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SHRNUTÍ 

Pro zajištění vysoké kvality akumulace tepla a vysoké účinnosti při jeho získávání se v 

zásobnících tepla často využívá tepelného vrstvení (stratifikace). Motivace pro využití stratifikace 

spočívá v tom, že mísení vrstev v zásobníku může být během provozního cyklu minimalizováno 

tak, že na konci ohřevu objemu zásobníku může být z horní části odebírána voda o vysoké teplotě, 

čímž se dosahuje vysoké tepelné účinnosti na straně odběru, zatímco v dolní části může být 

odebírána voda o nízké teplotě a tak udržena vysoká účinnost na straně jímání obnovitelného tepla. 

Výzkum stratifikace zahrnuje posouzení široké škály konceptů, které se vyskytují okolo ústředního 

tématu zásobníků tepla, především jejich návrhu a modelování.  

Tato práce je zpracována jako „Disertace publikacemi“. K průvodnímu textu této práce je 

připojeno celkem 5 publikací (článků), které představují 3 hlavní výzkumné studie. Celkem 4 

články jsou publikovány v recenzovaném impaktovaném časopise ležícím v prvním kvartilu (Q1), 

zatímco 1 článek je publikován v recenzovaném impaktovaném časopise ležícím v prvním decilu 

(D1).  

V první studii je představena jak experimentální tak numerická práce. Samotná studie je 

založena na systematické a komplexní rešeršní práci, např. bylo diskutováno použití více-uzlového 

a „plug-flow“ přístupu k modelování různých rozložení teploty. Modely byly kategorizovány jako 

lineární, stupňovité, spojitě-lineární a obecné třízónové modely pro rozložení teploty. Následně 

byla demonstrována dynamika degradace teplotního gradientu a ovlivňující parametry v 

pohotovostním i dynamickém režimu. Kromě toho byl ukázán přehled současných metod a 

postupů k vyhodnocování stratifikačního chování a jeho kvantifikaci. To zahrnuje geometrické 

parametry, uvažování konstrukčního návrhu, jako návrh vtoku, poměr rozměrů nádrže či 

specifikace materiálu stěny a také provozní parametry pro omezení mísení. Praktické techniky a 

metody byly představeny novým způsobem a rozšiřují základ praktických aplikací a výzkumných 

postupů.  

Na základě rešerše bylo dále kvantifikováno turbulentní mísení na základě teplotního profilu, 

MIX čísla a Richardsonova čísla. Pro nalezení optimálních provozních podmínek v režimu 

vybíjení zásobníku byly vytvořeny různé CFD modely a experimentálně ověřeny na vlastním 

laboratorním zkušebním zařízení pro různá nátoková zařízení. Hodnocené parametry pak zahrnují 

průtok, rozdíl teplot ΔT a dále konstrukci nátoku do zásobníku, takže mezi nimi byla stanovena 
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vzájemná závislost. Výsledky numericky prokázaly, že provozní podmínky zásobníku lze 

optimalizovat vhodnou volbou konstrukce nátoku. Tato výzkumná zjištění mohou sloužit jako 

vodítko pro optimalizaci návrhu zásobníku tepla, konkrétněji návrhu založeného na vhodném 

nátokovém zařízení integrovaném s konkrétním zdrojem tepla, neboť teplotní stratifikace a COP 

zdroje tepla, tj. například tepelného čerpadla, jsou neodmyslitelně korelovány. Tepelná čerpadla 

jsou zařízení s vysokým průtokem a nízkým ΔT, na rozdíl od solárních systémů jako zařízení s 

nízkým průtokem a vysokým ΔT. Vhodná volba nátokového zařízení pro konkrétní provozní 

podmínky zdroje tepla je proto kritická. 

Druhá studie je zaměřena především na vývoj vhodného exergetického modelu 

kvantifikujícího degradaci stratifikace v zásobníku tepla na základě druhého termodynamického 

zákona, který byl sledován pro přizpůsobení rovnic vyjadřujících entropii a exergii. Nové modely 

prošly přísným validačním procesem. Nejprve byla provedena experimentální validace, poté byl 

využit přístup založený na datech za použití LSTM neuronové sítě. LSTM model reprodukoval 

výsledky vypočtené nově vyvinutým exergetickým modelem, a výsledky vypočtené 

kvantitativním přístupem odpovídají výsledkům datového přístupu. Součástí procesu validace 

modelu bylo porovnání výsledků s pracemi jiných autorů. Stejně důležitým bylo i podrobení dat 

časové řady analýze statistické nejistoty z pohledu Gaussova rozdělení. Bylo zjištěno normální 

rozdělení nejistoty s 95 % datovými body v rozmezí 5% nejistoty. Nakonec, byly tyto rovnice 

přizpůsobeny datové vrstvě, aby bylo možné v reálném čase zaznamenávat výsledné stratifikační 

chování při akumulaci tepla a topného faktoru COP tepelného čerpadla během cyklu 

nabíjení/vybíjení zásobníku tepla. Takové vyhodnocení v reálném čase poskytuje lepší pohled na 

energetickou účinnost systému OZE jako zdroje tepla a může tak být pomocí expertům a 

výzkumníkům. 

Ve třetí studii je demonstrováno použití inteligentní datové vrstvy pro vyhodnocování a 

predikci výsledného chování stratifikovaného zásobníku tepla integrovaného s tepelným 

čerpadlem. Modelování dat, jejich získávání, zpracování a transformace se provádí dynamicky. 

Byla vyvinuta metoda k využití rámce datové vrstvy k vizualizaci energetické účinnosti akumulace 

tepla v reálném čase tak, aby vyhovovala exergetickému modelu podle druhého 

termodynamického zákona. To umožňuje expertům intuitivně porozumět energetické účinnosti 

jejich zařízení pomocí nového datového řetězení. Datová vrstva vyhodnocuje degradaci vrstvení 

(ve smyslu generování entropie) pomocí nového modelu podle druhého termodynamického 
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zákona odvozeného v této třetí studii. Kromě entropie také vypočítává COP tepelného čerpadla 

při různých provozních parametrech. 
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SUMMARY 

To assure high quality thermal storage and high efficiency of its acquisition, thermal 

stratification is often employed in thermal storage tanks. The motivation of stratification lies in the 

fact that mixing of layers can be minimized during operational cycle of the tank so that high 

temperature water could be taken at the load end, thus maintaining high thermal efficiency at 

demand side, while low temperature water can be drawn at lower bottom, thus maintaining the 

high efficiency at renewable heat collection side. The investigation of stratification entails the 

assessment of a wide variety of concepts to be embodied around the central theme of the thermal 

storage, especially its design and modelling. 

This thesis is put forward as “Thesis by publication.” In total 5 papers, which represent three 

main research studies, are attached together to accompanying text in this thesis. Meaning, 4 papers 

are published in first quartile (Q1) peer-reviewed impacted journal, while 1 paper is published in 

first decile (D1) peer-reviewed impacted journal.  

 In the first study both experimental and numerical work is presented. The study is based 

on systematic comprehensive review work.  For instance, multi-node and plug-flow approach to 

model various temperature distribution models are resurfaced. These models are categorized as 

linear, stepped, continuous-linear and general three-zone temperature distribution models. 

Subsequently, the dynamics of thermo-cline decay and influencing parameters both during standby 

and dynamic mode were demonstrated. In addition, a survey of state-of-the-art methods and 

practices to ascertain the performance improvement and its quantification were illustrated. This 

includes geometrical parameters – such as, structural design incorporation, essentially – inlet 

design, tank aspect ratio and wall material specification, and also, operational parameters to curb 

down the inlet mixing. Practice techniques and methods which were presented here in a novel way, 

extend towards the ground of practical application and research procedures. 

Furthermore, based on review, quantification of turbulent mixing was achieved on the basis 

of temperature profile, MIX number, and Richardson number. Various CFD models were 

developed and experimentally validated on the own laboratory test rig in order to find the optimal 

working conditions in discharge mode for different inlet devices. The evaluated parameters include 

flow rate, ΔT, and design of inlet device (diffuser), henceforth a direct interdependence between 
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each was thus established. The results proved numerically that the tank working conditions can be 

optimized by proper selection of inlet device. These research findings can serve as guidelines to 

optimize the storage tank design, more specifically, inlet device-based design integrated with 

heating system, as thermal stratification and COP of heating system i.e. heat pumps, for example, 

are inherently correlated. Heat pumps are high flow rate and low ΔT devices, while, solar systems 

are low flow rate and high ΔT devices. Thus, the suitable choice of inlet device for a particular 

operating condition is critical. 

Second study is mainly focused on development of suitable exergetic models quantifying 

stratification decay of thermal storage based on second law of thermodynamics which was 

observed in tailoring the entropy and exergy equations. The new models underwent strict 

validation process. Firstly, experimental validation was achieved. Secondly, data driven approach 

using LSTM neural network was utilized. The LSTM model reproduced the results calculated by 

newly developed exergetic model thus the results calculated by quantitative approach is validated 

by data driven approach. Finally, the results were also compared with the work of other authors as 

a part of validation process. Equally important, time series data thus collected underwent statistical 

uncertainty analysis. Probability distribution of error in terms of Gauss distribution was analyzed. 

It was observed that the uncertainty was normally distributed with 95% data points falling under 

5 % uncertainty range. In conclusion, it was made possible to fit these equations to the customized 

data layer in order to stream in real time the end to end stratification performance of thermal energy 

storage, and COP of heat pump during charge/discharge cycle. This real time evaluation gives a 

better perspective about the energy efficiency of RES system and thus could help experts and 

researchers. 

In the third study, application of intelligent data layer for evaluating and predicting end to end 

performance of heat pump integrated stratified thermal energy storage system is demonstrated. 

The data modelling – acquisition, curation, and transformation is done in situ (dynamically). A 

method was developed to utilize of data-layer framework to visualize in real-time energy 

efficiency of thermal storage, in other words, to fit the developed second law of thermodynamics-

based exergy model. This will help experts to intuitively understand the energy efficiency of their 

devices using novel data pipeline.  The data layer evaluates stratification decay (in terms of entropy 

generation) using the novel second law model derived in the third study. In addition to entropy it 

also calculates COP of the heat pump at different operational parameters.  
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Nomenclature 
 
c  thermodynamic specific heat capacity (J/kg·K) 

E  energy content of jth fluid layer 

g  acceleration due to gravity (m/s2) 

h   height (m) 

L  characteristic length pertaining to tank (m)  
ME  moment of energy (J·m) 

Mexp   moment of energy of experimental tank (J·m) 

Mful-mix  moment of energy of fully mixed tank (J·m) 

Mstr  moment of energy of perfectly stratified tank (J·m) 

MIX  MIX number (dimensionless) 

Ri  Richardson number 

v   velocity component in y direction (m/s) 

V  volume (m3)  

yj   vertical distance between nodes (mm) 
T   temperature (°C) 

Thp,out   heat pump output temperature (°C) 

Thp,in   heat pump inlet temperature (°C) 

Ti  temperature of ith layer (°C) 

ξ  exergy (kJ) 

 

Greek 

β  coefficient of thermal expansion (1/K) 

ρ  fluid density (kg/m3) 

Δs  thermodynamic entropy production (J/K) 

vhp   heat pump flow rate/circulation pump flow rate m3 /s 

η  Stratification efficiency 
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Introduction 

Background and motivation 

Thermal energy storage (TES) is the essential part of renewable energy systems. This is 

because it is the only solution against noncoincidence of supply and demand, especially with solar 

systems. Improving the performance of this central component can significantly decrease the 

auxiliary energy demand for both the space and domestic hot water heating. For designing or 

performing building energy simulations of heating systems including the storage tanks it is 

essential to adopt the integrated and dynamic simulation approach. According to Campos Celador 

et al. [1], storage tank models can help to determine the annual saving and subsequent decision-

making to increase it right at the design phase of the system. Stratified storage tank is a cost-

effective building heat storage technology which facilitates the reduction in auxiliary heating 

demands, reduction in primary energy savings, discounting the consumer costs, while promoting 

the lower carbon footprints [2, 3]. The simple concept of thermal stratification lies in the fact that 

colder water being denser than hot water is withdrawn from the bottom and is circulated to the 

energy collection side (source side). This increases the efficiency of energy collection especially 

with renewables – solar thermal and/or heat pump, as it increases with decrease in inlet water 

temperature. Consequently, hot water is made to enter at the top of the tank which promotes the 

stratification. 

High performance of such TES employing water as storage medium is undeniably 

indispensable. For this purpose, an effective TES device should satisfy these technical 

prerequisites (Fig. 1): 

• Thermal stratification: the water tank should be able to sustain hot and cold water 

separately without any physical barrier, in other words, continuous or stepped 

temperature distribution of water across the height of the tank should be practiced. 

• Mixing of hot and cold volume of water induced due to different operational cycle’s 

viz. charging and discharging should be minimized.  

• The tank design should minimize the dead water weight. 
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• The tank design should minimize the heat losses. 

 

Fig. 1. (a) and (b) Different positions of inlets and outlets in storage tank, and (c) indication of 

thermal stratification in the same. 

Two counteracting forces i.e. buoyant forces and gravity are responsible for movement of the 

newly introduced fluid inside tank. High density or low temperature fluid layers have the tendency 

to settle down as early as possible, while low density or high temperature layers have the 

propensity to move towards the upper hot layers. In addition, the momentum with which water is 

introduced into the bulk impacts the core fluid and hence decides how it will react with rest of the 

fluid layers. After the fluid layers are settled at their respective positions, thermal stratification is 

built up forming a thermocline region which can be described by different temperature distribution 

models such as linear, stepped or three zone model. This thermocline serves as the thermal barrier 
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to separate the hot and cold-water regions. Hot water is extracted from the upper part to feed the 

load, while cold water is extracted from the lower region to circulate to the energy addition loop. 

Thus, thermal stratification is maintained within the tank during the different operation cycles. 

Nevertheless, this stratification starts to fade away due to different hydrodynamic and/or thermal 

contingencies which need to be controlled. 

Stratified water tanks can either be directly heated or indirectly heated by addition of a heat 

exchanger between energy source and the tank. Directly heated water tanks are highly effective at 

thermal exchange, however they are weak at maintaining the stratification due to high mixing and 

turbulence. Henceforth, they are usually equipped with different structural design changes viz. 

inlet stratifiers, baffle plates, diffuser systems etc. In addition, the performance of the immersed 

type thermal system can be significantly improved by correctly crafting the inner arrangement of 

the coils. The simulation results validated by experimental findings by Celador et al. [4] concluded 

that sophisticated inner arrangement can improve the performance and effectiveness of hot water 

preparation up to 15%. 

The primary purpose of the thermal energy storage is to maximize the availability (or exergy) 

in the form of useful energy gain [5]. Energy and Exergy analysis both are used to quantify the 

performance of the TES.  Exergy analysis, on the other hand, is a second law based thermodynamic 

investigation which provides gain over energy analysis in a way – firstly, it puts into account the 

temperature differences for the same energy content storages – this is particularly required for 

stratified storages as they sustain spatial temperature variations or thermocline, which could be 

stepped or linear [6].  Secondly, it considers the causes and location of quantitative losses due to 

mixing of fluids at different temperatures, and losses towards the environment. The working of 

TES moreover is governed by operating cycles, typically, energy addition, storage, and energy 

removal cycles. Careful thermal management and control of these cycles could result in increased 

performance of the thermal recovery. 

Yaici et al. [7] performed a CFD analysis to evaluate the influence of geometrical and 

operational parameters on performance of the tank in charging mode. The results confirmed that a 

controlled optimization between both geometrical and operational variables is rudimentary for an 

appropriately designed storage tank. Geometrical factors include aspect ratio representing the 

effect of varying tank height with fixed diameter and vice versa, and also inlet and outlet position 

with respect to the top and bottom wall of tank. The operational parameters include mass flow rate, 
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inlet temperature variation and the effect of initial water temperature variation. The results 

concluded that the low mass flow rate instills increased level of thermal diffusion, axial wall 

conduction, and thermal conduction within the hot and cold-water layers, due to increase in 

thermal exchange time – thus, increasing the thermocline thickness and decreasing the 

stratification.  
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Objectives 

This Ph.D. thesis investigates the behavior of thermal energy storage (TES) experimentally 

and with the help of simulation. The point of focus throughout this thesis is the thermal 

stratification assessment carried using pre-established indices found in the literature, using own 

custom built second law model and also using CFD code. The three specific objectives of this 

thesis are: 

1. Design and simulate the methodology to separate the good from the bad operational 

parameters during TES operation from the view of stratification quality and thus efficiency 

of renewable heat sources connected to TES. 

2. Design and validate own custom built second law model to quantify the availability of the 

energy that is being added and subsequently removed during charge and discharge cycle 

of TES. 

3. Design and build an intelligent IoT stream processing unit to fit the second law model 

previously developed and predict the second law stratification efficiency in real time. 
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Solution Methods  

Investigation of stratification efficiency of TES can be done by either energy or exergy 

analysis. Energy analysis uses first law of thermodynamics. This entails various stratification 

indices such as MIX number, Richardson number etc. These stratification numbers consider the 

temperature gradient rather than the exergy/entropy as in the case of second law modelling. Study 

1 revolves around this strategy to evaluate TES stratification behavior. In this study quantification 

of turbulent mixing was achieved on the basis of temperature profile, MIX number, and 

Richardson number. Temperature dat was collected using experimental setup as described in 

Fig. 2. 

 

Fig. 2 Schematic of experimental setup 

The experimental setup as shown in Fig. 2 consists of primary cylindrical hot water storage 

tank with following parameters: 397 L in volume, 550 mm diameter and 1905 mm overall height. 

The tank is connected to the secondary tank with chilled water in order to perform discharging 

cycles. To measure the vertical distribution of temperature, 20 Pt100 temperature sensors were 

attached around to the outer surface of tank wall in the vertical direction, dividing the tank into 20 

equal fluid layers. Charging of the tank was performed using two methods. Firstly, by 
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thermostatically controlled electric heater which is present in the lower half of the tank, secondly, 

by an external electric boiler. Experimental tank can be set for various mixed conditions, 60 °C 

and 50 °C for example. Discharging process is carried out by regulating manually operated valve 

as shown in Fig. 2. A pump is also used for discharging. In addition, tank with chilled water is 

connected to the thermostatic chiller to cool it down after each discharging cycle. The evaluated 

parameters included fluid flow rate, ΔT (between heat pump outlet and TES temperature).  These 

parameters were also investigated for different diffuser design (in CFD analysis), henceforth a 

direct interdependence between each was thus established. Refer Renewable Energy paper in 

Study 1 for more information.  

CFD models for given designs were developed and experimentally validated on the test rig in 

order to find the optimal working conditions in discharge mode. This accounted for the operational 

parameters influencing stratification efficiency in TES. The influence of operational parameters 

was also recognized in the Study 1 and was further explored in Study 2. The results proved 

numerically that the tanks working conditions can be optimized by proper selection of inlet device. 

For instance, slotted type inlet device sustained maximum stratification even in as adverse a 

condition as of turbulent inflow & low ΔT. Perforated and simple inlet devices were capable of 

delivering best discharge efficiency only at low flow rate of 200 l/h and were showing insignificant 

dependency on ΔT. To establish these facts, MIX number and Richardson numbers were 

recognized earlier in the Study 1. MIX number evaluates the tank on the basis of both vertical 

temperature distribution and the total energy stored in the tank. Accordingly, it postulates the 

mixing process in the tank by evaluating the moment of energy of individual water layers. Moment 

of energy of thermal storage tank is calculated to account for energy location by summation of the 

sensible energy content up to jth vertical segment, weighted with the height of its location (Eq. 1 

& 2). MIX number varies between 0 and 1. 

          (1) 

        

         (2) 

MIX number for 60 – 10 °C (60 °C being TES temperature, and 10 °C being discharge 

temperature) at flow rates of 200, 400, 600 and 800 l/h discharging flow rate was calculated for 

each inlet device. MIX for 200 l/h has the lowest ascent, followed by 400 l/h, then 600 l/h; finally, 
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800 l/h has the highest ascent of MIX number suggesting more intense mixing with 800 l/h 

discharging rate (refer Fig. 3 in Renewable Energy paper within study 1). Richardson number Ri 

is a dimensionless number which characterizes the ratio between potential energy required for 

vertical mixing and the turbulent kinetic energy available for such process (Eq. 3).  

2

g TL
Ri

v

β∆=            (3) 

A small Ri signifies mixed storage, while high Ri number indicates stratified one. Ri is increased 

as flow rate is decreased from 800 to 200 l/h. For example, Ri at τ* (dimensionless time) = 0.6 for 

800 l/h is nearly 75, while for 200 l/h it is approximately 120, τ* = 0.6 being the dimensionless 

time at which 60% of tank volume is already discharged. Numerical solution for one such 

operational parameter is shown in Fig. 3. 
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      (b) 

 Fig. 3 Numerical analysis of TES (a) TES physical model, (b) temperature contours  

As narrated the behavior of TES is governed by operating cycles, namely energy addition, 

storage and retrieval. Evaluating TES for non-transient conditions might not lead to full end to end 

energy quantification. This is termed as research and performance gap in the current methods. As 

an advancement to the limitation of current indices, second law models were developed and the 

data was fitted using the data layer. The model allowed to calculate end to end entropy, exergy and 

availability of the system. Eq. 4 and 5 represent the derived second law models fitted by data layer. 

Eq. 4 is entropy change (where n is the number of layers), Eq. 5 is exergy, while Eq. 6 is the 

stratification efficiency of TES. The derivation is depicted in study 2.  
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To validate the second law models an experimental setup with water-water heat pump and 

water storage tank 397 L as investigated TES has been arranged. Speed controlled heat pump has 

nominal heat output 6.1 kW and coefficient of performance 4.78 at B0/W35 conditions and 50 Hz. 

In addition, an intelligent data layer was developed which collected and fitted the previously 

developed second law models. The data modelling – acquisition, cleaning, and transformation is 

done in situ (dynamically). Data-layer framework visualized real-time energy efficiency of TES 

using second law models developed in Study 3. Data layer served as the entry point for all the 

sensors connected to the TES integrated with heat pump system. For this task novel data layer was 

devised and programmed using Raspberry Pi-4 systems (Fig.4). Wide range of computing 

packages was observed which is not limited to PostgreSQL (to store/retrieve dynamic data that is 

being collected from sensors (RTD, current loop, Modbus)), Pandas/Numpy (to do all the scientific 

data computing, parsing, transformation, and curation), MatPlot-Lib/Seaborn for an in-situ 

animated visualization of the stratification decay. This considerably improved the intuitive 

understanding of stratification decay in real time, thus improving the advanced laboratory testing 

of HP integrated TES systems serving as information addition to the practice. The data layer 

consists of two Raspberry Pi (Raspi1 & Raspi2) mini computers, both running on Raspbian – 

Debian Linux operating system. Raspi1 stores temperature data from 19 Pt100 sensors located at 

various locations of the test bench, while Raspi2 stores the flow rate data, all in real time. Each 5th 

second the data is logged into each of the Raspi’s PostgreSQL-DBs tables. In addition, a short 

code snippet running in Raspi1 also fetches wattmeter readings. Wattmeter data is used to measure 

the performance factor of the heat pump. All the data is used to fit together second law model to 

calculate the exergy/entropy and thus stratification efficiency. Raspi1 also retains ‘Flask server’ 

which is constantly logging the data on web-based application server (Fig. 5). The process diagram 

of data layer is described in more detail in Fig.  6. 
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Fig. 4 Intelligent data layer 
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Fig.  5 Flask server 
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Fig.  6 Detailed process diagrams for data layer 

 

 

 

 

 

 

 

 

 

Fig. 7 NN architecture [8, 9] 
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Data layer was also equipped with hyper tuned neural network models to predict the 

stratification efficiency during each operating cycle. This incorporate applied deep learning (DL) 

framework utilizing long short-term memory (LSTM), and multilayer perceptron (MLP) to model 

the layered temperature and to predict the entropy generation during charging and discharging loop 

(Fig. 7b-d). Fig. 7 shows the architecture of the neural network used for prediction.  

This is another non-traditional way of evaluating TES other than first or second law modelling. 

Neural networks in this fashion served as the entry point of the data produced by second law model 

that was developed and used during study 3. The results predicted by neural networks corroborated 

the results obtained by second law model. In this way, the neural network modelling validated the 

results of second law models. Model training and weight adjustment use a technique called 

stochastic gradient descent. In this technique, the network repeatedly determines the coefficient of 

the loss function where it has its local minima (Fig. 7a).  Fig. 8 shows information flow with 

regards to LSTM modelling and quantitative model fitting by data layer. 
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Fig. 8 Complete workflow of data layer from data injection to model fitting and prediction 
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Fig.  9 Data collected by data layer, (a) temperature distribution, (b) heat pump parameters 

 

 

 

 

 

 

Fig. 10 During charging at different heat pump compressor speeds (a) entropy generation, (b) 

exergy in TES   

(a) 

(b) 

(a) (b) 
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(a)        (b) 

Fig.  11 Stratification efficiency (validation) during (a) charge, and (b) discharge 

Fig. 9 shows the work of data layer. The sooner the data layer collects the data from 

experimental setup, it dynamically plots the temperature profile of TES and heat pump parameters. 

Heat pump parameters include heat capacity, electricity consumption, and COP of the heat pump. 

These data points are collected for charge and discharge cycles. Fig. 9 also shows the predicted 

values of temperature. Fig. 10 shows the work of second law models developed in this thesis. 

Entropy and exergy generation in the TES at different compressor speeds were calculated during 

charge and discharge cycles. Fig. 10 however shows the results of second law models during 

charging. Entropy generation was found to be highest at slowest compressor speed.  

The credibility of results obtained was ascertained at each stage. Ingested data in the data layer 

underwent linear regression to ascertain credibility of collected sensor data. Afterwards, statistical 

error distribution was performed (ref. Fig. 6 in the Renewable Energy paper within study 1 and 

Fig. 7 in Journal of Energy Storage paper within study 2). Second law models were validated using 

data driven as well as quantitative approach. Refer Fig. 11, Fig. 15 and Fig. 17 in the Journal of 

Energy Storage within Study 2 for validation using data driven approach. Finally, neural network 

modelling was validated itself.  Fig. 12 in the same paper shows the parameters such as mean 

squared error and validation mean squared error. Validation is also shown in the Fig. 11.  
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Thesis Organization 

This thesis is presented as “Thesis by publication”.  Five papers are bundled together to prepare 

this thesis. One paper among these is published in D1 (Decile 1), while four are published in Q1 

(Quartile 1).  

Objective coverage by Study 1: Design and simulate the methodology to separate the good 

from the bad operational parameters during TES operation.  

(Design of operational parameters, stratification quantification, experimentation and CFD 

analysis are addressed by paper 1 & 2) 

• Paper 1:  

Yogender Pal Chandra, and Tomas Matuska. Stratification analysis of domestic hot water 

storage tanks: A comprehensive review, Energy and Buildings 187 (2019) 110-131  

(Q1 – top 25%, Impact Factor: 7.201)  

DOI: https://doi.org/10.1016/j.enbuild.2019.01.052 

Citations (WoS): 63 

Yogender Pal Chandra: 80% contribution. Investigation, Data curation, Formal 

analysis, Software, Validation, Writing - original draft, Visualization. 

Tomas Matuska: 20% contribution. Conceptualization, Methodology, Writing - 

review & editing, Supervision, Project administration, Funding acquisition 

• Paper 2: 

Yogender Pal Chandra, and Tomas Matuska. Numerical prediction of the stratification 

performance in domestic hot water storage tanks, Renewable Energy 154 (2020) 1165-

1179 

(Q1 – top 25%, Impact Factor: 8.634)  

DOI: https://doi.org/10.1016/j.renene.2020.03.090 

Citations (WoS): 35 

Yogender Pal Chandra: 80% contribution. Investigation, Data curation, Formal 

analysis, Software, Validation, Writing - original draft, Visualization. 

Tomas Matuska: 20% contribution. Conceptualization, Methodology, Writing - 

review & editing, Supervision, Project administration, Funding acquisition 
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Objective coverage by Study 2: Design and validate the custom built second law model to 

quantify the availability of the energy that is sbeing added and subsequently removed during 

charge and discharge cycle of TES 

• Paper 3: Yogender Pal Chandra, Gwang Jim Kim, Tomas Matuska. Second law 

performance prediction of heat pump integrated stratified thermal energy storage system 

using long short-term memory neural networks, Journal of Energy Storage 61 (2023) 106-

699 

(Q1- top 25%, Impact factor: 8.907) 

DOI: https://doi.org/10.1016/j.est.2023.106699 

Citations (WoS): 1 

Yogender Pal Chandra: 80% contribution. Investigation, Data curation, Formal 

analysis, Software, Validation, Writing - original draft, Visualization. 

Gwang Jim Kim: 1% contribution. Conceptualization, Methodology 

Tomas Matuska: 19% contribution. Writing - review & editing, Supervision, 

Project administration, Funding acquisition 

Objective coverage by Study 3: Design of intelligent IoT stream processing unit to fit the 

second law model previously developed 

• Paper 4: Yogender Pal Chandra, and Tomas Matuska, Intelligent data systems for building 

energy workflow: Data pipelines, LSTM efficiency prediction and more, Energy and 

Buildings 267 (2022) 112135 

(D1 – top 10%, impact Factor: 7.201) 

DOI: https://doi.org/10.1016/j.enbuild.2022.112135 

Citations (WoS): 0 

Yogender Pal Chandra: 80% contribution. Investigation, Data curation, Formal 

analysis, Software, Validation, Writing - original draft, Visualization. 

Tomas Matuska: 20% contribution. Conceptualization, Methodology, Writing - 

review & editing, Supervision, Project administration, Funding acquisition 

• Paper 5:  Yogender Pal Chandra, and Tomas Matuska. Energy modeling of thermal 

energy storage (TES) using intelligent stream processing system, Energy Reports 8 

(2022) 1321 – 1335 

(Q1 – top 25%, Impact Factor: 4.937) 

DOI: https://doi.org/10.1016/j.egyr.2022.08.012 

Citations (WoS): 0 
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Yogender Pal Chandra: 60% contribution. Investigation, Data curation, Formal 

analysis, Software, Validation, Writing - original draft, Visualization. 

Tomas Matuska: 40% contribution. Conceptualization, Methodology, Writing - 

review & editing, Supervision, Project administration, Funding acquisition 
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Results & Achievements of objectives  

Research gaps and performance gaps were identified during Study 1. The first objective of this 

Ph.D. thesis was design, operational parameters, stratification quantification, using 

experimentation and CFD analysis. This is presented in Study 1. In this study, quantification of 

turbulent mixing was achieved on the basis of temperature profile, MIX number, and Richardson 

number (indices observed in Study 1).  

Research gap:  

• The research gap was observed during Study 1. More specifically, MIX number was picked 

and utilized to quantify the stratification in TES experimentally. Study 1 extended the work 

of Haller et. al [1,3] in terms of experimental investigation of the same.  In addition, CFD 

methods and models were developed to collect, model, and curate the data and were 

validated using experimental results. Their work was further extended by investigating 

MIX number for various TES operational and inlet design characteristics. 

• G. Rosengarten et. al [2] proposed second law approach in characterizing TES with 

application to solar energy water heater. Their work was further extended by simplifying 

their model, customizing it for temperature dependent thermophysical properties and 

applying it in real time mode in both charge and discharge cycle. These models were later 

customized for our TES use-case. This is presented in the Study 2. 

Performance gap:  

• Energy disbursement in renewable energy system is a transient state process. A streaming 

data layer edge device was developed which analyses the energy efficiency of renewable 

energy system in real time. This is very novel approach in such analysis. 

• G. Rosengarten et. al [2] analyzed renewable energy system in single discharge cycle. This 

dissertation focuses on automated analysis of full charge and discharge cycle giving more 

insight into energy disbursement from electric grid to load.    

Results: The evaluated parameters include flow rate and ΔT, henceforth a direct 

interdependence between each was thus established. Various CFD models were developed and 

experimentally validated on the test rig in order to find the optimal working conditions in discharge 

mode. The results for different diffuser designs proved numerically that the tank working 

conditions can be optimized by proper selection of inlet device. For instance, slotted type inlet 
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device sustained maximum stratification even in as adverse a condition as of turbulent inflow & 

low ΔT. Perforated and simple inlet devices were capable of delivering best discharge efficiency 

only at low flow rate of 200 l/h and were showing insignificant dependency on ΔT. However, as 

flow rate is increased, ΔT dependency increased. Seeing the compounded benefits of slotted inlet 

devices and decreased ΔT, it was concluded that slotted inlet device delivered comparatively better 

thermal performance at both adverse conditions i.e. high flow & low ΔT and high flow & high ΔT, 

however, failed to outshine the rest of the inlet devices at low flow rate & low ΔT, and low flow 

rate & high ΔT. These research findings can serve as guidelines to optimize the storage tank design, 

more specifically, inlet device-based design integrated with heating system, as thermal 

stratification and COP of heating system (heat pumps), for example, are inherently correlated. 

Heat pumps are high flow rate and low ΔT devices, while, solar systems are low flow rate and high 

ΔT devices, Thus, opting for accurate choice of inlet device for a particular operating condition is 

critical. 

The second objective of this Ph.D. thesis was to design and validate the custom built second 

law model to quantify energy/exergy dispersal during TES charging and discharging. This is 

presented in Study 2. To quantify the system performance, second law efficiencies (exergy, and 

entropy) of TES along with COP of heat pump system were introduced. It also proposes optimized 

modelling framework of one complete charge/discharge cycle which can further be appended over 

a longer time horizon. A tailored second law-based exergy equations to be fitted to the data layer 

for real time streaming of entropy/exergy in TES and COP was derived. Stratification decay was 

also predicted using Neural Networks.  

Results: Three distinct compressor speeds and tapping rates were studied using this data-

streaming edge device and their exergy disbursement was studied in live mode. It was observed 

that entropy generation was maximum at highest discharge rate of 800 l per hour i.e. 25,000 kJ 

(while only 3000 kJ for 900 l/h of charging rate). Furthermore, entropy generation has not only 

impact on stratification efficiency, however also on performance factor of the heat pump. Making 

it extremely essential to adjust for inlet flow rate and compressor speed ratio. COP of 3.2 was 

obtained at 70 % compressor speed, while at the same time maximum discharge efficiency was 

registered at lowest discharge flowrate of around 450 l/h. 

The third objective of this Ph.D.  thesis was to design intelligent IoT stream processing unit to 

fit the second law model previously developed. This is presented in Study 3. This study 
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demonstrates the application of intelligent data layer with neural networks for evaluating and 

predicting end to end performance of heat pump integrated stratified thermal energy storage (TES) 

system. The data modelling – acquisition, curation, and transformation is done in situ 

(dynamically). This study is a ‘method-based’ study to demonstrate the data-layer framework and 

its application in assessing energy efficiency of renewable energy system by fitting the custom 

second law exergy models previously developed, all in real time. This real time analysis can help 

researchers to intuitively understand the energy efficiency of renewable energy systems in high 

expertise labs.  

Results: The data-streaming edge device was comprised of two Raspberry-Pi mini computers, 

running on Raspbian operating system. Both stored and processed the TES and heat pump data in 

live mode in master slave architecture. The data was stored in Postgres-SQL database, from where 

it was processed and ingested to custom real time interactive dashboarding system. The data layer 

streams, end-to-end (from electric gird to user tapped water) exergy balance of heat pump 

integrated TES system in live mode. This makes sure that the engineer has clear understanding of 

the percentage of grid output being consumed as entropy during charging/discharging, and what 

percentage of it is available to user as the tapped water. For that matter, real time dash-boarding 

was built. Prediction modelling was also performed using deep learning frameworks. 

