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Abstract and Contributions

SAT solvers are convenient tools to be used in the area of planning or formal verifica-
tion. However, in addition to Boolean constraints, it is often important to model phys-
ical phenomena, where differential equations are of immense importance. In current
industrial practice, the properties of the resulting models are checked by testing using
simulation tools. These approaches, however, lack robust computational support of au-
tomatic analysis (e.g., verifying) of such models, and do not search the Boolean state
space efficiently, as SAT solvers do.

Research on SAT solvers that can handle differential equations has aimed at replac-
ing tests with correctness proofs. However, there are fundamental limitations to such
approaches in the form of undecidability, and moreover, the resulting solvers do not
scale to problems of the size commonly handled by simulation tools in industry. Also, in
many applications, classical mathematical semantics of differential equations often does
not correspond well to the actual intended semantics, and hence a correctness proof wrt.
mathematical semantics does not ensure the correctness of the intended system.

We head at overcoming those limitations with an alternative approach to handling
ordinary differential equations (ODEs) within SAT solvers. This approach is based on
the semantics used by tests in simulation tools, but still may result in mathematically
precise correctness proofs wrt. that semantics.

Computational experiments confirm the promise of such an approach. In particular,
we present a railway scheduling problem that exhibits both non-trivial discrete and
continuous behavior and where a number of timing and ordering constraints on the
trains can appear. On the contrary, existing benchmark problems for SAT modulo ODE
exhibit only fairly trivial discrete state space.

We also introduce a new approach to solving a multi-agent path-finding problem.
We exploit conflict generalization techniques using an off-the-shelf SAT solver that also
handles linear real arithmetic constraints. Differential equations do not appear in this
model, but collision detection and avoidance of the agents are based on simulations
where non-linear constraints appear as well.
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Contributions. The main contributions of the dissertation thesis are the following:

• We propose a new method that exploits efficient SAT solvers and at the same time
handles ordinary differential equations (ODEs). In contrast to state-of-the-art ap-
proaches to SAT modulo ODE, the semantics of ODEs is based on semantics that
are used in simulation tools. This allows scaling the resulting solver to the size of
benchmark problems that appear in the industry.

• We introduce a precisely defined Satisfiability Modulo Theories (SMT) language
that is expressive and flexible compared to existing approaches.

• We introduce a benchmark problem that comes from the domain of railway schedul-
ing. Unlike the benchmarks used in state-of-the-art approaches, the problem ex-
hibits both non-trivial discrete and continuous behavior.

• We present an approach to a continuous-time version of the multi-agent path-
finding problem. Collision detection and avoidance of the agents yield both lin-
ear and non-linear arithmetic constraints. We efficiently handle the non-linear
constraints based on simulations and the linear constraints using an off-the-shelf
Satisfiability Modulo Theories (SMT) solver. Experiments show that the new ap-
proach scales better with computation time than state-of-the-art approaches.

Keywords: Boolean satisfiability (SAT), Satisfiability Modulo Theories (SMT), numeri-
cal methods for ordinary differential equations (ODEs), simulations, floating-point com-
putation, planning, formal verification, embedded systems.
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Abstrakt

SAT řešiče se ukázaly jako vhodné nástroje v oblasti plánování a formální verifikace.
Nicméně, kromě Booleovských omezení je často důležité modelovat také spojité jevy,
k čemuž jsou nesmírně důležité diferenciální rovnice. V současnosti platí, že se vlast-
nosti průmyslových modelů ověřují prostřednictvím testování a simulačních nástrojů.
Tyto přístupy však dostatečně neovládají automatickou analýzu takových modelů (např.
verifikaci) a neprohledávají Booleovský prostor tak efektivně jako právě SAT řešiče.

Výzkum SAT řešičů, které dokáží zacházet s diferenciálními rovnicemi, se zaměřo-
val na nahrazení testování důkazy správnosti. Jenomže, takové přístupy trpí zásadními
nedostatky, které plynou z nerozhodnutelnosti těchto problémů. Navíc, výsledné řešiče
se nedokáží škálovat na problémy o takové velikosti, kterou běžně zvládají simulační
nástroje v průmyslu. V mnoha aplikacích je také problém s tím, že klasická matematická
sémantika diferenciálních rovnic často neodpovídá zamýšlené sémantice. Z toho však
vyplývá, že důkaz správnosti vzhledem k matematické sémantice nezaručuje správnost
zamýšleného systému.

Abychom překonali tyto nedostatky, představujeme alternativní přístup k zacházení
s obyčejnými diferenciálními rovnicemi v rámci SAT řešičů, který je založen na stejné
sémantice, která se používá v testování a v simulačních nástrojích. Stále však platí, že
tato metoda může s ohledem na tuto simulační sémantiku dojít k matematicky přesným
důkazům správnosti.

Výpočetní experimenty potvrzují, že takový přístup je slibný. To ukazujeme ze-
jména na problému železničního plánování, který vykazuje jak netriviální diskrétní, tak
také spojité chování. Rovněž je možné specifikovat řadu časových omezení vlaků a je-
jich řazení. Naproti tomu existující experimenty pro SAT modulo diferenciální rovnice
vykazují jen poměrně triviální diskrétní stavový prostor.

Dále uvádíme nový způsob řešení problému multiagentního plánování. K zobec-
nění konfliktů agentů využíváme již existující SAT řešič, který také ovládá lineární
omezení reálných čísel. Ačkoli se zde nevyskytují diferenciální rovnice, detekce a vy-
hýbání se kolizím agentů jsou založeny na simulacích, kde se vyskytují také nelineární
omezení.
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Klíčová slova: Booleovská splnitelnost, Satisfiability Modulo Theories (SMT), num-
erické metody pro obyčejné diferenciální rovnice, simulace, počítaní s pohyblivou řá-
dovou čárkou, plánování, formální verifikace, vestavné systémy.
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CHAPTER 1
Introduction

The design of cyber-physical systems is increasingly based on models that can be simu-
lated before the actual system even exists. Here, the most natural way of modeling the
physical part is based on differential equations. The resulting models can then be sim-
ulated using numerical solvers for ordinary differential equations (ODEs) that are used
for instance in tools such as Simulink or Xcos. However, the computational support
for automatically analyzing such models is still far from being satisfactory. For exam-
ple, the analysis of industrial models is nowadays often based on exhaustive testing
and validated by certification authorities. Still, such approaches often rely on statistical
properties of the models, rather than on thorough constraints satisfaction techniques
that are widely used within the community of formal methods, such as model checking
and verification.

This has been addressed by SAT solvers [47, 58, 66] that do not only offer efficient
discrete (i.e., Boolean) reasoning, but that can in addition handle differential equations
by integrating interval ODE solvers [98]. These interval solvers are based on classical
mathematical solutions of ODEs, not on numerical methods. However, handling ODEs
in such a way is extremely difficult, and most related verification problems are unde-
cidable [22]. The resulting SAT modulo ODE solvers can handle impressive benchmark
examples, but their size is still quite far away from the size of the problems that may
occur in industrial practice. Moreover, existing benchmark problems for SAT modulo
ODE do not exhibit complex discrete state space.

A further reason why such tools may be a poor fit to the needs coming from indus-
trial applications is the fact that classical mathematical solutions usually do not correctly
represent the intended behavior of industrial models [95]. The reason is that the design
process of the models is often not based on a mathematical analysis of the underlying
differential equations, but on the results of numerical simulations, which stem from dis-
cretization and floating-point computation. Hence, the output of the simulation tool is
the authoritative description of the behavior of the model, not traditional mathematical
semantics. This holds even in cases when the model was designed based on ODEs cor-
responding to physical laws (“from first principles”), because even in such cases, the
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parameters of the model are estimated based on simulations. This may become even
more important due to the increasing popularity of data-driven modeling approaches,
for example, based on machine learning.

Therefore, the existing SAT modulo ODE approaches prove correctness wrt. seman-
tics that differs from the notion of correctness used during simulation and testing. We
overcome this mismatch by formalizing the semantics of SAT modulo ODE based on
numerical simulations [75]. Moreover, we develop a benchmark problem [74] that com-
bines a non-trivial propositional part with ODEs.

We also address another restriction of existing SAT modulo ODE approaches. Their
support for differential equations has the form of monolithic building blocks that con-
tain a full system of ODEs within which no Boolean reasoning is allowed. In contrast
to that, we provide a direct integration of ODEs into a standard Satisfiability Modulo
Theories (SMT) framework [14], which results in a tight integration of the syntax of the
theory into Boolean formulas, as usual for theories in SMT-LIB [12]. We apply a cor-
responding algorithm that tightly integrates Boolean satisfiability (SAT) and numeric
simulations of differential equations and support our observations by experiments us-
ing an implementation that is available online as open-source [72].

Our approach proves itself especially in the field of planning problems or the like,
such as transport scheduling or robot path-finding. Precise planning may become to
play an important role within upcoming autonomous traffic control systems. These are
the problems where searching for a specific goal state is non-trivial, but the state is sup-
posed to exist. Therefore, it is not necessary to explore the entire state space in order
to arrive at the result. Still, the state space may be huge and complicated, and the con-
straints may exhibit a number of potential conflicts that must be avoided. An example
is searching for a plan for multiple agents which must not collide with each other. Here,
an algorithm such as SAT may make a fundamental difference in the efficiency of the
search and of systematic avoidance of the conflicts.

As an example of a planning problem, we present a benchmark that comes from the
domain of railway scheduling [74], where we simulate train networks at a low level and
where a number of timing and ordering constraints can appear. The problem is inspired
by an approach to railway design capacity analysis [91] that combines a SAT solver with
a railway simulator, which is however not based on solving differential equations. We
show that it is possible to handle specific tasks efficiently even with a general-purpose
algorithm such as SAT modulo ODE. A major difficulty lies in modeling the fact that
trains sometimes have to switch to a deceleration phase to obey velocity limits. Here,
it is non-trivial to predict when such a switch must happen when modeling dynamics
based on differential equations.

Railway route planning can also be viewed as a multi-agent path-finding (MAPF)
problem [107], where trains are viewed as agents. MAPF [115, 106] is the problem
of navigating agents from their start positions to given individual goal positions in
a shared environment so that agents do not collide with each other. The environ-
ment is usually modeled using a graph. A generalization of standard MAPF which
also considers continuous phenomena—multi-agent path-finding with continuous time
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(MAPFR) [4]—allows more accurate modeling of the target application problem without
introducing denser and larger discretizations. Especially in applications, where agents
correspond to robots, it is important to consider graph edges that interconnect vertices
corresponding to more distant positions. However, in this area, usually much simpler
models of continuous behavior are used [4] than in the case of our railway scheduling.
Nonetheless, the resulting plans are often minimized wrt. a given objective function,
for example, the sum of lengths of the paths, while in [74] we do not optimize at all.
Furthermore, we employ a synchronous model of the trains that identifies each step of
the unrolled planning problem with a fixed time period, resulting in too many steps of
the unrolling.

We mitigate these drawbacks by solving the MAPFR problem which we directly
translate to an SMT problem using the theory of quantifier-free linear real arithmetic
(LRA), which allows us to reason about time in MAPF modeled in a continuous man-
ner. In addition to this, collision detection and avoidance of the agents yields non-linear
constraints which we handle based on simulations (i.e., floating-point computation).
The simulations do not involve differential equations though and we handle them us-
ing an off-the-shelf SMT solver instead of our implementation of SAT modulo ODE.
Still, the design of the model allows to increase the complexity of the simulations, for
example with ODEs.

State-of-the-art approaches for MAPFR [4] search for optimal plans. However, in
real-world applications, where the formalized MAPF problem results from an approx-
imation of the original application problem, an overly strong emphasis on optimality
is often pointless. Moreover, it may result in non-robust plans that are difficult to real-
ize in practice [7]. Hence we aim for a sub-optimal method whose level of optimality
can be adapted to the needs in the given application domain. We also differ from the
state-of-the-art approaches in that we approach the optimum from above and iterate
through collision-free plans. This has the advantage that—after finding its first plan—
our method can be interrupted at any time, still producing a collision-free, and hence
feasible plan. This anytime behavior is highly desirable in practice [82]. We did exper-
iments comparing our method with the state-of-the-art approaches on three classes of
benchmark problems and various numbers of agents. The results show that our method
is typically able to solve more instances than existing approaches for high time-outs and
less for lower time-outs. Future improvements in computer efficiency will consequently
make the method even more competitive.

We also demonstrate that in a similar manner as in the case of planning problems,
our SAT modulo ODE method is also efficient when finding a witness of unsafety of
a model—provided that the model is indeed not safe, because proving safety is cur-
rently not our strong side. Among others, we present experiments based on a hybrid
system model of inpatient glycemic control of a patient with type 1 diabetes [31], where
it is critical to verify that the glycemic controller is safe. The original model contains
a few mistakes, which we had to correct. The main problem is that the dynamics can
block switching between adjacent modes, leading to unintended safe results, because
finding an unsafe state was unsatisfiable. We however show that the corrected model
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is not safe, contradicting the original results [31] that proved the model to be safe, ap-
parently only due to the mentioned modeling mistakes. To support our statement, we
attach a concrete counterexample. We also compare the performance of our method
with a state-of-the-art approach to SAT modulo ODE [58]. We show that the run-time
of our approach that is based on simulations instead of validated ODE integration is in
this particular case, not unexpectedly, much faster.

1.1 Related Work
Industrial models of cyber-physical systems can be simulated using numerical solvers
for ODEs and by tools such as Simulink or Xcos. However, the computational support
for automatically analyzing such models is still far from being satisfactory. Research on
SAT solvers that can handle differential equations [47, 58, 66] has aimed at replacing
tests with correctness proofs. However, there are fundamental limitations to such ap-
proaches in the form of undecidability, and moreover, the resulting solvers do not scale
to problems of the size commonly handled by simulation tools in industry. Also, in
many applications, classical mathematical semantics of ODEs often does not correspond
well to the actual intended semantics, and hence a correctness proof wrt. mathematical
semantics does not ensure the correctness of the intended system.

The problem of verifying differential equations wrt. simulation semantics has been
addressed before [96, 21], but not in a SAT modulo theory context. Also, floating-point
arithmetic has been realized to be an important domain for verification tools [24, 93],
resulting in a floating point theory in SMT-LIB. However, this concentrates on the intri-
cacies of floating point arithmetic, which we largely ignore here, and instead concentrate
on the handling of ODEs.

The application of SAT and SMT solvers to planning problems is not new [104, 81,
30], usually in the context of temporal and numerical planning—extensions of the clas-
sical planning problem with numerical variables. However, in our approach we handle
ODEs directly, without relying on those ODEs to have symbolic (or even polynomial)
solutions.

Railway Scheduling. We are not aware of existing approaches to railway scheduling
that are based on SMT with realistic modeling of continuous dynamics. An approach
that builds on an ad-hoc combination of SAT and a railway simulator [91] solves the
problem of design capacity analysis, which is a related problem to railway scheduling.
However, we differ in that our model allows rich timing constraints, including their
Boolean combinations, and that our dynamics of trains is an integral, but modifiable
part of the model, instead of being hidden in a simulator.

Many other approaches dedicated to railway scheduling exist. Some support only
limited precision or work only under certain assumptions, for example, fixed routes,
or not taking into account limited track capacity. Some use networks that were trans-
formed from a microscopic level to an aggregated, macroscopic level [108]. Also, prob-
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abilistic methods exist [109, 62]. Some approaches are quite accurate, but still ignore
some constraints that we take into account. For example, not all combinations of pos-
sible train paths are considered [121], or bi-directional tracks are replaced by pairs of
one-directional tracks, and simpler train dynamics is used [61].

Multi-Agent Path-Finding. State-of-the-art approaches for multi-agent path-finding
with continuous time (MAPFR) such as Continuous-time Conflict-based Search (CCBS)
[4], a generalization of Conflict-based Search (CBS) [114] that represents one of the most
popular algorithms for MAPF, search for optimal plans. Other existing methods for
generalized variants of MAPF with continuous time include variants of Increasing Cost
Tree Search (ICTS) [120] where durations of individual actions can be non-unit. The
difference from our generalization is that agents do not have an opportunity to wait
an arbitrary amount of time but wait times are predefined via discretization. In addi-
tion, a more accurate discretization often increases the number of actions, which can
lead to an excessively large search space.

Our method for MAPFR comes from the stream of compilation-based methods for
MAPF, where the MAPF instance is compiled to an instance in a different formalism
for which an off-the-shelf efficient solver exists. Solvers based on formalisms such as
SAT [118, 117], Constraint Programming (CP) [105, 55], or Mixed-integer Linear Pro-
gramming (MILP) [79] exist. The advantage of these solvers is that any progress in the
solver for the target formalism can be immediately reflected in the MAPF solver that it
is based on.

1.2 Contributions

We list the main contributions of the dissertation thesis. In cases an item is directly
related to a reviewed paper, we attach the corresponding reference.

• In Chapter 4, we propose a new way of incorporating ODEs into SAT followed
by a corresponding solver in Chapter 6. The new method exploits efficient SAT
solvers and at the same time handles ODEs based on semantics that are used in
simulation tools. This allows the modeling of complex dynamic phenomena and
scaling the resulting solver to the size of benchmark problems that appear in the
industry—in contrast with state-of-the-art approaches to SAT modulo ODE. More-
over, since our solver is based on a SAT solver, this also allows the handling of
benchmarks with a high number of Boolean constraints (e.g. planning or verifica-
tion problems).

Consecutively, we model particular problems in a precisely defined SMT lan-
guage. We present the syntax of the theory in Section 4.2 and the input language
of our solver in Section 6.3 which roughly follows SMT-LIB standard. The lan-
guage is expressive and flexible compared to existing approaches. We show that
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it is possible to solve specific tasks efficiently even with our general-purpose al-
gorithm. Also, in comparison with some ad-hoc methods for specific planning
problems, it is possible to easily modify the underlying dynamics of the particular
models.

Tomáš Kolárik and Stefan Ratschan. “SAT Modulo Differential Equation Simu-
lations”. In: Tests and Proofs. Ed. by W. Ahrendt and H. Wehrheim. Vol. 12165.
LNCS. Springer, 2020. URL: https://doi.org/10.1007/978-3-030-
50995-8_5.

• We implement1 our method from Chapter 6 using a tight integration of the un-
derlying SAT solver and the numerical simulator which also handles ODEs and
invariants. The resulting algorithm is based on the principles of lazy online ap-
proaches to SMT with exhaustive theory propagation.

• In Chapter 8, we introduce a benchmark problem that, unlike the benchmarks
used in state-of-the-art approaches, exhibits both non-trivial discrete and con-
tinuous phenomena. The resulting problem comes from the domain of railway
scheduling, where we simulate train networks at a low level and where a number
of timing and ordering constraints can appear.

Tomáš Kolárik and Stefan Ratschan. “Railway Scheduling Using Boolean Satisfia-
bility Modulo Simulations”. In: Formal Methods. Ed. by Marsha Chechik, Joost-
Pieter Katoen, and Martin Leucker. Cham: Springer International Publishing,
2023, pp. 56–73. ISBN: 978-3-031-27481-7. URL: https://doi.org/10.1007/
978-3-031-27481-7_5.

• In Chapter 9, we present an algorithm solving a continuous-time version of the
multi-agent path-finding problem. We handle simple timing constraints on the
agents using an off-the-shelf SMT solver with linear real arithmetic. On the other
hand, collision detection and avoidance of the agents yields non-linear constraints
which we handle based on simulations (i.e., floating-point computation), similarly
to industrial simulation tools. Although the simulations do not involve differential
equations, still the design of the model allows to increase the complexity of the
simulations (e.g. with ODEs). Experiments show that the new approach scales
better concerning the available computation time than state-of-the-art approaches.

To appear in:
Tomáš Kolárik, Stefan Ratschan, and Pavel Surynek. “Multi-Agent Path Finding
with Continuous Time Using SAT Modulo Linear Real Arithmetic”. In: Interna-
tional Conference on Agents and Artificial Intelligence. Ed. by Ana Paula Rocha, Luc
Steels, and Jaap van den Herik. SCITEPRESS, 2024.
On the shortlist for the Best Student Paper Award.

1https://gitlab.com/Tomaqa/unsot.
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1.3. Structure of the Thesis

1.3 Structure of the Thesis
The dissertation thesis is organized into chapters as follows:

• Introduction.

• Chapter 2: Theoretical Background provides theoretical information on the problems
that create the building blocks of the satisfiability problems that are studied in this
thesis.

• Chapter 3: Existing Algorithms presents particular approaches to the problems
presented in the previous theoretical chapter. However, our discussion of ODE
solvers covers only methods used in classical simulation tools.

• Chapter 4: SAT Modulo Differential Equation Simulations: Definition presents the
target problem of this thesis. Here we aim at a more general engineering audi-
ence compared to the original formalization [75]. The resulting formalism is able
to model planning or verification tasks which involve complex systems such as
cyber-physical systems.

• Chapter 5: State of the Art Tools contains an overview of current implementations
of existing algorithms presented in Chapter 3 and of sophisticated state-of-the-art
tools that may handle problems that are similar to SAT modulo ODE.

• Chapter 6: SAT Modulo Differential Equation Simulations: Solver proposes an alter-
native approach to SAT modulo ODE, based on the definitions in Chapter 4.

• Chapter 7: Case Studies with ODEs presents several models that stem from the
language defined in Chapter 4, and provides experimental results of the related
case studies.

• Chapter 8: Railway Scheduling presents another case study in SAT modulo ODE [74],
where however the discrete part is non-trivial. The train networks are simulated
at a low-level and the formulas may contain a number of timing and ordering
constraints on the trains.

• Chapter 9: Multi-Agent Path-Finding presents an algorithm solving a continuous-
time version of the MAPF problem [77] using an off-the-shelf SMT solver with
linear real arithmetic. However, we handle collision detection and avoidance of
the agents based on simulations.

• Conclusion.
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CHAPTER 2
Theoretical Background

This chapter provides a theoretical background on the problems that create the build-
ing blocks of the satisfiability problems and of the case studies that we present in this
dissertation thesis. Many of these formalisms and problems are well-known within the
community of formal methods.

We start with definitions that involve ordinary differential equations (ODEs) in Sec-
tion 2.1. In Section 2.2, we show a modeling formalism that concerns hybrid automata.
Then, we switch to problems that are based on logical formulas: Boolean satisfiability
(SAT) in Section 2.3 and Satisfiability Modulo Theories (SMT) in Section 2.4. Finally, in
Section 2.5 we discuss bounded model checking (BMC).

2.1 Ordinary Differential Equation

Ordinary differential equations (ODEs) are widely used in natural science (not only) to
model the progress of a phenomenon in time. Moreover, they often form a basis of the
physical part of industrial models. The expressive power of differential equations is
remarkable, but it may be non-trivial to realize or predict their execution.

There is a number of kinds of differential equations, but even the most ordinary ones
are sufficient to model complex phenomena, in the form of systems (also called schemes)
of differential equations, which all share the same independent variable.

Definition 1. A (first-order autonomous) system of d ordinary differential equations
(ODEs) is an expression of the form

ḟ = G(f )

where f denotes d unknown differentiable functions (dependent variables) of a shared indepen-
dent variable t ∈ R (usually time) and ḟ their first derivatives in t, and G : Rd → Rd are
functions that are Lipschitz [22, 63] on f .

Functions f : R→ Rd are a solution of the system if for all t, ḟ (t) = G(f (t)).

9



2. THEORETICAL BACKGROUND

Hereafter, we will assume that all ODEs are of first order1 and autonomous, and
that the independent variable models time. Since the definition involves systems of
ODEs, the fact that we require ODEs to be of first order is actually no qualitative restric-
tion, because higher-order derivatives can be transformed into systems of first-order
ODEs [63]. Autonomous ODEs restrict the equations s.t. they are independent of t, that
is, functions G do not contain t as an argument. Note that the definition also does not
allow derivatives of functions to appear in G. ODEs that forbid derivatives to appear as
arguments of other functions are called explicit ODEs. The assumption that functions G
are Lipschitz (i.e. they satisfy Lipschitz condition) is important as it guarantees that the
solution exists and is unique2. For simplicity, we consider only cases with functions
defined everywhere on R.

Remark 1. The fact that we require ODEs to be autonomous (i.e. independent of time t)
is not a restriction, because time can always be substituted by including an auxiliary
function u into f defined s.t. u̇ = 1. Then, for example, autonomous ḟ = u is equivalent
to non-autonomous ḟ = t.

Hence, if not stated otherwise, we will not distinguish between the independent
variable and such an auxiliary function within our systems of ODEs, and will implicitly
assume that function t models time.

Example 2.1. We present an example of a simple system of (first order, autonomous,
explicit) ODEs, but written in the following form:

ẋ = v

v̇ = −g
(2.1)

where x and v model vertical position and velocity of a falling object, respectively, and
g is the constant of the gravity of Earth. Note that the left hand side of the equations
contain just first derivatives (first order ODEs), and that the right hand side of the equa-
tions does not contain t (autonomous ODEs) nor derivatives (explicit ODEs). Also, note
that the system is equivalent to just a single second-order ODE ẍ = −g.

Formula 2.1 can be formulated in terms of Definition 1 as follows: f = (x , v), that
is, f [1] = x and f [2] = v , and G(f ) = (v ,−g), that is, G [1](f ) = v and G [2](f ) = −g.
The example shows that constants (here g) are not forbidden within G, and also that
functions and constants are not explicitly distinguished by using time t as the argument
value of the functions (e.g. v(t)).

1A higher-order ODE contains a higher-order derivative, which is a consecutive repetition of first
derivatives of a function (since a derivative results in a function again, if the derivative exists). For
example, f̈ stands for second derivative [63] of f which corresponds to the first derivative of the first
derivative of f .

2Proof of the theorem [22, 63] is based on Picard iterations.
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It is usually necessary to provide initial values for ODEs. Initial values are typi-
cally required to be scalar numbers but can be, for example, also specified in the form
of intervals [40]. Henceforth, we will assume only scalar initial values, unless stated
otherwise.

Definition 2. An initial value problem (IVP) [22] is a system of ODEs that in addition all
have fixed initial values:

f (t0) = f0

where t0 ∈ R is an initial value of time and f0 ∈ Rd are initial values of the functions.

Remark 2. If an IVP has a solution, then the solution satisfies the following integral
equation:

f (t) = f0 +

∫ t

t0

G(f (u)) du.

Example 2.2. To make the system from Example 2.1 an IVP, one must also provide initial
values of the functions and also of the independent variable, for example:

t0 7→ 0, x (t0) 7→ 10, v(t0) 7→ 0 (2.2)

which states that the object starts falling from height 10, with no velocity at the begin-
ning. In terms of Definition 2, this corresponds to t0 = 0 and f0 = (10, 0).
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Figure 2.1: Solution of a system of ODEs modeling a falling object for t ∈ [0, 2].

Note that the system does not define any final conditions, that is, the resulting func-
tions would have infinite lengths. A typical approach is not only to fix the initial value
of time, but also the final value, such as the time t in Remark 2. An example of resulting
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trajectories of the system for t ∈ [0, 2] is shown in Figure 2.1. Notice that the vertical
position x of the object is eventually negative, which may mean that it appears below
the ground—which is probably not an intended behavior. However, it is generally non-
trivial to estimate the proper value of time, say t̂, such that x (t̂) = 0 (in cases where
Formula 2.1 would be more complicated).

Note that scalar variables can be used in the form of constant functions within f in
Definition 1 and Definition 2. For example, constant g in Formula 2.1 may be replaced by
a function defined s.t. ġ = 0, by extending f to (x , v , g), and by adding e.g. g(t0) 7→ 9.81
into Formula 2.2.

2.1.1 Simulation Semantics of ODEs
Common semantics of differential equations are naturally based on mathematical anal-
ysis, that is, mathematical solutions of differential equations. We call such semantics
classical mathematical semantics. An issue is that decision problems (like reachability of
a region) related to such semantics are often undecidable3 and hardly usable in practice.

According to the discussion presented in the introduction chapter, we rather focus
on so-called simulation semantics, which solve the underlying equations numerically.

We treat the following terms as synonyms: simulation semantics of ODEs, ODE sim-
ulations, numerical solution of ODEs. Another synonym for solving ODEs numeri-
cally is numerical integration, where the motivation for the word integration refers to
Remark 2.

A difference between classical mathematical solutions and simulations of ODEs lies
in discretization and (usually) floating-point computation. There are several variants of
floating-point arithmetic, like IEEE 754 arithmetic with a given bit precision (e.g. 64).
Moreover, there are many numerical methods for simulating ODEs. Floating-point
arithmetics often define special values, like infinities, or Not-A-Number (which rep-
resents e.g. 0

0
). Robust algorithms must handle such cases explicitly.

Simulation semantics, for example [96, 21], can result in a much higher performance
compared to analytic solutions. However, floating-point operations usually aggregate
rounding errors, which are propagated up to the solutions of the ODEs, which are likely
to be different from the exact mathematical solutions. Another type of errors is related
to the approximation of the integration itself, which is usually more significant than the
rounding errors. Simulation methods usually do not guarantee precise bounds of the
reached error, only its asymptotic convergence.

Nevertheless, simulation semantics often correspond to the behavior of industrial
cyber-physical systems better than mathematical semantics do [95]. The reason is that
the whole design process of such systems is usually tightly connected to their corre-
sponding models that are based on the results of numerical simulations. The engineers

3A more rigorous discussion of this topic is out of the scope of this dissertation thesis, see [22] for
more details.
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have already created and thoroughly verified such models based on their experiments,
and we can use the models and trust that they reflect realistic behavior. In the case
of mathematical semantics, on the other hand, we do not have enough evidence that
such models reflect real-world systems, unless they depend only on elementary physi-
cal laws—which is not the case of complex industrial systems.

Simulation semantics may be highly parametric, including a chosen arithmetic and
an integration method, along with all corresponding parameters. Such methods can
differ a lot, and there is no “best” method that dominates all the others—various prob-
lems may require different parameters. A deeper investigation of these methods follows
in Chapter 3.

2.2 Hybrid Automata
ODEs are useful for modeling continuous phenomena. However, it may also be neces-
sary to model discrete behavior of a real-world system. To achieve that, a possible way
is to adapt classical discrete automata theory in the context of differential equations.
There are many ways how to embed continuous time into discrete automata, for exam-
ple timed automata, hybrid automata, etc. A hybrid automaton (e.g. [85, 90]) is a possible
formalism that is expressive enough to also describe differential equations. Although
hybrid automata are not the subject of this dissertation thesis, they serve as an illustra-
tive example of an alternative approach to model cyber-physical systems. We present
them only informally.

A hybrid automaton is represented by a directed graph which is extended with con-
tinuous variables. The graph has a finite number of vertices, called locations. There
is always exactly one active location. Dynamics associated with the variables are de-
scribed by ODEs and consists of guarded discrete transitions between locations of the
automaton that can reset some variables. Each location is associated to a set of so-called
invariants, which are constraints on continuous variables that must hold at all times, as
long as the location is active. Continuous variables are actually functions of time, but
are treated as first-order objects.

Initial conditions are given by a set of possible initial locations and by initial values
of all the variables. A typical property of such an automaton that one may want to
verify is reachability of a set of states [22], which is however an undecidable problem.
We assume no explicit inputs or outputs of hybrid automata that would be related to
the visited locations.

Example 2.3. A simplified example of a hybrid automaton is shown in Figure 2.2, with
the same dynamics as in Example 2.1, but in addition with invariants and a reset of
variable v . It models a bouncing ball where location down models fall of the ball and
the location switches to up as soon as the ball reaches the ground. Then the location
models bounce of the ball with possibly imperfect elasticity, which may reduce the ver-
tical velocity, corresponding to the reset with K ∈ [0, 1] which determines the elasticity.
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Down Up

Figure 2.2: Simplified hybrid automaton of a bouncing ball model.

Invariant x ≥ 0 guarantees that the ball does not appear below the ground (in contrast
to Example 2.2 and Figure 2.1).

