
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

A trip planning application for Android

Martin Hudymáč

Ing. Tadeáš Sosín

Informatics

Software Engineering 2021

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

Planning trips can be a tedious and time-consuming process, requiring users to

meticulously research destinations, organize transportation, and coordinate schedules.

This thesis aims to design and prototype an application that will simplify and automate

this process.

Do the following steps:

1) Analyse the market competition and user needs.

2) Based on the results, analyze and define the application requirements.

3) Design and implement the application prototype for Android.

4) Test the app and implement analytics.

5) Propose possible future improvements.

Electronically approved by Ing. Michal Valenta, Ph.D. on 21 December 2023 in Prague.

Bachelor’s thesis

TRIP PLANNING
APPLICATION FOR
ANDROID

Martin Hudymáč

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Tadeáš Sosín
May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Martin Hudymáč. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Hudymáč Martin. Trip planning application for Android. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of Abbreviations x

Introduction 1

1 Analysis 3
1.1 Potential User . 3
1.2 Existing Solutions . 4

1.2.1 Wanderlog . 5
1.2.2 TripIt . 6
1.2.3 Tripadvisor . 7
1.2.4 iplan.ai . 8
1.2.5 Polarsteps . 9
1.2.6 Summary . 10

1.3 Application Requirements Analysis . 10
1.3.1 Functional Requirements . 10
1.3.2 Non-functional Requirements . 12

1.4 Use Cases . 13

2 Design 16
2.1 Application Platform . 16

2.1.1 Native . 16
2.1.2 Cross-platform . 17

2.1.2.1 Full Cross-platform . 17
2.1.2.2 Semi Cross-platform . 17

2.1.3 Conclusion . 18
2.2 Application Architecture . 18

2.2.1 Model-View-Controller (MVC) . 18
2.2.2 Model-View-Presenter (MVP) . 19
2.2.3 Model-View-ViewModel (MVVM) . 19
2.2.4 Clean Architecture . 20
2.2.5 Model-View-Intent (MVI) . 21
2.2.6 Conclusion . 21

2.3 Chosen Technologies . 22
2.3.1 Jetpack Compose . 22
2.3.2 Ktor . 22
2.3.3 SQLDelight . 23
2.3.4 Koin . 23

ii

Contents iii

2.3.5 Fused Location Provider API . 23
2.3.6 Coil . 24
2.3.7 Maps . 24

2.4 Domain Diagram . 25
2.5 Activity Diagram . 25
2.6 State Diagram . 26
2.7 User interface . 28

2.7.1 Application’s Design . 29
2.7.2 Design Testing . 31
2.7.3 Results of Testing . 31

3 Implementation 33
3.1 Kotlin . 33
3.2 Development Tools . 34

3.2.1 Android Studio . 34
3.2.2 Git . 34

3.3 Kotlin Multiplatform Mobile Structure . 34
3.3.1 Shared module . 34
3.3.2 Android Module . 35

3.4 Domain layer . 35
3.4.1 Model . 35
3.4.2 Repositories . 36
3.4.3 Use cases . 37
3.4.4 Location Controller . 39

3.5 Data Layer . 40
3.5.1 Coroutines . 40
3.5.2 Database . 40
3.5.3 Networking . 42
3.5.4 Repositories . 44

3.6 Presentation Layer . 44
3.6.1 Navigation . 44
3.6.2 Camera Manager . 46
3.6.3 Gallery Manager . 46
3.6.4 Permissions . 47
3.6.5 Composable Functions . 48
3.6.6 ViewModel . 49
3.6.7 Final Design . 50

3.7 Dependency Injection . 50

4 Testing 53
4.1 Testing Methods . 53
4.2 Unit Tests . 54

4.2.1 Android Unit Tests . 54
4.2.2 Common Code Unit Tests . 56

4.3 User Tests . 56
4.3.1 Results . 57

4.4 Google Firebase . 58
4.4.1 App Distribution . 59
4.4.2 Crashlytics . 59
4.4.3 Analytics . 60

5 Discussion 63
5.1 Future of the application . 64

Contents iv

Conclusion 65

A Appendix A 66

B Appendix B 69

Attachments 76

List of Figures

1.1 Wanderlog screenshots. 5
1.2 TripIt screenshots. 6
1.3 Tripadvisor screenshots. 7
1.4 Iplan.ai screenshots. 8
1.5 Polarsteps screenshots. 9

2.1 Kotlin Multiplatform Mobile [13]. 17
2.2 Model-View-Controller architecture. 18
2.3 Model-View-Presenter architecture. 19
2.4 Model-View-ViewModel architecture. 20
2.5 Clean architecture. 20
2.6 Model-View-Intent architecture. 21
2.7 UML Domain diagram. 26
2.8 UML activity diagram of trip creation. 27
2.9 UML state diagram of a trip entity. 28
2.10 Wireframes created in Figma. 30

3.1 Screens implemented in Jetpack Compose.. 52

4.1 Screenshot showing one of the reports from Crashlytics. 60
4.2 Number of times the app was opened by day. 61
4.3 Number of times trip was created by day. 62
4.4 Number of times trip was created by country. 62

A.1 Wireframes designed in Figma. 67
A.2 Wireframes designed in Figma. 68

B.1 Screens implemented in Jetpack Compose. 70
B.2 Screens implemented in Jetpack Compose. 71

List of Tables

1.1 Use case requirements coverage table. 15

2.1 Comparison of the three maps services [28, 29, 30]. 25

v

List of Code Listings vi

List of Code Listings

3.1 Trip entity. 35
3.2 Place entity. 36
3.3 Location entity. 36
3.4 Distance entity. 36
3.5 Photo entity. 36
3.6 Trip repository in the domain layer implementation. 37
3.7 Use case interfaces implementation. 37
3.8 Use case for getting Completed trips without the optional arguments implemen-

tation. 37
3.9 Use case for removing a trip by its id implementation. 37
3.10 Result class implementation. 38
3.11 Use case for optimizing trips implementation. 38
3.12 Expected LocationController implementation. 39
3.13 Actual Android LocationController implementation. 39
3.14 Multiplatform database creation. 40
3.15 Trip SQLDelight file. 41
3.16 Trip local data source implementation. 41
3.17 Ktor client configuration for Places API. 42
3.18 Places API service. 43
3.19 Place remote data source implementation. 43
3.20 Implemented trip repository. 44
3.21 Navigation root implementation. 45
3.22 Trip graph implementation. 45
3.23 Camera manager implementation. 46
3.24 Gallery manager implementation. 47
3.25 Permission request implementation. 47
3.26 Permission request implementation. 48
3.27 Empty card implementation. 48
3.28 Detail screen ViewModel implementation. 49
3.29 Shared part of the application dependency injection implementation. 50
3.30 Android-specific dependency injection implementation. 51
3.31 Android presentation layer dependency injection implementation. 51

4.1 Gallery ViewModel implementation. 55
4.2 Distance saving use case test implementation. 58
4.3 Logging a custom event to analytics. 61

I would like to express my sincere gratitude to my supervisor, Ing.
Tadeáš Sosín, for his professional guidance, friendly and patient
approach, and valuable advice while introducing me to multiplatform
development. I am also grateful to my family for their constant
support, not only in my studies. Last but not least, I want to thank
my girlfriend for always keeping me motivated and focused on my
goals.

vii

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact
that the Czech Technical University in Prague has the right to conclude a licence agreement on
the utilization of this thesis as a school work pursuant of Section 60 (1) of the Act.

In Prague on May 16, 2024

viii

Abstract

With the increasing popularity of travel due to more affordable transportation options, efficiency
has become a priority. This bachelor’s thesis, therefore, focuses on analyzing, designing, imple-
menting, and testing a mobile application for trip planning with automatic itinerary optimization.
Existing solutions and potential users were analyzed to create a set of requirements. These were
then translated into a design the application could be built on. This thesis output is an Android
application that simplifies the process of creating, managing, optimizing, and keeping a record of
trips. It is designed using Kotlin Multiplatform Mobile based on Clean Architecture for future
scalability and expandability to more platforms. Google Maps Platform APIs are used to get
accurate and up-to-date data. This application contributes to society by empowering people to
travel more and worry less.

Keywords trip, itinerary, optimization, mobile, Android, KMM, Clean Architecture, Jetpack
Compose

Abstrakt

S narůstající popularitou cestování se díky dostupnějším možnostem dopravy dostává do popředí
především efektivita. Tato bakalářská práce se proto zaměřuje na analýzu, návrh, implementaci
a testování mobilní aplikace pro plánování cest s automatickou optimalizací itineráře. Za účelem
vytvoření souboru požadavků se provedla analýza již existujících řešení a potenciálních uživatelů.
Ty pak byly převedeny do návrhu, dle kterého by bylo možné aplikaci vytvořit. Výsledkem
této bakalářské práce je aplikace pro systém Android, která slouží ke zjednodušení procesu
vytváření, spravování, optimalizace a evidence výletů. Aplikace je navržena s využitím jazyka
Kotlin Multiplatform Mobile založeného na Clean Architecture pro možnost budoucího škálování
a rozšíření na více platforem. Pro získávání přesných a aktuálních údajů jsou využívány API
platformy Google Maps. Aplikace představuje významný přínos pro společnost neboť umožňuje
lidem více cestovat a méně se o vše starat.

Klíčová slova výlet, itinerář, optimalizace, mobil, Android, KMM, Clean Architecture, Jet-
pack Compose

ix

List of Abbreviations

API Application Programming Interface
F Functional Requirement

IDE Integrated Development Environment
JVM Java Virtual Machine

KMM Kotlin Multiplatform Mobile
N Non-functional Requirement

SDK Software Development Kit
SQL Structured Query Language
UC Use Case
UI User Interface

UML Unified Modeling Language
UX User Experience

x

Introduction

The world has shrunk dramatically in recent times. With rapid technological development and
affordable transportation options, we are connected even more than was imaginable only a few
decades ago. Information about distant destinations is readily available from any of our smart
devices. Airlines, budget carriers, and ride-sharing services have made travel more accessible.
Posts with picturesque views and different cultures from social media motivate us to experience
the world ourselves.

However, despite this ease of access, planning such a trip can still be a big undertaking. Peo-
ple must go through many suggested itineraries, starting in different parts of the city. These
itineraries usually include places the general public likes, which may only suit some. Hence,
people search for places they want to see and somehow navigate themselves. This whole process
can be meticulous and challenging.

My mother visited Prague not long ago, and since I have been studying here for a while now, I
am familiar with this city. Therefore, I wanted to make an itinerary that would be easy to follow
and lead her to all the places I think are must-see. I tried to make a long route on Google Maps
but was unsuccessful because Google allows only a few locations in one route. I tried searching
for an alternative but could not find one. In the end, I wrote down all the places with their
corresponding map links next to them in an order I thought was efficient. This experience made
me question how to handle this process better. Thus, I decided to make this my bachelor’s thesis
objective.

The main goal is to create a mobile application that makes this process less overwhelming so
people can look forward to the trip instead of stressing out. The app will allow simple trip
creation by adding places to a list. The locations can then be ordered automatically or at the
user’s will. After creation, the trips are saved and wait for their date. Users will see the itinerary
on the home screen on the day of the journey, and the app will track them as they go according
to the itinerary. Upon arrival at a place from the itinerary, the app will prompt users to take
photos. These pictures will be saved so the user can remember the trip later by looking in the
app’s gallery.

1

Introduction 2

Goals

This thesis aims to design and prototype an Android application for easy trip planning and
management with intelligent itinerary creation.

The first goal is to define a potential user and analyze other solutions already on the market.
Identify the competition’s strengths and weaknesses, and, from potential users, find what the
app’s main functionalities should be.

Based on this analysis, the second goal is to determine the specific functional and non-functional
requirements.

Once the requirements are established, the next step is to design a low-fidelity prototype, which
multiple people with different backgrounds will test. Based on their insights, the design should
be iterated upon. Next, suitable third-party tools will be chosen to execute the solution and its
internal architecture. With the right tools, the Android prototype is to be implemented.

The final goals are implementing Google Analytics to test the app’s UX and UI and, based on
the tests, proposing future improvements.

Chapter 1

Analysis

This chapter creates the base for the entire project. It is a necessary step toward understanding
the intended purpose of this application. This phase focuses on discovering the potential user
base, analyzing existing solutions, and defining the functional and non-functional requirements
based on their strengths and weaknesses.

1.1 Potential User

The analysis begins by identifying the potential users for the future application. Analyzing
relevant statistics can provide insights into the size and demographics of the target audience.
This helps to realize the application’s perspective early on, justifying its existence.

According to statistics from Our World in Data, international travel is rising thanks to affordable
aviation [1]. Before the COVID-19 pandemic, the number of international visits had more than
doubled since the year 2000, with Europe experiencing the highest increase of all. Moreover,
domestic travel was also on the rise, with the average European taking around two trips per year
[1].

Navigating unfamiliar cities on foot can be daunting for many travelers, especially first-time
visitors or those with limited time for planning. Without proper assistance, these individuals
may struggle to create efficient itineraries, potentially leading to missed opportunities, wasted
time due to inefficient route planning, or overlooked hidden gems that could enhance their travel
experience.

The above statistics underscore the vast and diverse potential user base for a solution that
addresses these challenges. A common thread among this diverse group is smartphone ownership.
Data reveals that over 4.8 billion individuals worldwide possess a smartphone, with this number
continuing to rise [2]. These statistics position the smartphone platform as an ideal candidate
to aid people with their travels.

3

Existing Solutions 4

1.2 Existing Solutions

Since this problem concerns a significant part of society, people have come up with many solu-
tions. In particular, solutions for Android will be taken into consideration. After searching the
prompt ’Trip planner’ in Google Play, a long list of possible applications was displayed, ordered
by relevancy. A few of the first ones will be analyzed based on my preferences and published
information. All the apps chosen must be actively worked on with an update in the last half a
year as of 1/4/2024.

Each analysis consists of the following five parts: general information, first power on and design,
itinerary creation, itinerary progression, and viewing past trips.

Existing Solutions 5

1.2.1 Wanderlog

Wanderlog is the first recommendation that Google Play offers. It is an app from an American
company based in California, United States, intending to be the only platform needed to manage
everything related to travel. The app has over a million downloads and an average rating of 4.7
stars out of 5. It offers a free limited and paid premium version, which costs around 90 euros
annually.[3]

Upon opening the app, the user is prompted to create an account or log in. Without an account,
the app cannot be accessed. After creating an account, a user-friendly interface is shown 1.1. It
consists mainly of orange, red, and yellow colors, and dark mode is not implemented. The app is
straightforward to navigate thanks to an easy-to-use bottom bar and clearly labeled tabs. The
only problem with the design is the overwhelming amount of ads for their pro version, which
makes the UI1 chaotic.

Creating an itinerary is quite simple. Search works reliably, and the places can be deleted or
moved quickly. There are three buttons on the right. The first represents an AI2 assistant,
accessible after paying for the pro version. The second shows a map of all the locations in the
itinerary and the user’s location. The last one offers additional features, including sharing the
trip with a different person, adding plane or train tickets, hotels, notes, and more.

When the trip is active, nothing in the UI changes. However, it is helpful that upon clicking the
place, it opens in Google Maps or Waze to find directions.

After finishing the itinerary, nothing changes yet again. The trip looks as if nothing ever hap-
pened.

(a) Home screen. (b) Itinerary screen.

Figure 1.1 Wanderlog screenshots.

1User Interface
2Artificial Intelligence

Existing Solutions 6

1.2.2 TripIt

TripIt is another example of an app from the hands of American developers. Their slogan is
that they organize all your travel plans in one place. On Google Play, it has a rating of 4.6
stars and over 5 million downloads. It provides a free limited and a paid version, which costs
approximately 50 euros a year.[4]

When opening TripIt, the user has to create an account. Otherwise, the app cannot be accessed.
The primary brand color is blue, which is prominent throughout the application and implements
both light and dark mode 1.2. It is easy to navigate thanks to a bottom bar with five buttons
and a floating button to create a new trip.