Validation of results: 

A neural network model using LSTM was developed and was used to predict the temperature 

of TES layers and its stratification efficiency. The error range for temperature and efficiency 

prediction was observed to be 5 % and 2 % respectively (ref. Fig. 17 in the Journal of Energy 

Storage paper) as shown within Study 2. The LSTM model reproduced the results calculated by 

exergetic model thus the results calculated by quantitative approach is validated by data driven 

approach. The data-driven approach is agnostic and makes no assumptions - but does not give any 

clue how and which inputs influence the output. The quantitative approach works with 

assumptions but shows clearly the quantitative relationship between input features and the 

calculated output, thus helps to deepen the understanding of the processes. Data driven approach 

in theory is bias-free. 

In addition, time series data thus collected underwent statistical uncertainty analysis. 

Probability distribution of error in terms of gauss distribution was analyzed. Error was roughly 
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normally distributed with 95 % of data points falling under 5 % error (ref. Fig. 7 in the Journal of 

Energy Storage paper).  
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Conclusion 

This thesis emphasizes the importance of thermal stratification in heat storage systems, and 

how it can improve the efficiency and exergy of the system. A well-stratified tank is able to deliver 

higher exergy with less heat input compared to a mixed isothermal tank. To achieve this, it is 

important to maintain a stable vertical temperature gradient during all operation cycles of the tank. 

This can be achieved through careful monitoring of hydrodynamics and thermodynamics, and the 

management of inlet-outlet configuration, such as the position, shape, and type of diffuser, hot 

water inlet, bulk water temperature difference, and draw-off rate. Other parameters such as thermal 

conductivity and aspect ratio of tank is also important in this regard. The degree of mixing in the 

tank can be measured through various parameters, which require accurate temperature 

measurements of each water layer using temperature sensors. The research is furthered to develop 

calculation methodology for the same. 

CFD part of the thesis focuses on the influence of various inlet devices on stratification 

degradation. Three types of inlet devices (slotted, perforated, and simple) were simulated in a 

transient manner to understand their performance under different operational conditions, such as 

flow rate and ΔT. The results showed that the slotted inlet device performed best at high flow rates 

and low ΔT, which is suitable for heat pump-based storage tanks. However, for solar system-based 

storage tanks, which require low flow rates and high ΔT, the application of slotted inlet devices 

did not make much difference in stratification efficiency. CFD model validation was also 

performed. CFD data was plotted against the experimental data. In addition, mesh independent 

study was also performed. The study also highlighted the importance of stratification indices, such 

as temperature evolution, MIX number, and discharging efficiency, in assessing the performance 

of storage tanks. These indices use first law approach to assess the stratification. Later on, second 

law approach was used as second objective.  

Furthermore, the second law of thermodynamics was considered in developing equations for 

entropy and exergy. The models and the edge devices allow for real-time monitoring of TES 

performance and heat pump efficiency during charge/discharge cycles. Advanced deep learning 

algorithms specifically LSTM neural networks were used to model the data collected by edge 

device and to predict the TES layered temperature and efficiency.  The neural network prediction 

is considered as data driven approach to evaluate the stratification. And it is also used to validate 



 

 

26 

 

the quantitative models developed. The error between quantitative and predicted results lied within 

5% range. The exergy balance presented in the thesis measures the effective utility of the heat 

pump integrated with the TES system. 

Lastly, a methodology was developed to study the stratification of TES in real-time mode using 

custom-built data-stream processing edge devices and exergetic (quantitative) models. The study 

tested a TES integrated heat pump used for a single-family house for stratification efficiency and 

energy balance, and applied custom exergy models using a custom data streaming edge device to 

study end-to-end energy expenses. Overall, the study provides a promising approach to real-time 

experimental based optimization of TES systems. 

Overall, these methodologies can be used for high expertise lab testing of TES systems.  

Value addition to the theory: 

The theoretical aspect of this thesis was to identify a research gap related to TES and 

stratification indices to quantify thermal stratification in TES. CFD models and algorithms were 

developed to understand the applicability of temperature distribution and stratification indices to 

quantify the stratification in TES. This knowledge was later used in experiments. It was found that 

first law models were static and focused on TES only. In order to evaluate the TES along with heat 

pump, and that also dynamically and in a transient state manner, second law models were 

developed. Mathematical equations were derived in the theoretical part of this thesis and were used 

to measure how well a TES system was stratified. More specifically, thermodynamic models were 

developed to quantify exergetic expenses in TES integrated heat pump. This methodology of 

evaluating the TES along with heat pump is proposed as an improvement plan over first law 

models. 

Value addition to the practice: 

A real-time performance evaluation and streaming edge device was developed for the heat 

pump integrated with a thermal energy storage (TES). The edge device observed the exergetic 

models (previously developed in theoretical part) to demonstrate and quantify the entropy 

generation in TES and its effects on the COP of the heat pump during charging and charging 

cycles. Optimization of the circulation flow rate and compressor speed was also achieved using 

the above. Overall, this methodology provides a better perspective on the energy efficiency of 

renewable energy systems and could help researchers in this field. In short, value addition to 

practice is the data layer setup in the testing lab, predictive modelling using the data layer and 
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subsequent second law model fitting and validation. Using both the models (theoretical addition) 

and data layer (practical addition), researchers can gain more inference in renewable energy 

systems in tightly controlled specialized and high expertise labs. 
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Study 1 

Design and simulate the methodology to separate the good from the bad 

operational parameters during TES operation 

 

Paper 1: Stratification analysis of domestic hot water storage tanks: A comprehensive 

review, Energy and Buildings, Elsevier 

In this paper, different parameters to measure the stratification and thus the level of mixing are 

suggested, some of such measures are capable of spotting the accurate time on which mixing has 

appeared. Thus, these parameters are plainly rudimentary to be calculated as far as testing of 

commercial storage tanks is considered. Adding to this, these parameters require the accurate 

temperature of each water layer to be calculated – thus rendering the need for actual temperature 

distribution inside the tank to be measured by a series of temperature sensors. To understand this, 

a temperature-distribution schema is also been produced in this paper. Further research could be 

centered on the invention of calculation methods to calibrate this inconsistency of ever-changing 

shape and size of thermal layers of water segments and fixed location of temperature sensors. To 

sum up, this information could be clubbed together with new modelling techniques and water 

consumption patterns to accommodate a better stratification enhancement right during design 

phase of TES system.  

 

Paper 2: Numerical prediction of the stratification performance in domestic hot water 

storage tanks, Renewable Energy, Elsevier 

In this paper quantification of turbulent missing was achieved on the basis of temperature profile, 

MIX number, and Richardson number. The evaluated parameters include flow rate, ΔT, and 

diffuser design, henceforth a direct interdependence between each was thus established. Various 

CFD models were developed and experimentally validated on the test rig in order to find the 

optimal working conditions in discharge mode. The results proved numerically that the tank 

working conditions can be optimized by proper selection of inlet device. In this paper 

quantification of turbulent missing was achieved on the basis of temperature profile, MIX number, 

and Richardson number. The evaluated parameters include flow rate, ΔT, and diffuser design, 

henceforth a direct interdependence between each was thus established. Various CFD models were 
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developed and experimentally validated on the test rig in order to find the optimal working 

conditions in discharge mode. The results proved numerically that the tank working conditions can 

be optimized by proper selection of inlet device. These research findings can serve as guidelines 

to optimize the storage tank design e more specifically, inlet device-based design integrated with 

heating system, as thermal stratification and COP of heating system e heat pumps, for example, 

are inherently correlated. Heat pumps are high flow rate and low ΔT devices, while, solar systems 

are low flow rate and high ΔT devices, Thus, opting for accurate choice of inlet device for a 

particular operating condition is critical. 
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a b s t r a c t 

To assure high quality thermal storage and high efficiency of its acquisition, thermal stratification is often 

employed in domestic hot water tanks. The whole motivation of stratification lies in the fact that mixing 

effect can be minimized during operational cycle of the tank so that high temperature water could be 

taken at the load end, thus maintaining high thermal efficiency at demand side, while low-temperature 

water can be drawn at lower bottom, thus maintaining the high efficiency at energy collection side. The 

study of stratification entails the assessment of a wide variety of concepts to be embodied around the 

central theme of the tank – its design and modelling. This paper presents a systematic review pertaining 

to various such concepts . For instance, multi-node and plug-flow approach to model various temperature 

distribution models are considered. These models are categorized in paper as linear, stepped, continuous- 

linear and general three-zone temperature distribution models. Subsequently, the dynamics of thermo- 

cline decay and influencing parameters both during standby and dynamic mode will be demonstrated. In 

addition, a survey of state of the art methods and practices to ascertain the performance improvement 

and its quantification will be illustrated. This includes geometrical parameters – such as, structural design 

incorporation, essentially – inlet design, tank aspect ratio and wall material specification, and also, oper- 

ational parameters to curb down the inlet mixing. Practice techniques and methods which are presented 

here in a novel way, extend towards the ground of practical application and research procedures. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

Energy demand whether it is heating or cooling is occasionally

matched with availability in case of renewable energy sources ap-

plications – especially, solar systems or heat pump systems. Hence-

forth, energy efficient storage not only ensures high actual heat

output but also maintains the usable temperature level to cover

the demand in all operation cycles. Sensible thermal energy stor-

age (TES) works on the basic principle of increasing the tempera-

ture of storage medium such as water, oil, sand or rock beds. Thus

amount of energy stored is directly proportional to the tempera-

ture difference, the mass of the medium and the heat capacity of

the same. Water has comparatively high heat capacity (4.2 kJ/kg.K),

hence this makes it broadly a logical choice for building heating

and cooling purpose. In addition to high specific heat capacity, wa-

ter is easily available, non-toxic and widely suitable for nearly all

purposes, hence promoting it for a whole range of sensible thermal
∗ Corresponding author. 

E-mail address: yogenderpal.chandra@fs.cvut.cz (Y.P. Chandra). 
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0378-7788/© 2019 Elsevier B.V. All rights reserved. 
nergy storage applications in buildings. High performance of such

ES employing water as storage medium is undeniably indispens-

ble. For this purpose, an effective TES device should satisfy these

echnical prerequisites [1–3] : 

• Thermal stratification: the water tank should be able to sustain

hot and cold water separately without any physical barrier, in

other words, continuous or stepped temperature distribution of

water should be practiced. 
• Mixing of hot and cold volume of water induced due to differ-

ent operational cycle’s viz. charging and discharging should be

minimized. 
• The tank design should minimize the dead water weight. 
• The tank design should minimize the heat losses. 

The simple concept of thermal stratification lies in the fact that

older water being denser than hot water is withdrawn from the

ottom and is circulated to the energy collection side (source side).

his increases the efficiency of energy collection especially with re-

ewables – solar thermal and/or heat pump, as it increases with

ecrease in inlet water temperature. Consequently, hot water is

ade to enter at the top of the tank which promotes the strati-

https://doi.org/10.1016/j.enbuild.2019.01.052
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2019.01.052&domain=pdf
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Nomenclature 

A area (m 

2 ) 

c p specific heat (J/kg K) 

E energy content of fluid element/ node (J) 

Ex exergy (J) 

F fraction of recoverable heat 

F c collector control function 

F L collector load function 

g gravitational acceleration (m/s 2 ) 

Gr Grashof number 

h height from the tank bottom (m) 

h e enthalpy (J/kg) 

H tank height (m) 

j water layers 

J number of water layers 

k thermal conductivity (W/m K) 

L length (m) 

m mass of fluid segment (kg) 

ṁ mass flow rate (kg/s) 

ṁ s mass flow rate of stream (kg/s) 

ṁ mass flow rate of tank (kg/s) 

N entropy generation number 

P recoverable heat (J) 

Pe Peclet number 

Q thermal energy/heat (J) 

q heat flux (W/m 

2 ) 

Re Reynolds number 

Ri Richardson number 

S entropy (J/K) 

T temperature ( °C/K) 

t time (s) 

t ∗ dimensionless time 

u internal energy (J/kg) 

υ velocity (m/s) 

U T heat loss coefficient of tank per unit area (J/m 

2 K) 

V volume (m 

3 ) 
˙ V volumetric flow rate (m 

3 /s) 

y vertical distance from bottom of tank to centre of 

node 

Greek symbols 

α thermal diffusivity (m 

2 /s) 

β coefficient of thermal expansion (1/K) 

δ thermocline thickness (m) 

ρ density (kg/m 

3 ) 

ζ coefficient of stratification evaluation as defined by 

McCarthy and Woods [130] 

ξ symbol used by Shah and Furbo [74] to define ex- 

ergy efficiency 

ψ symbol used by Fernandez-Seara [72] to define ex- 

ergy efficiency 

φ temperature distribution in J th zone 

Subscripts 

a ambient condition 

b tank bottom 

c collector 

cold pertaining to cold inlet 

del delivery 

dis pertaining to fully discharged conditions 

exp pertaining to experimental conditions 

full-mix pertaining to fully mixed conditions 

L pertaining to load requirement of storage tank 
s  
out pertaining to outflow exergy availability 

outlet pertaining to outlet conditions 

s pertaining to stream of entrained fluid 

str condition for stratified situation 

st pertaining to stored condition in tank 

t tank top 

T pertaining to bulk tank temperature 

cation due to low density of hot water [4–6] . However, if the hot

ater and cold water are allowed to mix, the available tempera-

ure and thus quality of energy supplied at load will be decreased.

ccordingly, to make domestic water storage most economical, fea-

ible and practicable – stratification technology has evolved a lot

n recent decades. As for simplest case, a design pre-requisite, as

entioned above – minimization of dead water weight is ensured

y regulating proper inlet-outlet positions (as shown in Fig. 1 ) 

The central component of the whole system is the storage tank

s it is not only responsible for storage capacity but also for ther-

al efficiency of the whole system. Since, thermal performance of

torage tank can be affected by many parameters, in this paper, a

etailed portray of such parameters is attempted. Firstly, various

ydraulic schemes employing the stratification technology along

ith each ones’ benefits and shortcomings are investigated, this is

ollowed by a descriptive insight into mathematical mechanics of

tratification definition. In addition, the factors concerning hydro-

ynamics and thermodynamics of fluid flow are considered, which

nclude – operating temperatures, flow conditions, inlet velocity

nd momentum, natural convective flows within the hot and cold

ater, re-circulative flows due to vertical wall conduction, mixing

nduced forced convection during charging and discharging, heat

xchange between storage tank and environment. Secondly, param-

ters concerning the geometry of storage tank – thermo-physical

roperties of tank material and insulation, method of fluid and en-

rgy addition and extraction during charging and discharging, dif-

user and stratifier shape and type are also explored. Lastly, differ-

nt methodologies and performance indicators which can be uti-

ized to test and evaluate a storage tank are reported. The under-

ying meta-analysis is performed by reviewing the literature and

ase studies ranging within the diverse topic of theoretical exergy

nd energy analysis of thermal systems along with numerical plus

xperimental studies on hot water storages available to this date.

his is not exclusive of even the aspects of optimization strategies

n distributed district heating as detailed by Sameti and Haghighat

136–138] and state of the art technology of solar water storage 

all [139] . This is done to make a contrasting effect as the theoret-

cal understanding of thermal systems in general, and application

f the same in explanation of stratification in storage tanks was

uxtaposed. 

Many researchers have presented their studies regarding ther-

al stratification in water storage tanks. Rodrigues et al. [7] had

arried out a non-dimensional analysis to represent the transient

atural convection model for domestic storage tank. They identi-

ed that heat losses through the walls are controlled by Rayleigh

umber, overall heat loss coefficient, and aspect ratio of the tank,

hile Prandtl number has negligible influence. A study performed

ver 10 different shapes of storage tanks by Yang et al. [8] revealed

hat sharp corner shaped tanks had the maximum level of ther-

al stratification, as no velocity field was found in the stratifica-

ion region for such tanks. Also, all the circulation patterns occur

n the isothermal region and in the boundary layer. In addition,

he capacity of thermal energy storage is detrimental by surface to

olume ratio of the tank. Li et al. [9] experimentally determined

he effective dischar ging efficiency of storage tank working with

lotted inlet, direct inlet and shower type inlet. The study demon-



112 Y.P. Chandra and T. Matuska / Energy & Buildings 187 (2019) 110–131 

(a) (b)

(c)

To load 
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Load
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collector

To collector
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collector

To collector

To load
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collector

To load

To collector From loadIsothermal 
Zone 1

Isothermal 
zone 2

Linearly stratified 
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Fig. 1. (a) and (b) Position of inlet and outlet for efficient and economic concerns in SDHW, and (c) thermal stratification in the same. 
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strated that mixing was considerably prevented with slotted inlet,

hence ensuring better stratification throughout discharging. It was

also concluded that low flow rates with slotted inlet maintained

higher temperature of tapped water for longer period of time. Iev-

ers and Lin [10] quantified the level of thermal stratification in

seven three dimensional models as analyzed in Fluent. They es-

tablished that higher aspect ratio essentially leads to higher ther-

mal stratification – with an increase of aspect ratio from 2.5 to 5,

in total 30% betterment in stratification was observed. They also

concluded that high mass flow rate at inlet and outlet results in

strong jets which strike the walls before diffusing, thus creating

strong degradation in thermal layers. It was noticed that an in-

crease of 0.05 kg/s in mass flow rate resulted in 32% of the volume

of the tank to be de-stratified, even though it is a well-recognized

fact that the position of inlet/outlet plays a major role. This can

be corroborated by the fact that reassembling the inlet and out-

let positions and moving them 150 mm away from top and bottom

of tank resulted in 28% reduction in thermal stratification. Lavan

and Thompson [11] studied the variation in extraction efficiency

and thermal stratification during discharge cycle with different pa-

rameters such as inlet position and geometry, mass flow rate, as-

pect ratio and inlet/outlet temperature difference. They reduced

the effect of these parameters to inlet Reynolds number (charac-

terizing inlet conditions) and Grashofs number (characterizing tank

conditions). They concluded that discharging efficiency has much

higher influence on position of cold water inlet port rather than

outlet port. Henceforth, it was highly suggested that the inlet port

should be as close to the storage tank bottom as possible. Ab-

delhak et al. [12] conducted computational studies and compared

vertical and horizontal tanks during discharge mode. They con-

cluded that horizontal position of tank instills larger recirculation

patterns due to increased area of thermal conduction between lay-

ers, leading to larger amount of stratification decay and lower dis-

charge efficiency. Also, larger amount of vortex patterns near the

outlet makes the hottest layers of water to slide away, thus de-
reasing the draw off temperature. In addition, Richardson number

as also assessed to characterize the adverse mixing in horizon-

al tank which comes out to be unfavourably lower in contrast to

ertical tank. Castell et al. [13] investigated various dimensionless

umbers to evaluate the stratification in hot water tanks. Castell

t al. [13] investigated various dimensionless numbers to evaluate

he stratification in hot water tanks. The authors calculated Mix

umber, Peclet number, Richardson number, Reynolds number and

ischarge efficiency for their discharging experiment. The study il-

ustrated that only Richardson number and Mix number were able

o portray the correct stratification picture in the tank for the en-

ire working range of experiments, while rest of the parameters

iz. Reynolds number, Peclet number, and discharge efficiency did

ot show any clear representation as these numbers were fairly

onstant. Anderson et al. [14] performed experimental study to

ompare the fabric stratification pipes with conventional non flex-

ble stratifier for heating/cooling and stratified cooling tests. The

esults indicated that Mix number in case of fabric stratifier was

ramatically reduced during the heating tests because horizon-

al heat transfer from hot fabric pipe to cold water of the tank

as lower, as concluded by the authors. In addition, 2 layer fabric

tratification pipe outperformed the rigid stratifier in cooling tests.

ahne et al. [15] studied the flow and heat transfer characteristics

n hot water storage tank during charging process. They described

he flow and heat transfer characteristics and thus thermal strat-

fication through Richardson number, Peclet number, charging ef-

ciency and Fourier number. Charging efficiency strongly depends

n charging temperature difference – increased charging temper-

ture difference instills higher buoyancy forces against turbulent

inetic energy of inflow (increasing the Richardson number) hence

nhibiting the direct discharge on inflow jet. Increase in charging

elocity also reduces the Richardson number thus increasing the

ixing and reducing the charging efficiency. However, this effect

s reduced at increased charging temperatures. The effect of Peclet

umber is also conjoined along with the Richardson number by



Y.P. Chandra and T. Matuska / Energy & Buildings 187 (2019) 110–131 113 

Collector

Thermo-syphon
flow

Stratified 
storage

External shell and tube 
heat exchanger

Hot water load

Space heating load

Aux. heater 

Fig. 2. Solar domestic hot water (SDHW) combisystem with external heat exchanger. 
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he authors – at low Richardson number, the increase in Peclet

umber leads to weak heat transfer between hot and cold fluid

hus improving the charging efficiency. Yaici et al. [16] performed

 CFD analysis to evaluate the influence of geometrical and oper-

tional parameters on performance of the tank in charging mode.

he results confirmed that a controlled optimization between both

eometrical and operational variables is rudimentary for an appro-

riately designed storage tank. Geometrical factors include aspect

atio representing– the effect of varying tank height with fixed di-

meter and vice versa, and also inlet and outlet position with re-

pect to the top and bottom wall of tank. The operational param-

ters include – mass flow rate, inlet temperature variation and the

ffect of initial water temperature variation. The results concluded

hat the low mass flow rate instills increased level of thermal diffu-

ion, axial wall conduction, and thermal conduction within the hot

nd cold water layers, due to increase in thermal exchange time

thus, increasing the thermocline thickness and decreasing the

tratification. Contrary to that, high mass flow rate increases the

ixing, henceforth, a direct trade-off between effects of thermal

iffusion and mixing should be taken into account while choosing

he proper mass flow rate. Miller [17] conducted numerical analy-

is to study the effect of tank walls on the thermocline degrada-

ion. The study illustrated that if the thermal conductivity of the

uid is low (as in the case of water), the thermocline degrada-

ion due to thermal diffusion or conduction between hot and cold

ater layers is comparatively slow – provided tank material also

as low thermal conductivity. However, if the tank wall material

as the thermal conductivity much higher as compared to fluid,

he convection currents increases the effective conductivity of the

uid, resulting in an increased thermocline degradation rate. As a

omparison, steel tank showed 6 times higher degradation then

he glass tank. Also, the convection currents fill up the whole flow

eld i.e. entire tank is influenced by these currents and are not

onfined only to water wall interface. A yet another study has been

erformed by Hess and Miller [18] to investigate the effect of stor-

ge tank wall on thermocline dynamics. The numerical results with

he help of Laser Doppler Velocimeter (LDV) made some signifi-

ant observations: vortex formation was observed near the top of

he tank wall – this was due to the fact that the velocity field was

ound to be a function of height and radius, also velocity switched

irection from downward to upward direction and vice versa (de-

ending upon the radial position). This bidirectional velocity field

as due to counter acting convection induced buoyant force and

ressure gradient. Even though, the velocities measured in the
tudies were very small (maximum axial velocity was 0.3 cm/s at

a = 3.7 × 10 8 ), they are responsible for thermocline degradation

n some measures. Evans et al. [19] performed experimental and

nalytical study to understand the transient natural convection in

 vertical cylinder exposed to uniform heat flux at the walls. The

uthor divided the system into 3 regions namely: boundary layer,

ixing layer and the core region. Boundary layer is the thin region

hat extends along the boundary of the wall and is responsible for

onvection currents and the energy discharge into the mixing re-

ion. Mixing region is the region where convection currents after

aking energy from the walls mixes with the core. Core is the rest

f fluid region which is under plug flow. The dye trace method in-

icated some results: (1) the maximum boundary layer thickness

as less than 0.05 inch for aspect ratio = 3, (2) the boundary

ayer fluid, after taking energy from the tank wall, ascends up via .

oundary layer and is consequently discharged into the mixing re-

ion – which was said to be constituted as upper 10% of the tank,

3) below the mixing region the radial temperature gradients are

mall and the warmer fluid descends downwards as colder fluid

s fed through the boundary layers – eventually to be discharged

nto mixing region again – thus, constituting internal flow leading

o expansion of thermocline. This internal flow also constitutes the

rogression of linear temperature gradient in the core. 

. Stratification in domestic thermal storage tanks 

For thermo-syphon systems, in general, flow rate in the energy

ollection loop is maintained very low (approx. 0.7 l/min), while

n the energy delivery loop it is maintained comparatively higher

7] . Thermo-syphon systems are simplest in the market, employ-

ng solar flat plate collectors as energy collecting side, besides this,

hermal reservoir or storage tank, auxiliary heating device, heat ex-

hanger, connecting tubes and valves are some important compo-

ents in a typical solar domestic hot water system (SDHW). Even

hough the inlet rate is directly proportional to water consump-

ion which is preset depending upon the operational cycle and load

attern, Helwa et al. [20] concluded that the stratification sternly

epends upon load pattern and ultimately to inlet parameters. 

Fig. 2 represents the concept of solar domestic hot water sys-

em (SDHW) with space heating and hot water load. Heat is

xtracted from the collector loop via. external heat exchanger

hrough thermo-syphon. Thermal stratification is maintained in

his kind of schematic design when hot water drops to the level

here its density matches with the bulk water inside the tank.
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(a)               (b) (c)

From collector
To collector

To load

From load

From collector
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Fig. 3. Common schemes in DHW tank (a) immersed heat exchanger (b) mantle heat exchanger (c) external shell and tube heat exchanger (adapted from Han et al. [26] ). 
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b  

a  
Two counteracting forces i.e. buoyant forces and gravity are re-

sponsible for movement of the newly introduced fluid inside tank.

High density or low temperature fluid layers have the tendency to

settle down as early as possible, while low density or high temper-

ature layers have the propensity to move towards the upper hot

layers. In addition, the momentum with which water is introduced

into the bulk impacts the core fluid and hence decides how it will

react with rest of the fluid layers. After the fluid layers are set-

tled at their respective positions, thermal stratifications is built up

forming a thermocline region which is governed by different tem-

perature distribution models such as linear, stepped or three zone

model. This thermocline serves as the thermal barrier to separate

the hot and cold water regions. Hot water is extracted from the

upper part to feed the load, while cold water is extracted from the

lower region to circulate to the energy addition loop. Thus ther-

mal stratification is maintained within the tank during the differ-

ent operation cycles. Nevertheless, this stratification starts to fade

away due to different hydrodynamic and/or thermal contingencies

which need to be controlled. 

2.1. Domestic hot water (DHW) tank’s configuration 

Stratified water tanks can either be directly heated or indirectly

heated by addition of a heat exchanger between energy source and

the tank. Directly heated water tanks are highly effective at ther-

mal exchange, however they are weak at maintaining the strati-

fication due to high mixing and turbulence. Henceforth, they are

usually equipped with different structural design changes viz. inlet

stratifiers, baffle plates, diffuser systems et cetera. Indirect heating,

on the other hand, reduces the efficacy of thermal transport from

energy addition loop to the stratified tank due to addition of extra

heat exchanger which is not always 100% effective, even though

it may or may not promise better stratification by reducing mix-

ing and turbulence or by promoting the natural buoyancy within

the fluid layers of the tank. For example, consider the case of im-

mersed heat exchanger in which a heating coil is completely im-

mersed in the tank, this design promotes intense undesirable mix-

ing (refer Fig. 3 a). Although immersed coil tanks are highly un-

desirable for their lack in stratification perspective, yet load side

immersed heat exchangers are utilized quite prominently in Eu-

rope for solar domestic hot water (SDHW) and space heating (SH)

combisystems. The reason for this is – it provides facility to sep-

arate the water loop which is dedicated to human consumption

thus minimizing the chances for oil or algae contamination. In ad-

dition, the performance of the immersed type thermal system can

be significantly improved by correctly crafting the inner arrange-

ment of the coils. The simulation results validated by experimental

findings by Spur et al. [21] concluded that sophisticated inner ar-

rangement can improve the performance and effectiveness of hot

water preparation up to 15%. On contrary, external heat exchangers

provides rapid flexibility to customize the storage tank according

to the stratification requirements. Henceforth, storage tanks used

in United States of America are frequently using external shell and
ube heat exchangers with two circulating pumps in which one cir-

ulation pump is utilized to circulate antifreeze solution in energy

ollection loop through solar collector while other one is used for

nergy addition into storage tank through external heat exchanger

22] . Wide range of studies have been performed by Parent et al.

23] and Lin et al. [24] on natural convection or thermo-syphon

hermal systems in which need for external pump is eliminated.

ll the authors concluded that even though the external heat ex-

hanger has effectiveness of thermal exchange ranging from 40 to

9%, thermal systems employing it have enhanced thermal perfor-

ance due to improved thermal stratification, better cost effective-

ess and better consistency and reliability with little restoration

refer Fig. 3 c). 

Mantle heat exchangers in contrast to external shell and tube

eat exchanger facilitates a greater heat transfer area with better

ffectiveness of thermal exchange (refer Fig. 3 b). Mantle type ther-

al systems prominently find their usage in Denmark and Austria

wing to their simplicity in design and construction, cost effec-

iveness and enhanced thermal efficiency for the same reason dis-

ussed above. Webster et al. [25] as quoted by Han et al. [26] con-

luded experimentally, that overall performance of thermal sys-

em working on eight immersed tube heat exchanger was dras-

ically reduced owing to the stratification degradation viewpoint

f immersed heat exchanger in contrast to mantle heat exchanger

ased thermal system. This prompted the use of mantle type ther-

al system which facilitated the enhanced thermal performance

y not only increasing the heat exchange area by two and a half

imes but also by improving the thermal stratification in storage

ank. Further research regarding modelling and testing, and effect

f water consumption pattern on thermal performance and strati-

cation in mantle heat exchangers based thermal systems is per-

ormed by Knudson et al. [27] . Author established the fact that

raw-off induced mixing, which actually amounts to 40% of the

otal mixing in typical Danish thermal systems, caused approxi-

ately 10% of underutilization of net solar gain. Rosengarten et al.

28] studied the effect of temperature distribution, tank cross sec-

ion, and delivery temperature on exergy and stratification. They

oncluded that stratification efficiency as well as energy and ex-

rgy analysis should be used to ascertain the performance of man-

le heat exchanger based thermal systems. Additional computa-

ional and flow characteristics based studies have been done by

arious researchers in [29–32] . Schemes as indicated by Han et al.

26] namely immersed coil, external heat exchanger and mantle

eat exchanger type are shown in Fig. 3 . Authors concluded that

or immersed heat exchanger type storage tank, the inner arrange-

ent of heat exchanger considerably effects the stratification of

he tank. 

.2. Hydraulic schemes for indirectly heated combisystems 

Even though the stratification efficiency and cost efficacy are

est sorted qualities to conceptualize and characterize any DHW

nd space heating (SH) combisystem, this promptly instills the
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Fig. 4. Hydraulic scheme for indirectly heated (immersed tube) DHW and SH combisystem. 
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act – application of mantle heat exchangers and avoiding any im-

ersed tube heat exchangers should be practiced. However, as de-

ign parameters of the thermal systems are based on steady state

odels, despite the fact – solar availability, thermal accumulation

nd thermal consumption are a lot more transient, this leads to

rop back rather a gain right at design stage. Henceforth, a com-

romise is made between the efficiency and the flexibility of us-

ge which also facilitates the usage of various stratifier devices to

urb any augmented de-stratification. This explains – why storage

ank is incorporated with dual type heat exchangers? Viz. either

mmersed tube and mantle heat exchanger or immersed and shell

nd tube heat exchanger. This is explained in next sub section. 

.2.1. DHW and SH combisystem with immersed tube heat exchanger 

Fig. 4 gives a detailed schematic of the domestic hot water

DHW) and space heating (SH) combisystem. This system incorpo-

ates a heat pump (possibly a ground source heat pump (GSHP) or

round coupled heat pump (GCHP)) as an auxiliary heat supply in

ddition to solar collector. As illustrated, storage tank is fitted with

wo immersed tube heat exchangers, one is load side coil for do-

estic hot water supply, and other one is at the bottom part for

ollector loop. The auxiliary heat pump is controlled by storage set

oint temperature which depends upon the DHW and SH require-

ents. A controller detects the solar gain and thus is able to switch

o the solar collector loop instead of heat pump (or both can be

perated simultaneously) depending upon the set point tempera-

ure. The heating water from GSHP is directed to the respective lo-

ation of the tank through the external switching via. 3-way valves,

his enables the release of near to same density of hot water as of

he surrounding fluid thus maintaining stratified heat transfer. 

.2.2. DHW and SH combisystem with immersed tube and mantle 

eat exchanger 

Fig. 5 illustrates the usage of immersed and mantle heat ex-

hanger in a compact combisystem. This system consists of 250 l

r 650 l storage tank surmounted by mantle heat exchanger which

s coupled to solar collector. A dual load side immersed coils one

t the upper part and other at the lower part of the tank serves for

he DHW preparation. A differential controller regulates the collec-
or loop by switching it on if the collector’s absorber temperature

s considerably higher than the temperature in the mantle. The SH

nd DHW is controlled by two sensors, the room thermostat fig-

res out whether there is SH demand which is pre-calibrated by

ser and outdoor sensor controls both heat pump and solar collec-

or heat input. 

. Stratification analysis 

.1. Energy and exergy analysis 

The primary purpose of the thermal energy storage is not – as

he name suggests it is – however is to maximize the availabil-

ty (or exergy) in the form of useful energy gain from the storage.

n other words, the purpose of thermal energy storage contrast-

ngly should not be to maximize the heat storage rather contrary is

o minimize the destruction of available stored exergy. Bejan [33–

6] initiated the second law involvement in analyzing the thermal

nergy storage and correspondingly he tried to optimize its design

nd working parameters as opposed to first law inclusion in en-

rgy analysis. Bejan [33] referring to the direct trade-off between

ptimum work stored in TES and work recovery from it, suggested

hat designing TES for maximum energy storage doesn’t neces-

arily leads to optimized TES thermodynamically – irreversibility

ust not be compromised to design the TES. Bejan [34] clearly

llustrated that “the mission of the storage device is to temporarily

tore exergy, not energy .” This irreversibility effect on practically all

he TESs, as a characteristic, is demonstrated in Fig. 6 in which a

ot gas is irreversibly exchanging its heat with the cold fluid, and

ence exhibit the following exergy losses – firstly, irreversible heat

xchange with cold fluid during a finite temperature difference �T ,

econdly, heat transfer to ambient during environmental cooling of

as which is again against the finite temperature difference �T ,

nd finally, gas flow across the �P to overcome friction. This im-

lies that only a segment of incoming exergy is ever stored in the

uid. To see the effect of diminishing returns of the incoming ex-

rgy, an entropy generation mapping is produced by Eq. (1) . 

˙ 
 gen = 

˙ m c p ln 

T o 

T ∞ 

+ 

Q o 

T o 
+ 

d 

dt 
( mc ln T ) (1) 
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Fig. 5. Hydraulic scheme involving mantle and immersed tube heat exchanger for DHW and SH combisystem. 

Fig. 6. Irreversibility in TESs. 
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where, Q o = ˙ m c p ( T out − T o ) , and 

˙ S gen is the entropy generated

during the exchange process or during the charging cycle of TES.