Initial conditions are missing in the figure: neither initial location nor initial values of
variables x and v is provided. It is not unusual to provide both initial and so-called goal
conditions separately from the model (i.e. the automaton). This way, such a model can
be used in different contexts and can result in various verification (reachability) tasks.
For example, given the automaton and initial conditions corresponding to Example 2.2,
that is, initial value of x maps to 10 and initial value of v maps to 0, and starting from
location down, a task can be to check if a state with active location up and with x ≥ 6 is
reachable.

One might also want to, for example, define a value for K. Actually, it may be more
useful to use some small interval instead of concrete value. The same applies to the
initial value of the continuous variables, which can also be desirable to be defined with
some flexibility, that is, in the form of intervals, instead of exact values. However, such
intervals are not discussed here.

Figure 2.3 shows an example of resulting trajectories of the automaton with the men-
tioned initial conditions after 2 transitions between the locations. The elasticity of the
bounces of the ball is imperfect here (K = 0.8), so the height that is reached after the
bounce is lower than the initial height. As a result, it is true that, for example, a state
with active location up and with x ≥ 6 is reachable—it goes up to x = 6.4 in the second
stage, which corresponds to location up.

With hybrid automata, Boolean state space is represented in the form of a graph.
Most verification tools that are based on hybrid automata (e.g. [53]) use graph algo-
rithms for reachability analysis and the like. The model might be divided into multiple
simpler automata connected in the form of compositions. Using compositions can en-
hance readability of the resulting model and also, with increasing number of Boolean
constraints in the model, it can overcome the exponential growth of the number of nec-
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Figure 2.3: Solution of three stages of ODEs modeling a bounce of a ball with K = 0.8.

essary locations. For example, the bouncing ball model can be extended of horizontal
movement, again with the possibility of bounces, analogously to how vertical dynam-
ics is modeled. Instead of creating an automaton with four locations to cover all the
possibilities (down-left, down-right, . . . ), it might be better to make a composition of the
existing automaton and a new one with locations left and right, where the horizontal
dynamics would be defined separately.

2.3 Boolean Satisfiability Problem
The Boolean satisfiability (SAT) problem is a well known nondeterministic polynomial
time (NP) complete problem4, deeply investigated and implemented in a number of
very efficient solvers that are also used in practice. Although there is no known algo-
rithm that solves this problem with an asymptotic worst-case complexity better than ex-
ponential, most practical instances are efficiently solvable by state-of-the-art algorithms
because the hardest possible instances are rare.

Definition 3. Boolean satisfiability is the problem of deciding whether there is an assignment
of Boolean values to n variables b = (b[1], . . . , b[n]) that satisfies a quantifier-free propositional
(Boolean) formula ϕ.

A Boolean literal is either a Boolean variable or its negation. We will also respec-
tively say that a Boolean literal is negative or positive iff it does or does not represent

4It is the first NP problem which was proved that any NP problem can be translated into it in poly-
nomial time [37].
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2. THEORETICAL BACKGROUND

a negation. Formula ϕ is typically in conjunctive normal form (CNF), that is, conjunc-
tion of clauses which are disjunctions of Boolean literals. This may be an important fact
for huge instances, because sometimes encoding a problem into such a formula can be
a bit time-consuming.

A satisfiable assignment of variables b may be called a model, but we will not use
this keyword to avoid confusion with another meaning of a model, which is related
to modeling and is more relevant in this dissertation thesis. Note that computation of
a satisfiable assignment might be generally more difficult than just checking satisfiabil-
ity.

There is a plethora of algorithms and techniques that are used by state-of-the-art SAT
solvers. Their basic overview follows in Chapter 3.

2.3.1 Maximum Satisfiability Problem

There is a generalization of SAT—maximum satisfiability (MAX-SAT), which searches
for an assignment that satisfies not necessarily all clauses of a formula in CNF, but the
maximum number of clauses. We also distinguish two kinds of clauses: hard and soft
clauses. Then, the number of satisfied soft clauses is optimized, and all hard clauses
must be satisfied in any way. This stands for so-called partial MAX-SAT. Classical SAT
is then a special case where there are no soft clauses.

Another generalization is weighted (partial) MAX-SAT, where each soft clause is also
assigned to a non-negative weight, and the goal is to arrive at a solution with maxi-
mum total weight. Non-weighted variant is then a special case where each soft clause
is assigned to weight 1. We will henceforth assume the weighted partial variant of the
problem.

Therefore, it is possible to handle some optimization problems too, not only decision
problems.

2.4 Satisfiability Modulo Theories
Plain SAT is often effectively insufficient or inefficient for describing or deciding formu-
las that involve operations or variables that are more complex than the Boolean ones,
like arithmetic. Satisfiability Modulo Theories (SMT) is a generalization of SAT where it
is possible to decide more complex formulas. As the name states, it is based on various
predicate logical theories [14, 23]. Some theories are focused on a certain number set
(e.g. integers, reals), or a data structure (e.g. array). Some even allow quantifiers. As
different theories can often be combined with each other, the expressive power offered
by SMT instances can be impressive, and yet efficient.

Each theory has a syntactical and a semantical part. We will use simplified defini-
tions from [14].

Definition 4. A theory is defined in first-order logic by:
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2.4. Satisfiability Modulo Theories

• a signature—a set of constant, function and predicate symbols without semantics (i.e. the
syntax of the theory),

• an interpretation—a mapping of function and predicate symbols to semantically defined
functions and relations, respectively.

A fragment of a theory is a syntactically-restricted subset of formulas of the theory.

Note that other formalisms, such as [23], may define the semantics of theories in
a different way, for example, based on axioms5.

There is a number of standardized theories [12], covering real numbers, integer num-
bers, floating-point numbers, bit-vectors, or arrays. Recall that SAT is defined just on
propositional logic, a subset of first-order logic.

2.4.1 Real Arithmetic
Definition 5. The theory of real arithmetic [14] is defined by

• the signature with all rational constants, function symbols {+,−, ·} and predicate symbols
{=,≥}, all with the usual arity,

• the interpretation that gives all the symbols the usual meaning, treating arguments as real
numbers R.

The theory is decidable with double exponential asymptotic complexity [23], regard-
less whether the theory is fragmented with no quantifiers, or even if only conjunctions
of literals are permitted.

Typical fragments of the theory are quantifier-free fragments and linear fragment
(i.e. linear real arithmetic) that does not allow the multiplication of real variables (only
with constants), which is in practice much easier to handle. Another common fragment
is the difference logic (see below).

In the case of [23], the theory is defined as the Theory of Reals, using 17 axioms
which cover the properties of real closed fields with a total order of ≥.

Example 2.4. An example [14] of a formula in linear real arithmetic is

x < y + z ∧ x− y = z − 2w ∧ y < 0 ∧ w < y.

After substitution of x, the formula looks as follows:

y + z − 2w < y + z ∧ y < 0 ∧ w < y

which is equivalent to
0 < w < y < 0

which is unsatisfiable due to 0 < 0.

5Axioms are closed formulas in first-order logic that contain purely symbols from the syntax of the
theory and define the semantics entirely.
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2. THEORETICAL BACKGROUND

Difference Logic. An interesting example of a fragment of the real arithmetic is the
real difference logic [14], where all atomic theory formulas are of the form

x− y ▷◁ c

where x, y are variables, c is constant, and ▷◁ ∈ {=,≤,≥}. The background theory of
a difference logic can also be other theories than the real arithmetic, for example the
integer arithmetic.

Such formalism is too restrictive for many applications. However, very efficient al-
gorithms exist [100] for problems that can be encoded using only these constraints.

2.4.2 Optimization Modulo Theories
An optimizing variant of the problem—Optimization Modulo Theories (OMT) [99, 110,
119]—generally combines the principles of MAX-SAT along with minimization of a cost
function, which is for example a linear function of arithmetic variables (e.g. sum of
given real variables in the case of the real arithmetic).

Such a framework already offers to model a wide range of problems, thanks to han-
dling hard combinatorial constraints alongside the possibility of arithmetic optimiza-
tion. Nevertheless, the resulting problems can of course be very difficult to solve, es-
pecially when a formula contains complicated theory constraints, such as non-linear
arithmetic constraints.

An interesting aspect of optimization is approximation. With no approximation, the
solution is required to be a precise optimum. This may or may not be important: the
optimal solution guarantees the best possible result, which can on the other hand be
time-consuming to compute. The thing is that a solution that is quite close to the opti-
mal could be found much faster—the resources that would be necessary to arrive at just
a little bit better solution are sometimes not worth the effort. In such a case, a possible
strategy can be to search for an approximation of the optimum—a suboptimal solution.
We can in addition guarantee that the result is not worse than, for example, a user-
specified factor of the optimum, which we call a bounded suboptimal solution. Such
an approach is not wide-spread within SMT community, but is for example common
in the field of multi-agent path-finding [116, 83].

2.5 Bounded Model Checking
In the field of model checking (explicit or symbolic), bounded model checking (BMC) is
a way of discovering undesired properties in a transition system by checking all possible
paths from a set of initial states up to a bounded length of the paths. A transition system
is defined by a triplet (S, S0, R) where S is a set of all possible states, S0 ⊆ S is a set of
initial states andR ⊆ S×S is a transition relation which defines possible successor states
for each state of S. A path of a transition system is a sequence of states starting with
an initial state and respecting the transition relation. Here we suppose that all paths of
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2.5. Bounded Model Checking

all transition systems are infinite, meaning that for all states at least one possible next
state must be defined.

The idea of BMC is that any violation of a property within a bounded path implies that
the property does not hold even for infinite paths [15]. In other words, if BMC (T, ϕ, n)
stands for a BMC algorithm, which returns ⊥ if a property ϕ can be violated in a transi-
tion system T within any path of length n, and returns ⊤ otherwise, and a formula ΦT

holds iff ϕ holds for any infinite path of T , then

¬BMC (T, ϕ, n) =⇒ ¬ΦT . (2.3)

1 2 3

654

Figure 2.4: An example of a transition system.

Example 2.5. Figure 2.4 shows an example of a simple transition system T = (S, S0, R)
with S = {1, 2, 3, 4, 5, 6}, S0 = {1} and R = {(1, 2), (2, 3), (2, 5), (3, 2), (3, 6), (4, 1), (5, 4),
(5, 6), (6, 3)}. Let V and E be additional sets of states s.t. V = {1, 2, 4, 5} and E = {6}.
Let ϕ be a property of transition system T that holds iff entering a state from E implies
that the previous state was from V .

BMC (T, ϕ, 3) holds, because all possible paths in T of length 3 are (1, 2, 3) and (1, 2, 5),
so set E (i.e. state 6) cannot even be reached. Still, BMC (T, ϕ, 3) does not imply that
property ϕ holds—the implication works only in the opposite way (Formula 2.3).

In the case of BMC (T, ϕ, 4), all possible paths of length 4 are (1, 2, 3, 2), (1, 2, 3, 6),
(1, 2, 5, 4), (1, 2, 5, 6). Only paths (1, 2, 3, 6) and (1, 2, 5, 6) reach state 6. Path (1, 2, 5, 6)
does not violate the property, but path (1, 2, 3, 6) does, because the predecessor of state 6
is state 3 and 3 ̸∈ V . Therefore, BMC (T, ϕ, 4) does not hold, for which only a single path
violating the property is sufficient. Following Formula 2.3, property ϕ does not hold
even for infinite paths.

The example refers to explicit model checking, which is based on classical automata
and graph algorithms. In such a case, BMC is a form of graph-searching procedures and
usually relates to the reachability of a state.
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Symbolic model checking does not model all the states explicitly, but uses symbolic
abstraction of some (or all) states. SAT can be used as a possible way of symbolic model
checking, where the transition system of a model is represented by a Boolean formula,
instead of a graph. In this context, a BMC algorithm can be described as BMC (Tn, ϕn),
where Tn is the formula that represents the behavior of the model, including the transi-
tion system in the form of all initial states and the transition relation unrolled n times;
and ϕn is the property of our interest. Such an algorithm then forms ψn := (Tn ∧ ¬ϕn)
and returns⊤ iff formula ψn is unsatisfiable6, which means that there is no path of length
n that satisfies ¬ϕn (no counterexample to ϕn was found).

Example 2.6. Let T =
(
{v ∈ B2 | v[1] ∧ v[2]}, {(v,v′) ∈ B2 × B2 | R(v,v′)}

)
be a simple

transition system with an initial state corresponding to (⊤,⊤) and with transition rela-
tion defined s.t.

R(v,v′)⇔
( (

(v[1] ∧ v[2]) ⇒ (v′[1] ⇔ ¬v′[2])
)

∧
(
(v[1] ⇔ ¬v[2]) ⇒ ¬(v′[1] ∧ v′[2])

)
∧
(
(¬v[1] ∧ ¬v[2]) ⇒ (¬v′[1] ∧ ¬v′[2])

) )
which means that (⊤,⊤) has two equivalent successor states corresponding to (⊤,⊥)
and (⊥,⊤), from where any transition except of back to (⊤,⊤) can be taken, and then
there is an absorbing state (⊥,⊥). T1 corresponds to v

[1]
1 ∧ v

[2]
1 , T2 corresponds to T1 ∧

R(v1,v2), T3 to T2∧R(v2,v3), etc. Let the unreachability of (⊥,⊥) after n−1 steps be the
observed property, thus ¬ϕn ⇔ (¬v[1]n ∧ ¬v[2]n ), and ϕn ⇔ (v

[1]
n ∨ v[2]n ). Then, both ψ1 and

ψ2 are unsatisfiable, and BMC (T1, ϕ1) ∧ BMC (T2, ϕ2) holds, because (⊥,⊥) cannot be
reached after less than two transitions. However, ψ3 is already satisfiable, BMC (T3, ϕ3)
returns ⊥, and a witness is {v1 7→ (⊤,⊤),v2 7→ (⊥,⊤),v3 7→ (⊥,⊥)}. All BMC (Tn, ϕn),
n > 3 return ⊥ too, and as a result, it is not true, that state (⊥,⊥) is unreachable.

Hybrid automaton (Section 2.2), or for example also timed automaton, is an interest-
ing example of a modeling formalism in the field of model checking. Model checking
algorithms that analyze such automata cannot simply rely on explicit model checking—
this is sufficient for a graph representation of the locations, but they need to represent
real variables symbolically. The resulting algorithms can be a combination of both ex-
plicit and symbolic model checking techniques.

Applying bounded model checking on a hybrid automaton can result in reachability
analysis: The task is to decide whether certain states are reachable, where the states
correspond to locations after n transitions from the initial locations of the automaton.

6Note that Tn alone is usually supposed to be satisfiable, otherwise it likely means that the model is
corrupted and contains mistakes.
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CHAPTER 3
Existing Algorithms

This chapter presents existing algorithms that are related to some of the problems pre-
sented in Chapter 2. We will aim to describe those areas that are necessary for solv-
ing satisfiability problems where ordinary differential equation (ODE) appear as well.
However, our discussion of ODE solvers covers only methods used in classical simula-
tion tools.

First, we survey numerical methods for solving ordinary differential equations (ODEs)
in Section 3.1. Then, sections related to satisfiability problems follow: Section 3.2 refers
to Boolean satisfiability (SAT), and Section 3.3 refers to Satisfiability Modulo Theories
(SMT).

3.1 Numeric Solving of ODEs
According to the discussion in the introduction and in Section 2.1.1, this dissertation
thesis investigates only numeric approaches to solving ODEs (i.e. simulation seman-
tics), and not the ones that are based on mathematical solutions of ODEs. As a result,
scalars are of a sort F, not R.

Simulation methods are stepping methods, where there are step sizes between sample
points of the discretized approximate computation [6]. This means that the functions of
underlying ODEs are represented as sequences. These methods are iterative, where each
sample point depends on a limited number of previous points. Generally, the shorter
the step sizes are, the closer is the resulting trajectory to the mathematical solution of
an ODE, but the higher computational complexity is required too.

Notation. ti is the value of time t at i-th sample point (after i − 1 steps from the initial
point). hi := ti+1 − ti is the step size between i-th and (i + 1)-th sample points, and
it is abbreviated as just h if it is constant (i.e. an equidistance, the same for all i). The
last sample point is n-th sample point. Functions f and G correspond to Definition 1.
f i ≈ f (ti) are the approximated function values at i-th sample point. gi := G(f i) is
an abbreviation for function values of G.
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3. EXISTING ALGORITHMS

Recall that |f | = |G| = d.

Remark 3. We assume autonomous systems of ODEs, which is not an unusual practice.
Functions f and G are allowed to contain the time function t (Remark 1) though. For ex-
ample, if f [1] = t and G [1] = 1, then f [1]

i ≈ f [1](ti) = t(ti) = ti and g
[1]
i = G [1](ti) = 1. Such

a setup works just fine for a number of stepping methods even for non-autonomous
systems, but not in general. For simplicity, we will again ignore the time arguments
of the functions, mainly because we do not consider non-autonomous systems to be
important in the case of models that appear in this dissertation thesis.

A typical output of stepping methods is a list of pairs (ti,f i), i ∈ {0, . . . , n}, n ∈
Z>0 which represents the resulting trajectory. In general, any of n, tn and fn may be
unknown before the computation starts—in contrary to many classical implementations
of ODE solvers which do not support final conditions in a more general sense such as
those that we will present in Section 4.1.

Stepping methods are either explicit or implicit. Explicit methods use only the al-
ready computed sample points. Implicit methods, on the other hand, depend also on
the values that are not known so far, which can be resolved by solving an algebraic
equation.

Example 3.1. The explicit Euler’s method is in the form

f i+1 = f i + hgi. (3.1)

Example 3.2. The implicit Euler’s method is in the form

f i+1 = f i + hgi+1. (3.2)

Another example of an implicit method is the trapezoid (or midpoint) method:

f i+1 = f i +
h

2

(
gi+1 + gi

)
. (3.3)

Remark 4. If time was included in f i (Remark 3), time-step constraint ti+1 = ti+hwould
still hold for all the examples above: in the case of Formula 3.1, it would be f [1]

i+1 = f
[1]
i +

hg
[1]
i =⇒ ti+1 = ti+h·1, in the case of Formula 3.2: f [1]

i+1 = f
[1]
i +hg

[1]
i+1 =⇒ ti+1 = ti+h·1,

and in the case of Formula 3.3: f [1]
i+1 = f

[1]
i + h

2

(
g
[1]
i+1 + g

[1]
i

)
=⇒ ti+1 = ti +

h
2
· (1 + 1).
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3.1. Numeric Solving of ODEs

Explicit methods are usually faster than implicit, but are often not appropriate for
solving so-called stiff equations1, where the evaluation is unstable, in contrast to implicit
methods [64]. A solution is unstable if small changes to the step size entail significant
differences in resulting values.

0 1 2 3 4
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20

30

40

50

60

Figure 3.1: Comparison of the explicit Euler’s method (blue) and the trapezoid method
(green) to the exact solution (red).

The idea behind Euler’s methods (whether the explicit or the implicit one) is based
on the standard derivative approximation [6]:

ḟ (t) ≈ f (t+ h)− f (t)

h
. (3.4)

Most numeric methods, more sophisticated, arose from Euler’s methods, which alone
are very simple, but inaccurate, as can be seen in Figure 3.1. The red line shows the
mathematical solution, the blue is the explicit Euler’s method, and the green is the
trapezoid method, both with step size 1 (which is quite wide and usually not too ac-
curate). Observe that in these cases the total distance of the methods to the exact solu-
tion increases each step (the reached error is cumulative). Another Figure 3.2 illustrates
a single step of the trapezoid method, where again red line stands for the mathematical
solution.

Except for partitioning on explicit and implicit methods, we mention two families of
the numeric methods: linear multistep methods, and Runge–Kutta methods. Both fam-
ilies include both explicit and implicit methods and are special cases of general linear

1There is no precise definition of stiff equations, but it is characteristic for them that explicit methods
require to set a tiny step size, otherwise the solution is unstable; in contrast with implicit methods, which
can be stable for an arbitrary step size [64]. Such equations often contain functions with very different
time scales.
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Figure 3.2: A single step of the trapezoid method.

methods [63]. This generalization will not be discussed within this dissertation thesis,
and we will focus on the listed families instead.

Note that approximative errors in these methods are not necessarily a problem, since
they can be an inherent part of the intended behavior of the models, as discussed in the
introduction.

3.1.1 Linear Multistep Methods

Linear multistep methods are designed to compute a linear combination of multiple
previous sample points [63].

Definition 6. A linear multistep method, or a linear k-step method, is a stepping method
where function values of sample points satisfy

k∑
j=0

αjf i+j = h
k∑

j=0

βjgi+j

with αj ∈ F and βj ∈ F, αk ̸= 0 ∧ (α0 ̸= 0 ∨ β0 ̸= 0).
The method is explicit iff βk = 0, and implicit otherwise.

Therefore, each f i may depend on up to k previous points. Also, each point is eval-
uated only once, so each gl, l ∈ {0, . . . , n} is evaluated only once as well, which can be
important in cases when the evaluation of functions G is expensive. The step size h is
always constant (i.e. equidistant). A slight disadvantage of these methods is that it is
necessary to compute the first k − 1 steps with a different method.
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Example 3.3. Euler’s methods are linear 1-step methods with α1 = 1, α0 = −1. The
explicit variant (Formula 3.1) is with β1 = 0, β0 = 1:

f i+1 − f i = h (gi) =⇒ f i+1 = f i + hgi.

The implicit variant (Formula 3.2) is with β1 = 1, β0 = 0:

f i+1 − f i = h
(
gi+1

)
=⇒ f i+1 = f i + hgi+1.

Example 3.4. The trapezoid method (Formula 3.3) is a linear 1-step method with α1 = 1,
α0 = −1, and β1 = β0 =

1
2
:

f i+1 − f i = h

(
1

2
gi+1 +

1

2
gi

)
=⇒ f i+1 = f i +

h

2

(
gi+1 + gi

)
.

Now examples of more sophisticated linear multistep methods [6, 63] follow.

Example 3.5. An example of explicit linear multistep methods are Adams–Bashforth meth-
ods which are used for solving non-stiff equations. Their parameters are αk = 1, αk−1 =
−1, αk−2 = · · · = α0 = βk = 0, and βj , j ̸= k are based on linear polynomial interpola-
tion of functions G at points {ti, ti−1, . . . , tn−q}, where q is the degree of the interpolation
polynomial, and k = q + 1. An example is the explicit Euler’s method (Formula 3.1) for
q = 0. Some examples with q > 0 are:

q = 1 : f i+2 − f i+1 =
h

2

(
3gi+1 − gi

)
q = 2 : f i+3 − f i+2 =

h

12

(
23gi+2 − 16gi+1 + 5gi

)
q = 3 : f i+4 − f i+3 =

h

24

(
55gi+3 − 59gi+2 + 37gi+1 − 9gi

)
.

Example 3.6. An example of implicit linear multistep methods are Adams–Moulton meth-
ods that have similar parameters as the Adams–Bashforth methods, with the difference
that βk ̸= 0 and k = q. The exception is the case when q = 0, for which k = 1, which is
the case of the implicit Euler’s method (Formula 3.2). Other examples of these methods
are q = 1, which corresponds to the trapezoid method (Formula 3.3), and:

q = 2 : f i+2 − f i+1 =
h

12

(
5gi+2 + 8gi+1 − gi

)
q = 3 : f i+3 − f i+2 =

h

24

(
9gi+3 + 19gi+2 − 5gi+1 + gi

)
.
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Example 3.7. Other implicit linear multistep methods are backward differentiation formu-
las (BDF) that are appropriate for solving stiff equations thanks to their high stability
properties for k ≤ 6. Their parameters are βk−1 = · · · = β0 = 0, and βk and all αj are,
similarly to the Adams methods, based on linear polynomial interpolation, but not of
functions G, but of functions f . Again, q is the degree of the polynomial, and k = q.
The case q = 1 corresponds to the implicit Euler’s method. Other examples are:

q = 2 : 3f i+2 − 4f i+1 + f i = 2hgi+2

q = 3 : 11f i+3 − 18f i+2 + 9f i+1 − 2f i = 6hgi+3

q = 4 : 25f i+4 − 48f i+3 + 36f i+2 − 16f i+1 + 3f i = 12hgi+4.

Consecutively to Remark 4, one can easily check that the time-step constraints would
hold in Examples 3.5 and 3.6 as well. In the case of Example 3.7, we show the check for
the case q = 2: 3ti+2−4ti+1+ti = 3(ti+2−ti+1)−(ti+1−ti) = 3h−h = 2h = 2hg

[1]
i+2, and for

the case q = 3: 11ti+3− 18ti+2+9ti+1− 2ti = 11(ti+3− ti+2)− 7(ti+2− ti+1)+2(ti+1− ti) =
11h−7h+2h = 6h = 6hg

[1]
i+3. The case q = 4 can analogously be checked as well. Thus, all

multistep methods listed in this subsection would work fine even for non-autonomous
systems, referring to Remark 3.

3.1.2 Runge–Kutta Methods

Runge–Kutta methods stem from Taylor series approximations. Taylor series, how-
ever, need to evaluate higher-order derivatives, which is time-consuming. Runge–Kutta
methods overcome this by evaluating functions G at multiple mid-points between sam-
ple points (i.e. from [ti, ti+1]) while attempting to retain the accuracy of Taylor approxi-
mation [6].

Runge–Kutta methods are single-step linear methods, but each step consists of mul-
tiple stages, according to the mentioned mid-points. Unlike multistep methods, func-
tion values of the sample mid-points generally cannot be reused, and it is necessary
to compute them for each step separately. Thus, it is important that the evaluation of
functions G is not too expensive. Another important difference can be that Runge–
Kutta methods may use non-constant step sizes, which can in addition be controlled
over time in order to increase accuracy—so-called adaptive step sizes hi are controlled
by indirect error estimates after each step, which are out of the scope of this dissertation
thesis. An example of such a method is Dormand–Prince [63]. We focus only on meth-
ods with constant step sizes here, although state-of-the-art methods with adaptive step
sizes may be significantly faster and more accurate.
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Definition 7. A Runge–Kutta method with s stages is a stepping method where function
values of sample points correspond to

f i+1 = f i + h

s∑
j=1

bjyj

yk = G

(
f i + h

s∑
j=1

ak,jyj

)
where k ∈ {1, . . . , s}, and all bj, ak,j are characteristic constants of the method, all from F.
The values of the constants stem from a Taylor approximation.

The method is explicit iff for all k ≤ j, ak,j = 0. Otherwise, it is implicit.

For non-autonomous systems, it would be necessary to add the time argument into
function G in the form ti + hck, with ck =

∑k−1
j=1 ak,j . These constants are typically listed

among the other characteristic constants of Runge–Kutta methods. For convenience, we
will include constants ck as well.

Definition 8. A Butcher’s tableau is a visualization of characteristic constants of a Runge–
Kutta method with s stages in the following form:

c1 a1,1 a1,2 · · · a1,s
c2 a2,1 a2,2 · · · a2,s

...
...

... . . . ...
cs as,1 as,2 · · · as,s

b1 b2 · · · bs

.

In the case of explicit Runge–Kutta methods:

• Butcher’s tableaux are strictly in lower triangular form with zeroes on the diago-
nal,

• ∀j . a1,j = 0 =⇒ c1 = 0,

• y1 = G
(
f i + h

∑s
j=1 a1,jyj

)
= G(f i) = gi,

• all yk depend just on their previous values (i.e. on yj , j < k).

Example 3.8. The explicit Euler’s method (Formula 3.1) is an explicit Runge–Kutta
method with s = 1, b1 = 1 and c1 = a1,1 = 0:

f i+1 = f i + hb1y1 = f i + hy1 = f i + hgi.

The coefficients correspond to Butcher’s tableau

0
1
.
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Example 3.9. The implicit Euler’s method (Formula 3.2) is an implicit Runge–Kutta
method with s = 1, b1 = 1 and c1 = a1,1 = 1:

f i+1 = f i + hy1 = f i + hG(f i + hy1) = f i + hG
(
f i+1

)
= f i + hgi+1.

The coefficients correspond to Butcher’s tableau

1 1
1
.

Example 3.10. The trapezoid method (Formula 3.3) is an implicit Runge–Kutta method
with s = 2, corresponding to Butcher’s tableau

0 0 0
1 1

2
1
2

1
2

1
2

.

Example 3.11. Classical Runge–Kutta method (RK4) is an explicit method with s = 4. It
corresponds to sample points

f i+1 = f i + h
(y1

6
+

y2

3
+

y3

3
+

y4

6

)
y1 = gi

y2 = G

(
f i +

h

2
y1

)
y3 = G

(
f i +

h

2
y2

)
y4 = G(f i + hy3)

(3.5)

and to Butcher’s tableau
0
1
2

1
2

1
2

0 1
2

1 0 0 1
1
6

1
3

1
3

1
6

.

Referring to Remarks 4 and 3, if time was included in f then it would satisfy the
condition ti+1 = ti + h iff

∑s
j=1 bj = 1, because f [1]

i+1 = ti+1 = ti + h
∑s

j=1 bjy
[1]
j and

y
[1]
k = G [1](⋆) = 1 yields ti+1 = ti + h

∑s
j=1 bj · 1 = ti + h. Therefore, such methods can be

properly used even for non-autonomous systems. Actually, all the listed Runge–Kutta
methods satisfy this condition.
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3.2 SAT Solving
SAT solvers refer to Boolean satisfiability (SAT), defined in Definition 3. The result of
the solvers is either sat, in the case when the formula is satisfiable, or unsat, when it
is unsatisfiable. In addition, the result may also be unknown in special cases like when
the configured resource limits were exceeded (e.g. timeout). When a formula is sat,
there may be an additional output with a satisfying assignment of the variables.

Algorithms used in SAT solvers usually exploit the fact that the input formula is
in conjunctive normal form (CNF). Such a formula is usually represented in the form of
a set of clauses. CNF format is useful in a sense that it is sometimes easy to discover (or
avoid) a conflict—an assignment of a set of variables that would cause unsatisfiability—
because just a single clause that evaluates to ⊥ causes the whole formula to be unsatis-
fiable.

Most SAT solvers are nowadays based on the DPLL algorithm (Davis–Putnam–
Logemann–Loveland) [100], which introduced basic techniques of the search procedure,
in particular:

• unit propagation, which forces an assignment that avoids a conflict, in cases when
there is a clause where only one literal is not assigned yet,

• pure literal elimination2, which forces a variable, that is not assigned yet and all
its literals appears in only one polarity throughout the whole formula in CNF, to
a value s.t. all clauses, where the literals appear, are satisfied,

• decide, which guesses a value for a variable (usually based on some heuristics) that
is not assigned yet, and usually only in cases when no other rule can be applied at
the moment (especially propagations),

• backtrack, which reverts the recent decision when resolving a conflict.

Another technique that is implemented in most state-of-the-art SAT solvers is called
conflict-driven clause learning (CDCL). After arriving at a conflict, CDCL remembers the
incompatible decisions that caused the conflict in the form of a conflict clause, which is
inserted into the clause set. The smaller a conflict clause, the more general constraints it
represents. As a result, small conflict clause may prune the searched state space signifi-
cantly.

Conflict clauses are often related to an enhancement of the backtrack rule called
backjump rule [100], which returns directly back to a decision that caused the conflict,
instead of reverting all the decisions that are not necessarily related to the conflict, one
by one. Such an approach always terminates (e.g., no deadlock is possible) [100], and
the discovered conflicts are efficiently resolved.

We do not discuss algorithms that are related to the optimizing variant of the problem—
maximum satisfiability (MAX-SAT).

2While this rule is included in the original algorithm, it is usually used only as a preprocessing step,
or not at all by modern SAT solvers, since it may be quite expensive for large formulas.
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3.3 SMT Solving
In Section 2.4, we defined Satisfiability Modulo Theories (SMT)—a generalized problem
of SAT. Approaches to SMT often encompass sophisticated algorithms and techniques
that may be more-or-less specific to a given theory (or its fragment), but can also be
usable in various contexts or for any theory at all.

