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Abstract
This thesis investigates approaches to improve
performance of the Finite Element Tearing
and Interconnecting Dual Primal (FETI-DP)
method in problems with heterogeneously dis-
tributed high-contrast coefficients, in which the
classical domain decomposition methods strug-
gle. In particular, we focus on adaptive and
heuristic approaches for coarse-space enhance-
ment, and we investigate the robustness and
stability of the standard strategies based on
projections and transformation of basis for in-
corporating these enhancements. We propose
two modifications of existing coarse-space enrich-
ment techniques within FETI-DP, which result
in better convergence and improved robustness
while maintaining the complexity of the orignal
techniques. As the main outcome of the the-
sis, we introduce two novel techniques: (i) a
reduced-basis strategy for the generalized eigen-
value problems appearing in the adaptive ap-
proaches and (ii) a heuristic for selecting degrees
of freedom to be added to the coarse space. Both
techniques allow to identify the ill-posed solu-
tion modes while significantly reducing compu-
tation cost otherwise pertinent to eigenproblem-
based adaptive approaches. The effectiveness of
these modifications is illustrated on numerical
test problems designed to expose limitations of
traditional coarse-space constructions and fur-
ther tested on systems of equations arising in
modular-topology optimization tasks.

Keywords: FETI-DP, domain decomposition,
heterogeneity, coarse space, adaptive techniques

Supervisor: Ing. Martin Doškář, Ph.D.

Abstrakt
Tato práce se zabývá způsoby pro urychlení kon-
vergence a zlepšení robustnosti metody Finite
Element Tearing and Interconnecting Dual Pri-
mal (FETI-DP) u problémů s heterogenně rozlo-
ženými koeficienty s vysokým kontrastem, u kte-
rých klasické metody rozkladu oblasti selhávají.
Práce je zaměřena zejména na adaptivní a heu-
ristické přístupy pro obohacení hrubého prostoru
této metody a detailně zkoumá robustnost a sta-
bilitu standardních postupů založených na pro-
jekcích a transformaci báze pro zahrnutí těchto
obohacujících podmínek do výpočtu. V rámci
práce jsou navrženy dvě modifikace stávajících
přístupů pro obohacení hrubého prostoru, které
při zachování výpočetní náročnosti vedou k vý-
znamnému zlepšení robustnosti a konvergence.
Klíčovým výsledkem práce jsou pak dvě nově
navržené techniky pro obohacení hrubého pro-
storu: (i) využití redukované báze pro výpočet
problému zobecněných vlastních čísel a (ii) heu-
ristické pravidlo pro výběr vhodných stupňů vol-
nosti, které jsou přidány do hrubého prostoru.
Tyto techniky jsou schopné identifikovat většinu
módů způsobujících problémy s konvergencí a
zároveň jsou výpočetně úspornější v porovnání
s adaptivními technikami využívajícími plného
řešení zobecněné problému vlastních čísel. Účin-
nost těchto modifikací a nově navržených stra-
tegií je demonstrována na testovacích úlohách
navržených tak, aby odhalily omezení tradičních
konstrukcí prostoru hrubých proměnných, a dále
testována na úlohách modulární topologické op-
timalizace.

Klíčová slova: FETI-DP, doménová
dekompozice, heterogenní úlohy, hrubý prostor,
adaptivní techniky

Překlad názvu: Adaptivní hrubé prostory pro
řešení vysoce heterogenních úloh metodou
FETI-DP

vi



Contents
1 Introduction 1
2 FETI Dual-Primal 3
2.1 Decomposition of the original problem . . 4
2.2 Description of geometry . . . . . . . . . . . . . . 5
2.3 Original FETI-DP formulation . . . . . . . . 5

2.3.1 Preconditioning . . . . . . . . . . . . . . . . . . . 9
2.4 Scaling possibilities . . . . . . . . . . . . . . . . . 10

2.4.1 Multiplicity scaling . . . . . . . . . . . . . . . 11
2.4.2 ρ scaling . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.3 Stiffness scaling . . . . . . . . . . . . . . . . . . 11
2.4.4 Deluxe scaling . . . . . . . . . . . . . . . . . . . 11

2.5 Enforcement of additional constraints . 12
2.5.1 Projector preconditioning . . . . . . . . . 14
2.5.2 Transformation of basis . . . . . . . . . . . 15
2.5.3 Standard Transformation of basis . . 16
2.5.4 Generalized Transformation of basis 21

3 Coarse Space Enhancements 25
3.1 Weighted averages . . . . . . . . . . . . . . . . . . 25

3.1.1 Proposed modified weighted averages 27
3.2 Adaptive coarse spaces . . . . . . . . . . . . . . 28

3.2.1 Eigenvalue problem by Mandel and
Sousedík . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Frugal Approach . . . . . . . . . . . . . . . . . . . . 30
3.3.1 A modified construction of frugal

constraints . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Reduced-basis strategy for obtaining

adaptive constraints . . . . . . . . . . . . . . . . . . . 37
3.4.1 Applicability of the reduced-basis

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Heuristic selection of primal nodes . . . . 47
4 Numerical tests 53
4.1 Topology optimization problems . . . . . . 53
4.2 Comparison of enforcement approaches 56
4.3 Comparison of coarse space

enhancements . . . . . . . . . . . . . . . . . . . . . . . . 63
5 Conclusions 67
Bibliography 69

vii





Chapter 1
Introduction

Numerical simulations have become indispensable in both engineering design and research.
As computational power continues to grow and becomes more cost-effective, the complexity
of numerical models has increased significantly, often involving millions of unknowns. This
advancement necessitates the development of efficient solvers capable of leveraging the parallel
processing capabilities available in modern computers. Domain-decomposition strategies
exemplify methods designed specifically for parallel computing.

The recently proposed modular topology optimization framework [56] has provoked a
research question: which domain decomposition strategy, if any, is suitable for problems
that feature predefined partitioning into subdomains and exhibit high contrast in coefficients
within a domain. Recall that in the most common topology optimization approach [4], the
whole available space is discretized, resulting in simulations that model almost empty space
with a very low-coefficient material model.

Our preliminary results presented in [37] and the author’s bachelor’s thesis [36, in Czech]
indicated that these problems pose significant challenges for classical domain decomposition
methods, underscoring the need for more advanced strategies. Among the investigated methods,
the Finite Element Tearing and Interconnecting Dual Primal (FETI-DP) method [11] proved
to be the most robust, although not yet entirely adequate. The method’s ability to stabilize
the solution with chosen degrees of freedom that are not solved subdomain-wise paved the
way for our quest for an enrichment of this coarse space of unknowns, yielding an enhanced
robustness of the solver. This thesis addresses this open research question by introducing two
modifications of existing approaches and two novel approaches to coarse-space enhancement
(a reduced-basis generalized eigenvalue problem and an adaptive heuristic).

This thesis begins with an overview of the Finite Element Tearing and Interconnecting Dual
Primal (FETI-DP) method, a well-established technique that has seen significant advance-
ments in both theory and implementation over the past two decades. Key enhancements from
the literature are reviewed, with a focus on their applicability to problems with highly hetero-
geneous distributions of high-contrast coefficients. These enhancements include (i) scaling of
the binding constraints across subdomains’ interfaces and (ii) ways of enforcing additional
coarse-space constraints within the FETI-DP framework (with particular emphasis on the
comparison of projector preconditioning and transformation of basis).

The next part of the thesis is dedicated to the identification and construction of appropriate
coarse spaces. Despite theoretical proofs on condition number bounds being established for
some adaptive techniques, which typically involve identifying solution modes harmful to
the method’s convergence using generalized eigenvalue problems restricted to subdomains’
interfaces, it is often not straightforward to determine the most computationally efficient
approach. Starting with weighted averages, the focus then moves to adaptive approaches:
from the original approach by Mandel and Sousedík [35] based on the generalized eigenvalue
problem to its frugal heuristic counterpart [18] that mimics the original adaptive method. Here,
motivated by ρ scaling, we propose the first modification which improves the performance of the
original Frugal method. We then proceed with the introduction of reduced-dimensional strategy
for obtaining adaptive constraints, with the reduced basis being constructed heuristically,
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1. Introduction ..........................................
following our observations of method’s behavior on many elliptic problems. Finally, we return
to our original starting point, and we try to develop improved heuristics for the selection of
nodal degrees of freedom to enrich the coarse space, given the experience we gained while
working on the aforementioned strategies. Throughout this section, we illustrate the impact of
individual modifications on scalar and elasticity elliptic problems devised to reveal drawbacks
of practical coarse-space constructions. In the last section of the thesis, we provide numerical
tests of performance of the above-mentioned enrichments and their enforcement in the topology
optimization problems.

Throughout the thesis, we focus solely on linear problems described by elliptic partial
differential equations. In particular, we consider only the scalar problem of steady-state heat
conduction and the problem of linear statics. In both cases, only isotropic material models
were assumed. All discrete systems of linear equations considered in this work were obtained
using the finite element method with the standard conforming linear triangular and bilinear
quadrilateral elements.

2



Chapter 2
FETI Dual-Primal

Finite Element Tearing and Interconnecting Dual Primal (henceforth, FETI-DP) method,
first proposed by Farhat et al. [11], is a modified version of the original FETI [14]. Along with
its primal counterpart, the Boundary Domain Decomposition by Constraints (BDDC) [7, 33],
which features a similar numerical performance with a potential difference in multiplicities of 0
and 1 eigenvalues in the spectra [6, 34], it is regarded as one of the most effective numerically
scalable nonoverlapping domain decomposition methods available [50]. In the early stages,
the method was primarily developed for discretised second- and fourth-order elliptic PDE,
aiming at the needs of the structural mechanics community. FETI-DP and BDDC methods
were later successfully adopted in various problems, such as crack propagation [2] and on
isogeometric analysis of compressible [40] and almost incompressible [58] linear elasticity
problems, to name a few.

The FETI-DP emerged as a way to improve the original one-level FETI method (also
known as FETI-1), which at the time of its inception lacked a sufficiently robust coarse space,
a necessary factor for a numerical scalability of the method. The key difference between
FETI-DP and FETI lies in the fact that FETI-DP directly preserves solution continuity in a
set of few selected primal variables, which are coupled at the global level by partial assembly.
Consequently, it represents a compromise between the originally dual nature of the FETI
method and primal character of methods such as Schur Complements, as the substructures
are no longer completely decoupled. This coupling in primal variables, intentionally chosen
such that all the local subproblems remain invertible, serves as a coarse grid, which acts as
a natural coarse space traditionally used in dual methods, catching contributions of kernels
of the local stiffness matrices on the floating subdomains. Thus, at the cost of constructing
a small global problem, we can avoid pseudo-inverses of local stiffness matrices and, at the
same time, bypass the use of projections in a conjugate gradient solver.

Driven by rapid developments in many fields including numerical modelling and scien-
tific parallel computing together with a consistent increase in accessibility of computational
resources, the method and its applicability has been thoroughly investigated: from the the-
oretical standpoint, which included addressing provable upper limits on effective condition
number [28, 32, 55] and, hand in hand, the convergence rate, and from the practical imple-
mentation perspective, where the scalability up to hundreds of thousands of computational
cores has already been confirmed on parallel supercomputers [1].

The method itself has been evolving over time, taking inspiration in the development in
other domain decomposition (DD) methods. In fact, the evolution of many DD methods has
been closely intertwined. Nowadays, the classical DD methods are almost always combined
with certain enhancements not inherent to their original variants. These enhancements, e.g.
block conjugate gradients [5, 16, 38], are incorporated to overcome certain limitations of the
particular method by making use of advantageous techniques from various areas, effectively
combining their strengths to build a robust method reflecting specifics of the problem under
consideration. Another example can be a recursive application of the method itself, e.g. for a
solution of large coarse problems, giving rise to multilevel methods [23, 50, 54].

The last step towards perfection in the evolution is to let the algorithm itself identify the

3



2. FETI Dual-Primal........................................
harmful part of the problem being solved, i.e. allowing the solver to automatically identify the
bad modes in the system responsible for slow convergence and to concentrate computational
power there. Ideally, such an algorithm would enable a user to effortlessly, i.e. without
any required in-depth knowledge or personal experience with a problem at hand, find a
balance between optimal expected rate of convergence and the low dimensionality of the
coarse problem, which is typically directly factorised. This desired behavior, which beneficially
exploits the robustness of direct solvers and the ease of parallelization of iterative solvers,
is addressed with the so-called adaptive techniques; see the work of Spillane et al. [51, 52]
for strictly dual FETI and e.g. [35, 43] for FETI-DP in the context of non-overlapping DD
methods.
The most sophisticated of the adaptive techniques give a user a control over the condition
number bound with a single user-defined threshold, thus making the solver easy to use
as a black-box. Moreover, the value of this threshold is typically of the same magnitude
as the obtained condition number, hence it avoids the need for tedious parameter tuning.
The only drawback of adaptive techniques is that they usually rely on a solution of local
generalized eigenvalue problems (GEVP). By local we mean that each GEVP is restricted to
a single subdomain (for a GenEO type [51, 52]) or an edge/face shared by a pair of adjacent
subdomains, which is typical for the dual-primal FETI variant. While this locality of GEVPs
enables parallel handling, the data-transfers, set-up, and solution of GEVPs still pose a
computationally intensive part of the algorithm, particularly if adaptive constraints eventually
on a very limited number of interfaces are required.
On the other side of complexity of adaptivity stand heuristic approaches. These approaches
are commonly based upon geometric or physical expectations, reflecting certain observations
of a problem behavior. To the best of author’s knowledge, none of the approaches classified
as heuristic is provably robust for arbitrary material distribution and contrast. Therefore,
it is evident that these approaches have limitations in their applicability. Yet, for many
realistic problems, these heuristics are a perfect choice: they are cheap to set up compared to
adaptive approaches and they provide a reliable approximation of the coarse modes necessary
for restoring solver’s robustness. However, in some synthetic as well as real-world applica-
tions (particularly those with continuously varying coefficients and high contrast in material
properties), these heuristics fail to deliver desired performance.

In the following chapter, we briefly overview the most widely used heuristics and adaptive
approaches and comment on their limitations. In addition, we propose subtle modifications
to selected heuristics that will, in certain cases, ensure better numerical behavior. Finally, we
develop a reduced-dimensional approach for solution of localized GEVPs.

2.1 Decomposition of the original problem

Let us consider a given polygonal domain Ω ⊂ Rd with d denoting the dimension of the
problem. Typically d ∈ {2, 3}. In this thesis, however, we will limit our attention to two-
dimensional problems. We decompose Ω into Ns ∈ N non-overlapping subdomains Ω(i),
i.e.

Ω =
Ns⋃
i=1

Ω(i) with Ω(i) ∩ Ω(j) = ∅ i ̸= j ∀ i, j ∈ 1, . . . , Ns (2.1)

with the global interface boundary Γ which is – inspired by the the method of Schur comple-
ments – occasionally referred to as the skeleton of the decomposition,

Γ =
Ns⋃
i=1

Γ(i) where Γ(i) = ∂Ω(i) \ ∂Ω. (2.2)

Moreover, we let Γ(ij) denote a part of Γ shared by subdomains i and j, i.e. Γ(ij) = Γ(i) ∩Γ(j).

4



.................................... 2.2. Description of geometry

2.2 Description of geometry

For description of geometry, we follow the notation and definition introduced in [29] for
three-dimensional problems. First, for any nodal point x of the discretization of Ωh we let Nx

denote the set of parent substructures’ indices of x
Nx :=

{
k ∈ {1, . . . , Ns} : x ∈ Ω(k)

h

}
(2.3)

and, according to [29], define equivalence relations ∼ for interface nodal points
x ∼ y ⇐⇒ Nx = Ny s.t. y ∈ Ccon(x) ∧ x, y ∈ Γh

and
z ∼ x ∼ y ⇐⇒ Nz = Nx = Ny s.t. y, z ∈ Ccon(x) ∧ y ̸= z ∧ x, y, z ∈ Γh ,

where Ccon(x) signifies the index set of neighboring nodal points of x within the connectivity
graph. Then, since we restrict ourselves to 2D problems only, we distinguish the following
three equivalence classes, with each nodal point x ∈ Ωh belonging to exactly one of these
groups:

. Interiors: I denote the set of all nodal points that lie in the union of interiors of
substructures, i.e.

x ∈ I ⇐⇒ |Nx| = 1.

. Edges: E denotes the set of all nodal points that lie on the interface edges
x ∈ E ⇐⇒ |Nx| = 2 ∧ ∃ y, z : z ∼ x ∼ y

Individual edges Eij are defined as open sets in Γ

Eij :=
{⋃

x ∈ E : Nx = {i, j} ∧ ∀y ∈ Eij , ∃z ∈ Eij : y ∈ Ccon(z)
}

(2.4)

Therefore, we omit the case when two subdomains share two individual edges

.Vertices: V denotes the set of all nodal points that lie on the vertices defined as endpoints
of all Γ(ij)

x ∈ V ⇐⇒ |Nx| ≥ 2 ∧ ∄y, z : z ∼ x ∼ y

2.3 Original FETI-DP formulation

In the following section, we will establish most of the necessary notation and briefly outline
the standard FETI-DP method in a rather algebraic framework. The notation will be strongly
adopted from the work of Klawonn and Widlund [29] and their collaborators.

Let’s suppose we wish to solve the system of linear equations
KΩuΩ = fΩ , (2.5)

which arises from numerically discretized elliptic partial differential equations on a polygonal
domain Ω. Using decomposition into Ns non-overlapping subdomains accordingly to Sec-
tion 2.1, problem (2.5) can be posed as a series of completely decoupled locally defined
subdomain-wise problems

K(s)u(s) = f(s) (2.6)

subjected to additional constraint ensuring continuity of {u(s)}s=1...Ns across subdomain
boundaries.

5



2. FETI Dual-Primal........................................
Based on the character of subdomain degrees of freedom (DOFs), we recognise :..1. Interior DOFs I , which correspond to nodal points x ∈ I. These DOFs in Ω \ Γ are

usually condensed out first. Despite its name, nodes on ∂ΩN \ Γ are contained in this set
as well...2. Interface DOFs Γ, which can be further attributed to one of the following groups:..a. Primal DOFs Π are coupled at the global level through assembly operators. Each

subdomain Ω(s) should have a sufficient number of primal DOFs Π(s) to yield the
local system (2.6) invertible. The choice of DOFs in Π determines the resulting
a priori coarse space. In most cases, the endpoints of all nonempty parts Γ(ij)

are adopted. Even though different options are availabe, we will exclusively start
with a Π containing all vertices as outlined in Section 2.2, which generally does
not lead to the smallest number of primal DOFs needed to retain invertibility of
local subproblems, but brings many benefits for adaptive approaches, i.e. satisfies
[35, Sec. 4, Assumption 8]. Slight variations in the definitions of vertex constraints,
such as excluding subdomain vertices with a multiplicity less than 3 in three-
dimensional cases, are also feasible...b. Dual DOFs ∆ are located at Γ and not contained in Π. Continuity in the dual
DOFs is enforced in an iterative manner by imposed continuity constraints. The
term dual emphasizes that, due to the applied principle of Lagrange multipliers, the
quantity enforcing the continuity in these DOFs is of the dual character, i.e., for a
solution in displacements, we iterate in forces and vice versa.

Assuming that ordering of degrees of freedom follows the above-mentioned classification
of variables, we arrive at the following partitioning of the matrix and vectors of the local
problem (2.6)

K(s) =

K(s)
I I K(s)

I ∆ K(s)
I Π

K(s)
∆I K(s)

∆∆ K(s)
∆Π

K(s)
Π I K(s)

Π∆ K(s)
Π Π

 , u(s) =

u(s)
I

u(s)
∆

u(s)
Π

 , and f(s) =

f(s)
I

f(s)
∆

f(s)
Π

 ,
operating on a local finite element space commonly denoted by Ws, i.e. u(s), f(s) ∈ Ws and
K(s) ∈ Ws → Ws [57]. To simplify the notation, this splitting can be further restated by
grouping into

K(s)
RR =

[
K(s)

I I K(s)
I ∆

K(s)
∆I K(s)

∆∆

]
K(s)

RΠ =
[
K(s)

I Π
K(s)

∆Π

]
u(s)

R =
[
u(s)

I
u(s)

∆

]
and f(s)

R =
[
f(s)
I

f(s)
∆

]
, (2.7)

K(s)
ΓΓ =

[
K(s)

∆∆ K(s)
∆Π

K(s)
Π∆ K(s)

ΠΠ

]
K(s)

ΓI =
[
K(s)

∆ I
K(s)

Π I

]
u(s)

Γ =
[
u(s)

∆
u(s)

Π

]
and f(s)

Γ =
[
f(s)
∆

f(s)
Π

]
. (2.8)

The R symbol unifies the remaining DOFs that are not part of the primal set Π, i.e. R = I ∩∆,
whereas subscript Γ specifically refers to those DOFs associated with the physical boundary Γ,
grouping both dual and primal DOFs together. Apart from individual completely local terms,
we introduce block-diagonal matrices

KI I = diagNs
i=1 K(i)

I I K∆∆ = diagNs
i=1 K(i)

∆∆

KΠ Π = diagNs
i=1 K(i)

Π Π and KRR = diagNs
i=1 K(i)

RR
and vectors

uI =


uI

(1)

uI
(2)

...
uI

(Ns)

 fI =


fI (1)

fI (2)

...
fI (Ns)

 u∆ =


u(1)

∆
u(2)

∆
...

u(Ns)
∆

 f∆ =


f(1)
∆

f(2)
∆
...

f(Ns)
∆

 uΠ =


u(1)

Π
u(2)

Π
...

u(Ns)
Π

 fΠ =


f(1)
Π

f(2)
Π
...

f(Ns)
Π

 .
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................................. 2.3. Original FETI-DP formulation

The diag operation refers to the construction of a block diagonal matrix from a given set of
matrices.
As already mentioned, FETI-DP keeps the set of primal variables Π partially assembled. For
this assembly, simple restriction/prolongation operators are defined. Specifically, we have a
matrix R(s),T with values {0, 1} that prolongates an element from Π(s) to the appropriate
position in the assembled global representation of elements of Π. The role of R(s) is then
completely opposite; it restricts an appropriate element from Π to subdomain-specific Π(s).
Consequently, the primally assembled terms, denoted as •̃, read

K̃ΠΠ =
Ns∑
i=1

R(i)
Π

T
K(i)

ΠΠR(i)
Π = RT

ΠKΠΠRΠ f̃Π =
Ns∑
i=1

R(i)
Π

T
f(i)
Π , (2.9)

K̃ΠR =
[
R(1)

Π
T

K(1)
ΠR . . . R(Ns)

Π
T

K(Ns)
ΠR

]
= K̃T

RΠ where RT
Π =

[
R(1),T

Π R(2),T
Π . . . R(Ns),T

Π

]
and values stored in uΠ = RΠũΠ coincide at appropriate positions by explicit subassembly.

For dual variables ∆, we follow the steps of the other FETI-based methods and use a jump
operator B. In the past, it was experimented with various ways of introducing continuity
constraints; a brief overview on possible forms of jump operator and their influence on the
solver has already been given in the bachelor thesis of the author [36]. In two-dimensional
problems with a vertex-based coarse space, there is generally no need to incorporate redundant
Lagrange multipliers because the maximum number of substructures sharing a dual degree
of freedom is deliberately limited to two. However, sometimes it might be beneficial to
introduce a few redundant constraints, for instance, when the transformation of basis is
adopted. Currently, a fully redundant set of Lagrange multipliers enjoys privileged status
among all options, particularly when combined with advanced techniques such as adaptive
approaches. This is due to the fact that the full set of Lagrange multipliers efficiently addresses
the necessity of introducing a scaling. Moreover, the consistency of scaling is easily ensured
with the redundant set of Lagrange multipliers, which streamlines the implementation process.
We wish to emphasize that the redundancy does not pose a problem; the condensed system
remains positive definite on Range(B), thus the solution vector is uniquely determined. The
Lagrange multipliers are, on the other hand, uniquely determined only up to an element
in Kernel(BT). Consequently, we construct matrix B using values {−1, 0, 1} with each row
consisting exactly one +1 and one −1 value. All the remaining continuity conditions across Γ
not handled by Π are now resolved by

B∆u∆ = 0 . (2.10)
The matrix B∆ is known as a jump operator, and it is again assembled from domain-wise
contributions. In what follows, we will often deal with the restriction of all quantities
to a certain part of the interface, and thus we will frequently refer to these domain-wise
contributions. In an effort to unify the nomenclature used in this thesis, we slightly deviate
from the commonly used definition of the local contributions of the jump operator. In
particular, we consider that all local B(s)

∆ comprise only non-zero rows, i.e., each B(s)
∆ contains

as many rows as there are conditions defined on substructure Ω(s). For a formal mapping
to the global set of constraints in Eq. (2.10), we introduce auxiliary prolongation operators
R(s)

B∆
∈ Rn∆×n

(s)
∆ , with n∆ and n

(s)
∆ being the total and subdomain-wise number of Lagrange

multipliers, determined by the number of nontrivial rows of B∆ and B(s)
∆ , respectively.