Taking this equation to the dimensionless form: 

1 

mc 

t ∫ 
o 

˙ S gen dt = θ
(

ln 

T o 

T ∞ 

+ τ
)

+ ln ( 1 + τη1 ) − τη1 (2)

where η1 is the first law efficiency and is given by Eq. (3) 

η1 = 

mc(T − T o ) 

mc( T ∞ 

− T o ) 
(3)

and, 

τ = 

T ∞ 

− T o 

T o 
, θ = 

˙ m c p 

mc 
t (4)

Entropy generation number N s is defined as ratio of exergy

spent to the total energy injected. Eq. (2) multiplied by T o would

signify the exergy loss out of supplied exergy due to systems irre-

versibility, in this context, N s is defined as: 

N s = 

T o 

E x 

t ∫ 
0 

˙ S gen dt = 1 − τηI − ln (1 + τηI ) 

θ [ τ − ln (1 + τ ] 
(5)

Or in other words, N s = 1 −ηII , where, ηII is the second law effi-

ciency of charging of storage. Noteworthy point is that: as the di-

mensionless time θ increases, N s – the entropy generation number

increases – thus leading to more exergy destruction, N s = 0 is the
xcluding case for reversible process, thus the value of N s oscillates

etween 0 and 1. 

Adding to the Bejan’s studies Krane [37–39] showed that ther-

odynamic irreversibility during heat addition and storage cycles

an destroy up-to 60% to 80% of the availability that has entered

he system. Energy efficiency of a TES can be termed as the ra-

io of energy recovered during the discharging cycles to the en-

rgy supplied to the storage during charging cycle. This considera-

ion of utilizing first law analysis is however insufficient in practice

o evaluate the performance of any TES as it doesn’t provides any

nformation regarding: (a) how closely the system is approaching

he ideal one, (b) the comparative temperatures of recovered and

upplied energy, and (c) the duration of storage within which the

eat can be recovered at desired temperature. In addition, the en-

rgy analysis alone leads to poor and invalid comparison of two

ifferent TESs operating at different conditions – this has resulted

n broader perspective and acceptance for both energy and exergy

nalysis to evaluate any TES. Exergy analysis, on the other hand, is

 second law based thermodynamic investigation which provides

ain over energy analysis in a way – firstly, it puts into account

he temperature differences for the same energy content storages

this is particularly advantageous for stratified storages as they

ustain spatial temperature variations or thermocline, which may

e continuous, stepped or linear. Secondly, it takes into account

he causes and location of quantitative losses due to mixing of flu-

ds at different temperatures, and losses towards the environment.

hus leveraging for betterment in design and optimization of TES.
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Fig. 7. Control volume description of the tank. 
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ore researchers – Bjurstrom and Carlsson [41] , Mathiprakasam

nd Beeson [42] , and Taylor et al. [43] preferred second law op-

imization of stratified storage devices. 

The working of TES moreover is governed by operating cy-

les, typically, energy addition, storage, and energy removal cycles.

areful thermal management and control of these cycles could re-

ult in increased performance of the thermal recovery. This sec-

ion of review explains the exergy and energy analysis of strati-

ed storages, however in an analytical manner to provide a prac-

ical insight in a physical temperature distribution model of a typ-

cal TES. Moreover, temperature distribution and thus the energy

nd exergy analysis is usually evaluated through numerical meth-

ds – this however in non-general terms doesn’t necessarily pro-

ide practical insights and physical outlook up to core excellence

lus these analytical expressions are far more useful in thermo-

conomic optimization in thermal storage systems as reported by

ubair and Al-Naglah [40] . Since for an ideal liquid, the specific en-

rgy e and specific exergy w can be represented by Eq. (6) and (7) ,

here temperature T is height dependent. 

 ( h ) = c ( T ( h ) − T o ) (6) 

 ( h ) = c [ ( T ( h ) − T o ) − T o ln ( T / T o ) ] = e ( h ) − c T o ln ( T ( h ) / T o ) (7)

Therefore, 

x = E − m c p T o ln ( T e / T o ) (8)

here, T e is the equivalent temperature of stratified fluid having

ame exergy as that of mixed fluid and is represented by Eq. (9) . 

 e ≈ exp [ 
1 

H 

H ∫ 
0 

ln T (h ) · dh ] (9)

Now since energy content of mixed storage is considered to be

qual to that of energy content of stratified storage, this implies,

 m 

= E , continuing for exergy of mixed storage: 

 x m 

= E m 

− m c p T o ln ( T m 

/ T o ) (10)

here, T m 

is the equivalent temperature of the mixed storage and

 m 

� = T e , as T e has high degree of stratification dependence, while

 m 

is independent of stratification. Eqs. (8) and (10) gives the ex-

rgy difference between stratified and mixed storage, this is a neg-

tive quantity – that is to say, exergy is always lost – for example,

uring the process of mixing and other irreversibilities. 

x − E x m 

= m c p T o ln ( T m 

/ T e ) (11)

.2. Modelling and analysis of thermal stratification 

The main task of modelling of the thermal stratification is to

evelop computational procedure adequate enough of accuracy

nd generality to predict the various flow fields and scaler trans-

ort terms pertaining to thermocline. As a matter of fact, in ad-

ition to charging and discharging cycles, transient behaviour of

ank stratification is generally more sought phenomenon to pre-

ict the tank performance. One dimensional numerical modelling,

n addition to its simplicity and computational savings, is more

avourable when long-term (standby) storage tank conditions are

equired to be simulated. Temperature distribution and its mathe-

atical expressions are one of the most important considerations

nd point of investigations vis-à-vis to stratification study of the

torage tank. Theory describing the thermal stratification is ana-

ytically modelled through the first principle, where energy bal-

nce is performed over each control volume thus leading to a se-

ies of coupled partial differential equations in vertical height and

ime. Fig. 7 shows a physical description of thermally stratified

ank where it is divided into J equal elements and the adjoining
qs. (12) and (13) represents the energy balance for the water and

he tank walls. A complete analytical model and solution can be re-

erred in Yoo and Pak [50] and Cole and Bellinger [51] . Oppel et al.

52] and Zurigat et al. [53] introduced and studied the effective dif-

usivity factor (EDF) to incorporate turbulent mixing, represented

y εin 
eff, at the inlet region. Oppel et al. [52] developed and studied

ne-dimensional model to investigate the variable flow rate effects

ncluding turbulent mixing at inlet during charging and discharg-

ng. 

 1 A 1 
∂ 2 T 1 
∂ x 2 

− ρ1 c p1 A 1 υ
∂ T 1 
∂x 

− ρ1 c p1 A 1 
∂ T 1 
∂t 

= −hl( T 2 − T 1 ) (12) 

 2 A 2 
∂ 2 T 2 
∂ x 2 

− ρ2 c p2 A 2 
∂ T 2 
∂t 

= hl( T 2 − T 1 ) (13) 

Many more thermocline predictions, in other words, temper-

ture distribution models have been developed and their com-

arison study is presented by Zurigat et al. [54] , however, they

re categorized largely into – multi-node methodology, plug flow

ethodology and plume entrainment methodology. Multi-node ap-

roach entails the tank division into N sections, rendering the en-

rgy balance equation and thus resulting N number of differential

quations for each section that may be solved for the temperature

f each as a function of time and elevation. Plug flow incorporates

he up and down movement of bulk fluid section as cold water

s added or hot water is removed during different working cycles.

o illustrate, as load return cold water is added from the bottom

t pushes forward the hot water in piston push fashion – there is

nly bulk fluid flow – while all other fluid movement is assumed

o be restricted. Unlikely, if inlet temperature varies – its tendency

o find the matching density layer is adopted by imposing the mix-

ng in the model as explained by plume entrainment model. 

.2.1. Multi-node model 

Fig. 8 shows a 3 node tank. Collector return finds its match-

ng position depending on how close to any node its temperature

s. For instance, with a three node model having temperatures 60,

5, and 50 °C each the collector return at temperature of 52 °C
hifts towards node 3 (node 3 being the lower segment of wa-

er at 50 °C). A collector and load control function as defined by

uffie and Beckman [1] , given by Eq. (14) , is re-introduced to reg-

late which node is receiving the water from collector and from

he return load. 

 

c 
j = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 i f j = 1 and T c, o > T s, 1 
1 i f T s, j−1 ≥ T c, o > T s, j 
0 i f j = 0 or i f j = N + 1 

0 otherwise 

(14) 
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Fig. 8. The 3 Node methodology in tank stratification, adapted from Ref. [1] . 
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Similar control function is defined for load return as well. The

flow of fluid element in these 3 nodes are controlled by two con-

trol functions as illustrated in Fig. 8 . 

Considering these functions, an energy balance equation can

thus be established pertaining to any node ‘ j ’ (as shown by

Eq. (15) ) and can be solved using Crank Nicolson, Ranga–Kutta or

some other numerical method. However, due to additional factors

such as stratification destruction through wall conduction, diffu-

sion and mixing may leads to a complicated nature of this equa-

tion thus rendering the usage of computational techniques. More

insight can be taken from Close et al. [55] who established a 3

node mathematical model with control function to guide the wa-

ter. 

m j 

d T s, j 

dt 
= 

(
UA 

c p 

)
j 

( T a − T s, j ) + F c j ˙ m c ( T c, o − T s, j ) + F L j ˙ m L ( T L, r − T s, j ) 

(15)

3.2.2. Plug flow model 

The plug flow model somehow categorises the fluid into frag-

ments of variable sizes and temperature. The number of fragments

and their volume vary primarily on tank volume, the net flow from

heat source and load, and time step used for simulation. Fig. 9

demonstrates the concept of plug flow [1, 44,56] . Four fragments of

fluid with V i and temperature T i are shown on an horizontal scale

for clear understanding. Volume of fluid V c delivered at a temper-

ature T c by heat source (e.g. collector) in one time step of simu-

lation is ṁ �t/ ρ (see step 1). Simultaneously, although they are

shown sequentially, V L fluid element i.e. load return equal to ṁ L 

�t/p adds up at the bottom as T L > T 4 (see step 2) . Thus making a

shift in the whole profile a bit upward which is equal to V c –V L ,

on contrary, the shift is downward if this value is positive . In ad-

dition, the fraction of fluid which is pushed outside the boundary

of the stratified tank is refunded to load and/or the heat source. In

fact the average conveyed temperature at the load side would be

as given by Eq. (16) : 

T del = 

V c T c + ( V L − V c ) 

V 

(16)

L 
Temperature profile in the case of plug flow is calculated by

olving the differential equation given by Eq. (17) : 

V j c p 
d T j 

dt 
= −UA ( T j − T a ) + k A j−1 

T j−1 − T j 

�h j−1 

− k A j 

T j − T j+1 

�h j 

(17)

Alizadeh [57] developed two one dimensional models namely

urbulent and displacement mixing models in order to study the

ertical temperature distribution in horizontal plug flow stratified

ank. During the experimental validation, it was found that stratifi-

ation remains intact for a non-dimensional time t = 0.4 , however,

tratification deviates from idealised plug flow in the top half of

he tank due to turbulent Kelvin – Helmholtz mixing. 

.2.3. Plume entrainment model 

During the non-peak hours of solar availability, the cooler col-

ector return water is driven downwards owing to higher density.

his descending cold water starts to entrain-along the surround-

ng hot water layers as it makes its way towards the bottom of

he tank. This whole process is termed as plume entrainment and

s well represented in Fig. 10 . That is to say, plume entrainment is

he process of heating the descending water where it rearranges its

osition in the tank according to the matched available density of

urrounding fluid. Phillips and Pate [45] illustrated by experimen-

ation that low temperature incoming water at 10 °C, if introduced

n the tank with practically linear temperature profile, that is to

ay – temperature varied from 15 °C to 54 °C in a continuously

inear manner, settles down to around fluid segment at 35 °C. This

ighly infers the fact that the descending plume must have had

ntrained-along sufficient quantity of tank water during its short

ruising which has raised its temperature by 30 °C. 

With the assumption of zero horizontal temperature gradients

nd smaller cross sectional area of plume compared to tank, en-

rgy equations separately for the plume entrained ( Eq. (18) ), and

ank ( Eq. (19) ) can be written as: 

 p 
∂( ˙ m s T s ) 

∂x 
= c p T T 

∂ ˙ m s 

∂x 
(18)

A c p 
∂ T T 
∂t 

= −c p 
∂( ˙ m T T T ) 

∂x 
+ c p T T 

∂ ˙ m T 

∂x 
+ kA 

∂ 2 T T 
∂ x 2 

− U T P T ( T T − T a ) 

(19)

here the term – c p δ( ṁ T T T )/ δx characterises the control volume

dvection from tank, while, + c p T T δṁ/ δx characterises the energy

ntrained from the tank to the plume. A more sophisticated theory

n entrainment can be found and adapted through Schlichting and

ersten [46] . Han and Wu [49] developed a model based on par-

ial differential equations governing the heat and mass flow in the

iscous entrainment driven inlet of the storage tank and utilised

he implicit finite difference method to solve it. It was found out

hrough TRNSYS solar energy simulation that viscous entrainment

rocess resulted in unacceptably fast increase in bottom tempera-

ure of the tank when the inlet temperature is colder than the top

ank temperature. Henceforth, aspect ratio and tank capacity do

ot contribute adequately towards the overall performance when

ther models were used – thus overestimating tank performance.

urther detailing in effects of plume entrainment in the perfor-

ance of domestic hot water tanks is done by Csordas [58] . Au-

hors tried to minimize its effects through specific collector out-

et temperature (SCOT) and fixed collector temperature rise (FCTR)

ow control strategies. More intricate models involving the two di-

ensional flow and temperature field visualization has been stud-

ed by Chan et al. [59] , Cabellie [60] and Guo and Wu [61] . Ca-

ellie [60] numerically studied the flow and temperature field un-

er forced and free convection for different values of Reynolds and

rashoffs numbers falling under the practical situations of compu-

ational mesh domains. 
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Fig. 9. Plug flow model of stratification in a tank, adapted from Ref. [56] . 
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.2.4. More considerations in temperature distribution 

Various temperature distribution models on stratification as fol-

owed by Rosen [47] are summarised here. These include linear,

tepped, continuous-linear, general, basic three zones, and general

hree zones temperature distribution model. In addition, their cor-

esponding expression of mixed ( T m 

) and equivalent ( T e ) tempera-

ures as a function of height are also estimated. Linear temperature

istribution model is considered to be the simplest of all in which

emperature varies in a linear fashion with the tank height, that is

o say, the variation is from T b to T t from h = 0 to h = H. Stepped

emperature distribution model incorporates J zones as shown in

he Fig. 11 . Each of these zone is at a certain constant tempera-

ure as expressed by the equation in the figure. Continuous lin-

ar temperature distribution model, on the other hand, constitutes

he same J zones, however, temperature variation – instead of be-

ng stepped, establishes a linear profile from bottom to top. This is
hown in Fig. 11 , where φj (h) basically represents the temperature

istribution in j th zone – essentially, continuous between each.

lso, mean temperature in each zone j is represented by (T m 

) j .

eneral linear, on contrary, combines the same J horizontal zones

nd again the temperature variation is linear, however, not essen-

ially continuous between zone. Refer Fig. 11 , where j (h) charac-

erizes temperature distribution in zone j, whereas (T t ) j and (T b ) j 
ignifies top and bottom temperature of the same zone. 

On the other hand, general three zone and basic three zone

odel can be generalised as a subdivision of continuous linear

odel – in a sense, they only have three zones. Temperature varia-

ion is essentially linear in each zone, while it is continuous across

ach zone (refer Fig. 11 .). Likewise, basic three zone model can be

ssumed as a subclass of general three zone model – in a sense,

emperature of top and bottom zones stays constant, while tem-

erature in the middle zone varies linearly between temperature of
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Fig. 10. Plume entrainment model of tank stratification. 
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top and bottom as shown in Fig. 11 . Each of the above mentioned

models can be used depending upon to their ease of employability

and flexibility to correctly portray the actual temperature distri-

bution. For instance, linear model although basic and easy to be

utilised, does not fit to wide-ranging stratification situations. This

facilitates the usage of the stepped and continuous model which

can be fitted to any temperature distribution, provided – zones

are made small. Three zone models on the other hand, are more

flexible and can be implemented to any temperature distribution

model which has two zones of marginally varying or constant tem-

perature, i.e. upper and lower zone along with a thermocline zone

which eventually grows as thermal diffusion follows. Even though

three zone models find their usage in nearly all practical tempera-

ture distribution models, Mavros et al. [48] suggested that a larger

number of zones or layers can actually more closely idealises the

plug flow and thus can better predict the stratification. 

4. Thermocline dynamics 

4.1. Thermocline decay (de-stratification) in dynamic mode 

Thermocline is a part of bulk fluid stored in the vessel which

separates the hot and cold water owing to density difference. A

good sharp stratification not only inhibits the mixing and entropy

production during various operation cycles, but also reduces the

ineffective volume or dead zone of the tank – which may sums

up to 25% of the volume [62] . More than a temperature distribu-

tion – as predicted in Fig. 11 , thermocline is bit of a dynamically

changing layer, which is changing its shape and size with every

cycle reversal. In other words, contrary to the common research

schema – where hot and cold water are separated with a steep

(near to zero thickness) thermocline, however in actual practice,

thermocline is considerably thick and is changing its shape and

depth both in static and dynamic mode of working. Thus mandat-

ing the strict avoidance of largely varying discharge temperature

difference due to reaching of thermocline near the outlet port. This

is assisted by the cycle reversal the sooner the thermocline reaches

outlet port during energy removal. Even though this is a better

control strategy then the fully charge and fully discharge one, it

has some ground level drawbacks. Firstly, it instils the inefficient

utilization of tank volume due to some finite height of thermo-

cline which is prohibited anywhere near the outlet port. Secondly,

the entrainment of the thermocline by the incoming water when-

ever the water is added in both the charge and discharge cycle. 
This entrainment process as discussed in the previous section

ncreases the thickness of thermocline by various mechanisms such

s Kelvin–Helmholtz instability or engulfment mechanism – in-

oming water is engulfed by the surrounding water due to dif-

erence in their velocities and temperatures [63,64] . This is also

ggravated by viscous shear on thermocline by the previously

ormed K-H eddies and vortices thus resulting to eddy advection

nto thermocline region due to viscous shear of formed K–H vor-

ices, henceforth, increasing the horizontal span and side by side

ertical travel rate of the thermocline through tank during dy-

amic cycles. Fig. 12 illustrates the dynamics of the mixing pro-

ess due to entrainment caused by incoming water. Other investi-

ators have researched the physical mechanism of mixing through

lume entrainment interaction at a sharp density interface [65–

7] . Fig. 13 demonstrates this process in chronological order. For

nstance, firstly the high momentum turbulent fluid with finite dif-

erence in velocity and temperature as compared to the surround-

ng fluid encounters the stratified fluid or thermocline ( Fig. 13 a),

fter gathering enough turbulent kinetic energy it breaks the strat-

fied layers (in contrast to buoyancy driven flow) called the wave

reaking as illustrated in Fig. 13 b [68–70] . Finally, this cold incom-

ng water entrains the hot stratified water and K – H instability or

ngulfment starts to take place ( Fig. 13 c and d). 

This eddy advection of mass and energy can be considered to

e equivalent to diffusion rate at the interface of the thermocline

s represented by Eq. (20) 

 υe ρc p �T = kA 

dT 

dδ
(20)

here, υe is the entrainment velocity, c is the heat capacity, �T is

he temperature difference between two layers, k is the heat con-

uctivity, and δ is the thermocline thickness. 

Furthermore, Knudson et al. [71] demonstrated that the net

nergy utilization of a small solar thermal system is diminished

y 10–16% each time the tank is getting mixed in the lower 40%

f the portion of tank during each discharging cycle. For further

nformation regarding dynamic mode operations and concerned

e-stratification due to mixing phenomena, Fernandez-Seara et al.

72] , Al-Najem and El-Reface [73] , Shah and Furbo [74] , Davidson

t al. [75] can be referred. 

.1.1. Dynamic mode parameters (influence of Richardson number) 

Whenever two fluids with different density interact, buoyancy

orce comes into existence and influences both mixing and motion

f two fluids. Turbulence associated to shear flow of the incoming

uid can induce vertical mixing in the stratified fluid if the avail-

ble turbulent kinetic energy is sufficiently high enough to over-

ome the potential energy required for vertical mixing. This tur-

ulent mixing due to incoming fluid may cause reduction of tem-

erature gradient or decay in thermocline. In other words, denser

ater is mixed up with the low density water – disrupting the

ertical temperature gradient – moving the centre of mass of the

ater tank system upwards – subsequently, increasing its poten-

ial energy. Energy consideration permits the explanation of gradi-

nt Richardson Number which estimates the proportion of kinetic

nergy available for turbulent mixing. Accordingly, this dimension-

ess number characterizes the ratio between potential energy re-

uired for vertical mixing and the turbulent kinetic energy avail-

ble for such process. In other words, potential energy available

or moving up the centre of mass of the system versus turbulent

inetic energy available for it. The expression can be summarised

y Eq. (21) and by Eq. (22) in terms of bulk properties 

i = 

W 

K.E. 
= −

g 
ρ

dρ
dz (

∂υ
∂z 

)2 
(21)
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Fig. 11. Various temperature distribution models in tank stratification. 
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Fig. 12. Mechanism of mixing due to entrainment process during dynamic cycle, adapted from Ref. [63] . 
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interface

Wave breaking 
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Fig. 13. Physical process of mixing, (a) interaction of cold water with thermocline, (b) wave breaking and subsequent breaching in thermocline, (c) entrainment starts along 

with, (d) engulfment process. 
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Ri = 

gβ�T L 

υ2 
(22)

where g is the acceleration due to gravity, β is the coefficient

of thermal expansion, �T is temperature difference between in-

let and bulk tank temperature, L is characteristic length and υ is

the characteristic inlet velocity. It is evident that the high value

of Ri characterises low potential for mixing and vice-versa. More
pecifically, for flows with comparatively larger Ri values – high

ensity gradient leaves a little space for turbulent mixing through

lume entrainment. Usually a critical value of Ri is taken, be-

ow which turbulent shear stresses break down the density gra-

ient through plume entrainment and mixes with the tank water

hrough wave breaking and engulfment mechanism. Typical value

f critical Richardson number is 0.25 [76,77] . 
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Fig. 14. Streamlines and isotherms at (a) Re = 500, Ri = 0.01, (b) Re = 500, Ri = 0.1, (c) Re = 500, Ri = 1, (d) Re = 500, Ri = 4, (e) Re = 500, Ri = 10, (f) Re = 5 × 10 3 , Ri = 20 

and, (g) Re = 5 × 10 3 , Ri = 40, adapted from Ref. [78] . 
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Low Ri inflow has fairly high momentum as compared to buoy-

nt force. This leads to easy penetration of inflow into the ther-

ocline region. More specifically, during discharge cycle, high Ri

nflow has inadequately low momentum thus making it incapable

f penetrating upper hot layers. In a similar manner, during charg-

ng cycle, the hot inlet water with high Ri number could not

ather sufficient amount of momentum in order to penetrate deep

nto the colder bottom region. To visualise the effect of Richard-

on number on stratification, Dehgan and Barzegar [78] varied the

imensionless Richardson number in their computational experi-

ent ranging within 0.01–10 for a typical value of Reynolds num-

er Re = 500. This range of Ri includes both laminar and turbu-

ent regime. Streamlines and isotherms for these values of Ri and

e are given in Fig. 13 . As low Ri cold water ( Fig. 14 a–c) enters

he tank bottom, it breaches longitudinally deeper into the tank

tratified layers or thermocline, reaching out straight to the outlet.

his enhances high mixing in already established sharp tempera-

ure gradient via. entrainment – and, subsequent fluid engulfment

nd above all, eddy advection as explained already – thus, desta-

ilising thermocline by decreasing the temperature gradient in ver-

ical direction. As Ri is increased ( Fig. 14 d and e), instead of pen-

trating into the thermocline (due to unavailability of enough tur-

ulent kinetic energy) the cold incoming water diffuses around the

old bottom region of the tank, and only after thermally commu-

icating with the walls, losing its momentum and finding proper

uitable temperature layers finds its way in vertical direction. This

akes sure that the cold incoming water doesn’t interfere with the

ot water in the top portion of the tank thus preserving the stable

tratification. 

Fig. 14 f and g show higher values of Reynolds number (forced

onvection dominated) and Richardson number (buoyancy domi-

ated) illustrating the better establishment of stratification during

ischarging. This behaviour is very much important to avoid the
uctuating delivery temperature during discharging. In addition to

he fluctuating delivery temperatures, mixing during discharge cy-

le can cause up-to 23% decrease in energy addition from the tanks

erspective [79] . 

.1.2. Influence of Reynolds number 

The influence of inlet fluid velocity on the temperature field

f tank as characterised by inlet Reynolds number is shown by

ig. 15 . Each of Fig. 15 a–c represents the buoyancy driven incom-

ng flow (i.e. Ri greater than 1) with Re = 100. Accordingly, cold in-

oming water find its way radially towards the walls of the tank

here it communicates thermally, exchanges heat from upper hot-

er regions, just to find the proper area suiting the temperature

emands of surrounding. As the Re is increased, or in other words,

i is decreased, the cold inlet water not only straight away finds its

ay penetrating axially deep into the thermocline region, but also

auses eddy diffusion or shear driven vortex in the bottom cold

art of tank (refer Fig. 15 e and f). This eddy diffusion intensifies

he mixing and entrainment process by providing further momen-

um to subsequent incoming cold fluid. 

.1.3. Influence of Peclet number Pe 

Peclet number in terms of vertical mixing in tanks is defined as

atio of rate of advection of flow quantities to the rate of diffusion

f the same quantity driven by vertical gradient such as tempera-

ure gradient in tank. It is represented by Eq. (23) . 

 e = 

υ.H 

α
(23) 

here α is the thermal diffusivity, and 

= 

˙ V 

π.r 2 
(24) 
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Fig. 15. Streamlines and isotherms at (a) Re = 100, (b) Re = 200, (c) Re = 400, (d) Re = 600, (e) Re = 800 and, (f) Re = 1000 presented in Ref. [78] . 
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Fig. 16. Effect of Peclet number on thermocline. 
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Fig. 17. (a) Temperature distribution, and (b) wall flux in a bare wall tank, originally 
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The influence of Pe on the thermocline is demonstrated in

Fig. 16 , where temperature profile of a tank is given for 5 differ-

ent values of Pe. For instance, higher value of Pe implies higher

value of inlet velocity which eventually gets disbursed for hori-

zontal advection, however more importantly – it implies a lower

value of thermal diffusivity due to vertical temperature gradient.

In other words, higher value of Pe leads to shortened vertical dif-

fusion height, thus leading to lower thermocline decay. 

4.2. Thermocline decay in standby mode 

Buoyancy driven flow or natural convective flow arising in the

tank due to heat loss to the ambient and axial wall conduction is

a prevailing de-stratification phenomenon along with thermal dif-

fusion during the standby mode. Upper hot layers are constantly

losing heat through tank walls, making the adjacent fluid slightly

colder then bulk fluid. This temperature difference serves as im-

petus to natural convective flow – the colder fluid flow down-

wards along the vicinity of tank wall, whereas, the relatively hot-

ter fluid at the centre escalates upwards. This constitutes a nat-

ural recirculation loop inside tank thus resulting in an enhanced

fluid conductivity [68] . Transient natural convective flows in a tank

as known as buoyancy driven flows have been widely studied nu-

merically and experimentally by Papanicolao and Belessiotis [79] ,

Oliveski et al. [80] , Patterson and Armfield [81] , Hyun [82] , Pat-

terson and Imberger [83] . The de-stratifying effect of natural con-

vective flows during standby conditions are caused by axial wall
onduction, thermal diffusion, and ambient losses from the top hot

ayers. This can be visualized by Fig. 17 a where the temperature in

he lower layers is unfavourably incremented, while temperature

t top layers is reduced considerably. 

Fig. 17 b shows the wall-water heat flux calculated by Fourier’s

aw [68] . The large positive values near the top portion of the tank

ndicates the downward heat flow if the internal tank wall is unin-

ulated. Similarly, negative value near the bottom portion is the

eat flux transferred from water to walls in a normalised value. As

he time increase the span of heat flux decreases. This is due to

he increase in ambient losses from top hot layers thus decreasing

xial wall conduction with time. Natural convective flows and re-

ulting de-stratification due to axial wall conduction is reduced to

inimum when the thermal conductivity of wall and the fluid is

ame as stated by Jaluria and Gupta [5] or when fluid side surface

f tank is insulated and outside surface is conductive as demon-

trated by Shyu and Hsieh [84] . 

Fan and Furbo [85] conducted a CFD analysis of a stratified

ank for natural convective flows due to heat losses during standby

ode. Fig. 18 a and b shows the axial wall conduction along with

emperature profile and local velocity magnitude pertaining to the

uoyancy driven convective flows. It is apparent from the Fig. 18 a

hat there is full rotating loop of thermal energy flowing from high

nergy upper layers to lower energy bottom layers via. conducting

ank walls. At height of 1.58 m from the tank there is a downward

ow of approximately 5 mm/s near the vicinity of the tank walls.

ear the centre of the tank the fluid is moving both downwards

nd upwards due to heat loss from the top of the tank. At a height

f 1.12 m from the tank bottom, the downward flow is very fee-

le, even though the temperature difference between height 1.58 m
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Fig. 18. (a) Axial wall conduction and, (b) Temperature and velocity profile of natural convective flows, originally presented in Ref. [85] . 
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nd 1.12 m is merely 3 K. This is due to the presence of stratifica-

ion layers at the mid region of the tank. Furthermore, as there is a

eighten axial wall conduction in thicker tank walls, and increased

mbient losses in thinner tank walls with the fact that ambient

osses are the major causes of thermocline degradation in an unin-

ulated tank – an optimal tank geometry design is opted [86] . In

ddition to ambient losses and axial wall conduction, thermal dif-

usion due to temperature gradient inside tank is also responsi-

le for de-stratification, however, Nelson et al. [87] concluded that

n most cases of storage tank operations it can be considered as

nsignificant. An extensive research in axial wall conduction and

hermal diffusion due to temperature gradient is done experimen-

ally as well as numerically by Miller [88] , Sherman et al. [89] ,

urthy et al. [90] and Parrini et al. [91] . 

. Stratification improvement parameters 

.1. Geometrical parameters 

Geometrical parameters include tank size, wall thickness and

spect ratio, inlet port – position, shape, length to diameter ratio

nd type of diffuser, stratifiers – type and shape to control the in-
et momentum, insulation – inner wall insulation and type, outside

all insulation. 

To begin with, inlet structure can have a very dramatic influ-

nce on the thermal stratification of tank, this mandates the de-

anding need to optimise it in every aspect [92–94] . Since pri-

ary mixing takes place during the dynamic cycle of charging and

ischarging Al-Najem and El-Reface [95] concluded and stated in

heir study that turbulent mixing arising due to mixing at inlet and

utlet ports cannot be neglected as they take the sole responsibili-

ies for thermocline decay. Lavan and Thompson [11] concluded in

heir experimental study that the inlet position has a much more

nfluence on the stratification decay during the charging mode as

ompared to the outlet position. During charging process, mixing

s initiated by momentum and temperature of incoming jet. A lot

f literature is available on the direct inlet and its effects on strat-

fication [74,96,97] . If the inflow jet temperature is comparatively

older than the surrounding it will entrain downwards thus desta-

ilising the stratification. Similarly, if the inlet jet has high mo-

entum, turbulence thus generated will initiate intense mixing in

he top layers. Adding to this, concerning the inlet temperature

Eames and Norton [93] concluded in their experimental stud-

es that single inlet port having a variable inlet temperature can

ven upsurge mixing during charging process due to entrainment.
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Fig. 19. (a) Flexible polymer pipe and, (b) plastic pipe having holes with flaps to 

prevent counter flow, adapted from Ref. [103] . 
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It was also stated that a number of ports at different heights can

improve the stratification and thus the extraction efficiency of a

tank. Concerning the inlet momentum, Li et al. [9] studied differ-

ent inlet structures i.e. slotting-type, direct, and shower inlet type.

The authors concluded that slotting type inlet performed best to

reduce the momentum of the incoming cold water and was effec-

tive to reduce the mixing during discharge mode. Direct type in-

let was comparatively better than the shower type inlet. A similar

study on the influence of inlet devices was undertaken by Moncho-

Esteve et al. [98] and Carlsson [99] and it was evident that a sin-

tered bronze conical diffuser has more impact in preserving the

stratification during charging as compared to conventional bronze

elbow inlet. Matrawy and Farkas [100] studied the flow rate and

its effect on the stratification. Alizadeh [57] noted in their ex-

perimental and numerical studies that higher flow rate irrespec-

tive of the surrounding temperature induces strong mixing in the

surrounding area thus producing a uniform temperature in a pre-

established stratification. Additionally, stratification is even best es-

tablished smoothly when heat is added at certain level depending

upon the surrounding bulk water temperature by usage of special

inlet stratification device during charge mode. Inlet stratifier is a

type of pipe with arrangement of valves designed to allow water

to enter the tank at right thermal level [101] . It can be of vari-

ous kinds for example a vertical polymer pipe having openings at

different locations with or without non-return valves. Non-return

valves make sure that water travels only from pipe to tank and not

vice versa. Another example can be a porous manifold situated in

the tank [102] . Fig. 19 illustrates the basic idea of stratification de-

vices used in charging. Dragsted et al. [103] studied experimentally

two types of stratifiers namely a rigid plastic pipe with holes and

flaps at every 30 cm of length to prevent counter flow, and a flexi-

ble polymer based stratifier with holes along its entire length. Au-

thors made conclusion that both type were able to maintain strat-

ification by deliberately directing water at proper location. Flexible

polymer due to its flexibility maintained the counter flow at bay.

It was also concluded that the flexible polymer stratifier outper-

formed the plastic stratifier with holes and flaps at low flow rates

of 1–2 l/min, while latter performed better at high flow rates of

around 41 l/min. More studies regarding the thermal performance

of tanks with different stratifiers have been done by Shah et al.

[104] , Anderson and Furbo [105] , Anderson et al. [14] , Anderson

et al. [106] , Gracia-Maria et al. [107] . 

Size or aspect ratio of storage tank holds an important role

in the standby heat losses. Natural convection due to axial wall
onduction and ambient heat losses primarily depends on surface

rea and hence tank’s aspect ratio. Bouhdjar and Harhad [108] ,

bdoly and Rapp [109] studied the influence of aspect ratio on

tratification and performance of storage tanks and concluded that

he longer tank with thin walls have better stratification. Fan and

urbo [85] performed experimental and numerical studies on con-

ection flow patterns arising due to axial wall conduction and thus

valuated the standby heat losses and subsequent flow regimes for

arying tank volume and aspect ratio. The authors concluded that

ith an increase in height to diameter ratio from 1 to 5 the con-

ective currents in terms of volume flow rate decreased consider-

bly from 6 l/min to 0.12 l/min. Lastly, it was also concluded that

s the tank volume is increased the increase in tanks aspect ratio

oesn’t actually reduces the axial wall conduction. Ievers and Lin

10] also evaluated and concluded numerically that an increase in

spect ratio from 2.5 to 5 not only increased the degree of strati-

cation up to 30.69% but also decreased the initial mixing at inlet.

hauvet et al. [110] concluded in their study that increase in as-

ect ratio reduces de-stratification during dynamic mode on the

xpense of increased ambient heat losses. This leads to an op-

imal aspect ratio usage between 3 and 4 [111,112] . On contrary,

arge aspect ratio has impractical dimensions making the tank un-

uitable to be used in modern homes. Adding to this, higher as-

ect ratio also increases the surface area of the tank which can

rompt even more convection currents due to increased ambient

osses, hence demanding a need for better insulation. Furthermore,

s there is an elevated axial wall conduction in thicker tank walls,

nd increased ambient losses in thinner tank walls with the fact

hat ambient losses are the major causes of thermocline degrada-

ion – an optimal tank wall thickness of about 3 mm is opted [86] .

rmstrong et al. [113] performed investigation on wall material

pecification and concluded that reduction in wall thickness from

 mm to 0.7 mm decreased the usable volume loss through convec-

ion by 13%. The authors also illustrated through numerical tech-

iques that copper walls having higher thermal conductivity then

teel and polyethylene have higher rates of counter rotating con-

ection currents due to higher wall flux. Gasque et al. [114] con-

ucted numerical study on inner lining materials and suggested

hat steel as inner lining material encouraged mixing through ther-

al diffusion and axial wall conduction, while placing expanded

olystyrene (EPS) or poly methyl methacrylate (PMMA) improved

ischarging efficiency with decreased thermal diffusion and heat

eakage due to surrounding walls. 