This app specializes more in the formal side of traveling, offering features like accessing risks,
getting help abroad, having travel documents, or insurance. Therefore, the process of creating an
itinerary is quite tricky. When adding a new place to the itinerary, the user must always choose
from one of the categories. This process is made even more difficult with a cluttered adding
screen. The places cannot be easily moved or removed after being added, and the application
offers no assistance with ordering.

On the day of the travel, users can get directions to the place via Google Maps, but the link is
difficult to find. Moreover, documents can be added to each place, and a safety score is shown.
There is no indication of where the user is currently on the itinerary.

After completing the trip, it is saved to the past trip category. From there, it can be edited,
shared, or deleted. Nevertheless, there is no way of using this information as a memory of this
travel.

(a) Home screen. (b) Itinerary screen. (c) Add activity screen.

Figure 1.2 TripIt screenshots.

Existing Solutions 7

1.2.3 Tripadvisor

The next application from the list is Tripadvisor, an American company. They aim to empower
users to plan their next trip, read reviews, get travel advice, and all of this is free. Released in
2010, it is by far the most popular app in this category, with over a hundred million downloads
and a rating of 4.4 out of 5 stars. However, their services mainly concentrate on reviewing
popular travel destinations and connecting a community of travelers rather than creating an
itinerary. [5]

After opening the application, users are welcomed with a login screen. However, in this case, it
is skippable. Behind the login screen was a well-made UI 1.3 with green as the primary color.
Offering both light and dark modes, the app is pleasant to look at during the day and at night.
From first sight, users can get much inspiration with a minimum of ads that fit well with the
context. Navigation is easy to use, with a bottom bar comprising five destinations and clearly
labeled buttons and tabs.

To create an itinerary, users are required to create a free account. On the store pages, an AI-
powered itinerary creation is promoted. However, this feature was still in closed beta at the
time of testing. Hence, it could not be tested. When adding a location, users can only choose
from tourist attractions or restaurants, which excludes places like universities or libraries. After
a location is added, it is relatively easy to change the order or remove a location, but adding a
new one requires multiple steps and could have been made more accessible. There is no option
to optimize the itinerary order. Nevertheless, a welcomed feature is the ability to invite other
people to the trip.

This application does not offer any itinerary tracking or navigation on the day of the travel.

No distinction is made between upcoming, current, or past trips.

(a) Home screen. (b) Itinerary screen.

Figure 1.3 Tripadvisor screenshots.

Existing Solutions 8

1.2.4 iplan.ai

Continuing with iplan.ai, this Canadian application focuses primarily on AI-powered itinerary
creation. On Google Play, it has 4 out of 5 stars with more than a hundred thousand downloads.
Most of the app is free, with a few features hidden at an 11 euros a year price. These features
include offline mode, dark mode, and trip sharing. [6]

When opened for the first time, the app requires users to create a free account. Otherwise, its
content is inaccessible. The app has a simple but good-looking UI 1.4. The primary color is blue
and is found everywhere. However, it is a shame that dark mode is behind a paywall. Navigation
is straightforward, with the bottom bar having three icons and all the buttons adequately labeled.

Itineraries can be made in two ways: by the AI or manually by the user. When the trip is made
using AI, it is still editable later. Adding activities is simple, but there is no way of adding a
place that is not a tourist attraction or a restaurant. Existing places in the itinerary can be
easily removed, but changing the order is problematic. Moreover, no optimization is available.
The only automatized part is the initial creation, after which everything is up to the user.

When following the itinerary, the app offers a map visualization for an effortless overview. Getting
directions is also easy thanks to direction buttons between all the places, except for the first one.
However, there is no indication of where the user is currently on the itinerary.

After completing an itinerary, it stays unchanged in the trips section of the application. No
further actions are available.

(a) Home screen. (b) Itinerary screen.

Figure 1.4 Iplan.ai screenshots.

Existing Solutions 9

1.2.5 Polarsteps

The last application in this analysis is Polarsteps. It is a Netherlands-based company with the
aim of being a platform for trip planning, tracking, and later viewing. Since its release in 2016,
it has gained over a million downloads with an average rating of 4.8 stars out of 5. The entire
application is available for free with no paid tiers. [7]

When launched, the app requires users to create an account. The design of this app is styled
in red colors but is made interesting by having a globe always present at the top of the screen.
The globe mainly serves to visualize trips and show interesting locations to visit. The bottom
bar is simple, offering five different destinations. However, the rest of the application is difficult
to read or make sense of. Information is ordered so that it is challenging to understand, and
context menus come unpredictably from the right, bottom, or as a dialog.

While creating a trip, users have three options: past, present, or future. However, it is hard to
understand where and how to add the desired location when creating a trip. The search does
not work reliably or show results for popular destinations. Moving and removing locations is
also not straightforward. There is no AI-powered helper or way to optimize the route. The
only simple way of creating an itinerary is to record a trip, and the app gives a relatively good
approximation.

Trying to follow an itinerary also requires some effort. There is no way of getting directions
straight from the app. The only found way was to copy the address from the location details.
However, the tracking works well, and users can easily see their progress within an itinerary.

Although the negative description so far, the app shines when viewing past trips as a memory.
Users can view their journeys on a three-dimensional map and, what is more, can add photos
to the individual locations of the trip. This makes reliving past trips engaging and much more
enjoyable.

(a) Guides screen. (b) Itinerary screen.

Figure 1.5 Polarsteps screenshots.

Application Requirements Analysis 10

1.2.6 Summary

Five of the most popular applications available on the Android platform were analyzed. Features
and design varied vastly between the apps. However, none of them provides a perfect solution
for all itinerary-related needs. These are the key findings for each application:

Wanderlog: A clean UI, but the free version suffers from many ads. Itinerary creation is
simple and user-friendly. Users do not get any indication during active tracking, although
getting directions is simple. Lastly, there is no option to keep trips as a memory.

TripIt: Difficult to navigate. Creation and modification of itineraries are challenging. While
traveling, there is no progress tracking, and directions are hidden in the menus. Past trips
are saved and can be viewed, but do not offer anything additional.

Tripadvisor: The most significant advantage is free, complete access. UI is simple yet
practical. On the other hand, itinerary creation is complicated and limited. User tracking or
past trip viewing is missing entirely.

iplan.ai: This application highly leverages AI-powered3 itinerary creation. The UI is user-
friendly and easy to navigate. Trip modification is also low-effort. On the day of the trip,
directions are accessible, although there is no user tracking. After completing trips, they stay
in the application but are treated as never completed.

Polarstep: This app has exciting visuals but lacks ease of use. Everything is difficult to
do. One saving feature is past trip viewing. Users can view their progress with the option of
adding pictures, which serves as a way to keep the trip in memory.

1.3 Application Requirements Analysis

In the following section, concrete requirements will be defined. These requirements will be created
based on the strengths and weaknesses of the previously tested applications; what is more, the
user reviews from these applications will also be considered as they mirror what the general
public demands. These will aid in realizing the objective of this thesis.

1.3.1 Functional Requirements

Functional requirements are product features or functions that developers must implement to
enable users to accomplish their tasks.

F1: Create a trip

Users can create new trips by specifying their name, date, and itinerary.

F2: Search for places

Users can search online for places of interest relevant to their trip. Any type of location is
available to add to the itinerary.

3AI is not the focus of this thesis; hence, it will not be implemented.

Application Requirements Analysis 11

F3: Change a trip

Users can edit existing trips by modifying the itinerary and changing the date or the name. This
includes changing the itinerary order, adding new locations, or removing the existing ones.

F4: View itinerary

Users can view an itinerary sorted in their desired order with the names and addresses clearly
visible.

F5: View distances between places

The itinerary shows an estimated distance in minutes between all the locations.

F6: Trip order optimization

Users can optimize their itinerary based on the total distance walked.

F7: Plan a trip for a specific day

Users can schedule a trip for a future date. The itinerary will be displayed on the home screen
on that particular day.

F8: Multiple trips

The application allows users to create and store multiple trips.

F9: View upcoming and completed trips

Users can view a list of all future and past trips.

F10: Complete a trip

Users can mark a trip as completed after finishing it. This will move the trip to the completed
section.

F11: Duplicate a trip

Users can create a copy of an existing trip for a new trip creation.

F12: Get navigation to a place in the itinerary

Users can initiate navigation to any place in their trip by clicking it. They are redirected to the
application of their choosing.

Application Requirements Analysis 12

F13: Get details for places

Users can get a detailed view of a place in a separate map application.

F14: Use the camera to photograph a place

Users can capture photos of the place they are currently in, and the photo will be saved with
the trip.

F15: Add or remove an image from the gallery

Users can add existing photos from their device’s gallery to a specific location within a completed
trip or remove them.

F16: Start from current location

Users can add their location as the first place in the itinerary.

1.3.2 Non-functional Requirements

These are the quality constraints that the system must satisfy according to the project specifi-
cation.

N1: Usability

The application should be easy to learn, navigate, and use with an intuitive user interface.

N2: Reliability

The application should display accurate information and be stable without crashes.

N3: Maintainability

The code should be documented and modular for easy maintenance and future updates.

N4: Localization

The application should be adaptable for international use, supporting multiple languages and
regional formats.

N5: Offline functionality

The application allows users to view trips, itineraries, and user-saved photos, change the order,
or remove places from the itinerary while not connected to the internet.

Use Cases 13

1.4 Use Cases

In the following part, use cases will be defined. These outline the interactions between actors
and the system to achieve a specific outcome. In this case, every use case has a single actor,
the application user, so only flow will be described for each. All the functional requirements are
mapped to use cases in the table 1.1.

UC1: Viewing upcoming trips

The user can access upcoming trips on the list screen by selecting the upcoming trips tab.

UC2: Viewing completed trips

The user can access completed trips on the list screen by selecting the completed trips tab.

UC3: Creating a trip

The user will be transferred to the create screen by clicking the create button on the home or
upcoming trip screens. He will select the trip’s name, date, and itinerary there. Then, the user
will save the trip by clicking the tick icon at the top of the screen.

UC4: Searching a place

On the create or edit screen (UC3, UC11), the search screen will be shown after clicking the
search button. By pressing the search bar, the user can write the location under which the
results will be displayed.

UC5: Using current location

When adding a first place to a trip on the create or edit screen (UC5, UC11), the user has the
option to add the current location as the first place by clicking the use current location button.

UC6: Adding a place

After clicking a location on the search screen (UC4) or the current location (U5), the location
will be added to the itinerary.

UC7: Removing a place

If the x icon next to a place is clicked on the create or edit screen (UC3, UC11), it will be
removed from the trip.

Use Cases 14

UC8: Changing the place order

On the create or edit screen (UC3, UC11), when the switch at the top of the screen is toggled,
the user can change the order of location by dragging and dropping each item.

UC9: Getting trip details

The user can access trip details on the upcoming trips screen (UC1) by clicking the trip.

UC10: Optimizing a trip

The user can optimize the order on the details screen (UC9) by clicking the optimize button.

UC11: Editing a trip

The edit screen will be shown after clicking the edit button on the detail screen (UC9).

UC12: Viewing place details

The user can get place details on the edit screen by clicking the place (UC9).

UC13: Starting a trip

The user can start a trip on the upcoming trips screen or home screen (UC1) by tapping the
start trip button.

UC14: Getting directions

When viewing a trip on the home screen, the user gets directions by clicking the place.

UC15: Taking a picture

When a location is highlighted, when the user’s location matches the place location, the user can
take a picture by clicking the camera button on the highlighted place.

UC16: Finishing a trip

On the home screen, when a trip is started (UC14), the user can finish the journey by clicking
the finish button and selecting yes in the dialog.

UC17: Repeating a trip

On the completed trips screen (UC2), the user can repeat a trip by clicking the repeat trip
button, after which he will be taken to the create screen (UC3).

Use Cases 15

Table 1.1 Use case requirements coverage table.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16
UC1 X
UC2 X
UC3 X X X X
UC4 X
UC5 X
UC6 X X X
UC7 X X
UC8 X X
UC9 X X X
UC10 X
UC11 X X X
UC12 X
UC13 X
UC14 X
UC15 X
UC16 X
UC17 X X X X X X
UC18 X X
UC19 X X
UC20 X X
UC21 X X
UC22 X X

UC18: Viewing completed trip gallery

The user can view the trip’s gallery on the completed trips screen (UC2) by pressing the trip.

UC19: Editing trip gallery

On the gallery screen (UC19), users can toggle editing mode by clicking the edit button at the
top of the screen.

UC20: Adding a picture

The user can add a picture by clicking the add button under a place on the edit gallery screen
(UC20).

UC21: Removing a picture

The user can remove a picture by clicking the x button on a photo on the edit gallery screen
(UC20).

UC22: Removing a trip

The user can remove a trip by clicking the trash icon at the top of the gallery or detail screen
(UC9, UC19).

Chapter 2

Design

The design phase in software engineering is a crucial step that bridges the gap between
understanding what a software application needs to do and how it will be built. During this
phase, the analysis outputs will be put into a blueprint for the application. This includes
choosing the right platform and architecture, choosing the correct technologies, and designing
the application’s user interface.

2.1 Application Platform

When deciding the right mobile platform for the application, it is essential to consider the market
share of mobile operating systems. According to statistics, in the year 2023, Android is in the
lead with a 70.11% market share. The second is iOS, with 29.19%. The remaining part, at 0.7%,
comprises multiple operating systems. Due to their unpopularity, they will not be a focus. [8]

When considering the previous statistics, Android should be a clear choice. However, an alterna-
tive conclusion may be drawn considering the prerequisite that individuals must possess financial
resources for travel. When changing the focus from the world data to the United States, iOS
suddenly makes up more than half, with 57.5% [9]. For this reason, it would be best if the app
were available for both platforms. There are multiple ways of achieving this. Firstly, a native
application for each system, and secondly, a cross-platform solution.

2.1.1 Native

A native application is one that was designed with the purpose of operating on a single platform.
Programming languages and tools specific to a given platform are used to create these apps. For
instance, one can build native Android apps with Kotlin and iOS apps with Swift.

Native applications offer advantages such as higher app store ranking, access to all platform
tools, higher user satisfaction, enhanced compatibility with code and device resources, and easier
publishing. However, they have disadvantages, such as limited use on single platforms due to
increasing platform diversity. They are costlier and more time-consuming than cross-platform
applications due to different code sets for distinct platforms. [10]

16

Application Platform 17

2.1.2 Cross-platform

A cross-platform application is one that functions across multiple platforms as opposed to just
one. There are two extents to which this can be realized.

2.1.2.1 Full Cross-platform

Flutter is a graphical engine that simplifies application development by bypassing the native
software development kit. It is ideal for simpler applications with identical UIs across platforms,
allowing for rapid development with fewer developers. Additional Flutter packages are required
to achieve native functionality. [11]

React Native is similar to the Flutter framework in many ways. Once more, the unified UI
implementation makes developing applications in smaller teams feasible. However, there is still
the problem of dependency on external libraries to provide more extensive functionality. Both
frameworks separate the user from native development, which makes it simpler but also limits
the developer’s options. React Native is unique because it uses native graphical elements to
enable the development of applications that maintain some degree of the native user interface’s
appearance and feel. Nevertheless, coupling the application and native API, the use of JavaScript,
and the runtime architecture results in lower performance than Flutter offers. [11]

Compose Multiplatform, similar to React Native and Flutter, aims to streamline mobile applica-
tion development across various platforms using a single codebase. However, as of this day, it
is in its early days, with iOS implementation still being in alpha. The future of this framework
has yet to be set. Hence, it cannot be reliably used for any commercial product. [12]

2.1.2.2 Semi Cross-platform

Kotlin Multiplatform Mobile technology is a multiplatform approach that closely resembles na-
tive development, allowing for code sharing and reducing issues caused by bypassing the native
framework. Application networking, data storage and validation, analytics, computations, and
other application logic can be shared across platforms. However, as can be seen in the diagram
2.1, it does not allow for common source code for the presentation layer, increasing development
costs but offering greater versatility and adaptability. Kotlin’s focus on Android makes it easier
for native developers to adapt and allows for a gradual transition to the technology on a smaller
scale. [11, 13]

Figure 2.1 Kotlin Multiplatform Mobile [13].