Matrix R(s)
B maps rows in B(s)

∆ to their appropriate positions in B∆,

B∆ =
[
R(1)

B B(1)
∆ . . . R(Ns)

B B(Ns)
∆

]
. (2.11)

To complement the partitioning introduced in (2.7-2.8), we define
B(s)

R =
[
0(s)

I B(s)
∆

]
B(s)

Γ =
[
B(s)

∆ 0(s)
Π

]
B(s) =

[
B(s)

R 0(s)
Π

]
.

Note that despite the nodal, vertex-based set Π being usually chosen such that all of the
subdomains are sufficiently supported in case of mechanics, or connected in general, to avoid
local stiffness matrices being indefinite, this choice is not strictly necessary for all subdomains
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2. FETI Dual-Primal........................................
when the inter-domain conditions are held in a different manner, e.g. by enforcing local edge
averages or some different auxiliary conditions through projector preconditioning, deflation, a
transformation of basis, or local assembly. The only permanent condition is that the domain
as a whole must fulfill the sufficient Dirichlet boundary conditions. These different, non-nodal
conditions can often speed up the convergence dramatically. However, it is difficult to predict
the optimal form of such coarse continuity conditions in a generically applicable manner.

The FETI-DP master system is given byKRR K̃T
ΠR BT

R
K̃ΠR K̃ΠΠ 0
BR 0 0


uR

ũΠ
λ

 =

fR
f̃Π
0

 (2.12)

Giving rise to an operator R providing assembly in primal constraints
RT =

[
R(1),T R(2),T . . . R(Ns),T

]
we could alternatively write [

K̃ BT

B 0

] [
ũ
λ

]
=

[
f̃
0

]
(2.13)

with
K̃ = RTKR K = diag

(
K(1),K(2), . . . ,K(Ns)

)
ũ = RTu uT =

[
u(1),T u(2),T . . . u(Ns),T

]
f̃ = RTf fT =

[
f(1),T f(2),T . . . f(Ns),T

]
The specific equivalence between K̃ and the leading 2 × 2 block in Eq. (2.12) holds for an
interpolation operator [55]

R :=
[
IR 0
0 RΠ

]
with local contributions

R(s),T :=

Î(s)
R 0
0 R(s),T

Π

 : Ws → W̃

where Î(s)
R ∈ RnR×n

(s)
R is a matrix containing a block of possibly permuted n(s)

R × n
(s)
R identity

on appropriate positions and zeros elsewhere. In this case, n(s)
R denotes the number of DOFs

in the set R on a subdomain Ω(s), and nR is a total number of DOFs in this set. The space
W̃ ⊂W := Wi × · · · ×WNs is the space of functions continuous in primal variables defined
by [29]

W̃ :=
{

u : ∃u(s) ∈W (s), s = 1, . . . , Ns s.t. u =
Ns∑
i=1

R(i),Tu(i)
}
. (2.14)

Following the block Schur complement procedure and eliminating the system on the dual
variables only, we come to a condensed system of the form

Fλ = d (2.15)
with left hand side operator F ⪰ 0 defined as

F = BRK−1
RRBT

R + BRK−1
RRK̃T

ΠRS̃−1
ΠΠK̃ΠRK−1

RRBT
R (2.16)

or, for the purpose of keeping the notation high level, we alternatively present
F = BK̃−1BT (2.17)

or
F = BΓS̃−1

Γ BT
Γ . (2.18)

with S̃Γ being the Schur complement of the block of degrees of freedom in Γ of assembled
matrix K̃. For later purposes, we also denote by SΓ the non-assembled version of S̃Γ.
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................................. 2.3. Original FETI-DP formulation

The right-hand side reads
d = BRK−1

RRfR − BRK−1
RRK̃T

ΠRS̃−1
ΠΠ(̃fΠ − KΠRK−1

RRfR) . (2.19)
The application of F to a vector is practically performed by a solution of two systems in the
sense of Eq. (2.16), where the beneficial structure is exploited with a wise use of a matrix
inversion lemma. Clearly, the first term in the expression of F comprises a block-diagonal
matrix, thereby is trivially parallelizable. This distribution into smaller parts, necessitating no
inter-communication during computation, represents the essential factor in achieving numerical
scalability of the method. The second term in F constitutes a slightly more intricate part.
The new entity there, appearing in the Eq. (2.19) as well, is the coupled Schur complement
assembled in a few selected primal variables, also known as (prior) coarse problem:

S̃ΠΠ := K̃ΠΠ − K̃ΠRK−1
RRK̃RΠ. (2.20)

The coarse problem, in its simplest variant, substitutes the role of a natural coarse space in
original FETI, a term first used in [13].

Conversely to the first term of F, the coarse problem is critical to the robustness of
the method. Recall that S̃ΠΠ operates at the global level and that its application directly
mediates the global exchange of information. Since then, we can formulate two fundamental
requirements for K̃ΠΠ, or S̃ΠΠ, respectively. Firstly, it is preferable to keep it small in dimension
to reduce the computational complexity of this hard-to-parallelize operation. Second, we wish
to take as many primal constraints as necessary to achieve a satisfactory convergence rate;
this means that if incorporation of some extra primal constraints could substantially improve
robustness, this enrichment is beneficial. Setting up such constraints with no or limited prior
knowledge of coefficient distribution, decomposition into subdomains, their mutual effect on
one another, as well as different factors such as scaling is yet difficult. Therefore, it is essential
to thoughtfully consider the number of constraints enforced.

The formulation (2.15) is convenient because the solution can now be obtained as the energy
minimiser of a quadratic form with positive (semi)definite matrix F; and therefore the Krylov
subspace methods with a short recurrence property, such as the conjugate gradient (CG)
method, can be adopted. Please note that the zero eigenvalues of F emerges from redundant
constraints in B. However, the eigenmodes corresponding to zero eigenvalues are invisible
to the gradient-based iteration method, and the solution in terms of displacement variables
remains unique.

Also, despite the fact that the expression is probably the most widely used, it is not the
only possible way to solve the master system iteratively. When the primal problem becomes
too high in dimension to significantly harm the desired parallel scalability, the saddle point
formulation can be taken as the stepping stone; see, e.g. [26], where inexact iterative solvers
(such as generalized minimal residual method) were adopted.

2.3.1 Preconditioning

As is common for all iterative solvers, their efficiency is contingent upon the use of the
right preconditioner. In this context, the word “right” is a bit vague. The appropriate
preconditioner should be fairly cheap to apply, yet should store the needed information such
that the preconditioned system has a (rather significantly) lower condition number and the
eigenvalue distribution is better clustered. For the family of one-level FETI methods and for
many domain decomposition methods, the preconditioner is set as a weighted sum of local
contributions [9, 44, 55]. Taking this into account, the quality of the one-level preconditioner
depends on two factors only: (i) how accurately the approximation of the inverse of the
system matrix is computed on the subdomain level, and (ii) the provided weights of these
contributions. In this thesis, we restrict ourselves only to the use of the most accurate (and,
unavoidably, the most computationally demanding) choice of setting the localized inverse
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2. FETI Dual-Primal........................................
approximation; cf. our work [36, 37]. Thus, the optimal Dirichlet preconditioner is given by

M−1
D =

Ns∑
i=1

R(i)
B B(i)

D R(i)
Γ S(i)

ΓΓR(i),T
Γ B(i),T

D R(i),T
B (2.21)

with restriction R(s),T
Γ from DOFs on subdomain Ω(s) in set Γ to those in ∆, or equivalently,

with use of S(i)
∆ = K(i)

∆∆ − K(i)
∆I K(i)

I I
−1

K(i)
I ∆

M−1
D =

Ns∑
s=1

R(i)
B B(i)

∆,DS(i)
∆ B(i),T

∆,D R(i),T
B (2.22)

The lowest eigenvalue of the algorithm is bounded by one; this is explicitly stated in [6].
For additional references on the minimum and maximum eigenvalue bound estimates, we refer
the reader to [28, 28, 32, 39, 55]

2.4 Scaling possibilities

Scaling of continuity constraints is an indispensable strategy to accelerate convergence of
a domain decomposition scheme. Motivated by either physical or geometric reasoning,
various types of scalings have been established over time, from the purely geometrical [44],
applicable predomimantly to homogeneous problems, to the more sophisticated, and thus
more computationally demanding ones [8, 41]. Note that we refer to this strategy as scaling,
even though its application can be in general represented by non-diagonal matrices, which is
the fact that contradicts the general perception of scaling.

For a two dimensional application, we will consider a general form of scaling matrices
D(s)

Γ =
∑

Esj⊂Γ(s)

R(s)
Esj

D(j)
Esj

R(s) T
Esj

, (2.23)

where R(s)
Esj

represents the assembly operator that maps contributions from individual bound-
aries with neighboring subdomains into the entire Γ(s). Since there is no risk of confusion, we
leave out the subscript Γ in the scaling matrices D(s)

Γ . The scaling matrices D(s), s ∈ {1 . . . Ns}
are needed to form a scaled jump operator

BD =
[
D(1),TB(1) D(2),TB(2) . . . D(Ns),TB(Ns)

]
. (2.24)

Individual domain-wise scaling matrices D(s) are constructed such that the resulting scaled
jump operator preserves partition of unity property in a sense [16]

Ns∑
s=1

B(s)B(s)T
D = I. (2.25)

Thus, the scaled jump operator B(s)
D can be viewed as a suitable generalized inverse of B(s).

Such construction allows for a consistent splitting of the gap represented by the residual.
The four frequently utilized forms of D(s)

Esj
known from the literature are concisely described

below. For all of them, we assume that the jump operator is of a signed Boolean type.
Subsequently, although we do not investigate this particular case in the presented thesis, it
is assumed that there are rows in B defined between each pair of neighboring subdomains.
For instance, we would adopt all six Lagrange multipliers for a dual corner at a point of
contact of four subdomains, despite any combination of three linearly independent Lagrange
multipliers would be sufficient. This case is often referred to as a fully redundant set of
Lagrange multipliers. Implied redundancy does not have any harmful influence on the solution
which remains unique; only the acting gluing forces represented by Lagrange multipliers are
not uniquely determined. On the contrary, it is favourable from an implementation perspective
as it allows for a simple application of intended scaling. In practice, diagonal scaling matrices
D(s) are never built explicitly [44].
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...................................... 2.4. Scaling possibilities

2.4.1 Multiplicity scaling

Starting with the most simple one, multiplicity scaling [44], originally proposed by Rixen
and Farhat in 1999, serves to satisfy relationship (2.25) by splitting the jump proportionally
to the number of attached subdomains. Let Nx be the set of subdomain indices with a
boundary node located at x, recall Eq. (2.3). With a certain abuse of notation, we use x for
the coordinates while x denotes the node in disretization of Ω. In multiplicity scaling, we use
local inverse multiplicities

m−1
l (x) = 1

#Nx
∀ l ∈ Nx . (2.26)

In this scaling, DEsj is given diagonal matrix with individual components (D(s)
Esj

)dd = m−1
j (xP (d)) .

Here, P (d) denotes an index of the node pertinent to the given degree of freedom d.

2.4.2 ρ scaling

A general diagonal scaling for a fully redundant set of Lagrange multipliers can be established
with the use of local counting functions [55]

δ−1
l (x) = α̂l(x)∑

k∈Nx
α̂k(x) ∀x ∈ Γ(1)

h × · · · × Γ(Ns)
h , (2.27)

The values α̂ > 0 are in the case of ρ scaling given by the maximum coefficient in the finite
element support of x

α̂s(x) = max
y∈ω(x)∩Ω(s)

α(y) (2.28)

with α being either Young modulus E or ρ, e.g., thermal conductivity, and ω(x) denoting the
support of a finite element functions pertinent to x.

This scaling pair-wise divides the gap between adjacent subdomains proportionally to the
reciprocal maximum values of coefficients on elements within each affected subdomain. In con-
trast to stiffness scaling introduced next, ρ scaling delivers better the geometrically intended
meaning of this scaling, especially in the case of non-uniform meshes. This scaling is fairly
cheap and therefore widely used when the solver has access to the coefficients α̂s(x) on individ-
ual finite element nodes. For construction of D(s)

Esj
, we proceed analogously to Subsection 2.4.1,

replacing m−1
j (x) with δ−1

j (x).

2.4.3 Stiffness scaling

The second scaling introduced in [44] specifically targets heterogeneous problems with jumps
in coefficients aligned along individual boundaries. Splitting of the gap still operates on pairs
of degrees of freedom, this time in a manner that one might intuitively anticipate. For a
mechanical problem, for instance, it is natural to expect that an appropriate splitting, aimed
at optimally minimizing the energy after weighting, will tend to follow the stiffer than the
significantly softer parts. In stiffness, or so called k-scaling, weighting is given by diagonal
entries of local stiffness matrices as

D(j)
Eij ,dd =

K(j)
Eij ,dd∑

k=i,j K(k)
Eij ,dd

(2.29)

From a certain viewpoint, stiffness scaling can be viewed as an algebraic variant of the
ρ scaling; compare with the previous section.

2.4.4 Deluxe scaling

Deluxe scaling was first introduced by Dohrmann and Widlund (2013) in [8]. Using the
notation introduced by Rheinbach et al., the recipe for deluxe weighting matrices is as
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2. FETI Dual-Primal........................................
follows [43]. In 2D, for each edge Eij shared by subdomains i and j, we first seek for the
restriction of S(l)

Γ , l ∈ {i, j} to edge Eij . With a minor deviation from the nomenclature
used in the thesis, let us denote this term consistently with [43] by S(l)

Eij,0
. The subscript 0

emphasizes that this term represents the minimum energy extension from the edge Eij into
the interior of the subdomain with homogeneous Dirichlet conditions on Γ(l) \Eij . Apart from
the requirements on B discussed at the end of Subsection 2.4, we further make an assumption
that the orientation of binding constraints is consistent across all edges. The edge-related
part of the scaling matrix pertinent to subdomain Ω(l), l ∈ {i, j} has the following form

D(l)
Eij

=
(
S(i)

Eij,0
+ S(j)

Eij,0

)−1
S(l)

Eij,0
(2.30)

which inserted in Eq. (2.23) yields the final matrix D(i). Note that the use of D(j)
Eij

in the
definition of D(i) is due to the fact that FETI-DP operates on dual quantities. For a primal
counterpart of FETI-DP, the BDDC method, D(i)

Eij
would be used — then the formulation

would match that given in [8].

As of now, everything is set correctly to define the scaled version of a jump operator. The
product of the two symmetric terms on the right side of Eq. (2.30) is not symmetric, therefore,
the transpose in each local term in expression (2.24) is needed.
Albeit delivering performance superior to the three previously introduced scaling strategies,
deluxe scaling is indisputably computationally costly compared to diagonal scalings, which
somehow limits its wider adoption in practice. However, we find it a powerful tool when
dealing with varying coefficients in the interiors of subdomains. With information about (i)
boundary conditions on ∂Ω and (ii) coefficient distribution inside subdomains, it provides
a decent splitting of the gap especially in cases where, e.g., the high-coefficient aggregates
vanish within the subdomain, that is, those that do not touch a complementary part of Γ
w.r.t. given edge Esj .

2.5 Enforcement of additional constraints

In the previous sections, we mentioned that an a priori coarse space is central to ensuring fast
convergence as well as the quality of the initial estimate entering the iterative solver — both
of these factors strongly affect the overall convergence and the resulting accuracy of the
solution. When a system with defined primal conditions is ill-conditioned, and there is a risk
of convergence rate related issues, it is desirable to enrich this set of continuity conditions by
constructing a primally handled second level of the method, in which additional constraints are
enforced. Possible forms of these additional conditions will be discussed in Chapter 3. For now,
it suffices to say that the new conditions are general modes in their nature. These conditions
can be understood as suitably chosen combinations of finite element basis functions at the
dual interface of the subdomains, essential for ensuring rapid convergence. After a certain
number of iterations the solver reaches a state when the approximated solution becomes
predominantly discontinuous across the interface Γ particularly in modes that are poorly
captured by the preconditioner. At this stage, the iterative solver itself ceases to be capable
of generating these suitable Krylov search directions. This is caused by the gap in the quality
of the preconditioner. By a constraint we mean, in accordance with the literature [31, 57],
the expression

cTBu = 0, (2.31)
while by a constraint vector we understand vector c from the abovementioned equation. Using
the constraint vector, we therefore require that a suitably chosen combination of jumps in the
solution variables vanishes. Typically, we want to enforce more than one constraint. Thus, by
inserting the constraint vectors into a rectangular matrix U, we get

UTBu = 0 . (2.32)
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.............................. 2.5. Enforcement of additional constraints

For the sake of brevity, we introduce a matrix Q that does not operate on displacement jumps,
but directly specifies individual modes, i.e. QT = BTU and

QTu = 0 . (2.33)
Note that we viewed the terms mode and constraint equivalently above, but in the following
text we more often use the more general term mode, which does not directly imply the
necessity of being enforced in the coarse space.

In this thesis, we exclusively consider constraints that operate on a single interface; that
means, in the two-dimensional case, that each constraint can be defined only on one of
the edges. Then, because the interaction is limited to a pair of substructures, the general
expression from (2.31) simplifies to

cTB(i)u(i) = −cTB(j)u(j) . (2.34)
Without loss of generality, we assume that our constraint vector c specifying an edge-related
constraint operates on the part of the interface between substructures Ω(i) and Ω(j). From
this point onwards, the joint occurrence of indices i and j typically signifies some relation to
the edge Eij between the subdomains Ω(i) and Ω(j). Denoting B(l)

Eij
, l ∈ {i, j} a submatrix

of B(l) specifically restricted to edge Eij , with non-contributing rows and trivial columns
excluded, we can write

cT
Eij

B(i)
Eij

u(i)
|Eij

= −cT
Eij

B(j)
Eij

u(j)
|Eij

. (2.35)

The vector u(i)
|Eij

denotes the part of u(i) corresponding to DOFs on an edge Eij . With

consistently established pairwise continuity constraints, B(l)
Eij

is simply a permutation of the
(negative) identity matrix. Recalling that B(i)

Eij
= −B(j)

Eij
and B(l)

Eij
, l ∈ {i, j} consists only of

values from {−1, 0, 1}, we arrive at an expression for solution variables
q̂T

Eij
u(i)

|Eij
= q̂T

Eij
u(j)

|Eij
, (2.36)

in which we can arbitrarily pick q̂T
Eij

to be either cT
Eij

B(i)
Eij

or cT
Eij

B(j)
Eij

.
In the context of the relationship (2.36), the quantity q̂Eij is consistently referred to

throughout this thesis as a constraint mode.
From our perspective, the exceptionally beneficial constraint modes are those reflecting the
poorly preconditioned part of the system. However, the mere fact that preconditioning is
not perfect does not necessarily pose a critical problem in practice. For instance, systems
with dense clustered spectra and only a few outliers can be denoted as ill-conditioned. In
such cases, as is demonstrated on numerous illustrative examples discussed later in this
work, each enforced constraint mode typically results in saving one iteration. This is also
theoretically justified, assuming that calculations are performed in exact arithmetic. Yet, for
larger problems with more complex coefficient distributions, this is no longer a general rule.
If the preconditioned system has too ill-conditioned spectrum, such as a flat one, a skeleton
of the problem may be absent. Then an application of gradient-based solver such as the
conjugate gradient (CG) method can prove tricky, as it might require more iterations than
would be expected. Additionally, the convergence rate may be completely spoilt as iterates
cease to converge towards the precise solution due to inaccuracies in numerical computations
and the loss of orthogonality of search directions. Then, it is not uncommon for the solver
to reach a plateau at a relatively high error norm, a case when the best solution obtained
remains inaccurate even after a substantial number of iterations.

In spite of that, the constraint vectors c(M−1) fundamentally represent functions of admis-
sible harmful configurations in the solution variables field, roughly written as c

(
ubad(M−1)

)
.

The vectors denoted here as ubad(M−1) are closely associated with the eigenmodes of (local-
ized) eigenproblem(s) as defined later. These (approximated) eigenmodes will be frequently
illustrated in this work so that the reader can develop a sense for the form of beneficial
constraints.

The constraints presented above, targeting a trouble-making part of the system, can be
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2. FETI Dual-Primal........................................
enforced through a range of different approaches. The enumeration of the most widely used
ones is recalled in the text below to keep the thesis self-contained. Some of the approaches
are described with a deeper level of explanation; consequently, the descriptions provided do
not always align with the actual author’s in-house implementation.

2.5.1 Projector preconditioning

Projector preconditioning, or so-called deflation, represents a straightforward way to enrich
solver’s coarse space with arbitrarily chosen set of new constraints. Contrary to approaches
based on transformation of basis (ToB), compare with Subsections 2.5.2-2.5.4, projector
preconditioning is relatively convenient from an implementation perspective, because it does
not require any adjustments of the system products. Within deflation, the system itself
remains untouched. We only construct a second coarse problem, independent of the original
one, with the use of orthogonal projections. Thus, from this point of view, it might sound
appealing to solve two smaller coarse problems than a larger single one. Here, we briefly
recall the projector preconditioning and balancing approach based on the work of Klawonn
and Rheinbach [28].

First, we introduce an orthogonal decomposition of the solution space, a procedure well
known from the framework of FETI-1 or T-FETI [10, 30]. We let

P = U(UTFU)†UTF (2.37)
be an F-orthogonal projection onto Range(U) and

I− P = I− U(UTFU)†UTF (2.38)
the F-orthogonal complementary projection to P. The † symbol denotes the pseudoinverse,
which is needed only if the matrix F is symmetric positive semidefinite, i.e., there is a
redundancy of continuity constraints in the jump operator.

Then, we have the additive splitting of the exact solution of (2.15) in F-orthogonal subspaces
λexact = λ′ + λ∗ λ′ ∈ Range(I− P), λ∗ ∈ Range(P) . (2.39)

The projection of the exact solution Pλexact onto Range(P) = Range (U) is computed as
λ∗ = Pλexact = PF†d = U(UTFU)†UTd (2.40)

and it remains to compute λ′.
For ϑ ∈ Range(U), we can write ϑ = Uξ and

(I− P)TFϑ = (F− FU(UTFU)†UTF)Uξ (2.41)
= FUξ − FU(UTFU)†UTFUξ
= FUξ − FUξ
= 0,

where we made use of symmetry of F. Thus, Range(U) ⊆ Kernel
(
(I − P)TF

)
. Let ϑ⊥ be

F-orthogonal to Range(U), that is, UTFϑ⊥ = 0. Now
(I− P)TFϑ⊥ = (F− FU(UTFU)†UTF)ϑ⊥ (2.42)

= Fϑ⊥ − FU(UTFU)†UTFϑ⊥

= Fϑ⊥

and no nontrivial ϑ⊥ lies in Kernel
(
(I− P)TF

)
. Consequently, we see that

Kernel
(
(I− P)TF

)
= Range(U) . (2.43)

Qe our now approaching our goal. Our aim is to seek for λ′ iteratively by solving a problem
(I− P)TFλ = (I− P)Td (2.44)

with imposed auxiliary conditions stored in U, resulting in iterates that by construction satisfy
the condition UTBu. To do so, we make use of a preconditioned conjugate gradient method.
We only need to keep directions of search in Range

(
I− P

)
, which is done by projecting the
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correction in each iteration. For symmetry reasons, we construct a deflated preconditioner as
M−1

PP = (I− P)M−1
D (I− P)T (2.45)

and solve Eq. (2.44) iteratively with a symmetric preconditioner with an initial guess λ∗ in a
following way

M−1
PPFλ′ = M−1

PPd. (2.46)
The ultimate solution is then composed of two contributions: initial guess from (2.40) and

iteratively found λ′ from Eq. (2.46),
λ = λ′ + λ∗ . (2.47)

Note that the system (2.46) is only positive semidefinite, because the eigenvalues corresponding
to deflated constraints are mapped to zero.