.2. Operational parameters 

As Gasque et al. [114] and various others stated that the tank

aterial specification including inner lining material is prerequi-

ite information to be gathered beforehand to design a tank for

etter performance during standby mode. However, for dynamic

ode of operation the inlet mixing overtakes any other thermo-

line decay causes – thus requiring the operational parameters

such as, draw-off rate with different inlet-outlet port arrange-

ents and their designs to be taken care of. Fernandez-Seara et al.

72] performed an experimental analysis with three different in-

ets and 2 different outlets i.e. 6 different inlet and outlet config-

rations were studied with 3 different draw-off rates of 5, 10 and

5 l/min. The main purpose of the analysis was to configure the

est inlet – outlet configuration in terms of stratification perfor-

ance. The results suggested that a particular type of inlet-outlet

ort configuration with a specific draw-offs and inflow rates con-

ributes towards better discharge efficiency, better thermocline es-

ablishment and the sensitivity of system. This effect is also re-

ected in the energy and exergy efficiencies for each configuration.

ordan and Furbo [115] illustrated through TRNSYS simulation that

xed inlet during the discharge cycle can lead to a decrease in ef-
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Table 1 

Dimensionless numbers and their influence on stratification as stated by earlier researchers. 

Author 

Dimensionless 

number Value limit Impact on stratification 

Berkel et al. [116] Richardson number Ri ≈ 15 Clear mixing occur at Ri = 9.8, while Ri ≈ 15 could be considered as apt 

design condition 

Zurigat et al. [92] Richardson number Ri > 3.6 Influence of inlet geometry such as side inlet perforated inlet etc. on 

stratification can be neglected 

Guo and Wu [61] , 

Sliwinski [118] 

Richardson number Ri >> 1 Thermal stratification would be assisted due to decreased forced convection 

and improved temperature gradient 

Cabelli [60] , Lavan 

and Thompson [11] 

Flow parameters 

(Reynolds number, 

Grashof number) 

Re < 400 and, 

Gr < 80,0 0 0 

The ratio Gr/Re 2 has greater influence on fluid movement at inlet 

Brown and Lai 

[119] 

Reynolds number, 

Richardson and 

inverse Peclet 

number 

Re < 10 0 0 Degree of stratification is a function of the Richardson number and inversed 

Peclet number at low Richardson number, however this dependency reduces at 

high Richardson number 

Al-Nimr [120] Peclet number At high Peclet 

number 

The stratification destruction due to axial wall conduction is reduced 

considerably 

Yoo and Pak [50] , 

Yoo et al. [121] 

Peclet number Pe = 50–800 Sharp thermocline at Peclet number 

Dehghan and 

Barzegar [78] 

Reynolds number 

and Grashof 

number 

Re < 20 0 0 and, 

Gr < 10 10 

Even at high values of Grashof/Richardson number, influence of inlet/outlet 

geometry cannot be compromised 

Shin et al. [122] Tank size and 

Froude number 

At all limits Large sized tanks are insensitive to the Froude number and thus to the inflow 

turbulence does not affect the temperature gradient 

f  

i  

t  

o  

f

6  

2  

w  

a  

[  

p  

t  

4  

t  

G  

a  

m  

l  

d  

t  

f  

a  

i  

b  

l  

i  

s  

i  

t  

o  

P  

s  

d  

m  

i  

t  

c  

m  

Z  

m  

i

t  

[  

o  

t  

d  

b  

R  

p

6

 

o  

a  

p  

c  

c  

w  

e  

v  

a  

[  

o  

s  

s  

r  

u  

E  

f

6

 

g  

i  

E  

E  

w  

e  

t  
ective solar fraction from 60% to 56% due to inlet mixing, while

ncreasing the annual mean temperature of lower 15% of the tank

o 2.5 K. Shah and Furbo [74] studied the entrance effect of 3 type

f inlet designs (normal pipe, hemispherical baffle, and plate inlet)

or 9 draw-off tests. The results showed that for the pipe inlet –

8% of the tank was completely mixed after first draw-off of only

1% of the tank volume. With baffle inlet at least 39% of the tank

as mixed, while, only 21% of the tank was affected with the us-

ge of plate type inlet for the same draw-off. Lavan and Thompson

11] experimentally studied the influence of inlet and bulk tem-

erature difference, mass flow rate and port location on stratifica-

ion during the discharge test of a fully mixed tank at temperature

0.6 °C. Authors deduced the effect of above mentioned parame-

ers to dimensionless numbers such as inlet Reynolds number and

rashof number. In other words, volume flow rate and inlet di-

meter, which are very detrimental to mixing intensity and inlet

ixing layers were recognised and thus were represented by in-

et Reynolds number, while the inlet and bulk water temperature

ifference was characterised by Grashof number. It was suggested

hat the inlet location should be as close as possible to the bottom

or better stratification. The extraction efficiency increased directly

s �T was increased. At higher values of �T , ascending cold fluid

n the discharge process dropped back due to higher Grashof num-

er as evident by Fig. 14 . Many researchers compared their ana-

ytical calculations and tried to associate and include these find-

ngs with the dimensionless groups pertaining to the stratification

tudy in storage tanks. This resulted with a concrete prefabricated

nformation regarding the tank geometry, flow velocity, tempera-

ures of inlet and outlet to characterise the performance and level

f mixing. Dimensionless numbers such as inlet Reynolds number,

eclet number, Richardson number and Froude number were mea-

ured to directly correlate the effect of parameters of thermal, hy-

rodynamic and tank design on stratification and mixing. These di-

ensionless numbers as used by some of the authors are tabulated

n Table 1 . Richardson number plays an important role in defining

he level of mixing, however researchers have different rather in-

onsistent range. Berkel at al. [116] for instance, stated that ther-

al efficiency nearly remained same when Ri was greater than 15.

urigat et al. [92] on the other hand stated that one dimensional

odelling will not be applicable below Richardson number 3.6 if

nlet mixing correlations for each inlet design is not employed –

p  
hus inlet mixing plays a greater part for Ri < 3.6. Shah and Furbo

74] on the other hand evaluated the inlet impact during draw-

ffs and thus on the deliverable energy content. Authors concluded

hat the exergy and entropy change and thus the energy content

uring draw-off is considerably influenced by the Richardson num-

er. Ramsayer [117] on contrary evaluated that for the flows with

i > 0.2, inlet flow and geometry does not influence the mean tem-

erature gradient. 

. Indices of stratification 

To compare the performance of different storage tanks in terms

f stratification, performance or evaluation indices are measured

nd assessed. These indices are specified in terms of firstly, tem-

erature gradient as defined by Huhn [123] , together with its de-

ay as represented by Shuy et al. [124] , and secondly, efficien-

ies of stratification, ranging from 0 to 100%, 0% for fully mixed

hile 100% for fully stratified tank. In other words, stratification

fficiency directly characterises the level of mixing as its larger

alue signifies perfect plug flow. Most of the efficiency parameters

s characterised by Panthalookaran et al. [125] , Dincer and Rosen

126] , Haller et al. [127] , Han et al. [26] are evaluated on the basis

f either first law of thermodynamics – the energy method, or the

econd law approach – the exergy or entropy method. In addition,

tratification is also evaluated in terms of thermocline thickness as

epresented by Bahnfleth and Song [128] and percentage ratio of

ndisturbed or unmixed water volume as defined by Kandari [129] .

ven though these methods are experimented and applied success-

ully, yet these are applicable for constant inlet temperature. 

.1. Stratification numbers 

Stratification number is the ratio of mean of the temperature

radients at any time during charging or discharging to the max-

mum mean temperature gradient as, illustrated by Eq. (25) [72] .

q. (26) defines the mean of the temperature gradients, while

q. (27) defines the maximum mean temperature gradient of

hole process of charging or discharging. Accordingly, the high-

st temperature in the equation represents the maximum water

emperature during the start of the process, while minimum tem-

erature is the inlet temperature, thus giving the mean maximum
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temperature gradient of the form of Eq. (27) . 

St r(t ) = 

(∂ T /∂ z) t 

(∂ T /∂ z) max 

(25)

(
∂T 

∂z 

)
t 

= 

1 

J − 1 

·
[ 

J−1 ∑ 

j=1 

(
T j+1 − T j 

�z 

)] 

(26)

(
∂T 

∂z 

)
max 

= 

T max − T in 

( J − 1 ) · �z 
(27)

Davidson et al. [75] quoted McCarthy and Wood [130] who pro-

posed a coefficient to evaluate the level of stratification which is

the product of the ratio of actual temperature difference between

water at top and bottom of tank to the ideal temperature differ-

ence (temperature difference between boiling water and the cold

inlet water) and ratio of the actual average temperature of the tank

to the average temperature calculated when linear vertical temper-

ature profile is calculated, according to Eq. (28) . 

ζ = 

�T actual 

�T ideal 

· ( T a v g ) actual 

( T a v g ) ideal 

(28)

Wu and Bannerot [131] defined the stratification factor ST as

the mass weighted mean square deviation of water temperature in

the tank from the mean temperature of storage tank divided by

total mass of tank, as followed in Eq. (29) . It basically focuses on

temperature gradient and not the degree of mixing, this makes it

the perfect gauge for the deviation of temperature profile from that

of perfect isothermal tank at T avg , however, this does not portray

the energy stored or the degree of mixing. This implies if the tank

gets mixed up or becomes isothermal the ST takes value of zero,

irrespective of energy content. 

ST = 

1 

m store 
·

J ∑ 

j=1 

m j ·
[
T j − T a v g 

]2 
(29)

Liu et al. [158] characterised the degree of thermal stratification

in a tube bundle by modifying the stratification factor developed

by Wu and Bannerot [131] by incorporating the relative height of

each tube bundle in the mean square temperature variation formu-

lae as given by Eq. (30) . 

ST = 

1 

m store 
·

J ∑ 

j=1 

m j ·
[
T j − T a v g 

]2 

(
h 

H 

)
(30)

6.2. First law efficiencies 

First law stratification efficiency calculates the fraction of recov-

erable energy during the process of charging or discharging for a

constant inlet temperature and mass flow rate. Abdoly and Rapp

[109] , Nelson et al. [132] approached in a similar a fashion – the

first law efficiency in terms of recoverable heat as a measure of

thermocline degradation in thermally stratified tank. They spec-

ified the quantity P as the recoverable heat or reusable heat in

any region of the thermocline, which by arbitrary definition could

be most significantly explained as the quantity of heat which has

not been degraded or dropped in temperature more than 20% of

its original temperature towards the incoming cold water (refer

Eqs. (31) and (32) ). Thus, following the definition for any small re-

gion j : 

P j = m j ( T j − T inlet ) , i f 
T j − T inlet 

T outlet − T inlet 

≥ 0 . 8 (31)

P j = 0 , i f 
T j − T inlet 

T − T 
< 0 . 8 (32)
outlet inlet 
here m j is the mass of the region of water with assumption of

nity as the specific heat capacity. Henceforth, the total recover-

ble heat is the sum total all regions as given by Eq. (33) below.

 = 

J ∑ 

j=1 

P j (33)

The fraction of recoverable heat any time t is given by Eq. (34) :

 (t) = Q(t) / Q 0 (34)

here, Q 0 is the total heat stored in the stratified storage. This con-

ept of first law stratification efficiency is also revisited by Haller

t al. [127] and originally used by Dincer and Rosen [126] and

ernandez-Seara et al. [72] , as summed by Eq. (35) : 

= 

t d ∫ 
0 

˙ m · c p · | T outlet − T inlet | dt 

m store · c p · | T initial − T inlet | (35)

here t d is the time at which the temperature difference has been

ropped for more than 20% of its original temperature towards the

ncoming cold water ( | T outlet − T inlet | < 0 . 8 · | T initial − T inlet | ). 
Chan et al. [59] , Shah et al. [104] , Bouhdjar and Harhad

108] defined and used the storage efficiency in terms of effective

nergy stored versus total inflow energy as given by Eq. (36) . 

= 

ρc p V [ T a v g (t) − T outlet ] 

ρc p ̇ V · t [ T inlet − T initial ] 
(36)

.3. Second law efficiencies 

Exergy quantifies the work that can be extracted from the tank,

enceforth, exergy analysis can be used as a parameter to assess

he benchmark of theoretical thermal performance of the tank.

osen et al. [133] and Rosen [47] indicated (also illustrated in

ection 3 ) that a storage tank with better temperature gradient

ill apparently contain more amount of exergy in contrast to simi-

ar storage tank with equal amount of energy content but compar-

tively lower stratification level. Second law efficiency or exergy

fficiency in case of discharging process, as defined by Fernandez-

eara [72] , is the ratio of cumulative exergy delivered by the water

raw-off to the initial exergy stored by the water in the tank (refer

qs. (37) , (38) and (39) ). 

ψ, d 
(t) = 

E x out (t) 

E x st (t = 0) 
(37)

 x out ( t ) = 

t ∫ 
0 

(
ρ · ˙ V 

)
out 

· [ ( h 

e 
out − h 

e 
0 ) − T 0 · ( S out − S 0 ) ] · dt (38)

 x st (t = 0) = 

J ∑ 

j=1 

{ (V · ρ) j · [( u j − u 0 ) − T 0 · ( S j − S 0 )] } (39)

Shah and Furbo [74] defined the calculation formulae for exergy

fficiency as the ratio of exergy of the experimental tank to the

xergy of a fully stratified tank as given by Eqs. (40) –(42) . 

ξ = 

E x ξ ( exp ) 

E x ξ (str) 
(40)

here, 

 x ξ = E exp −
J ∑ 

j=1 

m j · c p · T cold · ln 

(
T j 

T cold 

)
(41)

 exp = 

J ∑ 

j=1 

m j · c p · ( T j − T cold ) (42)
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Exergy efficiency ηξ varies from 0 to 1, for 0 being fully mixed

hile 1 being perfectly stratified tank. Shah and Furbo [74] , in

ddition, specified the entropy efficiency as the ratio of entropy

ifference between fully stratified storage tank and the fully dis-

harged tank to the entropy difference between experimental tank

nd the fully discharged tank, according to Eq. (43) . Many more re-

earchers Homan [134] , Huhn [123] , Van Berkal [135] , Rosengarten

t al. [28] , Panthalookran et al. [125] evaluated thermal storage de-

ices based on second law principle. 

= 

E x str − E x dis 

E x exp − E x dis 

(43) 

.4. Other indices of stratification efficiency 

.4.1. Extraction efficiency 

Lavan and Thompson [11] used and defined the extraction effi-

iency as the percentage of volume that can be discharged for not

ess than 90% of the temperature difference between initial storage

emperature and inlet temperature, as given by Eq. (44) . 

= 

˙ V t ∗/V (44) 

here t ∗ is the time at which the difference between draw-off and

nlet temperature of water drops to not more than 10% of the ini-

ial value i.e . (T − T inlet ) / ( T outlet − T inlet ) = 0 . 9 . 

.4.2. Mix number 

In contrast to the stratification numbers, which focuses on the

emperature profiles – temperature gradients or the temperature

eviations in the tank, Mix number evaluates the tank on the ba-

is of both vertical temperature profile as well as the total energy

tored in the tank. In other words, Mix number is based on both

he energy and temperature distribution inside tank, accordingly,

t postulates the mixing process in the tank by evaluating the mo-

ent of energy M E . Moment of energy of thermal storage tank

s calculated to account for energy location by doing summation

f the sensible energy content up to j th vertical storage segment,

eighted with the height of its location, as given by Eq. (45) . 

 E = 

J ∑ 

j=1 

y j · E j (45) 

here y j is the distance measured from bottom of the tank to

he centre of the node j , while the energy content of node j is

 j = ρ j · C p · V j · T j . A larger value of moment of energy implies

ower amount of mixing. Mix number is the ratio of the differ-

nce between moment of energy of fully stratified and experimen-

al storage to the difference between moment of energy of fully

tratified and fully mixed storage, according to Eq. (46) . 

IX = 

M str − M exp 

M str − M f ul l −mix 

(46) 

Mix number varies from 0 to 1 and is used as a parameter to

valuate the performance of storage tank. Value 0 represents full

tratification in tank, while 1 represents complete mixing. The en-

rgy content being the same for both experimental as well as fully

tratified tank. 

. Conclusion 

Thermal performance of heat storage system depends on the

egree of stratification. A well stratified tank is always capable of

elivering higher exergy plus improved degree of utilization with

esser amount of heat input as compared to the mixed isother-

al tank having the same energy content. The idea behind gen-

rating and maintaining a good thermal stratification is to keep a
table vertical temperature gradient during all the operation cy-

le of tank. A stable thermocline can be maintained for example

uring charging/discharging cycle by carefully monitoring hydro-

ynamics and thermodynamics of operational parameters. Careful

anagement of inlet-outlet configuration – position, shape, type

f diffuser, hot water inlet and bulk water temperature difference,

nd draw-off rate are all measures to minimize mixing and max-

mise stratification. Mixing process is influenced by the rate of en-

rainment which is further controlled by K-H instability where in-

oming water is engulfed by surrounding water due the velocity

nd temperature difference. In this paper, different parameters to

easure the stratification and thus the level of mixing are sug-

ested, some of such measures are capable of spotting the accu-

ate time on which mixing has appeared. Thus these parameters

re plainly rudimentary to be calculated as far as testing of com-

ercial storage tanks is considered. Adding to this, these param-

ters require the accurate temperature of each water layer to be

alculated – thus rendering the need for actual temperature dis-

ribution inside the tank to be measured by a series of tempera-

ure sensors. This is particularly difficult sometimes firstly because

f non-availability of inside temperature distribution of a commer-

ially available storage tank in general, and secondly it is a tedious

r even near to impossible to correctly place the sensors accord-

ng to the ever changing thermal pattern of tank inside. In other

ords, location of sensors depend on the temperature distribution

f water layers (which is changing with time) and not the vice

ersa. To understand this, a temperature distribution schemas is

lso been produced in this paper. This includes linear temperature

istribution model, stepped distribution model, continuous linear

istribution model, basic 3 zone model and general 3 zone model.

urther research could be centred on the invention of calculation

ethods to calibrate this inconsistency of ever changing shape and

ize of thermal layers of water segments and fixed location of tem-

erature sensors. To sum up, this information could be clubbed

ogether with new modelling techniques and water consumption

atterns to accommodate a better stratification enhancement right

uring design phase of TES system. 
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a b s t r a c t

An efficient storage retains thermal stratification and improves the discharging performance. Turbulent
mixing between hot and cold water is the prime source of stratification destruction. In this paper
quantification of turbulent missing was achieved on the basis of temperature profile, MIX number, and
Richardson number. The evaluated parameters include flow rate, DT, and diffuser design, henceforth a
direct interdependence between each was thus established. Various CFD models were developed and
experimentally validated on the test rig in order to find the optimal working conditions in discharge
mode. The results proved numerically that the tank working conditions can be optimized by proper
selection of inlet device. For instance, slotted type inlet device sustained maximum stratification even in
as adverse a condition as of turbulent inflow & low DT. Perforated and simple inlet devices were capable
of delivering best discharge efficiency only at low flow rate of 200 l/h and were showing insignificant
dependency on DT. However, as flow rate is increased, DT dependency increased. Seeing the com-
pounded benefits of slotted inlet devices and decreased DT, it was concluded that slotted inlet device
delivered comparatively better thermal performance at both adverse conditions i.e. high flow & low DT
and high flow & high DT, however, failed to outshine the rest of the inlet devices at low flow rate & low
DT, and low flow rate & high DT. These research findings can serve as guidelines to optimize the storage
tank design e more specifically, inlet device based design integrated with heating system, as thermal
stratification and COP of heating system e heat pumps, for example, are inherently correlated. Heat
pumps are high flow rate and low DT devices, while, solar systems are low flow rate and high DT devices,
Thus, opting for accurate choice of inlet device for a particular operating condition is critical.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Thermal energy storage (TES) is the essential part of renewable
energy systems. This is because it is the best solution against non-
coincidence of supply and demand, especially with solar systems.
Improving the performance of this central component can signifi-
cantly decrease the auxiliary energy demand for both the space and
domestic hot water heating [1]. For designing or performing
building energy simulations of heating systems including the
storage tanks it is essential to adopted the integrated and dynamic
simulation approach. Campos Celador et al. [16] demonstrated that
cz, yogender027mae@gmail.
uska).
storage tank model can have significant effect on annual savings
and subsequent decision making right at the design phase of the
system. Stratified storage tanks are cost effective building heating
technology leading to reduction in auxiliary heating demands,
reduction in primary energy savings, discounting the consumer
costs, while promoting the lower carbon footprints [17,18].

Thermal stratification is the phenomenon usually employed and
encouraged to improve the performance of storage tanks i.e.
enhanced charging and discharging efficiency [1,2]. Thermal
stratification ensures the hot and cold water to be stored simulta-
neously without any physical barrier inside the tank. In other
words, continuous or stepped water temperature distribution is
practiced in stratified tank. More precisely, hot water driven by
buoyancy has the tendency to rise towards the upper fluid layers in
the tank, while cold water has the tendency to settle at the bottom
of the tank. This phenomenon naturally creates the stratification in
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Nomenclature

Cp specific heat capacity [J/kg-K]
Ej energy content of jth fluid layer
g acceleration due to gravity (m/s2)
L characteristic length pertaining to tank (m)
_m mass flow rate (kg/m3)
mstore mass of stored water (kg)
ME moment of energy (J m)
MIX MIX number
Mexp moment of energy of experimental tank (J m)
Mful-mix moment of energy of fully mixed tank (J m)
Mstr moment of energy of perfectly stratified tank (J m)
q internal heat generation [J/s-m]
r unit replacement time (s)
Ri Richardson number
t* dimensionless time
T temperature (oC)
Tin inlet temperature
Tbuk bulk storage temperature (oC)
Tinlet inlet temperature (oC)
Toutlet outlet temperature (oC)
Tinitial initial tank temperature (oC)
t time (s)
u velocity component in x direction (m/s)

uavg average velocity in x direction
v velocity component in y direction (m/s)
_V volumetric flow rate (l/h)
Vin inlet velocity (m/s)
VT tank volume
w velocity component in z direction
W potential energy (J)
yj jth location of fluid layer

Greek
r fluid density (kg/m3)
b coefficient of thermal expansion (1/K)
DT bulk storage and inlet temperature difference (K)
V differential operator
l Thermal conductivity [W/K-m]
tij viscous stress [N/m2]
fi body force [N/kg]
m dynamic viscosity [kg.m/s]
hd discharging efficiency

Abbreviations
div divergence operator
grad gradient operator
K.E. kinetic energy (J)
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the tank. Abdelhak et al. [3] performed CFD simulations and studied
the effect of inlet mixing for vertical and horizontal tanks. They
concluded that vertical tanks are far better at inhibiting the vertical
mixing. Fernandez et al. [6] studied three inlet-outlet devices and
identified the most effective stratification sustaining device. Other
important parameters include flow rate, the bulk storage & inlet
temperature difference. Considerable research based on bulk stor-
age and inlet temperature has been done by Baeten et al. [10]. The
authors provided a novel method to model the buoyancy effects
and the mixing between inlet and bulk fluid layers which can be
implemented in the building energy simulations. Water jets and
their effect on stratification as studied experimentally and
numerically by Shah and Furbo [8] confirmed the interdependence
of inlet design at different flow rate and the quality of stratification.
A divergent conical type diffuser is supposed to suppress the
mixing effects at inlet due to better diffusion of water thus
enhancing stratification [11,12] while, bronze conical diffusers, PEX
pipe, Solvis with/without T-pipe, and EyeCular Technologies
stratifier are very frequently available [34]. In other situation, de-
stratification can occur due to many factors such as ambient heat
loss, heat conduction within fluid layers and tank wall, turbulent
inlet mixing in dynamic mode [4,5]. Shin et al. [4] performed
various bench scale and large-scale experiments and identified
among various factors determining the stratification. The loading
time critically influences the stratification performance. As loading
time increases, stratification decreases. Fan and Furbo [5] studied
the dynamics of stratification during heat loss to ambient. Heat loss
factor was introduced and used to investigate the buoyancy driven
currents between layers caused by natural convection.

A lot of research has been carried out to optimize the storage
tanks with the help of computational fluid dynamics CFD [3,19].
Abdelhak et al. [3] numerically studied the heat transfer charac-
teristics of vertical and horizontal tank. Authors concluded that
mixing is restricted at the inlet of the vertical tank thus enhancing
the stratification in contrast to the horizontal tank. Also, smaller
Richardson number was obtained for horizontal tanks. Eames and
Norton [19] studied the influence of tank geometry on stratifica-
tion. Authors found that low inlet jet velocities subject to less cross-
sectional dependency on thermocline development. It was also
evident in the research that single jet accommodating variable
temperature inlet degrades the thermal stratification. Many au-
thors performed finite volume analysis to study thermocline dy-
namics and inflow geometry dependency. CFD performance
parameters such as temperature and streamline contours, were
studied along with stratification numbers, discharging/charging
efficiency, Richardson number [7]. Kaloudis et al. [9], El-Amin et al.
[21], Simon and Wenxian [20] explored the temperature evolution
at different heights of the tank during the dynamic cycles of
charging or discharging and compared the results for different inlet
device positions and types using a three-dimensional finite volume
approach. Kaloudis et al. [9] performed Large Eddy Simulation (LES)
on the thermocline development and mixing process during dis-
charging. Thermocline thickness, entropy and exergy generation
were subsequently calculated to quantify mixing. Two distinct
phases of discharging process were identified e intrusion region at
the early stage of discharge, and the resultant mixing during overall
process. El-Amin et al. [21] performed finite volume method (FVM)
and PIV analysis of the turbulent horizontal jet inlet in the storage
tanks. Authors visualized the stratification phenomena through
CFD contours and PIV methods. Altuntop et al. [22] numerically
studied the influence of obstacles on stratification in hot water
tanks. Tank with obstacles having a hole at the center appeared to
have better stratification then tank without any obstacle. Han et al.
[23], in their reviewwork stated that the numerical simulations are
undoubtedly becoming the most attractive tools to visualize the
complex thermocline behavior in hot water storage tanks based on
renewable energy perspective. Numerical simulations based on
finite volumemethods critically depend upon the assumptions and
the quality of model. Likewise, Haller et al. [24] stated that two-
dimensional analysis overestimates the thermocline thickness,
henceforth, three dimensional simulations are more practical in
simulating the more complex fluid behavior in thermal storage
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tanks. Khurana et al. [25], Savicki et al. [26], Zach�ar [27], Toyoshima
and Okawa [28], Njoku et al. [29], Gasque et al. [30] performed
three dimensional simulations to capture the physics behind the
stratified flows in the hot water storage tanks. Khurana et al. [25]
studied the influence of ribs in the storage tank. The authors
concluded that process of stratification takes place more slowly in
the ribbed tank then in the smooth walled tank. These ribs are
demonstrated to be simple means to reduce stratification in the
liquid hydrogen. Savicki et al. [26] developed and studied 3Dmodel
of cylindrical storage tank and established some correlation to
predict the temperature profile and thermal stratification with
time. These correlations are said to facilitate the modelling of solar
collectors and thermal storage tanks as it can provide the reference
data without having to do experiments on experimental facility.
Toyoshima and Okawa [28] performed experimental and 3D CFD of
the impinging buoyant jet and its effect on the transient temper-
ature distribution in the tank.

Empirical correlation was proposed to predict the height of the
impinging vortex relative to momentum and buoyancy of the inlet
jet, whichwas finally supplemented by 3D CFD analysis. Njoku et al.
[29] in their overview study detailed all the practices in the CFD
modelling in the recent past. Accordingly, authors favored 3D
modelling rather then 2D for Energy and Exergy analysis of storage
tanks. Authors also mentioned about the usage of Artificial Neural
Networks (ANN) in 1D modelling of stratified tanks. Geczy-Vıg and
Farkas [31], for example developed an ANN model to predict the
stratified layer temperatures in the storage tankwith an accuracy of
as low as 0.77 �C and 0.22 �C with load and no-load conditions
respectively. ANN modelling requires a large amount of experi-
mental data, as training and validation are its intrinsic part. Neu-
rons are first trained on the experimental data and then validated
subsequently on different set of data which is not seen by the
neurons to keep the overfitting checked. Kalogirou and Panteliou
[32] trained ANN to predict the long-term performance of solar
domestic hot water storage systems in terms of monthly hot water
output from a draw-off of 35 �C and 40 �C. Wang et al. [33]
developed and performed numerical and experimental study on
the novel equalizer. They analyzed their device by calculating
temperature profile, MIX number, and fill efficiency. Authors
recognized the flow suppressing influence of their device which
resulted in less mixing as demonstrated by reduced MIX number
and other indices.

The motivation of this work is to assess the operational char-
acteristics of hot water storage tanks during dynamic cycle. The
results of which later can be executed in storage devices based on
discrete heat addition type e heat pump or otherwise. To begin
with, experimental study of discharging process with simple inlet
was carried out. Stratification assessment was done with the
assistance of different performance indices e MIX number,
Richardson number and temperature profiles and discharging ef-
ficiency. The discharging process with simple inlet was numerically
simulated and was further compared with the CFDmodel of slotted
and perforated inlet.
2. Experimental characterization e application to simulated
methods

The experimental setup as shown in Fig. 1 consists of primary
cylindrical hot water storage tank with following parameters: 397 L
in volume, 550 mm diameter and 1905 mm overall height. Tank
diameter along with insulation is nearly 750 mm, top insulation
thickness is 120 mm while bottom insulation thickness is 50 mm.
The tank is connected to the secondary cold tank which is almost
double the size, and acts as the source for cold water inlet. In
addition, cold tank is connected to the thermostatic chiller to cool it
down after each discharging cycle. Each tank is incorporated with
an expansion vessel to accommodate any volumetric change during
heating/cooling. To measure the vertical distribution of tempera-
ture, 20 PT-100 temperature sensors were attached around the
outside of tank wall in the vertical direction, dividing the tank into
20 equal fluid segments. The distance between adjacent sensors
was 8 cm. 2 PT-100 sensors were also placed at inlet and at outlet of
the tested tank to track incidental temperature deviations.
Charging of the tank was performed using two methods. Firstly, by
thermostatically controlled electric heater which is present in the
lower half of the tank, secondly, by an external electric boiler.
Experimental tank can be set for various mixed conditions, 60 �C
and 50 �C for example. Discharging process is carried out by
regulating manually operated one-way valve as shown in Fig. 1 (b).
There are basically twowater circuits, in addition to external heater
or boiler circuit. The circuit involving cold water tank and hot water
tank and, the circuit involving the cold-water tank and the ther-
mostatic chiller. The Discharging process includes shutting off the
chiller circuit by regulating various manual valves and carefully
following the flowmeter readout for the flow of 200, 400, 600 and
800 l/h. The sensor outputs were recorded by ALMEMO data
acquisition system at 5 s intervals. Flow rate was measured by
Sitrans F M Mag 5000 flow meter which is a transmitter-based flow
meter by Siemens with an accuracy of 0.4% ± 1 mm/s. When dis-
charging process was completed the tank to tank circuit was shut
down and the chiller circuit is opened to cool down the cold tank
for further experiments. Experiments were replicated to assess the
experimental accuracy and error analysis was performed.
2.1. Parametric analysis and energy methods

A series of experiments with different flow rates was performed.
The experiment results obtained with simple inlet device were
used to validate CFD simulations. Initially, thewater in the tank was
uniformly heated to 60 ± 0.5 �C by the electric heater to ensure that
the water in the tank had the same initial temperature and had no
thermal stratification. The inlet water temperature was maintained
at 10 ± 0.5 �C during discharging. The discharging test of each inlet
was carried out at four flow rates i.e. 200 l/h, 400 l/h, 600 l/h, and
800 l/h. The temperature distribution and outflow water temper-
ature were recorded in order to analyze the influence of the flow
rates on the vertical temperature distribution in the tank during
discharging. The evolution of temperaturewith dimensionless time
(t*) at different nodal location (20 nodes) is shown in Fig. 2. The
dimensionless time (t*) was calculated by dividing the current
discharging time (in the time series) with the unit replacement
time as established by Eq. (1). To illustrate, the replacement time is
defined as the time taken by the volume of water in the tank to be
fully replaced by incoming cold water, thus unit replacement time
differs for different inlet flow rates. Each experiment actually lasted
a unit replacement time.

t* ¼ t
r

(1)

r¼VT

V
· (2)

The experimental results were analyzed in one-unit replace-
ment time at different flow rates. When the flow rate was 200 l/h,
the unit replacement time was 1.98 h. Similarly, the unit



Fig. 1. Schematic of experimental setup.
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replacement time for 400, 600, and 800 l/h’s is 0.99, 0.66 and 0.50 h
respectively. It is quite apparent that 200 l/h exhibits better strat-
ification as compared to rest of the flow rates. Temperature values
of the upper layers are higher and more stable than their counter
parts for higher flow rates. Mixing is highest for 800 l/h. Top 20th
layer is showing unusual behavior for all the flow rates, as it is not
playing any role in the discharging process, due to its geometrical
presence above the tank outlet, which actually doesn’t participate
in plug flow. The temperature of the 18th layer is on its lowest value
of 52 �C for 800 l/h while its 59.2 for 200 l/h during 60% of
discharge.

2.1.1. MIX number
MIX number evaluates the tank on the basis of both vertical

temperature distribution and the total energy stored in the tank
[13,14] (Eq. (4)). This is in contrast to assessment of temperature
profiles where vertical temperature gradients or the temperature
deviations in the tank are evaluated with time. Accordingly, it
postulates the mixing process in the tank by evaluating the
moment of energy ME of individual water layers [15]. Moment of
energy of thermal storage tank is calculated to account for energy
location by summation of the sensible energy content up to jth
vertical segment, weighted with the height of its location, as given
by Eq. (3).

ME ¼
Xj
j¼1

yj:Ej (3)

MIX¼ Mstr �Mexp

Mstr �Mfull�mix
(4)

Fig. 3 shows the calculated values of MIX number for 60e10 �C
discharging process at flow rates of 200, 400, 600 and 800 l/h
respectively. MIX number varies between 0 and 1 as suggested by
Eq. (4). 200 l/h has the lowest ascent, followed by 400 l/h, then
600 l/h; finally, 800 l/h has the highest ascent of MIX number. It is
evident from figure that at t* ¼ 0.4 MIX number for 200 l/h is
approximately 0.4 while for 800 L/h it is 0.6.
2.1.2. Richardson number
Richardson number is quite prominently used to assess strati-

fication by many authors [8]. This dimensionless number charac-
terizes the ratio between potential energy required for vertical
mixing and the turbulent kinetic energy available for such process.
A small Ri number signifies mixed storage, while high Ri number



Fig. 2. Temperature evolution at different flow rates.