Application Architecture 18

2.1.3 Conclusion

Native development offers performance benefits but requires maintaining separate codebases for
different platforms. Cross-platform frameworks like Flutter and React Native offer faster devel-
opment but compromise on performance and native feel. Compose Multiplatform is promising
but lacks maturity for critical projects.

Therefore, considering the native development feel, code sharing, and high performance, Kotlin
Multiplatform Mobile emerges as the best option for this project. KMM allows developers to
leverage their existing Kotlin expertise while enabling efficient cross-platform development. This
approach balances development speed with the ability to create high-quality applications for
both Android and iOS.

2.2 Application Architecture

When developing an application, it is essential to choose the correct architecture. Many have
emerged over the years, each with its advantages and caveats. The most used in mobile applica-
tions are MVC, MVP, MVVM, Clean Architecture, and MVI.

2.2.1 Model-View-Controller (MVC)

MVC is one of the oldest and most well-known architectural patterns. It is composed of three
components: The model is the component that holds the logic business logic and is in charge of
accessing, manipulating, or storing data in the application. Classes related to data persistence,
application communications, and the classes used for parsing outside information are all stored
here. The view is the component for the user to see. Its purpose is to show data gained from the
model. The controller handles all the communication between the previous two. It is the main
component of MVC. It receives and interprets the user’s actions from the view and passes them
to the model. Vice versa, if the model changes, it updates the view. [14]

It provides clear distinctions between the data, UI, and logic. Therefore, it is a great option
for prototyping small projects; however, it can lead to tight coupling between the components,
making it less reusable and more difficult to scale, maintain, or test. [15]

Figure 2.2 Model-View-Controller architecture.

Application Architecture 19

2.2.2 Model-View-Presenter (MVP)

MVP is an evolution of MVC that further divides UI and business logic concerns. The Model
is a component in the MVP pattern responsible for business logic, data persistence, communi-
cation, and transforming external information into model objects. It contains classes related to
data persistence, extensions, and constants. In MVP, the Model layer communicates only with
the Presenter layer, unaware of the existence of a View. User interactions with the View are
transmitted to the Model through the Presenter, and the Model is updated accordingly. The
View layer combines the View and Controller components in one layer. Both components store
less logic, making them lighter. The Controller handles coordination and routing functions, nav-
igation, and information passing via Delegation. In MVP, the Controller instantiates the View
and passes it to the Presenter. The Presenter receives and passes View events to the Model,
updating the View when data changes. [14]

The MVP is used for medium-sized projects with more complex requirements. The clear sepa-
ration between the components makes it easier to test and understand. It promotes the Single
Responsibility Principle1. However, as the project grows, it may still have much boilerplate
code2 and become more complicated. [15]

Figure 2.3 Model-View-Presenter architecture.

2.2.3 Model-View-ViewModel (MVVM)

MVVM is a current architectural style that uses data binding and reactive programming tech-
niques. The Model, like in MVP or MVC, is a component responsible for business logic and
application data manipulation and access. This layer communicates only with the ViewModel
layer, unaware of a View’s existence. The View displays user-updated information from the
ViewModel without logic and can have multiple references. The ViewModel is the central ele-
ment of the MVVM architecture, interacting with the View and Model. It represents the View’s
current state and handles input/output information. The View owns the ViewModel, and the
ViewModel owns the Model. ViewModel and the View are connected by what is known as Data
Binding3, ensuring automatic UI updates if the ViewModel’s information state changes. [14]

MVVM is ideal for large projects focusing on data-driven UIs and complex data flows. It offers
a clear separation between View, ViewModel, and Model, automatic UI updates, and better
decoupling, testability, and maintainability. However, it requires an understanding of reactive
programming and data binding concepts. [15]

1A module should be responsible to one, and only one, actor. [16]
2Sections of code repeated in multiple places with little to no variation. [17]
3The process that establishes a connection between the app UI and the data it displays [18].

Application Architecture 20

Figure 2.4 Model-View-ViewModel architecture.

2.2.4 Clean Architecture

Clean Architecture is a software design principle introduced by Robert C. Martin, known as
”Uncle Bob,” that focuses on organizing code and defining the architecture of a software appli-
cation to achieve better maintainability, flexibility, and testability. The central concept behind
Clean Architecture is the separation of concerns, which emphasizes that different parts of the
application should have clearly defined responsibilities and be independent of each other. This
allows each component to be developed, tested, and modified without affecting others, leading
to a more robust and maintainable codebase.

The architecture is usually divided into concentric circles 2.5, each representing a different appli-
cation layer. The Domain Layer, the heart of the application, contains the core business logic and
entities. The Application Layer serves as an intermediary between the Domain Layer and the
Presentation Layer, containing application-specific use cases and orchestrating data flow between
the Domain Layer and external interfaces. The Presentation Layer handles user interactions and
displays information, while the Data Layer handles data access and storage.

The key benefit of Clean Architecture is the development of independent and interchangeable
components, allowing for changes in database technology, user interface, and overall test cover-
age. Emphasizing the separation of concerns and organizing code into distinct layers promotes
modularity, maintainability, and testability in software development, helping teams build scal-
able and maintainable applications over the long term. [19]

Clean Architecture is ideal for large, complex projects focusing on maintainability and testability,
but it can introduce complexity and over-engineer for smaller projects. [15]

Figure 2.5 Clean architecture.

Application Architecture 21

2.2.5 Model-View-Intent (MVI)

MVI is an emerging architectural pattern that aims to provide a predictable and reactive UI.
The architecture features a single direction of data flow, ensuring clarity and predictability. It
separates concerns for Model, View, and Intent components, with Model managing state, View
handling UI rendering, and Intent capturing user actions. Immutability ensures the Model’s
state remains unchanged, promoting predictability and reliability in the application.

The user’s intent is a state input to a model, which stores and sends the requested state to a
view. The View loads the state from the Model and displays it to the user. This flow happens
only in one direction. Hence, it is called unidirectional architecture. The user can do another
action that follows the same flow. Therefore, it is also cyclic. [20]

MVI is suitable for projects requiring strict unidirectional data flow and interactive UIs but can
introduce additional complexity, especially for simple projects. [15]

Figure 2.6 Model-View-Intent architecture.

2.2.6 Conclusion

Clean architecture emerges as the best option for this project. KMM projects stride for reusability
across platforms. Hence, clean architecture’s focus on independent, interchangeable components
supports this idea. It is an excellent choice for projects designed to grow and adapt to the users’
preferences because it allows for a seamless feature addition or change. Finally, since the concerns
are clearly separated, adjusting to using different UI frameworks is simple.

Chosen Technologies 22

2.3 Chosen Technologies

When creating an application, it is crucial to identify and choose the correct technologies based
on the requirements. This section will outline the key technologies that have been chosen and
explain why they were selected.

2.3.1 Jetpack Compose

Regarding native Android UI, there are two main options: view-based XML or Jetpack Compose.
Jetpack Compose is a toolkit made by Google based on declarative Kotlin API. The second option
is a traditional approach that defines UI layout in XML files and handles interactions in code.
Jetpack Compose will be chosen for this project as it is Google’s preferred option. They list four
main reasons why it is the better option to use [21]:

Less code: Compose is a tool that allows developers to write less code, reducing the number
of lines needed for various components. This reduces time spent on testing, debugging, or
fixing bugs and allows developers to focus more on delivering value to customers. The code
is written in Kotlin, making it easier to understand and maintain.

Intuitive: Compose is a declarative API that simplifies UI design by allowing developers
to describe the UI. Its intuitive APIs are easy to learn and use, allowing a single Kotlin file
to substitute multiple XML files. Compose also allows for creating stateless components,
making them easy to reuse and test. The state is explicit and passed to the composable,
ensuring a single source of truth for the UI.

Accelerated development: Compose is compatible with existing code, allowing easy inte-
gration with common libraries like Navigation, ViewModel, and Kotlin coroutines. Its inter-
operability makes it seamless for developers. Android Studio support, including live previews,
allows faster iteration and code shipping. This feature saves time by allowing developers to
check UI components in different states or settings.

Powerful: Compose is a tool that allows developers to create beautiful apps with direct
access to Android platform APIs and built-in support for Material Design, Dark themes,
animations, and more. It improves the accessibility APIs, layout, and reduces the number of
steps to achieve developers’ ideas. Compose also makes it easy to add animations, such as
color, size, and elevation changes, without requiring anything special. It provides flexibility
for implementing own design systems.

2.3.2 Ktor

Ktor is an open-source framework for creating asynchronous servers and clients using the Kotlin
programming language developed by JetBrains. It has been chosen as it is the most powerful and
used solution that fully supports KMM. Hence, there is no need to implement separate client logic
for either platform. Ktor focuses heavily on being a lightweight and modular solution, adding
functionality to a project without much boiler code and allowing the developers to choose only
the needed components. Furthermore, Ktor leverages Kotlin features, such as having extension
functions instead of annotations or being built on Kotlin coroutines. This makes it more intuitive
for developers already familiar with Kotlin. [22]

Chosen Technologies 23

2.3.3 SQLDelight

SQLDelight is a robust database library specifically made for Kotlin-based projects. Its primary
goal is simplifying database operations with a type-safe and compile-time approach. Unlike
traditional SQL libraries, it allows developers to write queries directly into the code. SQLDelight
generates type-safe Kotlin APIs from SQL statements, underlying efficiency, and reliability of
the data access code. It streamlines the writing and maintenance of SQL code by offering
features like schema verification, compile-time migrations, and IDE support. SQLDelight also
allows switching the underlying database. It supports multiple platforms like SQLite, MySQL,
Postgres, or HSQL/H2. [23]

It is an ideal database library for this project because of its cross-platform compatibility. Thanks
to platform-specific drivers, the same database interactions can be written for both iOS and
Android implementations. The type-safe queries catch errors at compile time, reducing runtime
exceptions. The automatic Kotlin code generation makes it more straightforward to use without
writing many lines of boilerplate code. It also supports coroutines for asynchronous data access.
Lastly, thanks to an IDE plugin that adds features like syntax highlighting and auto-completion,
developers can focus more on the logic and less on the syntax. [24, 23]

2.3.4 Koin

Dependency Injection is a software design pattern that decouples application components and
manages their dependencies flexibly and modularly, transferring responsibility from the depen-
dent component to an external entity.

Koin is a lightweight dependency injection framework for Kotlin that simplifies managing de-
pendencies in KMM projects, allowing code decoupling and making testing and maintenance
easier.

It was chosen for this project because it lessens the coupling between all the components in the
application’s hierarchy. It allows the definition and management of dependencies in a shared
module that can be utilized across different platforms, such as iOS and Android. It also seam-
lessly integrates with the frameworks of the mentioned platforms, keeping it more consistent.
Koin furthermore allows the definition of dependencies at runtime, giving flexibility when the
dependencies need to be resolved dynamically. It is a lightweight framework with an intuitive
API, leveraging Kotlin’s features like DSLs and extensions. [25]

2.3.5 Fused Location Provider API

Regarding location on Android, there are two main possibilities: using Android’s built-in Loca-
tion Manager of a Fused Location Provider from Google Play Services.

The Location Manager class in the Android framework enables access to a device’s location
services, allowing users to request updates from various providers like GPS, network, and other
applications. It provides a basic set of APIs for determining the device’s location. However,
managing it is more challenging and requires more code than the Fused Provider. [26]

The Fused Location Provider is a Google Play services library API that simplifies accessing
location information from GPS, Wi-Fi, and cellular networks. It combines data from multiple
sensors for accurate and efficient updates. Recommended for location-aware applications, it offers
a more advanced and flexible API than the Location Manager. [26]

Chosen Technologies 24

Since the application’s prototype must track the user actively to update their itinerary progress,
the Fused Location Provider will be used.

2.3.6 Coil

There are plenty of Android libraries for image loading. However, between them shines a new-
comer, Coil. It will be used for this prototype because it is lightweight and designed with a focus
on Kotlin, utilizing coroutines and extension functions to simplify image loading. Its lightweight
nature ensures optimized performance without unnecessary overhead. Coil’s automatic memory
management prevents memory leaks and out-of-memory errors, ensuring stable apps. Built with
modern Android development practices, Coil remains up-to-date with the latest libraries and
APIs for compatibility and stability. It prioritizes performance, efficiently minimizing network
requests and maximizing image loading speed, even with high-resolution images. [27]

2.3.7 Maps

Because this application is made for itinerary creation, a platform for getting places, searching
places, getting distances, and reverse geocoding is necessary. Three options were considered
when deciding the best solution: Google Maps Platform, Mapbox, and OpenStreetMap.

GMP4 is a suite of APIs and SDKs that allow developers access to Google’s geographical and
location-based data. It offers features like map visualization, search for points of interest, geocod-
ing, or distance matrix. Furthermore, GMP provides specialized functionalities like air quality,
traffic conditions, and elevation. While underlying data details are not publicly available, it has
been established that Google relies on its extensive collection of user data, satellite imagery,
and algorithmic processing. Thanks to this, it reliably delivers actual and accurate information.
Combined with the vast user base and Google’s stride to improve it continuously, it is one of the
best solutions for location-centered applications. [28]

Mapbox is a cloud-based platform of developer tools for integrating map services into their ap-
plications. It specializes in map creation and navigation but offers many more functionalities.
In contrast to GMP, which relies on proprietary data, Mapbox leans towards an open-source
approach. It uses OpenStreetMap data, a community-based model that can sometimes be inac-
curate. However, this data is not its only source. Mapbox uses this open-source base and builds
on this by adding features like offline maps or having more comprehensive documentation. It
also undermines Google Maps with their pricing, which is consistently lower. [29]

OpenStreetMap is a similar solution that uses an entirely different approach. It does not rely on
proprietary data but emphasizes community-driven data. OpenStreetMap is completely open-
source and encourages everyone to actively participate in mapping their surroundings. This
approach might not always be accurate. However, it can leverage the local knowledge of its user
base more. This community approach is its biggest strength and weakness. Developers are not
locked in one vendor and can edit or add new data. On the other hand, the coverage is imperfect
as it does not have a big user base, and the data can be outdated. [30]

GMP will be chosen for this application as it provides more extensive, up-to-date, and accurate
data. Furthermore, GMP provides images of places and generally more information about them,
making the application prototype more informative and intuitive. All the relevant information
for the application is summarized in the table 2.1.

4Google Maps Platform

Domain Diagram 25

Table 2.1 Comparison of the three maps services [28, 29, 30].

Google Maps Platform Mapbox OpenStreetMap
Ease of use high good difficult

Places (Search) Yes (extensive) yes limited
Places photos yes no no

Distances yes yes yes
Reverse geocoding yes yes yes

Open-source no partially yes
Cost free tier, paid plans free tier, paid plans free, but may require self-hosting

Data Accuracy high good variable

2.4 Domain Diagram

A domain diagram is a foundational tool for capturing the core concepts and their relationships
within a specific problem domain. This visual representation, employing UML notation, depicts
entities, attributes, and associations relevant to the system’s functionality. [31]

The model proposed for this application is depicted in the following diagram 2.7. The Trip
entity is the cornerstone of the entire application; it has relations with Places, which create the
itinerary for the trip. The Distance entity relates to both the trip and two places as the distances
between places are accessible from the trip; however, more importantly, it portrays a distance
between two distinct places. Photos are accessible from a trip, like distances, but belong to the
place where the picture is taken. Each Place has one associated Location.