An alternative approach, which prevents introducing a rank-deficiency, is to incorporate
the particular solution λ∗ directly into the preconditioner. This gives rise to the balancing
preconditioner

M−1
bal = M−1

PP + U(UTFU)†UT . (2.48)
The part of the spectrum mapped to zero by application of M−1

PP is in the case of M−1
bal shifted

to one [28], i.e., the conjugate gradients algorithm is no longer insensitive to contributions in
search directions lying in Range(U). With balancing, we only have to solve

M−1
balFλ = M−1

bald . (2.49)
For more details, we refer the reader to [20, 28].

The deflation and balancing approaches are proficient tools for a coarse space augmentation.
However, these techniques exhibit two closely related drawbacks. First, their performance
quickly deteriorates if projections are computed inexactly [28]. In particular, this extremely
detrimental behaviour becomes evident once CGs recognize small non-zero eigenvalues. In such
a case, convergence issues usually emerge and projector preconditioning becomes unstable.
Consequently, for our testing purposes, we rather opted for the balancing approach, as it
is generally more stable. On the other hand, balancing can often be even more deceptive,
because it might compute an incorrect solution without any prior indication. For very ill-
conditioned problems, it is challenging to ensure that the term (UTFU)† is computed precisely
enough, making the convergence behavior dependent also on the particular implementation.
For example, Kühn [31] states that the efficacy of deflation-based techniques strongly depends
on the way the (generalized) inverse (UTFU)† is handled; it is crucial to exploit the sparsity
structure of U and F to reduce the computational cost to a minimum. He further mentions
that the (pseudo)inverse of the given Galerkin projection can then be computed at a cost of
the sparse Cholesky factorization [31]. We have not adopted this in our implementation yet.
However, we do not see any reason why this should affect the precision achieved.

This brings us to the second drawback of the approaches that rely on projections: for large U,
the application of projections becomes costly. Unfortunately, deflation-based approaches are
not amenable to inexact solvers. For example, approaches utilizing transformation of basis
with a partial subassembly are generally considered more robust and suitable for employing
inexact solvers. These methods will be discussed in the subsequent subchapters. In fact,
we were forced to implement a more complex generalized transformation of basis due to
problems with projections: we frequently encountered convergence issues when solving highly
heterogeneous problems, especially those with flat spectra.

2.5.2 Transformation of basis

Assuming that we want to augment the coarse space with constraints of non-nodal character,
typically the adaptive constraints or, e.g. (weighted) averages, we introduce a transformation
in which the modes we want to enforce are represented directly as components of solution
vector u in the new basis, such that

u(s) = T(s)u(s). (2.50)
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Here, we follow a convention established in the literature that T provides a transformation
from new, generally non-nodal basis to the original one. Note that although we refer to
matrix T as a transformation, it is not necessarily required to be orthonormal. The only
requirement for the transformation is that ns

c basis vectors q(s)
i in T are orthogonal to the

remaining basis vectors collected as columns in Q⊥,(s), i.e.
T(s) =

[
q(s)

1 . . . q(s)
ns

c
Q⊥,(s)

]
q(s),T

i Q⊥,(s) = 0T ∀ 1 ≤ i ≤ ns
c .

However, since we employ the transformation explicitly, we always construct T such that it
has orthonormal columns. We start with an orthonormalized set of modes and compute an
orthogonal complement Q⊥,(s) to Range(

[
q(s)

i , . . . , q(s)
ns

c

]
). It is clear that, for a given set of

constraints (orthonormalized or not), the transformation is not uniquely determined. Thus, to
obtain an effective transformation, one should carefully consider the balance between (i) the
preservation of sparsity in the remaining dual variables and (ii) having a general formulation
for the assembly of the block of T that only concerns the remaining DOFs. Note that the
transformation is always nontrivial only on the degrees of freedom corresponding to a dual
set of variables. Hence, in the interior and primal DOFs, the transformation is formally
an identity. Assuming that dual DOFs are ordered in groups pertinent to individual edges,
relation between the original and transformed variables is given byu(s)

I
u(s)

∆′

u(s)
Π′

 = T(s)

u(s)
I

u(s)
∆′

u(s)
Π′

 =

I
diag{Esj∩Γ(s) ̸=∅}(T(s)

Esj
)

I


u(s)

I
u(s)

∆′

u(s)
Π′

 , (2.51)

where constraint modes q̂Esj defined by (2.36) find their application

T(s)
Esj

=
[
q̂Esj ,1 . . . q̂

Esj ,n
(s)
c

Q̂⊥,(s)
Esj

]
q̂(s),T

Esj ,iQ̂
⊥,(s)
Esj

= 0T ∀ 1 ≤ i ≤ nEsj
c .

In the expressions above, we have used a superscript •′ to distinguish the a priori dual ∆′ and
primal Π′ set. Here, we have directly introduced a transformation by means of block-diagonal
contributions corresponding to individual edges. This implies that modes in the new basis are
restricted to individual edges, i.e., no mode in the new basis shares node values with another
edge. This is consistent with the architecture of the method, which benefits greatly from the
localisation of contributions to individual interfaces. From now on, we omit the denotation
for the transformed interior and primal nodes as they are not affected by the transformation,
and we write u(s) =

[
u(s)

I
T

u(s)
∆′

T
u(s)

Π′
T]T

.
Being the new constraint modes explicitly expressed in the new basis, we can treat them as

other primal constraints. Hence, a partial assembly in the new degrees of freedom is to be
applied. The specific manner in which this assembly process is enforced, together with the
treatment of the scaling, depends on the approach called. In fact, one can opt between two
possibilities. Both are recalled in the following.

2.5.3 Standard Transformation of basis

In the standard transformation of basis (sToB), we introduce new constraints by a direct
reclassification of solution variables from the dual set ∆ to the primal set Π. From now on,
we search for a solution in the transformed basis denoted by • symbol, i.e., for each domain
we have

K(s) = T(s),TK(s)T(s) (2.52)

f(s) = T(s),Tf(s) . (2.53)
We will drop the overline in the terms not affected by a transformation. Note again that the
transformation matrices T(s) do not necessarily have to be orthogonal. The simplest and most
straightforward way to incorporate the non-nodal constraints that are known in advance into
the coarse problem is to insert the relations with actualized assembly and jump operators
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into the scheme presented in Section 2.3. Then, we arrive atKRR K̃
T
ΠR BT

R
K̃ΠR K̃ΠΠ 0
BR 0 0


uR

ũΠ
λ

 =

fR

f̃Π
0

 (2.54)

and ultimately get a system similar to (2.15) operating in the new basis of the form
Fλ = d . (2.55)

Now, all the primal constraints are enforced by the corresponding assembly. The jump
operators are still defined such that there is one Boolean continuity constraint for each pair
of remaining dual DOFs. The formulation of the FETI-DP algorithm in the new basis is
essentially the same as in the original basis. To obtain a solution in the original basis, we
only have to perform a back-transformation

u(s) = T(s)u(s) s = 1, . . . , Ns .

However, such approach faces two primary challenges. The first challenge is that con-
straints are often not predetermined, for instance, when they depend on factors such as
scaling or coefficient distribution. Consequently, it is either impossible or disadvantageous
to communicate between subdomains during the preprocessing phase. The second challenge
is related to the definition of scaling itself, unless it is constant. This is due to a potential
interaction between the new non-nodal primal and the remaining dual variables imposed
by transformation matrices T(s). To mitigate these obstacles in our implementation, we
consistently define a new row in B containing a continuity condition for every edge-related
pair of DOFs. Thus, form of the matrix B corresponds to a jump operator used in a standard
FETI-DP algorithm with a nodal basis.

Henceforth, we assume that there are no non-nodal primal constraints in the prior coarse
space. These non-nodal constraints will only be defined on the fly via a formal reclassification
of variables, even if their form is known in advance. Note that they also can constitute the
whole coarse space if there are none nodal a priori primal constraints, as is the case with
averages over edges. Hence, if we denote by Π′ and ∆′ the (possibly empty) prior primal and
prior dual set of variables and let R′ = I ∩∆′, we can rewrite Eq. (2.12) asKR′R′ K̃T

Π′R′ BT
R′

K̃Π′R′ K̃Π′Π′ 0
BR′ 0 0


uR′

ũΠ′

λ

 =

fR′

f̃Π′

0

 . (2.56)

Then, we introduce a posterior (non-nodal) primal constraint set Π∗ and accordingly update
the dual set ∆∗, and we expand (2.56) to

KI I KI ∆∗ K̃I Π∗ K̃I Π′ 0
K∆∗I K∆∗∆∗ K̃∆∗Π∗ K̃∆∗Π′ BT

∆∗

K̃Π∗I K̃Π∗∆∗ K̃Π∗Π∗ K̃Π∗Π′ 0
K̃Π′I K̃Π′∆∗ K̃Π′∆∗ K̃Π′Π′ 0
0 B∆∗ 0 0 0




uI
u∆∗

ũΠ∗

ũΠ′

λ

 =


fI
f∆∗

f̃Π∗

f̃Π′

0

 (2.57)

with explicitly written out a posteriori assembled quantities

K̃Π∗Π∗ =
Ns∑
i=1

R(i)
Π∗

T
K(i)

Π∗Π∗R(i)
Π∗ = RT

Π∗KΠ∗Π∗RΠ∗ f̃Π∗ =
Ns∑
i=1

R(i)
Π∗

T
f(i)
Π∗ ,

K̃Π∗R∗ =
[
R(1)

Π∗
T

K(1)
Π∗R∗ . . . R(Ns)

Π∗
T

K(Ns)
Π∗R∗

]
= K̃T

R∗Π∗ where RT
Π∗ =

[
R(1),T

Π∗ R(2),T
Π∗ . . . R(Ns),T

Π∗

]
.

In contrast to Eqs. (2.54-2.55), here in the system we keep the Lagrange multipliers that are
designed to enforce conditions that are now integrated into the coarse problem as components
of Π∗. That is because the system assembled in Π∗ is statically condensed on Lagrange
multipliers. Written out, we expect the relation

B∆′|Π∗ u∆′|Π∗ = 0 (2.58)
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2. FETI Dual-Primal........................................
which, given that B∆′|Π∗ = BΠ∗ and uΠ∗ = RΠ∗ ũΠ∗ , is directly implied by

BΠ∗ RT
Π∗ = 0 (2.59)

to hold. For the sake of clarity, we note that by B∆′|Π∗ we understand the submatrix of
B∆′|Π∗ with columns pertaining to DOFs in Π∗, and the zero blocks at positions three-five and
five-three in Eq. (2.57) are a consequence of (2.59). Although there is no apparent motivation
to keep two separate sets Π′ and Π∗, we kept them to emphasize the twofold character of
posterior constraints, which are now treated as primary while still being maintained in a dual
arrangement. After the elimination of all solution variables, the system reads

F′
λ

′ = d′
. (2.60)

The problem with scaling is as follows. In standard FETI-DP the preconditioning step
determining a new search direction in the kth iteration involves three steps: subsequent
multiplication of the three matrices BT

∆,D, S∆ and B∆,D with the kth residual rk = Buk vector,

zk+1 = MD rk

= B∆,D S∆ BT
∆,D B uk (2.61)

=
Ns∑

s=1

(
R(s)

B∆
D(s),T B(s)

∆ S(s)
∆ B(s),T

∆ D(s) R(s),T
B∆

)
B uk ,

where D(s) are appropriately chosen local scaling matrices that, once assembled, provide a
partition of unity such that

Ns∑
s=1

R(s)
B∆

D(s)R(s),T
B∆

= I . (2.62)

However, in the new basis, we operate with directly transformed entities F ′ and d ′, and the
transformation of the preconditioner MD is needed as well. This must be conducted with
great caution because the transformation of the scaling is not straightforward.

We demonstrate this challenge of the scaling transformation with a simple two-dimensional
problem decomposed into only two substructures Ω(1) and Ω(2), which meet at a single edge
E12. We assume that there is at least one non-nodal primal constraint on the interface E12,
and this constraint is given by a column in TE12 . The constraint is then enforced by a partial
subassembly. With a slight abuse of notation, we temporarily let TE12 =: T(1)

∆′ = T(2)
∆′ of the

form
TE12 =

[
T∆∗ TΠ∗

]
. (2.63)

Now, the equivalent of Eq. (2.61) is

zk+1 =
2∑

s=1

(
R(s)

B∆∗ D(s),T
∆∗ B(s)

∆∗ S(s)
∆∗ B(s),T

∆∗ D(s)
∆∗ R(s),T

B∆∗

)
Buk . (2.64)

The properly transformed scaling, which typically operates on the original ∆′; recall Subsec-
tion 2.5.2, would be

D(l) = TT
Eij

D(l)TEij =
[
TT

∆∗D(l)T∆∗ TT
∆∗D(l)TΠ∗

TT
Π∗D(l)T∆∗ TT

Π∗D(l)TΠ∗

]
l ∈ {1, 2}. (2.65)

Assuming the nodal-based scaling that satisfies D(1) + D(2) = I, the sum D(1) + D(2) clearly
satisfies the partition of unity property as well for orthogonal transformation. In our compu-
tations, we are constrained to utilize only a restricted part D(l)

∆∗ of D(l). However, this comes
at the cost of omitting particular components of the scaling which have influence on the
remaining dual set. For simplicity, we first consider the diagonal scaling. The residual r := Bu
can generally be nonzero only on the Lagrange multipliers defining ∆∗. With restriction R(s),T

B∆′

in Eq. (2.64), we obtain
[
∆uT

∆∗ 0T
]T

and we observe a splitting of the jump affecting the

set Π∗, which due to the subsequent application of S(s)
∆∗∆∗ cannot be incorporated into calcula-

tions. Additionally, the construction of a correction field in the third step encounters a similar
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problem. This interaction can occur as long as the off-diagonal blocks of D are nonempty.
Hence, all but constant scaling, such as multiplicity scaling, are problematic. With constant

scaling, we have by construction TT
Π∗T∆∗ = 0 and thus D(l) =

[
TT

∆∗D(l)T∆∗ 0
0 TT

Π∗D(l)TΠ∗

]
or D(l) = D(l), depending on whether the transformation employed is orthonormal or not.

To the best of author’s knowledge, there is no elegant solution that effectively resolves the
issue of interaction in the scaling when using explicitly transformed variables. In an effort to
approach the correct transformed scaling, we apply a restricted transformed scaling on DOFs
in ∆∗ together with use of orthogonal transformation matrices, i.e., we set

D(l)
∆∗ = TT

∆∗D(l)T∆∗

= TT
∆∗∆∗D(l)

∆∗T∆∗∆∗ + TT
Π∗∆∗D(l)

Π∗TΠ∗∆∗ l ∈ {i, j} , (2.66)

where D(l)
∆∗ is a submatrix of D(l) pertaining to DOFs in ∆∗. Now we elucidate the necessity

of having the original scaling accessible. Without this, it would not only be impossible to
incorporate contributions from Π∗, but it would also require the normalization of dense
matrices. Moreover, this approach allows us to reuse the same segments of code employed
in standard FETI-DP and merely perform an additional transformation from the old basis
to the new one. By maintaining the partition of unity, expression (2.66) is a suitable choice
for scaling. Furthermore, we expect that this option will mirror the intention of the original
scaling well in many cases.

The numerical results of the two highly heterogeneous tasks, presented in Fig. 2.1, support
this claim. The first involves a stationary diffusion problem with a binary coefficient distribu-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2.1: Left: Random binary voxel-based coefficient distribution within a stationary diffusion
problem: ρmax

ρmin
= 106. Dirichlet BCs are imposed on the whole ∂Ω. Decomposition into 4 × 4

subdomains, H/h = 9. Vertex-based prior primal coarse space. Right: Messerschmitt-Bölkow-
Blohm benchmark problem. Emax

Emin
= 106. Decomposition into 6× 16 subdomains, H/h = 40.

tion with a high heterogeneity ratio. Tables 2.1-2.2 store numerical results for a standard
transformation of basis approach and a theoretically correct one, obtained using, e.g., deflation
techniques. Although the choice among projector preconditioning, balancing and generalized
transformation of basis depends on a personal preference, here we provide a comparison
against a generalized transformation of basis because we observed the superior accuracy and
robustness of generalized transformation of basis compared to the alternative methods relying
on projections. Moreover, to guarantee a fair comparison, we compare the two methods using
a relative L2-error norm with a solution generated in the kth step compared to the reference
solution obtained with a direct solver. In practice, we have to settle for an approximate error
indicator, typically based on the norm of (preconditioned) residual. According to Tab. 2.1,
the transformed and restricted scaling performs relatively well for both ρ and deluxe scaling.
It is confirmed that the results for multiplicity scaling are identical, regardless of the method
used. With ρ scaling, the condition number estimates as well as the initial and resulting
L2-error norm are relatively comparable. In the case of deluxe scaling, a significant difference
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Stationary diffusion problem

scaling transformation its. ϵL2 (it. 1) ϵL2 (it. 50) κest

sToB mult. Eq. (2.66) 50 2.82 · 10−1 6.23 · 10−3 1.84 · 105

gTob mult. correct 50 2.82 · 10−1 6.23 · 10−3 1.84 · 105

sToB ρ Eq. (2.66) 50 9.61 · 10−2 3.82 · 10−5 7.56 · 104

gTob ρ correct 50 2.92 · 10−1 1.16 · 10−5 7.38 · 104

sToB deluxe Eq. (2.66) 50 1.75 · 10−1 5.49 · 10−5 7.51 · 104

gTob deluxe correct 50 2.71 · 10−1 4.90 · 10−10 1.60 · 104

sToB ρ none 50 4.71 · 10−1 3.34 · 10−2 8.17 · 105

sToB deluxe none 50 5.18 · 10−1 2.90 · 10−2 2.32 · 106

Table 2.1: Comparison of established transformation of scaling in standard transformation
of basis for a scalar problem depicted in Fig. 2.1. Results for a vertex-based prior set Π′

and enforced weighted averages after 50 iterations are shown. Annotations: sToB/gToB -
standard/generalized transformation of basis, transformation - transformation of scaling, its. -
iteration count (fixed), ϵL2(it. k) - relative L2-norm of difference between solution obtained in
iteration k and a directly obtained reference solution.

in the convergence rate becomes apparent, as the reduction in relative norm is five orders
of magnitude lower with a properly handled scaling. In any case, the transformation of
scaling is undoubtedly essential. The non-transformed restricted scaling is less effective than
constant scaling, which is inherently problematic in the context of heterogeneous problems
with material discontinuities not aligned with interfaces.

The surprisingly subtle distinction between standard and generalized transformation of basis
manifests itself in a linear elasticity problem with uniformly varying coefficients; see Tab. 2.2.
It is evident that the solver performs similarly in both approaches. The most noticeable

Linear elasticity problem
scaling transformation its. ϵL2 (it. 1) ϵL2 (it. 50) κ

sToB mult. Eq. (2.66) 50 1.34 6.45 · 10−5 8.96 · 101

gTob mult. correct 50 1.34 6.45 · 10−5 8.96 · 101

sToB ρ Eq. (2.66) 50 1.31 · 101 7.75 · 10−5 2.96 · 102

gTob ρ correct 50 9.25 · 10−1 6.91 · 10−7 4.76 · 101

sToB deluxe Eq. (2.66) 50 2.12 · 10−1 9.98 · 10−9 2.00 · 101

gTob deluxe correct 50 6.30 · 10−1 8.64 · 10−9 1.97 · 101

sToB ρ none 50 2.20 2.35 3.92 · 105

sToB deluxe none 50 2.06 2.10 3.33 · 105

Table 2.2: Comparison of established transformation of scaling in standard transformation
of basis for elasticity problem depicted in Fig. 2.1. Results for a vertex-based prior set Π′

and enforced weighted averages after 50 iterations are shown. Annotations: sToB/gToB -
standard/generalized transformation of basis, transformation - transformation of scaling, its. -
iteration count (fixed), ϵL2(it. k) - relative L2-norm of difference between solution obtained in
iteration k and a directly obtained reference solution.

difference is now observed with the ρ scaling in terms of condition number, where the
preconditioner in standard transformation of basis is slightly less effective. In summary, our
observations generally do not indicate that the restricted scaling is particularly sensitive
to any specific choice of scaling. However, it is not always the case that the difference in
performance is negligible. Especially with adaptive techniques, some detrimental modes are
often detected in the preconditioned system, and the condition number remains high.

A note to defend the existence of sToB is necessary; it has been first introduced in the
context of imposing auxiliary constraints in the form of arithmetic averages, see [25, 29].
Being independent of the scaling used, the relations for constructing transformations for
arithmetic averages are general, and once restricted, they also preserve the nodal character
among the remaining dual unknowns. Specifically, the remaining dual unknowns represent
nodal fluctuations from the imposed averages, i.e. the first- or second-order differences. In
particular, we can set TΠ∗ to store (non-normalized) edge moments of zeroth and possibly
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first order and then directly construct T⊥
Π∗=

[
I∆∗∆∗ −T∆∗Π∗T−T

Π∗Π∗

]T
, which leads us to the

following form of transformation
TEij =

[
T⊥

Π∗ TΠ∗

]
=

[
I T∆∗Π∗

−T−1
Π∗Π∗TT

∆∗Π∗ TΠ∗Π∗

]
s.t. TT

Π∗T⊥
Π∗ = 0 . (2.67)

Submatrix TΠ∗Π∗ is certainly invertible unless the edge is aligned with one of the coordinate
axes, then only a simple permutation is needed to ensure invertibility. Evidently, TT

Eij
TEij ̸= I,

but we can set a scaling only from the first term in the second line of Eq. (2.66), bypassing
the need for a scaling transformation. Again, this is a feasible option to employ due to the
preserved partition of unity. Nevertheless, a further deviation from the intended meaning of
the scaling can be expected.

To summarize our description, standard transformation of basis (sToB) approach allows for
enforcing non-nodal constraints. However, adaptively selected non-nodal modes, where the
constraints are specifically dependent on prior scaling, the standard transformation of basis is
not adequate anymore unless a constant scaling is used. The same holds for non-adaptive
constraints as any other scaling than a constant one after transformation cannot carry all the
information of the original scaling; a part of the scaling is irretrievably lost. The loss is due to
the interaction between the chosen posterior modes and the remaining dual variables, because
the application of the DB in PD := BTDB operator does not preserve the continuity in the
assembled posterior primal variables if transformed scaling is used. This continuity is enforced
afterwards through a multiplication with BT, yet a part of the scaling is neglected; we refer
the reader for more details to [20, 42], where an illustrative counterexample is given. This
violates the assumptions built in the theoretical background, where many condition number
bounds relying upon the PD = BTDB operator were successfully proven for the different
adaptive approaches. Exactly the same problem would remain if, instead of transforming
a scaling to the new basis, a reverse transformation from the new basis to the original one
was provided by an appropriate modification of the continuity conditions in jump operator.
Then, we could directly transform the jump operator as B := B∆′T∆′ , to obtain jumps in
the original basis. Generally, not a single continuity condition in B∆∗ is now satisfied. Only
transformed back to the new basis these conditions would be satisfied once again. Now, being
the appropriate scaling constant, the issue would not arise. Unfortunately, this is not the
case for ρ, stiffness or deluxe scaling, and, consequently, values after application of PD are
no longer zeroed in a posteriori primal variables — meaning that the continuity in Π∗ is
disrupted when transforming back to the new basis — unless the new basis is fully nodal (a
specific case corresponding to a partial assembly). It is clear that the meaning of the scaling
would be affected, resulting in inconsistency in the scaling. The key problem again lies in
the restriction of the assigned part of the gap followed by the application of the local Schur
complement; compare with Eq. (2.64).

2.5.4 Generalized Transformation of basis

We have now made a conceptual step towards a remedy: transformation of basis correctly
handling scaling, known as a generalized transformation of basis (gToB). As mentioned in the
previous sections, some components in the scaling can be neglected during a conversion of
constraint(s) from a dual to primal set in a standard transformation of basis (sToB), which
violates the intended character of the scaling. What has the most significant impact on the
theory is the fact, that non-zero values can occur in in the posterior primal variables after the
application of the localized PD operator, unless some restrictive assumptions on the scaling
and transformations hold.

Thus, the remedy is to enforce a posteriori primal variables in the space of Lagrange
multipliers [42], as is the case in approaches using deflation. To this end, we make use of the
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2. FETI Dual-Primal........................................
restriction operators RΠ∗ introduced in Subsection 2.5.3 and unlike in sToB, we apply them
not only to the vector of solution variables but to jump operators as well.

Again, we tacitly expect that the priori coarse space is limited to nodal constraints. As
discussed in Subsection 2.5.3, this has been established as indispensable for preserving the
desired interpretation of the scaling. However, when employing adaptive techniques, it is not
necessary to adhere to this assumption; the primary requirement is to preserve the scaling
once auxiliary constraints are imposed.