Fig. 3. MIX number evaluation.
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indicates stratified one. This is explained in Eqs. (5) and (6)

Ri¼ W
K:E:

¼
g
r:
dr
dz�

dv
dz

�2 (5)
Ri¼ gbDTL
v2

(6)

Whenever two fluids with different density interact, buoyancy
force comes into picture and influences mixing and motion of two
fluids, thus determining stratification. In reality, the Richardson
number (Ri ¼ Gr/Re2) is always considered an influential factor.
Fig. 4 represents the evolution of the Richardson number as a
function of the dimensionless time for different discharging pro-
cesses. As per definition, tank sustains better stratification at lower
flow rates. In other words, Ri is increased as flow rate is decreased
from 800 to 200 l/h. For example, Ri at t* ¼ 0.6 for 800 l/h is nearly
75, while for 200 l/h it is approximately 120, t*¼0.6 being the
dimensionless time at which 60% of tank volume is already
discharged.
2.2. Error analysis

Quantification of data uncertainty is an important part in pre-
dicting the precision of the measured random variables. In the se-
ries of measurements demonstrated above, time series data was
dealt with. With this type of data series, statistical parameters such
as mean, standard deviations, probabilistic distribution of error
(gauss distribution) etc. can be easily employed to understand the
data variability, uncertainty propagation and the error analysis. A
series of experiments were performed on the single variable set to
confirm reproducibility of the results. Consequently, percentage



Fig. 5. Probability distribution of Error.

Fig. 4. Richardson number evaluation.
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error was determined on each progressive and consecutive set of
data points. This was resumed until the 90% of the data values fall
within 1 or 2 standard deviation. Fig. 5 shows the probability
density distribution of the error measurement of one the consec-
utive set of data points. It is nearly normally distributed. More than
95% of the values fall within 5% of the error. Fig. 6 shows the count
of the measured values of each of the temperature sensor and the
error associated with it. It demonstrates statistically, that rather
600 data values have next to 0e0.5% error. There are some values
with 5% and even 15% error but these values are not dense. In
addition, uncertainties of the measuring devices used in the ex-
periments are given in Table 1.

3. Numerical modelling

3.1. Physical domain and conditions

Computational domain serves as the model of the physical tank
under test which was described in section 2. It is created with three
distinct cell zone conditions, first for the fluid volume, second for
the tank wall thickness and the third for the tank insulation.
Incoming fluid has the uniform temperature and velocity. Three
distinct geometries of tank inlet namely simple inlet, perforated
inlet and slotted inlet are considered. All the geometric models are
created in space claim modeler of the ANSYS academic research,
version 19.2. Geometry creation was followed by mesh generation,
and finally 3D transient simulationwas performed. The approach of
polyhedral mesh was appropriately chosen for the current geom-
etry due to its promising accuracy and faster convergence in fewer
iteration. Grid refinement and optimization procedures were
adopted andminimum orthogonal quality of 0.45 was ensured. The
mesh is more refined at the inlet and outlet with addition of in-
flations layers to capture the velocity fluctuations. This greatly
enhances the numerical accuracy. Mesh independency study was
performed on the mesh sizes e 830 685 cells and 980 783 cells and
1 118 564. As the mesh with 1 118 564 cells did not provide
improved results, mesh with 980 783 cells was adopted for further
analysis, thus maintaining the best trade off between accuracy and
computational time. The working assumptions are as follows:
working fluid i.e. water is incompressible, any influence of viscous
dissipation is neglected, and pressure gradients are assumed to be
small enough that temperature dependence on pressure is negli-
gible. Thermo-physical properties are temperature dependent,
therefore, density, specific heat, dynamic viscosity, thermal con-
ductivity is fitted with polynomial relation with temperature.
Accordingly, after establishing the credibility of the results, with
simple inlet device e through experimental validation and mesh
independency study, all its working setup was finally regressed to
the slotted and perforated inlet. Finally, predictability study was
performed on slotted and perforated inlet devices and the results
were compared with the simulated inlet. Fig. 7(a) and (b) illustrates
perforated slotted inlet devices respectively. While Fig. 7(c) and (d)
shows the meshed tank with simple inlet device as used in
experimental environment.
3.2. Governing equations

Partial differential equations (PDEs) governing the fluid flow in
tank includes continuity, momentum and energy equations. In
accordance with fluid dynamics, Reynolds number at the inlet for
800 l/h discharge rate was found to be 6440 which makes the
phenomenon in the turbulent regime. A variety of turbulence
models are available to simulate turbulent flows for specific con-
ditions. In this study, standard k-e model was adopted to simulate
the buoyancy induced mixing and stratification phenomenon.
Equations (7)e(11) are represented in Cartesian coordinates below.

Continuity equation:

V ,ui ¼
vu
vx

þ vv

vy
þ vw

vz
¼ 0 (7)

Energy equation:

rCp
vT
vt

¼divðlgrad��!
TÞ þ Tb

vP
vt

þ qþ 4 (8)

where,

4¼ � 2
3
mðdiv u!Þ2 þ 2mSij

vui
vxj

(9)

Sij ¼
1
2

 
vui
vxj

þ vuj
vxi

!
(10)

Momentum equation:

vðruiÞ
vt

þ
X3
j¼1

v

vxj

�
rujui

� ¼ �vP
vxi

þ
X3
j¼1

vtij
vxj

þ rfi (11)

Boundary conditions taken into considerations to solve these



Fig. 6. Statistical analysis to understand error distribution.

Table 1
Uncertainty of measuring units used in experiments.

Device Uncertainty

Flow meter (Sitrans F M Mag 5000) 0.4% ± 1 mm/s
Temperature sensor (Pt100) ±0.05 �C from �80 �C to 200 �C
Thermostatic heater ±0.5 �C
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equations are as follows: velocity inlet and pressure outlet
boundary conditions. All three inlet devices were evaluated for flow
rate (velocity), and bulk storage & inlet temperature difference
(DT). Likewise, simulations were performed for tank bulk temper-
ature of 60 �C, and inlet temperature of 10 �C & 30 �C. Accordingly,
two conditions of high and low DT were formulated. Bulk storage
temperature of 60 �C with 30 �C inlet temperature results in lowDT
(30 K). High DT constitutes 60 �C bulk storage temperature while
10 �C inlet temperature thus amounting DT ¼ 50 �C. Flow rates for
both the conditions were 800 l/h and 200 l/h respectively.

The above-mentioned equations are solved with the boundary
conditions assigned as follows:

� Flow inlet and flow outlet boundary conditions

Vin¼uavg ¼ðV =Across sec tionalÞ; T ¼ Tin (12)
� Pressure outlet boundary conditions
� Wall boundary conditions: No slip wall conditions
� Adiabatic wall condition
� Turbulent or laminar flow conditions according to the flow rate:
3.3. Thermo-physical properties

Properties of water are temperature dependent, henceforth
density, specific heat capacity, thermal conductivity and dynamic
viscosity are the expressed in polynomial fitted expressions as
given in Eq (13e16).



Fig. 7. (a) Perforated inlet, (b) Slotted inlet, (c) and (d) Mesh for simple inlet storage tank.
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r ¼ 999:8þ 0:06755T � 0:008788T2 þ 7:824T � 10�5T3

�5:734� 10�7T4 þ 1:901� 10�9T5

(13)

Cp ¼ 4:217� 0:00338T þ 0:0001142T2 � 1:924� 10�6T3

þ1:724� 10�8T4 � 6:156� 10�11T5

(14)

m ¼ 0:001789� 5:994� 10�5T þ 1:383� 10�6T2 � 2:105
�10�8T3 þ 1:811� 10�10T4 � 6:51� 10�13T5

(15)

l ¼ 0:5558þ 0:002425T � 1:839� 10�5T2 þ 1:46� 10�7T3

�1:934� 10�9T4 þ 1:106� 10�11T5

(16)
3.4. Numerical method

As soon as the models with three different inlet devices are
modelled in Space Claim available in ANSYS 19.2, cell zone condi-
tions in each were allotted and fixed as solid or fluid, in accordance
to the common practice. The models were subsequently exported
for meshing where they were discretized to the finitude of smaller
sub-elements. One such meshed model with simple inlet is shown
in Fig. 7(c) and (d). PDEs (7)e(11) are coupled and nonlinear,
therefore in order to solve them further step of numerical dis-
cretization follows with pressure-based solver in Fluent. In addi-
tion, natural and buoyancy induced convection are also
incorporated in the momentum equation by introducing density as
a function of temperature and activating gravity in Fluent.
Furthermore, energy and momentum equations have conjugated
convective terms which are approximated and spatially discretized
by employing second order upwind scheme. Precise SIMPLE algo-
rithm is engaged to ascertain the coupling of pressure and velocity.
Before starting the simulation, energy checkbox is selected for
ANSYS to solve heat transfer equations, followed by, k- e framework,



Table 2
Flow rate and Reynolds number boundary condi-
tions at inlet.

Flow rate (l/h) Re

200 1400
400 2840
600 4270
800 6440

Fig. 9. Temperature profiles for comparison between Experiments and CFD.
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to ensure turbulent flow, depending upon the case as listed in
Table 2. Finally applying the above-mentioned boundary conditions
at appropriate named selection. Thermo-physical properties of
water as enlisted in Eq (13) e (16) are allotted in the user defined
polynomial fitted properties. Inlet water flow velocity (V/Across

sectional) as enlisted in Table 2 with temperature of 10 �C and 30 �C
was applied at inlet boundary condition. A report file containing the
information of 20 fluid layers with their coordinates and temper-
ature was defined in Solution Monitors tab of Fluent. This report file
will ensure that the temperature value of each nodal layer will be
correctly stored for every 250th iteration, thus later can be easily
analyzed with different data processing package such as Pandas in
Python language. For the purpose of plotting the results, statistical
data visualization packages such as Matplotlib and Seaborn in Py-
thon were employed. The unsteady or transient simulations were
initialized with tanks temperature of 60 �C. The unsteady or tran-
sient case was initialized and was run on Czech Technical Uni-
versity’s cloud computers running on 4 Intel Xeon processors. With
the exception of continuity, convergence criteria for all other
equations were set to 10�6. Continuity equation is most difficult to
converge; therefore, it was relaxed as a regular practice to 10�4. An
initial time step of 2 � 10�4 was chosen to assist in convergence
until flow was fully developed. Later it was increased to 0.02 to
make the simulation time feasible.
3.5. Model validation

In order to establish the credibility of results, numerical simu-
lations necessitate the need for validation. In this section results
obtained by simulations are compared with experiments especially
with the case of simple inlet device. Fig. 8 shows the evolution of
temperature contours of discharging process having flow rate of
200 l/h. The thermocline development of the process is visible, cold
water enters the tank and entrains the hot water along while
settling down towards the bottom of tank. The induced mixing
causes thermocline thickness to increase while it propagates
Fig. 8. Temperature contours of discharging through sim
towards the outlet during the whole process. The unit replacement
time for 200 l/h is 1.98 h. Fig. 9 demonstrates the comparison of
temperature profiles between experimental and simulated results
with simple inlet device for the flow rate of 200 l/h. As the dis-
charging proceeds, temperature in each layer decreases due to cold
water mixing with the hot water. Experimental data acquired from
odd numbered PT-100 sensors on the stratified tank were plotted
for comparison with corresponding node layers in simulated sys-
tem. The significant difference at the bottom of the tank is seemed
to be due to non-established fully developed flow near the bottom,
this then leads to unstable thermocline capture, resulting in high
error near the bottom at the early stages of the simulation. As
discharging progresses, thermocline establishes and flow was fully
developed, resulting the decrease in error. The error was signifi-
cantly low in the top position of the tank. In addition, generally
there is always a tradeoff between the error management and time
expenditure by any numerical simulations.

Once the simulated model was validated with experimental
results, further simulation with perforated and slotted inlet device
will become valid and can lead to higher accuracy. Mesh inde-
pendence study is also an important aspect of CFD simulations.
ple inlet device at flow rate 200 l/h & DT ¼ 50 K.



Fig. 10. Mesh independence test.

Y.P. Chandra, T. Matuska / Renewable Energy 154 (2020) 1165e11791174
Mesh independency test is performed on mesh sizes with,
830 685 cells, 980 783 cells and 1118 564 cells. Case with 1118 564
performed no better than the case 980 783, henceforth, there was
no reason to increase the cells beyond 980 783 and this case was
used for all further simulations. This ensured best compromise
between computational time and accuracy of results. Fig. 10 plots
the outlet temperature for three different meshes.
4. Results and discussions

Once the initial CFD model is validated with experiments and is
verified for mesh independence test, the subsequent analysis of
different models become more reliable and more accurate. Figs. 11
and 12 respectively give the dynamic temperature contours of
perforated and slotted inlet devices at 200 l/h & DT ¼ 50 K (i.e
Tbulk ¼ 60 �C & Tinlet ¼ 10 �C) for different location in time during
the discharge. To obtain these clear visual representations, dataset
visualization package ParaView was employed. Correspondingly,
the simulation data files were imported from the Fluent to the
ParaView and plotted at selected time intervals to obtain the
desired contours. Accordingly, the evolution of transient thermo-
cline thickness can be easily visualized through these time
dependent temperature contours both for perforated and slotted
inlet devices. Likewise, as the discharging process proceeded,
incoming low temperature and high-density fluid entrains and
mixes with the bulk fluid at inlet thus creating a continuous ther-
mocline. In addition, while the plug flow continues, thermocline
thickness increases due to further exchange of heat and mass
through convection, diffusion and conduction between layers, even
though convection constitutes major part of the thermal exchange.
In real sense, density induced buoyant force as governed by flow
parameters such as flow rate and DT determines the mixing which
eventually propagates throughout the tank, i.e. with increase in the
dimensionless time, thermocline thickness increases and drifts
from bottom to the top of the tank. Figs. 11 and 12 shows the nu-
merical model in detail. It is not intended to measure the ther-
mocline thickness directly for each case of simulated perforated
and slotted inlets, however it can be examined through indices of
stratification e temperature profiles, MIX number and discharging
efficiency as discussed in the following subsection. Richardson
number is excluded from this analysis, as it is kept constant for each
case e by making DT and flow rate fairly constant.

The following sub-sections are tailored to understand the
behavior of inlet devices on stratification performance of tank.
Simulated simple, perforated and slotted inlet devices are tested for
various dynamic mode parameters. These parameters e inlet flow
rate andDT, are varied for all the three inlet devices, and essentially,
indices of stratification e temperature profile, MIX number, and
discharging efficiency are calculated and compared. It was conse-
quently found that the indices of stratification demonstrated in the
following sections are highly sensitive to inlet flow rate and DT.
Therefore, for further analysis, flow rate and DT are preset and thus
classified as high or low depending upon their fluid dynamics
properties. For example, flow rate of 800 l/h is regarded as high
flow rate owing to its turbulent nature with Re ¼ 6440, while flow
rate of 200 l/h is laminar, hence low flow, with Re¼ 1400. Likewise,
DT ¼ 30 K accounting for the tank conditions e 60 �C as bulk
storage temperature, and 30 �C as inlet temperature is termed as
high DT, while DT ¼ 50 K corresponding to 60 �C as bulk storage
temperature, and 10 �C as inlet temperature is termed as low DT.
These two variables are primarily adjusted for selected inlet de-
vices, and finally, indices of stratifications were appointed to eval-
uate the results.

4.1. Dynamics of stratification performance at high flow rate (800 l/
h) and low DT ¼ 30 K

Fig. 13 shows the evolution of temperature with dimensionless
time for the case of slotted, simple and perforated inlet devices at
800 l/h, DT ¼ 30 K. In other words, flow rate, bulk storage tem-
perature and inlet temperature respectively are 800 l/h, 60 �C and
30 �C. This is the condition of turbulent flow with Re ¼ 6440. The
dimensionless discharging time was introduced to compare and
analyze the discharging performance at different flow rates.
Conspicuously, when the flow rate is 800 l/h, the unit replacement
time for each inlet device is 0.50 h, as it was ensured that the
volumetric discharge rate is kept constant for each device. This also
ensured that the Richardson number is also fairly constant for the
same DT, thus making comparison grounds even smoother. To
illustrate, dimensionless temperature values corresponding to odd
numbered fluid layers are plotted and mapped with dimensionless
time for each case. It is evident that slotted inlet exhibits better
stratification performance as seen by its lower temperature decay
of nearly every layer due to impeded mixing. This is especially the
case with high flow rate of 800 l/h (Re ¼ 6440) when turbulent
mixing is the major culprit in de-stratification, and there is no time
for heat sinking through diffusion and conduction between layers,
slotted inlet performs best by subduing the mixing and smoothly
guiding the cold water. In other words, the higher density fluid is
smoothly guided towards the lower portion of the tank, thus acting
as buffer in establishing the counter active forces of buoyancy and
gravity. When the tank is nearly 80% discharged, temperature of
18th layer with slotted type device is 39.9 �C, while with simple and
perforated inlet its 27.6 �C and 22 �C respectively. So there was
straight 30.7% and 44.8% percent decrease in the temperature of the
18th layer by changing the inlet device from slotted to simple and
from slotted to perforated inlet device. This behavior can be seen in
the rest of the layers as well, however, apparently, distinction in the
temperature differences in the respective layers of each inlet de-
vices is not very significant in the lower part of the tank (lower then
13th layer), and thus the reason layers 15 to 19 are hued in red.
Moreover, Fig. 14 illustrates the variation of MIX number with
dimensionless time as the discharging process proceeds. As ex-
pected MIX number varies from 0 to 1. Since the temperature decay
rate of the lower portion of tank doesn’t make much difference for
each case, MIX number of the slotted inlet starts to depart
approximately after half of discharging process. This is suggested to
be improving the tank stratification in the upper part of tank by



Fig. 11. (a) Perforated inlet characterization, (b) Temperature contours of discharging through perforated inlet at flow rate 200 l/h & DT ¼ 50 K.
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inducing mixing inhibiting effects of slotted inlet device. As a
comparison, MIX number of slotted inlet device at 60% of dis-
charged tank is nearly 0.6, while its 0.8 and 0.85 for simple and
perforated respectively. In conclusion, tank with slotted inlet ex-
hibits better stratification performance compared to the other two.

This is corroborated by Fig. 15 demonstrating the discharge ef-
ficiency variation with flow rate and DT. Discharge efficiency as
given in Eq. (17) is defined as the fraction of recoverable heat for the
fraction of the discharging time td at which the bulk storage and
inlet temperature difference has not decreased to 20% of the initial
value, i.e. ðjToutlet � Tinlet j <0:8 ,jTinitial � Tinlet jÞ.

hd ¼

ðtd
0

_m,cp,ðToutlet � TinletÞdt
mstore,cp,ðTinitial � TinletÞ

(17)

Discharge efficiency of slotted inlet at 800 l/h and DT as 30 K is
84%, which is comparatively higher than that of simple inlet (77.8%)
and perforated inlet (76.5%).
4.2. Dynamics of stratification performance at low flow rate (200 l/
h) and low DT ¼ 30 K

Fig. 16 shows the evolution of temperature with dimensionless
time for the case of slotted, simple and perforated inlet devices at
200 l/h, DT ¼ 30 K. In other words, flow rate, bulk storage tem-
perature and inlet temperature respectively are 200 l/h, 60 �C and
30 �C. Evidently, temperature profiles are showing the same
behavior in all the three cases. This can be interpreted by the fact
that at low flow rate and low DT, when flow is laminar (Re ¼ 1440)
de-stratification is not entirely caused by intense mixing, but rather
by heat sinking through natural convection diffusion and conduc-
tion among fluid layers near thermocline. Consequently, it makes
sense that all the three inlet devices are nearly performing equally
regardless of the flow rate and DT. Also, it can be seen that the
tank’s bottom layers e 1st, 3rd, 5th, and 7th were deviating a little
from each other e slotted inlet device lagging behind in terms of
temperature then the rest of its peers, however, they are already



Fig. 12. (a) Slotted inlet characterization, (b) Temperature contours of discharging through slotted inlet at flow rate 200 l/h & DT ¼ 50 K.

Fig. 13. Temperature profile at 800 l/h and DT ¼ 30 K.

Fig. 14. MIX number at 800 l/h and DT ¼ 30 K.
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Fig. 15. Variation of discharging efficiency with flow rate and DT.

Fig. 16. Temperature profile at 200 l/h and DT ¼ 30 �C.

Fig. 17. MIX number at 200 l/h and DT ¼ 30 K.

Fig. 18. Temperature profile at 800 l/h and DT ¼ 50 K.
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established at the topmost layers (layers 13th,15th,19th). Likewise,
MIX number is behaving correspondingly e MIX for slotted inlet
device is diverged during nearly half of the discharging time
(t* ¼ 0.4), while catching up again with the rest (Fig. 17). In addi-
tion, MIX for slotted inlet device suggests that the tank is
comparatively poorly stratified during the half of time of dis-
charging (t* ¼ 0.5), as the area under the curve for slotted inlet is
higher than that of the rest of the inlets. However, this is quickly
subdued by the upper stratified layers and the overall stratification
of the tank is improved. Thus, equalizing all the three inlet devices
in the second half of the discharging time. Besides, it can also be
seen that the perforated inlet is diverging, but nevertheless, alike
stratification performance, as corroborated by the temperature and
MIX number analysis subjects to similar thermal performance as
illustrated by discharging efficiency in Fig. 15. Accordingly,
discharge efficiency for slotted, perforated, and simple inlet is
88.5%, 88% and 87.6% respectively. Henceforth, from this analysis it
can be deduced that slotted inlet, perforated inlet and simple inlet
performed approximately same in terms of thermal performance
and stratification performance for the condition of low flow rate
and low DT.
4.3. Dynamics of stratification performance at high flow rate (800 l/
h) and high DT ¼ 50 K

Fig. 18 show the evolution of temperature with dimensionless
time for the case of slotted, simple and perforated inlet devices at
800 l/h, DT ¼ 50 K. That is, flow rate, bulk storage temperature and
inlet temperature respectively are 800 l/h, 60 �C and 10 �C. To
illustrate, slotted inlet device is preforming better as shown by its
lower temperature decay at high Reynolds number (Re ¼ 6440)
which is of turbulent nature. Again, with flow rate of 800 l/h, the
unit replacement time is 1.98 h for each case of inlet devices,
however, the temperature decay rate of each layer is contrastingly
different. This might be explained in terms of combined action of
restrained turbulent mixing of slotted inlet and high temperature
difference DT between bulk storage and inlet temperature. At the
dimensionless time of t* ¼ 0.6, temperature of 13th layer is 18.5 �C,
9.0 �C, and 9.6 �C, respectively for slotted, perforated and simple
inlet devices. In other words, there is nearly 51% decrease in tem-
perature of 13th layer when simple inlet is used instead of slotted
inlet device. This trend can be observed in the rest of the layers as
well. Fig. 19 demonstrates the MIX number analysis of slotted inlet
at t*¼ 0.6 in the same process, while theMIX number of simple and
perforated is nearly 0.8. As a result, area under the MIX curve for



Fig. 19. MIX at 800 l/h and DT ¼ 50 K. Fig. 21. MIX number at 200 l/h and DT ¼ 50 K.
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slotted inlet is significantly lower compared to the rest of the twoe

indicating better stratification performance during the discharge.
Fig. 15 contrastingly inspects the discharging efficiency of the
processes with DT ¼ 30 K and DT ¼ 50 K having same flow rate of
800 l/h. Likewise, slotted inlet device has the discharging efficiency
of nearly 81%, while perforated and simple inlets at 800 l/h &
DT ¼ 50 �C have discharging efficiency of 74.5% and 75.2% respec-
tively. In case of flow rate ¼ 800 l/h & DT ¼ 30 K, slotted inlet has
efficiency of 84% (see Fig. 15). Furthermore, the lowest efficiency at
800 l/h is 74.5% in case of perforated inlet at DT ¼ 50%, while the
highest efficiency which is 84%, belongs to the slotted inlet at
DT¼ 30 K. Correspondingly, there is a 10% efficiency span among all
the discharging processes.

4.4. Dynamics of stratification performance at low flow rate (200 l/
h) and high DT ¼ 50 K

Fig. 20 show the evolution of temperature with dimensionless
time for the case of slotted, simple and perforated inlet devices at
200 l/h, DT ¼ 50 K. That is, flow rate, bulk storage temperature and
inlet temperature respectively are 200 l/h, 60 �C and 10 �C. Here the
temperature profiles are showing the same time dependencies for
all the three cases. This again like in the previous section 4.2, fol-
lows the same instance of low Reynolds number (Re ¼ 1440). In
Fig. 20. Temperature profile at 200 l/h and DT ¼ 50 K.
other words, laminar flow condition permits the convection, con-
duction, and diffusion between the layers in thermocline as the
main source of de-stratification e stronger than the turbulent
mixing etherefore, slotted inlet device did not assist too much.
Conclusion that can be deduced from here is that stratification, or
mixing, at low flow rate shows bare minimum DT or inlet device
dependency. However, as the flow rate is increased, dependency on
DT also increases. Fig. 21 demonstrates the MIX number for this
discharging process. Area under the curve is the same for each
device, suggesting that the tank is equally stratified for each case
where flow rate is low and DT is high. The other noticeable obser-
vation is that the MIX number for the slotted inlet for processes:
200 l/h&DT¼ 50 K and 800 l/h andDT¼ 30 K is nearly the same i.e.
0.6 at t* ¼ 0.6 (see Figs. 21 and 14). In the same conditions MIX
number for perforated and simple inlet device quantitatively differ.
This can be interpreted as the mixing damping effects of slotted
inlet device at higher flow rates which even gets compounded
when DT is decreased. The same can be seen in Fig. 15. As the flow
rate is increased, the slope of efficiency curve decreases (generally
for all the cases), due to decrease in efficiency at higher flowrates.
However, in the case of slotted inlet device, slope associated with
DT¼ 30 K is much higher than the slope associated with DT¼ 50 K,
signifying the combined damping effect the slotted inlet device
offers.
5. Conclusion

In this study, a system of CFD models was developed to research
the discharging performance of three types of inlet devices relating
to domestic hot water storage tanks. An attempt was made to un-
derstand how each inlet device performs in discrete operational
conditions e flow rate and DT. The basic idea behind this study was
to find possibilities to optimize storage tanks, with integrated
heating device with potential use ine solar systems or heat pumps.
For instance, heat pump based storage tank pertains to high flow
rate and low DT, while, solar system based storage tank pertains to
low flow rate and high DT. Accordingly, slotted, perforated, and
simple inlet devices were simulated in transient manner and were
examined for two fundamental operational variables - flow rate
and DT. Numerical data of simple inlet device was compared with
experiments to confirm the veracity of further simulations. Nu-
merical solution was in agreement with the experimental data,
thus implying that the predicted behavior of slotted and perforated
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inlet was reliable. Stratification indices such as temperature evo-
lution, MIX number and discharging efficiency were calculated for
each case and following conclusion derived.

1. Slotted inlet device performed no better than the rest of the
inlet devices at low flow rate of 200 l/h, at a particular DT. For
example, percentage increase in discharge efficiency, when
slotted inlet was used instead of perforated or simple inlet de-
vice, in both instances differed a mere 1e2%

2. Slotted inlet device started outshining the rest as the flow rate
was increased. Mixing damping effects of slotted inlet device
were even compounded at higher flow rates when DT was
decreased from 50 K to 30 K, giving not less than minimum 8.7%
increase in discharge efficiency at 800 l/h, within the maximum
efficiency difference span, which is 10%.

3. It is predicted, that for the application of heat pumps which
demand high flow rate and low DT, slotted inlet device can
exhibit the best thermal performance. While, for the application
of solar systems, demanding low flow rate but high DT, appli-
cation of slotted inlet might not make much difference in
thermal efficiency.

These research findings can be used in predicting and thus
optimizing the real time dynamic behavior of storage tanks, clas-
sified according to their heat addition - solar systems or heat
pumps.
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Study 2 

Design the custom built second law model to quantify energy/exergy dispersal 

of heat pump integrated TES  

   

Paper 3: Second law performance prediction of HP integrated stratified TES system using 

long short-term neural networks 

In this paper a ground source heat pump (GSHP) integrated with thermal energy storage (TES) 

system available for single family house in the Czech Republic was evaluated for relative exergy 

balance and second law performance evaluation. For this purpose, second law of thermodynamics 

was observed in tailoring the entropy and exergy equations. It was made possible to fit these 

equations to the customized data layer for end to end stratification performance of thermal energy 

storage (TES), and performance factor (PF) of heat pump (HP) during charge/discharge loop. This 

means that the second law model equation is derived from the scratch and is used to evaluate end 

to end energy trial, from grid to tap, from charge to discharge. In addition to novel data layer and 

derived models and their application to HP integrated TES, detailed application of advanced deep 

learning algorithms using LSTM neural networks is also demonstrated to model the data thus 

generated by data layer and to predict the TES layered temperature and efficiency.  
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thermal energy storage system using long short-term memory 
neural networks 

Yogender Pal Chandra a,c,*, Gwang-Jin Kim b, Tomas Matuska c 

a Department of Environmental Engineering, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague 6, Czech Republic 
b University of Freiburg, Freiburg 79104, Germany 
c University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Czech Republic   
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A B S T R A C T   

Thermal energy storages (TES) are transient state energy devices. These devices are used in renewable energy 
systems as a buffer for non-coincidence in heat supply and demand. TESs use thermal stratification to ensure high 
efficiency in heat storage and acquisition. This article is focused on predicting the performance of thermal energy 
storage (TES) integrated with heat pump using neural networks. In addition, exergy and entropy equations were 
derived for the calculation and prediction of the stratification efficiency in storage systems and of the perfor
mance factor (PF) of renewable energy systems (RES). As for data analytics, real time data-streaming edge de
vices were customized. The model fitting and prediction were done directly on the edge devices. The key 
objectives and findings are: 

• To demonstrate stream-data processing framework which can graphically represent the stratifi
cation decay of an active Thermal Energy Storage (TES) charge/discharge process in real time.  

• Derivation of a custom exergy equation for stratification efficiency and streaming it graphically in 
real time. The optimized key performance index (KPI) at the heat pump end i.e. coefficient of 
performance (COP) or performance of factor (PF) was 3.3, and at charge and discharge end, in 
terms of efficiency was 83 % and 84 % respectively.  

• A deep neuronal network applying a long short-term memory (LSTM) architecture for predicting 
stratification deterioration in the charge/discharge cycle with a prediction error below 5 %.   

1. Introduction 

The key component of renewable energy system is thermal energy 
storage (TES). Temperature distribution is enforced by buoyancy effect 
causing discreet layered storage of heat and its delivery. Using this 
phenomenon, high quality heat is ensured and storage efficiency is 
increased [1,2]. Water distribution can be present in the stepped or 
continuous form in the TES. A better assessment of temperature distri
bution, velocity profiles, in thermal storage tanks at length is given by 
[3–7]. A study on greater extent solving partial differential questions 
using neural networs is done by [8]. On contrary, there are some factors 
which cause the stratification to deteriorate over time, these include 
primarily mixing at the inlet with cold water, losses to ambient, and 

internal convection. Stratification indices are mathematical equations 
quantifying the stratification process. Substantial research is present 
already discussing these indices. There are stratification measurement 
indices based on first law of thermodynamics, these include coefficients 
of stratification, Mix number, Richardson number etc. These indices 
actually calculate the usable fraction of energy ready to be delivered 
against stored. Second form of indices are based on second law of 
thermodynamics ([9]. [3–5]). Second law indices measure total exergy 
present to the available stored energy during the thermodynamic pro
cess of charge or discharge. Logical deduction is that second law indices 
are equated to stratification efficiency [3–5,9]. This means then an 
efficient process should always generate lesser entropy comparatively. 
[10] were the first who researched the second law efficiency. The work 
of [10] is tightly bounded to the delivery temperature and was applied 
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to the discharge process. In this paper, the Rosengarten exergetic 
equations are rederived for complete charge discharge cycle. The 
following points are further observed:  

• To bring the real time component in the stratification measurement, 
second law efficiency equations are derived and are fitted to novel 
stream-data processing edge-device. In this manner, efficiency 
calculation is improved and is brought to the edge device which 
helped in envisioning the stratification decay in more dynamic way. 
The edge devices include two Raspberry Pi [11] minicomputers 
installed at the experimental test rig. A substantial amount of data 
engineering was done from ingesting data, data modelling, and 
finally to visualize data in real time. All the Code and the gif visuals 
of the physical process is available on the git repository [12]. The 
visual expression of stratifcation decay will help researchers and 
academicians for a better understanding of their TES devices and 
thus will help to improve the industrial testing. A detailed study on 
visual platforms to study experimentation in the field of efficient 
storage is done by Guo et al., [3–5]. 

• The edge computing is further evolved in the area of data engi
neering by addressing the following:  

■ A framework of long short-term memory (LSTM) neural networks 
was utilized to predict the second law stratification efficiency. The 
data driven prediction model was correlated and compared with the 
quantitative formulae driven model.  

■ Development of applied deep learning (DL) framework utilizing long 
short-term memory (LSTM), and multilayer perceptron (MLP) to 
model the layered temperature and to predict the entropy generation 
during charging and discharging loop. This will advance knowledge 
of deep learning frameworks and layered temperature modelling 
which researchers can use to understand their TES devices when 
quantitative approach might be restricted. For example, the trained 
models can be planted on the edge devices itself which can get the 
real time energy efficiency information without using quantitative 
calculations at the edge.  

■ Hyper-tuning the LSTM neurons so as to improve their capacity to 
capture more complex local features (information) in the data. For 
example, discharging is accompanied by complex process of forced 
convention which has to be captured by model in order to predict the 
stratification efficiency correctly. Conventional models skip these 

complex features while only are able to capture more global infor
mation from the data. This paper also tried to address this problem as 
the method improvement.  

• Finally, parametric analysis as a correlation matrix will be discussed 
in relation to performance factor (PF) of heat pump, second law 
charging efficiency, second law discharging efficiency to reach on a 
decision about which variables are respecting the energy 
sustainability. 