There are the same possible outputs of SMT solvers as in the case of SAT solvers. In
the case of a satisfying assignment, additional variables related to underlying theories
might be included in the output as well. Output unknown can, among others, denote
that the used implementation is not able to arrive at a definite decision of satisfiability
(especially when the problem is not decidable), or that a formula does not belong to any
supported fragment of a theory.

Most, if not all, SMT solvers are built upon an underlying SAT solver. However,
the way the SAT solver is used can vary. The two most common families of SMT ap-
proaches, not necessarily disjoint, are eager and lazy approaches [100, 14].

3.3.1 Eager Approach
Eager approach is de-facto just translation of the original formula from first-order logic
into propositional logic, including all theory-related semantics, which is then passed
into the SAT solver that is used as black-box. This approach ultimately relies on the effi-
ciency of the translation and on the SAT solver itself. However, the eagerness can result
in congesting the SAT solver by too many constraints that are possibly not essential for
arriving at the result.

The eager approach may be more efficient for some theories, for example, where the
representation of variables is similar to binary encoding (e.g. the theory of bitvectors).
However, in the rest cases, it is not used too much in state-of-the-art solvers. Eager
approach will not be investigated anymore in this dissertation thesis.

3.3.2 Lazy Approach
The lazy approach is based on lazy evaluation, which means that the semantics of a the-
ory are resolved as late as they are needed. The procedure is based on the cooperation of
a SAT solver and a theory solver, so-called T -solver. The SAT solver is based on DPLL
with CDCL and computes only with abstracted formulas, meaning that atomic theory
formulas are abstracted to pure Boolean variables. The T -solver is a specialized solver
that decides the satisfiability of conjunctions of theory literals—literals of atomic theory
formulas.

The unsatisfiability of such abstract propositional formula implies unsatisfiability of
the original formula, regardless of the underlying theory. On the other hand, satisfiabil-
ity implies that it can be also consistent with the theory, which is when the T -solver kicks
in. If it is considered inconsistent, some explanation of the inconsistency is added into
the propositional constraints set in the form of a conflict clause (as expected for a CDCL
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algorithm), and another Boolean assignment is sought. This process is repeated until
the SAT solver finds a consistent assignment, or returns unsatisfiable. While the SAT
solver is guaranteed not to, T -solver can actually block (e.g. deadlock, infinite loop,
. . . ), depending on the underlying theory.

Lazy SMT solvers are often not fully lazy and may encode some semantics into the
propositional formula directly, like eager solvers do, but only in the case of the most
fundamental semantics. There is always a trade-off of directly allowing the SAT solver
to use theory constraints and of useless remembering of constraints that were actually
not necessary for arriving at the solution.

There are several types of lazy approaches [100] and various related techniques.
For starters, a naive lazy approach is called offline and uses a classical SAT solver that
searches for a full propositional assignment, and whenever an inconsistency is found,
and after explaining it, the whole procedure is restarted from scratch. Such SMT solvers
are quite easy to implement, since the SAT solver can be practically used as black-box.
However, such flexibility cannot overcome significant inefficiencies entailed by the full
assignments, causing a lot of useless work to be wasted. An issue is that a number of
inconsistencies may be discovered early, that is, after assigning just a small subset of the
variables, meaning that all the rest did not have to be evaluated at all. State-of-the-art
solvers implement much more efficient methods. Their overview is described in the rest
of the subsection.

Online Approach. In contrast with the offline approach, online approach requires a spe-
cialized SAT solver that:

• supports partial propositional assignments,

• implements callbacks inserted into the most important parts of the DPLL algo-
rithm, which allows the T -solver to interfere the search procedure,

• (as a result) allows checking the consistency over time.

If, for example, consistency is being checked after setting each Boolean variable, then
an inconsistency can be found early and no additional, useless assignments are done.
However, in some theories, checking the consistency can actually be quite an expensive
process, and therefore a suitable strategy is to do it only sometimes.

In any way, the T -solver must keep track with the SAT solver and the currently
assigned Boolean variables, and also wrt. to the theory model and the current state of
the underlying variables (e.g., arithmetic variables). In the case of backtracking, it is
especially important to keep track with the current assignment correctly.

Online approach may also allow to fully exploit backjumping of the SAT solver
to a certain state where the assignment was still consistent, instead of restarting from
scratch.
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Theory Propagation. Experiments showed that even tighter integration of the SAT
solver and the T -solver can be very beneficial. Theory propagation guides the proposi-
tional search according to the theory semantics which avoids a large number of inconsis-
tencies from hapenning and can massively improve the performance of the procedure.
For example, when an abstracted theory predicate is assigned by the SAT solver, all
other predicates that relate to the assigned one, according to the theory, are forced to
a proper value, ensuring consistency. For instance, if the SAT solver assigns a predicate
x = 0 to true in the real arithmetic, and another, still unassigned predicate x = 1 is
present in the constraints set, then the predicate x = 1 is instantly forced to false, other-
wise it would be inconsistent with x = 0. Without theory propagation, the SAT solver
would have to do only unit propagations or worse, a decision whether to assign x = 1
to true or false, because it would have no clue which one to choose3. Consequently, it
would be possible that inconsistency x = 0 ∧ x = 1 would appear.

If theory propagation is a cheap process (depending on the theory), then it can be
applied literally after any Boolean assignment of an atomic theory formula by the SAT
solver. Such a strategy is called exhaustive theory propagation, where actually the con-
sistency is usually being checked exhaustively too. As a consequence, assignments of
such a strategy may happen to be never inconsistent. For example, an algorithm that
checks satisfiability in the difference logic from Section 2.4.1 is always consistent and
very efficient [100].

Decision Heuristics. Without additional strategies on the decisions of the SAT solver,
the decisions are completely blind in terms of the underlying theory. On one hand, the
heuristics that a given SAT solver uses on its own might be very efficient with respect
to the propositional part itself. Also, some theories do not really depend on decision
heuristics and focus on techniques like thorough theory propagation. For example, lin-
ear real arithmetic defines a lot of semantical rules which themselves are robust enough
and the procedure is not too sensitive to the order of decisions on Boolean variables.

On the other hand, for some theories, especially with a low number of semantical
rules, such an order of decisions can play a crucial role to make the whole procedure
efficient. For example, given an incomplete simple theory of equalities where an equal-
ity of a variable and a number causes assignment of the variable to the number, and
given predicates x = 0 and x = 1, deciding predicate x = 0 to true is an example of
a useful decision—such an assignment can activate a theory propagation which forces
x = 1 to⊥, because variable x already has value 0. However, in the opposite case, when
deciding predicate x = 0 to ⊥, the theory propagation is not possible, since the value
of variable x is left unassigned. And although continuing with the assignment of x = 1
to ⊥ would not cause an inconsistency, the value of variable x would still be unknown.

3In this particular case, an eager preprocessing like x = 0 =⇒ ¬(x = 1) would help, but such
exclusions are generally difficult to resolve within the preprocessing stage, if the right-hand side of the
equations is more complicated. Also, again, this may produce a number of not-necessarily useful con-
straints.
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Another example, with the same theory but with predicates x = 0 and y = x, x = 0 is the
better candidate for a decision, because in the opposite case, y = x causes no variable
assignment.

Note that when a SAT solver selects a decision variable, sometimes it may be ben-
eficial to suggest a specific variable according to the given encoding of an underlying
problem. An example of such a case is traversing a graph encoded into propositional
constraints, where shortest paths are preferred to be searched at first. Then, a specific
strategy for the decisions should be probably used instead of general heuristics.

Moreover, many SMT theories, and even their fragments, are often too general even
though they are being used in specific contexts where only specific instances can ap-
pear. Therefore, it might be convenient to adapt the search strategy according to a set of
instances that are typical for a given problem.

Speaking of decision heuristics, an interesting option is to involve machine learning
techniques or the like. Algorithms which are efficient “in most cases” can be useful,
because even in the field of formal methods it is not necessarily an issue when such
a learning-based technique suggests a wrong decision. The only possible consequence
is that the search procedure may be slowed down, but decisions cannot cause the final
result to be incorrect.
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CHAPTER 4
SAT Modulo Differential Equation

Simulations: Definition

In this chapter, we present the target problem of this dissertation thesis. As a result, it is
possible to model planning or verification tasks which involve complex systems such as
cyber-physical systems. Unlike our original formalization [75] which directly defined
a logical theory, as usual in the formal methods community, here we take a semi-formal
presentation that aims at a more general engineering audience, introducing the parts of
the formalism step by step. For completely formal definitions, we refer to the original
publication [75].

We will start with defining systems of functions (Section 4.1), where we present a for-
malism on differential equations and so-called invariants. Then, we define SAT modulo
differential equations (Section 4.2)—a satisfiability problem that involves differential
equations with the semantics that are based on real numbers. Finally, we define the
problem where the ODEs are handled using simulations (Section 4.3).

4.1 Systems of Functions

The motivation of this section is to define a formalism which allows specifications of
systems of ODEs (Section 2.1) where in addition we allow more general final constraints
on the equations and constraints that must hold at all times. The defined function and
predicate symbols allow to treat such functions as variables and the constraints focus
just on function values at all times or at the initial or final value of time.

Such a formalism corresponds to our paper [75], but here we explicitly split the def-
initions that are related to ODEs from those related to SAT. Using such a formalism,
one can design a standalone and flexible ODE solver that handles rich continuous con-
straints but is still independent of any Boolean reasoning.

We first focus on isolated systems of functions. Then, we will also allow connecting
of multiple systems into consecutive stages.
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Definition 9. A system of functions F is a type with an associated set of functional vari-
ables.

The elements of the type are functions, but we do not explicitly write their argument which
models time over a shared domain D that starts at 0 and ends at a certain length τ . The length
is finite and does not have to be fixed. The functions are in the form f : D → R with an abstract
codomainR.

For example, functional variable f ∈ F represents a function f : D → R with the
argument t ∈ D. However, we do not write the argument explicitly: instead of f (t),
we will write just f . In logic, this would mean that we treat functional variables as
first-order objects.

The definition fixes the initial value of time to 0. The length τ will also be called final
value of time. The length is not necessarily fixed and can actually depend on the progress
of the functional variables. Intuitively, the functions start and end at the same time and
progress synchronously.

For now, the codomain R corresponds to real numbers R and the domain D to in-
terval [0, τ ] with the length τ ∈ R≥0, and the functional variables represent smooth
functions. In this case, D ⊆ R, but not in general. Later, these symbols will also rep-
resent different sets, for instance the codomain R will represent a set of floating-point
numbers F (such as 64-bit IEEE 754).

To allow some operations that are necessary to handle functional variables as func-
tions, we introduce special function symbols.

Definition 10. Functional operators over a system of functionsF are unary functions defined
as follows:

• diff : F → F models differentiation of f ∈ F s.t. diff (f ) := ḟ ,

• init : F → R models the initial value of f ∈ F s.t. init(f ) := f (0),

• final : F → R models the final value of f ∈ F s.t. final(f ) := f (τ),

• embed : R → F converts a number x ∈ R to the corresponding constant function s.t.
embed(x) := f where f ∈ F and for all elements t ∈ D, f (t) = x.

HereR is the codomain and D is the domain of the system of functions F .

Now, operator diff corresponds to the usual differential operator from mathemati-
cal analysis. We will usually abbreviate the expression diff (f ) as just ḟ and implicitly
assume operator embed whenever an argument from F is expected and an argument
from R is present. We call constraints that contain init operators initial conditions, and
similarly, constraints that contain final operators final conditions.

Before we define predicates on functional variables (such as differential equations),
we first need a definition of the expressions that may appear within such predicates.

36



4.1. Systems of Functions

Definition 11. A functional expression over a system of functions F is an expression that
contains:

• functional variables f ∈ F ,

• function symbols {+,−, ·, /, exp, log, sin, cos, tan} with the usual arity and point-wise
lifted to functional arguments,

• functional operator embed whose argument is a constant fromR.

Such an expression denotes a function Gd : Fd → F .

For example, expression x+y is a valid functional expression if x , y ∈ F and denotes
a function in F2 → F that assigns to each x and y in F a function that assigns to each
t ∈ D the value x (t) + y(t). Furthermore, using values from R is implicitly possible
too thanks to the operator embed , which can even be omitted. For example, x + c with
constant c ∈ R is allowed because it denotes x + embed(c).

Now we define predicates on functional variables. These cover differential equa-
tions, but in addition we also define constraints where no differentiation appears, which
is new regarding Section 2.1.

Definition 12. A functional ODE over a system of functions F is an expression of the form

ḟ = Gd(g)

where f ∈ F is a functional variable of F , Gd is a functional expression over F and g ∈ Fd.
An invariant over a system of functions F is an expression of the form

Fc(f ) ▷◁ Gd(g)

where ▷◁ ∈ {≥,=} is a binary predicate symbol point-wise lifted to functional arguments, Fc

and Gd are functional expressions over F , and f ∈ F c and g ∈ Fd are vectors of functional
variables of F .

A functional predicate is either a functional ODE or an invariant.
A solution of a functional predicate is an assignment of functions to all functional variables

f ∈ F that satisfies the expression denoting the predicate.

We will allow writing invariants with symbol≤ too since it is equivalent to symbol≥
with swapped arguments.

The intuition behind functional predicates is that the functional variables progress
synchronously and that we lift the usual meaning of the symbols over the set R to the
whole domain D of the system of functions F . Note that Definition 9 implies that the
length τ of the functions of a solution must be the same and must be finite. For example,
invariant x ≥ 0 expresses the fact that functional variable x is always greater or equal to
the constant function 0, i.e. x (t) ≥ 0 for all t ∈ D, and functional ODE ẋ = 1 denotes the
corresponding differential equation.
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Hence, the defined function and predicate symbols allow to treat certain functions as
variables where the constraints focus just on function values at all times or at the initial
or final value of time.

If we compare functional ODEs to Definition 1, here we do not use vector form ḟ
and G, but we still restrict the arguments of functional expression Gd to functional
variables that belong to the same system of functions F .

Example 4.1. Two examples of simple functional ODEs are

ẋ = v (4.1)

and
v̇ = −g (4.2)

with x , v ∈ F and the constant g ∈ R. Note that v̇ = −g is an abbreviation for diff (v) =
−embed(g). Such ODEs look the same as the particular ODEs in Examples 2.1 and 2.3.

We can also provide initial conditions for the particular ODEs, referring to Exam-
ple 2.2. Since t0 = 0, we can use init(x ) = 10 in the place of x (t0) 7→ 10 and init(v) = 0
in the place of v(t0) 7→ 0.

Example 4.2. An example of a simple invariant is

x ≥ 0 (4.3)

which expresses the requirement that the falling object never appears below the ground,
referring to the invariant of the hybrid automaton in Example 2.3.

Such an invariant requires x (t) ≥ 0 for all t. This does not necessarily mean that at
the end, x (τ) = 0, though, resulting in nondeterminism. If we used a final condition
instead of the invariant, for example final(x ) ≥ 0, then we would just require x (τ) ≥ 0,
and would not constrain the previous values, which would yield even more nondeter-
minism. If we used the invariant in combination with final condition final(x ) = 0, then
we would require x (t) ≥ 0 for all t and also x (τ) = 0, resulting in a deterministic final
condition (which will be defined later). In the case when x models a continuous func-
tion, then using final condition final(x ) ≤ 0 in combination with the invariant would be
equivalent to final(x ) = 0.

Example 4.3. An example of a more complex invariant is

x − z ≤ 2x · y (4.4)

provided that x , y , z ∈ F .
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Referring to Remark 1, it is possible to use directly function t in the place of the
shared independent variable (e.g. t) of a system F , because each system of functions F
may contain time function t ∈ F s.t. ṫ = 1, init(t) = 0 and final(t) = τ . Therefore,
although there is no functional operator that obtains the value of the length τ , one can
simply use final(t).

Example 4.4. A typical and straightforward constraint on ODEs is an explicit constraint
on time (e.g. the value t in Remark 2). We can provide such a constraint in the form of
an invariant, for example

t ≤ 10 (4.5)

which constrains final time τ s.t. 0 ≤ τ ≤ 10. Note that we set just an upper bound
on τ . Such an invariant is in fact equivalent to final condition final(t) ≤ 10. However,
using the invariant in combination with final condition final(t) = 10 (or final(t) ≥ 10)
would explicitly require τ = 10. In the case of final(t) = 10, the invariant is actually not
necessary.

We defined a formalism on systems of functions including functional predicates us-
ing real numbers and smooth functions. However, the predicates themselves are sepa-
rate from others and we still did not define how to, for example, solve a system of ODEs
(Definition 1). Therefore, it is necessary to somehow group the predicates together and
define how solutions of such groups of predicates look like.

Functional Flows. The goal is to allow solving systems of ODEs, but possibly with
more complex stopping conditions, in contrast to Section 2.1. However, we still stick to
initial value problems (IVPs), meaning that the initial conditions need to be fixed.

Definition 13. A simple initial condition over a system of functions F is an expression in the
form

init(f ) = η

where f ∈ F is a functional variable of F and η is an expression that evaluates to a number from
the setR.

Remark 5. The definition can be extended to a form which, for example, allows intervals
such as init(f ) ∈ [η, θ]. However, this would require to use appropriate methods which
handle not only IVPs, but also interval initial (and consequently final) conditions.

Now we proceed to the definition of the desired systems.

Definition 14. A functional flow is a set of simple initial conditions and functional predicates,
all regarding a system of functions F . For each f ∈ F , there must be exactly one simple initial
condition and one functional ODE.
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A solution of a functional flow is an assignment of functions to all functional variables
f ∈ F that is a solution of all functional predicates of the functional flow, and at the same time
initial values must be fixed to the values that correspond to the simple initial conditions.

This means that solutions of such systems must satisfy conjunction of all the par-
ticipated constraints. Functional flows may express systems of ODEs along with initial
conditions (referring to IVPs) where in addition invariants are allowed. Note that the
definition excludes final conditions, which must be handled separately.

Every solution of a functional flow always has a finite length by definition. How-
ever, in some cases it may be unclear what is the longest possible length, meaning that
there are no further solutions that are longer. Moreover, such an upper bound does not
necessarily exist.

Remark 6. If any of the invariants of a functional flow is eventually violated, then the
longest possible length of all solutions of the flow exists and corresponds to the time of
the violation.

Example 4.5. Formulas from Example 4.1 can be put together into a functional flow in
the form of an initial value problem, but there is no invariant. Together with Exam-
ple 4.2, it can be rewritten into the following functional flow with two initial conditions:

init(x ) = 10

init(v) = 0
(4.6)

and three functional predicates:

ẋ = v

v̇ = −g
x ≥ 0.

(4.7)

Such a system might correspond to the behavior of the hybrid automaton in Exam-
ple 2.3, but only within the location down. Moreover, we have not specified final con-
ditions and there are more possible solutions of the flow, resulting in nondeterminism
(see Example 4.2 and the definition below).

In order to make the resulting trajectories look the same as in Figure 2.1 in Exam-
ple 2.2, we may replace the invariant x ≥ 0 with t ≤ 2.

Functional flows do not include final conditions, so they must be expressed sepa-
rately. In Example 4.2, we showed that with no final conditions there are usually more
possible lengths of the system. We now define when final conditions constrain a func-
tional flow in such a way that the resulting length is unique.
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Definition 15. Given a functional flow, a set of final conditions is deterministic iff all solutions
of the flow that in addition satisfy all the final conditions have the same length. Otherwise,
the final conditions are nondeterministic. Here, the arguments of operators final in the final
conditions must belong to the same system of functions as the functional flow.

However, we did not show how to express a model such as in Example 2.3, even
considering only deterministic final conditions. The reason is that it is necessary to
allow multiple systems with possibly different lengths of the domains. Still, it is not
possible to mix functional variables from different systems within functional predicates.
The only permitted functional constraints on functional variables x ∈ F i and y ∈ F j ,
i ̸= j are initial and final conditions, for example init(y) = final(x ). This allows to
arrange functional flows into consecutive stages.

Stages of Functional Flows. A stage (of functional flows) is a functional flow where
the initial conditions may depend on final values of other stages. Since functional flows
(Definition 14) require that initial conditions are simple initial conditions, forming direct
connections of stages is possible only in cases when solutions to the particular stages are
unique. Moreover, here we want to stick just to functional flows which do not contain
final conditions. Therefore, we require that the length of the solution of each stage
corresponds exactly to the time when any invariant of the functional flow is violated.
This would correspond to using deterministic final conditions, but here final conditions
may appear only within simple initial conditions, which means that their values must
already be fixed.

Particular parts of a stage (i.e. of a functional flow) always belong to just one system
of functions. Furthermore, we require that the particular parts cannot be shared with
other stages.

The length τ of a system of functions F is specific to the particular system and may
differ from lengths of other systems. This is an important fact, since we will usually
be interested in models which require more than just one functional flow. We use sub-
scripts to distinguish different systems of functions, for example, we write F1, τ1 and t1
in the case of one system and F2, τ2 and t2 in the case of other, different system.

Example 4.6. An example of multiple stages (of functional flows) follows. We start with
a stage that corresponds to Example 4.5 and add two more consecutive stages in order
to model three deterministic steps in the hybrid automaton from Example 2.3:

init(x1) = 10 init(x2) = final(x1) init(x3) = final(x2)
init(v1) = 0 init(v2) = −K · final(v1) init(v3) = final(v2)

ẋ1 = v1 ẋ2 = v2 ẋ3 = v3
v̇1 = −g v̇2 = −g v̇3 = −g
x1 ≥ 0 v2 ≥ 0 x3 ≥ 0

(4.8)
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where x1, v1 ∈ F1, x2, v2 ∈ F2 and x3, v3 ∈ F3, and g,K are constants, K ∈ [0, 1]. The
systems of functions may also include the time functions t1 ∈ F1, t2 ∈ F2 and t3 ∈ F3,
but these functional variables do not participate here.

The example models three consecutive stages of a bounce of a ball, where K de-
termines elasticity of the bounce. Note that, for example, init(x2) = final(x1) is here
equivalent to init(x2) = 0. Switching between the stages is deterministic and happens
exactly when x1 = 0 and then when v2 = 0.

The example is indeed similar to Example 2.3: the first stage corresponds to loca-
tion down, the second stage corresponds to location up, and the third stage corresponds
again to location down. A possible solution of the three consecutive stages is available
in Figure 2.3, which corresponds to the case when K = 0.8.

In the end, it is possible to model multiple consecutive IVPs with stopping con-
ditions expressed by invariants (Definition 12). However, such a formalism does not
consider (nondeterministic) final conditions. It also does not consider any Boolean
reasoning—it only supports conjunctions of certain constraints (Definition 14). In the
next section, we will introduce a more sophisticated formalism that is based on formu-
las. Such a formalism can model the stages in a similar way, but at the same time it
handles more robust constraints on top of particular functional flows, including (non-
deterministic) final conditions.

Relationship with Hybrid Automata. As presented above, sometimes it is possible
to express multiple steps of a hybrid automaton (Section 2.2) using stages of functional
flows:

• Each stage relates to a certain location.

• The continuous dynamics and invariants associated to the location are represented
by functional ODEs and invariants, respectively.

• Discrete transitions between locations can be modeled using operators init and
final between the stages. By default, all continuous variables of hybrid automata
remain unchanged when switching locations, which must be explicitly expressed
within the stages. However, the presented stages alone cannot model nondeter-
ministic transitions between locations, which would require to use final condi-
tions.

4.1.1 Simulation Semantics
In this section, we formulate an interpretation of systems of functions that is not based
on real numbers and continuous functions, but on a floating-point arithmetic and dis-
cretization. Referring to Section 2.1.1 and using methods presented in Section 3.1, we
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assume discretization of functional predicates with constant step size. We lift the mean-
ing of all real arguments to floating-point numbers, resulting in the following definition.

Definition 16. A floating-point interpretation of a system of functions F interprets the sets
from Definition 9 such that R := F and D := {u∆ | u ∈ {0, . . . , τ

∆
}}, where ∆ is step size

and τ is the length that is required to be a multiple of ∆. Set F is a set of floating-point numbers
with the usual rounding to the nearest floating-point number.

The semantics of functional ODEs is given by a numerical method of solving ODEs, which
is a parameter of the interpretation. In the case of invariants, we only require that they hold for
u ∈ {0, . . . , τ

∆
− 1}, that is, without the final point.

We will also call such an interpretation simulation semantics of systems of functions.
For explaining why we exclude the final point from invariants, we refer to Exam-

ple 4.6. The first stage uses invariant x1 ≥ 0, and the stopping condition that corre-
sponds to violating the invariant can be expressed by final condition final(x1) ≤ 0. When
interpreting x1 as a continuous function, this makes perfect sense: the switch to the next
stage occurs exactly when x1 = 0. The fact that the intersection of the invariant and the
final condition is just a point does not cause any trouble. However, this does not work
in our approximate interpretation because it is highly unlikely that, after discretization,
a point is reached for which precisely x1 = 0. To circumvent this problem, we allow the
invariant to be violated at the very final point of x1 (i.e. when u = τ1

∆
, where τ1 is the

length of system F1) which at the same time is the first point that allows switching to
a next stage.

Note that the above is also a reason why using final conditions that are based on
equalities instead of inequalities is usually not a good idea, at least in the case of using
an approximate semantics. For instance, final(x1) = 0 is likely to be unsatisfiable wrt.
chosen simulation semantics, while final(x1) ≤ 0 works fine.

Also note that in the case of the semantics with continuous functions, final(x1) ≤ 0
corresponds to a deterministic final condition, but not in the case of simulation seman-
tics. The reason is that we allow that the invariant is violated at the last point, but we
do not require it. For example, we can arrive at a point where final(x1) = 0 (although
this is unlikely), or a point where final(x1) < 0. Therefore, the proper deterministic final
condition here is final(x1) < 0, which explicitly states that invariant x1 ≥ 0 must be vio-
lated. But again, this is not the case of the semantics with continuous functions, where
this would not work.

Remark 7. In the case of simulation semantics, deterministic final conditions for a func-
tional flow actually correspond to the negation of the conjunction of its invariants, while
applying operator final on all functional variables. For instance, in the case of Exam-
ple 4.5 extended of an additional invariant v ≤ 0, the corresponding deterministic final
conditions are

final(x ) < 0 ∨ final(v) > 0. (4.9)
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4.2 Satisfiability Modulo Differential Equations
According to the fact that the dissertation thesis is focused on simulations of ODEs,
a whole separate section is dedicated to satisfiability modulo differential equations,
an interesting special case of SMT.

SMT traditionally uses first-order predicate logic as its basis, while here we want
to reason about functions (the solutions of ODEs), which are often viewed as objects
of second order. We overcome this seeming mismatch by handling those functions as
first-order objects1. Moreover, some theories such as the theory of real arithmetic or
the theory of integer arithmetic assume only one kind of variables that can appear in
formulas. However, this is not our case, because we need to include both real numbers
and functions altogether. Therefore, we will use the definitions from Section 4.1 where
two types of values are distinguished.

Definition 17. A numerical variable ranges over the setR from Definition 9.

Hence we will use two types of variables based on Definition 9: numerical variables
and functional variables. Note that in Section 4.1, elements from the set R appear only
in the form of constants, while from now on we allow variables as well. Although
numerical variables may correspond to real numbers R and real variables in the theory
of real arithmetic (Section 2.4), we stick to Definition 9 and the symbol R because we
will need to mix these variables with functional variables which use the same setR.

For explaining the intuition behind the structure of formulas we expect to handle
here, we first describe an illustrative example, before introducing further formal defini-
tions.

Example 4.7. We present an extended version of Example 4.6 which shows a bouncing
ball model that is based on functional flows (Definition 14). Here, in addition, we model
linear drag of the ball. The resulting formula represents deterministic constraints, but
the constraints can be easily extended to nondeterministic. The example is similar to
Example 2.3. Figure 4.1 shows possible trajectories as solutions of the formula which is
to be described. (The figure is a bit similar to Figure 2.3).

In order to model multiple consecutive stages of functional flows, we unroll formu-
las in a similar way as in bounded model checking (Section 2.5). The particular stages
include functional variables xj and vj that belong to system of functionsF j and describe
the vertical position and velocity of the ball, respectively, in j-th stage of the unrolling,
j ∈ {1, . . . , J}, J ∈ Z>0. Next, the stages include Boolean variables up[j] which model
the discrete state of the ball—whether it is bouncing up or falling down, similarly to
the locations of the hybrid automaton in Example 2.3. Finally, numerical variables t[j]

1While this is new in the context of SAT modulo ODE, this is quite common in mathematics. For
example, Zermelo-Fraenkel set theory uses such an approach to define sets, relations, etc. within first-
order predicate logic.
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Figure 4.1: A solution of the bouncing ball model with J = 14, K = 0.95, D = 10.

range from R and model time at the beginning of the stage (not to be confused with
time functions tj ∈ F j).

An example of a formula that contain the particular stages j and represents the
whole bouncing ball model is

g = 9.81 ∧K = 0.95 ∧D = 10

∧ ¬up[1] ∧ t[1] = T0 ∧ init(x1) = X0 ∧ init(v1) = V0

∧
J∧

j=1

(
ẋj = vj ∧ xj ≥ 0

∧ ITE
(
up[j], v̇j = −g −

vj
D
, v̇j = −g +

vj
D

)
∧ ITE

(
up[j], vj ≥ 0, vj ≤ 0

)
∧ ITE

(
up[j], final(vj) ≤ 0, final(xj) ≤ 0

))
∧

J−1∧
j=1

((
up[j] ⇒ ¬up[j+1]

)
∧
(
¬up[j] ⇒ up[j+1]

)
∧ t[j+1] = t[j] + final(tj)

∧
(

up[j] ⇒ (init(xj+1) = final(xj) ∧ init(vj+1) = 0)
)

∧
(
¬up[j] ⇒ (init(xj+1) = 0 ∧ init(vj+1) = −K · final(vj))

))
∧ t[J ] ≤ T ∗ ∧ final(xJ) ≥ X∗.

(4.10)
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Constants g and K relate to Example 4.6. Linear drag of the ball is modeled using co-
efficient D. Constants T0, X0 and V0 are arbitrary initial numerical values, and T ∗ and
X∗ are final numerical values, which are used within so-called goal conditions. Predi-
cate ITE is an abbreviation for if-then-else (see the list of mathematical abbreviations).
The formula may be divided into three parts: initial conditions (i.e. the first two rows),
the model (i.e. the two big conjunctions with stages), and the goal conditions.

Note that, for example, xj and xk, j ̸= k model the same physical quantity, but do
not necessarily share domains, because F j = Fk is not necessarily true. This is the
reason why here we use the notation xj instead of x [j] which would mean that there
is a vector x = (x [1], x [2], . . . ), but particular elements x [j] would belong to different
sets: x [1] ∈ F1, x

[2] ∈ F2, . . . , therefore x ∈ F1 × F2 × . . . , which would be confusing.
Nonetheless, variables xj and vj can be grouped for example into f j = (xj, vj), f j ∈ F2

j

(similarly to Example 2.1).
The only possible dependencies of functional variables that belong to different sys-

tems of functions (e.g. xj and xk, j ̸= k) are dependencies between their initial and final
values, referring to stages of functional flows in Section 4.1. For example, init(xj+1) =
final(xj) is allowed, but xj+1 ≥ xj would be invalid. Nevertheless, functional variables
from different systems do not have to be necessarily dependent on each other. For ex-
ample, in the case of init(xj+1) = 0, there is no dependency on xj .

Each stage of the formula includes deterministic final conditions (Definition 15)
for two possible functional flows that depend on the value of variable up[j]: ITE(up[j],
final(vj) ≤ 0, final(xj) ≤ 0). The final conditions always constrain only one of the func-
tional variables, which however refers to the invariant that is actually violated at that
stage: final(vj) ≤ 0 in stages where up[j], and final(xj) ≤ 0 in stages where ¬up[j]. This
means that switching between the stages is indeed deterministic. Note that in the case
of simulation semantics, it would be necessary to replace the nonstrict inequalities of
the final conditions by strict inequalities, in order to make the conditions indeed deter-
ministic (following Remark 7): ITE(up[j], final(vj) < 0, final(xj) < 0).

