibit a pattern similar to the GCN regressor trained on the Fibonacci
dataset. The best models are typically found after epoch 200, indicating
stable learning with consistent performance as illustrated in Fig.6.49.

Figure 6.49: Experiments training history of GCN regressor on Plane dataset

Training Summary: For the SAGE framework, the training learning curves
show a pattern similar to the previous regressor, with a more steep conver-
gency turn point around epoch 50, as depicted in Fig.6.50. The first model
typically emerges around epoch 150, suggesting efficient training with rapid
improvement in performance after the initial stages.

Figure 6.50: Experiments training history of SAGE regressor on Plane dataset
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6.5 Graph Reduction Experiment

The comparison is visualised by boxplots per Fig.6.51 for the prediction
accuracy ŷ (σ) achieved by various methods on the smaller datasets (Beam
2D, Beam 3D) of the GF dataset. The boxplots illustrate the distribution of
prediction errors for each technique, highlighting their performance variability
and effectiveness in capturing underlying patterns in the data.

Figure 6.51: Boxplots for prediction accuracy ŷ (σ) of the smaller nodes count
datasets: Beam 2D, Beam 3D

Further comparison by boxplots visualised per Fig.6.52 for prediction
accuracy ŷ (σ) achieved by various methods on the data sets of the higher
nodes count (Fibonacci Spring, Plane) of the GF dataset. The box plots
illustrate the distribution of prediction errors for each method, highlighting
their performance variability and effectiveness in capturing the underlying
patterns in the data.

Figure 6.52: Boxplots for prediction accuracy ŷ (σ) of the higher nodes count
datasets: Fibonacci Spring, Plane
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Experiments for frameworks GCN and SAGE were conducted for graph
reduction, with detailed results available in Appendices Tab.D.2 and Tab.D.3.
The comprehensive information provided in these tables serves as a valuable
resource for further analysis and understanding of the efficacy of graph
reduction techniques in optimizing model complexity and performance.

6.6 Results Discussion

The results balancing section evaluates and ranks the model-centric ap-
proach employed in constructing and establishing the DT, with a focus on
the essential building blocks within the PM. In this section, the primary
assessment tools utilized are visually based, enabling a quick assessment of
the distribution and statistical characteristics of crucial metrics driving the
maturity of the DT development.

The experiments involved different epoch counts for each model framework:
MLR and FN were trained for 1000 epochs, while GCN and GraphSAGE were
trained for 500 epochs. The discrepancy in epoch count prompts the question
of why GCN and GraphSAGE did not have equal or increased epoch counts.
The primary consideration in determining epoch count is computational
demand, especially for neural network models dealing with graph structures,
which can be computationally intensive due to the complexity of operations
and dataset size. The epoch count for GCN and GraphSAGE was set to 500
to balance computational efficiency and model performance. Despite being
shorter than MLR and FFNN training durations, this duration still allows
graph-based models to capture essential patterns and relationships within the
data. Notably, epoch count selection is not solely based on computational
demand; factors such as model convergence behaviour and accuracy within
the given epoch count also influence the training duration. Therefore, the
epoch counts were carefully selected to strike a reasonable balance between
computational efficiency and model performance for the specific graph-based
frameworks.

The Box plots serve as a valuable visualization tool, enabling the differenti-
ation of model performance across multiple experiments. The distribution of
the RMAXSE metric, visualized in a logarithmic scale about the GF bench-
marking GNNs, provides insight into the overall spread of model predictions
on the validation set. Notably, more straightforward model frameworks such
as MLR and FFNN tend to outperform GNN frameworks for small PM
(Beam2D and Beam3D). For example, the complex structure of the Plane
dataset is better predicted using the FFNN architecture compared to GCN,
with a difference of one order. Additionally, the summary table offers further
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insight into the performance of individual techniques. For instance, on the
dataset Db2, LR achieves an average RMAXSE of 8ś8, while FN achieves
0.0005ś0.0003 and GCN achieves 4±5. These results underscore the impor-
tance of carefully selecting the model framework and highlight the strengths
and weaknesses of each approach. Furthermore, considering the training time
required for each model (Tab.6.2), it’s evident that simpler frameworks like
LR and FN have significantly lower training times compared to more complex
frameworks like GCN and SAGE. This highlights the trade-off between model
complexity and training time, where simpler models may offer faster training
but potentially sacrifice performance compared to more complex counterparts.