Starting from Eq. (2.56) we further express domain-wise quantities in the sense of Eqs.(2.52-
2.53) and distinguish between u∆∗ and uΠ∗ =

[
u(1),T

Π∗ . . . u(Ns),T
Π∗

]T
. For enhanced clarity,

we henceforth proceed with unknowns segmented into sets I ,∆∗,Π∗, and Π′, where the a
posteriori chosen constraint modes in Π∗ build on the coarse space and scaling. In generalized
transformation of basis, a partial subassembly in uΠ∗ is not handled in a classical sense, i.e.,
by a direct elimination of a corresponding product K̃Π∗Π∗ = RT

Π∗KΠ∗Π∗RΠ∗ . Instead, the
required continuity is achieved through a repeated process of (i) disassembly, (ii) subsequent
averaging to ensure the continuity is preserved, and (iii) reassembly, which takes place in the
jump operator. This, together with a special structure of the jump operator, allows us to
work with quantities and a scaling both operating in the original basis.

Following the augmentation of unknowns, we can split transformation
T∆′ =:

[
T∆∗ TΠ∗

]
(2.68)

into two blocks accordingly. We remind that a priori sets are denoted by a prime •′: primal
constraints stored in Π′ remain unchanged and for prior dual set we can write ∆′ = ∆∗ ∩Π∗,
where asterisk marks the a posteriori (transformed) variables. Then, for every subdomain
affected by at least one a posteriori constraint, we utilize jump operators B∆∗ and B̃Π∗ , which
are composed of domain-wise parts

B(s)
∆∗ = B(s)

∆′ T(s)
∆∗ (2.69)

B̃
(s)
Π∗ = B(s)

∆′ T(s)
Π∗R(s)

Π∗ . (2.70)

Note that for subdomains for which no additional constraints are applied, B(s)
∆∗ is given by

properly transformed B(s)
∆′ and with B̃

(s)
Π∗ being an empty matrix. Finally, we can rewrite

Eq. (2.57) as 

KI I KI ∆∗ K̃I Π∗ K̃I Π′ 0
K∆∗I K∆∗∆∗ K̃∆∗Π∗ K̃∆∗Π′ BT

∆∗

K̃Π∗I K̃Π∗∆∗ K̃Π∗Π∗
˜̃
KΠ∗Π′ B̃

T
Π∗

K̃Π′I K̃Π′∆∗
˜̃
KΠ′Π∗ K̃Π′Π′ 0

0 B∆∗ B̃Π∗ 0 0




uI
u∆∗

ũΠ∗

ũΠ′

λ

 =


fI
f∆′

f̃Π∗

f̃Π′

0

 , (2.71)

In the equation above we have denoted by •̃ quantities assembled in Π∗ while the wide tilde
accent •̃ those assembled Π′ in order to distinguish between the two sets. Again, this system
is usually condensed to Lagrange multipliers and the solution is sought for in an iterative
manner, using

FgToBλ = dgToB, (2.72)

with the modified left-hand side matrix FgToB ⪰ 0. The positive definiteness of FgToB can only
occur in the case of an empty set Π∗, which means that it practically never happens. The
rank deficiency arises in the condensation step of the averaging procedure in the block of a
matrix corresponding to constraints given by Π∗. Clearly, the partial product resulting from
the multiplication of the assembled Schur complement on Π∗ in the new basis from the left
by RΠ∗ and from the right by RT

Π∗ corresponds to a matrix with rows and columns identical
in positions given by continuity conditions stored in Π∗. Transformed back to the original
basis, this pair-wise structure is lost, but the rank deficiency naturally remains.
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Let us note that, due to the jump operators being transformed themselves, the conditions
within these operators retain its original meaning. Hence, the exact solution vector for
Lagrange multipliers λ is the same for gToB as well as the standard FETI-DP algorithm
in Eq. (2.56).

To give the reader a clearer understanding of the operations performed, we explicitly
write down the individual terms arising from the recursive application of the block Gaussian
elimination. As we believe the operations are then more apparent than in a formal, concise
setting with one global Schur complement matrix. To avoid lengthy expressions, we use R∗

collectively for I and ∆∗, but we still distinguish between set Π′ and set Π∗.
Applying the block Gaussian elimination three times leads to a system operator
FgToB = BR∗K−1

R∗R∗BT
R∗ (2.73)

+
(
B̃Π∗ − BR∗K−1

R∗R∗K̃R∗Π∗

)
S̃

−1
R∗,Π∗

(
B̃Π∗ − BR∗K−1

R∗R∗K̃R∗Π∗

)T

+
[
BR∗K−1

R∗R∗K̃R∗Π′ +
(
B̃Π∗ − BR∗K−1

R∗R∗K̃R∗Π∗

)
S̃

−1
R∗,Π∗

( ˜̃
KΠ∗Π′ − K̃Π∗R∗K−1

R∗R∗K̃R∗Π′

)]
(

S̃R∗,Π′ −
˜̃
OR∗,Π′Π∗ S̃

−1
R∗,Π∗

˜̃
OR∗,Π∗Π′

)−1

[
BR∗K−1

R∗R∗K̃R∗Π′ +
(
B̃Π∗ − BR∗K−1

R∗R∗K̃R∗Π∗

)
S̃

−1
R∗,Π∗

( ˜̃
KΠ∗Π′ − K̃Π∗R∗K−1

R∗R∗K̃R∗Π′

)]T
,

in which now only the first of the three terms can be executed fully in parallel because KR∗R∗

is block diagonal. In the second and third terms, subdomain-wise contributions have to be
collected before the execution of a coarse solve, and distributed to individual subdomains
afterwards . The corresponding right hand side follows as
dgToB = BR∗K−1

R∗R∗fR∗ (2.74)

+
(
B̃Π∗ − BR∗K−1

R∗R∗K̃R∗Π∗

)
S̃

−1
R∗,Π∗

(
f̃Π∗ − K̃Π∗R∗K−1

R∗R∗fR∗

)
−

[
BR∗K−1

R∗R∗K̃R∗Π′ +
(
B̃Π∗ − BR∗K−1

R∗R∗K̃R∗Π∗

)
S̃

−1
R∗,Π∗

( ˜̃
KΠ∗Π′ − K̃Π∗R∗K−1

R∗R∗K̃R∗Π′

)]
(

S̃R∗,Π′ −
˜̃
OR∗,Π′Π∗ S̃

−1
R∗,Π∗

˜̃
OR∗,Π∗Π′

)−1

[(
f̃Π′ − K̃Π′R∗K−1

R∗R∗ f̃R∗

)
−

( ˜̃
KΠ′Π∗ − K̃Π′R∗K−1

R∗R∗K̃R∗Π∗

)
S̃

−1
R∗,Π∗

(
f̃Π∗ − K̃Π∗R∗K−1

R∗R∗fR∗

)]
.

In both expressions S and O are auxiliary notations as follows. S denotes the Schur complement.
Specifically, the two subscripts separated by a comma symbolize that the set of indices within
the first subscript is condensed to the submatrix corresponding to DOFs attained in the
second subscript, i.e.,

SX,Y = KY Y − KY XK−1
XXKXY .

The letter O represents a generally non-square product on off-diagonal sub-blocks of stiffness
matrices, resulting in a rectangular matrix. It is defined in a similar fashion: the first subscript
indicates the set of DOFs to be condensed out and the remaining two subscripts define the
sets of DOFs along the first and second dimensions, respectively, of the matrix. That means

OA,BC = KBC − KBAK−1
AAKAC .

Finally, the tilde accents whether the resulting product is assembled in any of the set Π∗ or
Π∗.

Now the reason behind keeping the sets Π′ and Π∗ separated becomes apparent. The
construction of the preconditioner currently involves a partial assembly, which is handled via
modification in the scaled jump operators. In the disassembly as well as in the assembly step,
we have to cope with retaining a consistency of the preconditioner while accounting for the
temporarily decoupled nature of the a posteriori primal variables. To do so, the scaled jump
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operators are adjusted in a sense

B(s)
D,∆∗ = D(s),TB(s)

∆∗ = B(s)
D T(s)

∆∗ (2.75)

B̃
(s)
D,Π∗ = D(s),TB̃

(s)
Π∗(RT

Π∗RΠ∗)−1 = B(s)
D T(s)

Π∗R(s)
µ,Π∗ (2.76)

with a domain-wise defined multiplicity-scaled prolongation operators R(s)
µ,Π∗ := R(s),T

Π∗ (RT
Π∗RΠ∗)−1

needed for construction of
RT

µ,Π∗ :=
[
R(1),T

µ,Π∗ . . . R(Ns),T
µ,Π∗

]T
. (2.77)

As a consequence of the partial assembly involved, even the preconditioning step is no longer
perfectly parallelizable, i.e., we do not have an expression that involves solely independent
local solves as, for instance, is the case of in Eq. (2.22). Preconditioner takes the form

M−1
D,gToB =

[
BD,∆∗ B̃D,µ,Π∗

] [
SI ,∆∗ ÕI ,∆∗Π∗

ÕI ,∆∗Π∗ S̃I ,Π∗

] BT
D,∆∗

B̃
T
D,µ,Π∗

 (2.78)

which, in expanded form, reads
M−1

D,gToB =
[
BDT∆∗ BDTΠ∗Rµ,Π∗

]
[
K∆∗∆∗ − K∆∗I K−1

I I KI ∆∗
(
K∆∗Π∗ − K∆∗I K−1

I I KI Π∗
)
RΠ∗

RT
Π∗

(
KΠ∗∆∗ − KΠ∗I K−1

I I KI ∆∗
)

RT
Π∗

(
KΠ∗Π∗ − KΠ∗I K−1

I I KI Π∗
)
RΠ∗

]
(2.79)[

TT
∆∗BT

D
RT

µ,Π∗TT
Π∗BT

D

]
.

The transformed matrices K are commonly not assembled. In practice, we rather take
advantage of the orthonormality of T and perform a forward or backward substitution on a
factorized S∆′ . We avoid explicitly assembling the transformed matrices in our implementation
to reduce the risk of accumulation of possibly unidirectional propagation of errors eventually
posed by the inaccurate computation of transformed ill-conditioned matrices. The assembly of
transformed matrices can be time-consuming when the transformations T(s) lose their sparsity,
for instance, when face-related constraints on meshes with fine resolution are enforced in three
dimensions. For completeness, we also mention an alternative: to solve a set of local auxiliary
saddle point problems introduced with the use of new Lagrange multipliers [29] to obtain the
desired vectors transformed to the original basis. Then, only a matrix-vector multiplication
with (transposed) T(s) and a resulting product is needed to obtain the outcome in the desired
basis. Nevertheless, we only use the standard approach.

It is important to emphasise that the statement of the generalized transformation of basis
presented above deviates from what is suitable from an implementation perspective. In the
code, it does not make much sense to separate the coarse problem into a priori and a posteriori
parts. As can be seen in Eq. (2.73), a three-level formulation which does not exploit the
repetitive occurrence of some of the products requires nine local solves with KR∗R∗ per iteration.
In fact, unifying Π∗ and Π′ would lead to only three. Hence, we only wanted to highlight the
relevance of the products involved. Because the literature on the gToB is limited, and the
available sources understandably focus mostly on highly efficient parallel implementations or
on theoretical aspects of this approach, which often determines the notation used, we wanted
to provide the exposition of gToB with distinct Π′ and Π∗ in intentionally detailed perspective
on the matter.
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Chapter 3
Coarse Space Enhancements

First, we provide a brief overview of the most widely used approaches to enhancing the
coarse space: from simple and generic approaches that are considered to be useful in specific
(yet relatively common) cases to very sophisticated approaches that involve solving local
generalized eigenvalue problems on the interfaces. In fact, there are two main directions we
can trace.

In this work, we refer to these two main branches as non-adaptive and adaptive. Non-
adaptive, also known as heuristic, work with a very limited amount of data and are usually
cost-effective. These approaches are represented by arithmetic and weighted averages and a
Frugal approach. The adaptive approaches, on the other hand, construct auxiliary constraints
that are problem-specific, i.e., they depend on the distribution of coefficients of the underlying
PDE, boundary conditions, and provided scaling. Such constraints are usually sought through
solving a Generalized EigenValue Problem (GEVP) on the interface between a pair of
adjacent subdomains. This is evidently linked with a significant computational overhead, as
it represents a computationally expensive operation. However, the constraints acquired in
this manner are highly beneficial because reliable estimators or even proven relations for the
condition number bound are provided for many such GEVP formulations. By setting the
approaches’ threshold, adaptive strategies allow the user to indirectly control the resulting
condition number; in contrast, non-adaptive approaches usually provide control over the
number of constraints, but the effectiveness of these heuristic constraints remains uncertain.
If we consider all the eigenmodes corresponding to eigenvalues exceeding a certain tolerance,
pleasant benefits can be achieved when dealing with very challenging problems.

The existing strategies for the construction of auxiliary constraints then serve as a stepping
stone for the two approaches developed by the author, which are presented at the end of
this section. The first approach involves a heuristic construction of a reduced basis for the
solution of GEVPs, an approach that is in our understanding adaptive. The second approach
involves enriching the set of primal variables with a few selected primal nodes. Although this
approach reflects the specifics of the problem, for simplicity reasons we kept it independent
of the scaling. Hence, this is a typical representative of a heuristic strategy. We do not
merely introduce these strategies known from the literature; we also discuss their suitability,
identifying cases where they are effective and where they tend to fail, and propose slight
modifications aimed at enhancing the robustness of the method provided by these heuristics.

3.1 Weighted averages

The concept of enforcing conditions in the form of arithmetic averages over selected boundary
entities dates back to the early phase of the method [12]. At that time, the averages primarily
targeted three-dimensional tasks, for which the primal constraints binding only selected nodes
were not sufficiently robust, and more general edge- and face-related constraints based solely
on geometrical information restored the robustness, albeit only for problems that are either
homogeneous in each subdomain or where heterogeneity appears only within the subdomain
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3. Coarse Space Enhancements ...................................
(no discontinuities occur along subdomain interfaces). The first case can be effectively resolved
through scaling, and the second case generally does not significantly affect the conditioning of
the system. However, decompositions following material distribution are often not feasible,
for example, for continuously varying coefficients or when the decomposition may lead to
subdomains with bad aspect ratios.

The robustness achieved by using averages, or zeroth- and potentially first-order moments,
is due to their ability to handle rigid body modes. In fact, these averages, or zeroth-
and potentially first-order moments in general, are closely associated with the null space
components of a physical body. A standard illustration involves two adjacent subdomains made
of a very stiff material, which are surrounded from all sides by a medium with a significantly
lower material coefficient. If the two subdomains were not assembled at any of the common
nodes, there would be at least three or six constraints, depending on the dimensionality,
needed to capture the relative rigid body modes of the two substructures. However, when
heterogeneity comes into play, the benefit of these averages deteriorates very quickly, and such
constraints are no longer sufficient. As a remedy, Klawonn and Rheinbach in [27] suggested
the use of weighted averages∑

xk∈Eij
α̂(xk)um(xk)∑

xk∈Eij
α̂2(xk) , m = 1, . . . , nwa . (3.1)

Originally, for mechanical problems, only translational weighted averages were proposed,
for which nwa corresponds to the dimension of the problem. Weighted rotations were later
introduced in [18] such that the averages on edge Eij read

r̂T
Eij ,mu|Eij

r̂T
Eij ,mr̂Eij ,m

, m = 1, . . . , nwa , (3.2)

where r̂Eij denotes the weighted rigid body modes of a floating edge. In particular, for
two-dimensional problem of elasticity we have three modes

r1 =



1
0
1
0
...
1
0


r2 =



0
1
0
1
...
0
1


r3 =



−x1
2 + x̂2

x1
1 − x̂1

−x2
2 + x̂2

x2
1 − x̂1
...

−xn
2 + x̂2

xn
1 − x̂1


; (3.3)

while in the case of a diffusion problem, only one mode suffices

r1 =


1
1
...
1
1

 . (3.4)

These rigid body modes rEij restricted to an edge Eij are pointwise scaled with corresponding
value of α̂(x) to obtain the weighted average constraint mode r̂Eij , needed to enforce constraints
of the form

r̂T
Eij

u(i)
|Eij

= r̂T
Eij

u(j)
|Eij

. (3.5)

For instance, values of r̂3,Eij at a nodal point xk ∈ Eij for a rotational mode are set as[
α̂(xk)(−xk

2 + x̂2)
α̂(xk)( xk

1 − x̂1))

]
. In the expressions above, the centre of rotation (x̂1, x̂2) coincides with

the geometric centre of the edge. The weighting coefficients α̂(x) are set as a maximum
material coefficient at support ω(x) of a nodal point x

α̂(x) = max
y∈ω(x)

α(y) (3.6)
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This enhancement for heterogeneous problems is beneficial for handling a single high-coefficient
segment intersecting a given geometrical entity (either edge of face). For the conventional
construction of weighting as stated in Eq. (3.6), it is assumed that a substantially stiffer
part, such as a rigid channel, traverses soft regions in two subdomains with aligned material
discontinuities along the interface. In such a case, weighted averages do a remarkable job.
Since the weighted averages do not introduce any additional cost compared to the arithmetic
ones, it is convenient to use them in a default setting.

3.1.1 Proposed modified weighted averages

We believe that a generally more suitable choice for the scaling weight could be as follows

α̂(x) = min
l∈{i,j}

α̂(l)(x) := min
l∈{i,j}

(
max

y∈ω(x)∩Ωl

α(y)
)
. (3.7)

With such a choice, the weighted averages should be able to deal with discontinuities that are
not perfectly aligned across the interface.

(a) : Problem statement (b) : arithmetic averages

(c) : original weighted averages (d) : modified weighted averages

Figure 3.1: Illustrative example showcasing the impact of averages. A problem setup with
high-coefficient channels shifted at the interfaces is shown in (a). Dirichlet BCs are imposed on
the left edge of ∂Ω. The next three images show intermediate solutions in the second iterations
of CG: (b) arithmetic averages, (b) classic weighted averages, (b) modified weighted averages.

Let us provide an example of a steady-state heat equation problem consisting of five
subdomains with straight conductive channels that are shifted by one element at each interface
as shown in Fig. 3.1a. The temperature at the end of one of the channels is kept fixed, and
the channels are subjected to a constant source term. With the classical vertex-based coarse
space and ρ scaling, the initial coarse space lacks one additional constraint at each of the
edges.

Figs 3.1b-d show the second iterations of the CG method. Clearly, the solution is severely
discontinuous at all interfaces for both arithmetic and original weighted averages. The intended
connectivity of the dark blue channels is clearly not achieved with the standard weighted
averages. It is violated by the jumps that arise at conductive elements; this is due to a very
low energy these gradients have. In contrast, the second iteration with a slightly adjusted
version of the weighted averages seems to approach the accurate solution. Please note that the
temperature values in Fig. 3.1d are scaled up 100 times compared to the previous two cases,
to emphasise the obtained accuracy of the approximated solution. We further investigate
the performance in a case of problems shown in Fig. 3.2. In the second case, we can observe
behavior similar to the previous case. Here, the significance of the proposed modification is
additionally supported by quantitative numerical results, provided in Tab. 3.1. In the first
problem of the case, the weighted averages are able to reduce the condition number to 1.10.
In this case the proposed modification performs identically to the classic weighted averages,
since there is no difference in coefficient profiles across the interface. In test problem (2),
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(a) : Test problem 1 (b) : Test problem 2 (c) : Test problem 3 (d) : Test problem 4

Figure 3.2: The second test case computing: four different coefficient distributions for a stationary
diffusion problem. In the figure, deep blue represents coefficient ρmax = 106, light blue (•)ρmin = 1.
Dirichlet BCs are imposed on the whole ∂Ω. Vertex-based primal coarse space and ρ scaling.

Condition numbers for different coefficient distributions

Test problem 1 (Fig. 3.2a) 2 (Fig. 3.2b) 3 (Fig. 3.2c) 4 (Fig. 3.2d)

arithmetic κ 2.51 · 104 8.71 · 104 9.65 · 103 1.14 · 105

it. 9 12 16 19

weighted κ 1.10 3.05 · 104 5.98 · 103 1.14 · 105

it. 2 10 10 19

Eq. 3.7 κ 1.10 1.25 5.98 · 103 1.13 · 105

it. 2 3 10 14

Table 3.1: Numerical results for four test problems. Stopping criteria: ϵL2 ≤ 1 · 10−6

however, the classic weighted averages fail to reduce the condition number for the same reason
that arithmetic averages fail in case (1). The proposed adjusted version is able to handle this
scenario effectively, leading to the condition number reduced by four orders of magnitude.
Eventually, for problems involving multiple channels, as is the case of test problems (3) and
(4), a single constraint is not sufficient. Nevertheless, it can be observed from the iteration
count that the proposed weighting converges more rapidly towards the reference solution in
test problem (4), in which the two channels are mutually shifted. Hence, weighted averages
serve as an efficient tool for coarse-space correction when dealing with heterogeneities. Being
independent of the scaling or the construction of the jump operators, they could be a suitable
option for the prior coarse space as well.

The substantial benefit of the weighted averages is their very inexpensive setup. No
information about the coefficient distribution inside the subdomains is needed for their
construction, only the coefficient profiles at the shared interface of adjacent subdomains.
Unlike some of generally tough-to-picture strategies for construction of auxiliary constraints,
averages (or, in general, low-order moments) comprise one’s intuitive expectations and their
behaviour is very predictable.

3.2 Adaptive coarse spaces

The adaptive coarse spaces have recently attracted significant attention [21, 23], especially when
addressing highly heterogeneous problems [31]. These adaptive approaches most commonly
involve a solution of generalized eigenvalue problems at the interfaces between neighbouring
domains, thus minimising the required communication among otherwise well-parallelizable
processes. One advantage of the adaptive techniques is their sensitivity to specific problem-
and scaling-dependent poorly conditioned parts of the original coarse space. As a result, the
adaptive techniques facilitate enriching the coarse space with locally acquired modes that
have a significant impact on limiting the resulting condition number. Despite being considered
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relatively computationally expensive, they have become increasingly popular over the last
few years due to their robustness. Numerous adaptive approaches have undergone theoretical
analysis [43], often resulting in an upper bound on condition numbers regardless of mesh size
and material heterogeneity [19, 24].

Several adaptive approaches have been introduced over the years, for more details see,
e.g., [35, 43]. A potential approach based on the localized PD operator and parallel sum of
matrices exists [43]. This approach leads to the solution of a small eigenproblem, restricted
only to the dual DOFs on the part of the interface shared by the two subdomains. As
demonstrated by comparing local spectra of different adaptive DD approaches, this alternative
formulation could potentially result in a smaller number of acquired adaptive constraints [17].
However, in this thesis, we exclusively focus on the most commonly used adaptive approach,
which is briefly described in the subsequent subsection.

Also note that all the strategies for constructing admissible constraints in order to set up a
robust coarse space are scaling-dependent.

3.2.1 Eigenvalue problem by Mandel and Sousedík

A pioneering work in the field of adaptive approaches in the context of BBDC and FETI-DP
methods dates back to 2007, when Mandel and Sousedík [35] stated that the condition number
bound of the preconditioned system M−1F based on the PD operator, satisfying

κ(M−1F) ≤ supw∈W̃

∥PDw∥2SΓ

∥w∥2SΓ

, (3.8)

is limited by the maximal eigenvalue of the system operating on W , yet projected onto the
space of continuous primal constraints W̃

ΠBT
ΓBΓ,DSΓBT

Γ,DBΓΠw = λΠSΓΠ w (3.9)

through projections Π : W → W̃ .
Driven by Eq. (3.9), which is not suitable for practical implementations due to its global

nature, the authors of [35] presented a localized estimate. Specifically, the condition number
indicator is determined as the maximum eigenvalue of a set of localized problems corresponding
to Eq. (3.9), each defined on an interface between a pair of adjacent subdomains. Each localized
generalized eigenvalue problem (GEVP) reads:

Find wij ∈ W̃ij BT
ijBD,ijSijBT

D,ijBijwij = λijSijwij (3.10)

where the solution space W̃ij is a space of functions continuous in the primal variables shared
by the two subdomains Ω(i) and Ω(j). In the equation above, Sij stands for a completely
decoupled Schur complement [

S(i)
ΓΓ 0

0 S(j)
ΓΓ

]

and Bij stores local continuity constraints on Γ(i)∩Γ(j), obtained as a submatrix of
[
B(i)

Γ B(j)
Γ

]
preserving only rows with one +1 and one −1 value. The local version of the scaled jump
operator BD,ij is then obtained in a completely analogous fashion. Afterwards, we can write

PD,ij = BT
D,ijBij . Moreover, we let RΓ,ij be a submatrix of

[
R(i)

R(j)

]
restricted to values on Γ(ij)

RΓ,ij =


I(i)∆ 0 0
0 0 R(i)

Π
0 I(j)

∆ 0
0 0 R(j)

Π

 .
With the restricted assembly operator RT

Γ,ij at hand, the solution of Eq. (3.10) on W̃ij is
straightforward making use of the partial subassembly. In a parallel code, we aim to benefit
from independent local solves, in which, ideally, no matrix products have to be assembled.
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Thus, instead of a finite element assembly in the given variables, we adopt an additional
Euclidean projection Πij : Wij := Wi ×Wj → W̃ij . This projection is simply obtained as

Πij = RΓ,ij

(
RT

Γ,ijRΓ,ij

)−1RT
Γ,ij (3.11)

Clearly, it holds Range(Πij) = W̃ij and (Kernel Sij)⊥ ⊆ W̃ij . The matrix Πij remains an
identity on all but DOFs attached in Π(i) ∩ Π(j). Thus, in practice, this matrix is never
explicitly computed by means of the expression above. Instead, multiplication with Πij can
be handled with a few cheaply obtained vector-vector multiplications. We also note that
the application of projection matrices does not violate the sparsity pattern of Sij because a
maximum of two values communicate at a time.