Finally, following Definition 4 we provide the theory of ODEs [75] which is here based
on systems of functions from Section 4.1.

Definition 18. The signature of the theory of ODEs contains:

• sort symbols R and (F j)j∈J for a finite index set J , where symbol R corresponds to
numerical variables (Definition 17) and symbols F j correspond to a system of functions
(Definition 9),

• all rational constants,

• function symbols {+,−, ·, /, exp, log, sin, cos, tan} and binary predicate symbols {≥,=}
with the usual arity, defined on the sortR and on each of the sorts (F j)j∈J ,

• functional operator symbols (Definition 10).
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An atomic formula is either an atomic theory formula or a Boolean variable. An atomic
theory formula is either:

• a numerical predicate which is an atomic formula of the form η ▷◁ θ where ▷◁ is a pred-
icate symbol from R and η, θ are terms built in the usual way using function symbols
fromR and the functional operators init and final whose argument is allowed to be a func-
tional variable,

• or a functional predicate (Definition 12).

A numerical literal is either a numerical predicate or its negation. Functional literals are
defined analogously. A theory literal is either a numerical literal or a functional literal. A literal
is either a theory literal or a Boolean literal. A formula is an arbitrary Boolean combination of
literals.

We will also respectively say that a literal is negative or positive iff it does or does
not represent a negation.

The resulting formulas have the usual mathematical semantics where we interpret
the sorts R and F j , j ∈ J and functional predicates according to the real continuous
semantics presented in Section 4.1. Here numerical variables are also called real variables.

Note that due to the hidden ∀-quantification over time within functional predicates,
it is not true that, for example, x ≥ 0 is equivalent to ¬ (x < 0): the former means all the
time x is greater or equal to zero, whereas the latter means not all the time x is lower
than zero. Moreover, predicate symbol < is not defined.

Using the defined language, it is possible to express functional flows (Definition 14)
or stages such as in Example 4.6. Furthermore, now we can express disjunctions and
negations of the particular constraints (Example 4.7). It is also possible to denote non-
deterministic final conditions.

We define the notion of variable assignment, satisfiability and unsatisfiability as
ususal. Satisfiability modulo differential equations then corresponds to checking sat-
isfiability of a (quantifier-free) formula of the theory of ODEs.

The theory of ODEs cannot be generally decidable, not only because of the exponen-
tial and trigonometric functions, but especially because of the solutions of ODEs [22].

4.3 SAT Modulo Differential Equation Simulations
Finally, satisfiability modulo differential equations from Section 4.2 can be defined based
on numerical simulations of the ODEs (Section 2.1.1), that is, with an alternative seman-
tics of the ODEs. For this we will use specific semantics of functional variables that we
introduced in Section 4.1.1 with numeric methods from Section 3.1. The resulting theory
differs from the theory of ODEs only in its semantics.
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Definition 19. A floating-point interpretation of the theory of ODEs interprets the sorts
and functional predicates based on Definition 16, and interprets numerical predicates in the
obvious floating-point analogue to the semantics presented in Section 4.2.

Here numerical variables are also called floating-point variables.

We will also call the interpretation as simulation semantics of the theory of ODEs.
As a result, for example, the domains of the functional variables are sets of discrete

points, as stated in Definition 16, and importantly, invariants may be violated in the
final point. According to Section 2.1.1, the resulting interpretation is parametrized not
only by a chosen set F, but also by a numerical method that solves the ODEs (which can
further depend on a number of parameters).

Due to the numerical simulations, it is likely that an implementation of deciding
satisfiability of formulas of the theory will require all ODEs to be initialized using oper-
ator init , although it is not directly required by the theory.

A fragment of the theory with no functional variables, that is, just with floating-point
variables, would result in something like a theory of floating-point numbers. An exam-
ple is [24], which however concentrates on the intricacies of floating point arithmetic
and on completeness and soundness of the corresponding satisfiability problem. We, on
the other hand, ignore these aspects and instead focus on the handling of ODEs which
implies some significant consequences. For example, as already mentioned, ODEs need
to be initialized and it is likely that most of simple constraints on floating point vari-
ables depend on the solutions of ODEs. Therefore, it might be reasonable to assume
that most of these constraints will depend on some explicit initial values too, since it
is hard to predict the outputs of ODEs. As a result, one can view even simple floating
point constraints as numeric simulations.

Using this semantics, the resulting theory is not only decidable in the theoretical
sense [75], but also efficiently decidable for formulas of the type occurring in this dis-
sertation thesis. We present our approach to the defined problem in Chapter 6.

Strong Satisfiability. We also provide a refinement of the satisfiability problem where
we only care about final values of functional flows that stem from a violation of an in-
variant. The same applies for final values of stages of functional flows in Section 4.1
(see also Example 4.6). This way, the lengths of functional flows are the longest possi-
ble. This reduces the search space for solvers. The intuition is to ensure that functional
flows only end with the violation of an invariant. This corresponds to hybrid systems
where jumps are only enabled in situations where they actually must be taken.

Definition 20. A variable assignment α strongly satisfies a formula ϕ of the theory of ODEs
with the simulation semantics iff it satisfies ϕ and in addition the following holds: for all systems
of functions F j , there is an invariant I in ϕ belonging to F j such that α satisfies I but the final
values of α do not satisfy I .

A formula ϕ of the theory of ODEs with the simulation semantics is strongly satisfiable iff
a variable assignment that strongly satisfies ϕ exists.
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Using final conditions, it is possible to ensure syntactically that strong satisfaction
and satisfaction are the same (such as in Example 4.7). Consider the following example:

Example 4.8. Let ϕ be a formula

init(x ) = 0 ∧ ẋ = 1 ∧ x ≤ 10 ∧ final(x ) ▷◁ ξ (4.11)

where ▷◁ ∈ {≤,=,≥, >} and ξ > 0 is a constant. We will discuss several concrete cases
of ▷◁ and ξ, which correspond to single functional flows.

If ▷◁ is ≤ or ≥ and ξ < 10, ϕ is not strongly satisfiable because the final condition is
nondeterministic: with ▷◁ being≤, final(x ) ∈ [0, ξ], and with ▷◁ being≥, final(x ) ∈ [ξ, 10],
meaning that the length of the flow is not unique.

If ▷◁ is = and ξ < 10, the final condition may be deterministic, because it may con-
strain the length of the flow s.t. it is unique2: final(x ) = ξ. Nonetheless, even if the
resulting length is unique, it is definitely not the longest possible length and invariant
x ≤ 10 is not violated at the final value: final(x ) = ξ < 10 ≤ 10. Therefore, an assignment
that satisfies such a formula does not strongly satisfy the formula.

If ▷◁ is ≥ and ξ = 10, then final(x ) ≥ 10 in combination with invariant x ≤ 10 still
does not result in a unique length of the flow. Following the discussion in Section 4.1.1,
the final value may or may not violate the invariant, resulting in nondeterminism. Such
a formula is still not strongly satisfiable.

If ▷◁ is > and ξ = 10, then final(x ) > 10 negates invariant x ≤ 10 and therefore
explicitly states that the invariant must be violated (Remark 7) and results in a unique
length of the flow that is also the longest possible. Therefore, in this case ϕ is strongly
satisfiable.

4.3.1 SAT Modulo Black-Box Simulations
Simulations of ODEs can be generalized in such a way that systems of functions are not
restricted to model only differential equations, but to more general simulations such as
black-box functions that somehow transform a vector of floating point values to another
vector. Examples of such black-box functions are Simulink models, railway simulators,
solvers of systems of linear equations, neural networks, etc.

For such functions, the SMT solver has no implicit information about the relation-
ship between the outputs and the inputs and must always blindly simulate every partic-
ular situation. This can be similar in the case of a non-robust algorithm for SAT modulo
ODE simulations. However, given a specific problem or an algorithm, some theory in-
formation can be provided explicitly. For example, in the case of a lazy online approach

2Here, an issue with the uniqueness is a possible ambiguity of the equation due to various possible
choices of rounding modes of the floating-point numbers. We already mentioned in Section 4.1.1 that
using final conditions that are based on an equality is discouraged.
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to a problem where railway simulators are employed as well, the simulators can explic-
itly provide the fact that the progress of the involved variables that describe the trains
is always monotonic (provided that the trains are not reversing). The resulting SMT
solver can then be able to learn more general facts when it arrives at an inconsistency.
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CHAPTER 5
State of the Art Tools

In Sections 5.1–5.3 we focus on implementations of algorithms presented in Chapter 3.
Importantly, in Section 5.4 we also discuss complex and sophisticated state-of-the-art
tools that may handle problems that are similar to SAT modulo ordinary differential
equations (ODEs) from Section 4.2. Some of the presented tools are based on reacha-
bility analysis of hybrid automata (Section 2.2), instead of SAT. Note that some of the
algorithms that are used within these tools were not covered in Chapter 3, because we
focus on satisfiability problems and on simulations of ODEs.

5.1 Numeric ODE Solvers
Some of the methods mentioned in Section 3.1, and many more, are implemented in
a plethora of ordinary differential equation (ODE) solvers (or more complex tools). We
present a few examples of robust and efficient standalone solvers that are implemented
in C and C++ and support parallel variants of the algorithms:

• SUNDIALS [65] is a complex toolkit that has been developed for decades orig-
inally in Fortran, now implemented in C with an OCaml API available. It im-
plements implicit methods, namely Adams–Moulton methods (Example 3.6) for
non-stiff equations, and backward differentiation formulas (BDF) (Example 3.7)
for the stiff ones. It also implements some Runge–Kutta methods, for example,
it combines explicit methods with implicit methods, resulting in methods with
adaptive step sizes.

The toolkit also supports a form of root-finding, meaning that it is possible to
use constraints on function values as final conditions of the simulations, not only
constraints on the time.

• Odeint [1] is a part of Boost C++ libraries. In contrast to SUNDIALS, Odeint is
a relative novice in the field of ODE solvers. It implements a number of meth-
ods, both explicit and implicit, including Adams methods (Examples 3.5 and 3.6)
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and explicit Runge–Kutta methods, for example RK4 (Example 3.11), but also
Dormand–Prince method with adaptive step sizes.

Odeint library is well customizable. Since it is based on C++ template program-
ming and concepts, one can configure various data types, stepping methods, or
even interfere each step with an external function, which for example allows to
implement checking of complex invariants after each step.

5.2 SAT Solvers
There is a bunch of SAT solvers that implement the DPLL algorithm with conflict-driven
clause learning (CDCL), as presented in Section 3.2. These solvers are nowadays ex-
tremely efficient for many applications and are used in industry. Each year, many SAT
solvers participate in the international SAT solver competition [67], where one can ob-
serve an enormous progress of the performance of state-of-the-art solvers across the
whole community—there is not just one solver which dominates the others over years.

We explicitly mention the MiniSat2 solver [45, 46], which has won several competi-
tions. It is no longer being developed and its performance is actually already quite far
away from the current state of the art, but it became a basis of many of these successor
solvers. One of advantages of MiniSat2 is that its interface and even implementation is
quite simple, therefore easy to understand, yet still relatively efficient.

If a solver is used as black-box, it is possible to use a standard text format of the
input and also output: DIMACS, which is supported by most of SAT solvers. However,
SAT solvers are often used via API, which sometimes offer various callbacks to other
routines that interfere the search procedure.

We omit discussion of optimizing SAT solvers (which refer to maximum satisfiability
(MAX-SAT)).

5.3 SMT Solvers
As indicated in Section 3.3, there is a plethora of possible approaches to Satisfiability
Modulo Theories (SMT), regarding the support and handling various theories and their
fragments. Still, most of state-of-the-art solvers conform to SMT-LIB standard which
allows to compare the solvers against each other within given theories. Inspired by
SAT solvers, there is an international competition of SMT solvers [11] that is based on
SMT-LIB (see below for more details). Notable competitors are for example CVC5 [10,
5], Yices2 [43, 44], Z3 [39, 97], OpenSMT [26, 27], MathSAT [33, 60], Barcelogic [18], and
lately also Z3++ [29, 28] which is based on Z3. CVC5 and OpenSMT, for instance, are
built on top of MiniSat2. We do not list SMT solvers that handle differential equations
here, they are mentioned later.

Handling optimization in SMT, that is, Optimization Modulo Theories (OMT), is still
an area under active research, with no widely used standards and benchmark libraries
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available. For example, authors of CVC5 mentioned that OMT is their future work [10].
Still, some comparisons of existing solvers, and also of CP implementations (Constraint
Programming), exist [36]. The OMT solvers include OptiMathSAT [112, 111] which is
based on MathSAT, νZ [17] which is developed within the Z3 project, and Barcelogic
also handles some optimization [99].

5.3.1 SMT-LIB

SMT-LIB is an international initiative aimed at facilitating research and development
in SMT [12]. Most importantly, it develops and promotes common input and output
languages [35, 13] for SMT solvers, and provides a large library of benchmarks. It forms
a basis of the competition of SMT solvers.

SMT-LIB introduces a new terminology for theory fragments, which they call log-
ics. As for theories, various logics can be combined together, which is important for
many solvers. Some logics are subsets of others, resulting in a hierarchy. Solving more
constrained logics can be much more efficient, especially in cases without quantifiers.
Solvers implement only logics, theories serve as a theoretical background.

Each logic defines syntax (using core functions) and semantics, but new functions
can be introduced too. The library uses sorts to distinguish different types of variables
(e.g. Bool, Real), or return types of functions. New sorts can also be introduced.
Functions must be defined for a fixed number of arguments of possibly different sorts.

Forming a formula is done via assertions, which add subformulas into assertion stack.
Then, all the formulas from the stack are put into conjunction. It is also possible to revert
some assertions (i.e. remove them from the stack).

Some OMT solvers define optimization extensions of the SMT-LIB language, but
they are not unified.

5.4 Tools for Handling Hybrid Systems
In the case of models of cyber-physical systems and the like (such as Example 2.3),
typically both non-trivial discrete and especially continuous reasoning are needed for
reachability, verification and/or planning tasks. The underlying dynamics of the cor-
responding models may be difficult or impossible to specify without ODEs. In this
section, we offer an overview of tools that handle such models.

Some of the tools are based on the formalism of hybrid automata (Section 2.2) and
build on reachability analysis. Next, many tools use hybrid systems as a more gen-
eral name for models with both discrete and continuous behavior, where the discrete
behavior is described for example by discrete modes, and the continuous behavior is
described using differential equations. Still, various formalisms are often interchange-
able. For example, in the case of problems related to Boolean satisfiability (SAT) modulo
ODEs described in Section 4.2 (such as Example 4.7), the formulas can be transformed
into a corresponding hybrid automaton (although the number of locations of the re-
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sulting automaton that would be necessary to model all possible discrete states may be
high). Therefore, for the sake of this section where we survey many tools that are in
some sense similar, we will use the name hybrid systems for the underlying models.

In the case of hybrid automata, we covered theoretical background on the formalism
but we did not cover algorithms that concern the corresponding reachability analysis,
which is in general very complex topic and is out of scope of this dissertation thesis.
The same applies also for the other formalisms that are not based on SAT, and for ap-
proaches that handle ODEs in a different way than based on simulations.

The resulting approaches can vary not only in the underlying formalism, but also in
the way how constraints are handled. For example, there are several specific approaches
where classical mathematical enclosures of ODEs, using an interval arithmetic, are ap-
plied: Taylor model approximation [32], set-based reachability [20], SMT solving [66],
Constraint Programming [59], Interval Constraint Propagation (ICP) [47], or a combi-
nation of more ways, like SAT modulo ICP [58]. An effort of these tools, within partic-
ular (systems of) ODEs, is to prove that a unique solution to an initial value problem
(IVP) (Definition 2) exists. Then, they compute theoretical bounds that contain this so-
lution [88, 98], which is an honourable property applicable for the purposes of precise
mathematical proofs. They also support more-or-less non-linear constraints. An issue
with such approaches is, however, that solving ODEs this way is extremely difficult.

Some interval ODE solvers are based on a numerical method, like Runge–Kutta,
but in a validated context with intervals, where the bounds of errors are carefully con-
trolled [40]. Most importantly, the underlying semantics of ODEs still does not rely
on approximation and floating-point computation. An example of such a solver is
DynIBEX [41].

In addition, a model that is to be analyzed, typically of an embedded system, is
often designed not based on mathematical analysis (e.g. on physical laws), but based
on simulations. As the design of the model evolves, it is usually being parametrized,
and such parameters are often estimated again based on the simulations s.t. the ODEs
behave as closely to the real system as possible. Still, some models can be unrelated
to simulations, for example some statistic and biochemic models, where using these
mathematical approaches can be a reasonable choice.

We address another limitation of most of these state-of-the-art approaches regard-
ing the supported constraints with differential equations, which are required to be in
the form of monolithic building blocks that contain a full system of ODEs within which
no Boolean reasoning is allowed. For example, in the case of hybrid automata, a lo-
cation defines a full system of ODEs where all continuous variables are involved, and
switching to another location means changing the whole system of ODEs.

There is a number of tools that focus on reachability analysis of hybrid automata or
hybrid systems, where usually the main intended application is verification and model
checking. An effort of a performance comparison of such tools on unified benchmarks
exists [52, 101] in the form of a friendly competition. Notably, the presented bench-
marks exhibit only trivial discrete state spaces, which is typical for a number of such
tools, while we focus on models where also complex discrete state space appears. Ex-
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amples of tools that have competed there through the years are (in alphabetic order) Ari-
adne [25], CORA [3], C2E2 [49, 48], dReal3 [58], DynIBEX [40], Flow* [32], HySon [21],
JuliaReach [20], Kaa [42], KeYmaera X [54] and Verse [84]. Some of the tools, however,
support only linear continuous dynamics, for example HyLAA [9] and SpaceEx [53].

DynIBEX [40, 41] is a plug-in of IBEX [113], a library for constraint processing over
real numbers. DynIBEX provides a set of validated numeric integration methods that
are based on Runge–Kutta schemes (including e.g. RK4—Example 3.11). They also im-
plement affine arithmetic to allow modeling with intervals. The presented benchmarks,
such as [80], show interesting case studies where for example discrete state space is
modeled in the form of so-called sampled switched systems. Here the changes of dis-
crete modes occur periodically at a constant sampling period and the problem consists
in finding a switching rule in order to satisfy a given specification. The problem is called
control synthesis and is based on state-space bisection. However, either the number of
different discrete modes is low, or the performance degrades significantly in the case of
a higher number of modes.

There is another tool, HSolver [103], that refers to verification of hybrid systems
where however the time is not bounded. On the other hand, again, the discrete part of
the models is trivial, and also the dimension of the continuous part is quite low.

Now we take a closer look into more specific tools that are more related to the prob-
lems defined in Sections 4.2 and 4.3.

5.4.1 SAT Modulo ODE Solvers
Here we focus on approaches that are based on or close to SAT-modulo-theory solv-
ing. All such state-of-the-art approaches are based on classical mathematical semantics
of ODEs. However, differential equations are not included within standard SMT logics.
An augmentation of non-linear real arithmetic with trigonometric and exponential tran-
scendental functions exists [86], but this in general is still not enough to model complex
dynamic phenomena.

Solvers dedicated specifically to ODEs exist. However, such methods often exhibit
significant differences with each other, even between the underlying problem state-
ments. Hence we will ignore the differences and focus on handling formulas of the
theory of ODEs (Definition 18). Since these methods do not allow Boolean reasoning in-
side the full systems of ODEs, as mentioned above, they actually support only a subset
of the theory of ODEs.

We now list the representatives of these tools:

• Hydlogic [66] implements lazy online SMT solving with theory propagation (see
Section 3.3), with an interval-based theory solver which deals with real constraints
involving ODEs. It is designed to solve problems in the area of bounded model
checking (BMC) (Section 2.5).

• iSAT-ODE [47] is a SAT modulo ODE solver that is based on the iSAT algorithm [51].
However, the approach substantially deviates from traditional lazy SMT solv-
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ing, because the propositional SAT solver directly manipulates Interval Constraint
Propagations (ICPs), resulting in a much tighter integration. It exploits the algo-
rithmic similarities between constraint solving and propositional solving that is
based on Davis–Putnam–Logemann–Loveland (DPLL). However, constraints can-
not only be satisfied or unsatisfied for all valuations from an interval box, but can
also contain a mixture of points satisfying or violating a constraint [51].

The verified formula is required to be in restricted form related to BMC, starting
from an initial state, followed by unwinding of the transition system and finally
leading to a target state satisfying a property of interest.

Interval solutions of ODEs are similar to the approach used in Hydlogic. In ad-
dition, they are combined with a second layer of reasoning about ODEs, which is
only applicable under certain conditions, but may yield tighter enclosures. This
additional layer generates so-called bracketing systems.

• dReal3 [58, 56, 68] is based on OpenSMT. It supports lazy online SMT solving with
theory propagation, but with an added theory that is based on ICP. Validated in-
terval enclosures of ODEs are computed by the CAPD solver [57], which builds on
decades of research. The dReal3 solver decides δ-satisfiability of a δ-perturbated
formula, where δ is a numerical error bound specified by the user. Unsatisfiable
results do not involve any numerical approximation.

The input language [8] stems from SMT-LIB and served us as an inspiration while
designing our language. The tool also provides a preprocessor called dReach [78]
which translates a BMC problem, encoded using a specific syntax, into a formula
of the input language.

Some additional features are provided, like heuristics (e.g. for BMC), an addi-
tional support for parallel compositions of models, etc. Newer version of the tool,
dReal4, is available as well, but dReach is not provided for the new version.

In Chapter 7 we will present experimental comparison of our approach with dReal3
on a few simple case studies. We will not use dReal4 since the case studies are based on
bounded model checking.

5.4.2 Simulation Tools
The problem of verifying differential equations wrt. simulation semantics, along with
other constraints, has been addressed before, but not in a SAT modulo theory context.
Simulation-based solvers do analyze the underlying systems of ODEs according to the
methods presented in Section 3.1.

The discussion of particular tools follows.

• Simulink is a part of proprietary extensive computational software pack MATLAB®.
It offers modeling of hybrid systems in the form of compositions of blocks. Differ-
ential equations are represented by continuous-time integrator blocks.
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A stream-based approach is adopted to formalize variable-step solver semantics
and to establish a computational model of time that supports discrete-time and
discrete-event behavior [96]. However, the support of models with a large number
of discrete modes is limited.

Simulink is widely used in industry: the design process of complex cyber-physical
systems is tightly connected to the models which are periodically being updated
based on real experiments with the corresponding devices. Therefore, such sys-
tems indeed emerge from simulations. However, the verification part of the design
process is still based on classical testing, not on automatic analysis of the underly-
ing models.

There are also free alternatives to Simulink, for example Xcos and Ptolemy.

• HySon [21] is actually an enhancement over the Simulink tool. The algorithm
performs set-based simulation of hybrid systems with uncertain parameters, ex-
pressed in Simulink. The uncertain parameters are expressed as intervals, and
HySon computes a good approximation of the set of all possible Simulink exe-
cutions at once—and this approximation also takes into account rounding errors
of the floating-point arithmetic. Instead of plain interval arithmetic, it uses affine
arithmetic which tracks linear dependencies between the underlying variables.

However, there are no significant changes to Simulink in the discrete part of the
procedure.

Although we do not consider the listed approaches to be well suitable for verification
and planning tasks for cyber-physical systems, due to the drawbacks mentioned above,
some techniques seem to be relevant to our approach and are considered to be a future
work, for example supporting intervals using affine arithmetic.
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CHAPTER 6
SAT Modulo Differential Equation

Simulations: Solver

In Section 5.4, we presented state-of-the-art tools and accented two groups of them:

• Tools that are based on SMT solving (Section 5.4.1). Such methods can efficiently
handle discrete constraints. However, the semantics of ODEs are based on classi-
cal mathematical analysis, which may have disadvantages that were discussed in
the section.

• Tools that simulate the underlying ODEs (Section 5.4.2), but are not efficient in
discrete reasoning. Insufficient discrete reasoning is actually also the case of all
the other mentioned tools that fit into neither of these groups.

In this chapter, we propose an alternative approach to SAT modulo ODEs. We de-
fined the problem in Section 4.2 and alternative semantics of ODEs that are based on nu-
merical simulations in Section 4.3. Notably, we focus on a simplified problem and check
strong satisfiability of a formula (Definition 20). Within the simulations we apply some
numerical methods from Section 3.1. Here we focus on algorithmic and implementation
details of the approach. To explain the intuition behind the structure of formulas that
we expect to handle, we refer to Example 4.7.

Given a formula of the theory of ODEs (Definition 18), the result of our solver is
sat if the formula is (strongly) satisfiable and unsat if it is not strongly satisfiable.
However, the result may also be unknown in cases when the solver arrives at certain
final states where it still did not assign some variables to any value. Therefore, the solver
is not complete in general. However, in [75] we provide a syntactical characterization of
the kind of inputs for which our solver provides an efficient solution. We support this
through experiments presented in Chapter 7 and Chapter 8.

Section 6.1 concentrates on the design of a standalone numerical ODE solver. The
ODE solver does not depend on the SMT framework and Boolean reasoning. Still, it al-
lows computation of selected functional predicates of particular functional flows from
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Section 4.1, with parameters such as a stepping method and step size. Section 6.2 pro-
vides the design of a lazy SMT solver that is based on simulations of ODEs. The section
includes a description of the theory solver and integration of this solver with an un-
derlying SAT solver. Finally, Section 6.3 presents the input language of our solver and
Section 6.4 provides some implementation details.

6.1 ODE Solver

Here we build on the definitions of systems of functions and functional flows presented
in Section 4.1, and design an ODE solver as an independent software component such
that:

• It solves functional flows (Definition 14), which are similar to IVPs (Definition 2)—
systems of ODEs with initial values. In addition to classical systems of ODEs,
invariants (Definition 12) are allowed in the flows.

• The solver is based on stepping of differential equations, and can be parametrized
with a numerical method (Section 3.1) along with the corresponding parameters,
for example step size.

• Stopping conditions of the stepping stem from a violation of an invariant of the
flow.

• The solver has no explicit support of Boolean reasoning, but at the same time
the interface allows to select various possible variants of constraints regarding
a certain functional variable—which will be useful for the SMT solver that will be
described in Section 6.2.

Stepping of Differential Equations. The ODE solver accepts systems of ODEs such as
Example 4.5, that is, systems that are based on functional flows (Definition 14). Accord-
ing to Section 4.1.1, we currently support only constant step-size integration methods,
some of which were presented in Section 3.1, for example RK4. Also, we currently do
not support invariants with the predicate symbol = (Definition 12).

Notation. We will separate particular components of a functional flow as follows: vec-
tor x0 with the initial values of the corresponding simple initial conditions, vector odes
with the ODEs, and set invs with the invariants. The position of particular elements of
the vectors x0 and odes correspond to an arbitrary order of the particular functional
variables in a system of functions F .

Every solution of a functional flow can be parametrized by a set of parameters P ,
especially the chosen numerical method, and step size ∆ which we explicitly exclude
from the set P .
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The numerical methods are based on stepping and typically use matrix operations,
where each step might be implemented using a standalone function DO_STEP that trans-
forms a vector of floating-point values to another, possibly depending also on some
previous values. Repetitive calls to function DO_STEP results in an output vector.

The particular calls to function DO_STEP can be interleaved by callbacks, for example
with checking of invariants. This way, we can implement stopping conditions of such
a stepping based on invariants. We ensure that all invariants invs hold in such a way
that before each step we simply numerically check whether all the invariants evaluate
to true. Then, we keep on stepping until any invariant is violated, resulting in Algo-
rithm 6.1 which describes function DO_STEPS. The function returns not only the last
step, but also the previous steps in the form of a list of all the steps—a trajectory, as
described in Section 3.1.

Algorithm 6.1: Function DO_STEPS.

DO_STEPS(x0,odes, invs ,P ,∆) −→ List[Vector[F]] :

x← x0

T ← (x)
while ALL_INVARIANTS_HOLD(x, invs) do

x← DO_STEP(x,odes,P ,∆)
T ← T ∥ (x) ▷ append the computed step to the trajectory

return T

Importantly, we assume that the invariants will be eventually violated. Therefore,
following the observation in Remark 6 (Section 4.1), such a stepping is guaranteed to
terminate, provided that function DO_STEP terminates, which is a reasonable assump-
tion referring to Section 3.1. To support the assumption, we also require that there is at
least one invariant in functional flows.

Recalling Section 4.1.1, invariants must hold only for all steps in {0, . . . , τj
∆
− 1}.

Therefore, at the end of the algorithm, the last step of the trajectory corresponds to
the final sample point τj

∆
and violates the invariants. Note that such a trajectory is never

empty.
Here we ignore the corner cases where the function might fail, e.g. due to floating-

point overflows. Function DO_STEP depends on the implementation of the selected
numerical method.

The ODE solver currently requires exact initial values and does not explicitly sup-
port nondeterminism here—the only way to achieve that so far is to use Boolean con-
straints in a supervising algorithm, e.g. an SMT solver. For example, in the case of initial
conditions in the form of intervals (Remark 5), it is possible to discretize the interval into
sample points using disjunction of multiple equalities (i.e. simple initial conditions) and
solve these cases separately. A future work is to implement an interval arithmetic (e.g.
affine arithmetic) which would allow such nondeterminism of initial values.
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Stopping Conditions. An issue with classical numerical ODE solvers is that they sup-
port only evaluations for a fixed time period (such as in Remark 2) which however
does not depend on function values of the underlying functions. Some solvers (e.g.
SUNDIALS) implement a form of root-finding, but only for some simple cases such as
Examples 4.5 and 4.6. We apply more general stopping conditions of stepping methods
which are based on invariants (Definition 12).

In Algorithm 6.1 we already showed how to check invariants, while we assume that
they are always eventually violated, which is a reliable stopping condition (as a result of
Remark 6). Moreover, the stopping happens exactly at the moment of a violation of any
invariant, resulting in the longest possible lengths of functional flows—in the same way
as for stages of functional flows (Section 4.1). Such stopping conditions are sufficient for
implementing strong satisfaction of a formula (Definition 20). This way it is possible to
use Algorithm 6.1 with no modifications, only checking the invariants within the ODE
solver. The algorithm returns a list of vectors where the last one violates the invariants,
and the responsibility of checking whether the last step satisfies final conditions lies on
a supervising algorithm such as an SMT solver.

It is typical that subsequent stages of functional flows reuse the final values of func-
tional variables, for instance in Example 4.6. The final values correspond to the point
where invariants are already violated. However, it would require to use a very small
step size ∆ in order to achieve that the final values are accurate. Too small step sizes
might cause significant performance drop, even though we just want to increase accu-
racy in the final phase of simulations. Therefore, once we reach a point where invari-
ants are violated, we apply iterative bisection resulting in Algorithm 6.2. It searches for
another point where invariants are violated too, but the point is close enough to the pre-
vious point where the invariants still held. The bisection is similar to the root-finding
in SUNDIALS, but in our case the stopping conditions may be more general due to the
usage of invariants.

The algorithm keeps searching with lower step sizes until a threshold ϵ is reached.
Note that lower step sizes imply that the particular steps in the resulting trajectory T
are no more equidistant wrt. time, but at the end of the list the sample points are more
granular. We additionally check if invariants are violated at the beginning of the al-
gorithm in which case the bisection is not desirable. Algorithm 6.2 terminates because
Algorithm 6.1 terminates and δ converges to zero1. The resulting trajectory is unique
wrt. the parameters of the algorithm.

We currently implement only numeric methods with a constant step size, but both
Algorithms 6.1 and 6.2 can be upgraded to also handle methods with adaptive step
sizes—it will require to control the invariants and the iterative bisection more carefully,
though. Furthermore, it can happen during the adaptive stepping that a careless choice
of a large step size causes skipping a region where an invariant would have been vio-
lated using a lower step size.