The GT evaluation was conducted on the Beam2D and Beam3D datasets,
where the FN framework emerged as the most suitable choice due to its slight
complexity and balanced performance in providing reasonable predictions.
Conversely, the GCN framework was found to be the least suitable choice
due to its high computational demand, which would pose a significant ob-
stacle in real-time adaptation. These findings underscore the importance of
selecting an appropriate regression framework tailored to the dataset charac-
teristics, with the FN framework demonstrating superior performance while
maintaining computational efficiency. The GT evaluation and MD utilities
were employed to assess the performance of various regression frameworks
on both the Fibonacci’s spring and Plane datasets. The SAGE framework
was observed to outperform others in accurately predicting across the en-
tire operational range, with only slight deviations noted for small values.
Conversely, the MLR framework exhibited complete incapability in making
accurate predictions for both datasets. The MD analysis further supported
these findings, revealing that the SAGE framework maintained a consistent
and reliable prediction trend, while the MLR framework displayed significant
inconsistencies. These results emphasize the importance of selecting an ap-
propriate regression framework tailored to the dataset characteristics, with
the SAGE framework demonstrating superior performance and reliability.

The training learning curves revealed distinct patterns in model convergence
and performance across different frameworks and datasets. For instance,
stable learning curves with convergent models typically found after epoch
800 were observed for regressors trained on the FN framework . Similarly,
regressors utilising the GCN framework displayed consistent performance with
optimal models identified after epoch 200. In contrast, rapid performance
improvement, particularly after epoch 50, was noted for those trained on the
SAGE framework. These observations suggest that the choice of framework
can significantly impact the training process and ultimate model performance.
Furthermore, insights into model training and convergence dynamics are
provided by the varying shapes of the learning curves, including sigmoidal,
funnel-shaped, and inverse sigmoidal curves. Overall, the importance of
careful framework selection is underscored by these findings, and potential
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areas for further investigation, such as understanding the factors driving
the observed differences in convergence patterns and exploring strategies to
optimize model training for specific frameworks and datasets, are highlighted.

The experiments on graph reduction techniques for modelling mechanical
systems provide insights into their potential benefits and challenges. The
proposed methods effectively reduce the complexity of finite element models
while preserving essential structural features. Findings are illustrated in the
box plots of Fig.6.51 and Fig.6.52, along with numerical results in Tab.D.1
and Tab.D.2. The shortest path and TSP solutions offer straightforward
and computationally efficient approaches to reducing graph complexity, al-
though their effectiveness may vary depending on the mechanical system’s
specific characteristics. Laplacian reduction emerged as a more sophisticated
technique, requiring careful tuning, particularly regarding edge reduction
and characteristic values in the FEM. It leverages the spectral properties
of the Laplacian matrix to achieve significant complexity reduction while
preserving structural integrity. However, achieving optimal results with
this method demands a deeper understanding of the mechanical system’s
structural characteristics and appropriate parameter selection.

The conducted experiments, aimed at exploring the possibilities of the
designed methodology outlined in Section 3.13, have yielded valuable insights
and clarity while paving the way for further research and exploration in the
field. The initial methodology appears suitable for developing digital twins
for mechanical structural systems, marking a promising step forward in this
study area.
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Chapter 7

Conclusion

The art of mathematically creating models for mechanical structures has been
continuously evolving throughout history, with its origins tracing back to the
era of Pythagoras or even earlier. Over time, advancements in mathematics,
engineering, and technology have propelled the development of sophisticated
modeling techniques. These techniques aim to accurately represent the
behavior and properties of mechanical structures, enabling engineers and
scientists to analyze, design, and optimize various systems. From the early
conceptualizations of geometric shapes and basic principles of mechanics to
the modern-day application of advanced computational methods, the field of
modeling mechanical structures has undergone a remarkable transformation.
This ongoing evolution reflects our relentless pursuit of understanding and
harnessing the principles governing the physical world, driving innovation
and progress in engineering and science.