2. Methods 

2.1. Experimental setup 

The simple concept of energy in and out is tested. Every irreversible 
thermodynamic process is accompanied with entropy generation which 
is the direct measure of the increase in the unavailable energy. The 
experiments are carried out and this entropy generation was calculated. 
In this manner de-stratifying entropy was quantitatively measured. The 
setup is based on a residential ground source heat pump consuming grid 
power and delivering heat at discrete compressor speeds. The tested TES 
tank was connected with this heat pump as a buffer heat storage device. 
Heat pump extracted the heat from the source tank which was 
constantly heated by thermostatic heater maintained at specific constant 
temperature. The tested TES was 390 l. Ten PT-100 temperature diodes 
were attached around the TES longitudinally. This divided the TES into 
10 equal temperature layers. TES inlet and outlet temperatures were also 
tracked. Temperature diodes were calibrated for error of approximately 
±0.3 ◦C. TES was connected with the load tank having a volume of 900 l. 
There were two water circuits of primary importance – heating circuit 
with heat pump & TES at its core, and load-TES circuit. Load-TES circuit 
is attached with a mixing valve to ensure constant discharge tempera
ture. Both circuits had their own flow meter (Seimens) calibrated for 
error of ±0.5 %. All the data is ingested to the data-stream processing 
edge device (more on this is in next subsection). Charging was done for a 
predefined TES temperature with constant flow rate and compressor 
speed. Discharge loop was actuated for constant tapping temperature 
once the TES is charged for a predefined value. During the process data 
was getting ingested already to data streaming device and visuals of 
stratification indices were created in real time. The heated load tank was 
cooled down by thermostatic cooler and the experiments were repeated 

Nomenclature 

ADC analog to digital convertor 
c/C thermodynamic specific heat capacity (J/kg-K) 
DL deep learning 
e error/loss 
Ecom compressor electricity consumption 
Ep circulation pump electricity consumption 
GSHP ground source heat pump 
HP heat pump 
h height (m) 
H total height (m) 
LSTM long short-term memory 
MLP multilayer perceptron 
NN neural network 
NS Navier-Stokes 
PF performance factor 
PT-100 platinum temperature-100 
Q thermodynamic heat addition (kJ) 
Raspi Raspberry Pi minicomputer 
RES renewable energy source 
RNN recurrent neural network 

RSS residual sum squared 
RTD resistance temperature diode 
TES thermal energy storage 
T temperature (otherwise mentioned in text) 
Thp heat pump outlet temperature 
T0 thermodynamic dead state (ambient) 
Thp,out heat pump output temperature 
Thp, in heat pump input temperature 
t time 
Vcp circulation pump flow rate l/h or m3

/s 
Vdis discharge rate l/h or m3

/s 
W modified loss coefficient 

Greek 
ρ density kg/m3 

λ penalty term in regularization 
Δs thermodynamic entropy production 
η efficiency 
vhp heat pump flow rate/circulation pump flow rate m3

/s 
ξ exergy (kJ) 
ηst stratification efficiency 
ηst (sh) stratification eff. during charging  
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Fig. 1. (a) Experimental rig (see Table 1 for details), and (b) schematic.  

Fig. 2. (a) Raspberry-Pi edge device, and (b) wattmeter.  
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to enforce reproducibility and accuracy of results. In this way the energy 
graph was created and analyzed clearly depicting the proportion of grid 
energy available at tap. This was done by quantitatively calculating the 
entropy generation, exergy destruction and exergy availability at tap 
during full process loop. Grid power consumption was assessed using 3- 
phase wattmeter. A Modbus communication channel was utilized to 
collect the wattmeter data. 

3. Data-streaming edge device 

Data-streaming edge device was customized to perform stream pro
cessing on the ingested data in near-real time. Exergetic models thus 
developed were quantitatively fitted with the ingested data. The edge 
device housed two Raspberry-Pi minicomputers (Ras-Pi1 & Ras-Pi2) 
powered by Raspbian (Debian Linux distribution), see Fig. 2(a)). 

Ras-Pi1 ingested temperature data from the experimental test rig on 
the other hand Ras-pi2 ingested flow rate information. PT-100 are 
analog devices, hence an analog to digital converter was used to trans
form this information before ingesting to the streaming edge device. 
MAX31865 [13] was used for this purpose. Time step for data ingestion 
to the database was 5 s. The code performing this task can be found in 
the Git Hub repository [14]. Information about grid power consumption 
was also ingested in the same manner via. Modbus protocol, Fig. 2(b). 
This information was accessed through proper register address within 
the Modbus protocol. Error range of each single component is mentioned 
in Table 2. Ras-Pi1 served as master component performing extremely 
rudimentary tasks, for example data ingestion, cleaning, transforming. 
Furthermore, as raspberry-Pi minicomputers are operated headless – no 
monitoring screen, this makes it extremely essential while operating 
with higher temperatures, that a secondary web-based data monitoring 
application be deployed to avert any accident or hazard. In this regard, a 
Flask framework was also housed in the main server which ingested data 
into this web application for plots and visuals – thus adding a level of 
safety against outliers and high temperature accidents. The code for 
Flask application is freely available in the GitHub repository [15]. The 
workflow over edge device is shown in the Fig. 3. 

Extremely important was the data engineering and data science stack 
used for coding the edge device. These include Keras, Numpy, Scikit-learn 
and Pandas. NumPy is a fundamental package for scientific computing in 
Python. It is a Python library that provides a multidimensional array 
object [16]. Keras is a deep learning API written in Python, running on 
top of the machine learning platform i.e. TensorFlow [17], which uses 

extraordinarily fast computing speed of NumPy. NumPy’s tensors are up 
to 100 times faster than conventional data structures. Pandas is a fast, 
powerful, flexible, and easy to use open source data analysis and 
manipulation tool, built on top of the Python [18]. Scikit-learn is an open 
source machine learning library that supports supervised and unsuper
vised learning. It also provides various tools for model fitting, data 
preprocessing, model selection, model evaluation, and many other 
utilities [19]. 

Keras actually is built on top of TensorFlow [20]. TensorFlow is an 
end-to-end machine learning platform - planning and solutions to 
accelerate machine learning tasks at every stage of machine learning 
workflow such as preparing data, building ML models etc. TensorFlow is 
finds its application in natural language processing, computer vision, 
image recognition, high performance scientific commuting (HPC), 
finding solutions for partial differential equations etc. Keras provides a 
high-level API to communicate with low level TensorFlow and assists 
through the model development life cycle – for example, train, test, 
validation, model creation, hyper parameter tuning etc. It’s focus on 
user experience actually permits easy and frequent prototyping, proof of 
concept, experimenting, solution design and delivery. 

3.1. LSTM architecture 

Since the introduction of machine leaning (ML) and deep learning 
(DL), multi-layer perceptron’s (MLPs) have been widely used in engi
neering problems. MLPs are feed-forward networks, also termed as 
artificial neural networks (ANNs). In MLP, data flow happens via. The 
computational matrix X → f(w1,w2…wn) → Y . This lacks of any feed- 
back loop causing vanishing gradient issues in MLPs [21]. That means 
that the weights start to die out as the information, if forwarded from 
one layer to another within the network. 

Model training and weight adjustment use a technique called sto
chastic gradient descent. In this technique, the network repeatedly de
termines the coefficient of the loss function where it has its local 
minima. Thus, minimizing the loss at each iteration. In simplest form, a 
network takes X as input variable and predicts Y′ as output variable, 
however the correct output variable is Y i.e. X → f(x) → Y Or Y′. Thus, 
the loss/cost function as: error = Y′(predicted) – Y(actual). Thus, 

Cost =
1
N
∑

(Y’ − Y)2 (1) 

The aim of the network is minimizing this cost function and thus 

Fig. 3. Edge device workflow.  
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ensuring the correctness of the predicted output. A parabola y = x2 has 
its local minima at (0,0), (Fig. 4(a)). Stochastic gradient technique 
searches slop and intercept of the line pointing towards local minima. 
Slope of the curve determines the steps towards or away from local 
minima, see Fig. 4(a). Tangent at green point needs more steps to local 
minima, comparatively, then the slope at red point, steps are referred as 
Learning Rate (LR). SGD on this example revels: 

Jm,b =
1
N
∑

ei
2 (2)  

partial derivatives reveal: 

∂J
∂m

= 2.e.
∂

∂m
(e) (3)  

∂J
∂b

= 2.e.
∂
∂b

(e) (4)  

now, 

∂e
∂m

=
∂

∂m
(Y ’ − Y) (5)  

and, 

∂e
∂b

=
∂
∂b

(Y ’ − Y) (6)  

thus, 

∂e
∂m

=
∂

∂m
(mX + b − Y) (7)  

and, 

∂e
∂b

=
∂
∂b

(mX + b − Y) (8)  

this gives: 

∂e
∂m

= X (9)  

and, 

∂e
∂b

= 1 (10) 

Fig. 4. (a) cost function and minima, (b) MLP architecture (c) RNN structure, and (d) LSTM node. 
(Fig. 4(c) & (d) modified from: https://bit.ly/LSTMfig 4d; https://bit.ly/LSTMfig 4c). 
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plugging Eqs. (9) and (10) in (3) and (4) gives: 

∂J
∂m

= 2e.X*LRand
∂J
∂b

= 2e.LR (11)  

now since m1 = m0 – δm & b1 = b0 – δb. 
thus, 

m1 = m0 − e.X.LR (12)  

and, 

b1 = b0 − e.LR (13) 

LR is the learning rate which is equivalent to steps to be taken to
wards local minima. In other words, gradients are calculated for each 
epoch which sustains the information about the minima while LR de
termines the speed of achieving it. Vanishing gradient occurs with feed 
forward technique, that means the gradients (Eqs. (2) to (13)) are 
diminishing in a deep neuronal network. Due to diminishing gradient in 
MLPs, the gradient reaching the input layer is so little that error function 
minimizing is compromised. This makes MLPs inefficient to model time 
series data – the case with TES. 

This drawback of MLPs is overcome by recurrent neural network 
(RNN) with the help of extra feedback or recurrent loop. This recurrent 
network reduces the vanishing gradient (buy retaining information) to a 
higher extent thus assisting in capturing local as well as global features 
from time series data, Fig. 4(b). Fig. 4(c) shows a LSTM cell. LSTM re
tains the information by receiving preceding cell state, preceding cell 
output, and existing input vector as input variables. In addition, it passes 
the information about current state, and output vector to the next cell, 
Fig. 4(d). 

The reduced vanishing gradient with LSTM makes them extremely 
suitable to model information rich physical processes for example, 
stratified flows and forced convection – in this case TES. [22] extensively 
used ANNs and RNNs to predict layered temperature in TES. The input 
variables were flow rate and preceding temperature values. No load 
training phase showed promising results, while load phase test results 
showed a degree of inaccuracy. Authors concluded that the diminishing 
gradient was the cause of this discrepancy. This paper attempted to 
address this issue. A better modelling approach was taken, LSTMs were 
chosen and hyper-tuned. [23] modelled TES with preceding temperature 
values as input features. Authors also used parameter hyper-tuning to 
catch local as well as global features from their time series. [24] 
modelled TES integrated with solar system using neural network. The 
results were excellent during training while were compromised during 
testing phase due to vanishing gradient problem. This paper also 
addressed overfitting problem by taking inputs from three preceding 
cells. This made more information available for the cells to learn from. A 
more extensive research on application of machine learning on TES and 
solar systems is presented by [25], while a review on machine learning 
application in time series forecasting at length is given by [26]. Ther
modynamic application of MLPs is elaborated by [27–30]. Fig. 6 shows 
the information flow considering LSTM modelling and quantitative 
equation fitting. As a matter of fact, using LSTM on top of MLPs reduced 
training and validation losses to an order of magnitude. 

3.2. Second law models and performance 

To assess the end to end energy performance of TES integrated heat 
pump system, performance factor of heat pump, and TES’s availability, 
and entropy generation were calculated in real time. The real time 
availability concept in TES gives an intuitive understanding of stratifi
cation destruction during charge discharge loop for varying HP pa
rameters. For this purpose, second law entropy/exergy models are 
rederived, customized and fitted. In addition, scientific computation 
with NumPy allows temperature dependent thermo-physical properties 

(such as density) to be easily accommodated into the calculations. The 
equation was rederived to capture the spontaneity of the physical pro
cess [10]. While deriving the following stratification equations, some 
assumptions are made, firstly, change in entropy is needed to evaluated 
and is equated to the unavailable energy (Tds ~ cdT), this is true for 
incompressible fluid undertaking reversible process. Secondly, we as
sume specific heat is constant over all the working temperature range 
(5–65 ◦C, as a matter of fact, specific heat changes less than 1 % for 
aforementioned temperature range). Consider that the system goes from 
state 1 to 2, then according to the second law of thermodynamics for any 
incompressible liquid: 

Tds = cdT (14)  

where ds is the entropy produced, and c is the specific heat of the 
incompressible liquid, assuming the process is reversible, this can be 
affirmed: 

∫2

1

ds =
∫2

1

c
dT
T

(15)  

this means that the change in specific entropy of tank can be expressed 
as: 

Δs = s2 − s1 = cln
(

T2

Ti

)

(16)  

where i is the ith layer. Eq. (15) is valid for thermodynamic reversible 
process, while Eq. (16) is valid for any process changing its state from 1 
to 2. Entropy of whole TES is 

Δstotal = c
∑n

i
miln

(
T2

Ti

)

(17)  

and the integral form is 

Δstotal =

∫H

0

ρ(h)⋅c(h)⋅(V/10)⋅ln
(

Thp

Ti

)

dh (18)  

here density and heat capacity are a function of height. Thp is the heat 
pump’s outlet temperature while Ti is the layered temperature. Exergy 
can be expressed as 

ξ1− 2 = Q1− 2 − T0⋅Δs (19)  

where ξ1-2 is the exergy change (in TES), Q1-2 is the energy change (heat 
addition by heat pump), and T0 is the dead state temperature (ambient) 
below which converting energy to useful work is impossible. Thus, 

Q1− 2 =

∫t

0

ρ(t)⋅v⋅ hp⋅c(t)⋅
[
Thp,out(t) − Thp,in(t)

]
dt (20) 

And exergy is, 

ξ =

∫t

0

ρ(t)⋅v⋅ hp⋅c(t)⋅
[
Thp,out(t) − Thp,in(t)

]
dt

− T0

∫ H

0
ρ(h)⋅(V/10)⋅C(h)ln

(
Thp

Ti(h)

)

dh

(21)  

and the stratification efficiency ηst is, 

nst =
exergy(ξ)
energy(Q)

(22)  

or: 
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nst(ch)=

⎡

⎣
∫t

0

ρ(t)⋅v⋅ hp⋅c(t)⋅
[
Thp,out(t)− Thp,in(t)

]
dt

− T0

∫ H

0
ρ(h)⋅(V/10)⋅C(h)ln

(
Thp

Ti(h)

)

dh

⎤

⎦

/∫t

0

ρ(t)⋅v⋅ hp⋅c(t)⋅
[
Thp,out(t)

− Thp,in(t)
]
dt

(23)  

where, v is the heat pump volumetric flow rate. The time derivative of 
heat addition contributes towards the dynamicity of data analytics 
hence allowing to scale the process spontaneously. This could allow 
researchers and engineers to make their TES integrated RE systems 
better adjusted for real time quantification. In this manner the Rose
ngarten method was yet employed however completely revamped for a) 
improved accuracy, and b) for dynamicity addition. Finally, electricity 
consumption is accessed from Modbus registers of wattmeter, and the 
HP performance factor (PF) is calculated using the following equation: 

PFhp =

∑tn

ti
Qi

∑tn

ti

(
Ecomp + Ep

)
(24) 

Ecom and Ep are the compressor and circulation pump respectively. 
The idea is that 1st phase among 3-phases is used by the HP compressor, 
and the 2nd phase by circulation pump, this data is circulated and stored 
as 16-digit hexadecimal numbers in different registers each having 
unique address in hexadecimal digits also. So, there is need to access 
correct address to get a summed-up and/or unique value of energy 
consumption per phase and to convert it to human readable float value. 

3.3. Hyperparameter tuning 

As a general practice, the data is partitioned into train/validation 
sets. Model performance is determined by accuracy and/or loss. 
Generally, without any overfit the lower the loss the better the perfor
mance. Generalizing the data instead of learning details from it is called 
overfitting. Overfitting happens when model learns the detailed infor
mation along with noise in training data to that extent that it effects the 
prediction on the test data negatively. The training and validation loss 
difference is labelled as overfit. Some counter measures against overfit 
are dropout and regularization [31,32]. Loss is residual sum of square 
(RSS) as expressed by Eq. (25). 

RSS =
∑n

i=1
(e)2 =

∑n

i
[yi − (m + bxi) ]

2 (25) 

As discussed earlier the goal of any machine learning algorithm is to 
reduce loss. Model hyper-tuning was achieved by number of passes to 
reduce loss until further improvement appears unlikely. For instance, a 
simple ANN network resulted in an excessive amount of overfit with a 
validation loss of 0.025. This overfit was reduced to a greater extent 
when dropout and regularization techniques were utilized, see Table 1. 
And so, by using these techniques and simplifying the model we were 
able to reduce validation loss from 0.024 to 4 × 10− 4. A further dis
cussion on parameter hyper-tuning can be found in the research of [33]. 
Following are the hyper-tuned NN parameters:  

• Addition of Dropout and Regularization layers: Dropout reduces the 
model output complexity by dropping output from random hidden 
nodes thus neutralizing their involvement, weights and errors. Either 
nodes are kept with probability of p or are dropped with probability 

Table 1 
Description for Fig. 1 (a), specification of test rig.  

Device Specification Description Uncertainty/ 
Error 

(1) Heat Pump CTC EcoPart 612 M, 
5.8 kW Rated Power 

Multi-speed – 

(2) TES 390 l, Insulated Single family house – 
(3) Load tank 900 l, Insulated Maintained at 

ambient 
– 

(4) Source tank 350 l, 
thermostatically 
maintained   

(5) Data layer Raspberry Pi micro 
computers 

2 Raspi 
communicating with 
each other 

– 

(6) Flow meter Sitrans F M Mag 5000 4–20 mA current 
loop out 

0.4 % 

(7) Working 
table 

– – – 

(8) Expansion 
valve 

– – – 

(9) Watt meter 3-phase Communication via. 
Modbus 

– 

(10) 
Thermostatic 
chiller 

Huber Unistat 
Thermostat 

5.3 kW cooling 
capacity 

± 0.5 %  

Fig. 5. (a) NN architecture, and (b) Input feature mapping.  
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of 1-p randomly. This reduces the overfit by breaking the data 
generalizing pattern among connected nodes. Furthermore, regula
rization technique works in a way that model is penalized when 
overfit happens. The fundamental difference between L1 and L2 
regularization techniques is about how they modify the loss function 
by adding a penalty term that is equal to the squared magnitude of 
the coefficient in L1 and the absolute value of the magnitude of the 
coefficient L2. The rationale behind these penalties is that by regu
larizing the loss function (adding coefficient W to RSS) model is 
enforced to perform lesser than the best (see Eq, (26) and (27)). The 
overfit for a specific value of W gives the accurate output variable y 
for input variable x thus minimizing the loss or RSS. This is true with 
seen data, however with unseen data validation loss increases. This is 
dealt with by adding penalty term λ to the coefficient W, Eq. (26) & 

(27). The code for dropout and regularization techniques imple
mented on the network is available in Git Hub repository [34]. A 
comprehensive research on these methods in heating systems is done 
by [35]. 

RSS(L1) =
∑n

i=1
(e)2 =

∑n

i
[yi − (m + bxi) ]

2
+ λ

∑m

j
Wj

2 (26)  

RSS(L2) =
∑n

i=1
(e)2 =

∑n

i
[yi − (m + bxi) ]

2
+ λ

∑m

j
∣Wj∣ (27)    

• Model simplification itself reduced validation loss by an order of 
magnitude. 

Fig. 6. Workflow over data streaming edge device for prediction task.  
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• Data normalization was carried within (0,1) instead of (− 1,1).  
• Batch size reduction from 500 to 50.  
• 3 Preceding time step temperature values [(t-3), (t-2), (t-1) → t] 

reduced the validation loss further. Fig. 5 (a) and (b) shows the 
network architecture and feature mapping. Table 3 shows network 
architecture with training and testing loss. 

3.4. Error analysis 

This section details the degree of uncertainty in the collected 
experimental data. Time series data thus collected underwent statistical 
uncertainty analysis. Probability distribution of error in terms of gauss 
distribution was analyzed. Multiple tests were conducted on the single 
variable to guarantee that the results could be reproduced. Error was 
found on each successive set of data points. This procedure was done 
until 90 % of the data points were within one or two standard deviations. 
The probability density of calculated error for a set of data point is 
detailed in Fig. 7 The measuring sensors were orderly numbered from 62 
to 91. Error was roughly normally distributed with 95 % of data points 
falling under 5 % error. Furthermore, uncertainties in the measuring 
devices involved is mentioned in Tables 1 and 2. 

4. Results and discussions 

Jupyter [36] notebook receives a stream of the real-time energy 
evaluation. The edge devices processed the stream of data they received 
from the test rig. The data stream was cleaned, stored and processed to 
fit to the exergy and entropy equations. The source code and gif of real 
time stream processing and visualization is available on Git Hub [12]. 
For charging, real time illustration of power consumption, evolution of 
temperature layers, and exergetic information were considered. For 
discharging, entropy generation, exergy availability etc. were consid
ered. Modelled data in real time was restored and assembled into still 
visuals. For parametrization and evaluation. Fig. 8 depicts the entire 
experimental span put into perspective. Fig. 8(a) shows predicted 
against measured temperature profile. Hyper-parameter tuning brought 
down the validation loss to 4 × 10− 4. This is was in contrast to previous 
passes where validation loss was 0.4. Additionally, overfitting was 
minimized as was evident by low value of training loss (10− 3). Heat 
pump indices are visualized in Fig. 8(b). These include heat capacity, 
power consumption, and performance factor. Evidently due to larger 
temperature lift in the initial stage, power consumption is higher, and 
thus the performance factor reached to 2.3. In the later stage the tem
perature lift decreases, this decreases the power consumption as well 
and consequently performance factor (PF) decreased from 2.3 to 1.8, 
Fig. 8(b). At the expense of increased power consumption (100 % 
compressor speed) temperature lift is the highest thus decreasing PFhp. 

Fig. 9 shows the availability and entropy during both charging and 
charging processes. To calculate the availability, thermodynamic energy 
balance of TES and heat pump was performed using the equations pre
viously developed. Exergetic availability and entropy generation was 
determined in live mode, gif is available on Git Hub [12]). Once 
charging stopped discharging was commenced. The energy balance of 
charging process was again performed by the edge device. Information 
about availability in terms of exergy and entropy generation was gath
ered for discharging. Entropy generation during discharge process was 
measured to be 4000 kJ. Simply stated 4000 kJ of energy was lost during 
charging. This means that heat pump power consumption was 3.29 kWh 
for charging the TES to 5.04 kWh. This raised TES’s internal energy to 
80,000 kJ while the system lost (4000 kJ) as generated entropy – 
stratification decay. In contrast, discharge generated 20,000 kJ of en
tropy at 400 l per hour of discharge rate. Fig. 10 highlights the concept 
of availability for a reversible process undergoing state change. Highest 
amount of work that can be extracted from system is called availability 
and it is generally referenced with ambient state. For a reversible pro
cess, all energy above ambient is available. Fig. 9 (a) & (b) demonstrates 
the available energy in charging and discharging of TES under 
experiment. 

Fig. 11 depicts the efficiency predicted against measured. Data- 
streaming edge device calculated the stratification efficiency using 
second law equations (Eqs. (21)–(23)) Model development – train, test, 
validation was done by the data thus gathered separately. To close the 
feedback loop, prediction was done by the edge device using trained 
LSTM models previously developed and deployed. One such predicted 
and calculated data set is depicted in Fig. 11 for charging and dis
charging. Index is the time representation in the network’s terminology. 
When the compressor was running at 100 % circulation speed, the 
charge efficiency was found to be around 78.6 %, and discharge effi
ciency was around 80 %. Fig. 12 (a) shows the 5 % error range and 
Fig. 12 (b) shows the absolute value of the same during test phase. Loss 
has been reduced to 10− 4 (previously it was 10− 2) using parameter 
hyper-tuning. This is shown in Fig. 12 (c) where loss is represented as r2. 

TES and heat pump variables are parameterized. For example, heat 
pump operating parameters for 50 %, 70 %, and 90 % of the full 
compressor speed were evaluated for heating side indices. Their effect 
on entropy generation or TES stratification efficiency was determined 
during charging. Heating side key performance index was performance 
factor which was calculated using heat output (heat capacity) and power 
consumption. Fig. 13 shows these values for 50 %, 70 % and 90 % of heat 
pump compressor speed. TES temperature evolution is also depicted in 
the figure. Performance factor was decreasing with the increase in 
compressor speed. The reason for this was abrupt increase in the tem
perature lift. Energy threshold for TES was maintained at 80,000 kJ for 
each experimental case, once reached, heat pump was stopped. 

This provided a realistic and fair comparison to evaluate compara
tive participation of each heat pump’s parameter in entropy generation 
in the TES. 50 % HP parameter showed the highest performance factor, 
see Fig. 13. In contrast, generated entropy during charging were highest 
and were resulted by 50 % of compressor speed, making it thermody
namically least efficient, see Fig. 14 (a). Generated entropy during 
charging is parameterized in Fig. 14 (a) & (b). Fig. 14 confirms that 50 % 
of compressor speed generates the highest entropy thus maximum des
tratification during charging. The reason for this is that the low tem
perature heat addition at a moderately higher flow rate of 700 l per hour 
causes more mixing. In other words, low compressor speeds are neither 
efficient from power consumption point of view nor efficient from 
thermodynamic point of view. Consequently, as apparent in Fig. 14 90 % 
of compressor speed performed better then preceding cases for the 
aforementioned reason. Among all, 70 % compressor speed generated 
the least entropy, see Fig. 14(a). This was due to the fact that that 
optimal combination of temperature of heat addition and circulation 
speed was achieved. Thus, it was concluded that 70 % of compressor 
speed generated the least amount of entropy (3000 kJ), while 70 % and 

Fig. 7. Probability distribution of error.  
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90 % of the compressor speeds generated 4700 kJ and 6300 kJ respec
tively. Fig. 14(b) shows the exergy information for all the cases. Exergy 
data is in congruence with the entropy data. 

Fig. 15 (b) shows the calculated stratification efficiency during 
charging for all the three cases. The edge device calculated the efficiency 
using Eq. (23) and streamed it in real time. The stratification efficiency is 
in congruent with exergy and entropy data. 

Fig. 15 (a) shows the predicted efficiency which is congruent with 
the measured data. For 50 %, 70 %, and 90 % compressor speed, η pre

dicted and η calculated are approximately 76 % (± 1 % ηpredicted), 83 % (± 2 
% ηpredicted), and 79 % (± 2 % ηpredicted) respectively. 

Validation loss was brought down to a minimum of 6 × 10− 3. 
Training loss was ranging between 4 × 10− 3 and 6 × 10− 3. The 
discrepancy between validation and training loss illustrates some over
fit. This can further be improved by simplifying the model or feeding the 
model with better quality and quantity of data. 

Exergy and entropy graphs for the discharging process is shown in 
Fig. 16. Discharging was done at 400 l/h, 600 l/h and 800 l/h. Maximum 
entropy was generated at 800 l per hour – the highest flow rate. Mini
mum entropy was generated at lowest flow rate i.e. 400 l per hour. 
Furthermore, 25,000 kJ of entropy was generated at highest discharge 
rate while only 6000 kJ at highest charging rate. So, this can be 

Fig. 8. (a) Temperature profile measured against predicted, (b) Heat capacity, power consumption, Performance Factor, and (c) Load.  
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concluded that discharging at lowest flow rate while charging at 
moderately higher flow rates makes the system more efficient 
thermodynamically. 

Fig. 17 (a) shows the discharge phase KPI i.e. stratification efficiency, 
both predicted as well as calculated. Calculated stratification efficiency 
has the highest value at 400 l per hour i.e. 84 % (± 0.2 % η predicted). For 
600 l per hour calculated stratification efficiency during discharge was 
81 % (± 1 % η predicted). Finally, for 800 l per hour the calculated 
stratification efficiency during discharge was around 76 % (± 1 % η 
predicted). Fig. 16 (b), (c), and (d) shows the error, represented in terms of 
r2 deviation. 

As for concluding remarks, the edge device, using the novel exergetic 
models, calculated the entropy generation during charging. The higher 
the entropy generation the lower the stratification in the TES. The en
tropy generation can be minimized by opting optimized charging and 

discharging indices. Charging indices include correct compressor speed 
and circulation speed. Discharging indices include discharging flow rate 
as the most influential parameter. To sum it up, 50 % of compressor 
speed had the highest performance factor while maximum entropy 
generation. Thus, thermodynamically, 70 % of compressor speed was 
more efficient then preceding case because of its equivalent performance 
factor and lower entropy generation. In addition, it was also determined 
that stratification decay due to mixing (and resulted entropy generation) 
is significantly higher during discharge then charging. 

5. Conclusion 

This paper addressed the stratification measurement of TES in real 
time mode with custom built data-stream processing edge device and 
exergetic (quantitative) models. Stratification was also studied using 

Fig. 9. Availability and entropy at full compressor speed (a) charging, and (b) discharging.  

Fig. 10. Concept of thermodynamic availability.  

Fig. 11. Stratification efficiency for (a) charging at 100 % compressor speed, and (b) discharging at around 400 l/hour.  
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Fig. 12. Predicted against measured temperature (a) Normalized 5 % error range, (b) absolute values, and (c) loss.  

Fig. 13. Predicted against calculated temperature profile along with HP indices – heat capacity, power consumption and PF for (a) 50 % compressor speed (b) 70 % 
compressor speed, and (c) 90 % compressor speed. Discharge at 400, 600 and 800 l per hour. 
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data driven neural network approach. In the end, the assumption-based 
approach (quantitative model) and the assumption-free approach i.e. 
data driven very nicely confirm and thereby support each other. The 
following observations are made:  

• A TES integrated heat pump used for a single-family house was tested 
for stratification efficiency and energy balance. And so, end to end 
energy usage was calculated - from grid to tap.  

• Subsequently, custom exergy models were built and were applied to 
TES using custom data streaming edge device which has the capa
bility to study end to end energy expenses.  

• Three distinct compressor speeds and tapping rates were studied 
using this data-streaming edge device and their exergy disbursement 
was studied in live mode. It was observed that entropy generation 
was maximum at highest discharge rate of 800 l per hour i.e. 25,000 
kJ (while only 3000 kJ for 900 l/h of charging rate). Furthermore, 
entropy generation has not only impact on stratification efficiency, 
however also on performance factor of the heat pump. Making it 
extremely essential to adjust for inlet flow rate and compressor speed 
ratio. A PF of 3.2 was obtained at 70 % compressor speed, while 
maximum discharge efficiency was registered at lowest discharge of 
around 450 l/h. 

Fig. 14. Comparative (a) entropy generation, and (b) exergy destruction (measured) during charging at 50 %, 70 %, and 90 % of the compressor and circulation 
speed. Pump circulation rates respectively were – 700, 900 and 1100 l/h. 

Fig. 15. Stratification efficiency (a) predicted, and (b) calculated at various compressor speed.  

Fig. 16. Measured (a) comparative entropy generation, and (b) exergy delivered during discharge at various flowrates.  
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• Data streaming layer along with custom built models give informa
tion of TES energy expenses in real time and within 5 % error range. 
This real time understanding of energy expense can help engineers 
and researchers to assess their renewable energy devices.  

• A neural network model using LSTM was developed and was used to 
predict the layered TES temperature and efficiency of TES. The error 
range for temperature and efficiency prediction was observed to be 5 
% and 2 % respectively. The LSTM model reproduced the results 
calculated by exergetic model thus the results calculated by one 
model or the other was corroborated. The data-driven approach is 
agnostic and makes no assumptions - but does not give any clue how 
and which inputs influence the output. The quantitative approach 
works with assumptions but shows clearly the quantitative rela
tionship between input features and the calculated output, thus helps 
to deepen the understanding of the processes. Data driven approach 
in theory is bias-free. 
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Study 3 

Design intelligent IoT stream processing unit to evaluate energy/exergy 

and predict the second law stratification efficiency in real time 

 

Paper 4: Intelligent data systems for building energy workflow: Data pipelines, LSTM 

efficiency prediction and more 

In this paper, a novel real time stratification performance evaluation and streaming tool (method) 

for HP integrated TES system was developed. For this purpose, a core computer science 

application layer was involved – customized data layer using Raspberry Pi single board 

minicomputers and the other associated data engineering stack. Finally, the custom built second 

law model developed in study 3 is used to calculate in real time the stratification efficiency during 

charging. The divergence of this study form study 3 is that this study only talks about the 

application of real time streaming system in charging mode, in addition to which the second law 

models are not derived here and are only borrowed and used from study 3. 

 

Paper 5: Energy modeling of thermal energy storage (TES) using intelligent stream 

processing system 

 

In this paper, the novel data streaming layer is used to evaluate the stratification performance 

according to indices of stratification which were observed during study 1 and 2. These indices 

include MIX, Richardson number and temperature profiles for various operational parameters. 

Even though second law stratification efficiency was not estimated using data streaming layer, 

neural network architecture is yet used to predict stratification in the form of MIX and temperature 

profiles as the continuation work from study 2.  
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The data collection process for thermal energy storage (TES) system is largely still and restricted to data
collection only. This leaves a gap to study the transient state physical process of charge and discharge as it
proceeds. In addition, these devices are restricted and cannot perform on spot model fitting, prediction
and other data curation techniques. This paper demonstrates the application of intelligent data layer with
neural networks for evaluating and predicting end to end performance of heat pump integrated stratified
thermal energy storage (TES) system. The data modelling – acquisition, curation, and transformation is
done in situ (dynamically). The key objectives are:

� A method to demonstrate the application of data-layer framework to visualize in real-time energy
efficiency of TES. To fit the second law of thermodynamics-based exergy model. This will help engi-
neers to intuitively understand the energy efficiency of their devices using novel data pipeline.

� To demonstrate the use-case of hyper-tuned DL framework of LSTM to predict the energy efficiency in
the process loop.

Predicted results show tuned correlation with the parametrized experimental data, even during the load
phase, where substantial amount of math (convection/mixing) is present for the network to learn (train/
test).

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Building sector accounts for an estimated 40% of world’s energy
consumption and at-least 30% of world’s carbon footprints (Ser-
rano et al., (2017)). Thermal Energy Storage (TES) is the major part
in building energy consumption and is used for thermal comfort
thus it must be evaluated for energy performance. Thermal storage
is an essential link in heating systems of buildings due to non-
coincidental nature of energy supply & demand [9]. TESs make
use of temperature stratification – water is stored and delivered
in layers, one after another, due to buoyancy effects of temperature
distribution, this improve the performance of storage tanks in the
form of enhanced charging and discharging efficiency[8].