With the newly introduced quantities, Eq. (3.10) can be rewritten more suitably for an
efficient numerical solution [35]:

Find wij ∈ Range Πij : ΠijPT
D,ijSijPD,ijΠijwij = λijΠijSijΠijwij (3.12)

We will refer to the left-hand side of the equation above as the high-energy side, while the
right-hand side will be interchangeably called the low-energy side. With Eq. (3.12) at hand,
we wish to reduce the condition number of the preconditioned system by enforcing adaptive
constraints

cm,T
ij︷ ︸︸ ︷

wm,T
ij PT

D,ijSijBT
D,ij Bijvij = 0 ∀m : λm

ij ≥ tol .

Unless the superstructure of two bodies Ω(i) and Ω(j) joined at primal vertices is not positioned
on a part of Dirichlet boundary sufficient to prevent common or relative rigid body modes of
this superstructure, the right hand side of Eq. (3.12) in only positive-semidefinite. For most
of the eigensolvers a positive definite right-hand side matrix is needed. For this reason, a
second l2-orthogonal projection Π onto Range (ΠijSijΠij + t(I− Πij)) is used to ensure positive
definiteness of the right-hand side of the generalized eigenvalue problem. So, numerically, we
solve(

ΠijPT
D,ijSijPD,ijΠij

)
wij,k = λij,k

(
Πij(ΠijSijΠij + t(I− Πij))Πij + t(I− Πij)

)
wij,k (3.13)

with parameters t, t > 0. Once again, we face a problem of finding an orthonormal basis

of a given subspace, Kernel
(

ΠijSijΠij + t(I− Πij)
)

, because then the application of Π can

be replaced by just a few vector-vector multiplications. Luckily, this can be achieved quite
cheaply if both geometrical information about nodal coordinates and data containing Dirichlet
conditions are accessible. For more technical details about effective parallel implementation
of this eigenproblem, we refer the reader to [22].

In [43], Rheinbach et al. proved for elliptic PDEs in two dimensions that the preconditioned
system with enforced all constraint vectors cm

ij corresponding to µm
ij ≥ tol satisfies

κ(M−1
MS,balF) ≤ N2

E tol ,
where NE stands for the maximum number of edges of a subdomain. Hence, the condition
number is independent of the mesh resolution, coefficient distribution and its contrast. The
same holds if generalized transformation of basis approach or projector preconditioning is
adopted [20, 28]. In our experiments, we observed that the highest local eigenvalue remaining
in the system generally serves as a reliable condition number estimator.

3.3 Frugal Approach

To keep the thesis self-contained, we recall a frugal approach here. The idea behind the
Frugal approach of Heinlein et al. [18] is closely related to adaptive approaches, particularly
that introduced by Mandel and Sousedík [35]. In fact, frugal constraints are trying to
mimic the most harmful eigenmodes without the need to solve any generalized eigenvalue
problem, providing a computationally economic alternative to the original adaptive coarse
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space. We later build on some of its concepts, and we suggest minor adjustments and discuss
the limitations and suitability of the frugal constraints.

According to [18], we search for interface modes vΓ
ij for which alternative formulation

close to [35] holds:〈
HI (PDij wΓ

ij) ,Kij HI (PDij vΓ
ij)

〉
= µij

〈
HI (wΓ

ij) ,Kij HI (vΓ
ij)

〉
, (3.14)

where Kij = diag(Ki,Kj) and HI denotes minimum energy extensions from Γ(i) ∪ Γ(j) to the
interior of the subdomains (possibly including nodes on ∂ΩN ). Here, slightly abusing the
notation, we understand the minimum energy operators as expressions defined on discretized
quantities. The piece-wise discrete harmonic extension w(l) = Hl

I (w(l)
Γ ) with respect to the

inner product defined by K(l) satisfies [55]〈
Hl

I (v(l)
Γ ), K(l) Hl

I (v(l)
Γ )

〉
= min

v(l)|Γ(l) =v(l)
Γ

〈
v(l), K(l)v(l)〉 .

The application of a discrete harmonic extension operator Hl
I from a boundary to the

interior of a substructure is closely related to the Schur complement S(l)
Γ . In a matrix

representation, the interior values w(l)
I of w(l) are completely defined by values of w(l)

Γ by
solving a system with a zero right hand side

K(l)
I I w(l)

I + K(l)
I Γw(l)

Γ = 0
Now, we seek for eigenmodes of Eq. (3.14) for which µij ≥ tol. In the original formulation [35],

however, the eigenmodes vΓ
ij are by construction continuous in the primal variables shared by

the subdomains Ω(i) and Ω(j). In [18] it was observed that for many real-world coefficient
distributions a good approximation of vΓ

ij can be constructed heuristically without a solution
of any generalized eigenproblem. Instead, only the distribution of material coefficient on
Γ(i) ∪ Γ(j) in a sense similar to that used in, e.g. ρ scaling or weighted averages, is needed
for constructing new constraints. Specifically, for each finite element node on Γ(l) we define
values of coefficient maxima on the elements whose basis functions have non-empty support
at the node x (denoted as ω(x))

α̂(l)(x) = max
y∈ω(x)∩Ωl

α(y) l ∈ {i, j} ,

where α stands for either ρ or E depending on the type of PDE under consideration. Then,
these values are point-wise scaled with appropriate values corresponding to degrees of freedom
in rigid body modes r(l) of individual subdomains restricted to Γ(l)

h , leading to the definition
of r̂(l)

Eij

r̂(l)
Eij ,m(x) = α̂(l)(x) r(l)

Eij ,m(x) ∀x ∈ Γ(l) l ∈ {i, j} m = 1, . . . , nEij ,(l)
RBM

for each of nEij ,(l)
RBM considered. Since there is no need for orthogonalization of rEij ,m, we shift

the centre of rotational mode in case of two-dimensional mechanics problem to the geometric
centre of the edge Eij . Thus, we use the subscript Eij to highlight that values in r̂(l)

Eij
are

related to the edge, and for the same reason, we revise this extra superscript in nEij ,(l)
RBM . Hence,

the number of constructed rigid body modes nEij ,(l)
RBM is determined only by the character of

the equation, thus being the same for all possible edges (except for polutional one-node edges).
We admit that the term “rigid body modes” might be slightly misleading in this context, since
it remains irrespective of dim

(
Kernel(K(l))

)
, and we always assume the whole set of rigid

body modes pertinent to PDE under consideration, i.e. nRBM = 1 for the diffusion problem
and nRBM = 3 for elasticity problem.

Driven by careful observation, authors in [18] proposed constructing vΓ
ij to set the values in

the following way

v(l)
Γ,ij,m(x) :=

r̂(l)
Eij ,m(x) if x ∈ Γ(l)

h \Π(l)

0 if x ∈ Π(l) ,
(3.15)
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3. Coarse Space Enhancements ...................................
for which a vector constructed as

vΓ
ij,m =

 v(i)
Γ,ij,m

−v(j)
Γ,ij,m

 (3.16)

then results in a frugal constraint cij,m := BD,ijSijPD,ijvΓ
ij , a potentially suitable choice for

the augmentation of the coarse space. Moreover, it would be beneficial if v(j)
Eij

approximates
the highest eigenmodes of Eq. (3.12). Then it would be reasonable to expect the ratio

µij =
|HI (PDij vΓ

ij,m)|Kij

|HI (vΓ
ij,m)|Kij

(3.17)

to be a reliable estimator of the dominant eigenvalues λ of Eq. (3.12).
Let us first comment on the specific construction of vΓ

ij,m. As expected in Eq. (3.15), the
space of functions continuous in Π(i) ∩Π(j) is limited to vectors that vanish at primary nodes.
Specifically, we seek for heuristically constructed interface modes from a specific subspace W̃ij ,
which we denote

W̃ij,0 =
{

wij ∈Wh,i ×Wh,j : wij|(Π(i)∩Π(j)) = 0
}
.

This limitation is completely valid and justifiable for heuristic approaches. The process of
identifying vectors that results in high ratios µij in W̃ij,0 rather than W̃ij is favourable for a
numerical solution because no application of projections Πij would be needed, thus preserving
a completely local character of the multiplication with Sij . While it may seem appealing to
solve GEVP (3.13) on W̃ij,0, this formulation would completely fail to recognise some of the
constraints for specific coefficient distributions as explained next.

Figure 3.3: A synthetic example illustrating the unsuitability of searching for eigenmodes in W̃ij,0.
With prescribed homogeneous boundary conditions at the locations of primal nodes, the GEVP
does not recognize any of the harmful modes. Left: Coefficient distribution within a stationary
diffusion problem: deep blue represents coefficient ρmax = 106, light blue (•)ρmin = 1. Dirichlet
BCs are imposed on the whole ∂Ω. We assume decomposition into 4 × 4 subdomains with a
vertex-based primal coarse space; each subdomain consists of two distinct L-blocks. Each L-block
has a connection to only one primal constraint. Right: Visualization of all adaptive constraints
from solution of Eq. (3.13) with tol = 100 on subspace W̃ij (the weights of individual constraints
in B are shown as profiles along individual edges, their color depicts the corresponding eigenvalue).
One constraint is found on every edge. Deluxe scaling was used.

For better understanding, let us provide an illustrative example shown in Fig. 3.3. This
synthetic, highly heterogeneous problem consists of regularly placed L-shaped blocks, each
with a corner in one of the primal vertices on a domain decomposed into 16 square subdomains.
Here we comment on the suitability of constraints obtained by a solution of the GEVP on
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W̃ij,0 and W̃ij . It serves as a motivation for further slight modifications of frugal approach.
Evidently, a vertex-based prior coarse space does not lead to a desirable condition number.
The condition number κ(M−1

D F) ≈ 2.22 · 105 is comparable to the coefficient contrast in this
case, even for the deluxe scaling. To obtain a reasonably low condition number, the coarse
space has to be augmented with constraints that prevent the L-blocks from floating. For
a scalar problem, it is natural to anticipate that one constraint is sufficient to bind two
L-blocks touching across boundary. According to the eigenvalue analysis, see Fig. 3.4, the
preconditioned spectrum has nine distinct eigenvalues. Consequently, only nine globally
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Figure 3.4: 20 highest eigenvalues λ of the M−1
D F of the problem depicted in Fig. 3.3

optimal constraints would suffice to drop the condition number by several orders of magnitude.
However, one missing constraint in the prior coarse is found on each pair of the edges due
to imposed locality of the GEVP, leading to unnecessary large coarse space. Even then, a
careful selection of nine locally obtained constraints would suffice to prevent all the interior
L-blocks from floating, leading to almost identical condition number. The reason behind this
behavior is that certain combinations of the adaptively computed constraints are prone to
yielding nearly redundant information, especially when dealing with binary distributions.

Figure 3.5: Visualization of the dominant eigenmode on two interior subdomains, indicated by
the red colour in Fig. 3.3. Left: Illustration of the right-hand side of Eq. (3.13) with an applied
minimum-energy extension into the interiors of the subdomains. The splitting of the gap based on
deluxe scaling is depicted by a green line. This configuration results in low energy 3.51. Right:
The visiualization of the right hand side of Eq. (3.13) illustrates expected correction in temperature
field based on the averaging of the gap and minimum energy extension into the interiors of the
subdomains. Homogeneous BCs on the complement of edge w.r.t. Γ(i)

h ∪Γ(j)
h follow from application

of the localized PD operator. This configuration corresponds to high energy 1.06 · 106.

Note that in the case of binary distribution of coefficients the number of locally detected
constraints is often predictable. The only feasible option to achieve the low-energy mode on
the right-hand side of Eq. (3.10) is for the present problem to mutually shift the two L-blocks
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Figure 3.6: First mode on the same edge as in Fig. 3.5 found in space W̃ij,0, i.e. with values fixed
at zero at shared primal vertices. Left: Visualization of splitting of the gap based on deluxe scaling
on low-energy side of Eq. (3.12), resulting in energy 1.63 · 105. Right: Visualization of low-energy
right-hand side of GEVP in W̃ij,0 leading to energy 2.84 · 105. This eigenmode corresponds to a
low eigenvalue λ0 ≈ 1.74.

that touch, keeping each at a constant temperature level to avoid gradients on conductive
elements; compare with Fig. 3.5. Our example was intentionally devised to pinpoint the
limitations of seeking for modes in W̃ij,0. Clearly, it does not permit this form of relative
shifts. Consequently, the best it can deliver is an eigenmode corresponding to eigenvalue only
1.74, depicted in Fig. 3.6.

As of now, we have identified a specific weak spot in finding constraints when we are
restricted to construction in the sense of Eq. (3.15), which frugal constraints use. Recall
that the frugal approach aims to identify modes at interfaces that are poorly captured by
the preconditioner, i.e., the modes for which the chosen scaling leads to a poor correction
of the solution. It comes as no surprise that the main objective of substructuring methods
is to enforce continuity in elements with high coefficients, which are presumed to play a
crucial role in mediating global information. Following the weighted averages, the focus is
thus particularly on elements with high coefficients. The corresponding degrees of freedom
belonging to these elements are heuristically prioritized through appropriate weighting, recall
previously defined coefficients α̂(l). Unlike weighted averages, where the modes in solution
variables are by construction identical among the two subdomains, frugal constraints use two
individual weighted averages and construct the mode in such a way that the values on one
subdomain are prescribed in one “direction” and on the second subdomain in the opposite
“direction”. These modes are designed to simulate the low-energy side of the GEVP with
the greatest possible jump between high-coefficient elements across the interface. This is
then used to let the scaling-dependent localized PD operator construct the constraint mode.
Furthermore, it enables us to evaluate and determine the relevance of this constraint, thus it
gives us the choice to discard this mode.

Additionally, the limitation of frugal constraints has been illustrated on a very exotic
example. To be fair, similar distributions are unlikely to be encountered in many realistic
applications. Unfortunately, a similar limitation arises in mechanical problems in which
the decomposition does not align with the distribution of the material. In such cases, a
vertex-based coarse space is often prone to missing rotational modes, which are difficult to
detect by the construction of modes with fixed centres of rotations, recall (3.3).

3.3.1 A modified construction of frugal constraints

We believe that a trivial improvement in the sense of ρ scaling could, in most cases, significantly
improve the relevance of the estimator µ. We propose setting values in Π(i) ∩Π(j) as weighted
average between values stored in v(i)

Γ,ij,m and −v(j)
Γ,ij,m, respecting the coefficient distribution
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Figure 3.7: Left: Coefficient distribution : deep blue represents coefficient αmax = 106, light
blue (•) αmin = 1, where α stands for ρ in stationary diffusion or E in linear elasticity case.
Decomposition of Ω := (0, 4)× (0, 2) into 4× 2 square subdomains. Vertex-based coarse space and
deluxe scaling used. Dirichlet BCs are imposed on the left boundary at x = 0. The subdomains
contain two channels each that touch variably at the marked edges.

on elements pertinent to nodes in Πij as well. The modified construction thus reads:

v(l)
a,ij,m(x) :=


r̂(l)
Eij ,m(x) if x ∈ Γ(l) \

(
Π(i) ∩ Π(j)

)
(−1)δlj ·

[
r̂(i)
Eij ,m(x) −

α̂(j)

α̂(i) + α̂(j)

(
r̂(i)
Eij ,m(x) + r̂(j)

Eij ,m(x)
)]

if x ∈
(

Π(i) ∩ Π(j)
)

,

(3.18)
which can be further simplified to

v(l)
b,ij,m(x) :=


r̂(l)
Eij ,m(x) if x ∈ Γ(l) \

(
Π(i) ∩Π(j)

)
(−1)δlj

(
r̂(i)
Eij ,m(x)− r̂(j)

Eij ,m(x)
)

if x ∈
(
Π(i) ∩Π(j)

)
.

(3.19)

We refer to this variant as “frugal a”, while we denote the original variant according
to Eq. (3.16) simply “frugal orig”. Note that in the formulae above, we also distin-
guish between shared and remaining primal vertices. Indeed, we treat the primal nodes
at (Γ(i) ∩ Γ(j)) \ Γ(ij) in an identical manner as all the dual DOFs. In this way, we are again
approaching the eigenproblem introduced in the previous section. Thus, we introduce a third
variant as a compromise between the aforementioned two.

v(l)
a,ij,m(x) :=

r̂(l)
Eij ,m(x) if x ∈ Γ(l) \

(
Π(i) ∩Π(j)

)
0 if x ∈

(
Π(i) ∩Π(j)

)
which we call “frugal b”. Note that in the variant frugal b, vb,ij is set to 0 only at all
primal nodes shared by two subdomains Π(i) ∩Π(j), not at all Π(i) ∪Π(j) primal nodes. Let
us motivate this second modification with a second example, shown in Fig. 3.7. This problem
consists of eight subdomains, each having two conductive channels crossing the interface.
These channels are either aligned or shifted by a few elements. Dirichlet BCs are imposed on
the left side of and the problem is subjected to a constant flux. In the diffusion problem case,
a complete set of ten frugal constraints is necessary to decrease the condition number from the
initial state with κ(M−1

D F) ≈ 2.82 · 105 and four eigenvalues exceeding 105, to the constrained
system with κ(M−1

balF) ≈ 1.30. Hence, this setting demonstrates when the application of
frugal constraints is beneficial. Moreover, in this problem, it is difficult to exclude many of
the constraints, because only channels at edges E26 and E48 are connected through primal
vertices, and the same holds for an edge E15, where both domains are strongly impacted by
Dirichlet BCs.

In the linear elasticity case, the situation is similar. If all thirty, i.e. three frugal modes for
each of the ten edges are taken into account, a condition number decreases from the initial
value of κ(M−1

D F) ≈ 5.27 · 105 with fourteen distinct eigenvalues in range ⟨5.5 · 103, 5.3 · 105⟩
down to the system with κ(M−1

balF) ≈ 1.69. Now, the original eigenproblem (3.13) identifies
only 22 potentially suitable constraints that exceed tolerance tol = 100. Assuming that the
frugal approach can accurately estimate the same eigenmodes as GEVP, our interest now lies
in omitting the eigenmodes associated with low eigenvalues λ. To this end, we would like
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to evaluate the eigenvalue estimator µ for each constraint to have the option to reduce the
number of additional constraints in future applications.

Stationary diffusion
E12 E23 E34 E56 E67 E78 E15 E26 E37 E48

GEVP (Eq. 3.13) 2.03 · 105 2.49 · 105 1.96 · 105 2.14 · 105 2.41 · 105 2.07 · 105 1.33 2.34 2.61 · 105 2.34
frugal orig 3.25 · 10−1 2.26 · 10−1 3.56 · 10−1 3.59 · 10−1 2.15 · 10−1 3.88 · 10−1 9.58 · 10−1 9.63 · 10−1 1.80 · 104 9.63 · 10−1

frugal a 2.77 2.19 · 104 3.74 · 104 3.40 2.08 · 104 4.07 · 104 9.58 · 10−1 1.75 1.80 · 104 1.75
frugal b 3.25 · 10−1 2.19 · 104 3.56 · 10−1 3.59 · 10−1 2.08 · 104 3.88 · 10−1 9.58 · 10−1 1.75 1.80 · 104 1.75

Linear elasticity
E12 E23 E34 E56 E67 E78 E15 E26 E37 E48

GEVP (Eq. 3.13)
2.13 · 105 5.00 · 105 1.36 · 105 2.01 · 105 5.14 · 105 1.28 · 105 8.28 7.00 · 104 1.83 · 105 7.00 · 104

3.14 · 104 1.58 · 104 3.08 · 104 5.01 · 104 1.19 · 104 4.86 · 104 2.80 1.91 2.47 · 104 1.91
7.85 · 103 6.38 · 103 7.78 · 103 8.54 · 103 6.45 · 103 8.43 · 103 1.55 1.61 5.79 · 103 1.44

frugal orig
3.33 · 10−1 3.33 · 10−1 2.49 · 10−1 3.25 · 10−1 3.13 · 10−1 2.36 · 10−1 6.59 · 10−2 9.06 · 10−1 1.35 · 103 9.06 · 10−1

4.51 · 10−2 6.93 · 10−3 4.53 · 10−2 7.06 · 10−2 5.36 · 10−3 6.98 · 10−2 2.33 7.29 · 10−1 8.31 · 103 7.29 · 10−1

2.39 · 10−2 1.22 · 10−3 2.52 · 10−2 2.48 · 10−2 1.11 · 10−3 2.51 · 10−2 1.22 · 10−2 2.96 · 10−1 1.67 · 102 2.96 · 10−1

frugal a
2.31 2.78 · 104 2.25 · 104 2.42 2.74 · 104 2.24 · 104 6.59 · 10−2 1.37 1.35 · 103 1.37
1.73 7.15 · 102 5.04 · 103 4.56 5.63 · 102 7.86 · 103 2.33 1.39 8.31 · 103 1.39
3.06 · 10−1 3.30 · 102 1.22 · 103 6.12 · 10−1 2.62 · 102 1.33 · 103 1.22 · 10−2 9.80 · 10−1 1.67 · 102 9.80 · 10−1

frugal b
3.33 · 10−1 2.78 · 104 2.49 · 10−1 3.25 · 10−1 2.74 · 104 2.36 · 10−1 6.59 · 10−2 1.37 1.35 · 103 1.37
4.51 · 10−2 7.15 · 102 4.53 · 10−2 7.06 · 10−2 5.63 · 102 6.98 · 10−2 2.33 1.39 8.31 · 103 1.39
2.39 · 10−2 3.30 · 102 2.52 · 10−2 2.48 · 10−2 2.62 · 102 2.51 · 10−2 1.22 · 10−2 9.80 · 10−1 1.67 · 102 9.80 · 10−1

Table 3.2: Highest (one in the case of two-dimensional stationary diffusion, three in the linear
elasticity case) eigenvalues (or their estimates) corresponding to computed modes on each of the
edges Eij using one of four methods: GEVP proposed by Mandel and Sousedík, frugal orig,
frugal a and frugal b. The values represent eigenvalues λ for adaptive modes obtained by solution
of the eigenproblem 3.13 or their estimator µ in case of frugal modes, respectively. Values greater
than 100 are highlighted in bold.