The thesis was motivated by the desire to make a comprehensive contribu-
tion to the field by presenting a well-described and well-supported idea. By
delving into the intricacies of the hybrid modelling of digital twins for mechan-
ical structures using the finite element method and graph neural networks, the
thesis sought to offer valuable insights, methodologies, and findings that could
advance the field. Through careful examination, analysis, and experimenta-
tion, the thesis aimed to provide a solid foundation for future research and
practical applications in the domain of digital twin modelling. By addressing
the research question with a comprehensive approach, the thesis aimed to
make a meaningful contribution to the existing body of knowledge. The first
part of the thesis captures the dynamically changing status quo of digital
twins from a mechanical structural perspective. Acknowledging that the DT
topic is a uniformly broad universal tool and that applications can most likely
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be found across all the possible scientific fields. The suggested strategy for cre-
ating DT in the thesis by hybrid modelling primarily examines how to build a
regressor from a PM. For this purpose, were generally hypothesize an optimal
regressor framework based on a graph neural network. Therefore, the initial
sections fundamentally describe essential building blocks with representative
examples. Those three main building blocks are understood. The first one is
physical modelling, focusing on cooperating with the second building block
in the form of DD modelling, and closing by third - graph neural network
block as the key element of the presented research in the form of the thesis.
Since the overall definitions were set, the hypothesis is then formulated as
already emphasized early and with pardon to rearticulate here again: “Is
it possible to use graph neural networks to extract calculated knowledge of
finite element model?”. The consecutive chapter then outlines sequentially
methodologies to build a mandatory knowledge base. Poisson’s law applied
to boundary variational problem represents an approach to create a PM via
finite elements. Finite element structures and consecutively suggested process
of graph extraction are then understood as one possible imaginary bridge
which is connecting the basics of graph theory continuing to the field of graph
neural networks.

The compiled methodology is further implemented on a distinct dataset
meticulously constructed with the explicit purpose of evaluating predeter-
mined hypotheses. The Graph-Finite element dataset was established (GF
dataset) has an additional synergic intention to provide an appropriate ini-
tial point for those passionate researchers whose objective is to explore the
possibility of the presented hybrid modelling technique and accompanying
variations to enhance applied methods and therefore bring new perspective
how to alter current workflows of DD modelling. The provided benchmarking
of the GF dataset with the simplest possible multilinear regression model
to make slight proof that the adaptation is possible. Nevertheless, the per-
formance is expected to be challenging for a more complex structure. The
feed-forward neural network, sure, has also proven the possibility to handle
such kinds of tasks, but still, the mesh structure, as one of the main points
of interest, needs to be addressed here. On the other hand, an arbitrary
architecture of GNN is taking the expected ability to learn from models
established by mesh-based information governed by physical laws, at least for
simple Poisson’s problem and is also analogically expected similar results in
other physical domains of various structure scales.

This thesis aims to contribute comprehensively to the field by presenting a
well-described and supported idea on deriving DTHMFG. Valuable insights,
methodologies, and findings are offered by exploring the hybrid modelling of
digital twins for mechanical structures using FE methods and regressors based
on GNN. An initial foundation for future research and practical applications in
DT modelling of mechanical structure is provided through careful examination
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and experimentation, contributing meaningfully to accomplishing the 1. Goal
is set at Chapter 2.2.

While PMs can be computationally expensive, their meticulous design
yields invaluable insights into complex mechanical systems. Despite the
computational demands, the knowledge gained from these models offers signif-
icant advantages, particularly in accurately mimicking real-world behaviours.
When crafted with care and attention to detail, PMs serve as indispensable
tools for understanding and optimizing mechanical systems, The established
methodology reached the Goal2. by introducing a base to effectively reuse
high-value knowledge from an FE model in order to deliver a trained regressor.

The Chapter 3 provides insight into regressors as representative of DD
modelling to perform regression tasks on nodes of a graph reflecting a PM,
utilizing carefully chosen FEM data to construct the training dataset.

Then, the hypothesis verification by suitable experiments were done to
establish a baseline of frameworks, facilitating the selection of optimally
performing regressors to fulfil Objective3.

In particular, the last goal is addressed in Chapter, especially by Chapter
6, which provides insight on model diagnostic based on overall experiment
to understand the performance model in the context of delivering compiled
correct transferred behaviour of a particular PM. This highlights assumptions
of false system predictions, and therefore, the set monitoring set of metrics
is utilised as essential to DTFMG mimicking a mechanical system. This
fulfilling Goal4 aims to use DTHMFG at a regular operation of the physical
asset.