2.5 Activity Diagram

Activity diagrams, a part of the UML, provide a detailed visual representation of dynamic system
behavior. By illustrating the sequential and concurrent flow of actions, decisions, and iterations,
activity diagrams effectively model complex processes, aiding in requirement analysis, design
specification, and validation. [31]

The process of creating a trip is shown in the following figure 2.8. To create a trip, three main
components are required: the name of the trip, the date, and the itinerary. For the itinerary
to make sense, at least two places are required. To add more places, the user needs to use the
search feature; based on the user’s query, a list of locations is returned from the Places API.
After the details are entered, the user can save the trip. When saving, the user is prompted to
optimize the trip. The optimization then happens in the domain; in both cases, the trip is saved
in the database.

State Diagram 26

Figure 2.7 UML Domain diagram.

2.6 State Diagram

A state diagram visually represents the states an object or a system can be in and the transitions
between them. It illustrates how events trigger changes from one state to another, aiding in
understanding complex system behavior and ensuring correct implementation. [31]

A diagram in figure 2.9 shows the different states a trip can have. A trip follows a sequential
life cycle within the application. It begins in a Created state, where it is initially added to the
system. Optionally, it can transition to an Optimized state depending on the user’s choice. Next,
the trip moves to the Started state, indicating it is actively underway. Upon completion, it enters
the Completed state. At any point before starting or after completing, the trip can be removed
from the system and moved to the Deleted state.

State Diagram 27

Figure 2.8 UML activity diagram of trip creation.

User interface 28

Figure 2.9 UML state diagram of a trip entity.

2.7 User interface

The UI is one of the most crucial aspects of designing a mobile application. It is how users
interact with the app, so it must be intuitive to motivate users to keep using it. Designing a
wireframe is generally a good idea before implementing the UI in the platform-specific framework.

“Wireframes are basic blueprints that help teams align on requirements, keeping UX design
conversations focused and constructive [32].” They contain the base of the design formed primarily
by abstract shapes, and the text is usually randomly generated. It serves just as a mere idea
of a concept. They are helpful as they allow iteration and refining of ideas before investing in
detailed visuals or code, thus minimizing rework and ensuring a smoother development process.

To create a wireframe, a designer does not need anything more than a piece of paper. However,
for the wireframe to be more valuable, it can be created in one of the many apps designed for
this purpose. Figma was chosen for this project because of its intuitive UI. Two of its features
will be used: drawing wireframes and prototyping. Prototyping allows simple interaction with
the wireframe. Hence, it can be adequately tested and the design iterated upon.

User interface 29

2.7.1 Application’s Design

Based on the first chapter’s analysis, the application prototype was designed with user-
friendliness in mind. The main navigation was designed with a navigation bar at the bottom
of the screen so that navigation between the main parts of the application is simple. This bar
features a home screen, a list screen, and a create screen. These make up the central part of the
application. The following list illustrates the ideas behind the design of these screens:

Home Screen: This screen guides the user during travel. It was made to display the
itinerary clearly, with the time remaining until the trip and the trip’s name on the top of the
screen. The itinerary comprises small cards highlighting the place’s name, the approximate
time of stay, and the image. Image is an essential part of the card, allowing users to identify a
place quickly upon arrival. Every card also has a button to get directions to the place in the
user’s desired application. Another important feature of the application is that upon arrival
at a place, the card is expanded, allowing the user to take pictures and see a small gallery of
already-taken pictures.

Furthermore, between all the place cards is a small indicator of how far to the next place.
Lastly, a floating button in the bottom right corner highlights an option related to the trip’s
current state. This means that when the trip has not started, it starts early; during the trip,
it allows the user to finish it at any point. If there is no upcoming trip, a button is shown in
the middle of the screen with a prompt to create a new one.

List Screen: It is a screen allowing the user to see all their trips straightforwardly. This
screen comprises two main categories of trips: already completed and not completed. Nav-
igating between these two categories is achieved via tabs at the top. A trip card, similar
to places, represents every trip. This card shows all the essential details to identify a trip.
Firstly, a user-created name is displayed, with the city’s name under it. In the upper right
corner is the date the trip happened or is about to happen.

Moreover, there are two buttons depending on the selected tab. In the upcoming screen, one
navigates to the trip’s details, and the other serves to start the journey immediately. On the
completed screen, one repeats the trip, and the other navigates to the trip’s gallery. In the
lower right corner of the screen lies a floating button that navigates the user to the create
screen; this button is only visible on the new trips tab.

Create Screen: This screen serves to create a new trip. Firstly, there are two text boxes
at the top of the screen; the first is the trip’s name, and the second is the date of the trip.
Then, there is the starting place, with the rest of the places in the itinerary under it. These
comprise a modified place card, highlighting the place address with a button that opens the
place in the Google Maps application. New places can always be added by clicking the plus
button in the list. Lastly, there is a tick button in the top-right corner to save the trip in the
application.

Gallery screen: The gallery screen is a simple screen showing the user photos taken in a
horizontal list organized by the place where they were taken.

Moreover, there are three more screens: trip details, its corresponding edit screen, and the gallery
edit screen. These screens, however, are designed in the same manner as the already-introduced
screens and, therefore, do not need separate explanations. The main screens accessible from the
bottom bar are shown in figure 2.10 with the rest of the screens in the appendix A.

User interface 30

(a) Home screen. (b) New trips screen.

(c) Completed trips screen. (d) Create screen.

Figure 2.10 Wireframes created in Figma.

User interface 31

2.7.2 Design Testing

After creating the wireframe, it was transformed into a low-fidelity prototype that allowed first
UI testing. For this prototype, the following test scenario was created:

1. Navigate to the trip creation screen.

2. Enter the following trip details:

name

date

starting location

3. Add two places to the trip itinerary:

“Place 1” as the first location.

“Place 2” as the second location.

4. Create the trip.

5. On the “Smart Order” screen, opt out of automatic ordering.

6. Navigate to the trip details screen.

7. Manually select smart order for this trip.

8. Start the trip early.

9. Upon arrival at “Place 1”, add a picture.

10. Skip to “Place 2” and complete the trip.

11. Navigate to the details of the finished trip screen.

12. Add a picture to the “Place 1”.

Six different people completed this scenario. Three of these people were actively engaged in
mobile development; the other three were from different development-unrelated backgrounds.

2.7.3 Results of Testing

Based on the testing results, the following changes were implemented:

The Create screen was removed from the bottom bar. It was distracting as there was already
a button to create a trip on the home and the list screen. This way, the information will not
be duplicated in the app.

The starting place card was moved to the rest of the itinerary. There is no need to differentiate
between the start and the rest of the itinerary other than being first on the list.

Primary button on a card: navigate, show details, show gallery, and open in maps was
removed. Its action will happen after clicking the card.

New trips were renamed to Upcoming trips for more clarity.

All of the floating buttons will be expandable, describing the action that happens after
pressing.

User interface 32

The Optimize trip button was moved from the top of the edit screen to an extended floating
button on the trip detail screen. Since it is a crucial app feature, there it is more visible.

The reorder itinerary button was changed to a switch so it is clearly visible when ordering is
toggled.

On the create screen, the itinerary order has been reversed to correspond to the naturally
perceived order from top to bottom.

Chapter 3

Implementation

In this chapter, the design is translated into an actual product, a prototype of a mobile
application. The tools used to implement the application will be stated. Then, important parts
of the code will be highlighted based on the chosen architecture. Lastly, screenshots of the
implemented application will be shown.

This application was designed to be multiplatform. However, during the implementation, there
was no access to a device that would compile iOS code. For this reason, the UI was only
implemented for the Android platform using KMM architecture. Business logic is stored in a
shared platform, and UI-specific code is stored in a separate Android module.

The project was started from a devstack [33] to guide the application to be written according to
the norms and structurally sound.

3.1 Kotlin

Kotlin was used as the primary language for this project because, on May 7, 2019, Google
announced that after two years of official support for Kotlin, Android development will become
Kotlin-first. All new Jetpack APIs and features would come to Kotlin before Java. [34]

Kotlin is a statically typed, object-oriented programming language interoperable with the JVM1,
Java Class Libraries, and Android. Originally designed to improve Java, Kotlin is used for
various application types, including Android mobile app development, server-side development,
full-stack web development, multiplatform mobile development, data science, and cloud-based
resource management. [35]

Kotlin’s advantages include interoperability, safety, clarity, tooling support, and community sup-
port. It can be compiled into JavaScript or an LLVM encoder, enabling just-in-time compiling
and easy migration of Java applications to Kotlin. It also features null safety, eliminating null
pointer exception errors and eliminating redundancy in basic syntax. [35]

Kotlin also provides more concise code, reducing redundancy in the syntax of popular languages
like Java. It has tooling support from Android, including Android Studio, Android KTX, and
Android SDK, and a community of developers who work to improve the language and provide

1Java Virtual Machine

33

Development Tools 34

documentation. Despite being the preferred development language of Android, Kotlin’s interop-
erability with Java has led to its widespread use across various application types. [35]

3.2 Development Tools

This section will list the tools used to implement the prototype.

3.2.1 Android Studio

The entirety of the prototype was programmed in Android Studio. It is Google’s official IDE2

for the Android operating system, based on JetBrains’ IntelliJ IDEA software. It is available for
download on Windows, macOS, and Linux operating systems and is licensed under the Apache
license. Originally announced in 2013, the first stable version was released in December 2014. It
is now the sole officially supported IDE for Android development. Android Studio supports all
IntelliJ and CLion programming languages with extensions such as Go. Android Studio 3.0 or
later supports Kotlin. [36]

3.2.2 Git

To keep the code safe, always up-to-date, and synced across devices used for development, the
FIT CTU Gitlab was used. However, for the supervisor to be able to see changes made to the
application prototype, it was also versed on Github under the author’s private account.

3.3 Kotlin Multiplatform Mobile Structure

Since KMM was chosen for this application, a specific project structure was set for this application
to adhere to its conventions. This structure typically consists of three main parts of the project:
shared, android, and iOS. However, since the iOS UI was not yet implemented, only two remain.

3.3.1 Shared module

This module illustrates an advantage of the KMM development approach: the code written
here does not need to be duplicated across platforms. It contains the domain and data layer
of the application, housing the core business logic, models, services, and everything else related
to data handling. This is all housed in the directory named commonMain. However, as men-
tioned previously, some features need a platform-specific implementation. This involves database
drivers, client engines, or location controllers. These are located in their respective iosMain or
androidMain directories.

2Integrated Development Environment

Domain layer 35

3.3.2 Android Module

Because a semi-cross-platform approach was chosen for this application prototype, the presen-
tation layer needs a separate implementation for each platform, in this case, Android. This
trade-off allows for a native-like UI experience but requires more code. This module is called
android. Inside, it’s divided into directories based on features. In this application, gallery,
home, search, and trip were the different parts of the UI. These are all connected through the
app directory, which contains the root of the application with the MainActivity class. The last
directory contained in this module is shared. The shared directory contains everything shared
across the different parts, like reusable Jetpack Compose UI components or abstractions like the
PermissionRequest class.

3.4 Domain layer

In clean architecture, the domain layer represents the center of the application. It encapsulates
the application’s business logic and should be independent of all frameworks, so it is not specific
to any platform. Furthermore, while it deals with data, it does not see the implementation of
the data. It uses abstraction over the data; therefore, the data sources can be changed without
affecting the application’s core.

3.4.1 Model

The application’s model represents the core concepts of the domain. It is made of entities, which
are simple data objects.

Trip 3.1 is the entity that represents a trip that is the base of the entire application. The data
class contains the trip’s name, date, and itinerary. The order value represents the order of the
itinerary. Completed represents the trip’s state, whether it is completed or not. ActivePlace
represents the place that matches the device’s current location. Photos contain all users taken
or added from the library pictures. Distances are the last value in this entity, which serves to
keep distances between all places in the trip’s itinerary.

data class Trip(
val id: Long,
val name: String,
val date: LocalDate,
val itinerary: List<Place>,
val order: List<String>,
val completed: Boolean = false,
val activePlace: String = "",
val photos: List<Photo> = emptyList(),
val distances: Map<Pair<String, String>, Distance> = emptyMap(),

)

Code listing 3.1 Trip entity.

Trips’ itinerary comprises Place entities 3.2. Every place has a name, a unique ID, an address
formatted to a human-readable format, a location, and a Google Maps address. Furthermore, it
contains an ID of a photograph from a Google database and a link to that photo.

Domain layer 36

data class Place (
val name: String,
val id: String,
val formattedAddress: String,
val location: Location,
val googleMapsUri: String,
val photoId: String?,
val photoUri: String? = null,

)

Code listing 3.2 Place entity.

Location 3.3 is a simple data class for storing geographical coordinates.

data class Location(
val latitude: Double,
val longitude: Double

)

Code listing 3.3 Location entity.

Distance 3.4 is yet another simple data class. It serves to store distance in both time and the
actual geographical distance.

data class Distance(
val distance: Long,
val duration: Long

)

Code listing 3.4 Distance entity.

The last entity is a Photo entity 3.5. It stores users’ photos containing the exact place and trip
to which it is assigned.

data class Photo(
val placeId: String,
val tripId: Long,
val photoUri: String

)

Code listing 3.5 Photo entity.

3.4.2 Repositories

Repositories in the domain layer define a contract for data access operations. They are defined
here, so they are close to the use cases. Their specific implementation lies in the data layer. The
example 3.6 shows a part of the trip repository.

Domain layer 37

interface TripRepository {
suspend fun getUncompletedTrips(): Flow<List<Trip>>
suspend fun getCompletedTrips(): Flow<List<Trip>>
suspend fun getTripById(id: Long): Flow<Trip?>
...

}

Code listing 3.6 Trip repository in the domain layer implementation.

3.4.3 Use cases

Use cases are a part of the clean architecture that defines all the actions possible in the appli-
cation. They are called from ViewModels and interact with the repositories injected into the
constructor. This provides the significant advantage of clean architecture as the application
concerns are clearly separated.

Use case interfaces used in this application, shown in the following listing 3.7, are differentiated
by their output and input. For example, a simple use case for getting all completed trips does
not need a parameter and returns a flow 3.8. However, a use case for removing a trip needs its
id as a parameter and returns a Result 3.9.

interface UseCaseResult<in Params, out T: Any> {
suspend operator fun invoke(params: Params): Result<T>

}
interface UseCaseResultNoParams<out T : Any> {

suspend operator fun invoke(): Result<T>
}
interface UseCaseFlowResult<in Params, out T: Any> {

suspend operator fun invoke(params: Params): Flow<Result<T>>
}

Code listing 3.7 Use case interfaces implementation.

interface GetCompletedTripsWithoutPlacesUseCase :
UseCaseFlowNoParams<List<Trip>>↪→

internal class GetCompletedTripsWithoutPlacesUseCaseImpl(
private val tripRepository: TripRepository

): GetCompletedTripsWithoutPlacesUseCase {
override suspend fun invoke(): Flow<List<Trip>> =

tripRepository.getCompletedTrips() }↪→

Code listing 3.8 Use case for getting Completed trips without the optional arguments implementation.

interface RemoveTripUseCase: UseCaseResult<Long, Unit>
internal class RemoveTripUseCaseImpl internal constructor(

private val tripRepository: TripRepository
) : RemoveTripUseCase {

override suspend fun invoke(params: Long): Result<Unit> =
tripRepository.deleteTripById(params) }↪→

Code listing 3.9 Use case for removing a trip by its id implementation.

Domain layer 38

The Result class is an abstraction above any data that can be a success or an error based on the
result of the operation. The result class is defined as follows 3.10.

sealed class Result<out T : Any> {
data class Success<out T : Any>(val data: T) : Result<T>()
data class Error<out T : Any>(val error: ErrorResult, val data: T? = null):

Result<T>()↪→

}

Code listing 3.10 Result class implementation.