1We exclude the corner cases where C is very close to the bounds of the interval (0, 1), when it may
round to the boundary values, wrt. a floating-point arithmetic.
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Algorithm 6.2: Function ODE_SOLVE.

ODE_SOLVE(x0,odes, invs ,P ,∆) −→ List[Vector[F]] :

if ¬ALL_INVARIANTS_HOLD(x0, invs) then
return (x0)

x← x0

T ← ()
δ ← ∆
loop

T ← T ∥ DO_STEPS(x,odes, invs ,P , δ) ▷ Algorithm 6.1
if δ ≤ ϵ then ▷ ϵ > 0

break
x← T [|T |−1] ▷ forget the last step (T has at least two elements)
T ← (T [1], . . . , T [|T |−2]) ▷ forget the last step and avoid duplication of x
δ ← δ · C ▷ C ∈ (0, 1)

return T

6.2 SMT Solver
In this section, we present a standalone lazy SMT solver (see Sections 2.4 and 3.3) which
decides formulas in the theory of ODEs (Section 4.2, Definition 18) with simulation se-
mantics (Section 4.3, Definition 19). Deeper theoretical study of the target problem and
definition of a corresponding SMT solver is available in our paper [75]. Here, we fo-
cus on an implementation of a solver that decides strong satisfiability (Definition 20) of
formulas.

The SMT solver consists of a SAT solver and a theory solver. The particular solvers
are more-or-less independent based on how tight is their integration. A part of the
theory solver is the ODE solver from Section 6.1. We will describe the theory solver
in Section 6.2.1, and Section 6.2.2 will follow with the discussion on integration of the
theory solver with the underlying SAT solver.

We start with arguments why we built a brand new SMT solver from scratch instead
of using an existing state-of-the-art solver with a real or a floating-point arithmetic from
SMT-LIB (Section 5.3.1).

Motivation. Our ultimate goal is numerical solving (i.e. simulation) of IVPs (referring
to Section 3.1) within an SMT framework, which implies that:

1. The underlying ODE solver computes with raw floating-point numbers, using
cheap numeric computation and matrix operations.

2. Initial values of all ODEs must be defined before each simulation is executed.

3. The outputs of ODE solvers are approximations, as was discussed earlier.
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A floating-point theory which concentrates on the intricacies of floating-point arithmetic
might seem to be a reasonable choice. However, most of floating-point computation
occurs in the ODE solver, referring to Item 1. ODE solvers are unaware of the precise
formalization of the theory and use raw floating-point numbers. Hence we focus on the
handling of ODEs using the native machine-friendly representation of floating-point
numbers and we largely ignore the corner cases of the arithmetic. In the future, we will
aim to support the corner cases with a rigorous explanation wrt. simulation semantics
and the underlying numerical method.

Using an SMT solver with real arithmetic or alike is not suitable either because it
represents real values symbolically or uses precise rational numbers which are not easily
interchangeable with floating-point numbers. Moreover, in the case where most of the
constraints are directly or transitively related to initial or final values of ODEs, then
the necessity of algebraic solutions of constraints is limited, as a consequence of Items 2
and 3. In such cases, (nonlinear) real arithmetic is just too universal and hard to analyze.

Therefore, we focus on formulas where all terms transitively depend on the initial
conditions based on simulations.

6.2.1 Theory Solver

Generally, T -solvers, that is, theory solvers, decide satisfiability of a conjunction of the-
ory literals of a given underlying theory T . Here the theory is the theory of ODEs and
the theory literals refer to Definition 18, Some theory literals may form functional flows
which we handle using the ODE solver that we described in Section 6.1. We check strong
satisfiability, but we may also return unknown, although not in cases that are needed to
solve benchmark problems of the type found in the result of this thesis.

We will define the state space of the T -solver which will stem from theory variables
and define how to proceed from one state to another depending on the theory literals
and the involved variables.

Variables. Our T -solver uses variables and sorts that we defined in Section 4.2—
numerical variables and functional variables (Definition 18). Since we also use simula-
tion semantics (Section 4.3), numerical variables are also called floating-point variables
(Definition 19) which we will assume that are based on a machine-friendly floating-
point arithmetic such as IEEE 754.

In addition, for each functional variable f , the corresponding initial value init(f ) is
not treated as just an expression but represents an additional fresh floating-point vari-
able.

All the listed variables can in addition have a special value undef which is the de-
fault value at the beginning of the algorithm.

Literals. The T -solver uses decides strong satisfiability (Definition 20) of a conjunction
of theory literals of the theory of ODEs (Definition 18). The literals are passed to the T -
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solver as an input. They do not necessarily correspond to the original formula, but
rather to their truth values according to the assignment of the SAT solver. For example,
given numerical predicate x > 0 abstracted to a Boolean variable p, and given a Boolean
variable a, formula a ∨ ¬(x > 0) is abstracted to a ∨ ¬p. With assignment of the SAT
solver {a 7→ ⊥, p 7→ ⊥}, the T -solver receives negative theory literal ¬p and checks
its strong satisfiability. But with assignment {a 7→ ⊤, p 7→ ⊤}, the T -solver receives
positive literal p.

In practically reasonable formulas (such as Example 4.7), functional predicates occur
only positively, without a negation. Hence, the T -solver may ignore negative functional
literals, instead of checking that the negation holds, and focus on positive functional
literals.

State. A state of the T -solver is an assignment to all theory variables defined above
and occurring in the input formula. The initial state of the T -solver is the state where all
these variables have the value undef.

Next, we will define what is a consistent state which stems from the evaluation of
numerical predicates.

Definition 21. A numerical predicate is T -evaluable iff none of the arguments that occur in
the predicate have the value undef.

Definition 22. A state of the T -solver is T -consistent iff for all numerical literals that are
T -evaluable, the Boolean value of the literal is the same as the resulting Boolean value of nu-
merical evaluation of the corresponding atomic theory formula, using the values of the variable
assignment of the state. A state that is not T -consistent is T -inconsistent.

A numerical literal is T -consistent wrt. a state of the T -solver iff the state remains T -
consistent with the literal included in the assignment. Otherwise the literal is T -inconsistent.

According to the nature of functional literals and the way how invariants are de-
fined, functional predicates themselves do not affect consistency.

Inference Rules. We apply inference rules on the states of the T -solver in order to as-
sign values to the variables of the solver. There are two kinds of inference rules de-
pending on the sort of the involved variables. We start with inference rules on numeri-
cal variables where we exploit the fact that both sides of an equality have to evaluate to
the same value.

Definition 23. A numerical inference rule can be applied if the input formula contains a pos-
itive numerical literal of the form x = η or η = x, where x is a floating-point variable with the
value undef and η is a term where none of the arguments have the value undef.

The inference rule changes the current state s.t. it assigns variable x to the value that corre-
sponds to the numerical evaluation of term η.

For example in x[j] = x[j−1] + final(yj−1), if the value of variable x[j−1] and final value
of variable yj−1 ∈ F j−1 is already fixed, then we can infer the value of variable x[j].
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Definition 24. A functional inference rule can be applied if the set of functional predicates
and simple initial conditions corresponding to a system of functions F and occurring in positive
literals of the input formula forms a functional flow such that:

• the flow contains at least one invariant,

• all functional variables f ∈ F have the value undef,

• for all f ∈ F the corresponding numerical variable init(f ) does not have the value undef,

• every numerical variable that appears within any of the functional predicates of the flow
does not have the value undef.

The resulting state after applying such an inference rule is identical to the previous one except
that all variables f ∈ F are assigned to the resulting trajectories of the ODE solver as described
in Algorithm 6.2.

For example, if the initial value of variable yj ∈ F j (i.e. init(yj)) and the value of
variable xj is fixed, then we can use ẏj = x[j] and yj ≤ 10 to infer the value of the
variable yj , that is, the corresponding trajectory with final(yj) > 10 (a value that is close
to 10 but strictly greater). Here we assume that x[j] > 0.

Note that this inference rule differs from the one that we defined in [75] where the
rule fixes the number of steps. Using that inference rule would require tighter integra-
tion of the SMT solver and the ODE solver. On the other hand, in [75] we do not require
that invariants must be violated and the length of the systems does not have to be the
longest. For instance, in the example above, the final value of trajectories of that solver
would satisfy final(yj) ≥ init(yj).

Both numerical and functional inference rules yield unique successor states of the
T -solver. We can apply several inference rules in a row, starting from the initial state.
This always terminates, since every inference rule creates a state with less undefined
elements and the number of variables is finite.

Algorithm and Result. The T -solver accepts a formula Φ as an input that is a con-
junction of theory literals. We show a simple algorithm of the solver in Algorithm 6.3
which uses the fact that the order of the applications of inference rules does not affect
a discovery of a T -inconsistent state.

It must always check all literals in order to avoid missing a check of a literal that is
currently not T -evaluable. The variables of the T -solver are hidden here.

The algorithm returns sat if Φ is (strongly) satisfiable and unsat if Φ is not strongly
satisfiable. However, it may return unknown in cases when at the end there are some
variables that have the value undef. Therefore, the theory solver is not complete in gen-
eral. However, in [75] we provide a syntactical characterization of the kind of inputs for
which our solver provides an efficient solution. We support this through experiments
presented in Chapter 7 and Chapter 8.
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Algorithm 6.3: Function T ::SOLVER.

T ::SOLVER(Φ) −→ {sat,unsat,unknown} :

let σ be the initial state for Φ
while σ is T -consistent ∧ an inference rule can be applied on σ wrt. Φ do

let σ′ be the state after applying the inference rule on σ wrt. Φ
σ ← σ′

if σ is T -inconsistent then
return unsat

if σ contains a variable with the value undef then
return unknown

return sat

If the result is sat, then formula Φ is indeed strongly satisfiable (Definition 20), not
only satisfiable. The reason is that here all variables must be assigned to a value other
than undef, including functional variables. The only way how to assign a value to
a functional variable is to use a functional inference rule, which requires at least one
positive literal of an invariant. In addition, in the ODE solver we assume that some
invariant must always be eventually violated. Therefore, for each system of functions,
a functional inference rule must have been used where an invariant must have been
violated. Moreover, since there is a satisfying variable assignment α, it also means that
α must satisfy all selected invariants. Therefore, given these assumptions and given
that T -solver returns sat, every such variable assignment that satisfies Φ also strongly
satisfies Φ.

If the result is unsat, then the input formula Φ is not strongly satisfiable. If Φ is
of a form that ensures that satisfiability and strong satisfiability coincide, this implies
that it is not satisfiable. See the discussion after Definition 20 including Example 4.8 for
details.

6.2.2 Solver Integration

Now we discuss how to build the SMT solver based on an integration of the presented
theory solver (i.e. T -solver) in Section 6.2.1 and an underlying SAT solver. Follow-
ing Section 3.3.2, we use the lazy approach to SMT where atomic theory formulas are
substituted with fresh Boolean variables. The SMT solver checks strong satisfiability of
a formula in a similar way as the T -solver, also having the same result. But importantly,
now also Boolean variables and disjunctions of constraints are allowed, for which we
use the SAT solver.

The SAT solver controls the core algorithm, but by itself, it does not have the theory-
related information on these Boolean variables and must communicate with the theory
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solver. How frequent is the communication between the solvers depends on how tightly
they are integrated. We described the principles of lazy offline and online approaches.
We first describe a so-called dependency graph that will be useful in the algorithms.
Next, we proceed to the naive offline approach which is useful for illustrating some
techniques of lazy solving. Finally, we present our online approach.

Dependency Graph. Atomic theory formulas form vertices of a directed dependency
graph, where an edge means that the source vertex may allow an inference rule that as-
signs a value to a variable that is shared with the target vertex. Inference rules that may
be allowed by vertices that have no input edges are initial inference rules. By definition,
initial inference rules can be only numerical inference rules.

The dependency graph is useful for decision heuristics of the SMT solver. For exam-
ple, it is usually beneficial to use initial inference rules before other inference rules, since
they do not require any variables to be assigned. Then, it is often efficient to proceed
via the edges of the dependency graph that lead from the already processed vertices to
those that are not yet processed. The graph is also useful for construction of conflict
clauses, as we will see below.

Offline Approach. A naive, shallow integration of the underlying solvers uses the
solvers as independent components with no callbacks or interruptions: the SAT solver
searches for a full propositional assignment and the T -solver checks it for strong sat-
isfiability. The approach results in an unnecessarily high number of discovered incon-
sistencies, but it is easy to implement and also allows flexible selections of particular
implementations of the underlying solvers.

Notation. Boolean variables are represented by set bools , numerical (i.e. floating point)
variables by set floats , and atomic theory formulas (abstracted to Boolean variables) by
sets flt_preds and fun_preds , referring respectively to numerical predicates and func-
tional predicates. Each system of functions F j is ordered into a vector of functional
variables F j , where j ∈ J and J is the index set from Definition 18. All such systems
are grouped altogether such that F := {F j | j ∈ J }. Variables that represent initial
values of functional variables are included in the set floats as well.

Algorithm 6.4 shows an outline of such an approach which decides whether a for-
mula Φ is strongly satisfiable. In CHECK_SAT, it firstly checks propositional satisfiabil-
ity of Φ. If Φ is unsatisfiable, the algorithm terminates, otherwise it searches for a full
propositional assignment. This part corresponds purely to the SAT solver. The rest of
the algorithm corresponds to the T -solver. After getting the assignment, it tries to eval-
uate all floating-point variables and functional variables inside function TRY_EVAL_-
FLOATS, where it also checks consistency of the current assignment.

If checking of consistency in TRY_EVAL_FLOATS fails, a conflict clause χ is con-
structed using CONFLICT_CLAUSE and appended to formula Φ. Then, the procedure
restarts from scratch. The algorithm keeps looping until it arrives at a definite result,
referring to the possible results described in Section 6.2.1.
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Algorithm 6.4: Function NAIVE_SAT.

NAIVE_SAT(Φ, bools ,floats ,flt_preds ,F , fun_preds) −→
{sat,unsat,unknown} :

loop
UNSET_VALUES(bools ∪ floats ∪ flt_preds ∪ fun_preds ,F )

▷ set all variables to undef
▷ SAT solver
if ¬CHECK_SAT(Φ, bools ,flt_preds , fun_preds) then

return unsat ▷ failure: Φ is unsatisfiable
A← GET_ASSIGNMENT(Φ, bools ,flt_preds , fun_preds)

▷ T -solver
if ¬TRY_EVAL_FLOATS(A,floats ,flt_preds ,F , fun_preds) then ▷ Algorithm 6.5

χ← CONFLICT_CLAUSE(A,floats ,flt_preds ,F , fun_preds)
Φ← Φ ∧ χ ▷ asserts the conflict clause
continue

if ¬ALL_SET(floats ,F ) then
return unknown ▷ failure: some variables not set

return sat ▷ success: all variables are set!

Algorithm 6.5: Function TRY_EVAL_FLOATS.

TRY_EVAL_FLOATS(A,floats ,flt_preds ,F , fun_preds) −→ B :

repeat
forall p ∈ flt_preds do ▷ no functional predicates here

if ¬NUM_CONSISTENT_TRY_INFER(p,A,floats) then ▷ Algorithm 6.6
return ⊥ ▷ found a T -inconsistency

forall F j ∈ F do
TRY_FUN_INFERENCE_RULE(F j,A, fun_preds ,floats) ▷ Algorithm 6.7

until NO_PROGRESS(floats ,F )
return ⊤
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Algorithm 6.5 describes function TRY_EVAL_FLOATS, i.e. evaluation of the non-
Boolean part: numerical variables floats and functional variables F , which either suc-
ceeds or not. Checking of T -consistency and at the same time the evaluation of nu-
merical variables is done by function NUM_CONSISTENT_TRY_INFER, using numerical
inference rules. In the case of an inconsistency, the function returns false. The evalua-
tion of functional variables is done by procedure TRY_FUN_INFERENCE_RULE. The loop
tries to assign as many variables as possible according to the corresponding inference
rules, as long as there is a progress, that is, at least one inference rule must be used every
time.

Algorithm 6.6: Function NUM_CONSISTENT_TRY_INFER.

NUM_CONSISTENT_TRY_INFER(p,A,floats) −→ B :

if ¬ANY_UNDEF_ARG(p,floats) then
val ← SAT_VALUE(p,A) ▷ truth value of the corresponding Boolean variable
eval ← EVAL(p,floats) ▷ Boolean value of the evaluation of the predicate
return val ⇔ eval

if SYMBOL(p) ∈ {=} then
TRY_NUM_INFERENCE_RULE(p,A,floats) ▷ Definition 23

return ⊤

Function NUM_CONSISTENT_TRY_INFER is described in Algorithm 6.6. According to
propositional assignment A, it either checks T -consistency of numerical predicate p, or
tries to apply the numerical inference rule from Definition 23. Checking of inconsistency
is possible only for predicates where all floating point values are already fixed. Then
it compares the Boolean values of assignment A and of the numerical evaluation of
the predicate, and returns true iff the values match. If not checking the consistency, it
returns true because a predicate that is not evaluable or used in an inference rule cannot
become T -inconsistent.

Algorithm 6.7 describes procedure TRY_FUN_INFERENCE_RULE which tries to eval-
uate a functional flow using the functional inference rule from Definition 24 and by
solving the flow using function ODE_SOLVE (Algorithm 6.2). It basically just checks if
it is possible to apply the inference rule and arranges initial values and the appropri-
ate positive functional literals based on propositional assignment A for the function
ODE_SOLVE. Still, an adaptor function ODE_SOLVE∗ is used instead of ODE_SOLVE in
order to also find floating point variables that appear inside odes and invs and to use
their values—because the ODE solver does not use numerical variables, only constant
values.

Going back to function NAIVE_SAT (Algorithm 6.4), function TRY_EVAL_FLOATS can
discover a T -inconsistency. Construction of conflict clause χ is done via CONFLICT_-
CLAUSE based on the dependency graph: the clause is filled with the inconsistent literal
and also all theory literals that correspond to the inference rules that affected the values
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Algorithm 6.7: Procedure TRY_FUN_INFERENCE_RULE.

TRY_FUN_INFERENCE_RULE(F j,A, fun_preds ,floats) :

x0 ← ()
odes← ()
forall fj in F j do

if VALUE(fj) ̸= undef then return
if VALUE(init(fj)) = undef then return

pos_odes← POSITIVE_ODE_LITERALS(fj,A, fun_preds)
if |pos_odes| ≠ 1 then return ▷ can handle only exactly one ODE
if ANY_UNDEF_ARG(pos_odes[1],floats) then return ▷ use just the one ODE

x0 ← x0 ∥ (init(fj)) ▷ append the initial value
odes← odes ∥ pos_odes ▷ append the ODE

invs ← POSITIVE_INV_LITERALS(F j,A, fun_preds)
if |invs| = 0 then return ▷ would not terminate with no invariants
forall inv ∈ invs do ▷ order does not matter

if ANY_UNDEF_ARG(inv ,floats) then return

F j ← ODE_SOLVE∗(F j,x0,odes, invs ,floats)
▷ using ODE_SOLVE (Algorithm 6.2)

of arguments of the inconsistency. This can be done by traversing from the vertex in the
dependency graph that corresponds to the inconsistency back to initial inference rules,
using the fact that the edges of the graph connect vertices to predicates that allow infer-
ence rules. The resulting conflict clause χ forms negation of the current assignment of
the SAT solver, but only selecting the atomic theory formulas that directly participated
in the inconsistency.

Example 6.1. Let p=0 , p=1 , p=2 , p
≤
2 be atomic theory formulas s.t.

p=0 := x[0] = 0,

p=1 := x[1] = x[0] + 1,

p=2 := x[2] = x[1] + 1,

p≤2 := x[2] ≤ 0

(6.1)

where x[0], x[1], x[2] are numerical variables. An assignment {p=0 7→ ⊤, p=1 7→ ⊤, p=2 7→
⊤, p≤2 7→ ⊤} results in a T -inconsistency of the theory literal p≤2 , because x[2] = 2 ̸≤ 0.
The corresponding conflict clause χ is

¬p=0 ∨ ¬p=1 ∨ ¬p=2 ∨ ¬p
≤
2 (6.2)

which is equivalent to ¬
(
p=0 ∧ p=1 ∧ p=2 ∧ p

≤
2

)
.
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Analysis of the Offline Approach. We experimented with such an offline approach,
but it is very difficult to avoid the great number of undesirable T -inconsistencies, which
was mentioned above. A possible improvement is to eagerly preprocess the formula
and append additional propositional constraints that are related to existing atomic the-
ory formulas. For example, one can add pairwise conflict clauses with numerical pred-
icates which are equalities where one of the sides evaluates to a constant, such as (x ̸=
1∨x ̸= 2)∧(x ̸= 1∨x ̸= 3)∧(x ̸= 2∨x ̸= 3). However, this works only if one of the terms
are somehow easily computable within the preprocessing stage. Also, even in the case
when there is a lot of such equalities with constants, such eager approach is still less
efficient than a lazy online approach with theory propagation: For n such equalities, the
number of conflict clauses in the case of the preprocessing would be n(n−1)

2
, and many

of the clauses would likely not be useful. With an online approach, after the SAT solver
assigns one of these equalities to true, it is sufficient to just lookup somehow the rest
n− 1 equalities and assign them to ⊥.

We also observed that the offline approach arrives at a lot of unnecessary T -incon-
sistencies in the case of formulas with many if-then-else constraints, such as in Exam-
ple 4.7. Consider an example of a formula with an unrolling similar to BMC, where
each stage contains ITE(a[j], x[j] = y[j], x[j] = z[j]). Suppose that usually y[j] ̸= z[j], but
not in general (so we cannot use preprocessing). This however means that the inconsis-
tency x[j] = y[j] ∧ x[j] = z[j] ∧ y[j] ̸= z[j] will appear quite often, because of the way how
constraints with an implication work, where the SAT solver is naturally free to make
such assignments. With increasing number of steps of the unrolling, such an issue be-
comes significant even in the case of fairly trivial formulas. The discouraging fact here
is that there is no suitable way how to prevent this from hapenning within the offline
approach, because it requires to do it within the preprocessing stage.

Example 6.2. In order to demonstrate the inefficiency of the offline approach, we present
an example similar to the model of bouncing ball in Example 4.7, which is again deter-
ministic but in addition without any differential equations:

X = 5 ∧ ξ = 0.35X

∧¬up[1] ∧ x[1] = X

∧
J∧

j=1

ITE
(
up[j], x′[j] = x[j] + ξ, x′[j] = x[j] − ξ

)
∧

J−1∧
j=1

ITE

(
up[j], ITE

(
x′[j] < X, up[j+1] ∧ x[j+1] = x′[j], ¬up[j+1] ∧ x[j+1] = X

)
,

ITE
(
x′[j] > 0, ¬up[j+1] ∧ x[j+1] = x′[j], up[j+1] ∧ x[j+1] = 0

))
(6.3)
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where up[j] are again the Boolean variables, x[j] and x′[j] are numerical variables that
model the height of the ball at the beginning and at the end of stage j, respectively,
and X, ξ are rational constants. Even in this simplified case, the modeled ball keeps
bouncing up and falling down with constant velocity.

The deterministic formula is easily satisfiable and can be simulated in a straightfor-
ward way with no Boolean search. Therefore, the procedure should not arrive at any
T -inconsistency at all. This can be done with an online approach with theory prop-
agation, where only a sequence of unit propagation and theory propagation rules are
sufficient to arrive at the result, that is, with no decisions of the SAT solver. However,
this is not the case of the offline approach: the underlying SAT solver also uses unit
propagations, but without the guidance from theory propagations it always arrives at
a point where it has no clue which way to go within particular if-then-else branches, and
has to decide some variables, which inevitably leads to conflicts. Let’s consider at least
some preprocessing, for instance ¬(x′[j] = x[j] + ξ ∧ x′[j] = x[j] − ξ). Then, the example
will be processed as follows:

1. Unit propagation: up[1] 7→ ⊥, (x[1] = X) 7→ ⊤.

2. Unit propagation: ¬up[1] ⇒ x′[1] = x[1] − ξ implies (x′[1] = x[1] − ξ) 7→ ⊤.

3. Unit propagation: x′[1] = x[1] − ξ implies (x′[1] = x[1] + ξ) 7→ ⊥.

4. (No inference rules nor theory propagations were applied—the SAT solver searches
for a full propositional assignment with no interruptions.)

5. No other rules can be applied on the abstracted model. Furthermore, the value of
variable x′[1] is still undef. Thus, the SAT solver does not know which branch of
the condition x′[j] > 0 to select and must make a decision.

Until now we were still inside the first call of function CHECK_SAT in Algorithm 6.4,
but it is already clear that most likely there will be a number of inconsistencies. In our
experiments, the number of conflicts (i.e. runs of the SAT solver) for J = 100 was 904.
An example of such a conflict is x[1] = X ∧ x′[1] = x[1] − ξ ∧ ¬(x′[1] < X).

Using an online approach with theory propagation (without preprocessing), the cor-
responding run can look as follows:

1. Unit propagation: up[1] 7→ ⊥, (x[1] = X) 7→ ⊤.

2. Theory propagation: x[1] = X allows inference rule x[1] 7→ X .

3. Unit propagation: ¬up[1] ⇒ x′[1] = x[1] − ξ implies (x′[1] = x[1] − ξ) 7→ ⊤.

4. Theory propagation: x′[1] = x[1] − ξ allows inference rule x′[1] 7→ x[1] − ξ = X − ξ.
Consequently, it ensures T -consistency by (x′[1] = x[1] + ξ) 7→ ⊥, (x′[1] < X) 7→ ⊤
and (x′[1] > 0) 7→ ⊤.
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5. Unit propagation: ¬up[1] ⇒ (x′[1] > 0⇒ ¬up[2] ∧ x[2] = x′[1]) implies up[2] 7→ ⊥ and
(x[2] = x′[1]) 7→ ⊤.

6. Theory propagation: x[2] = x′[1] allows inference rule x[2] 7→ x′[1] = X − ξ. Conse-
quently, it ensures T -consistency by (x[2] = X) 7→ ⊥ and (x[2] = 0) 7→ ⊥.

7. Unit propagation of ¬up[2] ⇒ x′[2] = x[2] − ξ . . .

This way, the steps above ensures that not only all variables of the first stage (i.e. up[1],
x[1] and x′[1]) are set, but also all numerical predicates. Therefore, such an approach
covers all variables, including the abstracted Boolean variables, in a deterministic way
and proceeds efficiently up to a final stage J .

Online Approach. Following Section 3.3.2, and according to the discussion above, we
apply (lazy) online approach with exhaustive theory propagation along with consis-
tency checks. In the case of our theory which is based on simulations, it is indeed suit-
able to propagate and check theory constraints exhaustively, because numerical evalua-
tions are cheap operations2. Moreover, the propagations and the checking are sufficient
to perform only in connection with inference rules, which introduce new values. After
introducing new values, in the dependency graph, it is sufficient to traverse all neigh-
bors of the predicates that enabled the inference rule.

For example, given numerical predicates x > 0 and x = 0, and with x still being
undef, assignment (x = 0) 7→ ⊤ will allow the inference rule from Definition 23. Con-
sequently, the assignment will either result in theory propagation (x > 0) 7→ ⊥, if x > 0
is still unassigned by the SAT solver, ensuring T -consistency. Or, if x > 0 is already
assigned, then it will be checked for consistency (as in Algorithm 6.6).

Still, constraints that are currently not evaluable cannot be propagated nor checked
for consistency. That is, constraints where an argument with the value undef appears
cannot be checked for consistency, and constraints where no inference rule can be ap-
plied cannot be propagated. For example, the predicate x > 0 does not allow any in-
ference rule. And if the value of x is still undef, the predicate will not be checked
for consistency neither. This corresponds to the observation above that the checks are
sufficient to perform in connection with an application of an inference rule.

Therefore, it is also important to allow specific suggestions for decisions. For exam-
ple, to prefer decisions on predicates that allow inference rules. Note that such a case
requires not only to select an appropriate decision variable, but also the value of the
decision, because in inference rules it is necessary that the truth value of the involved
predicates is true.

2Simulations of ODEs are actually not that cheap, but we currently do not have evidence that post-
poning them within theory propagation would be beneficial.
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In contrast to the offline approach, now the algorithm is controled entirely by the
SAT solver, but at the same time the interface allows some callbacks to the T -solver.
The outline of the procedure is presented in Algorithm 6.8.

Algorithm 6.8: Function ONLINE_SAT.

ONLINE_SAT(Φ, bools) −→ {sat,unsat,unknown} :
A← () ▷ start with an empty assignment
d← 0 ▷ start with zero decision level
loop

(ok ,P )← PROPAGATE(Φ, bools ,A) ▷ Algorithm 6.9, T ::PROPAGATE
if ok then

A← A ∥ P ▷ append the propagations into the assignment
if |A| = |bools| then break
A← A ∥ (DECIDE(Φ, bools ,A)) ▷ T ::SUGGEST
d← d+ 1
continue

if d = 0 then return unsat ▷ no decisions have been made
(χ, n)← ANALYZE_CONFLICT(Φ, bools ,A,P ) ▷ maybe T ::EXPLAIN
Φ← Φ ∧ χ
A← BACKJUMP(A,P , d, n) ▷ T ::BACKJUMP
d← d− n

if T ::UNKNOWN(A) then return unknown
return sat

The algorithm indeed looks similar to an algorithm of a regular SAT solver—it only
concentrates on propositional constraints and variables, but the most important parts
of the procedure are extended of callbacks to the T -solver:

• T ::PROPAGATE is inserted into function PROPAGATE.

• T ::SUGGEST allows theory suggestions for decisions of Boolean variables.

• T ::EXPLAIN serves for propositional explanations of theory conflicts within func-
tion ANALYZE_CONFLICT. Similarly, T ::LEARN serves for explaining and learning
a theory fact, but within function T ::PROPAGATE.

• T ::BACKJUMP keeps the T -solver synchronized with the SAT solver in case it is
backtracking after a conflict, using function BACKJUMP.

• T ::UNKNOWN checks whether all theory variables (i.e., floats and F j) are assigned
to a value in the case of a satisfiable Boolean assignment, otherwise the result is
unknown.
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The variables floats and F j are hidden from the SAT solver and are handled solely by
the T -solver. We will discuss functions PROPAGATE and T ::PROPAGATE (Algorithm 6.9
and 6.10) in more detail, and then also functions T ::SUGGEST, T ::EXPLAIN and T ::-
LEARN. The principles of online lazy solvers were already discussed in Section 3.3.2.
Our theory solver must keep track with the current assignment of the SAT solver, in-
cluding backtracking. We arrange all assignments into decision levels d, because non-
deterministic choices stem only from decisions, not propagations. Therefore, when the
solver arrives at a conflict (which will be discussed later), it must backtrack to a previous
point that corresponds to a lower decision level and revert all decisions and propaga-
tions down to this point. This is done by BACKJUMP with a callback to T ::BACKJUMP.
There, it must remember which inference rule infered the value for each theory variable
at the corresponding decision levels in order to correctly reconstruct the previous states.

Algorithm 6.9: Function PROPAGATE.

PROPAGATE(Φ, bools ,A) −→ B× List[Assignment(B)] :

loop
(ok ,P )← SAT::PROPAGATE(Φ, bools ,A) ▷ e.g. unit propagations
if ¬ok then return (⊥,P ) ▷ encountered a propositional conflict

(ok ,P T )← T ::PROPAGATE(bools ,A,P ) ▷ Algorithm 6.10
P ← P ∥ P T
if ¬ok then return (⊥,P ) ▷ encountered a T -inconsistency
if |P T | = 0 then return (⊤,P ) ▷ no more propagations possible with A

Function PROPAGATE is an enhancement of propositional propagations which are
represented by SAT::PROPAGATE. It uses for example unit propagations, which is an im-
portant rule of DPLL algorithms, but modern SAT solvers use also many further effi-
cient propositional techniques. After this, propagations P are sent into the T -solver
via T ::PROPAGATE, which can add further propagations that are related to the theory.
However, at the same time it also checks whether the propositional assignment is T -
consistent, which may fail. Theory propagations P T may also enable more proposi-
tional propagations, and so on, which is the reason why the loop is important in the
algorithm. The function returns a success flag and all propagations P , that is, a list of
assignments to Boolean variables that stem from the current Boolean assignment A.