(a) (b)

Figure 3.8: Illustration of the rotational mode in elasticity problem on E26 which is hard to capture
with frugal approach: (a) Side of low energy: 3.57 · 10−1. (b) Side of high energy: 2.50 · 104

The comparison of the three variants of a heuristic frugal approach with reference locally
optimal constraints obtained by the solution of the GEVP is provided in Tab. 3.2. First, it is
evident that there is a notable resemblance between the scalar and vector-valued problems.
The only edge that certainly does not contain any harmful mode is E15, because relatively
high coefficient segments that intersect edge E15 are directly connected to the Dirichlet
boundary. Next edges E26 and E48 follow in their low harmfulness. In the scalar case, the
high-coefficient blocks are completely handled via shared primal vertex. In mechanics, this
connection in the primal vertices suffices to cope with relative translational modes, however
the rotational mode centred on this vertex is hard to capture for a frugal approach. Typically,
these rotational modes are not needed for a well-connected structure because of the (primal
or translational) constraints arising from other edges. Edges E23 and E67 represent examples
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in which the variant frugal orig results in an inaccurate energy estimate of all constraints,
which both frugal a and frugal b correctly evaluate high value of µ in the corresponding
columns in Tab. 3.2. It is also evident from Tab. 3.2 that similar behaviour does not extent to
edges E34 and E78, where both primal vertices are located on the jump between high and low
coefficients; see Fig. 3.9. Here, the importance of the proposed variant a becomes apparent.
According to Tab. 3.2, it is the only variant that properly estimates the λ from GEVP by
its µ value. The difference between construction of constraints in sense of frugal a and the
standard variant is also clearly visible in Fig. 3.9, where modes appearing in denominator of
µ are shown. In frugal a, we avoid prescribing a gradient on a significantly more conductive
elements by appropriate shifting of the temperature at shared primal vertices. This is not the
case in frugal orig, where the temperature is kept fixed at zero irrespective of the material
distribution. Edge E37 is an ideal representative of where no modifications have to be made;

(a) (b)

Figure 3.9: Stationary diffusion: Frugal mode on the edge E34. Low energy sides and corresponding
energies in parentheses are shown for: (a) frugal orig: (1.81 · 1018). (b) frugal a: (1.72 · 1013).

estimator µ correctly accepts all the constructed frugal constraints in diffusion as well as
elasticity. It is necessary to note that the layout of the material distribution as given in
substructures Ω(3) and Ω(7) is exactly what we aim to avoid in practice, as the primary nodes
do not fulfill the role of a global skeleton. The most challenging and the only situations where
the frugal approach completely fail to evaluate the adequacy of constructed constraints are
the cases with one subdomain partly lying on the ΓD, for our test problem from Fig. 3.7 see
E12 and E56.

To conclude, the original frugal formulation does not seem to be applicable for an adaptive
reduction of the number of the enforced constraints. The simplified proposed version frugal
b might be useful for well-behaved decomposition or when we accept the risk of overlooking
potentially suitable constraints that could be captured if a more sensitive selection was
adopted. Finally, the proposed variant frugal a is a recommended strategy for a smart,
problem-specific selection, as it successfully recognized 20 out of 30 adaptive constraints in
total.

3.4 Reduced-basis strategy for obtaining adaptive constraints

The adaptive techniques described above remain considered computationally expensive and
time-consuming despite the robustness they provide and despite the associated (significant)
reduction in the number of iterations needed to achieve a satisfactorily accurate solution.
This is particularly due to data transfers between computational units are not negligible,
and the set-up and computation of the eigenproblem represent a costly operation even when
localized among pairs of substructures. Moreover, especially when it is not necessary to
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compute the eigenproblems at all interfaces, a significant imbalance is introduced, disrupting
the otherwise perfectly parallelizable architecture of the method itself. An important insight
is that in real-world problems, we typically require only a few – if any at all – constraints at
each interface; that is, in most instances, the number of eigenmodes required is markedly (or
orders of magnitude) less than the dimension of the eigenproblem. Therefore, the adoption
of iterative solvers for identifying (potentially approximate) dominant eigenmodes, such
as those employing the generalized Rayleigh quotient, emerges as a seemingly appropriate
choice [53]. However, in practice, direct Krylov-Schur-based sparse eigensolvers, such as those
implemented in PETSc which enable parallel computations are still frequently used due to their
robustness [3, 22]. A principal drawback with the formulation of the eigenproblem introduced
in Subsection 3.2.1 is that, with a direct solver, it inherently produces a substantial number of
eigenmodes. Not only is the majority of these eigenmodes likely to be discarded due to being
assessed as unnecessary, but we can also confidently claim that a large number of eigenmodes
is predetermined to carry no useful information. This is due to the subsequent application of
the PD operator to our selected eigenmodes: It is evident that if Γ(ij)

h contains more dual DOFs
than our interface, edge Eij for instance, many of the BD,ijSijPD,ijvij products will either be
completely zeroed out or be linearly dependent on the others. As we have demonstrated in the
preceding sections, the acquisition of all the desired constraints necessitates the employment
of a correct formulation of an adaptive approach. Various modifications, which otherwise
hold considerable potential to enhance the efficiency of obtaining these adaptive conditions,
generally fail to produce all the sought-after modes. The goal of this section is thus different.
We aim to compute a properly formulated eigenproblem without reliance on any additional
simplifying assumptions, but within an ideally very low-dimensional subspace. While this
is a common strategy in numerous eigensolvers (hence labelled Krylov-), e.g. [3, 47], our
effort here is to focus on an explicit construction of the reduced basis by relying exclusively
on geometrical and material parameters. Direct approximation of the constraints proved
challenging in cases of uniformly varying coefficients or when multiple constraints are required.
However, drawing on principles of heuristic methodologies we can attempt to estimate the
basis vectors from which the maximum number of necessary conditions could be constructed.
Practically, we will thus adopt the concept of (weighted) averages, but we will employ an
eigensolver for the assembly of the constraints because it is challenging to produce an optimal,
linearly independent, yet complete set of necessary constraints. Consequently, we face an
objective to construct a basis Ψ, ideally of smallest feasible dimension, which spans the space
of the dominant eigenvectors we seek for.

As a first step in constructing such a basis, let us focus on binary-valued scalar problems.
For scalar problems, visualizations become somewhat simpler, and additionally, these problems
do not feature harder-to-handle rotational modes. If the material coefficient distribution is
binary and the heterogeneity ratio is high, it is easy to determine whether each high-coefficient
segment is already in the coarse space, simply by checking whether it is connected to the
Dirichlet boundary through primal constraints or not. Since the eigenmodes arising from the
solution of localized GEVPs are typically strongly associated with very low-energy functions,
it can be anticipated that the solution variables within one high-coefficient segments will be
of the same value.

Let us provide a minimalistic example comprising two interior subdomains of a comb-
like shaped high-coefficient elements; see the scheme in Fig. 3.10 left. In this example, a
single adaptive constraint is needed if ρ scaling is used. Clearly, we aim to introduce two
basis functions for the lower subdomain and ideally a single basis function for the upper
subdomain. To keep the heuristics cheap, however, we will not work with information inside
the subdomains. Instead, we will limit ourselves to coefficient profiles similar to those used
in ρ scaling. Unlike ρ scaling, where values are defined nodal-wise, we will adhere to values
belonging to individual elements. Thus, we introduce coefficient profiles ξ(s), see their
visualization on in Fig. 3.10 top-right. Assuming that

(
x1

Γ(s) , x
2
Γ(s) , . . . , x

n
(s)
Γ

Γ(s)

)
is a sequence of
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ξ(i)

ξ(j)

Ω(i)

Ω(j)

Figure 3.10: Illustration of the four constructed basis functions on an interface between two
subdomains with a comb-like conductive segment. Left: Stationary diffusion problem and two
interior subdomains. Similarly to previous examples, dark blue shows region with high coefficient
and light blue region with 106 lower coefficient. Top right: Coefficient profiles ξ on subdomain
interfaces Γ(s) in a counter clock-wise ordering starting from the local bottom-left node: blue for
the upper subdomain, red for the bottom one. Bottom right: Four constructed basis functions
with minimum energy extension to the interiors of subdomains.

nodes on Γ(s) in a consecutive order, we can define values of coefficient profile for each element
edge between two unsupported degrees of freedom on Γ(s)

h (recall that DOFs belonging to the
set I are not attached to Γ(s)

h as

ξ(s)
o := α{

xo

Γ(s) ,x
o+1 mod n

(s)
Γ

Γ(s)

} o = 1 . . . n(s)
Γ − 1, and possibly n(s)

Γ , (3.20)

where α{
xo

Γ(s) ,x
o+1 mod n

(s)
Γ

Γ(s)

} denotes the coefficient α (being either ρ or E) of an element in Ω(s)

with an edge connecting nodes xo
Γ(s) and xo+1

Γ(s) . The modulo operation addresses situations

where the boundary Γ(s) is a closed curve, and thus there is an element with nodes {x1
Γ(s) , x

n
(s)
Γ

Γ(s)}.
If the coefficient distribution itself is not accessible in the solver, the corresponding off-diagonal
entries may take the role of α in Eq. (3.20).

We now proceed to the next step in the construction of a heuristic basis: identifying
clusters of elements with significantly high coefficients within the coefficient profiles ξ(s)

o .
In the binary case, distinguishing between elements with low and high coefficients is relatively
straightforward. For this purpose, we utilize the indicator function, denoted by χ(ξ(s)

o ), where
ξ

(s)
o corresponds to the coefficient value of an element o in local ordering. This function is

defined as:

χ(ξ(s)
o ) =

{
1 if x ≥ tol,
0 otherwise.

(3.21)

A cluster C (s) on Γ(s) is defined as a contiguous sequence of elements with nodes xo
Γ(s) , x

o+1
Γ(s) , . . . , x

p

Γ(s)

such that each χ(xj

Γ(s)) = 1 for all o ≤ j ≤ p. The indices o and p mark the start and end of
a cluster, respectively. To avoid unnecessary introduction of new basis functions, we account
for a particular case when Γ(s) is a closed curve by setting xns

Γ+1
Γ(s) ← x1

Γ(s) , i.e. linking the
end of the sequence back to the start. The total number of clusters n(s)

C on a subdomain is
determined by counting the transitions from χ(x) = 0 to χ(x) = 1 shown if Fig. 3.20.

We now formalize the construction of the basis for our example. The basis consists of
piecewise constant functions, specifically designed to represent the clusters identified in the
coefficient profiles. Each basis vector, ψk, corresponds to a unique cluster C (s)

k on Γ(s), s = i, j
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and is defined as follows:

ψ
(s)
k (x) =

{
1 if x ∈ C(s)

k ∀k = 1 . . . n(s)
C ,

0 otherwise.
(3.22)

This formulation implies that ψ(s)
k acts as a characteristic function on a set of DOFs given by

each cluster C (s), taking the value 1 within the spatial domain of its corresponding cluster
C (s)

k and 0 elsewhere. As of now, we have not considered the fact that the solution must be
from W̃ij . To incorporate this requirement, we could directly enforce values at nodes from Πij

to be continuous across the interface. For that, we set

ψ
(i)
k (x) =

{
1 if x ∈ C(j)

k and x ∈ Πij ,

0 otherwise.
(3.23)

and the same definition applies vice versa for j.
Now we finally have everything ready to construct a reduced basis

Ψ =
[
Ψ(i) Ψ(i)

Ψ(j) Ψ(j)

]
(3.24)

with Ψ(s) ∈ Rn
(s)
Γ ×n

(s)
C .

We are now approaching a basis from which we can expect to obtain the adaptive constraints
needed for enhancing coarse space. Practically, we could now apply a Galerkin projection
onto Sij and PD

T
ijSijPDij , i.e., instead of solving GEVP (3.13) we have to find the eigenmodes

and corresponding eigenvalues of
ΨTPD

T
ijSijPDijΨvΨ = λΨΨTSijΨvΨ (3.25)

and reconstruct the approximated original eigenmodes by setting v = Ψ vΨ. In this case,
Ψ itself represents the role of both projections in eigenproblem (3.13).

The purpose of the construction presented so far is to provide a stepping stone for the next
development. Once implemented, it turned out that such a simplified approach is suitable
only for simplified binary problems similar to the one given, and even then only for scalar
tasks. However, there is still a room for improvement, because the aforementioned basis still
operated on the entire Γ(i) × Γ(j), which is not necessary. While the goal is to drastically
reduce the dimensionality of localized GEVPs, it might generally be acceptable for the solution
of the eigenproblem itself if we ended up with a slightly larger basis. This is because the
computational time for solving small eigenproblems is negligible, even with a slightly increased
number of constraints. However, since we will be using minimum-energy extensions that
are needed anyway, we will appreciate reducing the number of basis vectors to an absolute
possible minimum. The reason for this is that having just a few right-hand sides for the
evaluation of minimum energy extensions allows us to potentially utilize inexact iterative
solvers. For example, with regular decomposition into square subdomains, we would expect
the cumulative sum of dimensions from solved eigenproblems to be approximately or up to
(depending on whether we discarded some eigenproblems with no clusters on the shared edge
or not) for times larger, which is unfortunate.

Let us proceed to establish the final form of our reduced basis. The first distinction from
the previous form is that we scan for clusters of high-coefficient elements only on a shared
entity, specifically an edge. The second deviation from the previously introduced procedure is
that the clusters have global character right from the assembly phase. For this purpose, we
redefine the coefficient profiles ξ(s), s ∈ {i, j} to incorporate both domains simultaneously,
introducing the profile ξ(ij) as

ξ(ij) :=
[
ξ(i)

ξ(j)

]
,

where the ordering must be modified such that every two consecutive values of ξ(ij) share a
geometrically coinciding node at Eij .

Newly, clusters within the shared coefficient profile ξ(ij) are identified by locating the index
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k corresponding to the maximum coefficient value that exceeds a specified threshold tolRB,
relative to the local values within its neighborhood. This is expressed as:

C (ij) =
{
k

∣∣∣∣ ξ(ij)
k = max

m∈[tstart,tend]
ξ(ij)

m and ξ
(ij)
k > tolRB ·max

(
ξ

(ij)
tstart , ξ

(ij)
tend

)}
, (3.26)

where tstart and tend are dynamically determined for each segment within the profile where
the maximum value meets or exceeds the given user-defined threshold.

We start by scanning the coefficient profiles ξ(ij) from the first value, i.e., by setting
tstart = 1, and actualize the temporary minimum ξ̂min and its corresponding index tstart based
on the values in coefficient profile, which determines the potential start of the interval. Once
a value exceeding tolRB · ξ̂min is recognized, we start again to search for the end point of the
interval by testing expression (3.26). Once this criterion is met, we mark the index of the node
corresponding to the highest value within the coefficient profile restricted to this interval and
use it for the construction of a basis function ψ(i)

k , i.e. our cluster. A cluster is characterized by
the element with the highest coefficient, as it is expected that, after minimal energy extension,
it will accurately approximate ill-posed modes. After successful identification of a cluster, the
elements within the interval (tstart, tend) are marked as visited, prohibiting their use in the
construction of additional clusters. Subsequent clusters are determined by iteratively applying
this evaluation process to the remaining unvisited segments of ξ(ij). This procedure continues
until all potential peaks within the profile have been evaluated. For vector-valued problems,
we rather split the clusters defined on intervals where tstart operates on the other domain
than tend. This is due to the fact that this splitting is beneficial for capturing rotational
modes. Hence, if this occurs, we only force the node shared by the two subdomains to be a
representative of tend on the first subdomain and tstart on the second one: the basis functions
are then constructed accordingly to the previous case.

Admittedly, the construction of the reduced basis is not unique as it depends on the chosen
direction and starting point of the search process. At the same time, the described procedure
is difficult to generate for two-dimensional entities arising three dimensional tasks. Current
setup serves as a proof-of-concept that obtaining a suitable low-dimensional and yet well-
performing basis using only a limited information about material distribution on the edge/face
shared by a pair of adjacent substructures is possible. For the extension, methods such as
generic clustering algorithms in machine learning techniques can be used for identification of
high-coefficient aggregates.

The process described by Eq. (3.26) is complicated by the necessity of working with relative
coefficient ratios, which introduces further challenges in identifying clusters. An illustrative
problem depicted in Fig. 3.11 demonstrates the need for a relative threshold. This problem has
been intentionally altered from that presented in Fig. 3.1a to include coefficient distribution
consisting of four values of ρ ∈ {1, 102, 104, 106}. The transition between the two subdomains
always occurs at the interface and it is consistently equal to 100. Adaptive methods in this case
yield almost the same four constraints and eigenvalues as for the problem with binary-valued
coefficients, where the material contrast equals 100. Hence, although the global heterogeneity
ratio ρmax/ρmin = 106, the eigenvalues corresponding to the visualized constraints remain
comparable to the maximum coefficient jump on each edge, which is, approximately 102.
In order to effectively capture eigenvalues in the order of 102, which are anticipated in the
system, it is practical to set the tolerance value tol also in the order of the coefficient jump,
or slightly lower. The tolerance used in our heuristic has an analogous significance; therefore
tolRB can be set slightly below the value of coefficient contrast. This is advantageous because
it keeps the only parameter entering this heuristic procedure meaningful, hence eliminating
the need for a complex parameter-tweaking. In our implementation, the same threshold
for tolerance was consistently applied in both this criterion and for the eigenproblem when
working with binary-coefficient problems.

For vector problems, we first identify clusters exactly as in the scalar case and construct an
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Figure 3.11: Alternated stationary diffusion problem. Colorbar denotes four different values
of coefficient ρ. Red and blue lines visualize adaptively obtained constraint. Corresponding
eigenvalues are ranging from 85.93 to 96.94

independent nodal basis Ψ0 in accordance to expressions (3.22-3.24); then for each cluster we
construct an independent basis consisting of rigid-body modes Ψ̂.

First, we define a DOF-wise basis Ψ matrix from the nodal basis Ψ0 such that each
node represented by a one in Ψ0 will have all associated DOFs marked by one in Ψ. This is
formally accomplished by utilising the Kronecker product with a column vector 1 ∈ RnDOFs/elem

consisting of ones, where nDOFs/elem is the number of degrees of freedom per element, i.e.
nDOFs/elem = 1 for scalar problems and nDOFs/elem = d, the dimension, for vector problems:

Ψ = Ψ0 ⊗ 1nDOFs/elem×1. (3.27)

We now introduce Ψ̂ such that it stores the pointwise-multiplied columns of Ψ with the
corresponding rigid body modes of individual clusters. As the clusters are line segments of
positive measure and we restrict ourselves to two-dimensional problems, a matrix R(ij)

rbm storing
the rigid body modes of the connected superstructure Ω(i)∪Ω(j) can be simply constructed and
its columns point-wise multiplied with columns of Ψ̂ instead. In general, for three-dimensional
problems, clusters may possibly have fewer linearly independent rigid body modes.

The resulting usable part of the basis, Ψ̂ ∈ Rn
(ij)
C ×(nΓ(ij)

DOFs·nrbm), where nΓ(ij)
DOFs represents the

number of decoupled interface degrees of freedom, and nrbm is the problem-dependent count
of rigid body modes. For the sake of clarity, the matrix is now given by

Ψ̂ =
(
Ψ⊗ 11×nrbm

)
⊙ (R(ij)

rbm ⊗ 11×n
(ij)
C

). (3.28)

This basis indeed satisfies the continuity conditions in Πij , but in practice, it proves to be
inapplicable. This is due to sharp transitions in basis functions, leading to steep gradient in
neighboring lower-coefficient elements. This typically results in high energy modes in most
cases. We have to control this.

However, by establishing this framework, we have laid the groundwork for the application
of minimum energy extensions. If we denote Bij as the set of degrees of freedom (DOFs)
affected by the clusters and Bc

ij as its complement in Γ(ij)
h , we can introduce another discrete

harmonic extension operator HBc
ij

as follows:

HBc
ij

(x) := arg min
ỹ∈W̃ij∩Kernel(ΠijSijΠij+t(I−Πij))⊥

{
⟨ỹ,Sij ỹ⟩ | ỹ|Bij

= x
}
, (3.29)

which extends the values of ψm|Bij
, defined on the set Bij , harmonically across the complement

set Bc
ij . The conditions applied here ensure the solvability of the original GEVP and were

discussed in Subsection 3.2.1.
With operator HBc

ij
at hand, we now extend all basis vectors defined in Ψ̂

ψ̂m ← HBc
ij

(ψ̂m|Bij
) ∀m = 1, . . . , (n(ij)

C · nrbm). (3.30)
Of course, each application of this energy-minimizing operator is not for free. One possible

way to apply HBc
ij

is to directly perform the second round of static condensation, i.e., construct
a Schur complement of the (properly projected) Schur complement on the right-hand side
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of Eq. (3.13). However, this would require us to explicitly assemble this product and then
factorize a relatively large block belonging to the set Bc

ij . Although a similar approach is
applied in the preconditioning step of the Krylov-Schur algorithm, for our purposes, we prefer
to avoid the direct assembly of this product and make maximum use of the sparsity of the
matrices. Therefore, instead, we utilize a partially matrix-free deflation conjugate gradient
algorithm. The principle of the deflated conjugate gradient method was introduced previously
in Subsection 2.5.1 discussing projector preconditioning. There, we formally incorporated
projections onto the admissible search space directly into the preconditioner and utilized
standard preconditioned conjugate gradients (CG). However, we do not describe the deflated
CG algorithm here, as it is considered a generally well-known. More details can be found in
the relevant literature; cf. [48].

The advantage now is that we do not require any multiplication with projection matrices;
instead, in each iteration the algorithm only requires zeroing out the contributions in search
directions at DOFs with prescribed values, Bij . It is sufficient to iteratively solve the system
of linear equations with a homogeneous right-hand side, where only the application of the
right-hand side product of the Eq. (3.13) to the vector is necessary. In our preliminary results,
preconditioning with incomplete Cholesky factorisation was needed to obtain satisfactorily
accurate basis vectors that are applicable. Thus, it might not be a more efficient way for the
solution of GEVP, but it is presented as an option.

For illustration, we can refer back to problem showed in Fig. 3.10, which we have previously
passed over without commenting on the basis functions. The four basis functions displayed
there were obtained using this methodology, although the previous version would have been
equally adequate in this case.

Closer examination of the basis functions reveals distinct, seemingly nonphysical jumps
between subdomains (most notably in the third and fourth basis functions). These arise as
artefacts of each cluster being defined using only one element, an approach adopted for its
simplicity. In this case, it would arguably have been preferable to construct clusters from two
elements. However, at this point, this is merely a cosmetic detail.

(a) : RHS (full basis)
Energy: 1.00

(b) : LHS (full basis)
Energy: 2.25 · 103

(c) : RHS (red. basis)
Energy: 35.6

(d) : LHS (red. basis)
Energy: 8.02 · 104

Figure 3.12: Obtained adaptive constraints with full and reduced basis on interface between
subdomains depicted in Fig. 3.10. Resulting energies are provided. Annotation: LHS - left hand
side, RHS - right hand side

Fig. 3.12 displays the low and high energy sides of one adaptive constraint obtained on a
problem shown in Fig. 3.10. The first two subfigures depict both sides of the eigenproblem for
eigenmode obtained on the full basis, whereas Figs. 3.12c-d show the same resulting from the
reduced eigenproblem of dimension 4× 4 using the reduced basis depicted in Fig. 3.10. It is
noteworthy that the eigenvalues (2.25 · 103 ≈ 8.02 · 104/35.6) are practically identical, and the
modes also appear visually similar. Additionally, the strange jumps have disappeared. This
suggests that this approach is moving in the right direction.

3.4.1 Applicability of the reduced-basis approach

Let us continue to focus on the binary problems for a while and conduct numerical tests to
verify that this approach is correct and yields accurate results. Instead of synthetic problems
with various boxes or channels crossing interfaces, we generate random binary voxel-based
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(a) : Fine subdomain resolution (b) : Fine mesh resolution

Figure 3.13: Two stationary diffusion problems with random binary material distributions. Left:
Decomposition with increased subdomain resolution, resulting in a larger number of smaller
subdomains. Right: Test problem utilising a fine mesh, partitioned into 5000 triangular linear
finite elements per subdomain and decomposition into 4× 4 subdomains using the reduced basis
depicted in Fig. 3.10.

material distributions. This helps us to avoid solving only eigenproblems where the nature
of the conditions is highly predictable. Therefore, we generated two realizations with a
ratio of conductive to non-conductive voxels fixed to 0.4 : 0.6; see Fig. 3.13. This ratio was
selected to promote connectivity among elements without resulting in overly large connected
aggregates. The contrast in material coefficient is routinely set at a value of 106. In particular,
we investigated two variants within this set-up.

One variant is designed to ascertain whether constraints on all edges are evaluated accurately;
to this end, we chose a decomposition into 10× 10 subdomains with a ratio of the subdomain
size to the element size (H/h) of 9. Here, H represents a typical size of a subdomain, and h
indicates a typical size of an element within the subdomain.

The second variant aims at determining whether more complex constraints on edges with a
larger number of elements will be sufficiently accurate; therefore, it is decomposed into 4× 4
subdomains, with H/h = 50 in this case. Note that the binary distribution combined with
subdomains with fine mesh resolution goes against out motivation behind our reduced basis.

Figure 3.14 (and its subsequent counterparts) show dimensions of the original GEVP and
the proposed reduced basis alternative for each edge, along with dominant eigenvalues λ (as
dots) and their reduced basis estimates µ (as circles).