All of the application features can be found in this layer. One of the most critical features of
this application, trip optimization, is also executed at this level. This listing 3.11 illustrates a
pragmatic approach to trip optimization on mobile devices, emphasizing speed and efficiency. The
nearest neighbor algorithm rapidly generates a reasonable itinerary, while the two opt algorithm
iteratively improves upon it by swapping pairs of locations to reduce overall distance. This
combined approach ensures a responsive user experience, avoiding computationally intensive
algorithms, like genetic algorithms or simulated annealing, that could hinder performance on
mobile devices.

override suspend fun invoke(params: Trip): Result<Unit> {
return when (

val distances = distancesRepository.getDistancesByTripId(params.id)
) {

is Result.Success -> {
try {

val initialOrder = nearestNeighbor(distances.data,
params.order)↪→

val optimizedOrder = twoOpt(distances.data, initialOrder)
updateTripUseCase(params.copy(order = optimizedOrder))

} catch (e: Exception) {
Result.Error(TripError.OptimisingTripError)

}
}
is Result.Error -> Result.Error(distances.error)

}
}

Code listing 3.11 Use case for optimizing trips implementation.

Domain layer 39

3.4.4 Location Controller

The last part of the domain layer is blueprints for features that must be implemented separately
for each platform. This is because there can be platform-specific APIs that need to be accessed
from multiplatform code. In Kotlin, this is achieved via expected and actual declarations. This
works as follows: “During compilation for a specific target, the compiler tries to match each
actual declaration it finds with the corresponding expected declaration in the common code [37].”.
One of these platform-specific APIs is the location API. Hence, there is a need for an expected
location controller 3.12 and its corresponding Android-specific implementation 3.13 using the
Fused Location Provider API 2.3.5.

internal expect class LocationController {
val locationFlow: Flow<Location>
suspend fun getCurrentLocation(): Location?

}

Code listing 3.12 Expected LocationController implementation.

internal actual class LocationController(
private val context: Context,
private val locationProvider: FusedLocationProviderClient,

) {
...
actual suspend fun getCurrentLocation(): Location? {

if (permissionGranted) {
return suspendCoroutine { continuation ->

val cancellationSource = CancellationTokenSource()
val token = cancellationSource.token
val request = CurrentLocationRequest.Builder()

.setPriority(Priority.PRIORITY_HIGH_ACCURACY)

.build()

locationProvider.getCurrentLocation(request, token)
.addOnSuccessListener { location ->

cancellationSource.cancel()
location?.let {

continuation.resume(Location(it.latitude,
it.longitude))↪→

}
}.addOnCanceledListener {

continuation.resume(null)
}

}
} else return null

}
...

}

Code listing 3.13 Actual Android LocationController implementation.

Data Layer 40

3.5 Data Layer

The data layer in clean architecture represents the abstraction between the domain layer and
data. It handles the specific implementation of data persistence and retrieval, like handling APIs
and databases. It contains data sources and the implementation of repositories.

3.5.1 Coroutines

Like many others, this application handles both saving data into a database and getting data
from a remote API. These operations are typically longer-running, meaning they cannot be run
on the main thread. If this were the case, the application’s UI would freeze, and the user would
be unable to interact with it. When getting data from a database, the UI must continuously
listen to data changes. In this case, the operation must run asynchronously with the UI.

Kotlin handles this through the Coroutine API. A coroutine is a suspendable computation
that runs a block of code concurrently with the rest of the code, similar to a thread. It is not
bound to any particular thread and can suspend execution in one thread and resume in another.
They can be considered lightweight threads. [38]

Suspending functions are at the center of using coroutines in Kotlin. A suspending function
is a function that can be paused and resumed at a later time. They can execute a long-running
operation without blocking and wait for it to complete. [39]

Another essential aspect of asynchronous data access is the Flow API. It is a type of data stream
that can emit multiple values sequentially, unlike suspend functions that return only one value.
It is built on top of coroutines and can have different uses, such as receiving live updates from
a database. Flows use suspend functions to produce and consume values asynchronously. They
can safely make network requests to produce the next value without blocking the main thread.
Three entities are involved in data streams: a producer, which can produce data asynchronously;
intermediaries, which can modify each value emitted into the stream or the stream itself; and a
consumer, which consumes the values from the stream. [40]

3.5.2 Database

Local data persistence in this application was implemented with SQLDelight 2.3.3. Because this
is a KMM library, a platform-specific driver is necessary to create a database. This driver is
created via a DriverFactory 3.14, another expected function that needs implementation in iOS
and Android modules.

internal expect class DriverFactory {
fun createDriver(dbName: String): SqlDriver

}
internal fun createDatabase(driverFactory: DriverFactory): Database =

Database(driverFactory.createDriver("trip.db"))↪→

internal actual class DriverFactory(private val context: Context) {
actual fun createDriver(dbName: String): SqlDriver =

AndroidSqliteDriver(Database.Schema, context, dbName)↪→

}

Code listing 3.14 Multiplatform database creation.

Data Layer 41

This database implementation uses .sq files. These files define the tables and queries in an SQL-
like language that is not dependent on any specific platform. Based on them, Kotlin classes are
automatically generated during the compilation. This automation saves development time and
helps maintain consistency between the data definition and the code that interacts with it. Local
data sources can then use those classes to implement methods for handling data persistence. The
listing, 3.15 shows part of the Trip.sq file, which is used to define a table and methods for the Trip
entity. The generated TripQueries class is then used in the TripLocalSourceImpl class, which is
shown in the example 3.16.

CREATE TABLE TripEntity (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT NOT NULL,
date TEXT NOT NULL,
place_order TEXT NOT NULL,
completed INTEGER NOT NULL

);

tripWithPlaces:
SELECT TripEntity.*, PlaceEntity.*
FROM TripEntity LEFT JOIN PlaceEntity ON TripEntity.id = PlaceEntity.trip_id
WHERE TripEntity.id = ?;

getNearestTrip:
SELECT * FROM TripEntity
WHERE date = (SELECT MIN(date) FROM TripEntity WHERE date >= ? AND completed =

0) AND completed = 0;↪→

...

Code listing 3.15 Trip SQLDelight file.

class TripLocalSourceImpl(
private val tripQueries: TripQueries

): TripLocalSource {

override fun getTripById(id: Long): Flow<List<TripWithPlaces>> {
return

tripQueries.tripWithPlaces(id).asFlow().mapToList(Dispatchers.IO)↪→

}
override fun getNearestTrip(): Flow<List<TripEntity>> {

val date =
Clock.System.todayIn(TimeZone.currentSystemDefault()).toString()↪→

return
tripQueries.getNearestTrip(date).asFlow().mapToList(Dispatchers.IO)↪→

}

...
}

Code listing 3.16 Trip local data source implementation.

Data Layer 42

3.5.3 Networking

For searching locations, getting information about them, getting distances, and reverse geocod-
ing, GMP was used. Google offers separate SDKs for iOS and Android. This could be used to
make expected and actual functions. However, API was chosen instead of an SDK so as not to
duplicate platform code. This way, there needs to be only one implementation using Ktor 2.3.2
for both platforms.

Two endpoints from Place API (New) were used for search, details, and photos implementations.
Distance Matrix API was used to get the distance between places. Lastly, Geocoding API was
used for coordinates-based address lookup. All the details for all the APIs can be found in the
documentation at https://developers.google.com/maps/documentation.

Ktor library allows for a definition and creation of an asynchronous client via the HttpClient
function that takes a platform-specific engine and configuration. This configuration enables
tailoring the client to the application’s exact needs. In the following snippet 3.17, the PlacesClient
is implemented.

internal object PlacesClient {
fun init(config: Config, engine: HttpClientEngine, apiKey: String) =

HttpClient(engine){↪→

expectSuccess = true
...
defaultRequest {

url {
protocol = URLProtocol.HTTPS
host = "places.googleapis.com"
headers {

append("X-Goog-Api-Key", apiKey)
append("Content-Type", "application/json")

}
}
contentType(ContentType.Application.Json)

}
}

}

Code listing 3.17 Ktor client configuration for Places API.

This client is then used by a service to define methods for specific endpoints from the API. The
listing 3.18 shows the implementation for a POST3 request on the text search endpoint. This
implementation allows for a biased search based on the location provided, which is then used in
the PlaceRemoteSource 3.19.

3POST method sends data to the server.

https://developers.google.com/maps/documentation

Data Layer 43

internal object PlacePaths {
private const val root = "/v1"
const val textSearch = "$root/places:searchText"
...

}
internal class PlaceService(private val client: HttpClient) {

suspend fun searchPlaces(
query: String,
maxResultCount: Int = MAX_RESULT_COUNT,
location: Location? = null,
radius: Int = RADIUS

): Result<TextSearchResponse> {
return runCatchingCommonNetworkExceptions {

client.post(PlacePaths.textSearch) {
headers.append("X-Goog-FieldMask", searchFieldMask())
if(location != null)

setBody(
TextSearchRequestBody(query, maxResultCount,

location.latitude, location.longitude, radius)↪→

)
else setBody(TextSearchRequestBody(query, maxResultCount))

}.body()
}

}
...

}

Code listing 3.18 Places API service.

internal class PlaceRemoteSourceImpl(private val service: PlaceService,
private val mapsService: MapsService): PlaceRemoteSource {↪→

override suspend fun searchPlaces(query: String):
Result<TextSearchResponse> {↪→

return try{ service.searchPlaces(query) } catch (e: Exception) {
return Result.Error(TripError.SearchError)

}
}
override suspend fun searchPlacesWithBias(query: String, location:

Location): Result<TextSearchResponse> {↪→

return try{
service.searchPlaces(query = query, location = location)

}catch (e: Exception) {
return Result.Error(TripError.SearchError)

}
}
...

}

Code listing 3.19 Place remote data source implementation.

Presentation Layer 44

3.5.4 Repositories

In the data layer lies the specific implementation of the repository defined in the domain layer.
Here, the source data is translated into the domain data, which is later used by use cases. The
implementation of the trip repository shown before 3.6 is in the following listing 3.20.

internal class TripRepositoryImpl(
private val source: TripLocalSource

): TripRepository {
override suspend fun getUncompletedTrips(): Flow<List<Trip>> =

source.getUncompletedTrips().map { it.map(TripEntity::asDomain) }
override suspend fun getCompletedTrips(): Flow<List<Trip>> =

source.getCompletedTrips().map { it.map(TripEntity::asDomain) }
override suspend fun deleteTripById(id: Long): Result<Unit> =

source.deleteTripById(id)
...

}

Code listing 3.20 Implemented trip repository.

3.6 Presentation Layer

In clean architecture, the presentation layer is the outermost layer interacting with the users. It
should not contain business logic as it is only responsible for presenting information from the
data layer to the user. It comprises of two main parts:

View implemented using aforementioned Jetpack Compose 2.3.1. The UI components and
layout are defined via declarative functions that are annotated with @Composable. This
represents a single unit, a building block, that can be reused and nested within other com-
posables. Composable functions are lightweight, meaning they can be efficiently recomposed
upon a state update.

ViewModel is a class that holds and manages the UI state in a lifecycle-aware way, meaning
it survives configuration changes like screen rotation. It acts like a single source of truth for
a composable function, holding the data composables interact with and handling UI-related
logic.

3.6.1 Navigation

In Jetpack Compose, navigation is managed through a navigation graph. This graph, defined
using NavHost and NavGraphBuilder, specifies the available destinations, composable functions,
and the connections between them. A central navigation controller, NavController, manages the
back stack and facilitates transitions between destinations based on user interactions or internal
logic.

This prototype handles the navigation through a bottom navigation bar with two destinations,
the home screen and the list screen. The Root composable 3.21 is the root of the entire prototype;
it holds the bottom bar and the NavHost. It has all the navigation graphs in the application.
The rest of the screens implemented are accessible through Place or Trip items on the list screen.
As an example, the trip graph is shown in the following listing 3.22.

Presentation Layer 45

@Composable
fun Root(modifier: Modifier = Modifier) {

val navController = rememberNavController()
Scaffold(

modifier = modifier,
bottomBar = { BottomBar(navController) },

) { padding ->
Box(modifier = Modifier.padding(padding).fillMaxSize()) {

NavHost(navController, startDestination = HomeDestination.route){
tripNavGraph(

navHostController = navController,
navigateToGallery = { id ->

navController.navigateToGalleryScreen(id) },↪→

navigateToHomeScreen = {
navController.navigateToHomeScreen() }↪→

)
galleryNavGraph(navHostController = navController)
homeNavGraph { navController.navigateToCreateScreen() }

}
}

}
}

Code listing 3.21 Navigation root implementation.

fun NavGraphBuilder.tripNavGraph(
navHostController: NavHostController,
navigateToGallery: (Long) -> Unit,
navigateToHomeScreen: () -> Unit

) {
navigation(startDestination = TripGraph.List.route, route =

TripGraph.rootPath) {↪→

tripListRoute(
navigateToCreateScreen = {

navHostController.navigateToCreateScreen() },↪→

navigateToDetailScreen = { tripId ->
navHostController.navigateToDetailScreen(tripId) },↪→

navigateToGalleryScreen = { tripId -> navigateToGallery(tripId) },
...

)
detailScreenRoute(

navigateUp = { navHostController.navigateUp() },
navigateToEdit = { tripId ->

navHostController.navigateToEditScreen(tripId = tripId) }↪→

)
editScreenRoute(navigateUp = { navHostController.navigateUp() })

}
}

Code listing 3.22 Trip graph implementation.

Presentation Layer 46

3.6.2 Camera Manager

One of the requirements was that users could take a picture when at the place in their itinerary.
This functionality was implemented via a textItrememberCameraManager function. This func-
tion creates and returns a textItCameraManager 3.23, a simple abstraction for interacting with
the camera, which provides one function, launch, that initiates the process.

Internally, it uses the Jetpack Compose’s textItrememberLauncherForActivityResult function to
handle the camera intent lifecycle and outcome. A temporary file is created in the application’s
cache directory upon launch. This file’s URI is then passed to the camera intent, specifying the
location where the captured image should be saved. If this process succeeds, the photo is copied
from the cache to the application’s internal memory.

class CameraManager(private val onLaunch: () -> Unit) {
fun launch() { onLaunch() }

}
@Composable
fun rememberCameraManager(onResult: (Uri?) -> Unit): CameraManager {

val context = LocalContext.current
var tempPhotoUri by remember { mutableStateOf(value = Uri.EMPTY) }
val cameraLauncher = rememberLauncherForActivityResult(

contract = ActivityResultContracts.TakePicture(),
onResult = { success ->

if (success) {
val savedUri = saveImageToInternalStorage(context,

tempPhotoUri, "picture_${System.currentTimeMillis()}.png")↪→

onResult.invoke(savedUri)
}

}
)
return remember { CameraManager(

onLaunch = {
tempPhotoUri = ComposeFileProvider.getImageUri(context)
cameraLauncher.launch(tempPhotoUri)

}
)}

}

Code listing 3.23 Camera manager implementation.

3.6.3 Gallery Manager

Another requirement is that users can add a picture from their own gallery. This is done similarly
to the aforementioned camera functionality. A GalleryManager is a simple abstraction with only
one method, same as the CameraManager. However, This time, no temporary file is created
in the rememberGalleryManager function 3.24. An intent for picking visual media is used, and
upon success, the image is copied from the URI given by the intent to the application’s internal
memory.

Presentation Layer 47

@Composable
fun rememberGalleryManager(onResult: (Uri) -> Unit): GalleryManager {

val context = LocalContext.current
val galleryLauncher = rememberLauncherForActivityResult(

contract = ActivityResultContracts.PickVisualMedia(),
onResult = { uri ->

uri?.let {
val savedUri = saveImageToInternalStorage(context, URI,

"picture_${System.currentTimeMillis()}.png")↪→

onResult.invoke(savedUri)
}

}
)

return remember { GalleryManager(
onLaunch = {

galleryLauncher.launch(
PickVisualMediaRequest(mediaType =

ActivityResultContracts.PickVisualMedia.ImageOnly)↪→

)
}

)}
}

Code listing 3.24 Gallery manager implementation.