Theory Propagation. Theory propagations along with T -consistency checks are han-
dled in function T ::PROPAGATE. Propositional propagations P that correspond to atomic
theory formulas are checked for consistency and in the case of an applied inference rule
also theory-propagated. The function returns a success flag and all theory propaga-
tions P T (i.e. a list of propositional assignments to theory predicates) that stem from
the current assignment A and propagations P .
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Algorithm 6.10: Function T ::PROPAGATE.

T ::PROPAGATE(bools ,A,P ) −→ B× List[Assignment(B)] :

P T ← ()
forall p in P do

if ¬IS_PRED(p) then ▷ only theory predicates can be theory-propagated
continue

(ok ,P T
∗)← T ::CONSISTENT_TRY_INFER(p) ▷ maybe T ::LEARN

▷ similar to Algorithm 6.6, but also considering functional inference rules
P T ← P T ∥ P T

∗

if ¬ok then return (⊥,P T )
if ¬INFERENCED(p) then

▷ did T ::CONSISTENT_TRY_INFER use an inference rule on p?
continue

(ok ,P T
∗)← PROPAGATE_INFERENCED(p, bools ,A,P ,P T )

▷ maybe T ::LEARN
P T ← P T ∥ P T

∗

if ¬ok then return (⊥,P T )

return (⊤,P T )

Function T ::CONSISTENT_TRY_INFER not only checks T -consistency, but also may
assign values to theory variables with applying an inference rule. It is similar to Al-
gorithm 6.6, but it does not apply only to numerical predicates, but also to functional
predicates—concretely to functional ODEs, because invariants are ignored here. In case
predicate p is a functional ODE with true truth value, the corresponding functional flow
is checked whether it is viable for functional inference rule (Definition 24), resulting in
something similar to Algorithm 6.7. Note that here the propositional assignment is usu-
ally not full (compared to the offline approach), so it may often happen that some parts
of the flow are not assigned yet.

If T ::CONSISTENT_TRY_INFER arrives at a T -inconsistency, function T ::PROPAGATE
returns false (and the current theory propagations). Before returning, it may or may
not immediately learn the corresponding conflict clause, using function T ::LEARN in
a similar way as in function CONFLICT_CLAUSE in Algorithm 6.4. Either way, it heads
to function ANALYZE_CONFLICT in Algorithm 6.8, where the conflict clause has to be
analyzed and learned anyway. If T ::LEARN was not used, then ANALYZE_CONFLICT
would use T ::EXPLAIN. In this case of T -inconsistencies, both the options are very
similar, though. Functions T ::LEARN and T ::EXPLAIN will be discussed further later.

Function PROPAGATE_INFERENCED is applied if predicate p participated in an infer-
ence rule in T ::CONSISTENT_TRY_INFER. It checks all neighbors of predicate p in the
dependency graph, in a similar way as in function T ::PROPAGATE: it checks whether
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they are T -consistent and possibly propagates further inference rules using T ::CONSIS-
TENT_TRY_INFER. This means that PROPAGATE_INFERENCED may call itself recursively.
The function also has to distinguish cases when a neighbor of predicate p is a part of the
current assignment of the SAT solver. If not, and in the case it is also assigned to a con-
crete value in order to ensure T -consistency, the T -solver has to communicate the used
value to the SAT solver.

Here, it is important how the notification is done. There are two possibilities. One is
to use T ::LEARN, meaning that the T -solver provides a full propositional explanation
of the theory propagation to the SAT solver, which learns the fact and will determine
the new value in SAT::PROPAGATE. The second option is just to include the new value
into propagations P T

∗, without an explanation. However, this might require to use
T ::EXPLAIN in the future. Both the possibilities are discussed further in a separate para-
graph below.

Note that function T ::PROPAGATE traverses only via propagations P . It may happen
that a predicate from P cannot be checked for consistency nor theory-propagated at that
moment, because some arguments are currently undef. It may seem that in this case
the checks and propagations of the predicate will be missed in the future. However,
such predicates will still be reached via PROPAGATE_INFERENCED, from the inference
rules that must be used at any case to make the predicates evaluable. If the inference
rules were not used, the result would be unknown.

Decision Heuristics. Now we go back to function T ::SUGGEST in function ONLINE_-
SAT (Algorithm 6.8). There is a bunch of possible strategies for the suggestions of de-
cisions, depending on a specific problem and concrete encoding into a formula. In the
case of formulas with an unrolling similar to BMC, each consecutive stage depends on
the values from the previous one. Thus, a suitable strategy, called BMC strategy, is to
first decide Booleans that correspond to the lower steps. Moreover, it is often useful
to prefer deciding predicates that allow inference rules. For example, initial inference
rules can always be used, or those rules that depend on values that are already evalu-
ated. Such a predicate, after applying the inference rule, may then enable consistency
checks and theory propagations. Therefore, within the same discrete stage, we prefer
predicates that correspond to initial inference rules, then predicates that allow the other
inference rules, then other predicates, and lastly pure Booleans.

We list also another possible strategy—to ultimately prefer the “most initial” infer-
ence rules. To achieve that, we apply a modified version of the Floyd–Warshall al-
gorithm within the preprocessing stage, where we are interested in distances between
predicates within the dependency graph. For example, with x0 = 0, x1 = x0 + y and
x1 < 0, the distance from x0 = 0 to x1 < 0 is 2. Then, floating-point variables are
sorted s.t. the ones with a most distant predicate from a corresponding inference rule
comes first. For example, x0 comes before x1. Following such an order of the vari-
ables, one of the predicates that contains the variable is decided to true. This way, it
prefers predicates that allow inference rules over other predicates. Consequently, when
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the algorithm discovers a T -inconsistency, the resulting conflict clause is short, because
the decisions are being made not far away from initial conditions (i.e. initial inference
rules). Also, the resulting order of decisions often corresponds to the actual order of
stages of a BMC problem encoded into a formula, even though the information about
stages is not used explicitly.

Note that the computation time of all the necessary distances in the dependency
graph is not always negligible. Another drawback is that the strategy does not consider
pure Boolean variables at all, which can be important decision variables of a specific
problem. As a consequence, some predicates that could be propagated based on such
Boolean decisions may be decided instead, because predicates have higher decision pri-
ority than pure Booleans in this strategy.

In our experiments, the performance of these heuristics differ depending on concrete
problems, and sometimes the difference is negligible. These strategies are still quite
general, not specific to a concrete problem. However, these strategies can serve as a base
for specific strategies, where specific decisions may be preferred in the first place, and
the general strategies may serve as a fallback strategy. Such a technique is used for
example in the case of our railway scheduling model, which is presented in Chapter 8.

SAT solvers have their own decision heuristics too. We use it as the last fallback strat-
egy when no suggestion is available. For example, in the case of the “initial” strategy,
pure Booleans are never suggested at all. The heuristic of the SAT solver can be de-
signed to for example prefer variables that frequently participate in Boolean conflicts.
Such a strategy is beneficial, because the “problematic variables” are being resolved
soon.

So far, we discussed only static strategies for decision suggestions, that is, strategies
that are precomputed within the preprocessing stage and do not adapt to the current
assignment of variables. It is expected that such sophisticated strategies can do even
better. Moreover, strategies that embed machine learning techniques may improve the
efficiency of the searching significantly (as suggested in Section 3.3.2).

Theory Learning and Explaining. In function T ::PROPAGATE (Algorithm 6.10), the-
ory propagations and T -inconsistencies may or may not use function T ::LEARN, which
learns a full propositional explanation of a theory fact. If this is always used, then the
SAT solver always knows all encountered theory consequences and has an entire con-
trol over the propagations and conflict reasoning. In function ANALYZE_CONFLICT in
Algorithm 6.8, conflicts are analyzed and possibly a conflict clause that is as general as
possible is searched. Furthermore, the SAT solver may look for a so-called backjump
clause which allows to backjump to a decision level that is lower than just d− 1. During
these operations, the SAT solver may ask for an explanation of a Boolean literal that
participates in the conflict, based on a database of clauses which are either ground or
have been learned. In this case, all such explanations are already available to the SAT
solver.

In the case of T -inconsistencies, we mentioned that is does not matter much whether
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T ::LEARN is used or not. However, the number of theory propagations might be huge
and the SAT solver might be flooded by too many propositional constraints that may
not be essential. If T ::LEARN is never used, the communication of the propagated value
is fast. However, later it may happen that in ANALYZE_CONFLICT, an explanation of
a Boolean literal is not available, and an external explanation must be provided, result-
ing in a callback to T ::EXPLAIN. This way, learning of theory facts is done lazily, only in
cases when they are really necessary in conflict reasoning.

On the other hand, sometimes the learned clauses can be useful within propositional
propagations or indirectly in conflict reasoning. So in the case of theory propagations,
there is always a trade-off between the benefit and the cost of learning such a clause.
We use T ::LEARN only in cases when the resulting clause is small enough, for example,
if the number of literals is at most two.

6.3 Input Language
We designed a core input language with a format that is derived from SMT-LIB (Sec-
tion 5.3.1), extended with descriptions of constraints on systems of functions. Besides
the core language, we propose optional preprocessor macros that help to parametrize
formulas in place, within the core language.

6.3.1 Core Language

The syntax of our core language is similar to quantifier-free non-linear real arithmetic
in SMT-LIB, extended of functional variables, functional operators and functional pred-
icates. The language uses fully parenthesized prefix notation similar to Lisp. A specifi-
cation of the core language is available online [38].

See an example of a possible input in Figure 6.1 to get an idea of what the language
looks like. The code sample corresponds to an unrolling of Example 4.7. All constraints
on particular systems of functions F j must be enclosed in a special environment which
we simply call a flow. It is the only place where functional operators and functional
predicates are allowed, and it also isolates F j from other systems Fk, k ̸= j. However,
the flows do not restrict the appearance of Boolean and numerical constraints, in con-
trast to state-of-the-art approaches. We distinguish the definition and an instantiation of
flows, corresponding respectively to commands define_flow and flow. In the exam-
ple, there are two systems of functions F1 and F2, corresponding to two instantiations
but just one definition. Although the systems are different, this means that their length
may vary but yet they share the same pattern of the related constraints. This is typical
for formulas that are based on an unrolling similar to BMC. The flows require the simple
initial conditions of functional variables in the form of explicit arguments of the instan-
tiations, including the initial value of time which here is not necessarily 0, in contrast
with the original definition. Therefore, operator init is often not necessary to be used.
We also do not include deterministic final conditions which are currently redundant.
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(declare-const up_1 Bool) (declare-const up_2 Bool) (declare-const up_3 Bool)
(declare-const t_1 Real) (declare-const t_2 Real) (declare-const t_3 Real)
(declare-const x_1 Real) (declare-const x_2 Real) (declare-const x_3 Real)
(declare-const v_1 Real) (declare-const v_2 Real) (declare-const v_3 Real)
(define-fun g () Real 9.81)
(define-fun K () Real 0.95) (define-fun D () Real 10)
;;; Initial conditions
(assert (and (not up_1) (= t_1 0) (= x_1 5) (= v_1 0) ))
;;; Flows
(define-flow ball (x v) ((&up Bool) (&up* Bool)

(&t* Real) (&x* Real) (&v* Real))
(and

;; Functional constraints
(= x’ v) (>= x 0)
(ite &up (= v’ (- (- g) (/ v D) ))

(= v’ (+ (- g) (/ v D) )) )
(ite &up (>= v 0) (<= v 0) )
;; Switching to the next stage
(xor &up &up*)
(ite &up (and (= &x* (final x)) (= &v* 0 ) )

(and (= &x* 0 ) (= &v* (* (- K) (final v) )) ))
(= &t* (final _t)) ;; init(_t) != 0

))
(assert (and (flow ball (t_1 x_1 v_1) (up_1 up_2 t_2 x_2 v_2) )

(flow ball (t_2 x_2 v_2) (up_2 up_3 t_3 x_3 v_3) )
))
(assert (and (<= t_3 2) (>= x_3 2) ))
;;; Execution and fetching the assignment
(check-sat) (get-model)

Figure 6.1: Bouncing ball encoded to the core language.

Command define_flow requires an identifier of the flow definition and three lists:
a list of identifiers of functional variables, a list with additional parameters, and a for-
mula. The parameters do not allow functional variables at all, which may require to use
auxiliary numerical variables in order to share the final values of the functional vari-
ables with a different system of functions (i.e. the next stage). Using prefix & within
the parameters is just a convention to better distinguish them from the functional vari-
ables, and suffix * denotes parameters that belong to the next stage. The convention
has no semantical meaning. The formula of the flow contains functional and switching
constraints. We denote the implicit functional variable that models time by _t.

Command flow requires an identifier of the corresponding flow definition and two
lists: the initial values of time and the functional variables, and the parameters. Here
all numerical variables that represent initial and also final values of functional variables
must be explicitly declared. For this reason, although the input models 2 stages of the
unrolling of the formula, there are also variables belonging to auxiliary stage 3 which is
needed to store the final values of stage 2.
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6.3.2 Preprocessor Macros
We also introduce rich preprocessing language, since it is often necessary to generate the
input depending on a number of parameters in a generic way. This is useful especially
in the case of formulas that are based on unrolling as in BMC. The preprocessor operates
with macros which are used right within the input, similarly to the C preprocessor, and
is usable for other SMT-LIB logics too. Our preprocessor is also partially inspired by
the Lisp language, but it differs in many ways. A specification of the preprocessing
language is available online [102].

The preprocessor reserves a couple of characters that have a special meaning. The
characters have to be escaped if the special meaning is not desired, but they do not ap-
pear in most of the logics in SMT-LIB. The most important special character is, similarly
to the C preprocessor, # which in most cases stands for macro expansion. Unlike in C,
we always denote the expansions of macros explicitly.

#ifndef J
#define J 2
#endif

#for (j 1 $d(+ #J 1))
(declare-const up_#j Bool) (declare-const t_#j Real)
(declare-const x_#j Real) (declare-const v_#j Real)

#endfor

#include ball/const.smto ;; g = 9.81, K = 0.95, D = 10
#include ball/init.smto ;; t_1 = 0, x_1 = 5, ...
#include ball/flow_def.smto

(assert (and
#for (j 1 #J)
#let k $d(+ #j 1)

(flow ball (t_#j x_#j v_#j) (up_#j up_#k t_#k x_#k v_#k) )
#endlet k
#endfor

))

#include ball/goal.smto ;; t_3 = 2, x_3 = 2

;;; Execution and fetching the assignment
(check-sat) (get-model)

Figure 6.2: A generic encoding of the bouncing ball example.

Figure 6.2 shows an example of a generic version of the input from Figure 6.1. Here
the parameter of the input is J, which may or may not be defined before the execution
(e.g. from command line). The macros of our preprocessor are quite more powerful
than in the C preprocessor, because they support features like loops (#for), recursion,
etc. Here, we introduce user macros by reserved macros #define, and later also #let
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which has a limited scope. Both loops contain a so-called arithmetic expansion which
uses the special character $. It performs an immediate evaluation of the underlying
expression. Suffix d denotes that we interpret the result as an integer.

In order to improve the readability of the input, we explicitly divide the parts of the
formula that do not depend on parameters into separate files, which we include into the
input using macro #include.

6.4 Implementation

We implement the algorithms presented in this chapter and the input language in C++
in our solver UN/SAT modulo ODEs Not SOT (UN/SOT) that is available online as
open-source [72]. We used MiniSat2 (Section 5.2) as the underlying SAT solver, and
implemented the lazy online approach to SMT with exhaustive theory propagation pre-
sented in Section 6.2.2. This required inserting several callbacks into MiniSat2, resulting
in a fork of the original implementation [69]. Our current implementation of the ODE
solver (Section 6.1) uses Odeint (Section 5.1) as the underlying ODE stepper. It pro-
vides the stepping algorithms in the form of templates in C++. Other solvers that offer
a suitable interface that we mentioned in the section can be used too. In order to handle
functional flows in an efficient way, we use the notion of so-called functional modes.

Functional Modes. In Section 4.1, we defined functional flows which only support
conjunctions of functional constraints. However, disjunctions may appear in the for-
mula as well, referring to different variants of ODEs and invariants, for instance in
Example 4.7 (Section 4.2).

In order to model such disjunctions, one may cover all the combinations by enumer-
ating all possible corresponding functional flows. Then, before each simulation, one
could select an entire functional flow based on the selection of the variants using a su-
pervising algorithm that handles Boolean constraints (such as a SAT solver)—similarly
to the case of state-of-the-art solvers from Section 5.4.1. But this is not too convenient,
because such flows can often share many functional constraints. We overcome such
an issue by designing the interface of the solver such that it supports different variants
of particular functional predicates.

In order to avoid confusion between the words variant and invariant, which have
completely different meanings, we will prefer the word (functional) mode instead of
variant. We use the word mode with a similar connotation as in other literature related
to hybrid automata or hybrid systems, but we differ in the context. We demonstrate
the difference on Examples 4.7 and 2.3. In Example 2.3, corresponding to the literature,
each (discrete) mode can be modeled by a location of the hybrid automaton, resulting
in two (global) modes that each describes all ODEs and invariants. In Formula 4.10
of Example 4.7, one can observe that all possible variants of particular ODEs are the
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following:

ẋj : (1) ẋj = vj

v̇j : (1) v̇j = −g −
vj
D

(2) v̇j = −g +
vj
D
.

(6.4)

Therefore, in the case of ẋj (i.e. the derivative of functional variable xj), there is just
one possibility, and there are two possibilities in the case of v̇j . We call such particular
possibilities ODE modes of functional variables. For example v̇j = −g − vj

D
is an ODE

mode of functional variable vj . Accordingly, each such a mode corresponds to just one
functional variable of the corresponding system of functions F j . Before each execution
of the ODE solver, one must select exactly one ODE mode for each of the functional
variables.

Moreover, we also distinguish whether modes are related to ODEs or to invariants.
Referring again to Formula 4.10, we can enumerate all possible invariants as follows:

(1) xj ≥ 0

(2) vj ≥ 0

(3) vj ≤ 0

(6.5)

resulting in three possibilities in total. We call such possibilities invariant modes. Ob-
serve that these modes are not fixed to particular variables since in the case of invari-
ants, according to Definition 12, the left hand side of the predicate does not have to be
just a functional variable (see Example 4.3). Consequently, it is possible to select more
invariants at once.

A (functional) mode is either an ODE mode or an invariant mode. We also allow to
abbreviate an ODE mode of functional variable f as a (functional) mode of ḟ . We will in
addition assume that a mode is a functional mode where it is clear from context.

In the case of Example 4.7, we end up with one mode of ẋj , two modes of v̇j and three
invariant modes, resulting in 1·2·23 = 16 combinations of all the modes. However, there
are actually only two reachable combinations of all the modes wrt. the formula in the
example, but the ODE solver does not have this information. This is a responsibility of
the supervising algorithm (in our case, the SMT solver), that is, proper handling of the
nondeterminism which is related to the choice of the combinations. The two reachable
combinations correspond to the two global modes in Example 2.3.

Using functional modes is in the end similar to using functional flows (Definition 14)
in the solver from Section 6.1, with the difference that the interface of the solver may
require just indices of the modes instead of providing all functional constraints all the
time. See the following example.

Example 6.3. We show the relationship between functional modes and functional flows.
The modes just offer multiple possibilities which functional predicates to include into
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the flow, and which not. For instance, an illustrative visualization of a functional flow
that is based on functional modes from Formula 6.4 and 6.5 and on initial conditions
from Example 4.7 can look as follows:

init(x ) = X0

init(v) = V0

ẋj = vj(
v̇j = −g −

vj
D
, v̇j = −g +

vj
D

)
{
xj ≥ 0, vj ≥ 0, vj ≤ 0

}
(6.6)

where the list notation expresses one-of-many possibilities in the place of a functional
ODE, resulting in ODE modes, and the set notation expresses multiple possibilities in
the place of an invariant, resulting in invariant modes.

The result looks visually similar to Example 4.5. However, using something of the
form as in Formula 6.6 allows to efficiently solve particular simulations in Example 4.7:
before each such a simulation, the SMT solver is required to provide initial values for x
and v and to select the appropriate functional modes.

A selected functional mode of a functional flow intuitively means that we already
chose the mode (or more modes in the case of invariant modes) and did not include
the remaining modes into the flow. This corresponds to the way how our T -solver
in Section 6.2.1 handles functional literals. Concrete representation of a structure such
as Formula 6.6 depends on implementation. The selection or particular modes can be
efficiently implemented e.g. using arrays and indeces of the modes.
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CHAPTER 7
Case Studies with ODEs

In this chapter, we study the behavior of our implementation of the solver presented
in Chapter 6, UN/SOT, on selected benchmark problems and provide experimental
results. All of the presented models are described using logical formulas of the theory
of ODEs (Section 4.2) with an unrolling that is similar to the BMC problem (Section 2.5).
All of the formulas contain differential equations. Recall that the solver checks strong
satisfiability of formulas (Definition 20). Although the solver may return unknown, it is
not the case for the benchmarks presented here.

Each experiment is parametrized by several options, but we show only some combi-
nations. All input and output data is available online within the website of our tool1. Ex-
periments were performed on a personal laptop machine with CPU Intel® i7-4702MQ,
8GB memory, running on OS Arch Linux with 5.8.14 Linux kernel.

We also briefly mention our railway scheduling problem in Section 7.1, which fits
into this chapter, but the main discussion of the problem including the corresponding
model and experimental results follow in a separate chapter—Chapter 8.

Notation. Unrolling ranges over discrete steps (i.e. stages) j ∈ {1, . . . , J}, J ∈ Z>0. We
denote by ϕj the particular parts of the formulas that belong to stage j and differ from
the other stages only in the index j.

In order to improve readability and make the presented formulas shorter, we exclude
final conditions that are of the form init(fj+1) = final(fj) for all fj ∈ F j , and numerical
predicates of the form r[j+1] = r[j], for all j ∈ {1, . . . , J − 1}.

Comparison with an Existing Solver. In addition to the above, we are interested in
how far our theoretical finding that using simulation semantics within SAT modulo
ODE is easier than using classical mathematical semantics of ODEs holds in practice.
We compare our solver with solver dReal3 (Section 5.4.1) and focus on the inherent
practical difficulty of the respective problems. We did not use dReal4 since the case

1https://gitlab.com/Tomaqa/unsot, directory doc/experiments, subdirectory v0.8 and
v0.7.
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studies are based on bounded model checking and the respective tool dReach is not
available for that version.

We perform the comparison for two benchmarks (Sections 7.2 and 7.3) which orig-
inate from the database of benchmarks of dReal. The last experiment (Section 7.4) is
excluded from the comparison (the explanation follows in the section).

The models that participate in the comparisons are usually not equivalent, mainly
because dReal entirely explores all interval constraints, while we only approximate in-
tervals using sample points, and because we check strong satisfiability. This is relevant
for the benchmarks where the result is unsat.

Also, we do not guarantee that we used the tools dReach and dReal3 optimally.

7.1 Railway Scheduling
This experiment is highly inspired by [91], and relates to a planning problem where the
task is to find a schedule of a number of trains, which are supposed to visit some nodes,
with optional timing and ordering constraints, in a given railway network. We model
the dynamics of trains based on differential equations, in contrary to [91].

A

B

C

D1

2

3

G R

B

Figure 7.1: An example of a rail network graph with trains.

Figure 7.1 shows an example of a railway network that we model using a graph.
Pink vertices denote boundary nodes of the network. The trains may have various
lengths and properties of their dynamic behavior. Importantly, particular vertices of the
graph restrict the velocity of the trains to a certain limit, and each train starts at a certain
boundary and may visit given vertices.

An example of a trajectory of a single train in a trivial straight infrastructure, where
it only drives through the whole network, is shown in Figure 7.2. The plot illustrates
how the continuous variables that model the dynamics of the train progress in time. The
important thing is that the train visits several edges that have different velocity limits.
We call the edges segments. Variable dx denotes a relative distance from the start of
the current segment either with the back or the front of the train. Variable v denotes
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Figure 7.2: Trajectories of continuous variables of a single train on a simple track.

the current velocity of the train. The train always accelerates as long as possible and
decelerates only when it has to, in order to obey the velocity limit of the next segment.
Auxiliary variable brake_dx models an upper bound on the current distance that cor-
responds to a forced switch to a next stage, either because of reaching the end of the
current segment, of because of the next velocity limit. Although the simulation of the
benchmark is straightforward, the algorithm still needs to resolve some Boolean con-
straints that control the acceleration modes of the train, obeying the velocity limits, etc.
The execution time of this trivial benchmark is approximately 0.02 s.

Further discussion of the problem including the corresponding model and experimental re-
sults follow in Chapter 8.

7.2 Hormone Therapy of Prostate Cancer
This experiment [87] studies a hormone therapy of prostate cancer in the form of an-
drogen deprivation, or more concretely, intermittent androgen suppression (IAS). It
switches between the modes on and off of the treatment while monitoring a tumor
marker called prostate-specific antigen (PSA), which is described by the dynamics of
mixed population of androgen-dependent (AD) and androgen-independent (AI) cancer
cells. The task is to find a personalized treatment in the form of an efficient schedule of
treatment modes that depends on the individual patient.

7.2.1 Specification

The model has only two Boolean modes: on and off ⇔ ¬on. The dynamics are described
by three functions: x and y represent the population of AD and AI cells, respectively;
and z stands for androgen concentration. In addition, v = x + y defines PSA level.
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The cancer relapse is specified by the v ≥ 30 property. The experiment should answer
the question whether a relapse can be reached within 1000 = tgoal days under a chosen
treatment schedule. A schedule is driven by two real parameters: r0 ∈ [0, 8) and r1 ∈
[8, 15].

7.2.2 Model
Particular formulas ϕj are defined s.t.

ẋj = Xj

∧ ẏj = Yj

∧ v̇j = Vj

∧ ITE
(
on[j], żj = −

zj
T

+ zj · c3, żj =
Z0 − zj
T

+ zj · c3
)

∧ Xj = xj ·
(
Gxj −Mj + c1

)
∧ Yj = xj ·Mj + yj ·

(
Gyj + c2

)
∧ Vj = Xj + Yj

∧ Gxj = αx ·
(
k1 +

(1− k1) · zj
zj + k2

)
− βx ·

(
k3 +

(1− k3) · zj
zj + k4

)
∧ Gyj = αy ·

(
1− d0 · zj

Z0

)
− βy

∧Mj = m1 ·
(
1− zj

Z0

)
∧ xj ≥ 0 ∧ yj ≥ 0 ∧ zj ≥ 0 ∧ vj ∈ [0, 30]

∧ tj + t[j] ≤ tgoal ∧ t[j+1] = t[j] + final(tj)

∧ ITE
(
on[j], vj > r0 ∨ Vj ≥ 0, vj < r1 ∨ Vj ≤ 0

)
∧ ITE

(
on[j],

(
final(vj) > r0 ∨ final(Vj) > 0

)
⇔ on[j+1],(

final(vj) < r1 ∨ final(Vj) < 0
)
⇔ on[j+1]

)
where Xj , Yj , Vj , Gxj , Gyj and Mj are just helper functions that abbreviate the underlying
expressions; T , c1, c2, c3, Z0, αx, βx, k1, k2, k3, k4 and d0 are predefined real constants and
αy, βy and m1 are constants that are specific for a given patient. For even more details,
we refer readers to the original paper [87].

Initial Conditions. Fixed initial conditions are init(x1) = 15∧ init(y1) = 0.1∧on[1], and
t[1] = 0. The patients are in addition parametrized by an initial condition on init(z1).

Experimental Evaluation. We examined two main scenarios for satisfiability:

90



7.2. Hormone Therapy of Prostate Cancer

• safe:
∧J

j=1 (ϕj ∧ final(vj) ≤ 30)

• unsafe:
∧J

j=1 ϕj ∧
∨J

j=1 final(vj) > 30

where also the final conditions are included. We distinguished a few different patients,
represented by several constant values; and different values and ranges of r0 and r1
(either constant or interval).

Each scenario is parametrized by four values:

• I ∈ {⊥,⊤}: whether r0 and r1 are intervals, or not (i.e. fixed to constants),

• P ∈ {2, 10, 97}: id. of the patient (see [87] for concrete values of the related con-
stants),

• S ∈ {50, 1}: all derivatives are multiplied by this scale and tgoal = 1000/S,

Our model (not of dReal) is, in addition, parametrized by:

• sr ∈ {0.5, 0.2}: an equidistance with which the intervals of r0 and r1 are sampled
(if I is true),

• dt = 5·10−2
√
S

: fixed size of integration steps.

Results. We selected only some combinations of parameters, especially excluding the
ones which were computationally too expensive.

Each patient was verified in 4 variants: unsafe or safe scenario and constant (¬I) or
interval (I) ranges of (r0, r1). All variants are grouped together, separately for each
patient.

Table 7.1: Hormone therapy verification of patient #10.

(a) safe, ¬I .

S N Result Time (dReal)
50 6 sat 0.4 s 16 s
50 8 sat 0.4 s 1 min
50 10 sat 0.7 s 4.5 min

1 6 sat 2.1 s 16 s
1 8 sat 2.4 s 1 min
1 10 sat 4.1 s 4.5 min

(b) unsafe, ¬I .

S N Result Time (dReal)
50 6 unsat 0.3 s 8 s
50 8 unsat 0.4 s 38 s
50 10 unsat 0.7 s 2.5 min

1 6 unsat 2 s 8 s
1 8 unsat 2.4 s 33 s
1 10 unsat 4.1 s 2 min

(c) safe, I , S = 50.

sr N Result r0 r1 Time (dReal)
0.5 4 sat 4.5 10.5 1 s 2 h
0.5 6 sat 4 13 2.8 s > 10 h

(d) unsafe, I , S = 50.

sr N Result r0 r1 Time (dReal)
0.5 4 sat 0 14 0.5 s > 10 h
0.5 6 sat 0 8 1.1 s ×

Results of patient #10 are shown in Table 7.1. In case of ¬I (r0 = 4.1, r1 = 9.4), the
patient is verified to be treated safely (unsafe case is unsatisfiable and the opposite for
safe case). In case of I , unsafe scenario became satisfiable too, as shown in Figure 7.3.
dReal is not that sensitive to S parameter like our solver, but our approach is still much
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Figure 7.3: Trajectories of patient #10’s hormone therapy.

more efficient, especially with growing J 2. In the case of intervals, the difference be-
tween computation times starts to be huge. In case of safe, similar values of (r0, r1) are
found compared to the predefined ones. In case of unsafe, our solver found dangerous
combinations of (r0, r1) also quickly.

Table 7.2: Hormone therapy verification of patient #2.

(a) safe, ¬I .

S N Result Time (dReal)
50 6 unsat 0.1 s 5 s
50 10 unsat 0.2 s 1.5 min

1 6 unsat 0.4 s 5 s
1 10 unsat 0.7 s 1.5 min

(b) unsafe, ¬I .

S N Result Time (dReal)
50 6 sat 0.1 s 3 s
50 10 sat 0.2 s 1 min

1 6 sat 0.4 s 3 s
1 10 sat 0.7 s 1 min

(c) safe, I , S = 50.

sr N Result r0 r1 Time (dReal)
0.5 6 unsat × × 5 s 6 s
0.5 10 unsat × × 10 s 1 min
0.2 6 unsat × × 0.5 min 6 s
0.2 10 unsat × × 1 min 1.5 min

(d) unsafe, I , S = 50.

sr N Result r0 r1 Time (dReal)
0.5 6 sat 0 8 0.1 s 4 s
0.5 10 sat 2 10 0.3 s 1 min
0.2 6 sat 2.2 10 0.4 s 4 s
0.2 10 sat 2.4 9.6 4.4 s 1 min

Next patient, #2, follows in Table 7.2. The main difference against patient #10 is
that here the patient is concluded to be untreatable: even with intervals, there was no
schedule which would avoid unsafe state. In the case of I , dReal performs much better
than in the case of patient #10. We also tried to increase the granularity of our interval
sampling approximation (sr = 0.2), where, with smaller J , dReal performed similarly
or even better than our solver.