Energy efficiency of heating system of building refers to its abil-
ity to provide thermal comfort with minimum energy expense. For
this purpose, TES systems are generally integrated with Heat
Pumps referred as Renewable Energy Systems (RES) due to their
lesser carbon footprint then electric heaters or fossil fuel heating
systems. A Heat pump transfers heat from cooler environment
(typically ground or air) to the TES system using refrigeration cycle,
thus consuming grid energy. To reduce this energy consumption
and deliver the maximum thermal energy efficiency is very crucial.
In the literature, various procedures are devised and studied to
assess the TES integrated heat pump system from thermodynamic
standpoint[24], Rosengarten et al.,[31,11]. An exergetic study of
ground coupled heat pumps is performed by Esen et al., [13], Esen
et al.,[18,14–17]. Authors concluded that for the same heat pump
operating conditions source temperature can significantly affect
exergy availability of the system. In addition to thermodynamic
assessment, various researchers used Artificial Neural Network
(ANN) approach to predict the performance (Amico & Ciulla,
(2022); [12]). Work by [22] is a classic in modelling the tempera-
ture stratification in TES. Authors modelled long term measured
data using ANNs, taking ambient temperature, mass flow rates
and previous time stamp temperature as input. The authors had
satisfactory results during the no load periods, however during

http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2022.112135&domain=pdf
https://doi.org/10.1016/j.enbuild.2022.112135
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Nomenclature

ADC analog to digital convertor
c/C thermodynamic specific heat capacity (J/kg-K)
DL deep learning
E error/loss
Ecom compressor electricity consumption
Ep circulation pump electricity consumption
GSHP ground source heat pump
HP heat pump
H height (m)
H total height (m)
LSTM long short-term memory
MLP multilayer perceptron
NN neural network
NS Navier-Stokes
PF performance factor
PT100 platinum temperature-100
Q thermodynamic heat addition (kJ)
Raspi Raspberry Pi minicomputer
RES renewable energy source
RNN recurrent neural network
RSS residual sum squared

RTD resistance temperature diode
TES thermal energy storage
T temperature (otherwise mentioned in text)
Thp heat pump outlet temperature
T0 thermodynamic dead state (ambient)
Thp,out heat pump output temperature
Thp, in heat pump input temperature
T time
Vcp circulation pump flow rate l/h or m3

/ s
Vdis discharge rate l/h or m3

/ s
W modified loss coefficient
q density kg/m3

k penalty term in regularization
Ds thermodynamic entropy production
g efficiency
vhp heat pump flow rate/circulation pump flow rate m3

/ s
n exergy (kJ)
gst stratification efficiency
gst (sh) stratification eff. during charging
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the load periods the model showed insufficient accuracy. This
however could be the result of diminishing gradient problem of
ANNs. This paper as part of method improvement will try to
improve the load period DL modelling using LSTM and regulariza-
tion techniques, since it retains the previous timestamp gradients
and hence the vanishing gradient problem is reduced significantly.
Dropout and regularization are the cheapest way to reduce overfit
[35] & Hinton et al.,[25]. A detailed application of dropout and reg-
ularization techniques in deep learning application of heating sys-
tems is presented by [26]. Biswas et al., [10] outlined the modelling
approach related to the building energy data. Santos et al., [32]
studied thermal model and behavior of swimming pools with the
help of ANN. Authors used meteorological data as well as geo-
graphic location data such as elevation, latitude and longitude as
the input to NN models.[18,14–17], applied neural network and
compared it with adaptive neuro-fuzzy, and support vector
machine approach to study and forecast system performance of
ground source heat pump. Yaïci & Entchev,[37], also modelled mul-
tilayer TES temperatures using MLPs back-propagation algorithm.
Authors concluded that their ANN model was sufficiently tuned
to learn from the input data. [28] modelled performance prediction
of large solar system using ANNs. Input to the NN was ambient
temperature, incident radiation (MJ/m2) and solar tank water tem-
perature, while the output was the daily average output of the
solar system (MJ). In addition, it was apparent from the results
few feature selections, caused excellent prediction during training
while compromised during validation or testing. This is again
either due to vanishing gradient or overfitting problem which is
intrinsic in a small dataset (a smaller number of features). This
paper will meet this overfitting problem also, by increasing the
number of features in the previous time stamps, so the NN has
more info to learn from. [18], utilised and found Levenberg–Mar-
guard (LM) algorithm to be most effective over Pola–Ribiere conju-
gate gradient (CGP) in heat pump systmes performance prediction.
A detailed analysis of hyperparameter for temperature sequence
prediction in solar thermal systems is done by Correa-Jullian
et al., [2]. A more general review of conventional machine learning
application in time series forecasting is documented by Voyant
et al.,[36] while thermodynamic application of ANN is elaborated
2

by [33], Souliotis et al., [34,30,19,20], Esen et al., [21]. The
missing-link in the above approaches is that data collection and
prediction are separate tools and need sufficient human interven-
tion and expertise to perform TES performance analysis. In addi-
tion, the physical process is transient while the data processing
is still. It is necessary to come up with hybrid intelligent method
that can automate two approaches and create one expert system
which can assess thermodynamic performance of TES system in
live mode and predict it using LSTM neural network. Henceforth,
below mentioned objectives are observed:

� To accommodate the dynamic (in situ) share in calculation, cus-
tom exergy/entropy models are derived using second law of
thermodynamics, customized for novel data acquisition layer
and fitted as a contribution towards the improved method in
terms of correctness and real time animation of the physical
process (in detail in section 2). For this task novel data layer
was devised and programmed layer using Raspberry Pi-4 (Rasp-
berry Pi for industry, n.d.) systems. Wide range of computing
packages was observed which is not limited to PostgreSQL (to
store/retrieve dynamic data that is being collected from sensors
(RTD, current loop, Modbus)), Pandas/Numpy (to do all the sci-
entific data computing, parsing, transformation, and curation),
MatPlot-Lib/Seaborn for an in-situ animated visualization of
the stratification decay. The developed code and the gif version
of visuals of the process loop is available on the git repository
(Chandra, GitHub [GIF and code], 2021). This will considerably
improve the intuitive understanding of stratification decay in
real time, thus improving the industrial testing of HP integrated
TES systems.

� To further enhance the application of full stack data engineering
layered around its utility for stratification measurement, this
work will try to perform the following:
� Development of applied deep learning (DL) framework uti-

lizing long short-term memory (LSTM), and multilayer per-
ceptron (MLP) to model the layered temperature and to
predict the entropy generation during charging and dis-
charging loop. This will improve the current understanding
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of layered temperature modelling using deep learning
frameworks at a very fundamental computer science and
statistical interface.

� Meanwhile, it is very apparent in the literature that neural
networks (NN) are either excessively overfitted and thus
are not able to predict during testing phase, or the amount
of information to learn during the discharging loop of TES
is too large for the NN to handle. While this is true that dur-
ing load phase due to a complicated natural & forced convec-
tion (NS equations) and mixing, the NN is overwhelmed by
the information and thus captures only the global superficial
features in data, and skips the more important local complex
features. There still is possibility to hyper-tune the NN for
best prediction. Thus, adding the novelty towards evaluation
optimization and demonstration of proposed DL framework,
while improving the predicted results during the informa-
tion intensive load phase of the physical process.

2. Methods

2.1. Experimental testing

Experimental testing is based on simple energy in/energy out
approach to quantify energy usage/delivery using exergetic meth-
ods described later in this section. Residential ground source heat
pump (GSHP) as a RES (renewable energy source) delivers the heat
at constant compressor speed and flow rate using grid electricity
on one side. On the other side, GSHP is connected with a source
tank which is heated by a thermostatic electric heater to constantly
supply heat pump (HP) with necessary heat to extract from. The
tested tank is 390 L, and its diameter with insulation is nearly
750 mm, top insulation thickness is 120 mm while bottom insula-
tion thickness is 50 mm. To measure the temperature, 10PT-100
temperature sensors are fabricated around the outside of tank wall
in an axial direction 40 cm apart, dividing the tank into 10 equal
fluid zones. 4PT-100 sensors are also placed each at each inlet
and outlet of the tested tank to track any changes in charge/dis-
charge temperature. All the sensors were calibrated for the accu-
racy around ± 0.3 �C. Tested tank is also connected with a load
tank which serves as quasi-infinite load and is approximately
900 L. This makes two circuits of interest – heat pump-testing tank
circuit and load-testing tank circuit. Both the circuits are equipped
with Sitrans F M Mag 5000 which is a transmitter-based flow meter
by Siemens with accuracy of 0.5% to monitor and control flow rates
in the circuits. The flow measurements are recorded automatically
in the PostgreSQL database via. integration of 4–20 mA current loop
to the designed Raspberry Pi based data acquisition system, more
on this is in next subsection. Once the testing tank temperature
has reached the ambient temperature, charging of the tank is initi-
ated. Once the tank is charged to a predefined temperature, load
circuit is switched on carefully for a constant discharge flow rate,
thus initiating discharge part of the full cycle. This completes the
full charge/discharge cycle and the data just stored has already
been analyzed in real time by the novel Raspberry Pi based system,
thus giving the clear representation and quantification of stratifica-
tion decay (more on Raspberry Pi based system later in this sec-
tion). The load tank is again cooled by the thermostatic chiller
for a constant temperature and the experiment is repeated for
the reproducibility and experimental accuracy of the results and
for parameter-based analysis to completely understand the
energy-cycle of the whole process. The goal of the experiments is
simply to model, how much energy is taken from the grid and
how much survived during entropy generation of charging/dis-
charging loop. To measure the HP electricity usage, a 3 phase Mod-
bus wattmeter is connected between HP and grid which
communicates back again with Raspberry Pi. Modbus is a serial
3

communication protocol developed by Modicon (now Schneider
Electric) in 1979 and in simple terms it is a method to transmit
data and information serially between electronics devices. The
device requesting the information is called master and the device
supplying the information is called slave, in this case Raspberry
Pi device is master while wattmeter is slave.
3. Data layer

To stream the real time in-situ energy disbursement from grid
to load, we introduced a novel data layer along with custom-
made exergetic models. The data layer consists of two Raspberry
Pi (Raspi1 & Raspi2) mini computers, both running on Raspbian –
Debian Linux operating system (Fig. 2(a) Raspberry Pi based
system).

Raspi1 stores temperature data from 19PT-100 sensors located
at various locations of the test bench, while Raspi2 stores the flow
rate data, all in real time. PT-100 are Resistance Temperature
Detector (RTD) sensors. When it comes to precision temperature
measurement, nothing beats RTDs. RTDs have a resistor most com-
monly made of platinum, copper, nickel alloys, or various metal
oxides that changes its resistance as the temperature is changed.
Most commonly, temperature measurement device, or a calibrator
is used to convert this resistance back to temperature values
according to the conversion table of that RTD type. We used Ada-
fruit sensor amplifier – MAX31865 for this purpose [1]. We used this
type of converter to make sure that all the RTD sensors are cali-
brated at the same level, thus experimental accuracy and data
analysis is not compromised. This conversion is automatically done
in ALMEMO type of Data systems, however ALMEMO devices don’t
provide the flexibility of real time data evaluation. The flow data
reaching Raspi20s GPIOs (general purpose input output) is in the
form of analog current loop (4–20 mA) which is type of output
interface of many industrial sensors and since Raspberry Pi’s GPIOs
are designed to read digital signal, these analog current loop sig-
nals are first converted to digital equivalent using an industrial
analog to digital (ADC) converter and then connected to Raspi20s
GPIO to read in. Subsequently, this digital value has to be linearly
regressed to the actual physical value using intercept equation of
line and finally calibrated with what is visible on the flow meter
readout. This is done each 5th second the data is logged into each
of the Raspi’s PostgreSQL-DBs tables through simple one-liner code
(Chandra, [GitHub code], 2021). In addition, a short code snippet
running in Raspi1 also fetches wattmeter readings via. Modbus
RTU RS-485 serial protocol (Fig. 2(b) wattmeter). Modbus RTU is
widely used within building management systems (BMS) and
industrial automation systems (IAS) due to the simplicity of its
architecture of 16-bit hexadecimal ‘registers’ which can pack and
parse floating point, ASCII, tables and other structured data. Mod-
bus registers primarily uses RS-485 serial interface for master/slave
communication which is highly flexible and supported by nearly
every commercial data acquisition, monitoring and control pro-
grams. Wattmeter stores the 3-phase electricity consumption of
HP in kWh in Modbus registers, where it can be accessed using
RTU-485 serial interface protocol. Accuracy with specification of
the core components is also mentioned in Table 2. Furthermore,
since the temperature and flow rate data are stored in different
PostgreSQL servers running on different machines, Raspi1 remotely
accesses Raspi20s PostgreSQL tables to fetch its data in a while loop
while both are clocked together. This makes sure that all the data
(temperature and flow) is stamped with the same time frame. This
makes Raspi1 as the main server to perform all the important task
including, data transformation, data cleaning, equation fitting etc.
Furthermore, to assist the data workflow, intelligence and visual-
ization Raspi1 also exhibits the ‘Jupyter-Lab’ server [27]. ‘Jupyter-



Fig. 1. (a) Experimental setup (Please see Table 1 for details), and (b) schematic.

Fig. 2. (a) Raspberry Pi data layer, and (b) Modbus communication wattmeter.
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Lab’ or ‘Jupyter notebook’ is web based interactive development
and configuration environment to support wide range of data
science, scientific computing, machine learning, and deep learning
workflows. In addition, attractive feature Jupyter notebook pro-
poses is that it can easily be run in the web browsers – this makes
working with Raspberry Pi based data acquisition systems which
are characteristically ‘headless’ (no visual display computer moni-
tors), extremely convenient, and accessible remotely. In addition,
since Raspberry Pi’s system are headless, the first hand visual of
the data is missing in any case of overheating and potential acci-
dent. To add second level security and monitoring, Raspi1 also
retains ‘Flask server’ which is constantly logging the data on
web-based application server available anywhere outside of local-
4

host for a quick overview of any outliers and potential damage con-
trol & remedy since we are dealing with HP with missing visual
perspective whatsoever [7]. Flask is a portable micro web frame-
work written in Python. The code for Flask application is written
in Python and is open and freely available to be copied, transferred
and used on our GitHub repository [3]. The whole workflow is
depicted in the Fig. 3.

Equally important, data science stack such as NumPy, Pandas,
scikit-learn were used along with Keras (TensorFlow) as a deep
learning framework to build and perform LSTM andMLPmodelling.
NumPy is a powerful scientific/numerical computing ecosystem
which draws the power of C & Fortran to Python. NumPy indispens-
ably finds its way in the ML & DL applications. Accordingly, Keras in



Fig. 3. workflow over data layer.
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DL is a computation intensive artificial intelligence (AI) function,
which actually demands the unique feature of NumPy’s numerical
packaging in densely packed memory, making NumPy 5 to 100
times faster than other data structures, Python lists for example,
thus making Keras work scalable and deployable. Due to this fact,
we have used NumPy as a data structure to test/train our DL model
(more on this later in this section). Pandas on the other hand is high
level, flexible data wrangling tool built on the top of Python. Pandas
and NumPy always work hand in hand, data preprocessing/mod-
elling is done using Pandas while data-feeding and subsequent
NN modelling min NumPy tensors. Scikit-learn is a simple machine
learning & predictive framework in python. It also provides basic
data processing functionality – data normalization, standardiza-
tion and transformation which comes handy while normalizing
the data before feeding the NN, for example.

Finally, NN modelling is done using TensorFlow and Keras. Goo-
gle’s TensorFlow is an open source DL framework which uses Python
as an expedient front-end API while still executing high perfor-
mance C++ codes in the backend. TensorFlow is highly used to train
and model NLP (natural language processing), image processing,
image classification, and for scientific commuting such as PDEs
(partial differential equation) solutions and simulations, to name
a few. The workflow of TensorFlow is very complex, consisting of
series of processing nodes performing mathematical operations
on NumPy tensors. These mathematical operations are however
done in Python directed C++ binaries, thus TensorFlow provides
high-level abstraction over lower-level nitty-gritty details. Keras
on the other hand is built on top of TensorFlow 2.0 ecosystem opti-
mizing and covering every phase of DL workflow from data engi-
neering to model training, hyper-tuning and deployment. Keras
was built for easy and frequent prototyping because of its ease of
use and focus on user experience. Keras’s Python frontend serves
as an extreme level of abstraction, although this makes Keras com-
paratively slower, while still TensorFlow has adopted it as its core
API. To sum up – ‘‘Keras is to Deep Learning what Ubuntu is to Oper-
ating Systems‘‘ [29].
3.1. LSTM & MLP principles

MLPs are extensively used in engineering application since the
advent of ML & DL. MLP, also called ANN (artificial neural net-
works) is a class of feed forward neural network and is quintessen-
5

tial structure in DL modelling. MLP is termed as feed forward as the
information flows through the X ? Y via. the computational
matrix X ? f(w1,w2. . .wn) ? Y thus there is no feedback loop,
where the output from NN can be fed back to itself for the adjust-
ment of the weights [23]. This reveals the problem of vanishing
gradient of MLPs.

NN are trained using stochastic gradient descent phenomenon
(SGD). This means that NN will iteratively find the coefficients of
the loss function using calculus at which it has its local minima
thus minimizing the loss. For example, consider a DL algorithm
which takes X data and predicts Y’ classifier while actual mapped
output is Y i.e. X ? f(x) ? Y Or Y’. This gives an intuitive under-
standing of the loss/cost function as: error = Y’(predicted) – Y(ac-
tual). Thus,

Cost ¼ 1
N

X
ðY 0 � YÞ2 ð1Þ

now the aim of DL algorithm is to minimize this cost function
(Eq.1) while finding the parameters (coefficients) at minima, since
lower the cost/error between predicted and actual means better
the prediction job by NN. For example, parabola, y = x2 as the cost
function (Fig. 4(a)), has the minima at this point is (0, 0). SGD will
try to find the local minima of this equation along with the values
m (slope) & b (intercept) in the equation y = mx + b (equation of line
pointing towards the local minima) using partial derivates. The slope
of the curve is determined by drawing tangent to the graph, and by
computing this tangent in the direction towards the local minima
can be determined – since lesser steepness of slope means towards
the local minima and more steepness means away from the local
minima, see Fig. 4(a). Tangent at the green point is steeper than
the tangent at red point, thus it will take more steps at green then
at red to reach local minima, termed as Learning Rate (LR). SGD on
this example revels:

Jm;b ¼
1
N

X
e2i ð2Þ

taking partial derivatives (gradient):

@J
@m

¼ 2:e:
@

@m
ðeÞ ð3Þ

@J
@b

¼ 2:e:
@

@b
ðeÞ ð4Þ



Fig. 4. (a) local minima of a cost function, (b) structure of MLPs, (c) unfolded RNN, and (d) LSTM cell.
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now,

@e
@m

¼ @

@m
ðY 0 � YÞ ð5Þ

and,

@e
@b

¼ @

@b
ðY 0 � YÞ ð6Þ

thus,

@e
@m

¼ @

@m
ðmX þ b� YÞ ð7Þ

and,

@e
@b

¼ @

@b
ðmX þ b� YÞ ð8Þ

this gives

@e
@m

¼ X ð9Þ

And

@e
@b

¼ 1 ð10Þ

plugging Eqs. (9) and (10) in (3) and (4) gives:

@J
@m

¼ 2e:X � LRand @J
@b

¼ 2e:LR ð11Þ

now since m1 = m0 – dm & b1 = b0 – db.
thus,

m1 ¼ m0 � e:X:LR ð12Þ
and,

b1 ¼ b0 � e:LR ð13Þ
where, LR is the learning rate, which is actually analogous to the
size of the steps taken to reach the local minima. Hence to find local
minima and coefficients, iterative gradients are calculated for the
fed data points using m and b values, each new gradient brings
the information about the direction of minima to update the coeffi-
cients, and LR determines the how fast is this achieved. One com-
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mon problem with feed forward, back propagation MLPs is the
vanishing gradient, that means the gradients (Eqs. (2) to (13)) are
vanishing (diminishing) in a deep NN. The gradients are used to
determine the error. However, when there are deep hidden layers
in MLPs the gradient reaching the input layer is so small due to ‘di-
minishing gradient’ that calculating the errors from it and thus
adjusting weights is insignificant. This compromises the search for
direction of local minima and thus NNs ability to minimize the cost
function. Henceforth, MLPs are unable to capture the sequential fea-
tures from the input time series data, for example, prediction of lay-
ered temperature in TES.

To overcome this limitation recurrent neural network (RNN)
architecture is advised. RNN has added the recurrent connection
in the hidden state. This looping constraint ensures that sequential
features are not skipped due to diminishing gradient (compara-
tively lower) during the training phase, Fig. 4(b). RNN can extract
information more efficiently from time series data, temporal data
as well as non-numerical data. Fig. 4(c) depicts LSMT cell (RNN
type). The diminishing gradient problem of MLPs and even in RNNs
is solved using LSTMs as they retain info. LSTMs are best suited for
time series prediction. For intuitive understanding, it receives pre-
vious cell state (Ct-1) previous cell output (ht-1), and current input
vector (Xt) as input variables, and outputs the current state (Ct)
and output vector (ht) to the next cell, Fig. 4(d). As a first layer it
has a forget gate which performs linear transformation on current
input vector and previous states through sigmoid function (r)
(Fig. 4(d)) and outputs 0 or 1, 1 meaning ‘keep the state’ and 0
meaning ‘forget the state and delete it’, Eq. (14). Subsequently
works ‘current state layer’ where yet again one sigmoid function
takes previous cell output and current input vector and does some
linear transformation on it, Eq. (15). Finally, this layer also has
hyperbolic tangent gate which also reads previous cell output
and current input vector and outputs candidate value (Č) which
further is added to the cell state update, Eq. (16).

f t ¼ rðWf � ½ht�1; xt� þ bf Þ ð14Þ

it ¼ rðWi � ½ht�1; xt� þ biÞ ð15Þ

C
_

t
¼ tanhðWc � ½ht�1; xt � þ bcÞ ð16Þ



Table 1
Description for Fig. 1(a), specification of experimental testing components.

Device Specification Description Uncertainty/
Error

(1) Heat Pump CTC EcoPart
612 M, 5.8 kW
Rated Power

Multi-speed –

(2) TES 390 L, Insulated Single family
house

–

(3) Load tank 900 L, Insulated Maintained at
ambient

–

(4) Source tank 350 l,
thermostatically
maintained

(5) Data layer Raspberry Pi
micro computers

2 Raspi
communicating
with each other

–

(6) Flow meter Sitrans F M Mag
5000

4–20 mA current
loop out

0.4%

(7) Working
table

– – –

(8) Expansion
valve

– – –

(9) Watt meter 3-phase Communication
via. modbus

–

(10) Thermostatic
chiller

Huber Unistat
Thermostat

5.3 kW cooling
capacity

± 0.5%
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The current state is updated using previous cell state current
candidate value,

Ct ¼ f t � Ct�1 þ it � C
_

ð17Þ
here, the forget gate f decides whether to forget what needed to

be forgotten and added to the current candidate value multiplied
with sigmoidal layer value it. And finally, the current output vector
ht is determined by linear transformation through sigmoidal func-
tion of previous cell state and current input vector and passes the
output through hyperbolic tangent so normalizing the values
between (-1, 1), Eq. (18, 19).

ot ¼ rðWo½ht�1; xt � þ b0Þt ð18Þ

ht ¼ ot � tanhðCtÞ ð19Þ
LSTM can easily model complex physical processes such as nat-

ural & forced convection, mixing, and stratified behavior of fluid
flow. Fig. 6 elaborates on the workflow of the LSTM predicted
TES temperature values and subsequent second law model fitting.
LSTMs combined with MLPs are so powerful in learning the local as
well as global temporal dependencies from the data that the train-
ing/validation losses are actually reduced to the second order of
magnitude with minimized.

3.2. Energy performance & second law stratification models

To assess the end to end energy performance of TES integrated
HP, HP’s PF and TES’s availability concept and entropy generation
were calculated in real time. For this purpose, second law
entropy/exergy models are rederived, customized and fitted. In
addition, scientific computation with NumPy allows temperature
dependent thermo-physical properties (such as density) to be
easily accommodated into the calculations. The derivation of the
models is out of scope for the intelligent system and its applica-
tions to building energy workflow. However, the final version looks
like this:

nst chð Þ ¼
Z t

0
q tð Þ � v�

hp
�c tð Þ � Thp;out tð Þ � Thp;in tð Þ� �

dt � T0

Z H

0
q hð Þ

�

� V=10ð Þ � C hð Þ ln Thp

Ti hð Þ
� �

dh
�
=

Z t

0
q tð Þ � v�

hp
�c tð Þ

� Thp;out tð Þ � Thp;in tð Þ� �
dt ð20Þ

where, v is the heat pump volumetric flow rate. The time derivative
of heat addition contributes towards the dynamicity of data analyt-
ics hence allowing to scale the process spontaneously. This could
allow researchers and engineers to make their TES integrated RE
systems better adjusted for real time quantification. In this manner
the exergy models were yet employed however completely
revamped for a) improved accuracy, and b) for dynamicity addition.
Finally, electricity consumption is accessed from Modbus registers
of wattmeter, and the HP performance factor (PF) is calculated using
the following equation:

PFhp ¼
Ptn

ti
Q iPtn

ti
ðEcomp þ EpÞ

ð21Þ

Ecom and Ep are the compressor and circulation pump respec-
tively. The idea is that 1st phase among 3-phases is used by the
HP compressor, and the 2nd phase by circulation pump, this data
is circulated and stored as 16-digit hexadecimal numbers in differ-
ent registers each having unique address in hexadecimal digits
also. So, there is need to access correct address to get a summed-
up and/or unique value of energy consumption per phase and to
convert it to human readable float value.
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3.3. Prediction performance accuracy & hyperparameter tuning

Before feeding the NN, data is divided into training and valida-
tion sets (sometimes test set too). Performances of the NN is usu-
ally expressed either by accuracy or by the loss. Unless there is an
overfit, lower loss means better performance. Overfitting is very
common problem where model crams the training data instead
of learning it. This means NN performs well during training (train-
ing loss is marginally low) while validation data is poorly predicted
and validation loss differs significantly. This difference in training
and validation loss (training loss is significantly lower than valida-
tion loss) can be interpreted as an overfit and some measures could
be taken to reduce overfitting, for example dropout and regulariza-
tion are the computationally cheapest methods In regression prob-
lems the loss is usually residual sum of square (RSS) as expressed in
Eq. (22).

RSS ¼
Xn

i¼1

ðeÞ2 ¼
Xn

i

½yi � ðmþ bxiÞ�2 ð22Þ

The objective of any NN based regression analysis is to lower
the RSS. The model is subjected to several dry-runs to guess and
evaluate the validation loss, and hyper-tuned eliminate overfit-
ting/underfitting problems, in addition to the validation loss reduc-
tion. Model hyper-tuning is done in several passes until loss is
reduced by several degrees of magnitude until further reduction
seem unlikely. For example, simple MLP structure gave a minimum
validation loss of 0.024 with excessive overfitting. This was dealt
by introduction of LSTMs hidden layers. Overfitting was reduced
by introducing regularization and dropout layers, Table 1. In addi-
tion, the NN was simplified by removing extra hidden MLP layers
this instantly gave a better prediction results by reducing valida-
tion loss to around second order of magnitude (0.024 to 4�10�4).
Following are the hyper-tuned NN parameters:

� Addition of Dropout and Regularization layers: The function of
the dropout is to increase the robustness of the NN by eliminat-
ing random nodes output within the layers. Dropout syntheti-
cally removes some of the layers output of some of the nodes
for a single pass forward, thus neutralizing their weights and
their errors. During the training phase (dropout is implemented



Table 2
Data layer core components, description, and uncertainties involved.

Device Description Specification Uncertainty/Error/Accuracy

Raspberry Pi 4 Core component (minicomputer) 8 GB ram –
Tem. Sensors Pt100 RTD 4 wire RTD based (ouput: 4–20 mA) ±0.05 �C from 80 �C to 200 oC
Flow meter Sitrans F M Mag 5000 Output: 4–20 mA current loop 0.4%, ±1 mm/s
Pt100 resistance Amplifier Adafruit temperature sensor amplifier (MAX 31865) RTD amplifier and ADC (for Raspi reading) 0.1% X
ADC (ADS1115 I2C module) Analog to digital converter (for flow meter current loop) 16-bit I2C communication, 4-channel 0.05 V
Watt-meter 3-phase Communication via. Modbus –
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only during training phase), individual nodes (neurons) are
either dropped out with a probability of 1-p or kept with prob-
ability p. This simply shuts down the interconnectedness
among the neurons and prevent the network to generalize the
data, thus reducing overfit. In addition to dropout, L1 (Lasso)
and L2 (Ridge) regularization are also used to prevent overfit-
ting problem. L1 and L2 regularization tend to penalize the
NN model by adding complexity term in such a manner that
the loss is increased while estimating complex models. The
key algorithm behind L1 and L2 is that it modifies the loss func-
tion by adding a penalty term equivalent to squared magnitude
of coefficient (in L1), and absolute value of magnitude of coeffi-
cient (in L2). Regularization treats overfitting as multicollinear-
ity of variables, that means NN is confused by the highly look-
alike data points, hence L1 and L2 adds a degree of bias or pen-
alty term to the loss function. The intuition behind adding these
penalties, is that L1 and L2 makes sure that the model performs
less than perfectly by regularizing the modified loss coefficient
valueW (see Eq, (23) and (24)). The overfitted model means that
the W value gives the best predicted y for input � and the RSS is
minimized. Certainly, the NN performs best in this case, but
only on the seen data, once the NN is tested on the unseen data,
the validation loss increases with several degrees of magnitude.
So, L1 and L2makes the NN to settle for less-than-perfect model
by introducing penalty term k to the regularized coefficient W,
Eq. (23) & (24). The code implementing these methods can be
reviewed in the GitHub repository (Chandra, Github Deep
Learning Code, (2021)).

RSSðL1Þ ¼
Xn
i¼1

ðeÞ2 ¼
Xn
i

½yi � ðmþ bxiÞ�2 þ k
Xm
j

W2
j ð23Þ

RSSðL2Þ ¼
Xn
i¼1

ðeÞ2 ¼
Xn
i

½yi � ðmþ bxiÞ�2 þ k
Xm
j

Wj

�� �� ð24Þ

� Model simplification – hidden neurons reduced from 64 to 32.
This alone decreased model complexity and reduced validation
loss to an order of magnitude.

� Data normalization is done for a range (0,1) instead of (-1,1).
This reduced the model confusion in learning local temporal
features within the data and predicted results improved.

� Reduced batch size from 500 to 50 (trial and error).
� As an exploratory data analysis EDA initiative, it was deter-
mined that previous 3 time stamp layered temperature values
[(t-3), (t-2), (t-1) ? t] reduced the validation loss by further
an order of magnitude. This was in contrast to the other fellow
researchers where only previous time stamp values were fed to
the network. Fig. 5 (a) and (b) respectively shows the NN archi-
tecture and input/output mapping, and Table 3 shows layered
architecture with number of neurons with training and testing
loss of hyper tuned NN. Tables 3a and 3b.
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4. Results and discussions

The real time energy assessment is streamed to the Jupyter
Notebook. The data collected from all the sources of the HP inte-
grated TES system is collected and through a complicated process
of data engineering fitted to the equation by data layer. The code
and GIF version of this real time presentation is available on the
GitHub repository (Chandra, GitHub [GIF and code], 2021) [4, 5].
GIF illustrations demonstrate during charging – layered tempera-
tures values, heat capacity of HP in kW, electricity consumption
rate in kW, and second law efficiencies. As animated GIFs could
not be put into perspective on hardcopy of this paper, therefore,
a restored version of modelled data is collected into still figures
for parametrization and assessment. Fig. 6 shows the complete
process workflow put into viewpoint from idle charge to discharge
and idle again. Fig. 7(a) gives a more still part of the layered tem-
perature data of charge/discharge loop, along with the LSTM pre-
dicted values. Validation loss during prediction was reduced
down to 4�10�4 from 0.4 (the least achievable value) during
hyperparameter tuning, while training loss was of the 3rd order
of magnitude, showing diminished levels of overfitting. Deep
learning code is available on the Git-Hub repository (Chandra,
Github Deep Learning Code) [6]. Fig. 7(b) shows the HP parameters
during charging of TES – heat capacity and electricity usage in kW,
and PF. Electricity usage has steep slope during the initial period
due to highest temperature lift, less steep as the temperature lift
is reduced and yet absolute value is increasing as the charging pro-
cess is continued. This decreases the PFhp from 2.3 to 1.8 (Fig. 7(b)),
this stems from the fact that current charge loop corresponds to
the maximum HP operating parameters i.e. 100% compressor and
pump speed (�1100 L per hour) – only two HP parameters made
accessible by the HP manufacturer. 100% compressor speed makes
sure that the temperature lift is the highest possible at the expense
of electricity usage thus contributing to reduced PFhp. After the
tank is charged to a sufficient threshold limit (55 �C in this case),
discharge process is initiated and the data layer through internal
logic operator recognizes the discharge process, and starts to quan-
tify the thermodynamic availability of TES in discharge mode.
Exergetic availability and entropy generation is plotted against
time, as the intension was to introduce a factor of dynamicity in
the second law equation (Eq. (20)). For example, entropy genera-
tion and thus stratification destruction at the end of charging
was about 4000 kJ. This means 4000 kJ of TES dispensed energy
was lost during charging. In another words, HP consumes 3.29
kWh of grid power to charge the TES with 5.04 kWh of heat addi-
tion amounting to 1.53 PFhp (nominal PF varies from 3.0 to 1.5)
raising its internal energy to 80000 kJ from 45000 kJ, and during
the process the system loses 1.12 kWh (4000 kJ) of energy as
entropy generation or the stratification decay due to mixing (see
Fig. 8(a)). Likewise, the entropy production during load phase
reaches as high as 20000 kJ near the end of phase due to cold water
injection from the bottom at 400 L/hour (load). The load phases
entropy generation decreases the available energy by an amount



Fig. 5. (a) NN architecture, and (b) Input & output mapping.

Table 3a
NN architecture.

Layer (Type) Output shape Training loss Testing loss

(1) Dense (MLP) (None, 32) 0.04 0.04
(2) Lstm_1 (LSTM) (None, 16) 3�10�4 4�10�4

(3) dropout_1 (Dropout) (None, 16) – –
(4) dense_1 (Dense) (None, 1) 4�10�4 4�10�4

Table 3b
Charging and Discharging efficiencies with PF (�COP).

Charging at: 50% HP 70% HP 90% HP

PF (�COP) 3.5 3.2 2.8
Charging Efficiency 76% 83% 79%

Discharge at: 400 l/h 600 l/h 800 l/h
Discharge Efficiency 84% 81% 76%
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of 20000 kJ which is in contrast significantly higher by 16000 kJ
during charging (see Fig. 8(b)). To clarify the concept of thermody-
namic availability (not to be mistaken as absolute heat addition by
HP), Fig. 9 shows a reversible process changing its thermodynamic
states from state 1 to 2. Availability in this case is the greatest
amount of mechanical work that can be obtained from this process.
Available energy is referenced to the dead state (ambient in this
case) and heat can only be extracted above this state from the sys-
tem (as parted available and unavailable energy in Fig. 9). Since
this is a reversible process, all the energy above the dead state is
available for conversion. It equally applies to charge/discharge loop
which in addition generates entropy due to the irreversibility in
the process thus reshuffling and accumulating for unavailability
as demonstrated in Fig. 8(a and b).

Fig. 10 depicts the g of LSTM predicted against measured. Rasp-
berry Pi data layer fits the customized second law efficiencies (Eq.
(20)) as the process loop carries on and streams the data on the
jupyter Notebook for assessment. Afterwards, the data is retrieved
from the local cloud severs for EDA (exploratory data analysis) and
preprocessing to feed the LSTM NN prediction. Finally, predicted
efficiencies and data layer calculated efficiencies are placed in jux-
taposition for experimental and prediction validation as shown by
Fig. 10(a) (charge) and Fig. 10(b) (discharge). X-axis represents the
index as time representation confuses and reduces the learning
rate of the NN. gcharge at 100% compressor and circulation speed
is around 78.5 %, while gdischarge around 80%. Fig. 11(a) depicts
the 5% error lines plotted for normalized temperature values, while
Fig. 11(b) shows the absolute values for hyper-tuned LSTM NN.
Fig. 11(c) shows the loss in terms of r2 error which has been
brought down to 4�10�4 (from 10�2) during the iterative hyper-
tune parameterization of the NN models.
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Fig. 12 illustrates parametric viewpoint of the charging and dis-
charging loop at 50%, 70 %, and 90% compressor and circulation
speed respectively. The TES layered temperatures along with HP
operating parameters – heat capacity in kW, electricity consump-
tion in kW, and performance factor (PF) are studied. The predicted
layered temperature is also shown alongside the stratification
curves.