3.6.4 Permissions

Android employs a permission system to access certain device functionalities like a camera, a
gallery, or a location used in this prototype. Permissions are declared in the application’s manifest
file. <uses-permission android:name="android.permission.CAMERA"/>. Since Android 6.0,
however, there have been two types of permissions. Normal permissions do not require user
confirmation and are automatically granted during installation. On the other hand, dangerous
permissions4 require an explicit permission request during runtime. Users can either grant or
deny the request. After permission is granted, the functionality can be accessed until the user
revokes it in the settings.

This prototype abstracted the runtime permission requests into a PermissionRequest 3.25. This
has two properties: the granted property, which defines if the permission was granted or not,
and the launcher, which launches the request.

abstract class PermissionRequest(
protected open val launcher: ActivityResultLauncher<String>,
open val granted: State<Boolean>,

) {
abstract fun requestPermission()

}

Code listing 3.25 Permission request implementation.

4“Dangerous permissions are higher-risk permissions that grant requesting applications access to private user
data, or control over a device, which can negatively impact the user [41].”

Presentation Layer 48

Specific permissions are then inherited from this class, overriding the abstract method request-
Permission. For example, this class 3.26 for requesting the camera functionality.

class CameraPermissionRequest(
launcher: ActivityResultLauncher<String>,
granted: State<Boolean>,

) : PermissionRequest(launcher, granted) {
override fun requestPermission(): Unit =

launcher.launch(Manifest.permission.CAMERA)
}

Code listing 3.26 Permission request implementation.

3.6.5 Composable Functions

As an example of a composable function, the EmptyPlaceCard 3.27 was chosen as it shows how
the composables can be nested within each other. The function takes three parameters: a lambda
expression invoked when the card is clicked, a Modifier5 for customizing the card’s appearance,
and composable content displayed inside the card. It then uses these parameters to create an
ElevatedCard, a material design card with a shadow. Furthermore, it shows how the components
can be aligned using columns, rows, and grids.

@Composable
internal fun EmptyPlaceCard(

onClick: () -> Unit,
modifier: Modifier = Modifier,
content: @Composable () -> Unit,

) {
ElevatedCard(

modifier = modifier.height(120.dp).padding(vertical = 8.dp),
onClick = onClick,

) {
Column(

modifier = Modifier.fillMaxSize(),
horizontalAlignment = Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center

) {
content()

}
}

}

Code listing 3.27 Empty card implementation.

5Almost every composable has a modifier argument, allowing for further decorating or augmenting of the said
composable.

Presentation Layer 49

3.6.6 ViewModel

As mentioned, the ViewModel is an intermediary between the View and the domain layer. Every
ViewModel in this prototype holds its state data class, which contains all the data the View
needs to display information to users correctly. The ViewModel interacts with use cases in the
domain layer to access and manipulate data. User interactions are handled through ViewModel’s
functions.

As an example, the following listing is a part of the detail screen ViewModel 3.28. The constructor
has three use cases for getting, removing, and optimizing a trip. This is the only way the
ViewModel communicates with the domain. The functions implemented in the ViewModel are
usually run asynchronously using the launch function so they do not block the main thread on
which the UI runs. These functions then update the state, which triggers a recomposition in the
View when the function finishes. The state is held in the ViewState data class; in this case, it
holds the information if the trip is loading or being optimized, the error message, and the trip
itself. Lastly, it contains the errorFlow, to which all the errors from use cases are emitted.

class DetailViewModel(
private val getTripById: GetTripUseCase,
private val deleteTripUseCase: DeleteTripUseCase,
private val optimiseTripUseCase: OptimiseTripUseCase

): BaseStateViewModel<DetailViewModel.ViewState>(ViewState()) {
private val _errorFlow = MutableSharedFlow<ErrorResult>(replay = 1)
val errorFlow: Flow<ErrorResult> get() = _errorFlow

fun getTrip(tripId: Long) {
launch {

update { copy(loading = true) }
getTripById(tripId).map {

when (it) {
is Result.Success -> { update {

copy(trip = it.data, loading = false, optimisingLoading
= false)↪→

}}
is Result.Error -> { update { copy(

error = it.error.message?: "",
loading = false,
optimisingLoading = false

)}}
}

}.collect()
}

}
...
data class ViewState (

val trip: Trip? = null,
val loading: Boolean = false,
val optimisingLoading: Boolean = false,

): State
}

Code listing 3.28 Detail screen ViewModel implementation.

Dependency Injection 50

3.6.7 Final Design

All screens were implemented based on wireframes from the design chapter 2.7.1 and subsequent
testing results. Due to the limitations of the technologies, some features, like showing the ap-
proximate time of stay, had to be removed. Additionally, several minor challenges arose during
the implementation process. One of the issues was that multiple trips could occur on the same
date. This fact was overlooked during the design process. The home screen was designed only
to display the closest trip. The problem was solved using a side sheet showing the multiple
trips scheduled for this date. The sheet can be expanded by sliding to the right or using the
hamburger-style button. A badge displays the number of available trips if there is more than
one. The essential screens can be seen in figure 3.1 with the rest of the screens in the appendix
B.

3.7 Dependency Injection

The previously mentioned Koin 2.3.4 was used to manage dependencies in this prototype. Koin
offers different ways to create dependencies:

single Creates a single instance of the dependency throughout the application’s lifetime6.

factory Provides a new instance of the dependency every time it’s requested.

viewModel Specifically designed for Koin to manage ViewModels within the Android life-
cycle

The prototype has multiple modules for managing dependencies across the application. Firstly,
there is the commonModule. This module contains all the shared logic across the platforms:
networking, database, sources, repositories, and use cases are all created here.

private val commonModule = module {
...
single(named("PlacesClient")) { PlacesClient.init(get(), get(), get()) }
// Use cases
factory<SaveTripUseCase> { SaveTripUseCaseImpl(get(), get(), get()) }
...
// Repositories
single<PlaceRepository> { PlaceRepositoryImpl(get(), get()) }
...
// Sources
single<PlaceRemoteSource> { PlaceRemoteSourceImpl(get(), get()) }
...
// Http Services
single { PlaceService(get(named("PlacesClient"))) }
...
// Database
single { createDatabase(get()) }
...

}

Code listing 3.29 Shared part of the application dependency injection implementation.

6Also known as the singleton pattern.

Dependency Injection 51

Then there is the platfromModule, which contains the platform-specific drivers, implementation,
and the actual classes.

actual val platformModule = module {
...
single { DriverFactory(get()) }
single { Android.create() }
single<LocationController> {

LocationController(
context = get(),
locationProvider = LocationServices

.getFusedLocationProviderClient(get<Context>()),↪→

)
}

}

Code listing 3.30 Android-specific dependency injection implementation.

Lastly, there is a separate dependency management in the presentation layer on Android. Here,
the ViewModels are created and injected into the screen composables. An example of this is the
tripModule.

val tripModule = module {
viewModel { SearchViewModel(get(), get(), get()) }
viewModel { EditViewModel(get(), get(), get(), get(), get()) }
...

}

Code listing 3.31 Android presentation layer dependency injection implementation.

Dependency Injection 52

(a) Home screen (b) New trips screen

(c) Completed trips screen (d) Create screen

Figure 3.1 Screens implemented in Jetpack Compose..

Chapter 4

Testing

The testing phase in software engineering is an important step that ensures the quality and
functionality of a software program before it’s released to users. It involves the evaluation of
the software to identify and fix any defects, bugs, or errors that might have been introduced
during the development phase. In this chapter, some of the testing methods will be introduced.
Actual examples of this application’s testing will be shown. Lastly, Google Firebase will be
mentioned as a tool aiding this process.

4.1 Testing Methods

There are different ways that an application can be tested. Firstly, the tests could be divided
into two categories based on their automatization: manual and automated.

Manual testing is the more expensive and time-consuming method, requiring an actual person
to perform these tests individually. It is also prone to human error because a person can make
a typo or omit a step in a script.

On the other hand, automated tests are usually used in a real-life scenario. They are a key
component of continuous integration and continuous delivery. Unlike manual tests, automated
tests are performed by a machine based on a test script written beforehand and can be set
up to run on each push to a repository. This omits human error; however, finding edge cases
can be more difficult this way.

Another way to differentiate tests is by their type. First, there are unit tests, which are low-level
tests that solely concentrate on the application code. They test individual functions, classes, and
small units of the application code and are often used as they are easy to perform and automate.

Integration tests ensure the various modules or services the application uses work properly
together. This might involve testing how the user interface interacts with the domain layer
or how different functionalities like search communicate with backend servers. However, these
tests are more expensive to conduct and more complex to set up because they require numerous
application components to be operational.

Functional tests focus on the application’s business requirements. They only verify the output
without controlling the intermediate system states. As opposed to the integration tests, these
not only control whether the user can search for something and the backend responds but also
test whether the response is correct.

53

Unit Tests 54

End-to-end tests replicates user-like behavior. It tests the common expected user flows in the
complete application environment. These are very useful but difficult and costly to implement
and automate. [42]

Acceptance testing is a method of formal testing to evaluate the system’s compliance with
the business requirements, whether it is acceptable for release or not. [42]

Performance testing assesses a system’s performance under different workloads. It tests the
reliability, speed, scalability, and responsiveness; from this, it can define the possible bottlenecks1

of the application.

The last mentioned here are the user tests. These are performed by actual people testing the
usability and intuitiveness of the application, providing valuable insights into the UX that other
testing methods might miss. While user testing requires more resources compared to automated
testing, it is crucial for ensuring a user-friendly application.

Other forms of testing exist, but these are the most used according to [42]. Henceforth, they
are mentioned and explained in this chapter. Continuing concrete examples used for testing this
application prototype will be shown.

4.2 Unit Tests

For Unit testing of this application, multiple approaches had to be taken. Because it runs on
different platforms, distinct testing libraries were used.

4.2.1 Android Unit Tests

In the Android implementation, the GalleryViewModel was tested. A well-known framework,
Mockito, was used to create isolated tests. Not to test use case implementations, the use cases
were mocked in order to create the ViewModel.

The GalleryViewModel instance was created within a @Before annotated function to streamline
test setup. This ensured a new instance for each test, preventing any potential influence from
previous tests. This annotation is from the JUnit framework.

Because the methods in the GalleryViewModel run their calls to the use cases in a coroutine
scope, another library was needed to test the application. This library is kotlinx-coroutines-test.
This library facilitates testing asynchronous functions in Kotlin. The runTest function allowed
tests to be launched and managed in a synchronous test environment. In order to wait for the
use case calls to complete, the advanceUntilIdle was used; it advances the virtual clock of the
test dispatcher until all the coroutines launched before being completed.

A unit test usually comprises three parts:

1. Setup Here, everything needed for the test to be executed is created, and behavior is mocked
using the whenever function.

2. Execution It is the actual execution where the functionality tested is run.

3. Verification The assertions and verifications are made, and function calls are verified to
confirm that the function or class behaved correctly under the test.

A part of the test mentioned above can be seen in the listing 4.1.
1A point in a system that restricts its overall performance.

Unit Tests 55

class GalleryViewModelTest {
@OptIn(ExperimentalCoroutinesApi::class)
private val testDispatcher = UnconfinedTestDispatcher()

private lateinit var getTripUseCase: GetTripUseCase
private lateinit var deleteTripUseCase: DeleteTripUseCase
private lateinit var getPhotosByTripUseCase: GetPhotosByTripUseCase
private lateinit var savePhotoUseCase: SavePhotoUseCase
private lateinit var galleryViewModel: GalleryViewModel

@Before
fun setup() {

getTripUseCase = mock()
deleteTripUseCase = mock()
getPhotosByTripUseCase = mock()
savePhotoUseCase = mock()
removePhotoByUriUseCase = mock()

galleryViewModel = GalleryViewModel(getTripUseCase, deleteTripUseCase,
getPhotosByTripUseCase, savePhotoUseCase, removePhotoByUriUseCase,
testDispatcher)

↪→

↪→

}

@OptIn(ExperimentalCoroutinesApi::class)
@Test
fun `get all correctly sets the trip and photos`() = runTest {

//Setup
val trip = Trip(id = 1L, name = "Test Trip", itinerary = listOf(), ...)
val photo = Photo(placeId = "1", photoUri = "uri", tripId = trip.id)

whenever(getTripUseCase.invoke(GetTripUseCase.Params(trip.id)))
.thenReturn(flowOf(Result.Success(trip)))↪→

whenever(getPhotosByTripUseCase.invoke(
GetPhotosByTripUseCase.Params(trip.id)))
.thenReturn(flowOf(listOf(photo)))

↪→

↪→

// Execute
galleryViewModel.getAll(trip.id)
advanceUntilIdle()
// Verify
verify(getTripUseCase).invoke(GetTripUseCase.Params(trip.id))
verify(getPhotosByTripUseCase)

.invoke(GetPhotosByTripUseCase.Params(trip.id))↪→

assertEquals(trip, galleryViewModel.lastState().trip)
assertEquals(listOf(photo), galleryViewModel.lastState().photos)

}
...

}

Code listing 4.1 Gallery ViewModel implementation.

User Tests 56

4.2.2 Common Code Unit Tests

In the common implementation, however, the code runs on different platforms. Therefore, with
the libraries Mockito and JUnit designed to run on JVM and Android, a different solution was
needed to test the multiplatform solution’s business logic.

The best candidates for unit tests in the shared code are the use cases, as their implementation
rarely changes, even when the rest of the system does. As an example, the SaveDistancesUseCase
was chosen 4.2.

In this case, to separate the tests from the rest of the implementation, the MocKMP library
came up as the best choice. This library uses annotations to choose which classes will be mocked
in the test class. Next, a mocker must be used in the constructor of each mocked class so its
behavior is later modifiable.

To test suspending functions utilized by the SaveDistancesUseCase, runBlocking was used as
it was designed to run asynchronous context synchronously. Moreover, the MocKMP library
also offers functions to mock suspending functions and verify calls to these functions. This
functionality is used by adding the prefix -Suspending after calls on the mocker.

The actual tests were then realized using a Kotlin multiplatform testing library, kotlinx-test,
whose structure is very similar to the JUnit for a familiar testing experience and is developed
directly by JetBrains.

The three testing steps were performed:

1. Setup The behavior of mocked dependencies is defined using the mocker.everySuspending
function.

2. Execution The use case is invoked.

3. Verification Assertions are made; however, they are insufficient to determine if the use case
works as intended. For this reason, all the calls that are supposed to happen from the tested
class are verified using the mocker.verifySuspending.

4.3 User Tests

The user test was already executed in the design phase of the application 2.7.2. Nevertheless, to
test if the design changes positively impacted the application, the same scenario was intended
to be used. However, in this phase, it had to be slightly modified to accommodate the changes
made to the UI. The changed scenario reads as follows:

1. Navigate to the “Create Trip” screen.

2. Enter the following trip details:

name

date

3. Add three places to the trip itinerary:

“Prague Castle” as the first location.

“Prague Main Station” as the second location.

“Charles Bridge” as the third location.

4. Create the trip.

User Tests 57

5. In the dialog, opt out of the automatic ordering.

6. Navigate to the “Trip Details” screen.

7. Manually select smart order for this trip.

8. Start the trip early.

9. Upon arrival to the first place, add a picture.

10. Finish the trip.

11. Navigate to the details of the now-finished trip.

12. Add a picture to “Prague Main Station”.

This time, six new people were chosen to test the application prototype so the results are not
biased. Again, three of the chosen people were from a computer science background, with
two familiar with mobile development. The other three are the author’s friends from different
backgrounds unrelated to computer science. The tests were performed on the author’s phone,
the model being Samsung S21 Ultra, and people’s reactions were recorded as feedback.