Last but not least patient, presented in Table 7.3, is #97. This patient, in case of ¬I ,
has the schedule predefined to r0 = 4 and r1 = 10, which, however, appeared to be

2One of reasons why dReach tool is sensitive to J is that it enumerates all discrete paths (except ob-
viously unreachable ones) and then checks each separately (until the goal is reached). Also, we modeled
an absorbing discrete mode (not in our case as it is not necessary), which is visited when t > tgoal; and
a higher amount of reachable modes increases the complexity.
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Table 7.3: Hormone therapy verification of patient #97.

(a) safe, ¬I .

S N Result Time (dReal)
50 6 unsat 0.2 s 12 s
50 10 unsat 0.6 s 4 min

(b) unsafe, ¬I .

S N Result Time (dReal)
50 6 sat 0.2 s 7.5 s
50 10 sat 0.6 s 2 min

(c) safe, I , S = 50.

sr N Result r0 r1 Time (dReal)
0.5 4 sat 7.5 15 5 s 1.33 h
0.5 6 sat 7.5 15 15 s > 10 h

(d) unsafe, I , S = 50.

sr N Result r0 r1 Time (dReal)
0.5 4 sat 0 14 0.4 s > 10 h
0.5 6 sat 0 8 0.8 s ×
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Figure 7.4: Trajectories of patient #97’s hormone therapy.

unsafe. Still, an appropriate schedule was found with intervals, as shown in Figure 7.4.
We showed all possible cases within the model: focusing on the cases with intervals,

which are more general, patient #2 was proved to be untreatable, while for patients #10
and #97 a suitable treatment schedule was found. On the other hand, an unsafe schedule
is possible to find for all patients.

7.3 Glucose Control
Methods for inpatient glycemic control began to be important since diabetes associ-
ated complications among hospitalized patients are increasing [31]. As glucose physi-
ology is significantly impacted by patient-specific parameters, it is critical to verify that
a glycemic controller is safe, i.e. it does not drive the glucose level into dangerous low
(hypoglycemia) or high (hyperglycemia) values. Formal verification of such controllers
can provide a new level of safety guarantee to clinicians before performing human clin-
ical tests, which can be invasive and costly.

Following [31], the target scenario is controlling a T1D (Type 1 Diabetes) patient in
two phases: before and during a surgery process. In the first phase, the patient is being
monitored (typically for 30 minutes) to ensure the patient is stable enough for surgery.
If so, the surgery and the second phase follow, where the PD (proportional-derivative)
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controller starts operating (it drives insulin and glucose inputs), wrt. observed condi-
tion of the patient, which is periodically sampled approximately every 30 minutes. The
safety property holds if, for all initial conditions, surgery starts and the glucose level
stays in a certain set of safe states. The unsafety property holds if surgery starts and the
set of safe states is left.

7.3.1 Specification

The model presented in the paper contains accurate physiological dynamics and a val-
idated intraoperative glycemic control protocol. The dynamics can be divided into two
subsystems: insulin and glucose. The insulin system is represented by 5 functions:
Ip and Il as insulin mass in the plasma and liver, respectively; I1 and Id as a delayed
insulin transportation process; and X as an insulin signal that adjusts glucose concen-
tration. The glucose system is defined by 2 functions: Gt and Gp , which represent the
glucose concentration in interstitial fluids and plasma, respectively. The insulin sys-
tem is driven by the insulin input u and the glucose system by the intravenous glucose
input m. Boundary glucose levels are observed via function y = Gp/Vg.

The PD controller periodically updates u[j] and m[j] values based on two glucose
readings: the current one (yj) and the previous one (yj−1).

The discrete space of the model is represented by 11 modes {mode1, . . . ,mode11},
where mode1 is an auxiliary initial mode; mode2 and mode3 are absorbing modes which
are visited whenever a permitted range of the glucose level is left—mode2 in case of
the first phase (then the surgery is canceled or delayed, and the process ends), and
mode3 in case of the second phase (since the surgery is already in progress, it is consid-
ered as the unsafe state); and the rest of the modes depend on the PD controller, while
{mode4, . . . ,mode7}modes model the first (monitoring) phase and {mode8, . . . ,mode11}
the second (surgery) phase. This could definitely be modeled more practically, but I de-
cided to follow the original description.

All periods are timed by function fτ (even the first monitoring phase). In order to
model the practical scenario that a clinician may not perform the check exactly on time,
the invariants allow timing nondeterminism with a sampling jitter δ.
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7.3.2 Model

The partial formulas ϕj of the model, where some unimportant properties related to modes
{mode1,mode2,mode3} are omitted for simplicity, are:

İpj = −Ipj · (m2 +m4) + Ilj ·m1 +
u[j] · 102

BW

∧ Ẋj =

(
Ipj
VI
− Xj − Ib

)
· P2u

∧ İ1j =

(
Ipj
VI
− I1j

)
· kI

∧ İdj =
(
I1j − Idj

)
· kI

∧ İlj = Ipj ·m2 − Ilj · (m1 +m3)

∧ Ġtj = −Gtj ·
(
Xj · Vmx + Vm0

Gtj +Km0

+ k2

)
+Gpj · k1

∧ Ġpj = Gtj · k2 −Gpj · k1 +
m[j] · 103

BW
− Fsnc + hj

∧ ḟτj = 1

∧
(
(mode4[j] ∨mode8[j])⇒ hj = 0

)
∧
(
(mode5[j] ∨mode9[j])⇒ hj = C1j

)
∧
(
(mode6[j] ∨mode10[j])⇒ hj = C1j + C2j

)
∧
(
(mode7[j] ∨mode11[j])⇒ hj = C2j

)
∧ C1j = −Idj · kp3 −Gpj · kp2 + kp1

∧ C2j =
(
Gpj − ke2

)
· ke1

∧
(
(mode4[j] ∨mode5[j] ∨mode6[j] ∨mode7[j])⇒ (yj ∈ [70, 130] ∧ fτj ≤ 29)

)
∧
(
(mode8[j] ∨mode9[j] ∨mode10[j] ∨mode11[j])⇒ (yj ∈ [60, 180] ∧ fτj ≤ 30 + δ[j] ∧ δ[j] ∈ (−1, 1])

)
∧
(
(mode4[j] ∨mode8[j])⇒ (C1j ≤ 0 ∧ C2j ≤ 0)

)
∧
(
(mode5[j] ∨mode9[j])⇒ (C1j ≥ 0 ∧ C2j ≤ 0)

)
∧
(
(mode6[j] ∨mode10[j])⇒ (C1j ≥ 0 ∧ C2j ≥ 0)

)
∧
(
(mode7[j] ∨mode11[j])⇒ (C1j ≤ 0 ∧ C2j ≥ 0)

)
. . .
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∧

(
mode1[j] ⇒

(
ITE
(
final(C2j) ≤ 0, ITE

(
final(C1j) ≤ 0, mode4[j+1], mode5[j+1]

)
,

ITE
(
final(C1j) ≤ 0, mode7[j+1], mode6[j+1]

))
∧ init(fτj+1

) = 0 ∧ u[j+1] = 0 ∧m[j+1] = 0

))
∧ (mode2[j] ⇒ mode2[j+1]) ∧ (mode3[j] ⇒ mode3[j+1])

∧

((
mode4[j] ∨mode5[j] ∨mode6[j] ∨mode7[j]

)
⇒ ITE

(
final(yj) /∈ [70, 130], mode2[j+1],

ITE
(
final(fτj) ≤ 29,(

(final(C1j) ≤ 0 ∧ final(C2j) ≤ 0)⇒ mode4[j+1]
)

∧
(
(final(C1j) ≥ 0 ∧ final(C2j) ≤ 0)⇒ mode5[j+1]

)
∧
(
(final(C1j) ≥ 0 ∧ final(C2j) ≥ 0)⇒ mode6[j+1]

)
∧
(
(final(C1j) ≤ 0 ∧ final(C2j) ≥ 0)⇒ mode7[j+1]

)
,(

(final(C1j) ≤ 0 ∧ final(C2j) ≤ 0)⇒ mode8[j+1]
)

∧
(
(final(C1j) ≥ 0 ∧ final(C2j) ≤ 0)⇒ mode9[j+1]

)
∧
(
(final(C1j) ≥ 0 ∧ final(C2j) ≥ 0)⇒ mode10[j+1]

)
∧
(
(final(C1j) ≤ 0 ∧ final(C2j) ≥ 0)⇒ mode11[j+1]

))))

∧

((
mode8[j] ∨mode9[j] ∨mode10[j] ∨mode11[j]

)
⇒ ITE

(
final(yj) /∈ [60, 180], mode3[j+1],

ITE
(
final(fτj) ≤ 30 + δ[j],(

(final(C1j) ≤ 0 ∧ final(C2j) ≤ 0)⇒ mode8[j+1]
)

∧
(
(final(C1j) ≥ 0 ∧ final(C2j) ≤ 0)⇒ mode9[j+1]

)
∧
(
(final(C1j) ≥ 0 ∧ final(C2j) ≥ 0)⇒ mode10[j+1]

)
∧
(
(final(C1j) ≤ 0 ∧ final(C2j) ≥ 0)⇒ mode11[j+1]

)
,

(mode8[j] ⇒ mode8[j+1]) ∧ (mode9[j] ⇒ mode9[j+1])

∧(mode10[j] ⇒ mode10[j+1]) ∧ (mode11[j] ⇒ mode11[j+1])

∧init(fτj+1
) = 0

∧ITE
(
final(yj) < 100∧final(yj)− final(yj−1) < −30,

u[j+1] = 0 ∧m[j+1] = −0.1 · (final(yj)− final(yj−1)),

u[j+1] = max
(
0, 1 + 0.05 · (final(yj)− 100) + 0.06 · (final(yj)− final(yj−1))

)
∧m[j+1] = 0

) )))
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where hj , C1j and C2j are helper functions that only serve to abbreviate the formula.
When operator final is applied to one of these functions, it means that the operator
is applied to all functional variables occurring in the expression. And, again, all other
variable symbols that were not mentioned yet are numerical constants—for more details
here, we refer to the original paper [31].

Initial Conditions. Initial conditions are defined by init(fτ1) = 0 ∧ u[1] = 0 ∧ m[1] =

0 ∧ y1 = 100 ∧mode1[1].

Experimental Evaluation. We observed two main scenarios:

• safe:
∧J

j=1 ϕj ∧ (mode8[J ] ∨mode9[J ] ∨mode10[J ] ∨mode11[J ])

• unsafe:
∧J

j=1 ϕj ∧ mode3[J ]

where J is the number of discrete steps. In the safe scenario, we are interested only in
modes of the second (surgery) phase. Also, there was a significant difference between
the cases where we fixed parameters and/or initial values of the insulin and glucose
system, and cases where we allowed intervals of these values. Again, in the case of
intervals, we only cover the intervals by a finite number of sample points within our
solver, and for dReal, we used the original intervals. The same applies also to modeling
the timing jitter.

The presented model slightly differs from the original specification in [31], because
we fixed a few mistakes:

• the model did not allow switching between all the modes 8–11 (and 4–7) at all,
because the jump conditions were not compatible with invariants—there was no
overlap due to using the strict inequalities that are used in jump conditions from
mode1 (where they do not cause any harm)3; this could produce incorrect unsat
result,

• it did not allow transitions within the absorbing modes into themselves, which, in
the case of BMC with a fixed number of unrollments, could also result in incorrect
unsat result.

Both main scenarios, safe and unsafe, were additionally parametrized by:

• IF ∈ {−1, 0, 1, 2}: the level of interval variance of initial values of the glucose and
insulin system (where IF = 0 stands for fixed values which lead to a safe region,
and specially IF = −1 stands for fixed values which lead to the fail mode),

3Speaking of the precise mathematical semantics, it is also necessary to avoid oscillating between
neighboring modes, using some threshold only after which the transition back to the previous mode is
enabled. This, however, is not necessary in the case of our solver, thanks to the discretization and to the
way how invariants are treated.

97



7. CASE STUDIES WITH ODES

• IP = 0: the level of interval variance of all 18 constant parameters, which are,
however, always fixed here (other values are possible: IP ∈ {0, 1, 2}), because
neither of the solvers was capable of solving such difficult tasks.

Our model (not of dReal) is also parametrized by:

• sd ∈ {1, 0.5, 0.25}: an equidistance with which the intervals of δ[j] are sampled,

• SF = min(1, IF ·5): the number of sample points for each function variable accord-
ing to IF ,

• SP = min(1, IP ·5): the number of sample points for each constant according to IP ,

• dt = 2.5 · 10−2: fixed size of integration steps.

The tool dReach was run from a helper script dReach.sh due to a discovered bug in
dReach4.

Results. Regardless of IF or IP , there is always some nondeterminism due to the tim-
ing jitter δ[j]. However, the cases with all other initial values being fixed were still easy
for our solver. Allowing the intervals turned out to be difficult, but often not impossible,
especially in satisfactory cases.

Table 7.4: Glucose control verification with fixed values (IF ≤ 0).

(a) IF = 0, safe.

N sd Result Time (dReal)
6 1 sat 1.5 s 14 h
6 0.5 sat 1.2 s 14 h
6 0.25 sat 3.3 s 14 h
9 1 sat 3.6 s ×
9 0.5 sat 3.3 s ×
9 0.25 sat 4 s ×

12 1 sat 6 s ×
12 0.5 sat 7 s ×
12 0.25 sat 14 s ×

(b) IF = 0, unsafe.

N sd Result Time (dReal)
4 1 unsat 0.5 s 2 min
4 0.5 unsat 1.5 s 2 min
4 0.25 unsat 5.5 s 2 min
5 1 unsat 2 s 0.5 h
5 0.5 unsat 7 s 0.5 h
5 0.25 unsat 0.75 min 0.5 h
6 1 unsat 5.5 s 14 h
6 0.5 unsat 0.75 min 14 h
6 0.25 unsat 7.75 min 14 h

(c) IF = −1, safe.

N sd Result Time (dReal)
6 1 unsat 1.1 s 30 h
6 0.5 unsat 2.8 s 30 h
6 0.25 unsat 12 s 30 h
9 1 unsat 1.5 s ×
9 0.5 unsat 3.7 s ×
9 0.25 unsat 15 s ×

12 1 unsat 1.5 s ×
12 0.5 unsat 4 s ×
12 0.25 unsat 16.5 s ×

(d) IF = −1, unsafe.

N sd Result Time (dReal)
4 1 unsat 0.5 s 1.75 min
4 0.5 unsat 1.5 s 1.75 min
4 0.25 unsat 4 s 1.75 min
5 1 sat 1 s 6.75 min
5 0.5 sat 1 s 6.75 min
5 0.25 sat 2 s 6.75 min
6 1 sat 1 s 1.5 h
6 0.5 sat 1.3 s 1.5 h
6 0.25 sat 2 s 1.5 h

4According to my experience and observations, when the number of modes of a model in dReach
exceeds 10, the order of translated mode variables becomes inconsistent with the original ones (maybe
due to alphabetical sorting instead of numerical) in the area of goal constraints, and has to be corrected.
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The simplest case is with no intervals (IF ∈ {0,−1}), with initial values that should
lead either to a safe or an unsafe region. The results of both safe and unsafe scenarios are
shown together in Table 7.4. In the case of IF = −1, the unsafe state is reached after 5
steps.

Table 7.5: Glucose control verification with some interval values (IF = 1).

(a) safe.

N sd Result Time (dReal)
3 1 sat 0.2 s 6.5 h
3 0.5 sat 0.5 min 6.5 h
3 0.25 sat 0.3 s 6.5 h
6 1 sat 0.5 min ×
6 0.5 sat 2.7 s ×
6 0.25 sat 3.9 s ×
9 1 sat 4 s ×
9 0.5 sat 4 s ×
9 0.25 sat 8.5 s ×

(b) unsafe.

N sd Result Time (dReal)
3 1 unsat 1.25 h 6 s
3 0.5 unsat 2.25 h 6 s
4 1 unsat 7 h 2 min
4 0.5 unsat > 10 h 2 min
5 1 unsat > 10 h 0.66 h
5 0.5 unsat × 0.66 h

The results of the next case, with some intervals (IF = 1), are shown in Table 7.5.
One can see that the satisfiable cases still work well in our solver, while the unsatisfiable
ones do not, because the number of combinations that needs to be checked is already
enormous. Solver dReal, on the other hand, is quite efficient in these cases.

Table 7.6: Glucose control verification with large intervals (IF = 2).

(a) safe.

N sd Result Time (dReal)
3 1 sat 1 s > 23 h
3 0.5 sat 9 s > 23 h
3 0.25 sat 0.5 s > 23 h
6 1 sat 1 min ×
6 0.5 sat 2 min ×
6 0.25 sat 1.5 min ×
9 1 sat 1.75 min ×
9 0.5 sat 0.75 min ×
9 0.25 sat 0.5 min ×

(b) unsafe.

N sd Result Time (dReal)
3 1 unsat overflow 9 s
4 1 ? > 10 h > 15 h
5 1 sat 0.75 h > 24 h

The last presented case is with large intervals (IF = 2). This differs from the previous
case because now the unsafe state can be reached within the possible initial values. In
other cases, the results are relatively similar to the previous ones—see Table 7.6. The
“overflow” result denotes that our solver crashed.

Generally, our solver performed much better in sat cases, including the cases with
intervals. However, in unsat cases, and especially with intervals, the performance of
our tool degrades heavily, when choosing more sample points in the intervals. In the
worst case, it has to check the finite set of all floating-point numbers in the intervals,
while dReal uses more sophisticated techniques. We should fix the behavior for these
instances.

The original paper of the experiment also used dReal for the verification, but we
achieved different results. The authors did not discuss any sat case, where they could
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Figure 7.5: Witness of the reachability of the unsafe state in the glucose model.

probably notice unintended unsat results. In the end, they considered their model
to be safe, as reaching an unsafe state was always unsat. However, the corrected
model can reach an unsafe state—the witness, presented in Table 7.4, has this initial
state: init(I [1]p ) = 29∧ init(X [1]) = 290∧ init(I [1]1 ) = 120∧ init(I [1]d ) = 144∧ init(I [1]l ) = 10∧
init(G

[1]
p ) = 238∧ init(G[1]

t ) = 50. The trajectory is shown in Figure 7.5, where dangerous
level of y , which depends on Gp (the dotted line), was reached.

7.4 Racing Car Simulation

This experiment shows a simplified model of a car that races a square-intersection track.
The car has no controller—its discrete behavior is (almost) completely nondeterministic.
The tool dReach is unusable for this kind of task5, and was not tested with this model
at all.

The task is to verify whether such a model of a car can elapse the track in a limited
time.

7.4.1 Specification

The car is represented as a small square, with two coordinates x and y , and by its ve-
locity v and angle ω. Its discrete state space is defined by variables acc (acceleration
or deceleration), brake (braking), rapid (rapid action), left (steer left) and right (steer
right). For example, the car does not alter the current velocity iff acc is false, and it
brakes rapidly iff acc∧ rapid∧brake holds. The model is partially time-triggered, that is,
a blind discrete decision is being made every T seconds (except that steering and brak-

5As was mentioned in Section 7.2, dReach enumerates all possible combinations of discrete modes,
which results in exponential growth, even before the verification itself starts.
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ing are forbidden while standing still), as long as no collision with the track boundaries
happens. The time when the car finishes is constrained by a constant: tfinish ≤ tgoal.

The square track is defined by widthW and length L. Its outer (Bl andBr) and inner
(bl and br) x-boundaries (left and right) are derived from W and L: Bl = 0, bl = Bl +W ,
br = bl + L and Br = br + W ; y-boundaries are the same. The y-coordinate of the
horizontal start line is ystart = Bl +W + L/2 (see the plots of what the track looks like).

In the measured experiments, track sizes are fixed to W = 2 ∧ L = 10, and consec-
utively to these, maximum time is fixed to tmax = 20. The number of steps of the un-
rolling J is given by J = tmax

T
, and tgoal is set to ctgoal ·tmax. Other options are parametrized:

• T ∈ {1, 0.625, 0.5},

• ctgoal ∈ {1, 0.8, 0.6},

• integration step size is dt ∈ {0.05, 0.01}.

7.4.2 Model

The partial formulas ϕj are defined as follows:

ẋj = vj · cos(ωj) ∧ ẏj = vj · sin(ωj)

∧ (¬acc[j] ⇒ v̇j = 0)

∧ (acc[j] ∧ ¬brake[j] ∧ ¬rapid[j] ⇒ v̇j =
g

2
)

∧ (acc[j] ∧ ¬brake[j] ∧ rapid[j] ⇒ v̇j = g)

∧ (acc[j] ∧ brake[j] ∧ ¬rapid[j] ⇒ v̇j = −g)
∧ (acc[j] ∧ brake[j] ∧ rapid[j] ⇒ v̇j = −2g)

∧ (¬left[j] ∧ ¬right[j] ⇒ ω̇j = 0)

∧ (left[j] ⇒ ω̇j =
π

2
· cω) ∧ (right[j] ⇒ ω̇j = −

π

2
· cω)

∧ ITE
(
vj ≤ θ, cω = 1, cω =

2θ

vj + θ

)
∧ vj ∈ [0, 60] ∧ tj ≤ T

∧ final(tj) > T

∧ xj −
s

2
≥ Bl ∧ xj +

s

2
≤ Br ∧ yj −

s

2
≥ Bl ∧ yj +

s

2
≤ Br

∧
(
xj −

s

2
≥ br ⋎ xj +

s

2
≤ bl ⋎ yj −

s

2
≥ br ⋎ yj +

s

2
≤ bl

)
. . .
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∧
(
init(vj) = 0⇒

(
¬brake[j] ∧ ¬left[j] ∧ ¬right[j]

))
∧ ¬(left[j] ∧ right[j])

∧ t[j] = T · (j − 1)

∧
((

middle[j] ∧ ¬middle[j−1]
)
⇒ tmiddle = t[j]

)
∧
((
t[j] > tmiddle ∧ finish[j] ∧ ¬finish[j−1]

)
⇒ tfinish = t[j]

)
∧
(
middle[j] ⇔

(
final(xj) > br ∧ final(yj) < ystart

))
∧
(
finish[j] ⇔

(
final(xj) < bl ∧ final(yj) > ystart

))
where g is the gravitational constant; θ = g is steering threshold which approximates
momentum effect; and s is the diameter of the car square. Notably, the formula contains
symbols ⋎ within invariants which denote disjunctions within the invariants. Although
the original definition of invariants forbids Boolean combinations, is it not a problem
in our case where invariants are based on simulations. The only thing is to clearly
distinguish disjunctions that denote disjunctions within invariants, and disjunctions of
separate invariants. Here, the disjunctions inside the invariant are necessary in order to
model that the car must remain within the borders of the track.

Except of partial formulas ϕj , there are additional (global) constraints:

init(x1) = Bl +W/2 ∧ init(y1) = ystart ∧ init(v1) = 0 ∧ init(ω1) =
π

2

∧ ¬middle[1] ∧ ¬finish[1]

∧
J∨

j=2

middle[j] ∧
J∨

j=2

(
finish[j] ∧ t[j] > tmiddle

)
∧ tfinish ≤ tgoal ∧ final(vJ) < 0.

Table 7.7: Overview of the results of the racing car experiment.

T dt ctgoal Result tmiddle tfinish Time
1 0.05 1 unsat × × 4.2 s
1 0.01 1 unsat × × 5.2 s

0.625 0.05 1 sat 14.375 19.375 2 min
0.625 0.05 0.8 sat 8.75 15.625 9.5 min
0.625 0.05 0.6 × × × > 1 h
0.625 0.01 1 sat 9.375 16.875 1.5 min
0.625 0.01 0.8 sat 11.25 15.625 14.5 min

0.5 0.05 1 sat 8.5 15.5 2 min
0.5 0.05 0.8 sat 9 16 0.75 min
0.5 0.05 0.6 sat 8.5 12 6.25 min
0.5 0.01 1 sat 14.5 20 19.5 min
0.5 0.01 0.8 × × × > 1 h
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0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

(a) T = 0.5, dt = 0.05, ctgoal = 0.8.
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(b) T = 0.625, dt = 0.05, ctgoal = 0.6.

Figure 7.6: Selected trajectories of the racing car.

Results. Table 7.7 gathers results of all mentioned parameters. In case of T = 1, re-
gardless of ctgoal , all results are unsat, and even in suprisingly short time6, but this is
just caused by the low frequency of decisions (i.e. 1

T
), s.t. the car cannot make it through

the very first curve (as shown in the plot Figure 7.7). For some parameters, the compu-
tation exceeded one hour. In all other presented cases, trajectories that satisfy the time
constraint were found. Some cases with a tighter constraint were even faster than the
loose ones, just because they were “more fortunate”—for satisfiable cases, there can be
many nondeterministic ways how to reach a solution. In the end, the searched state
space is quite huge, with the size somewhere below 1540 in case of T = 0.5. Still, the
performance is not ideal here with the lazy offline approach.

Figure 7.6 illustrates some resulting trajectories, which lack progress in time, but at
least show that the car elapsed the race without collision. An animation would be much
more descriptive. We also attach Figure 7.7 with all tried paths for some parameters.

We expect many opportunities in future work here, for example in expanding the
model with a sophisticated controller s.t. the car drives more or less autonomously, and
does not decide blindly. Then, it will be quite challenging to put such car into a much
more complex environment, than this simple track.

6Cases when the car can approach the finish line, but not in time, are omitted here, as their computa-
tion times are expected to be very high.
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(a) T = 0.5, dt = 0.05, ctgoal = 0.8 (sat).
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(b) T = 1, dt = 0.05, ctgoal = 1 (unsat).

Figure 7.7: All tried paths wrt. the selected parameters of the racing car experiment.

7.5 Discussion of the Results
To summarize the results of presented experiments, and to offer an interpretation, the
major observation is that the complexity of our method is much lower than in the case
of SAT modulo ODE solver with classical mathematical semantics, especially in the sat-
isfiable cases. In the unsatisfiable cases with intervals, however, the performance of our
tool is still quite poor. The number of checked possibilities grows significantly with the
number of sample points, and each case is computed separately from the others. Also,
we currently cannot prove the unsatisfiability wrt. interval constraints.

We also state that the execution time of our tool is usually much more predictable
than in the case of dReal, where the computation time of apparently simple instances,
especially the satisfiable ones, is sometimes huge, while in our case, it scales in a pre-
dictable way wrt. the size of the formula and the number of sample points in intervals.
A possible explanation is that methods based on interval computation have to fight
with the so-called dependency problem that tends to blow up intervals over long time
horizons.

Despite the different semantics, both solvers always came up with the same result of
the satisfiability (with the exception when a solver did not finish the computation wrt.
given time limit).

Finally, we would like to mention that we found dReal, including its benchmark
database, immensely useful for developing, tuning, and debugging our own tool.
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CHAPTER 8
Railway Scheduling

This chapter integrates an extended version of our paper [73] into the dissertation thesis.
We model the problem of railway scheduling that exhibits both non-trivial discrete

and continuous behavior, using the definitions in Chapter 4, and we solve the problem
using the algorithm from Chapter 6. The resulting solver is competitive with methods
based on dedicated railway simulators while being more general and extensible.

8.1 Introduction

Existing benchmark problems for SAT modulo ODE [47, 58] do not exhibit complex dis-
crete state space. We develop a benchmark problem that combines a non-trivial proposi-
tional part with differential equations. Moreover, we apply a corresponding algorithm
(Chapter 6) that tightly integrates SAT and numeric simulations of differential equa-
tions. The resulting tool is available online [72].

Scheduling is a native satisfiability problem, where a plan that meets all criteria
is sought. It starts to be challenging when plans should also cover complex dynamic
phenomena, usually in the form of differential equations. Such dynamic models, typi-
cally of cyber-physical systems, can be simulated using numerical solvers, such as Xcos,
Simulink, or SpaceEx [53]. However, automatic verification tasks, or planning tasks,
are difficult with such complex models, especially if discrete state space is huge and
complicated, which is typical for SAT. In the area of railway transport, precise schedul-
ing can become to play an important role within upcoming autonomous traffic control
systems.

The benchmark problem comes from the domain of railway scheduling, and is in-
spired by an approach to railway design capacity analysis [91], that combines a SAT
solver with a railway simulator. The authors of that approach, referring to SAT mod-
ulo non-linear real arithmetic, “found these solvers insufficiently scalable for real-world
problem sizes”. Our experiments show that it indeed is possible to realistically handle
continuous dynamics in the railway domain directly by SAT modulo theory solvers.
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8. RAILWAY SCHEDULING

A major difficulty lies in modeling the fact that trains sometimes have to switch to a de-
celeration phase to obey velocity limits. Here, it is non-trivial to predict when such
a switch must happen when modeling dynamics based on differential equations.

We show that it is possible to solve specific tasks efficiently even with a general pur-
pose algorithm. The only parts that are dedicated to the particular railway scheduling
problem are an appropriate decision heuristic, and the way how a formula is formed.

Related Work. We are not aware of any other approach to railway scheduling based on
SAT modulo theories with realistic modeling of continuous dynamics. The mentioned
approach [91] solves the problem of design capacity analysis, a different, but related
problem. The main differences are:

• Instead of an ad-hoc combination of SAT and a simulator, we model the problem
in a precisely defined Satisfiability Modulo Theories language (Section 4.2). As
a result, numeric (e.g. timing) constraints can appear throughout a formula. They
are analyzed in tight integration of the simulator and the SAT solver.

• Our model allows rich timing constraints. Boolean combinations of both rela-
tive and absolute timing constraints, with upper or lower bounds, are possible.
Consequently, trains are allowed to keep waiting in stations, or before entering
the network, even in cases when their routes do not collide with the other trains.
Hence, our model may exhibit more nondeterminism which makes the scheduling
problem more difficult.

• The dynamics of trains is an integral, but modifiable part of the model, instead of
being hidden in a simulator.

Both approaches have different strong and weak aspects of the run-time performance.
As in the case of any formal model of real-world problems, also here, we abstract

from certain aspects of the problem domain. Our model does not take into account
railway policies or such, and our approach may be more generic than it is actually nec-
essary in practice. For example, we do not model objects like signaling principles, train
detectors, switches, and the like, as Luteberget et. al. [91] do. Especially we do not
claim ETCS (European Train Control System) compatibility of our model, meaning that
it may be less suitable for railway systems based on signal interlocking. However, not
all railways use such a mechanism, for example urban railways may leave the responsi-
bility to the driver. More specific comparison of particular differences follows in related
sections.

Railway route planning can also be viewed as a multi-agent path finding prob-
lem [107], where trains are viewed as agents. However, in this area, usually much
simpler models of continuous behavior are used [4]. On the other hand, the result-
ing plans are often minimized wrt. a given parameter, for example, sum of lengths of
the agents’ paths, while we do not optimize at all.
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Of course, many other approaches dedicated to railway scheduling exist. Some
support only limited precision, or work only under certain assumptions, for example,
fixed routes, or not taking into account limited track capacity. Some use networks that
were transformed from a microscopic level1 to an aggregated, macroscopic level [108].
Some use an approximation where both microscopic and macroscopic models are in-
cluded [2]. Also, probabilistic methods exist [109, 62].

There are approaches [121, 61] that are quite accurate, but still ignore some con-
straints that we take into account, for example:

• Not all combinations of possible train paths are considered [121].

• They are based on an already existing time table, which can even be assumed to
be fixed [61]. No such prerequisites are necessary in our case.

• They still over-approximate the available capacity [61], by replacing bi-directional
tracks by pairs of one-directional tracks. In our case, the topology of an infrastruc-
ture can correspond to the reality accurately.

• Simpler train dynamics is used [61].