In the first task with a refined mesh, our approach successfully identified all modes corre-
sponding to eigenvalues greater than the threshold tol set to 50, as illustrated in Fig. 3.14. The
original formulation of the eigenproblem identified up to thirteen adaptively acquired modes at
certain interfaces. Our reduced basis approach effectively approximated all modes, including
those barely exceeding the given threshold (see the lowest marker at edge 29). Furthermore,
despite the random binary distribution of material coefficients approaching a scenario that
results in the maximum possible number of clusters in the given mesh, the dimensions of the
reduced bases remain at least one order of magnitude lower than of the original setting. In
the second variant, displayed in Fig. 3.13a, our approach performs similarly well; see Fig. 3.15.
Both approaches yielded nearly indistinguishable eigenvalues. It is noteworthy that both
GEVP formulations led to an identical number of 267 constraints. The practical equivalence
of the eigenmodes is upheld by the numerical results: In both cases, the solver required 12
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Figure 3.14: Analysis of eigenvalues of scalar problem 3.13b obtained by the original and reduced
basis GEVPs. The histograms represent the dimensions of the GEVPs solved. All eigenvalues
exceeding the specified threshold tol are visualized with markers, each marker color-coded according
to their order on the interface. The close match of eigenvalues across both methods demonstrates
that the adaptive constraints generated by the original and the novel reduced-basis approach are
almost identical.

iterations to satisfy the criterion ϵL2 ≤ 10−6 with a condition number equal to 14.7. We do
not provide these results there because they do not contain any additional relevant information.

All is not so perfect when elasticity problems are considered; especially when problems
involving spatially varying coefficients with high contrast are addressed. As a prominent
representative of such a problem we take a final iteration of a topology optimization process,
which will be presented in Section 4.1. For now, it suffices to say that it is a linear elasticity
problem with highly varying material coefficients, with the contrast in material coefficients
approaching 106. In this particular case, our heuristic does not exhibit the same level of
effectiveness as observed in previous binary scalar-valued problems. The results of the analysis
of eigenvalues obtained from both methods are shown in Fig. 3.16. Encouraging results are
demonstrated by the reduced-basis approach, which successfully identifies the most extreme
outlier eigenvalues. In few instances of moderate eigenvalues, the approach has successfully
identified all (up to three) eigenvalues, even when they are marginally above the threshold.
In a substantial number of cases, it responds quite well to the second and third eigenvalues,
though the accuracy of approximation deteriorates. Nonetheless, there are cases where the
reduced basis approach fails to detect relatively high second and third largest eigenvalues;
see all the columns in which there are cyan and yellow dots without correspondingly colored
circles.

On the other hand, the dimensionality reduction in this example is by almost an additional
order of magnitude larger than in the previous scalar problem. Furthermore, in practice, even
more substantial savings can be expected, as we are still using a relatively coarse mesh (30×30
elements per subdomain) solely to ensure that the values of the dimensions of the reduced
bases are visible in the histograms. While the original formulation solved a large number
of GEVPs of dimension 480, the maximum dimension in the new approach is 15. Another
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Figure 3.15: Analysis of eigenvalues of scalar problem 3.13a from original and reduced-dimensional
GEVPs. The histograms represent the dimensions of the GEVPs solved. All eigenvalues exceeding
the specified threshold are visualized, each color-coded according to their order on the interface.
The close matching of eigenvalues across both methods demonstrates that the adaptive constraints
generated by the original and the novel reduced-basis approach are of almost identical quality.

major advantage is also that the criteria for basis construction act as a fairly good estimator
of when GEVPs can be completely discarded, i.e., neither calculated nor set up. The reduced
basis approach calculated a total of 67 localized GEVPs, whereas in the full basis without any
technique to exclude unnecessary eigenproblems, 170 GEVPs were calculated. Furthermore, it
turns out that when the heuristic determines that a basis needs to be constructed, the reduced
basis GEVP quite reliably yields eigenvalues exceeding a certain threshold, ensuring that it is
not assembled unnecessarily. Specifically, this construction accurately evaluated 64 interfaces
out of a total of 72, where at least one eigenvalue larger than tol = 50 was found in the original
formulation, and only 3 interfaces where the calculated GEVP did not contain any eigenvalue
larger than the threshold in the original formulation. The eight cases where the reduced basis
was mistakenly not constructed correspond to edges with high eigenvalues exceeding 103, that
are clearly visible on the right side of Fig. 3.16. Clearly, there is something amiss with the
bases themselves at these interfaces. Closer examination of the dominant missing mode reveals
that it is a very atypical case; see this degenerative mode in Fig. 3.17. As observed, there is
a relatively continuous stiff artefact along the shared edge, resulting in a minor maximum
jump in coefficient profiles along this edge reaching the value of approximately 40 (recall that
the threshold was set to 50). Consequently, the reduced basis is evaluated as unnecessary
because the criterion for a jump in coefficients is not met. At this moment, the issue lies
with the criterion for determining individual clusters, which should be set lower. As further
evidence, we include another similar plot in Fig. 3.18, where the threshold for clustering is
lower, in particular the threshold equals to tol/2. With a more flexible lower threshold for
the clustering criterion, the quality of the approximated eigenvalues immediately improves.
Interestingly, the maximum dimensionality of localized GEVPs remained at 15, showing
no increase. In this scenario, the number of solved GEVPs increased from 64 to 77. This
specifically indicates that the criterion correctly evaluated 72 interfaces, where it succeeded in
finding at least one desired eigenmode, and only at five interfaces where reduced-basis GEVPs
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Figure 3.16: Analysis of eigenvalues of a topology optimization elasticity problem (it. 100) from
original and reduced-dimensional GEVP. The histograms represent the dimensions of the GEVP
solved. All eigenvalues exceeding the specified threshold are visualized, each color-coded according
to their order on the interface. The same tolerance for selection of eigenmodes and for clustering
is used.

were calculated but no eigenvalues were found in the original formulation. However, a crucial
outcome is that no interfaces, at which the original formulation enforced constraints were
neglected. This reduced basis identified a total of 119 out of 158 eigenmodes greater than
the given tolerance. Furthermore, it predominantly ignored low eigenvalues, which is more
convenient for the algorithm. The resulting condition number estimate is 197.2.

It might appear as merely tweaking a parameter, but there is no conceptual inconsistency
in setting the tolerance for clustering to values lower than those used in the GEVP itself.
Therefore, when dealing with varying coefficients, or when there is a risk of potential occurrence
of such degenerative distributions, we suggest a careful lowering of this clustering threshold.
With binary or sharply changing coefficients, we believe that the threshold for clustering can
be approximately the same or slightly lower than the threshold for the GEVP itself.

Despite the lack of any theoretical analysis, we believe that the presented reduced-basis
approach opens a way toward new efficient heuristics. Inspired by observed behavioral solution
patterns, it primarily focuses on extreme outliers with the end goal of substantial reduction
in the dimensionality of the coarse space augmentation. We believe that even these initial
results are promising and they encourage further research into more cost-effective adaptive
techniques. Next steps are to appropriately adjust the construction of reduced basis, either
to make it computationally cheaper or to better approximate the subspace of all outlying
eigenvalues.

3.5 Heuristic selection of primal nodes

Finally, we present an extremely cheap heuristic approach for the systematic selection of
primal nodes in the context of problems with coefficient distributions with high contrast in
material parameters. Contrary to the previous sections, we directly enrich the set of primal
variables Π by evaluating information pertinent to nodes on a single edge at a time, requiring
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(a) (b)

Figure 3.17: Visualization of the dominant eigenmode (2.25 ·10−6) of the localized GEVP between
two subdomains, one of the having a tricky coefficient distribution. Left: Relatively low energetical
mode (energy 7.72 · 10−6) and splitting of the gap based on ρ scaling (green line). Right: Right
hand side mode of the localized GEVP leading to energy 1.73 · 10−2.
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Figure 3.18: Analysis of eigenvalues of a topology optimization elasticity problem (it. 100) from
original and reduced-dimensional GEVP. The histograms represent the dimensions of the GEVP
solved. All eigenvalues exceeding given threshold are visualized. Lower threshold for clustering
used: tol = 50 for GEVP and tolC = 25 for clustering of elements.

only very limited information about the material coefficients. Notably, the criterion introduced
here does not require any additional information beyond what is typically provided to the
solver if the widely used ρ scaling is adopted.
The primary motivation behind this approach is to identify edges that are potentially prob-
lematic due to the occurrence of ill-posed modes (recall Subsection 2.5 for context) and to
consequently add nodal primal continuity constraints on these edges. By focusing solely
on nodal constraints, we maintain the simplicity and cost-effectiveness of the method. Our
strategy is to keep the solver settings as straightforward as possible, even at the cost of more
iterations, since the setup phase in the solver is kept to a minimum.

This heuristics builds on a version developed in the author’s bachelor thesis [36]. By trans-
forming carefully selected DOFs from the dual to the primal character, the original method
allowed for a decrease in the condition number of the FETI-DP system by several orders of
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magnitude. Given the newly acquired experience with adaptive approaches, GeNEO-type [51]
and PD-based [35, 43] in particular, we believe that the original heuristics can be improved
despite delivering desired performance in many cases. With better understanding of the role of
ill-posed modes and their mitigation, we present here an enhanced yet equally computationally
inexpensive version for the selection of the set Π of primal variables.
Using only nodal constraints allows us to work in the initial basis without any transformations
or the use of projections. The advantages of avoiding these transformations, as well as the
problems associated with the introduction of scaling, are discussed in Section 2.5. Thus, we
aim for a very low-dimensional nodal approximation of the necessary adaptively obtained
constraints, targeting the most harmful nodes specifically.

For our heuristics, we assume that the coefficient jumps inside subdomains are at least
partially reflected on the interface. Our procedure for selecting suitable primal nodes starts
with processing edge characteristics and flagging the edges that can be omitted from the
enrichment. For each dual interface between subdomains Ω(i) and Ω(i), we first construct
nodal coefficient profiles Ξ(l), l ∈ {i, j} based on the material properties pertinent to ele-
ments adjacent to edge Eij . In particular, assuming that ordering of nodes matches across
the subdomains, the coefficient profile Ξ(l) collects nodal coefficient maxima in a sense of
expression (3.6), i.e. each component follow as

Ξ(l)
k = α̂(l)(xk) (3.31)

for all nodes xk in locally ordered index set E(l)
ij := {1 . . . n(l)

Eij
}, l ∈ {i, j} on edge Eij .

Following our observation from adaptive constraints that large components in constraint
modes are related to Lagrange multipliers binding elements with relatively high coefficients,
we first eliminate the nodes with relatively low coefficient values as they are not expected to
be suitable candidates for new, pair-wise nodal constraints. To retain maximal simplicity, we
employ a user-defined relative tolerance factor σ and assess if a relevant jump in coefficients
occurs on this edge simply by comparing

max
(
max(Ξ(i)),max(Ξ(j))

)
min

(
min(Ξ(i)),min(Ξ(j))

) ≥ σ .
If the ratio in the expression above does not exceed the given tolerance σ, we do not enrich
the set of primal variables Π on this edge. On the other hand, if this criterion is satisfied, we
proceed with this edge start eliminating nodes with marginal values in the coefficient profiles.
In particular, we keep as candidate points at edge Eij only those that have profile values
higher than the overall minimum. The domain-wise index sets of potential candidates C(l)

ij is
then defined as

C(l)
ij =

{
k | Ξ(l)

k ≥ σ ·min
(

min
(
Ξ(i)

)
, min

(
Ξ(j)

))}
l ∈

{
i, j

}
, (3.32)

Eventually we combine the two sets of candidates, one for each subdomain, by intersecting
them:

Cij = C(i)
ij ∩ C(j)

ij

Note that in this operation we might have completely excluded some of the high coefficient
nodes on individual subdomains if the coefficient profile is low on the corresponding nodes in
the second subdomain. At the same time, we might have split sequences of consecutive nodes
on individual subdomains into multiple, non-consecutive sequences. This is in accordance
with our motivation, we want to identify isolated floating high-coefficient segments, which are
usually related to ill-posed modes and thus are often the source of high eigenmodes found by
adaptive approaches. The resulting set Cij contains nodes for which a nodal-based continuity
condition is considered to be meaningful, i.e., it is expected to be relevant for substantial
enhancement of desired robustness of the coarse problem.

Next, we proceed to identifying clusters Cij of contiguous nodes. This concept of clustering
has been already adopted in Section 3.4, where we needed a floating threshold. Here, the
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clustering algorithm is less complicated, as each cluster cij,k represents a contiguous set of
candidates

cij,k =
{
m ∈ Cij | ∃n ∈ ωEij (m), n ∈ Cij

}
,

where ωEij (m) denotes the congruent nodes at Eij . For each identified cluster cij,k, we select
one representative node and include this node in the set of primal nodes Π. The representative
node index p∗

k is chosen as an index, which pertain to the maximum value in coefficient profile
in the cluster cij,k, i.e.

p∗
k = max

m∈cij,k

min(Ξ(i)
m ,Ξ(j)

m ).

This specific choice is strongly motivated by the concepts discussed in the introduction of
weighted averages and adaptive constraints. From weighted averages, we know that the focus
should be directed towards high-coefficient elements. However, their formulation allows only
for a predefined number of constraints; in practice, more constraints might be beneficial.
Our approach reflects this, as it can to a certain extent recognize how many non-connected
high-coefficient blocks meet at the interface.
Finally, we collect all n(ij)

clusters selected nodes into the final set of primal nodes

P =
{
xp∗

k
| k = 1, . . . , n(ij)

clusters

}
.
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Figure 3.19: Visualization of the step-by-step process used for the identification and heuristic
selection of additional primal nodes on an edge between two subdomains.

The workflow of this heuristic selection is illustrated in Fig. 3.19. The first subplot shows
the coefficient profiles for two subdomains along the shared edge. Even though the profiles are
generally similar, some significant jumps still occur. The maximum and minimum values in
coefficient profiles is in this case equal to 0.99 and 0.012, respectively. Hence, the ratio exceeds
the user-defined tolerance σ, in this case chosen to be 10. The threshold σ ·min

(
Ξ(i),Ξ(j))

for filtering parts with too low coefficients out of the edge is also visualized with dashed
line. The second subplot displays the mask values of accepted and denied candidates for
each subdomain. Nodes that meet the criterion are marked as accepted (circles), while those
that do not meet the criterion are marked as neglected (crosses). The first subdomain is
represented in blue and the second subdomain in orange. In the third subplot, the minimum
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coefficient profile is depicted in green. Clusters are highlighted with gray-shaded areas, and
finally, the selected primal nodes within each cluster are marked with red circles. In this case,
the first node is chosen to be adjacent to the corner node, which is also primal in this problem.
Generally, it is better for the conditioning of the local problem if the primal nodes are not
too close to each other. Even though this might not be optimal, we keep these transformed
nodes as they still have a positive effect on preventing rotational modes in cases when the
high-coefficient part is connected to only one primal node.

At first glance, the final heuristics presented here might seem overengineered, but it is
extremely simple from an implementation point of view. The only thing we need initially
are the material coefficients at elements adjacent to the considered edge, which is standardly
provided also for, e.g., ρ scaling. If this is not the case, diagonal entries of local stiffness
matrices can be used instead.
This enrichment of Π with additional, heuristically identified nodes is particularly efficient for
severe variations in material coefficient distribution. By ensuring that each cluster contributes
one primal node, the approach maintains a balance between the posed computational overhead
and the enhanced robustness. Considering a single primal node per each identified cluster
might not resolve the problems with rotational modes if the aggregate of high-coefficient
elements in subdomain Ω(i) are not connected to the complement of edge Eij with respect
to Γ(i), that is if there is a high-coefficient aggregate that crosses one edge but then vanishes
within a subdomain. However, as this is a relatively rare occasion, we rely on the interaction
of coarse degrees of freedom: if this high-coefficient aggregate contains more heuristically
adopted coarse degrees of freedom on multiple edges, these combined suffice to prevent the
rotational mode as well. Hence, in practice it is not necessary to impose as many constraints
to prevent all the nearly rigid body modes on each edge separately.

To conclude, the application of this heuristic approach can significantly improve the
robustness and convergence of adaptive coarse spaces in domain decomposition methods,
particularly in the presence of highly heterogeneous material properties, while maintaining
the simplicity of nodal-valued primal DOFs.
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Chapter 4
Numerical tests

Throughout this thesis, all proposed modifications were illustrated with numerical examples
specifically designed to highlight the limitations of the original methods and the impact of
our improvements. Most of these examples focused on problems with a binary distribution
of coefficients. However, the primary motivation for our research was the application of
FETI-DP to systems of equations arising in modular topology optimization. As discussed
next, intermediate stages of topology optimization present more challenges than standard
binary coefficient distributions. At these stages, there is already a spatial distribution of
high-contrast coefficients, but the topology of high-coefficient regions is not fully established.
Consequently, heuristics developed for binary problems may struggle with these more complex
scenarios.

4.1 Topology optimization problems

Topology optimization is a crucial tool for designing the optimal material distribution within
a provided space based on various criteria, such as minimizing compliance under given
constraints. However, tasks arising in topology optimization are naturally poorly conditioned
due to the high contrast in material properties. For example, in the Solid Isotropic Material
with Penalization (SIMP) method [4], the material distribution is parameterized by a scalar
field of relative density ρ(x), where 0 ≤ ρ ≤ 1. This field affects the stiffness tensors as follows:

E(x) = Emin + ρp(x) (E0 −Emin) , (4.1)
where p is a penalization coefficient (typically p ≥ 3), used to disfavour intermediate values
and promote a clear "0-1" design. The constants E0 and Emin are the stiffness tensors of the
solid material and voids, respectively. Minimum stiffness is used for numerical purposes to
prevent an indefinite Hessian matrix, balancing between substituting the voids and avoiding
ill-posed problems.

The optimal design is typically sought for iteratively in a staggered approach, solving state
equations with fixed densities and updating design density variables based on the objective
sensitivities with respect to the design parameters. In this chapter, we use several snapshots
of the optimization iterations as test cases for the investigated coarse-space enrichments.
In particular, we focus on a specific modular-topology optimization (MTO) problem where
the domain is divided into a 6× 16 grid of subdomains. In addition to the aforementioned
high contrast in coefficients (1 × 106 in our cases), the modular formulation can lead to
non-perfect continuity of material distribution at interfaces due to repeated patterns. This
is very sensitive for FETI-DP methods, as seen in Figure 4.1, which displays the spectral
distribution of the preconditioned system (M−1

D F) for seven topology optimization snapshots,
six of which are shown in Fig. 4.2 (some were omitted for brevity as the visual difference were
minimal).

Looking at the spectra, one can see that initially the problem is easily solvable with
eigenvalues close to one. Toward the tenth iteration, the spectrum becomes very broad,
making the problem challenging for iterative solvers. While there are some very isolated
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Figure 4.1: Spectral distribution of the preconditioned system (M−1
D F) of seven topology opti-

mization snapshots for ρ and deluxe scaling. Only eigenvalues greater than 10 are visualized.

eigenvalues in the later iterations of topology optimization, the spectrum becomes well-
clustered, indicating that poor modes are predictable and thus easier to solve. We mention
this to counter the common conviction that binary-valued coefficient distributions are the most
challenging ones for iterative solvers. Our experience with modular topology optimization
problems is different.

a) it. 1 d) it. 10

b) it. 3 e) it. 30

c) it. 5 f) it. 100

0 0.2 0.4 0.6 0.8 1

Figure 4.2: Six snapshots of iteration in a modular-topology optimization problem, in which the
compliance of a simple supported beam loaded in the middle of the top part was minimized. The
number of iteration each snapshot belongs is given in the left column.
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scaling MTO iteration
1 3 5 10 30 50 100

no
ne

multiplicity
it. 16 24 105 1975(*) 1985(*) 1888(*) 1865(*)
κ 6.8 2.0 · 10 5.9 · 102 2.1 · 107 7.8 · 107 4.4 · 107 2.9 · 107

|Π∗| 0 0 0 0 0 0 0

rho
it. 14 15 21 439 1994(*) 1997(*) 1999(*)
κ 6.1 6.4 1.2 · 10 1.2 · 105 8.2 · 107 8.0 · 107 8.1 · 107

|Π∗| 0 0 0 0 0 0 0

deluxe
it. 16 15 19 232 2000(*) 2000(*) 1997(*)
κ 7.2 6.7 9.9 4.0 · 104 4.8 · 107 4.6 · 107 4.7 · 107

|Π∗| 0 0 0 0 0 0 0

ar
it

hm
et

ic
av

er
ag

es multiplicity
it. 6 12 68 1993(*) 1988(*) 1962(*) 1900(*)
κ 2.1 8.9 3.6 · 102 1.4 · 106 1.4 · 108 1.3 · 108 8.9 · 107

|Π∗| 510 510 510 510 510 510 510

rho
it. 4 5 10 163 85 93 104
κ 1.3 1.4 4.7 2.5 · 103 1.6 · 104 2.2 · 104 2.2 · 104

|Π∗| 510 510 510 510 510 510 510

deluxe
it. 4 5 9 62 42 45 49
κ 1.3 1.4 4.0 8.4 · 102 1.3 · 104 1.5 · 104 1.7 · 104

|Π∗| 510 510 510 510 510 510 510

w
ei

gh
te

d
av

er
ag

es multiplicity
it. 6 11 65 630 1968(*) 1994(*) 1988(*)
κ 2.1 7.2 3.7 · 102 2.0 · 105 1.4 · 108 1.5 · 108 1.3 · 108

|Π∗| 510 510 510 510 510 510 510

rho
it. 4 5 9 91 56 61 62
κ 1.3 1.5 5.4 2.1 · 102 1.7 · 102 2.1 · 102 2.1 · 102

|Π∗| 510 510 510 510 510 510 510

deluxe
it. 4 5 9 19 19 24 26
κ 1.3 1.5 4.6 1.3 · 102 1.2 · 10 2.0 · 10 1.9 · 10
|Π∗| 510 510 510 510 510 510 510

fr
ug

al

multiplicity
it. 7 13 71 571 1918(*) 1999(*) -1799
κ 2.1 6.4 3.4 · 102 1.2 · 105 9.1 · 107 1.1 · 108 9.5 · 107

|Π∗| 510 510 510 510 510 510 510

rho
it. 5 7 9 84 55 60 56
κ 1.4 1.8 3.5 1.7 · 102 2.1 · 102 2.7 · 102 2.5 · 102

|Π∗| 510 510 510 510 510 510 510

deluxe
it. 6 7 8 11 16 19 18
κ 1.4 1.7 2.2 2.5 1.2 · 10 2.0 · 10 1.9 · 10
|Π∗| 510 510 510 510 510 510 510

M
S

G
E

V
P

(t
ol

=
50

)

multiplicity
it. 16 24 55 68 59 60 70
κ 6.8 2.0 · 10 1.1 · 102 9.2 · 10 9.2 · 10 6.6 · 10 8.3 · 10
|Π∗| 0 0 72 554 203 234 238

rho
it. 14 15 21 83 51 56 66
κ 6.1 6.4 1.2 · 10 1.3 · 102 4.8 · 10 6.0 · 10 7.8 · 10
|Π∗| 0 0 0 204 44 50 55

deluxe
it. 16 15 19 21 31 27 29
κ 7.2 6.7 9.9 6.4 · 10 1.9 · 10 2.4 · 10 2.6 · 10
|Π∗| 0 0 0 69 30 38 44

Table 4.1: Comparison of iteration counts and condition cumbers across different scaling strategies
in the FETI-DP method. Results from various coarse space enhancements for seven snapshots
of MTO problems are provided. Annotation: it. - number of iterations required to meet stop
criterion ϵL2 ≤ 10−6, κ indicates the condition number, and |Π∗| denotes the number of constraints
added to augment the coarse space. Prior vertex-based coarse space contains 230 constraints. If
the solver reached the maximum number of iterations, 2000, an asterisk symbol (*) indicates the
iteration in which the smallest value of the error estimator was achieved. MS GEVP stands
for adaptive constraints obtained from the solution of localized GEVPs proposed by Mandel and
Sousedík.
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4.2 Comparison of enforcement approaches

In this subsection, we provide a brief comparison of three strategies implemented for enforcing
additional constraints. Namely, we will consider (i) projector preconditioning, (ii) the balancing
approach, and (iii) generalized transformation of basis. These strategies were discussed in
detail in Section 2.5. The comparison is not supposed to be exhaustive, we include it here
though to illustrate the difficulties we encountered with projection-based approaches. As a test
case, we select three iterations from modular topology optimization: i) iteration five, where the
problem is well-conditioned even without coarse space enhancement; ii) iteration ten, which
represents a poorly conditioned problem yet not reaching maximum contrast; and iii) iteration
thirty, which features a significantly clustered spectrum with the highest outlier eigenvalues.
Distribution of eigenvalues for all three cases is shown in Fig. 4.1. Since iteration five is well-
conditioned, there is no need to solve any GEVPs and pose adaptive constraints. For the sake
of comparison of enforcement strategies, we pose the additional constraints in iteration five in
the form of arithmetic averages. The reason for choosing the arithmetic averages is that their
enforcement can be easily verified by a visual inspection of the obtained results. For the poorly
conditioned iterations 10 and 30, we use the adaptive technique described in Subsection 3.2.1.
Specifically, we consider all constraints with eigenvalues exceeding threshold tol = 50.