Evidently, as the compressor speed is increased, the perfor-
mance factor (PF) of the system goes down. This is because of
higher temperature lift at higher compressor speeds, which even-
tually consumes more grid power reducing heat pump COP. Conse-
quently, PF of 90% compressor speed is the lowest. By this token, it
could be reasonable to assume that 50% compressor speed with PF
of 3 should be an optimum choice, however until exergy analysis is
performed (Fig. 13b), it wise to say that lower charging rates are
prone of diffusive mixing (due to longer charging time and lower
DT), thus reducing exergy availability in TES. As a result, the tem-
perature profile in case of 70% compressor speed points to a more
stratified charging then the rest. This is the reason for smoother
transition in the temperature curves and lesser heat capacity in
kW (more stratified charging) in case of 70% compressor speed
(see Fig. 12b).

Fig. 13(b) illustrates measured second law stratification effi-
ciency as represented by Eq. (20). The data layer calculates the
charging efficiency and streams the real time value on ‘jupyter
notebook’, additionally following illustration is the static version
of what’s represented by Eq. (20). Evidently, the charging efficiency
at 50% compressor speed is surprisingly low as compared to rest.
This is because the notion of ‘the lower the kinetic energy, the
lower the stratification decay’ is less applicable here due to consid-
erably longer time taken in charging as compared to rest of the
compressor speeds. The longer charging time actually takes
enough time for diffusion process to act and thus further entropy
generation thus decreasing the changing efficiency (see Fig. 13b).
Parameter 70% on contrary is a perfect blend of charging flow rate
and DT so that it out-ways the 90% compressor speed in terms of
entropy production.

Fig. 13(a) is the LSTM predicted and in accordance with the cal-
culated efficiency.g predicted and g calculated (charging) for 50 %, 70%,
and 90% HP parameters are approximately 76% (±1% gpredicted), 83%
(±2% gpredicted), and 79% (±2% gpredicted).

The validation loss was reduced to a minimum value range
between 4�10�4 and 6�10�4

. While, testing loss was between
4�10�3 and 6�10�3

, showing small overfit, however small overfit
is always beneficial for further fine tuning. Validation loss and train-
ing loss should be low and should be approximately close, represent-
ing a good fit. Also, the performance of the NN was tested on the data
not seen by the network.



Fig. 6. Workflow for LSTM prediction and subsequent second law model fitting of the predicted data.
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Fig. 14(a) demonstrates the LSTM predicted against data layer
calculated second law stratification efficiency during discharge.
As estimated by entropy and exergy measurements – 400 l/h has
the highest g calculated approximately 84% (±0.2 % g predicted), and
800 l/h has the lowest g calculated approximately 76% (±1%), while
600 l/h has g calculated approximately 81% (±1%). Fig. 14(b–d) are
r2 deviation for each flow rates. To elaborate, the common notion
– ‘the lower the flow rate, the lower the stratification decay’ actu-
ally is more applicable here. This is because the higher value of DT
(and thus the buoyant forces between hot and cold inlet) takes
precedence over lower flow rate and the mixing is purely due to
hot and cold-water mixing (and lesser due to diffusion). Thus, dis-
charge with 400 l/h has the maximum second law efficiency (84%)
then the rest of the flow rates. In Table 3 a comparative map of the
results is shown. Comparatively, the charging efficiency is highest
at 70% compressor speed with heat pump performance factor of 3.2
and discharge efficiency is highest at lowest flow rate of 400 l/h,
due to aforementioned reasons.

In Fig. 15 our exergetic model is compared with Haller et al.,
[24]. The data form their research was not available as ‘csv’ file,
so other data scrapping and digitizing methods were employed
to get the original data points from their paper and are plotted.
The data points are normalized for y-axis only, as their charge
parameters are rather different, however the simulated tank size
in terms of exergy changes is similar to our experimental. The
10
curves show the exergy changes during a full charging period.
The authors also performed exergy analysis of standby period
along with charging and discharging period with their own exer-
getic models which are independent of dead state temperature
T0. However, our exergetic models are dependent on dead state
as discussed in Fig. 9 and in Eq. (20) and accounts for charging
and discharging period only. Likewise, this gave opportunity to
compare our models with Haller et al. [24]during charging phase.
The comparative study is in accord providing a proof of concept
of a part of this study – second law exergetic models. The other
part is the method applicability – data layer and its application
to the building energy workflow.

For the concluding remarks, the novelty and practical applica-
bility of this work stems from the development of second law exer-
getic models and ‘method application’ of custom-built data layer in
building energy work-flow and its evaluation. The following points
are observed:

� In this paper, a ground source heat pump (GSHP) integrated
with TES system available for single family house in the Czech
Republic was evaluated for relative exergy balance and second
law performance evaluation.

� For this purpose, novel second law models were developed that
were fitted in real time with the custom-built data layer thus
developed.



Fig. 7. (a) Layered temperature values LSTM NN predicted vs measured, (b) HP parameters – Heat capacity in kW, Electricity usage in kW, and Performance Factor, and (c)
Load in kW.
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Fig. 8. Availability and entropy of TES at 100% compressor and circulation pump speed for (a) charging, and (b) discharging.

Fig. 9. Availability concept.

Fig. 10. Second law stratification efficiency for (a) charging at 100% compressor and circulation pump, and (b) discharging at around 400 L/hour.
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� Three different typical heat pump charging parameters i.e. 50%,
70%, and 90% of the compressor speeds (800 l/h, 1200 l/h and,
1600 l/h of charging flow rates). And, 3 different tapping flow
rates i.e. 400 l/h, 600 l/h, 800 l/h were experimentally studied
and modelled with the data layer and the exergetic models.
12
� The data layer streams the exergetic information about TES in
both charging and discharging mode in real time, thus giving
an edge at time scale of seconds in understanding TES systems
to energy engineers.



Fig. 11. Predicted against measured layered temperatures (a) Normalized 5% error range, (b) absolute values, and (c) loss, for hyper-tuned LSTM neural network model.

Fig. 12. LSTM predicted against measured layered temperature (charging/discharging) along with HP parameters – heat capacity, electricity and PF for (a) 50% comp. and
circulation, (b) 70% comp. and circulation, and (c) 90 % comp. and circulation pump speed. Discharge at 400, 600 and 800 L per hour.
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Fig. 13. Second law efficiency (charging) (a) predicted, and (b) measured for 50%, 70% and 90% of compressor and circulation speed.

Fig. 14. Second law stratification efficiency (discharge) for (a) predicted against measured at various flowrates, (b), (c), and (d) R2 deviation (variance) in observed against
predicted efficiency for 400 l/h, 600 l/h, and 800 l/h discharge.

Fig. 15. Second law exergetic model comparison with Haller et al., [24].
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� In addition, the data layer streams, end-to-end (from gird to
user tapped water) exergy balance of heat pump integrated
TES system in live mode. This makes sure that the engineer
has clear understanding of the what portion of total energy
being taken from grid is getting consumed as entropy during
charging/discharging, and what the portion is being consumed
by user as the tapped water.

� The application of novel data layer and custom build exergetic
model will help engineers to build an energy harmonogram of
TES integrated with heat pump system in the Czech Republic
and in Europe in general. This can come handy to decide the
extant of effectiveness of the current TES system.

� Finally, data layer also performs in-situ performance prediction
of the TES system, which can be further extended for long term
performance assessment.
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� The short-coming of current data layer is that LSTM prediction
can be extended for long term prediction. However, for that,
experimental data has to be collected for longer periods. In
addition, profiles of tapping cycles which are generally used in
houses have not been experimentally tested. We believe, this
novel data layer along with the custom exergetic model can
be systematically applied to tapping cycles to gain meaningful
insights regarding gross entropy generation during a week scale
of TES system usage in a single-family house for example, and
the work in this manner can be further augmented.

� Finally, a comparative study has been performed with previous
author to strengthen the arguments made in this work.

5. Conclusion

The motivation for the work was to develop a novel real time
stratification performance evaluation and streaming tool (method)
for HP integrated TES system. For this purpose, a core computer
science application layer was involved – customized data layer
using Raspberry Pi single board minicomputers and the other asso-
ciated data engineering stack. Second law of thermodynamics was
observed in tailoring the entropy and exergy equations. It was
made possible to fit these equations to the customized data layer
in order to stream in real time the end to end stratification perfor-
mance of TES, and PF of HP during charge/discharge loop. This real
time evaluation gives a better perspective about the energy effi-
ciency of RES system and thus could help engineers and research-
ers. Accordingly, complete charge and discharge tests were
performed on the test bench. In addition, detailed application of
advanced deep learning algorithms using LSTM neural networks
is also demonstrated to model the data thus generated by data
layer and to predict the TES layered temperature and efficiency.
The experimental curves correspond well with LSTM predicted
curves, with layered temperature having error within ± 5% and effi-
ciency error within ± 2%. The accuracy to NN is determined by the
minimized loss and the loss was reduced down to 6�10�4 by
parameters hyper-tune methods. The experimental data was used
for training and validation of the NN. Vanishing gradient problem
was reduced to a much greater extent (which is a major problem
with standard MLPs) with the use of advanced memory retaining
LSTM nodes.

As of the experimental side, it is concluded that entropy gener-
ation in TES effects the PF (�COP) of HP during charging. Thus, it is
necessary to optimize correct conditions of circulation flow rate
and compressor speed. Charging efficiency was highest at 70%
compressor speed with performance factor (PF – COP) of 3.2, while
discharging efficiency was highest at lowest flow rate of 400 l/h.
The exergy balance presented in this paper from stratified charging
to delivery measures the effective utility of heat pump integrated
with TES system.
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Abstract

Thermal energy storage (TES) is the core element of renewable energy system (RES) and can considerably affect its overall
fficiency. An effective thermal energy storage (TES) should enhance the stratification by restricting inlet mixing. In this paper,
n experimental study is presented to evaluate the performance of thermal energy storage (TES). Discharging of the tank was
onducted with different inlet flow rates to assess the effect of inlet mixing on thermal stratification. Results are quantified
n terms of temperature distribution, MIX, and Richardson number and were visualized to predict the behavior of TES. In
ddition, the data parsing is done in live mode with ad-hoc built stream-processing data layer. Finally a methodology for time
eries prediction in the context of TES using high end LSTM network is framed. It was concluded that discharging rate of 800
/h has the maximum mixing and thus the worst stratification, while prediction efficiency fell well within 5.2% of the error
ange.

2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

eer-review under responsibility of the scientific committee of the TMREES22-Fr, EURACA, 2022.

eywords: Thermal energy storage (TES); Data streaming with RaspberryPi and Python; Renewable Energy

1. Introduction

The best defense against demand-side and supply-side non-coincidences, particularly with solar thermal systems,
s the application of thermal energy storage (TES). This makes TES a crucial component of renewable energy
ystems (RES). Enhancing the functionality of this critical part can greatly reduce the amount of supplement grid
nergy needed for TES and eventually for entire building [1]. Thermal stratification is frequently observed and
romoted property of TES which greatly influences its thermal efficiency [2]. Likewise, a functional TES system
ust meet certain technological requirements, as also detailed in Fig. 1. These include maintaining hot and

old-water layers in a stratified fashion, minimized mixing and dead water weight, to name a few.

∗ Corresponding author at: Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Environmental
Engineering, Technicka 4, 166 07, Prague 6, Czech Republic.

E-mail address: yogenderpal.chandra@fs.cvut.cz (Y.P. Chandra).
https://doi.org/10.1016/j.egyr.2022.08.012
2352-4847/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.
org/licenses/by/4.0/).

Peer-review under responsibility of the scientific committee of the TMREES22-Fr, EURACA, 2022.

http://www.elsevier.com/locate/egyr
https://doi.org/10.1016/j.egyr.2022.08.012
http://www.elsevier.com/locate/egyr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.egyr.2022.08.012&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:yogenderpal.chandra@fs.cvut.cz
https://doi.org/10.1016/j.egyr.2022.08.012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Y.P. Chandra and T. Matuska Energy Reports 8 (2022) 1321–1335

o
r

p
m
T
p
w
t
W
i
a
2
(
d
a
t
S

Nomenclature

ADC Analog to digital converter
ANN Artificial neural network
β Thermal expansion coefficient (1/K)
DL Deep learning
e Error/loss
Ej Energy content of jth fluid element
GSHP Ground source heat pump
GR Grashofs number
g Gravitational constant (m/s2)
J Mean squared error
LR Learning rate
LSTM Long short-term memory
M Moment of energy (J m)
Mstr Moment of energy of perfectly stratified TES (J m)
Mfull−mix Moment of energy of fully mixed TES (J m)
Mexp Moment of energy of experimental TES (J m)
MIX Dimensionless MIX number
ρ Density of water (kg/m3)
RTD Resistance temperature diode
RNN Recurrent neural network
Re Reynolds number
SGD Stochastic gradient descent phenomenon
∆T Temperature diff. (oC/K)
v Characteristic velocity
W Potential energy (J)
y Height
z Distance in y direction

Due to the low density of hot water, stratification is therefore encouraged by having hot water enter at the top
f the tank [3,4]. However, allowing the hot and cold water to mix will lower the available temperature and, as a
esult, the quality of the energy delivered at load (Fig. 2).

Numerous researchers employed the Neural Network (NN) technique to the thermal performance forecasting and
rediction [5,6]. Work by Géczy-Vg, P., and Farkas, I. (2010) [7] is a standard in the field of thermal stratification
odeling in TES. A typical procedure to model the NN is to feed the network with previous time point values
hese data points can be temperature profiles, flow rates or any other feature which is known to govern the thermal
erformance of TES system. Careful feature engineering is needed to select such features. The authors’ findings
ere satisfactory when there was no load, but the model’s accuracy deteriorated during the load phase. Nevertheless,

he declining gradient issue with NN could be the cause of it. In our study, this shortcoming will be addressed.
e will use especial cell called LSTM (long short-term memory) which stores previous weights and gradients

n its memory. This significantly dampens vanishing gradient issue which is prevailing in common ANN cell. In
ddition, we will demonstrate two approaches to curb overfit — regularization and layer dropout (Srivastava et al.
014 [8] & Hinton et al. 2012 [9]). A through application procedure of this is also detailed by Hwang et al.
2020) [9] in their study of application of machine learning in building heating system. Yaci & Entchev (2014) [10]
emonstrated an interesting back-propagation technique to model multilayer TES temperatures. The researchers
sserted that the used network was sufficiently optimized to retain the learned features from input data during
raining. A condensed research on application of ANN in thermal systems is provided by Sencan et al. (2016) [11],
ouliotis et al. (2009) [12], and Melit et al. (2007) [13]. Voyant et al. (2017) [14] offered a thorough study of classical
1322
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Fig. 1. (a) and (b) Position of inlet and outlet for efficient and economic concerns in SDHW, and (c) thermal stratification in the same [2].

Fig. 2. Stratification in solar domestic hot water (SDHW) combi-system [2].

regression and deep learning application in forecasting time series data. The drawback with these techniques is that
data curation and prediction are separate tools against TES analysis and require proper human experience in both
directions. Therefore, it is recommended to conduct both operations at the end devices itself — stream-processing
layer, thus closing the loop. Moreover, the discharge process is dynamic, while the data collection is still, adding
another degree of restriction.

Henceforth, to combine and automate both above operations — data stream-processing and TES analysis along
with prediction, a smart system has to be fabricated. The following key objectives are observed:
1323
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• A technique for demonstrating the use of the data-streaming-layer structure to view the energy efficiency
of TES in real-time. To fit the thermal indices by utilizing unique data stream in real time. This will assist
engineers to optimize TES systems for thermal efficiency.

• To provide methodology for time series prediction in the context of TES using high end LSTM network.

Even in the load phase, which involves a significant amount of mathematical representation of convection/mixing for
the network to learn (train/test), the predicted results demonstrate excellent correlation with the parametrized
experimental data

2. Experimental setup and procedure

A 397l TES measuring 500 mm in diameter and 1905 mm in height makes up the test rig as depicted in Fig. 3.
ES has 200 mm thick insulation. 20 PT-100 RTD temperature diodes equally spaced are built around the TES to
onitor temperature distribution, dividing TES into 20 equal nodes. Inlet and outlet temperatures were also measured

ikewise. The TES has an expansion unit attached to compensate any volumetric changes during cooling and
eating cycle. TES is charged via. external thermostatic electric heater up to a single digit degree of precision

in temperature. Thermostatic heater can be set to discreet temperature values 60 degrees for example. As indicated

Fig. 3. (a) Experimental facility to test the commercial TES, (b) Schematic view of the same.
1324
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in Fig. 3(a), the discharge procedure is controlled by adjusting several one-way valves. Two loops come into picture-
discharge loop and charge loop. Discharge loop forms between TES and cold-water tank, while charge loop forms
between TES and chiller. Discharge entails closing down chiller loop while carefully controlling and monitoring the
flow rates of 200, 400, 600, and 800 liters per hour. After full discharge of TES, discharge loop is closed, while the
charge loop with thermostatic cooler is switched on, thus completing one charge and discharge cycle. In addition, the
data has already been collected and has undergone real-time analysis using ad-hoc built novel stream-processing
data layer. This quantifies the destratification process in real time. The reproducibility of tests was observed.

3. Data stream-processing layer (‘data in motion’)

We propose an innovative data stream-processing method to stream the energy disposal of TES in real time.
wo Raspberry Pi (Raspi1 & Raspi2) computers booted with Raspbian operating system make up the layer, see
ig. 4(a). Raspi1 and Raspi2 both collect data in real time. Primary master Pi collects volumetric flow rate in
ontrast to secondary slave Pi which collects the temperature values from the 20 RTD sensors positioned across
he experimental rig. A PT-100 sensor is a type of Resistance Temperature Detector (RTD), which changes its current
alue with the change in temperature. Sensor data is logged into PostgreSQL (database) server running on Pi. This

is performed every fifth second (Chandra, [GitHub code], 2021) [15]. Additionally, Raspi1 server retrieves grid
energy consumption values using Modbus RTU RS-485 protocol, see Fig. 4(b). Table 1 mentions the precision of
the stream-processing layer’s components. The primary master server is the Raspi1 which carries out all significant
data engineering operations, such as data curation, parsing, transformation and energy model regression. In Fig. 5
the work flow representation of the stream-processing layer. Raspi1 as the master server makes all necessary API
calls, executes data churn processes, and accesses the Raspi2’s PostgresSQL table values remotely.

Fig. 4. (a) Raspberry Pi data streaming layer, and (b) Modbus communication wattmeter.

Worth to mention is machine learning framework used in time series prediction i.e. Keras, data engineering stacks
i.e. NumPy, Pandas, and Scikit-learn. The super-fast computing capacity of ‘C’ is borrowed to Python by the robust
numerical computing framework known as NumPy. NumPy is a necessary component of machine learning or deep
learning applications. NumPy array manipulation is 5 to 100 times faster than other data structures like Python lists,
for instance, thus finding its application in the deep learning. Keras uses NumPy array in test/train process because
of its super-fast speed. This also makes Keras scalable. The high-level data parsing tool such as Pandas comes

handy for data transformation before converting it to NumPy arrays and eventually feeding to the network. NumPy

1325
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Fig. 5. Workflow over data streaming layer.

Table 1. Data layer core components, description, and uncertainties involved.

Device Description Specification Uncertainty/error/accuracy

Raspberry Pi Core component (minicomputer) 8 GB ram –
RTD sensors Pt100 RTD 4 wire RTD based (ouput:

4–20 mA)
±0.05 ◦C from 80 ◦C to
200 ◦C

Flow meter Siemens F M Mag 5000 Output: 4–20 mA current loop 0.4%, ±1 mm/s
Pt100 resistance
Amplifier

Adafruit temperature sensor
amplifier (MAX 31 865)

RTD amplifier and ADC (for
Raspi reading)

0.1% �

ADC (ADS1115 I2C
module)

Analog to digital converter (for
flow meter current loop)

16-bit I2C communication,
4-channel

0.05 V

Watt-meter 3-phase Communication via. Modbus –

and Pandas are inseparable; Pandas is used for data preparation and modeling, while NumPy tensors/arrays feed the
network. Scikit-learn is a machine learning package bundle wide range of functionality. It offers fundamental data
processing capabilities, such as normalization, standardization, and transformation, which comes handy during data
preparation.

Finally, TensorFlow and Keras are used for time series prediction and predictive modeling. TensorFlow is a
deep learning framework that runs on top of high-performance C++ in the backend, while using Python as a quick
front-end API. Natural language processing (NLP), image classification, scientific computing, solutions for partial
differential equations are common use cases for TensorFlow. TensorFlow’s workflow is extremely complicated and
maintains a set of distributed nodes that perform computational math on NumPy tensors. The computation is carried
out in Python wrapped C++ binaries. TensorFlow in this manner offers high-level abstraction. Likewise, Keras is
wrapper on the TensorFlow 2.0 ecosystem facilitating and abstracting away every step of the deep learning workflow
including data engineering and training/testing. Because of its simplicity and emphasis on the user experience, Keras
was designed for quick proof of concept and prototyping. Python API for Keras provides high degree of abstraction
due to which TensorFlow has accepted it as its fundamental API.

4. Energy methodology

4.1. MIX number

The energy distribution is assessed based on temperature contours and the bulk energy held within the
TES [16,17]. Moment of energy calculation at each TES segment facilitates the mixing process quantification

at layer level [2]. By adding the sensible energy content up to the jth vertical storage segment and weighting it
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according to its height, as specified by Eq. (1), the moment of energy of a thermal storage tank is computed thus
taking energy as well as temperature profiles into consideration, see Eq. (2).

ME =

j∑
j=1

y j .E j (1)

M I X =
Mstr − Mexp

Mstr − M f ull−mix
(2)

The MIX is a dimensionless number and falls within 0 and 1. It is a measure used to assess the TES’s
erformance. Full stratification of TES is represented by value 0; fully mixed TES is represented by value 1, provided
oth TESs stores the same energy content.

.2. Richardson number

Authors [2] frequently evaluated stratification using the Richardson number. The ratio between the potential
nergy needed for mixing and the turbulent kinetic energy available for it is represented by this dimensionless
umber. Mixed storage is denoted by a lower Ri value, while stratified storage is denoted by a higher Ri value.
qs. (3) and (4) explain this (4)

Ri =
W

K .E .
=

g
ρ
.

dρ

dz(
δυ
δz

)2 (3)

Ri =
gβ∆T L

υ2 (4)

. LSTM & ANN fundamentals

The stochastic gradient descent phenomenon is used to train NN (SGD). In order to minimize the loss, NN will
teratively determine the coefficients of the loss function at which it has its local minimum (Calculus). Consider a DL
lgorithm taking X and predicting Y′, while the actual output is Y, i.e. X→ f(x) →Y Or Y′. Error = Y′(predicted)

- Y(actual) provides an intuitive comprehension of the loss/cost function.
The stochastic gradient descent phenomenon is used to train NN (SGD). In order to minimize the loss, NN

will iteratively determine the coefficients of the loss function at which it has its local minimum (Calculus). Consider
a DL algorithm taking X and predicting Y′, while the actual output is Y, i.e. X→ f(x) → Y Or Y′. Error =

Y′(predicted) - Y(actual) provides an intuitive comprehension of the loss/cost function.
∂e
∂m

=
∂

∂m
(Y ′

− Y ) (5)

The goal of the DL algorithm is now to minimize this cost function (Eq. (1)) while locating the parameters
(coefficients) at minima, as a lower cost/error between the predicted and actual values indicates a better prediction
performance by NN. For instance, the minima of the cost function y = x2 (Fig. 4(a)) is at (0, 0). SGD will use partial
derivates to try and identify the local minima of this equation as well as the values for the slope and intercept in
the equation y = mx + b (line pointing towards the local minima). The slope of the curve can be found by drawing
a tangent to the graph in the direction of the local minima. Slope’s steepness indicates either in the direction or
away from local minima (see Fig. 4). (a). Tangent at the green point is steeper than the tangent at the red point, it
will require more steps at green than at red to reach the local minima, which is known as the learning rate (LR).
SGD therefore indicates:

Jm,b =
1
N

∑
ei

2 (6)

taking partial derivatives (gradient):
∂ J
∂m

= 2.e.
∂

∂m
(e) (7)

∂ J
∂b

= 2.e.
∂

∂b
(e) (8)
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now,
∂e
∂m

=
∂

∂m
(Y ′

− Y ) (9)

and,
∂e
∂m

=
∂

∂m
(Y ′

− Y ) (10)

thus,
∂e
∂m

=
∂

∂m
(m X + b − Y ) (11)

and,
∂e
∂b

=
∂

∂b
(m X + b − Y ) (12)

this gives:
∂e
∂m

= X (13)

and,
∂e
∂b

= 1 (14)

plugging Eqs. (13) and (14) in (7) and (8) gives:

∂ J
∂m

= 2e.X ∗ L R and
∂ J
∂m

= 2e.X ∗ L R (15)

ow since m1
= m0

− δm&b1
= b0

− δb,

thus, m1
= m0

− e.X.L R (16)

and, b1
= b0

− e.L R (17)

here, the magnitude of the steps needed to get at the local minima is essentially equivalent to the learning rate, or
R. Therefore, iterative gradients are calculated for the input data points using m and b values in order to locate local
inima and associated coefficients. Each new gradient offers information about the direction of minima to update

he coefficients, while LR controls how quickly this is accomplished. The vanishing gradient, or more specifically,
he fact that the gradients (Eqs. (5) to (17)) are disappearing (diminishing) in a deep NN, is a typical issue with
eed forward, back propagation MLPs. The error is usually calculated using gradients, however, diminishing gradient
henomenon in case of deep MLPs causes minimal gradient to reach the input layer. Thus, compromising the quest
f local minima and its direction and hence minimization of cost function. As a result, MLPs are left with very
imited proficiency to extract the sequential features from the input time series data, such as the prediction of layered
emperature in TES.

Recurrent neural network (RNN) architecture is suggested as a way to get around this restriction. RNN has an
dvantage of hidden feedback loop. This feedback loop preserves the information and the problem of diminishing
radient is reduced significantly. This helps in retaining the sequential features during training phase, Fig. 6(b). RNN
an extract information from time series data, temporal data, and non-numeric data more effectively. The LSMT
ell, a type of RNN is shown in Fig. 6(c). LSTMs are used to alleviate the diminishing gradient problem in MLPs
nd even RNNs as they store information in short term memory. Time series prediction is where LSTMs shine.
he LSTM network architecture and input/output mapping are depicted in Fig. 7(a) and (b), respectively. Table 2
isplays the architecture clearly depicting hidden layers and losses. The volumetric discharge rate and the last three
imestamps of temperature values are the network’s inputs, and its output is the current MIX and layered temperature
alues.

Table 2. NN architecture.

Layer (Type) Output shape Training loss Testing loss

(1) Dense (MLP) (None, 32) 0.04 0.04
(2) Lstm_1 (LSTM) (None, 16) 3 x 10−4 4 x 10−4

(3) dropout_1 (Dropout) (None, 16) – –
(4) dense_1 (Dense) (None, 1) 4 x 10−4 4 x 10−4
1328
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Fig. 6. (a) local minima of a cost function, (b) structure of MLPs, (c) unfolded RNN, and (d) LSTM cell (Fig. 6(c) & (d) modified from:
https://bit.ly/LSTMfig4d; https://bit.ly/LSTMfig4c).

Fig. 7. (a) NN architecture, and (b) Input & output to network.

6. Results and discussions

6.1. Temperature distribution

The Jupyter Notebook receives a stream of the real-time energy evaluation. Data from experimental facility is

collected and underwent through a series of data engineering process before fitting to the energy models by data
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layer. The code and GIF presentation are both accessible on the GitHub repository [15]. A restored version of the
modeled data is collected into still figures for parametrization and evaluation because animated GIFs could not
adequately convey perspective in the hardcopy of this work.

The tank was maintained at 60 ◦C before discharging for each Inlet flow rate. This was important to compare
various inlet flow rates with base tank temperature. During discharge, the inlet water temperature was held constant
at 20 0.2 ◦C. Each intake had a discharging test at four different flow rates: 200 l/h, 400 l/h, 600 l/h, and 800 l/h. The
amount of time it took for the inlet water to completely replace the water in the tank is known as the replacement
time. To examine the impact of flow rates on the temperature distribution during discharging, the temperature
distribution and outflow water temperature throughout one replacement time were recorded. Unit replacement time
is different for each flow rate and hence to evaluate and analyze the discharging performance at various flow rates,
the dimension-less discharging time was developed. Three distinct flow rates were used, and each experiment lasted
one unit of replacement time. The findings of the experiment were examined in one-unit replacement time at various
flow rates. The accompanying Fig. 8 displays the development of both the discharging procedure and the temperature
profile at various nodal locations (20 nodes). Unit replacement time for 200 l/h is 1.985 h. It is clear that compared
to other flow rates, 200 l/h demonstrates superior stratification. For larger flow rates, the top layers’ temperature is

Fig. 8. Temperature profile at (a) 200 l/h, (b) 400 l/h, (c) 600 l/h, (d) 800 of discharging rate (Fig. 6(c) & (d) modified from: https://bit.ly
LSTMfig4d; https://bit.ly/LSTMfig4c).
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higher and more stable than its counterpart. The strongest mixing occurs at the inlet and even at higher level for
800 l/h.

20th layer actually does not participate in the plug flow, due to its geometrical position above the tank outlet.
or 400, 600, and 800 l/h the unit replacement time is 0.99, 0.66, and 0.499 h, respectively. The temperature of

he 18th layer, the topmost layer involved in the plug flow, was at its lowest (52 ◦C) for 800 liters per hour while
t 59.2 ◦C for 200 l/h during 60% of discharge.

.2. MIX number

The MIX number analyzes the tank based on both the vertical temperature profile and the total energy stored
n the tank, as opposed to temperature gradients which eventually uses temperature profiles. In other words, the

IX number postulates the mixing process in the tank by evaluating the momentum of energy ME as indicated by
q. (1), which is based on both the energy and temperature distribution.

Fig. 9 displays the computed MIX number for the 60 – 20 ◦C discharge at flow rates of 200, 400, 600, and
00 l/h. Eq. (2) indicates that the MIX number varies between 0 and 1, but the important question is how slowly.
he MIX number’s ascent is lowest at 200 l/h, followed by 400 l/h, then 600 l/h, and greatest at 800 l/h. The
gure clearly shows that at t* = 0.4, MIX is around 0.4 for 200 l/h and 0.6 for 800 l/h.

Fig. 9. MIX number analysis at different flow rates.

6.3. Richardson number

The buoyancy, which is influenced by both the gravity and the impact of the temperature on the density of the heat
transfer medium, helps to define the thermal stratification inside the storage tank. In reality, the Richardson number
(Ri = Gr/Re2) is always considered a major factor in the stratification progress. Fig. 10 denotes the evolution of the

Fig. 10. Richardson number at different flow rates.
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Fig. 11. Predicted against measured layered temperature for 1200 l/h discharge rate.

Richardson number as a function of the dimensionless time for different discharging processes. As per definition,
tank sustains better stratification at lower flow rates. In other words, Ri is increased as flow rate is decreased from
800 to 200 l/h. For example, Ri at t∗ = 0.6 for 800 l/h is nearly 75, while for 200 L/h it is approximately 120. t∗

= 0.6 being the dimensionless time at which 60% tank is already discharged.

6.4. LSTM network prediction

The comparison of measured and predicted temperature distribution is plotted in Fig. 11. Given the mixing
induced by high inlet flow rate, stratification destruction is apparent. Likewise, the MIX number predicted
versus experimentally calculated is shown in Fig. 12(a). As the process is carried forward, the data layer assesses
energy models and broadcasts the results to the “Jupyter Notebook” for further analysis. The information is
then retrieved from the cloud servers for exploratory data analysis (EDA) and for prediction tasks using neural
network. As time representation confounds and slows the learning algorithm of the network, the X data points have
carefully been chosen as indexes. Fig. 12(a) demonstrates the extent of mixing at such a high flow rate. MIX at
1200 l/h is almost peaking 1. In contrast, Fig. 9 shows lesser levels of exergy destruction due to lesser intensity of
flow, with MIX staying around 0.90. The normalized temperature distribution are displayed in Fig. 12(b) against
observed values with an acceptable tolerance of 4%. The r-squared loss is reduced from 10−2 to 4 × 10−4 in model
tuning process, refer Fig. 12(c).

Validation loss falls within 4 × 10−4 and 6 × 10−4. Slight overfit is evident despite lowest reported testing
loss. As a matter of fact, slight overfit is desirable for additional tuning of network. Validation and training loss
need to be minimal and reasonably similar to each other, signifying the best possible good fit. The effectiveness of
network was evaluated with the unseen data during testing phase.

In the final remarks, it should be noted that the main goal of this work is to demonstrate the ‘data in motion’
algorithm to assess the TES performance in near real-time. Stream-processing pipeline calculates the thermal indices,
such as MIX and Richardson number and subsequently the degree of stratification destruction in TES. This cutting-
edge stream-processing pipeline, presumably would assist engineers and researchers to intuitively understand the
energy performance of their TES. The noteworthy observations are:

• This study assessed the destratification process and thermal efficiency of TES for single family house

frequently available in the Czech market
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Fig. 12. Predicted against measured (a) MIX number, (b) error range ∼5%, and (c) mean square error.

• For the stated purpose, initially, TES temperature dispersion is measured using resistance temperature
diodes’ (RTDs). Next, thermal indices like MIX &Richardson numbers are reviewed to confirm the findings.
Assessment is made using stream processing layer dedicated for real time evaluation.

• Distinct flow rates of 200 l/h, 400 l/h, 600 l/h, and 800 l/h were studied in this work.
• Stream-processing layer gives a competitive edge to the energy researchers by logging the thermal perfor-

mance in real time. Researchers will be fully cognizant about the percentage of the total energy which
is thermodynamically inaccessible due to stratification destruction.

• The future work with current stream-processing layer can thoughtfully be the long-time evaluation of TES. For
long time energy forecasting, extended duration of data collection is required with proper domestic tapping
profiles. It is advisable to methodically use this unique stream-processing layer and the energetic models along
with domestic tapping cycles to obtain insightful knowledge about thermodynamic losses, within a month’s

span of TES operation.
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• The novelty of the work lies within the application of the stream-processing layer which essentially assists
to create energy dispersion ‘harmonogram’ of TES. This is useful particularly in determining thermal
performance of TES available in market of the Czech Republic.

7. Conclusion

Destratification seriously limits the effectiveness of TES. Full stratification in TES facilitates higher energy
elivery with lower grid energy consumption. The decomposition of temperature at every layer was found to be
ncreased with the rise in inlet flow rate thus polluting the energy content in the TES.

The creation of an innovative real-time stream-processing tool, which can evaluate the stratification performance
f TES system with minimum human intervention served as the driving force behind this study. Stream processing
ayer is fabricated using a broad range of tech stack - Raspberry Pi single board mini-computers and wide
pectrum data science and data engineering stack, for instance. This ad-hoc designed stream-processing layer
as used to perform regression on energetic indices. Additionally, a thorough implementation of cutting-edge
achine Learning algorithm is illustrated for the time-series prediction workflow. The data thus collected by

tream-processing layer is used to perform prediction workflow - temperature distribution and TES efficacy.
According to test results, extreme destratification due to intense mixing occurs at discharge of 800 l/h. The

rediction and testing data correspond well within 5% error range. This is true for both temperature as well as
fficiency data points. Training loss was brought to its lowest value of 6 × 10−4 using hyper-tune techniques,

determines the precision of network.
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