4.3.1 Results

Firstly, the reactions to the changes made after the first testing are listed:

Unlike the first testing, all the test subjects navigated to different screens without a problem

Thanks to the primary action being moved to the item card, no one had a problem figuring
out how to get into the details.

With the optimize button moved to the detail screen as a floating button with text, it took
less time for everyone to have the trip automatically sorted.

Reversed order during the creation process made it more intuitive for everyone to add new
places.

Thanks to the modified order feature being changed from a button to a switch, people iden-
tified the feature more quickly and did not mistake it for the optimize feature.

Furthermore, new observations that previously were not mentioned arose from the testing:

The search feature on the bottom sheet collapses after a place is searched, making adding
new places more difficult.

When entering a name into the text box, the focus is not lost after clicking elsewhere. The
user has to directly click on the done button on the keyboard to stop it from being focused.

Some places from the search are in different languages, the locally used language and English.
This creates an inconsistency, which worsens the UX.

These results show that the improvements made to the UI were successful in making the UX
better. After more rigorous testing with even more people, new changes could be found to
make it even better. For this project, these results are satisfactory, as they point out only bugs
in the application, which are not flaws in the UI but rather mistakes made in the code to be
addressed. For now, however, there is a lack of time to address these problems, and as they are
not obfuscating any features, their solution was postponed.

Google Firebase 58

@UsesMocks(PlaceRepository::class, DistanceRepository::class)
class SaveDistancesUseCaseTest {

private val mocker = Mocker()
private val mockPlaceRepository: PlaceRepository =

MockPlaceRepository(mocker)
private val mockDistanceRepository: DistanceRepository =

MockDistanceRepository(mocker)
private val saveDistancesUseCase: SaveDistancesUseCase =

SaveDistancesUseCaseImpl(mockPlaceRepository, mockDistanceRepository)

private val trip = Trip(id = 1L, name = "Test Trip", itinerary = listOf(),
...)↪→

private val distance = Distance(10, 10)
private val results = listOf(Triple("origin", "destination", distance),

Triple("origin2", "destination2", distance))↪→

@Test
fun `invoke returns Success when distances are successfully retrieved and

saved`() = runBlocking {↪→

// Setup
mocker.everySuspending {

mockPlaceRepository.getDistanceMatrix(trip.order) } returns
Result.Success(results)

↪→

↪→

mocker.everySuspending { mockDistanceRepository.saveDistance("origin",
"destination", distance, trip.id) } returns Result.Success(Unit)↪→

mocker.everySuspending { mockDistanceRepository.saveDistance("origin2",
"destination2", distance, trip.id) } returns Result.Success(Unit)↪→

// Execute
val result = saveDistancesUseCase.invoke(trip)
// Verify
mocker.verifyWithSuspend {

mockPlaceRepository.getDistanceMatrix(trip.order)
results.forEach { (origin, destination, distance) ->

mockDistanceRepository.saveDistance(origin, destination,
distance, trip.id)↪→

}
}
assertEquals(Result.Success(Unit), result)

}
...

}

Code listing 4.2 Distance saving use case test implementation.

4.4 Google Firebase

Besides the testing methods used so far, developers often use what could be called “real-world”
testing because it can give the most significant insight into the application. This concentrates
on having real people use the application and share their thoughts. In big companies, people are
usually hired to perform the testing. However, it can also rely on volunteers. There are different

Google Firebase 59

ways this testing can be facilitated. The Firebase platform was used for this application.

Firebase is a toolbox for building, improving, and growing Android, iOS, or web applications.
The tools it provides cover a significant portion of the services that developers typically have
to build themselves but do not want to since they would instead focus on the app experience.
This covers analytics, authentication, databases, file storage, push messaging, and many more
features. The services are hosted in the cloud and may be scaled with little to no development
work. [43]

To integrate Google Firebase into a project, there are a few crucial steps necessary:

1. A Firebase account has to be created by signing in with a Google account.

2. A new Firebase project needs to be created through a setup offered on the website.

3. Services wanted in the application have to be enabled in the console or can be added later.

4. Depending on the platform, the Firebase SDK libraries need to be installed using platform-
specific instructions Firebase provides.

5. The Firebase console then provides a unique configuration file to be put into the application
directory.

4.4.1 App Distribution

The first feature used to facilitate the other functions of the Firebase platform is the App Distri-
bution. Here, the application’s APK, AAB for Android or IPA for iOS files, used for installing
the application, can be put and distributed to users [44]. The generated file can be dragged and
dropped onto the page. Once it is uploaded, the testers can be assigned to receive access. Dif-
ferent groups of different people can be created for various purposes, allowing for the separation
of demographics or internal testers.

Another benefit of the app distribution is that it maintains a history of uploaded builds, allowing
change tracking or reverting to previous versions if necessary. Moreover, after finding a critical
issue in a build, it is easy to do a rollback and restrict access to that version.

Moreover, a new feature enables automated testing upon uploading a new version. The developer
can select which and how many devices the application will be installed on. Then, Firebase uses
bots that click on interactive components of the application’s UI. This does not serve as a test
and cannot replace human testing. However, it serves as a great tool for finding obvious crashes
before the application is made accessible to the testing group.

4.4.2 Crashlytics

In the realm of mobile app development, stability is one of the most critical aspects of ensuring
user satisfaction. The Crashlytics, another part of the Firebase platform, is an invaluable tool in
this regard. As a comprehensive crash report system, it automatically captures and reports if the
application ever crashes. These reports provide the error messages, specific device information,
and the app’s state before the crash occurred. They are sent to the console from a few seconds to
thirty minutes after the crash so the development team can start working on the fix immediately,
knowing the exact circumstances in which the error happened.

The image 4.1 shows an example of such a report. Thanks to the stack trace from the report,
the problem was hastily found. Here, an exception occurred while trying to calculate distances
between places. This happened because places were both removed and added to a trip and when

Google Firebase 60

calculating the number of new places, which is later used to calculate API calls, zero was the
result.

Figure 4.1 Screenshot showing one of the reports from Crashlytics.

4.4.3 Analytics

Within the Firebase suite of services, another used in this project was Analytics. This is the
cornerstone of understanding the users’ behavior within the mobile application, as it was designed
for developers to help better understand and optimize the application. It integrates with the
application seamlessly without needing any additional code. Even without extra code or settings,
the analytics captures a lot of data.

Moreover, besides tracking behavior, Analytics offers in-depth data on user demographics, such
as device model, operating system version, language preference, and geographical location. The
results can be filtered or compared based on these criteria. This allows for an even better
understanding of the user base.

Google Firebase 61

Unfortunately, due to its late implementation in this project, the collected user behavior data
only spans one week. This limited timeframe somewhat restricts the in-depth understanding of
the application trends, as that kind of data only shows after a broader time horizon. However,
it does provide a glimpse into real-world-like usage patterns. For example, the following graph
shows how many times the app was opened throughout the week 4.2.

Figure 4.2 Number of times the app was opened by day.

Furthermore, what is even more helpful is that the developers can implement their custom events.
It is done simply by injecting FirebaseAnalytics class into anything from where the data will be
collected. After injection, it provides a simple function for logging data that contains the event’s
name and optional parameters or bundles for additional data gathering. An example of such a
use can be seen in the listing 4.3. This data is automatically added to the Analytics console,
and an intuitive visualization is offered. In the following figures, the number of created events
can be divided by the time of when they happened4.3, or by the different countries where they
happened 4.4.

analytics.logEvent("trip_created"){
param("trip_name", trip.name)
param("trip_itinerary", trip.itinerary.joinToString { it.name })

}

Code listing 4.3 Logging a custom event to analytics.

Google Firebase 62

Figure 4.3 Number of times trip was created by day.

Figure 4.4 Number of times trip was created by country.

Chapter 5

Discussion

This chapter stems from the current state and focuses on the application’s future. Can the
application be released, and what problems lie ahead in future development? What features
would aid in making the user experience better?

To answer the first question: No, the application is currently in the prototype stage of its life
cycle. Several features are critical for a public release.

First and foremost, the Google Maps Platform the application is built on is a paid platform. This
means that, as it is right now, the developer would have to pay for the expenses generated during
the use. Multiple solutions are available to deal with such a problem: The application could have
a subscription model, where the user pays a monthly fee to use the application. Moreover, a
free tier could utilize Google Ads to pay for Google’s APIs. A thorough analysis is required to
determine the best way to monetize and make the application profitable.

Another essential feature for release is user authentication and data backup capabilities. This
is required to allow a subscription model. Almost every significant application nowadays has
some form of managing its users. Integration with multiple platforms would be ideal, supporting
logging in through platforms like Google or Apple ID. This would make the application more
usable as the data could be stored in a cloud solution like the one Firebase offers; this way, users
would not lose their data when changing devices or reinstalling their system.

Furthermore, more rigorous testing is needed, as it currently contains multiple bugs and problems
worsening the UX. More testing, however, would require more time, which is presently not
feasible. The app should have a higher unit test coverage in the future, more tests from the
categories mentioned in the previous chapter 4.1 should be implemented, and more testers should
be included in the private release to guarantee a stable application experience.

Early during the implementation phase, it was realized that one person developing a cross-
platform solution for this problem is insufficient. The application has a potential far beyond
one developer’s abilities. This application merely serves as a proof of concept. The lack of
development power results in a lack of features, as the application is currently only bare-bones1.

1Only what is most basic or necessary.

63

Future of the application 64

5.1 Future of the application

The answer to the second question is somewhat subjective as it is mainly based on the author’s
own opinions and results of testing done, mostly the testing done through Firebase. However,
these suggestions are still viable and worth considering when continuing with the development.
Here, the features deemed to improve the UX most are listed:

iOS Application: Thanks to the sound foundations of the application, with the business
logic being coded multiplatform-ready, creating a presentation layer for an iOS application is
a simple task. The only obstacle to achieving this is a lack of the correct tools. If implemented
in the future, it would bring even more users to forming an active community.

Modes of Transport: The application currently only supports walking everywhere on foot.
It may be feasible in small cities with limited-sized city centers; however, when the user wants
to visit a bigger city, it is necessary to include services like public transit or taxi, supported
by the Google Routes API used in this implementation. Moreover, support for cars with an
automatic addition of parking locations to the itinerary would make it easy for the people
who travel to the city by car.

Implementing a Back-end Server: Introducing a server as a mediator between the mobile
client and the Google Maps Platform offers exciting possibilities. This server could handle
the complex logic behind trip creation and optimization. Currently, the focus is on efficient
mobile device performance. A server, however, could house a more powerful optimization
algorithm. Moreover, if there was a back-end server, social features could be implemented.
This would increase people’s engagement with the application, allowing trip sharing, photo
sharing, travel tips, collaborative itinerary building, and much more.

Itinerary Customization: Users would also benefit if there were an option to split an
itinerary into multiple days. For now, the user needs to create multiple itineraries for one
trip. It would also be helpful if the user could add notes to certain places, like check-in or
reservation times. Additionally, if the user decides to optimize a trip, it switches all the places
to create a more efficient route. However, it would be helpful if the user could lock places at
their point in the trip and have the rest optimized.

Displaying More Information: Currently, the application only shows the place’s name,
picture, and address. In the future, this could be expanded to show information like opening
hours user ratings or an icon according to what type of a place it is. All this information is
accessible from the Google APIs; however, it would require changing the domain model to
store more information in the Place entity.

Itinerary Map: Adding a map to an itinerary would help make more sense of the order
given by the application. On the map, users could see an overview of their trip and would be
able to make adjustments according to their preferences.

Notifications: When traveling through a city, users can quickly lose track of their progress.
If the user would get a notification after arriving at a place of interest, it would help to clarify
their progress. Moreover, this could be an invitation to take a picture of the location; this
way, more users would take pictures, improving the process of recollecting a past trip.

More Exciting UI: At the current stage of the application, the design is very analytical,
focusing on the efficiency of the travel. Changes could be made to help motivate the user
more. For example, praise or encouragement after optimizing or finishing a trip would inspire
the user to repeat this process in the future. Furthermore, adding more playful animations
would make the UX friendlier.

Conclusion

This thesis aimed to analyze, design, and implement an Android application to help travelers
get the most out of their travels.

In the beginning, the potential of the application was found by identifying the possible user base.
It was found to be a significant amount of people, with the number still rising. After, the existing
solutions from Google Play were analyzed. Their strengths and weaknesses were identified and
translated into a set of requirements and use cases for the future application.

Subsequently, the thesis focused on what the application should be and on what technologies it
should be built. It was determined that KMM is the appropriate strategy for such an application
since it balances effort and outcome with multiple platforms in mind. Clean Architecture was
chosen to ensure the best future-proofing and scalability. After establishing the application’s
base, the technologies required to implement the solution were evaluated and selected. The final
stage of this phase involved designing and testing the UI. Six people tested the UI, and based on
their feedback, final revisions were made before implementation.

The application’s development began with a dev-stack, which served as a model for a properly
structured project. The application was only created for Android, but with KMM, adding an iOS
presentation layer in the future will be simple. The use of modern technologies came to fruition
as they enabled smooth integration and fast-paced development. All functional requirements
were successfully implemented.

Following implementation, the application was tested. The testing phase would require more time
than was available; the unit test coverage is small, and more testing scenarios would be necessary
to evaluate the application properly. However, because it is only a prototype that is unsuitable
for public release, further testing has not yet been considered required. Google Firebase was
found to be an invaluable tool for distributing, analyzing, and guarding the application in the
early phases of its development.

In the final chapter, the outcome of this thesis was discussed. This highlighted issues previously
overlooked or out of this project’s scope. Nonetheless, thanks to the feedback from Firebase-
enabled testing, concrete examples of possible improvements were found to aid this application’s
future development.

All in all, this thesis accomplished the set goals. The outcome is a functioning application
implemented on the Android operating system. The application was met with a positive attitude
from the testers, and with their help, it can one day become a successfully deployed application
with a thriving community.

65

Appendix A

Appendix A

66

67

(a) Trip detail screen (b) Trip edit screen

Figure A.1 Wireframes designed in Figma.

68

(a) Completed trip detail screen (b) Completed trip edit screen

Figure A.2 Wireframes designed in Figma.

Appendix B

Appendix B

69

70

(a) Trip detail screen (b) Trip edit screen

Figure B.1 Screens implemented in Jetpack Compose.

71

(a) Completed trip detail screen (b) Completed trip edit screen

Figure B.2 Screens implemented in Jetpack Compose.

Bibliography

1. HERRE, Bastian; SAMBORSKA, Veronika; ROSER, Max. Tourism. Our World in Data
[online]. 2023. Available also from: https://ourworldindata.org/tourism. [Accessed
1-04-2024].

2. STATISTA. Global: number of smartphone users 2014-2029 | Statista — statista.com [on-
line]. 2024. Available also from: https://www.statista.com/forecasts/1143723/smart
phone-users-in-the-world. [Accessed 1-04-2024].

3. WANDERLOG. Wanderlog - Trip Planner App - Apps on Google Play — play.google.com
[online]. 2024. Available also from: https://play.google.com/store/apps/details?id
=com.wanderlog.android. [Accessed 1-04-2024].

4. TRIPIT, INC. TripIt: Travel Planner - Apps on Google Play — play.google.com [online].
2024. Available also from: https://play.google.com/store/apps/details?id=com.tri
pit. [Accessed 1-04-2024].

5. TRIPADVISOR. Tripadvisor: Plan & Book Trips - Apps on Google Play — play.google.com
[online]. 2024. Available also from: https://play.google.com/store/apps/details?id
=com.tripadvisor.tripadvisor. [Accessed 1-04-2024].