For comparison, we report several quantifiers:. the standard error estimator given by the product rT
k M−1

D rk (recall that rk denotes the
k-th iteration residual vector), which is commonly used as a stopping criterion in its
relative form.. an relative L2-error norm (denoted as ϵL2) of the solution difference from the solution
obtained by the direct method, which we declare as the reference one. This indicator is
the most relevant one, as it shows how quickly we are approaching the desired solution.. Frobenius norm of the product (PTFP− I), which measures the extent to which orthogo-
nality of search directions is preserved in the conjugate gradient algorithm. Matrix P in
this context is a matrix storing individual (not explicitly) F-normalized search directions
as its columns.. the minimum and maximum estimated eigenvalue in the preconditioned system, which
we use to approximate the condition number of the system at hand. For this, we use a
cheap eigenvalue estimate based on coefficients appearing in CG method as introduced
in [46, Sec. 6.7.3].

Ideally, we are interested in the achieved solution accuracy, which, however, cannot be
measured throughout iterations in practice because of two reasons: (i) the reference solution
is not known and (ii) the current solution is not explicitly constructed in each iteration.

For calculations, we have set a fixed number of iterations to each specific task to ensure
a thorough comparison of the different enforcement approaches. This decision allows us to
compare the convergence behavior over a consistent range of iterations among different solver’s
setups. We aim to show that while the methods may initially converge well, if we do not stop
the solver appropriately, some observed indicators may be misleading. This can potentially
lead to less accurate results with a higher number of iterations, especially when working
with very ill-conditioned and/or rank-deficient systems where round-off errors significantly
influence the precision achieved in computations.

Since we often encounter a significant loss of orthogonality within search directions, we
include a variant of the CG method with explicitly reorthogonalized search directions in each
iteration. In this case, a conjugate gradient method with full reorthogonalization (CGFO)
on-the-fly employing the modified Gram-Schmidt algorithm is used, see [15] for the application
of CGFO in the context of FETI-family methods. By full reorthogonalization, we mean that

56



............................. 4.2. Comparison of enforcement approaches

the search vector in the kth iteration is orthogonalized against all the previous ones. However,
we observe that in many cases the quality of projectors is poor, i.e., these projections are not
accurate. These inaccuracies have significant detrimental effect on the achievable accuracy
of the results. While we would like to provide results with precise orthogonal projections,
to the author’s knowledge, there is a paucity of literature on robust reorthogonalization
schemes in non-standard inner products. This limits the use of advanced reorthogonalization
techniques such as Householder’s reflections, which are known for their superior robustness
in ill-conditioned systems compared to standard Gram-Schmidt algorithms. Moreover, the
literature using Householder’s algorithm often relies on availability of some accurate F-
orthonormal basis at hand [49], which we cannot provide in the reorthogonalization process.
Thus, in this thesis, we provide results only for the well-known modified Gram-Schmidt
algorithm, which is generally less suitable for parallel treatment [45].

Iteration 5. The results for the first test case of the fifth iteration from MTO are presented
in Fig. 4.3c. Here, we can confirm that the convergence behavior is fundamentally similar
among all three approaches. Each enforcement strategy provides a solution nearly identical to
the reference one; around the 20th iteration, ϵL2 decreases to approximately 10−10 and then
temporarily reaches a plateau. Slightly better results are achieved by the balancing approach
compared to projector preconditioning, which lags behind by about three iterations. However,
the differences are minimal, and all approaches successfully converge to the reference solution.
With standard conjugate gradients, a loss of orthogonality in search directions measured by
the third indicator from the list above begins to manifest after about twenty iterations, but
this only occurs when the solution has nearly converged, i.e., when the norm of the residuals
rapidly approaches zero. Such behavior is then not surprising.
A closer examination of the six plots shows that after a certain number of iterations, in the
range of 25 to 50, an eigenvalue less than one is detected in all cases apart from balancing
with standard CG. This moment causes the error estimator to start increasing in all cases,
and in the cases of gToB and CGFO, even ϵL2 begins to rise, indicating that our solution is
clearly losing accuracy. In practice, we always terminate the computations when a safeguard
eigenvalue estimate lower than one is detected in the subspace of search iterations to prevent
this behavior. We use this criterion as it is a well-known fact that the minimal eigenvalue of
the preconditioned system is bounded from below by one, see the end of Subsection 2.3.1.

Iteration 10. Next, we move to the next test case pertinent to the 10th in topology
optimization, where we enforce adaptive constraints. The convergence plots are provided
in Fig. 4.4 in the same format as in the previous test case. Here, we observe practically
identical behavior across all three approaches: they all achieve a very satisfactorily accurate
solution with ϵL2 approximately 10−7 around iteration 60. In the end, only the balancing
approach without reorthogonalization of search directions did not start diverging even after
200 iterations, although the solution reached by iteration 60 did not improve further. However,
at this level, the accuracy compared to the numerically obtained reference solution does
not play a significant role. In this setup, the solver did not detect an eigenvalue less than
one. The difference now lies mainly in the loss of orthogonality of the direction vectors: for
standard CG, this quantity remains comparable among all approaches, but with CGFO it
seems that the two projection-based strategies outperform the generalized transformation of
basis. This is not particularly relevant in this case, as the quality of the solution and the main
error estimator are similar, and the computations would have been stopped earlier. It also
seems that the loss of orthogonality (given by product ∥PTFP− I∥Fro ) in this iteration does
not negatively impact the quality of the results achieved, despite the fact that orthogonality
is evidently violated.

Iteration 30. In iteration thirty of topology optimization, the differences in numerical
performance of the three strategies become the most prominent. This time, we split the
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composed plots from previous cases into two individual figures, each for one conjugate gradient
solver. In Fig. 4.5, convergence details are provided for a standard conjugate gradient method,
and in Fig. 4.6 for CG with reorthogonalization. Generalized transformation of basis managed
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Figure 4.3: Convergence behavior of a first case of iteration 5 in MTO in terms of quantifiers
introduced in the list at the beginning of Section 4.2. Each row corresponds to one enforcement
approach: (1) generalized transformation of basis, (2) balancing, and (3) projector preconditioning.
Each column provide convergence plot for one variant of the conjugate gradient (CG) iterative solver:
(a) standard preconditioned CG algorithm and (b) CG with employed full reorthogonalization.
For all simulations, a vertex-based prior coarse space with ρ scaling augmented with arithmetic
averages is adopted.
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to achieve a very accurate solution, specifically with ϵL2 reaching approximately 10−8 around
iteration 60 with both CG and CGFO. As usual with this approach, there is a relatively
good correlation between the representative indicator, given by ϵL2 , and the error estimator.
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Figure 4.4: Convergence behavior of second case of iteration 10 in MTO in terms of quantifiers
introduced in the list at the beginning of Section 4.2. Each row corresponds to one enforcement
approach: (1) generalized transformation of basis, (2) balancing, and (3) projector preconditioning.
Each column provide convergence plot for one variant of the conjugate gradient (CG) iterative solver:
(a) standard preconditioned CG algorithm and (b) CG with employed full reorthogonalization.
For all simulations, a vertex-based prior coarse space with ρ scaling with adaptive coarse space
augmentation via GEVP (3.12) with tol = 50 is adopted.
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This holds until the solver reaches its capacity and the solution accuracy appears to stop
approaching the reference one; the error estimator does not reflect this stagnation and
continues to decrease uniformly. In both cases, eigenvalues less than one are detected in
gToB, and divergence soon occurs. We do not concern ourselves with this since this approach
manages to find a sufficiently accurate solution. We again note that in practice, calculations
are always stopped before a relative error norm drops by almost fourteen orders of magnitude.

The orthogonality of search directions is soon severely violated in finite precision compu-
tations with the standard CG method. When we use conjugate gradients with a modified
Gram-Schmidt algorithm for the full reorthogonalization of search directions, the Frobe-
nius norm of the product PTFP − I remains low throughout the initial iterations where
the solver still converges. Hence, it is apparent that CGFO maintains the orthogonal-
ity of search directions well until around iteration 90. This is visualized in Fig. 4.51b
and Fig. 4.61b, where the loss of orthogonality among the two search directions is shown by

plotting σF(ui, uj) = uT
i Fuj√

uT
i Fui ·

√
uT

j Fuj

. An asymmetry in the non-assembled left-hand side

matrix F is clearly noticeable; hence, the values below the diagonal are clearly lower in these
plots.

The same plots are given for balancing and projector preconditioning approaches in the
second and third rows in the same figures. Here, we can see that the performance of these
two approaches is again comparable, and this time very poor. Although the norm of the
preconditioned residual uniformly decreases, the solution does not improve throughout the
iterations. This is undesirable, as the iterative solver does not warn us that its capacity has
been reached. The best solution provided by these approaches is several orders of magnitude
worse compared to the one obtained by the generalized transformation of basis. Interestingly,
despite its inability to provide a more accurate solution, the projector preconditioning approach
detects a detrimental eigenvalue lower than 1 only after 90 iterations. This suggests that
the previous ninety iterations were essentially unnecessary. The balancing approach does
not detect any eigenvalue lower than one and continues to produce excessively low values of
the preconditioned residual. It is generally known that balancing is less prone to completely
diverging [28], even though, due to the loss of orthogonality of search directions and projection
matrices, it might stop providing more accurate solutions. In this case, however, the differences
with the generalized transformation of basis are extreme, and therefore we always consider
gToB to be the method of preferred choice.

To mitigate potential risks, we conducted several tests comparing our implementation with
the results provided in the literature, e.g. synthetic tasks in [43], and we obtained satisfactory
results with the same condition numbers and accurate solutions. However, for problems with
(slowly) varying coefficients together with high material contrast, such as those arising in
topology optimization, we were not able to enforce our adaptive constraints. Hence, we were
forced to implement the generalized transformation of basis approach.
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Figure 4.5: Convergence behavior of third case of iteration 30 in MTO in terms of quantifiers
introduced in the list at the beginning of Section 4.2. Each row corresponds to one enforcement
approach: (1) generalized transformation of basis, (2) balancing, and (3) projector preconditioning.
First column provides convergence plots. Second column illustrates the loss of orthogonality among
search directions: products σF(ui, uj) are plotted. Results for standard preconditioned CG
algorithm are shown. For all simulations, a vertex-based prior coarse space with ρ scaling with
adaptive coarse space augmentation via GEVP (3.12) with tol = 50 is adopted.
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Figure 4.6: Convergence behavior of third case of iteration 30 in MTO in terms of quantifiers
introduced in the list at the beginning of Section 4.2. Each row corresponds to one enforcement
approach: (1) generalized transformation of basis, (2) balancing, and (3) projector preconditioning.
First column provides convergence plots. Second column illustrates the loss of orthogonality among
search directions: products σF(ui, uj) are plotted. Results for standard preconditioned CG
algorithm are shown. For all simulations, a vertex-based prior coarse space with ρ scaling with
adaptive coarse space augmentation via GEVP (3.12) with tol = 50 is adopted.
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4.3 Comparison of coarse space enhancements

In this section, we showcase the practical usability of our adjusted adaptive and heuristic
strategies by conducting a series of numerical tests. Our goal is to demonstrate the potential
efficacy and robustness of the novel strategies in adressing highly heterogeneous problems
within modular topology optimization framework.

In this comparison, we include heuristic approaches in the form of arithmetic and weighted
averages (denoted as “avg weighted classic”) and their novel formulation (denoted as “avg
weighted min max”). We also include the two variants of Frugal approach: with and without
the selective criterion for discarding constraints. Next, we include the proposed heuristic
with extra nodal constraints, and adaptive constraints obtained by solving (1) the original
formulation of eigenproblem (3.10) (denoted as “MS GEVP full”) and (2) the reduced-basis
strategy (denoted as “MS GEVP red. basis” in the legends) as introduced in Subsection 3.4.
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MS GEVP full 200 (154)
MS GEVP red. basis 50 (179)
MS GEVP red. basis 200 (80)
heuristic tol = 10 (158)

Figure 4.7: Comparison of different coarse space enhancements in terms of ϵL2 reduction with
progressive iterations. Results are shown for the test case of 10th iteration in MTO (recall Fig. 4.2)
on a mesh with 30× 30 bilinear elements per module. Numbers in parentheses in the legend state
the number of constraints imposed for each method. In this case, ρ scaling is used and vertex-based
prior coarse space contains 230 primal DOFs.

Fig. 4.7 presents a comprehensive set of convergence plots illustrating the performance of
various coarse space enhancement strategies in tenth iteration of the topology optimization
process. We consider this run as an economic one, thus we employ a relatively cheap ρ scaling
in this example. To provide a fair comparison, ten different set-ups are compared in terms
of ϵL2 .

Starting with the simplest approach available, arithmetic averages (dashed sky blue line)
were competitive during the first approximately 60 iterations compared to our novel heuristic
strategy. However, their convergence soon slowed and they were the only approach that failed
to reach ϵL2 norm 10−5 within the first 200 iterations.

The reader may also note the poor performance of frugal a. We do not consider variant
frugal a as a separate type of coarse space enhancement, but only as an adjustment of
the frugal approach to potentially exclude some unnecessary constraints, particularly those
for which the eigenvalue estimator µ does not exceed the given tolerance; recall (3.17)
in Subsection 3.3.1. Despite the fact that we used a very low threshold tol = 5 for this
adaptive selection, frugal a discarded all of the available constraints. This is not surprising,
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4. Numerical tests.........................................
as with smoothly spatially-varying coefficients, we often prescribe very high gradients on the
high-coefficient elements, thus penalizing the low-energetical side of the eigenproblem (3.12)
in the expression for µ. Therefore, the azure blue line, representing frugal a, shows the
worst convergence rate provided in the figure, despite the fact that frugal with all constraints
considered (dashed royal blue line), provides significant improvement in convergence behavior.
The Frugal approach itself, without an adaptive selection of constraints, showed numerical
performance similar to that of the classic weighted averages (dashed turquoise line). Given
that the setup of the frugal approach is still costly compared to the weighted averages, this
does not reflect well on the Frugal approach, as both strategies use the same number of all
three constraints on each interface Γ(ij). In contrast, our enhanced strategy for constructing
weighted averages, otherwise equally computationally expensive as the original one, yielded
significantly better results (light cyan dashed line), attesting to the merits of our modification.

Unsurprisingly, the best results were achieved by the adaptive approach based on the
localized GEVPs. The run with a threshold equal to 50 outperformed all others, though at
the cost of 499 additional constraints. Very satisfactory results were also obtained with the
solution of the original GEVP with a higher threshold of 200 (yellow line), resulting in only
154 constraints. Note that the practically identical results were achieved with our reduced
basis (RB-GEVP) approach (in orange), but a lower threshold of 50 was needed. We wish
to emphasize that the maximum dimension of the GEVP was only 12 in this case. More
specifically, 143 out of 170 possible GEVPs were computed in the reduced-basis approach,
with the average dimension of the solved GEVPs only 7.85, which is almost two orders of
magnitude fewer compared to the average dimension of 437.6 in the case of the full basis in
the original setting. Even more significant savings in the dimensionality of the second coarse
space were obtained by our reduced-dimensional approach with higher tol = 200. Now, only 80
constraints were identified, yet the approach still seems to be competitive with heuristics that
have a posteriori coarse problem six times larger. Nevertheless, our heuristic nodal approach
(in purple) for enriching the set of primal constraints Π would probably be the preferred
choice. Despite leading to twice as many constraints as RB-GEVP, the constraints count (158)
is still three times lower than in standard heuristics such as (weighted) averages. In spite
of that, this heuristic demonstrates promising performance. Note that these heuristically
recognized constraints are obtained instantly and do not require any extra complexity in the
solver, such as transformation of basis or projections. Hence, it might be a better choice even
when compared to seemingly better-performing strategies such as classic weighted averages.

Generally speaking, the differences in the number of iterations between the various ap-
proaches using ρ scaling are quite significant. The situation changes with deluxe scaling;
see Fig. 4.8. Now, the only two approaches that converge noticeably worse are the arithmetic
averages and the frugal approach with the selection criterion turned on, which again discarded
all the otherwise beneficial constraints. Comparing the remaining methods is difficult because
of their similar performance. However, there are two observations to be made: First, our
heuristic approach with addition of nodes was the third-best among all the methods in this
comparison, although it added only 158 constraints (that means, 79 nodes) compared to 510
for the other heuristic approaches. Second, we can clearly see that the standard heuristic
approaches lead to unnecessary large coarse space augmentation with deluxe scaling. It is
evident that the deluxe scaling alone can eliminate a significant part of the ill-conditioned
modes present in other scalings, and it is therefore sufficient to add only a smaller number of
additional constraints, which do not need to be obtained adaptively. However, the deluxe
scaling itself does not guarantee convergence of the solver within a reasonably low number of
iterations, and some coarse space enhancement have to be incorporated.
To show that the previous results are not tied to a specific test problem, we provide another
set of results, this time for the 30th iteration of the modular topology optimization scheme.
In this case, we report results for a modular problem with a finer mesh with 50× 50 elements
per module. Hence, the a priori coarse problem is still assembled in 230 DOFs, but now we
iterate on 16,478 lambdas. Despite the used ρ scaling, convergence rates are comparable
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Figure 4.8: Comparison of different coarse space enhancements in terms of ϵL2 reduction with
progressive iterations. Results are shown for the test case of 10th iteration in MTO (recall Fig. 4.2)
on a mesh with 30 × 30 bilinear elements per module. Numbers in parentheses in the legend
state the number of constraints imposed for each method. In this case, deluxe scaling is used and
vertex-based prior coarse space contains 230 primal DOFs.
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Figure 4.9: Comparison of different coarse space enhancements in terms of ϵL2 reduction with
progressive iterations. Results are shown for the test case of 30th iteration in MTO (recall Fig. 4.2)
on a mesh with 50 × 50 bilinear elements per module. Numbers in parentheses in the legend
state the number of constraints imposed for each method. In this case, deluxe scaling is used and
vertex-based prior coarse space contains 230 primal DOFs.

among several heuristic approaches; similarly to the previous test problem in which, however,
deluxe scaling was used. Interestingly, the proposed modification to the weighted averages
outperformed other heuristics. Classic weighted averages and the Frugal approach, both with
510 constraints, exhibited similar performance to our cheap heuristic with only 220 constraints
and to RB-GEVP with only 69 constraints. This represents a reduction in the dimensionality
of the second coarse space by more than a factor of seven. The original GEVP with 205
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constraints for tol of 50 and with 93 constraints for tol of 200 can be used as a baseline for
comparison. RB-GEVP with 111 constraints shows similar performance to GEVP with 93
constraints, although the threshold needs to be lowered to 50.

Basis Solved GEVPs Dimensions of GEVP
Computed Correct Unnecessary Neglected min max avg

Reduced 85 66 19 0 6 18 9,07
Full 170 66 104 - 504 800 728,4

Table 4.2: The table describes the number of solved GEVPs for two variants (with reduced
or full basis) and their dimensions. The terms mean: Correct: GEVPs were correctly solved,
where the original formulation found at least one eigenvalue exceeding tol = 50. Unnecessary:
This GEVP was unnecessarily solved, as the original formulation did not find any eigenvalue.
Neglected: Interfaces where the original formulation found an eigenvalue, but the reduced-
dimensional formulation neglected this interface.

Moreover, in this case, the savings in the reduction of GEVP dimensionality are maximized,
as seen in the Tab. 4.2. This table provides a comparison of the two approaches for setting
adaptive constraints: the original formulation of GEVP and RB-GEVP.
The table shows that the RB-GEVP approach successfully eliminated 85 GEVPs that were
computed in the original formulation but were unnecessary. Specifically, the RB-GEVP
strategy computed a total of 85 GEVPs. Out of these, 66 contained eigenvalues that exceeded
the given tolerance tol, while 19 were identified as unnecessary because they did not contain
any eigenvalue exceeding tol. Importantly, no pair of subdomains containing ill-posed modes
was neglected from the computation. In contrast, the original formulation resulted in the
computation of 170 GEVPs, of which 104 did not contain any eigenvalues higher than tol.
The dimensions of the GEVPs also highlight the efficacy of the reduced basis approach.
For the RB-GEVP strategy, the GEVP dimensions ranged from 6 to 18 with an average
of 9, whereas for the full basis, the dimensions ranged from 50 to 800 with an average of
approximately 730, dimension almost two orders of magnitude higher.

These results demonstrate a promising potential of the adaptive constraints obtained by
the RB-GEVP approach, which effectively reduces the dimensionality of localized GEVPs
while still managing to accurately approximate the most detrimental modes. However, the
novel heuristic also proves to be an effective engineering tool for efficiently solving highly
heterogeneous problems. Furthermore, the novel formulation of weighted averages has shown
to be highly beneficial, as it in certain cases significantly accelerates convergence.
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Chapter 5
Conclusions

Motivated by linear systems arising in modular-topology optimization, this thesis focused on
enhancing robustness and convergence of the Finite Element Tearing and Interconnecting Dual
Primal (FETI-DP) method when applied to problems exhibiting a heterogeneous distribution
of high-contrast coefficients. In particular, we implemented and tested commonly-used coarse-
space enrichment strategies, ranging from the weighted averages to adaptive approaches based
on generalized eigenvalue problems.

One observation we made while testing different scaling options is that the most complex
deluxe scaling is particularly powerful when the severely varying coefficients appear inside
individual subdomains. However, it represents a valid choice for all kinds of tasks with high
coefficients, yet the related gains compared to, e.g., stiffness scaling are less pronounced than
one might expect.

While not initially anticipated, we dedicated significant effort to the methods of enforcing
the identified enrichments with the iterative procedure pertinent to FETI-DP, because the
classical projection-based method did not perform well in the complex problems arising in
modular-topology optimization. In particular, the projection-based method’s performance
was treacherous: it is highly sensitive to inaccuracies in calculations, possibly leading to a loss
of orthogonality among search directions. This becomes particularly problematic when the
iterative solver encounters small eigenvalues close to zero. In such cases, the solver might fail
to converge to the accurate solution without any warning, as the monitored error norm may
continue decreasing. Therefore, it was essential to adopt the generalized transformation of basis,
which provided superior accuracy and stability compared to projection-based enforcement
approaches, in order to compare individual enrichment strategies.

The study, implementation, and testing of existing enrichment approaches were crucial in
understanding what the critical modes are, for which the coarse-space must be enhanced.
Although not fully applicable out-of-the-box, we showed that the widely used heuristic
approaches can be further improved with minor modifications. Specifically, we proposed a
slight adjustment of the classic weighted averages approach that improves performance of
the solver in additional problems, see the numerical comparison in Section 4.3. Surprisingly,
the frugal approach overall did not generally provide better performance than the weighted
averages, particularly the modified weighted averages. Consequently, we proposed another
minor modification inspired by ρ scaling, which is capable of identifying most of the edges
which should be enriched with an adaptive approach.

Motivated by these observations, we proposed a novel reduced-dimensional strategy for
computing adaptive constraints. The low-dimensional basis can be constructed with infor-
mation on coefficient distribution limited to the interfaces, which is the same amount of
data that is needed for the widely-used ρ scaling. We demonstrated that the performance of
this strategy is almost comparable to the adaptive constraints generated by the unreduced
generalized eigenvalue problem, while reducing the size of the system by more than one order
of magnitude.

Finally, we returned to the simple heuristic proposed in author’s bachelor thesis and
improved it to reflect the observed behavior of adaptive strategies. Analyzing the coefficient
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5. Conclusions ..........................................
profile along an interface, similarly to the reduced-dimensional strategy, we identify high-
coefficient clusters and choose a characteristic degree of freedom in those clusters that are
then incorporated into the primal coarse space of FETI-DP.

Admittedly, some heuristic strategies may lead to an unnecessarily large number of con-
straints, but, importantly, they still ensure (albeit possibly slow) relatively reliable convergence
to an accurate solution. We emphasize here that without coarse space enhancements, the
solver might not be able to reach a satisfactorily accurate solution at all. Even adaptive
techniques, due to their locality, in some cases tend to produce an excessive number of
constraints, among which some provide only redundant information. This leaves an open
door for further research.
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