7.1 Outlook of possible applications

A DT based on aGNN can be applied in the control loops of systems to
optimize their performance and enhance their functionality. Here are a few
examples of how a digital twin based on a GNN could be used in control
loops:

Model-based control: The digital twin can be used to model the behavior
of the system and make predictions about how it will respond to different
inputs. This information can be used in a model-based control loop, where
the control system adjusts the inputs to the system based on the predicted
outputs from the digital twin.
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Real-time optimization: The digital twin can be used to optimize the

performance of the system in real-time, by learning from the system’s past
behavior and adapting the control inputs to achieve the desired performance.

Fault detection and diagnosis: The digital twin can be used to detect
and diagnose faults in the system by comparing the predicted behaviour of
the system to the actual behaviour. If the two differ significantly, this may
indicate the presence of a fault that needs to be addressed.

Predictive maintenance: The digital twin can be used to predict when
maintenance is needed for the system, by learning from the system’s past
behavior and identifying patterns that may indicate the need for maintenance.

Digital twins based on a regressor of GNN can be a powerful tool for
optimizing and enhancing the performance of control loops in systems. By
leveraging the GNN-powered digital twin to accurately model the intricate
behaviour of the system and make informed predictions regarding its response
to various inputs, a higher level of control precision and system optimization
can be achieved, thereby augmenting its overall functionality.

The primary objective of this research is to achieve the highest level of
accuracy in modelling. However, it is essential to acknowledge that striving
for perfect accuracy may prove to be impractical or even unnecessary in some
cases. Instead, the focus is placed on finding methods for synthesizing and
interpolating between regression models to operate within the operational
space. By doing so, the models can adapt and predict unseen data more
effectively. This approach allows for a balance between accuracy and prac-
ticality, as the goal is to create models that provide valuable insights and
predictions while accounting for the inherent complexities and uncertainties
present in real-world systems. The evidence gathered throughout this study
supports the endeavour to develop highly accurate models while recognizing
the limitations and challenges inherent in achieving absolute perfection.
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Appendices
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Appendix A

Index

A

Adjacency list, 47

Adjacency matrix, 47

D

Data-Driven modelling, 19

Degree Matrix, 48

Digital Twin, 7

F

Feed-Forward Neural Networks, 23

Finite Element Method, 16

G

Graph Convolutional layer, 54

Graph Neural Network, 23, 52

Graph Reduction, 49

Ground Truth evaluation, 63

129 ctuthesis ©MarekCiklamini;



A. Index ........................................
H

Hybrid modelling, 13

L

Laplacian matrix, 48

M

Model Diagnostic, 100

P

Physical-based modelling, 15

R

Regressor validation, 64

Root Max Square Error, 62

S

Sample and Aggregated Embed-
dings Layer, 54

Shortest Path, 50

Spectral Reduction, 51

T

Traveling Salesman Problem, 50

W

Weighted Spectral Reduction, 52
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Appendix D

Graph Reduction: Algorithm and Tables

Algorithm 4 Calculate GLred

Require: G
Ensure: L (G) = D (A)−A (G)
Require: λ, v = Hermitian L (G) ▷ Lv = λv
Require: η, γ ▷ reduction factor, treshold

1: k = ||(v) ∗ η)||
2: K = argsort(λ0, ..., λk) ▷ Select vector of top eigenvalues
3: µ = λ[: k] ▷ selected eigenvalues
4: v′ = v[:, : k] ▷ selected eigenvectors

Ensure: G′ = G(N ) ▷ Inherite original nodes
5: for νi,j ∈ G(Σ) do
6: pi ← λs,i, vs,i
7: if vi(σ) > γ then ▷ Decide on edge cut from σ mechanical stress

importance
8: V

′ ← vi

9: end if
10: end for
11: G′ ← addEdges(V ′) ▷ Initiate reduced graph
12: Calculate A′(G′)
13: Calculate D(G′) ▷ Degree matrix of G’
14: Extract : d

′
i,j ← D(G′) · I ▷ array of nodes degree by identity matris

15: Find nodes: ed=0 ← d
′
i,j < 1

16: Find nodes: ed=1 ← d
′
i,j < 2

17: Concatenate: e′ ← ed=0 ∪ ed=1
18: Pairing nodes: ea ← roll(e′, 1)
19: G′ ← addEdges(ea)
20: return G′
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Table D.1: Table of results - proposed techniques compared to benchmark.
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Table D.2: Summary table for GCNframework listing the proposed reduction
strategies and their respective performance on presented datasets
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Table D.3: Summary table for SAGE framework listing the proposed reduction
strategies and their respective performance on presented datasets
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