6. VOYAGE AI INC. iplan.ai - Travel Planner - Apps on Google Play — play.google.com
[online]. 2024. Available also from: https://play.google.com/store/apps/details?id
=ai.iplan.app. [Accessed 1-04-2024].

7. POLARSTEPS. Polarsteps - Travel Tracker - Apps on Google Play — play.google.com
[online]. 2024. Available also from: https://play.google.com/store/apps/details?id
=com.polarsteps. [Accessed 1-04-2024].

8. STATCOUNTER. Mobile OS market share worldwide 2009-2023 | Statista — statista.com
[online]. 2024. Available also from: https://www.statista.com/statistics/272698/g
lobal-market-share-held-by-mobile-operating-systems-since-2009/. [Accessed
17-04-2024].

9. STATCOUNTER. Mobile OS share North America 2018-2024 | Statista — statista.com
[online]. 2024. Available also from: https://www.statista.com/statistics/1045192
/share- of- mobile- operating- systems- in- north- america- by- month/. [Accessed
17-04-2024].

72

https://ourworldindata.org/tourism
https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
https://www.statista.com/forecasts/1143723/smartphone-users-in-the-world
https://play.google.com/store/apps/details?id=com.wanderlog.android
https://play.google.com/store/apps/details?id=com.wanderlog.android
https://play.google.com/store/apps/details?id=com.tripit
https://play.google.com/store/apps/details?id=com.tripit
https://play.google.com/store/apps/details?id=com.tripadvisor.tripadvisor
https://play.google.com/store/apps/details?id=com.tripadvisor.tripadvisor
https://play.google.com/store/apps/details?id=ai.iplan.app
https://play.google.com/store/apps/details?id=ai.iplan.app
https://play.google.com/store/apps/details?id=com.polarsteps
https://play.google.com/store/apps/details?id=com.polarsteps
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/1045192/share-of-mobile-operating-systems-in-north-america-by-month/
https://www.statista.com/statistics/1045192/share-of-mobile-operating-systems-in-north-america-by-month/

Bibliography 73

10. SURI, Bhawna; TANEJA, Shweta; BHANOT, Isha; SHARMA, Himanshi; RAJ, Aanchal.
Cross-Platform Empirical Analysis of Mobile Application Development frameworks: Kotlin,
React Native and Flutter. In: Proceedings of the 4th International Conference on Informa-
tion Management & Machine Intelligence. Jaipur, India: Association for Computing Ma-
chinery, 2023. ICIMMI ’22. isbn 9781450399937. Available from doi: 10.1145/3590837.3
590897.

11. DLABAL, Matouš. Vývoj mobilních aplikací pomocí technologie Kotlin Multiplatform. 2023.
PhD thesis.

12. JETBRAINS. Compose Multiplatform UI Framework | JetBrains — jetbrains.com [online].
2024. Available also from: https://www.jetbrains.com/lp/compose-multiplatform/.
[Accessed 19-04-2024].

13. JETBRAINS. Kotlin Multiplatform Mobile Goes Alpha | The Kotlin Blog [online]. 2024.
Available also from: https://blog.jetbrains.com/kotlin/2020/08/kotlin-multiplat
form-mobile-goes-alpha. [Accessed 19-04-2024].

14. GARCÍA, Raúl Ferrer. IOS architecture patterns: MVC, MVP, MVVM, Viper, and VIP in
Swift. Apress L. P., 2023.

15. SHAJI, Pooja. Choosing Android Architectures: MVC, MVP, MVVM, Clean Architecture,
and MVI. Medium [online]. 2023. Available also from: https://medium.com/@KodeFlap/c
hoosing-android-architectures-mvc-mvp-mvvm-clean-architecture-and-mvi-8ad2
a43f7f9b.

16. MARTIN, Robert C. Clean architecture: A craftsman’s guide to software structure and
Design. Prentice Hall, 2018.

17. LÄMMEL, Ralf; PEYTON JONES, Simon. Scrap Your Boilerplate: A Practical Design
Pattern for Generic Programming. In: 2003, vol. 38, pp. 26–37. Available from doi: 10.11
45/604174.604179.

18. Data Binding Library [online]. 2024. Available also from: https://developer.android.c
om/topic/libraries/data-binding. [Accessed 19-04-2024].

19. TEKIN, Semih. What is the Clean Architecture? - Semih Tekin - Medium. Medium [online].
2023. Available also from: https://semihtekin.medium.com/what-is-the-clean-archi
tecture-c80c2a2ff69a.

20. KHUDAIR, Mohammed. MVI Architecture Pattern in Android | Medium. Medium [online].
2024. Available also from: https://medium.com/@mohammedkhudair57/mvi-architectur
e-pattern-in-android-0046bf9b8a2e.

21. GOOGLE. Why Compose | Jetpack Compose | Android Developers — developer.android.com
[online]. 2024. Available also from: https://developer.android.com/develop/ui/compo
se/why-adopt. [Accessed 22-04-2024].

22. JETBRAINS. Ktor: Build Asynchronous Servers and Clients in Kotlin — ktor.io [online].
2024. Available also from: https://ktor.io/. [Accessed 23-04-2024].

23. SQUARE, Inc. Overview - SQLDelight — cashapp.github.io [online]. 2024. Available also
from: https://cashapp.github.io/sqldelight/2.1.0-SNAPSHOT/. [Accessed 23-04-
2024].

24. KANAKE, Ezra. A Guide to SQLDelight | Baeldung on Kotlin [online]. 2024. Available also
from: https://www.baeldung.com/kotlin/sqldelight. [Accessed 23-04-2024].

25. REDA, Karim. Dependency Injection using Koin in Kotlin Multiplatform Mobile (KMM).
Medium [online]. 2023. Available also from: https://medium.com/arconsis/dependency
-injection-using-koin-in-kotlin-multiplatform-mobile-kmm-eb4cfe82ed6.

https://doi.org/10.1145/3590837.3590897
https://doi.org/10.1145/3590837.3590897
https://www.jetbrains.com/lp/compose-multiplatform/
https://blog.jetbrains.com/kotlin/2020/08/kotlin-multiplatform-mobile-goes-alpha
https://blog.jetbrains.com/kotlin/2020/08/kotlin-multiplatform-mobile-goes-alpha
https://medium.com/@KodeFlap/choosing-android-architectures-mvc-mvp-mvvm-clean-architecture-and-mvi-8ad2a43f7f9b
https://medium.com/@KodeFlap/choosing-android-architectures-mvc-mvp-mvvm-clean-architecture-and-mvi-8ad2a43f7f9b
https://medium.com/@KodeFlap/choosing-android-architectures-mvc-mvp-mvvm-clean-architecture-and-mvi-8ad2a43f7f9b
https://doi.org/10.1145/604174.604179
https://doi.org/10.1145/604174.604179
https://developer.android.com/topic/libraries/data-binding
https://developer.android.com/topic/libraries/data-binding
https://semihtekin.medium.com/what-is-the-clean-architecture-c80c2a2ff69a
https://semihtekin.medium.com/what-is-the-clean-architecture-c80c2a2ff69a
https://medium.com/@mohammedkhudair57/mvi-architecture-pattern-in-android-0046bf9b8a2e
https://medium.com/@mohammedkhudair57/mvi-architecture-pattern-in-android-0046bf9b8a2e
https://developer.android.com/develop/ui/compose/why-adopt
https://developer.android.com/develop/ui/compose/why-adopt
https://ktor.io/
https://cashapp.github.io/sqldelight/2.1.0-SNAPSHOT/
https://www.baeldung.com/kotlin/sqldelight
https://medium.com/arconsis/dependency-injection-using-koin-in-kotlin-multiplatform-mobile-kmm-eb4cfe82ed6
https://medium.com/arconsis/dependency-injection-using-koin-in-kotlin-multiplatform-mobile-kmm-eb4cfe82ed6

Bibliography 74

26. MUNUSAMY, Boobalan. Accessing User’s Location Guide Android 2023 - Boobalan
Munusamy - Medium. Medium [online]. 2023. Available also from: https://medium.com
/@boobalaninfo/accessing-users-location-guide-android-2023-60a6f018a718.

27. KAUSHIK, Vijay Kant. An In-depth Comparison of Glide and Coil for Efficient Image
Loading in Android. Medium [online]. 2023. Available also from: https://medium.com/@v
ijaykantkaushik/an-in-depth-comparison-of-glide-and-coil-for-efficient-ima
ge-loading-in-android-c9298016c4b0.

28. GOOGLE. Google Maps Platform: Location and Mapping Solutions [online]. 2024. Available
also from: https://mapsplatform.google.com/. [Accessed 24-04-2024].

29. MAPBOX. Mapbox Docs — docs.mapbox.com [online]. 2024. Available also from: https:
//docs.mapbox.com/. [Accessed 24-04-2024].

30. NOMINATIM. Overview - Nominatim 4.4.0 Manual — nominatim.org [online]. 2024. Avail-
able also from: https://nominatim.org/release-docs/latest/api/Overview/. [Ac-
cessed 24-04-2024].

31. FOWLER, Martin. Patterns of enterprise application architecture. Addison-Wesley, 2015.
32. FIGMA. What is Wireframing? The Complete Guide [Free Checklist]| Figma — figma.com

[online]. 2024. Available also from: https://www.figma.com/resource-library/what-is
-wireframing/. [Accessed 24-04-2024].

33. MATEE DEVS. GitHub - MateeDevs/devstack-native-app: Matee KMP DevStack —
github.com [online]. 2024. Available also from: https://github.com/MateeDevs/devs
tack-native-app. [Accessed 27-04-2024].

34. GOOGLE. Google I/O 2019: Empowering developers to build the best experiences on Android
+ Play — android-developers.googleblog.com [online]. 2019. Available also from: https://a
ndroid-developers.googleblog.com/2019/05/google-io-2019-empowering-develop
ers-to-build-experiences-on-Android-Play.html. [Accessed 28-04-2024].

35. LUTKEVICH, Ben. Kotlin. WhatIs [online]. 2022. Available also from: https://www.tech
target.com/whatis/definition/Kotlin.

36. GOOGLE. Download Android Studio & App Tools - Android Developers — devel-
oper.android.com [online]. 2024. Available also from: https://developer.android.co
m/studio. [Accessed 28-04-2024].

37. JETBRAINS. Expected and actual declarations | Kotlin — kotlinlang.org [online]. 2024.
Available also from: https://kotlinlang.org/docs/multiplatform-expect-actual.ht
ml#rules-for-expected-and-actual-declarations. [Accessed 30-04-2024].

38. JETBRAINS. Coroutines basics | Kotlin — kotlinlang.org [online]. 2024. Available also from:
https://kotlinlang.org/docs/coroutines-basics.html. [Accessed 01-05-2024].

39. JETBRAINS. Composing suspending functions | Kotlin — kotlinlang.org [online]. 2024.
Available also from: https://kotlinlang.org/docs/composing-suspending-functions
.html. [Accessed 03-05-2024].

40. GOOGLE. Kotlin flows on Android | Android Developers — developer.android.com [on-
line]. 2023. Available also from: https://developer.android.com/kotlin/flow. [Ac-
cessed 01-05-2024].

41. GOOGLE. Runtime Permissions | Android Open Source Project — source.android.com
[online]. 2024. Available also from: https://source.android.com/docs/core/permissio
ns/runtime_perms. [Accessed 04-05-2024].

42. GEEKSFORGEEKS. Types of Software Testing. GeeksforGeeks. 2024. Available also from:
https://www.geeksforgeeks.org/types-software-testing.

https://medium.com/@boobalaninfo/accessing-users-location-guide-android-2023-60a6f018a718
https://medium.com/@boobalaninfo/accessing-users-location-guide-android-2023-60a6f018a718
https://medium.com/@vijaykantkaushik/an-in-depth-comparison-of-glide-and-coil-for-efficient-image-loading-in-android-c9298016c4b0
https://medium.com/@vijaykantkaushik/an-in-depth-comparison-of-glide-and-coil-for-efficient-image-loading-in-android-c9298016c4b0
https://medium.com/@vijaykantkaushik/an-in-depth-comparison-of-glide-and-coil-for-efficient-image-loading-in-android-c9298016c4b0
https://mapsplatform.google.com/
https://docs.mapbox.com/
https://docs.mapbox.com/
https://nominatim.org/release-docs/latest/api/Overview/
https://www.figma.com/resource-library/what-is-wireframing/
https://www.figma.com/resource-library/what-is-wireframing/
https://github.com/MateeDevs/devstack-native-app
https://github.com/MateeDevs/devstack-native-app
https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html
https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html
https://android-developers.googleblog.com/2019/05/google-io-2019-empowering-developers-to-build-experiences-on-Android-Play.html
https://www.techtarget.com/whatis/definition/Kotlin
https://www.techtarget.com/whatis/definition/Kotlin
https://developer.android.com/studio
https://developer.android.com/studio
https://kotlinlang.org/docs/multiplatform-expect-actual.html#rules-for-expected-and-actual-declarations
https://kotlinlang.org/docs/multiplatform-expect-actual.html#rules-for-expected-and-actual-declarations
https://kotlinlang.org/docs/coroutines-basics.html
https://kotlinlang.org/docs/composing-suspending-functions.html
https://kotlinlang.org/docs/composing-suspending-functions.html
https://developer.android.com/kotlin/flow
https://source.android.com/docs/core/permissions/runtime_perms
https://source.android.com/docs/core/permissions/runtime_perms
https://www.geeksforgeeks.org/types-software-testing

Bibliography 75

43. GOOGLE. Firebase | Google’s Mobile and Web App Development Platform — fire-
base.google.com [online]. 2024. Available also from: https://firebase.google.com/.
[Accessed 13-05-2024].

44. GOOGLE. Firebase App Distribution — firebase.google.com [online]. 2024. Available also
from: https://firebase.google.com/docs/app-distribution. [Accessed 13-05-2024].

https://firebase.google.com/
https://firebase.google.com/docs/app-distribution

Attachments

readme.txt..concise description of medium content
apk..directory with the installation apk

tripplanner.apk..installation file
src. ...directory with source codes

impl.. source codes of the implementation
thesis.......................................source codes of the thesis in LATEX format

text...directory with the text of the thesis
thesis.pdf..text of the thesis in PDF format

76

	Acknowledgments
	Declaration
	Abstract
	List of Abbreviations
	Introduction
	Analysis
	Potential User
	Existing Solutions
	Wanderlog
	TripIt
	Tripadvisor
	iplan.ai
	Polarsteps
	Summary

	Application Requirements Analysis
	Functional Requirements
	Non-functional Requirements

	Use Cases

	Design
	Application Platform
	Native
	Cross-platform
	Full Cross-platform
	Semi Cross-platform

	Conclusion

	Application Architecture
	Model-View-Controller (MVC)
	Model-View-Presenter (MVP)
	Model-View-ViewModel (MVVM)
	Clean Architecture
	Model-View-Intent (MVI)
	Conclusion

	Chosen Technologies
	Jetpack Compose
	Ktor
	SQLDelight
	Koin
	Fused Location Provider API
	Coil
	Maps

	Domain Diagram
	Activity Diagram
	State Diagram
	User interface
	Application’s Design
	Design Testing
	Results of Testing

	Implementation
	Kotlin
	Development Tools
	Android Studio
	Git

	Kotlin Multiplatform Mobile Structure
	Shared module
	Android Module

	Domain layer
	Model
	Repositories
	Use cases
	Location Controller

	Data Layer
	Coroutines
	Database
	Networking
	Repositories

	Presentation Layer
	Navigation
	Camera Manager
	Gallery Manager
	Permissions
	Composable Functions
	ViewModel
	Final Design

	Dependency Injection

	Testing
	Testing Methods
	Unit Tests
	Android Unit Tests
	Common Code Unit Tests

	User Tests
	Results

	Google Firebase
	App Distribution
	Crashlytics
	Analytics

	Discussion
	Future of the application

	Conclusion
	Appendix A
	Appendix B
	Attachments