On the other hand, most of the approaches that were mentioned so far are optimization
algorithms, while we present a decision procedure.

The chapter is structured as follows. We start with an explanation of the problem
area in Section 8.2. In Section 8.3 we present an encoding of the problem as a formula
of the theory from Section 4.2. Finally, in Section 8.4 we analyze the behavior of our
approach and of [91] on selected case studies.

8.2 Problem Overview

The problem is related to finding a low-level schedule within a railway network. In
other words, it is searching for a simulation of trains that meets given properties. The
real-world objects, like trains and railroads, are being abstracted in the form of mathe-
matical models.

This section describes the overall problem and introduces related keywords. We
start with an illustrative example.

8.2.1 Example

In Figure 8.1, one can see a model of a rail network with three trains. We distinguish the
model itself and the required constraints on trains.

1Microscopic level corresponds to railway simulation, like in our case.
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Figure 8.1: An example of a rail network graph with trains.

Model. The model consists of a graph of the network, and of abstracted trains. Each
train is described by its physical properties, for example length, velocity limit, etc. The
red train is a freight train, longer and slower than the other, passenger trains. For il-
lustrative reasons, the boundary nodes of the graph are distinguished from the others.
The thicker an edge is, the faster railroad it represents. Nodes that model stations are
labeled with a number. To support modeling of railway junctions, nodes of the graph
have two sides, illustrated by black and blue colors in the figure. In order to avoid phys-
ically impossible (e.g. too sharp) turns, a train has to visit both sides when transferring
via such a double-sided node.

Constraints. Examples of constraints that the trains in the figure might be required to
satisfy are:

• The blue train must start from the boundary A, and has no further requirements
on visiting nodes.

• The green train must start from A, and is in addition required to visit node 3,
where it will stop. Eventually, the train must continue to node D afterwards.

• The red train must start at D and exit at A, with no other required visits.

• Possible orderings of the trains: the blue train must start before the green train;
the red train starts before the green train approaches node 1.

• Possible timings of the trains: the red train must arrive at A within 10 min after
entering; the green train must wait at node 3 for at least 2 min.

Result. The result of the search is a plan that demonstrates how the trains can move
through the network while satisfying the given constraints and with no collisions of
trains.
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An example of such a plan as a whole, satisfying the constraints listed above, fol-
lows. We refer to Figure 8.1 as a snapshot of the plan. The blue train entered first and
is currently approaching boundary B, not interfering with the other two trains. The
green train is free to enter next, but the red train must enter before the green approaches
node 1. Although the red train is actually allowed to enter even before the green train,
we assume the case where the green train enters first.

So, the green train aims to node 3, and plans to exit the network at boundary D
afterward. However, as soon as the red train enters, the collision of the trains must
be avoided. Either the green train must leave node 1 before it is approached by the ren
train, or the red has to bypass node 1 via node 2. Then, the red train aims to boundary A.

This way, all the mentioned constraints were met, and the resulting schedule is also
efficient wrt. the railway capacity and to real-time.

8.2.2 General Problem Statement
The task is to find a plan for a given set of trains and a railway network (viewed as
a graph) such that all specified places are visited, meeting all timing and ordering con-
straints, and with no collisions of trains. It is a satisfiability problem—it decides whether
there exists an assignment of variables that satisfies a formula. If it exists, the assign-
ment is supplied, optionally including the trajectories of trains.

We assume that each train can only enter the network at a boundary, and that at
the beginning of the whole search, there are no trains present in the network. Also,
trains are not allowed to reverse their direction. All these aspects can be included in the
model, though.

The decisions to be made for each train are branching edges, when to enter the net-
work, and if it stopped at a station, when to exit it; everything else is, ideally, determin-
istic.

8.2.3 Railway Model
A closer specification of what we support in the model, for example, which properties
of trains, or which kind of graphs, follows.

The environment of the presented experiments is a low-level model of railway trans-
port. It consists of a steady infrastructure, that can actually relate to real world railroads,
and of a given number of various train models with realistic dynamic behavior.

Infrastructure. An infrastructure (or a network) is modeled using a graph of vertices
called nodes and edges called segments. Each segment has a length and a velocity limit.
Properties like the segment’s slope, angle or cant, or whether it is a tunnel, are missing.
Only a single train is allowed inside a segment and the chosen next segment where
the train currently aims to. A node that is not boundary either may or may not allow
stopping, where nodes that allow stopping model stations. The fact that a train shall
stop at a node is not modeled explicitly, but by temporarily setting the velocity limit of
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the train’s chosen next segment (which the other trains are not allowed to enter) to zero.
After stopping, trains may wait in stations for a limited time, or may not.

As explained in the example (Section 8.2.1), the graph is a double-vertex graph [94],
which is commonly used for modeling railways with junctions [108].

We assume that each segment is at least as long as the longest train (Figure 8.1 vi-
olates this property). As a result, each train is always present within at most two seg-
ments on its way. It should not be difficult to improve the encoding s.t. this restriction
is not necessary, though. The model directly supports infrastructures with cycles and
looping of trains, in contrast with [91] where this needs an extra effort.

Train. A train T has an acceleration and a deceleration rate, a velocity limit, and
a length. The dynamics of trains is deterministic—each train drives at the maximum
possible speed, which, however, depends on discrete decisions—the choice of segments
on the train’s way, and where to stop. Such a model already allows meaningful experi-
ments, but can be easily extended by features like weight, number of wagons, etc.

8.2.4 Constraints

Connection Constraints. A connection is a mapping of a train to a non-empty list of
nodes that must be visited in the given order. For instance, Tgreen 7→ (A, 3) is the connec-
tion of the green train from the example. The user must specify exactly one connection
for each train. The list can contain boundary nodes too, but only as the first or the last
element. The first element of the list indeed must be a boundary node. Trains always
stop at the listed nodes that model stations, and never stop at any other stations. Other
attitudes can be considered too (e.g., trains do stop there too, or they may stop there). For
example, regarding the connection green 7→ (A, 3), the green train will stop at node 3,
but will not stop at node 1, because it is not listed, and even if the list contained the
node between nodes A and 1, the train will not stop there neither, because it does not
model a station.

The starting node is the first node in the list. A connection may have several ending
nodes—any boundary node terminating a path following the given connection. For
example, in Figure 8.1, given a connection list (A, 2), A is the starting node and C,D
are two possible ending nodes, but for connection list (A, 2, D), D is the only ending
node. We call segments incident with the starting node starting segments, and segments
incident with an ending node ending segments.

Schedule Constraints. Schedule constraints are optional constraints that compare the
time when a train either arrives at or departs from a node2. A departure is when a train

2For a required visit, it can be useful to also support specifying sets of nodes, instead of single nodes
(meaning “any of the nodes”), which is possible to encode into the formula, but we do not support such
a rule at the moment.
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starts accelerating to leave a node after it stopped there earlier, or when entering the
network.

In the following, we will denote by arrival(T,N) (or departure(T,N)) the time when
train T arrives at (or departs from) node N . To allow both variants in a formula, we will
write visit(T,N), possibly distinguishing several occurrences by indices (visit1(T1, N1),
visit2(T2, N2), etc.). Schedule constraints assume that all mentioned visits are the conse-
quence of some connection constraint.

We allow two types of schedule constraints, ordering, and timing constraints. An or-
dering enforces two visits to happen in a given order. It has the form

visit1(T1, N1) ▷◁ visit2(T2, N2), (8.1)

where ▷◁ is one of {<,≤, >,≥,=}. In the case of [91], the only supported orderings are
with ▷◁ being < or >.

A timing is either absolute, concerning one visit:

visit(T,N) ▷◁ ξ, (8.2)

or relative, requiring a time constraint on a transfer, that is, on the time from one visit
to another. It has the form

transfer(visit1(T1, N1), visit2(T2, N2)) ▷◁ ξ, (8.3)

where transfer(v1, v2) := v2 − v1, ▷◁ ∈ {<,≤, >,≥}, and ξ ∈ Q≥0. Also, wait(T,N) :=
transfer(arrival(T,N), departure(T,N)). In the case of [91], the only supported timing
constraints are transfer(arrival(T1, N1), arrival(T2, N2)) < ξ, which is quite sufficient for
railway capacity verification, though.

8.3 Encoding and Formalization
In this section, we present an encoding of the planning problem from Section 8.2 as a for-
mula in the theory described in Section 4.2. All of the presented formulas are generated
automatically, from user input in the form of a preprocessing language (Section 6.3).
The user input consists of a specification of an infrastructure and of trains, and of con-
nections and schedule constraints.

We unroll the planning problem in a similar way as in BMC (Section 2.5). Unrolling
ranges over discrete steps 0, 1, . . . , J . A variable x specific to a discrete step j has the
form x[j]. All trains are modeled synchronously, meaning that every discrete step j corre-
sponds to the same global moment in time. Functional variables specific to one and the
same discrete step will have the same length τ [j] of integration (which corresponds to τj
in Section 4.1), from which we get global time by defining real variables t[j] s.t. t[0] = 0
and for all j > 0, t[j] = t[j−1] + τ [j−1]. This simplifies the encoding and analysis, because
it is simple to compare current values of trains’ variables. This implies that all switches
from a discrete step j to j + 1 are globally shared. However, synchronicity also implies
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that to cover overall dynamics of all trains, the total number of discrete steps must be
quite high, which has a bad influence on performance. In the case of [91], the planner
considers longer units for unrolling where a step may consist of movements over sev-
eral segments, and within such a step all deterministic discrete constraints are handled
by the simulator.

We use one-hot encoding for some Boolean variables for increased readability.

8.3.1 Railway Model
The model itself is represented by a formula entirely. Almost all variables are related
to a particular train T , including the graph representation. The only variables that are
global are those related to the shared time.

Infrastructure. The graph that models the network is not itself represented by dedi-
cated variables, but instead, by Boolean variables and constraints related to each par-
ticular train T , which define possible transitions of the train. All segments S ∈ S and
nodes N ∈ N of the graph are just identifiers that serve as parts of the variable names
related to the train. Incidency of all the nodes and segments is covered within the pre-
processing stage, which is when the corresponding Boolean variables and constraints
are generated into the formula—see below.

Train. A train T ∈ T is defined by fixed constants T.A, T.B, T.Vmax , and T.L that
represent the properties of the train (acceleration and deceleration rate, velocity limit
and length), where T is just a prefix of the constant names, representing an identifier
of the train. In a similar way, the state of each train is described by a set of variables,
distinguished by a discrete step j. The most important variables are:

• Booleans: T.mode [j], mode ∈M = {idle, steady , acc, brake} (steady means the train
does not accelerate, but in mode idle, in addition, it has zero velocity); T.away [j],
T.enter [j] and T.finished [j] (whether the train is currently outside the graph, whether
it is entering, and whether it already finished); and T.pos_S [j], pos ∈ P = {back ,
front , next}, for a segment S ∈S (the train’s back and front being in S; whether S
is selected as the next segment).

• Reals: T.a[j] (acceleration/deceleration rate); T.dmax
[j] (remaining distance to the

end of the current segments, either with the back or the front of the train, i.e.,
for segments S where T.back_S [j] or T.front_S [j] holds); T.vmax

[j] (velocity limit of
the current segments and the train itself); and T.next_vmax

[j] (velocity limit of the
selected next segment S, for which T.next_S [j] holds).

• Functional variables: T.d [j], init(T.d [j]) = 0 (relative distance traveled from the start
of unrolling step j), and T.v [j] (current velocity). The functional variables range
over

[
0, τ [j]

]
, where a timeout τ [j] < ρ, with the constant ρ user-defined, must hold.
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This allows decisions on when to enter the network or when to leave the current
station to happen in certain intervals—if the timeout is too short, the number of
necessary discrete steps may be too high; if it is too long, a plan where trains stay
idle for too long may be returned.

Result. The resulting plan is represented by the global variables t[j] and the variables
T.idle [j], T.front_S [j] and T.finished [j], for all trains T , segments S and discrete steps j.
All other variables are either auxiliary or are completely determined by the plan and
the model described in this subsection.

Dynamic Phenomena.

Mode Conditions. Unlike in capacity analysis [91], where behavior is determin-
istic, as soon as routes have been chosen, here continuous dynamics depends on each
train’s mode, where a train can choose to stay idle in stations, or before entering the
network. Each train T is always in exactly one dynamic mode:∨

mode∈M

T.mode [j] ∧
∧

mode1,mode2∈M,mode1 ̸=mode2

¬
(
T.mode

[j]
1 ∧ T.mode

[j]
2

)
(8.4)

and according to this mode, an appropriate (constant) acceleration rate is set:(
(T.idle [j] ∨ T.steady [j])⇔ T.a[j] = 0

)
∧
(
T.acc[j] ⇔ T.a[j] = T.A

)
∧
(
T.brake [j] ⇔ T.a[j] = −T.B

)
.

(8.5)

To reduce nondeterminism of switching the modes, we add:(
T.idle [j] ⇒

(
T.idle [j+1] ∨ T.acc[j+1]

))
∧
((
T.steady [j] ∨ T.acc[j]

)
⇒
(
¬T.idle [j+1] ∨ T.away [j+1]

))
.

(8.6)

Furthermore, sometimes it is clear that braking must follow (i.e. constraints on T.brake [j+1]),
but it is discussed later, within the paragraph with braking prediction.

There are also other restrictions, like that braking is not possible if the velocity is
already zero, or that steady mode is not allowed if acceleration is possible.

Dynamics. We model the dynamics of trains using the basic laws of motion, but
it is possible to extend the model such that it exhibits more complex phenomena, like
engine power curves, tunnel air resistance, curve rolling resistance, train weight distri-
bution, etc. Figure 8.2 illustrates how the resulting trajectories of functional variables
can look like (T is omitted from the variable names). Both functions v and d are limited
by a corresponding dashed line, a constant vmax

[⋆] in the case of the function v , and a dis-
tance limit in the case of d , either in the form of a straight line, representing dmax

[⋆], or
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Figure 8.2: Possible train trajectories and their limits.

a curve, that stands for the function brake_d [⋆] that is about to be discussed further. The
limit vmax

[j+2] is equivalent to next_vmax
[j] (and to next_vmax

[j+1] as well). In the figure,
it is always a distance limit that ends each stage, because no velocity limit is exceeded
there.

Since trains are modeled synchronously, the dynamics of the trains is represented
mainly by one system of ODEs—for each train T , and discrete step j:

T.ḋ [j] = T.v [j] ∧ T.v̇ [j] = T.a[j]

∧ T.d [j] ≤ T.dmax
[j] ∧ T.v [j] ∈

[
0, T.vmax

[j]
]
.

(8.7)

The first row of the formula shows particular ODEs, and the second the invariants.
Thus, each integration ends when a distance limit or a velocity limit is exceeded, or
when the timeout is reached, which was explained in the description of functional vari-
ables.

For the definition of the variables T.αmax
[j], α ∈ {d , v}, we use auxiliary variables

T.pos_αmax
[j], pos ∈ P which correspond to the limits of the current and the next seg-

ments, as mentioned in the description of the real variables. Moreover, T.min_αmax
[j] :=

min{T.back_αmax
[j], T.front_αmax

[j]}. Then, the distance limit is defined by T.dmax
[j] =

T.min_dmax
[j] and the velocity limit as

ITE
(
init(T.v [j]) ≥ T.next_vmax

[j],

T.vmax
[j] = min{T.Vmax , T.min_vmax

[j]},
T.vmax

[j] = min{T.Vmax , T.min_vmax
[j], T.next_vmax

[j]}
)
,

(8.8)

where T.next_vmax
[j] is used to ensure the correctness of braking prediction.
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Braking Prediction. In Figure 8.2, within stage j, one can see that the function d is
limited by a yet unexplained function brake_d [j]. Such a function is necessary for pre-
diction of the moment when a train has to start braking to obey the velocity limit of the
next segment—in cases when T.v [j] > T.next_vmax

[j] (if the train is not already braking).
The main idea is to compute the braking trajectory backward from the point where the
train enters the next segment, synchronously with the actual forward dynamics. Details
follow.

The prediction depends on the relation init(T.v [j]) ▷◁ T.next_vmax
[j], where ▷◁ ∈ {=, >

}. First, let us assume that init(T.v [j]) = T.next_vmax
[j]. To make T.v [j] > T.next_vmax

[j]

happen eventually, T.acc[j] must hold. Such a case would correspond to Figure 8.2, if
next_vmax

[j] was in the place of the separator λ. Since T.a[j] from Formula 8.7 is a constant
(due to Formula 8.5), the ratio between the length (in time) of the acceleration phase and
the braking phase is fixed. Since the temporal relationship between the two phases is
not yet clear, we use independent time axes, writing

dvA
dtA

= T.A,
dvB
dtB

= −T.B, (8.9)

where vA and vB corresponds to T.v [j] and T.v [j+1], resp., and tA and tB corresponds
to τ [j] and τ [j+1], resp. To determine the time to switch from acceleration to brak-
ing, it would be possible to compute the braking trajectory backward in time starting
at the position corresponding to T.front_dmax

[j], and with the velocity corresponding
to T.next_vmax

[j]. However, it is not clear how far backward such a backward braking
trajectory has to be computed, and moreover, even after its computation, it is non-trivial
to ensure that at the switching time, both position and velocity of the train are identical
to a corresponding point on the backward braking trajectory. To get around these com-
plications, we not only reverse, but also scale the time axis of the braking process using
the relationship

tB = −T.A
T.B

· tA. (8.10)

As a result, we have a common time axis tA, along which the derivative of the velocity
of the braking train is identical to the derivative of the velocity of the accelerating train:

dvB
dtA

=
dvB
dtB

dtB
dtA

= −dvB
dtB

T.A

T.B
= T.B · T.A

T.B
=
dvA
dtA

. (8.11)

As a consequence, both velocities will be identical at all time if starting from the same
initial value. Under this assumption, we can compute both the acceleration phase and
the backward braking trajectory synchronously along the same time axis, ensuring iden-
tical speed at all times. Such an approach can be generalized for more complicated
systems of ODEs (e.g. with T.v [j] other than a linear function), if such a relationship
between the time axes is available.

Based on Formula 8.11, it suffices to switch from acceleration to braking at the point
when the corresponding positions are identical. This results in a synchronous braking
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prediction with ODEs and an invariant of the form

ITE
(
T.acc[j], T. ˙brake_d

[j]
= −T.A

T.B
· T.v [j], T. ˙brake_d

[j]
= 0
)

∧
(
¬T.brake [j] ⇒ T.d [j] ≤ T.brake_d [j]

) (8.12)

where the coefficient −T.A
T.B

implements the mentioned scaling also for the prediction of
the position of the train. Note that the same T.v [j] as in Formula 8.7 is used. For example,
in the figure, deceleration must proceed more quickly within the braking prediction.

If init(T.v [j]) > T.next_vmax
[j], the part of the braking phase with T.v [j+1] ∈

[
T.next_vmax

[j],

init(T.v [j])
]

must be precomputed asynchronously. In the figure, this corresponds to the
part from the end of stage j + 1 to the separator λ (backwards). Such an asynchronous
prediction uses the functional variables back_d and back_v , starting from

init(T.back_d [j]) = T.front_dmax
[j] ∧ init(T.back_v [j]) = T.next_vmax

[j], (8.13)

with a flow defined by the following ODEs and invariants:

T. ˙back_d
[j]

= −T.back_v [j] ∧ T. ˙back_v
[j]

= T.B

∧ T.back_d [j] ≥ 0 ∧ T.back_v [j] ≤ init(T.v [j]).
(8.14)

These functional variables are the only ones that may have a different length τ of inte-
gration than the other variables (which are synchronous). The reached position serves
for the consecutive synchronous part:

init(T.brake_d [j]) = final(T.back_d [j]), (8.15)

and Formula 8.12 becomes computable then. This works even in cases when T.steady [j]

holds, where T.brake_d [j] just serves as a constant upper bound on T.d [j], based on the
value from Formula 8.15.

Consequently to Formula 8.12, switching to the braking mode is defined by(
T.acc[j] ⇒ (T.brake [j+1] ⇔ Dj)

)
∧
(
T.steady [j] ⇒ (T.brake [j+1] ⇔ (Dj ∧ init(T.v [j]) > T.next_vmax

[j]))
) (8.16)

with Dj ⇔ final(T.d [j]) ≥ final(T.brake_d [j]). If already braking, staying in the mode is
defined depending on not reaching the end of the current segment yet (see Formula 8.7),
and possibly also based on the eventual necessity of a further consecutive braking (due
to Formula 8.14). That is

T.brake [j] ⇒ ITE
(
final(T.d [j]) < T.dmax

[j], T.brake [j+1],

T.brake [j+1] ⇔ final(T.back_d [j+1]) ≤ 0
)
.

(8.17)
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If T.vmax
[j] had been reached before the start of the braking phase (i.e. the invariant

in Formula 8.7 is violated before the invariant in Formula 8.12), there just would be
an additional phase in the steady mode between the phases j and j + 1 in the figure.

As a result, T.d [j] is limited by both T.dmax
[j] (Formula 8.7) and the braking pre-

diction, which consists of two parts: the asynchronous part (Formula 8.14), and the
synchronous—T.brake_d [j] (Formula 8.12).

Positional Constraints. In the following, we use train T ∈ T and the relation S1 →T

S2 for segments S1, S2 ∈ S to denote that segment S2 is adjacent to segment S1 on
a path that obeys the connection constraints of train T . In fact, this relation enforces
the connection constraints completely if T.finished [J ] (at the final step J) holds. The
relation is used only within the preprocessing stage when generating the formula.

For each segment S1, the possible next segments are defined s.t.

¬T.idle [j] ⇒
(
T.front_S [j]

1 ⇒
∨

S2∈S,S1→TS2

T.next_S [j]
2

)
. (8.18)

In cases when the front of the train is idle, we do not want to choose any next segment:(
T.idle [j] ∨ ¬

∨
S∈S

T.front_S [j]
)
⇒ ¬

∨
S∈S

T.next_S [j]. (8.19)

Next, a train cannot be at more segments at once with any of its part. That is, for all
segments S1, ∧

pos∈P

∧
S2∈S,S2 ̸=S1

¬
(
T.pos_S [j]

1 ∧ T.pos_S [j]
2

)
. (8.20)

The chosen next segment must be different than the current one:∧
pos∈{back ,front}

¬
(
T.pos_S [j]

1 ∧ T.next_S
[j]
1

)
. (8.21)

And, situations like where the train’s back is farther than its front are forbidden:∧
pos1∈{back ,front}
pos2∈{front ,next}

∧
S2∈S,S1→TS2

¬
(
T.pos2_S

[j]
1 ∧ T.pos1_S

[j]
2

)
. (8.22)

Finally, we control the progress of trains in a way that a train must either stay the
same, or its back or front has moved forwards (from a previous segment), applied both
to the past and to the future. That is, for all segments S:

¬T.idle [j] ⇒
∧

pos1∈{back ,front}
pos2=∆(pos1)

((
T.pos1_S

[j+1] ⇒ (T.pos1_S
[j] ∨ T.pos2_S [j])

)
∧
(
T.pos2_S [j] ⇒ (T.pos2_S

[j+1] ∨ T.pos1_S [j+1])
))
,

(8.23)

with ∆ = {back 7→ front , front 7→ next}.
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Away Conditions. Away conditions distinguish the cases when a train already en-
tered the network, or is outside of it. The decision variable enter triggers a starting
segment:

T.enter [j] ⇒
∨

S∈T.Start

(
¬T.back_S [j] ∧ T.front_S [j]

)
, (8.24)

where T.Start is the set of starting segments of the train T . A next segment is already
constrained by Formula 8.18. After entering, the front of the train is at the beginning of
the chosen segment, while the back is still outside the network, with the whole train’s
length. To denote that a train is entirely outside the network, we use

T.away [j] ⇔ ¬
(∨
S∈S

T.back_S [j] ∨
∨
S∈S

T.front_S [j]
)
. (8.25)

The variable finished is triggered within the transfer constraints when reaching a bound-
ary in Formula 8.34 below. Once the variable is activated, it implies that at least the front
of the train is already outside of the network:

T.finished [j] ⇒ ¬
∨
S∈S

T.front_S [j]. (8.26)

Trains that are leaving the network remain in the steady mode, until they get away
entirely.

Next, there are constraints related to the idle mode:

(T.enter [j] ⇒ ¬T.idle [j]) ∧ (T.away [j] ⇒ T.idle [j]). (8.27)

Then, there are some restrictions on variables in the next discrete step:

(T.enter [j] ⇒ ¬T.enter [j+1]) ∧ (T.finished [j] ⇒ T.finished [j+1]). (8.28)

Finally, restrictions of the related variables must hold—mutual exclusion of entering
and finishing; being away before entering the graph, and after finishing:

¬(T.enter [j]∧T.finished [j]) ∧ (¬T.away [j] ⇒ ¬T.enter [j+1])

∧ T.away [j] ⇒ ITE(T.finished [j], T.away [j+1],

¬T.finished [j+1] ∧ (T.away [j+1] ∨ T.enter [j+1])).

(8.29)

Transfer Constraints. These constraints control the transferring of a train to a next
segment when the end of one of the current segments is reached (even when stopping).
We denote the fact that the back or front of train T reaches the end of segment S1 ∈ S by
T.pos_exceed_S [j]

1 , pos ∈ {back , front}, which allows the train to move into segment S2:

¬T.idle [j] ⇒
∧

S2∈S,S1→TS2

(
(T.pos1_S [j]

1 ∧ T.pos2_S [j]
2 )⇒

ITE(T.pos1_exceed_S [j]
1 , T.pos1_S

[j+1]
2 , T.pos1_S

[j+1]
1 )

) (8.30)
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where pos1 ∈ {back , front}, pos2 = ∆(pos1), ∆ = {back 7→ front , front 7→ next}. For
starting segments S ∈ T.Start , it is also necessary to eventually move the back of the
train inside the network (which is not initially there, as stated in Formula 8.24):(
¬T.idle [j] ∧ ¬

∨
S∈S

T.back_S [j]
)
⇒
(
T.back_inside [j] ⇔

∨
S∈T.Start

T.back_S [j+1]
)
, (8.31)

where T.back_inside [j] means that the train reaches the beginning of a starting segment
with its back.

In idle mode, no transfers happen from any segment S:(
T.idle [j] ∧ ¬T.enter [j+1]

)
⇒

∧
pos∈{back ,front}

(
T.pos_S [j] ⇔ T.pos_S [j+1]

)
. (8.32)

Also, when a train is inside a single segment, the back stays within:(
T.back_S [j] ∧ T.front_S [j]

)
⇒ T.back_S [j+1]. (8.33)

Finally, when a train exceeds a segment S ∈ S that is boundary, the train is claimed
as finished based on the front of the train:

T.front_S [j] ⇒ ITE(T.front_exceed_S [j], T.finished [j+1], T.front_S [j+1]), (8.34)

and it is claimed as away based on its back:

T.back_S [j] ⇒ ITE(T.back_exceed_S [j], T.away [j+1], T.back_S [j+1]). (8.35)

S E21

AB
3

Figure 8.3: A conflicting plan of two consecutive trains with no stops.

Mutual Exclusion Conditions. Here we prevent trains from collisions. For each
train T1 and for all segments S, all the mutual exclusion conditions are jointly defined
as ∧

pos1,pos2∈P

∧
T2∈T ,T2 ̸=T1

¬
(
T1.pos1_S

[j] ∧ T2.pos2_S [j]
)
. (8.36)

Thus, we require the segments adjacent to the current front segment to be free (because
next ∈ P)—while it is whole sections3 in the case of [91], as a consequence of signal
interlocking. As a result, tighter plans are possible in our case, but the algorithm may
also be forced to resolve more violations of mutual exclusion conditions. Figure 8.3
illustrates a situation where train A is followed by train B that enters as soon as train A
leaves node 2. Since the segment 2–3 is long, train B will reach node 1 sooner than
train A leaves node 3, resulting in a conflict at segment 2–3 that is claimed by train B as
the next segment.

3In [91], such sections are called “elementary routes”.
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Initial Conditions. At the beginning, each train stands still, either is away or starts its
journey, and is not finished. And some train has to enter:∧

T∈T

(
init(T.v [0]) = 0 ∧ (T.enter [0] ∨ T.away [0]) ∧ ¬T.finished [0]

)
∧
∨
T∈T

T.enter [0].
(8.37)

Final Conditions. In order to satisfy the connection constraints of trains completely,
we require the trains to have finished moving through the network at the final unrolling
step J : ∧

T∈T

(T.finished [J ] ∧ T.away [J ]). (8.38)

8.3.2 Schedule Constraints
Constraints of the model itself must be satisfiable, otherwise it likely means that it is cor-
rupt (e.g. the infrastructure is disconnected). Unsatisfiability of connection constraints
is possible, but rarely desirable (i.e. cases with connection lists where it is not possible
to visit all the nodes in the given order wrt. the graph). It is the schedule constraints
that make the satisfiability problem interesting.

Schedule formulas enforce schedule constraints and their Boolean combinations. Or-
derings and timings described in Section 8.2.4 are translated into particular constraints
related to visiting nodes at discrete steps. To encode such a visit related to train T ∈ T ,
node N ∈ N , where N represents the set of nodes of the network, and discrete step j,
we use auxiliary Boolean variables T.visit_N [j], visit ∈ {arrive, depart}, defined s.t.

T.arrive_N [j] ⇔



⊥, if j = 0, else∨
S,S→TN T.front_S

[j−1]

∧ T.finished [j], if N ∈ T.End , otherwise∨
S,N→TS

(
¬T.front_S [j−1] ∧ T.front_S [j]

)
∧ ¬T.enter [j];

T.depart_N [j] ⇔


T.enter [j], if N = T.Start , else
⊥, if j = 0 ∨N ∈ T.End , otherwise∨

S,N→TS T.front_S
[j] ∧ T.acc[j] ∧ init(T.v[j]) = 0,

(8.39)

where N →T S and S →T N means incidence of the node N and segment S ∈ S within
the train T ’s connection, in the corresponding direction; T.Start is the starting node of
train T , and T.End is the set of the train’s ending nodes.

Ordering. Formula 8.1 enforces an order of visit1 and visit2. Cases with ▷◁ ∈ {<,≤}
requires to forbid visit2 to take place before visit1, and to make sure that visit2 implies
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that visit1 already happened:

J∧
k=0

(
T1.visit1_N

[k]
1 ⇒

K(k)∧
l=0

¬T2.visit2_N [l]
2

)
∧

J∧
l=0

(
T2.visit2_N

[l]
2 ⇒

L(l)∨
k=0

T1.visit1_N
[k]
1

)
,

(8.40)

where K(k) = k, L(l) = l − 1 if ▷◁ is <, and K(k) = k − 1, L(l) = l if ▷◁ is ≤. Order-
ings with ▷◁ being > or ≥ are simply handled as cases with < or ≤, respectively, with
swapped arguments.

For cases where ▷◁ is =, the produced formula is

J∧
k=0

(
T1.visit1_N

[k]
1 ⇔ T2.visit2_N

[k]
2

)
. (8.41)

Timing. In the first place, it is necessary to guarantee that the corresponding time
condition holds in cases when all the corresponding visits are active. In cases where ▷◁
∈ {<,≤}, similarly to orderings, we also make sure that violation of the timing implies
that the corresponding visits did already happen.

Following Formula 8.2, an absolute timing is translated into

J∧
k=0

(
T.visit_N [k] ⇒ t[k] ▷◁ ξ

)
∧ ψ. (8.42)

If ▷◁ ∈ {>,≥}, then ψ ⇔ ⊤, otherwise

ψ ⇔
J∧

k=0

(
¬(t[k] ▷◁ ξ)⇒

k−1∨
l=0

T.visit_N [l]
)
. (8.43)

Relative timing constrains a pair of visits. So Formula 8.3 translates to

J∧
j=0

(
T1.visit1_N

[j]
1 ⇒

(
ψj ∧

J∧
k=j

(
T2.visit2_N

[k]
2 ⇒ (t[k] − t[j]) ▷◁ ξ

)))
, (8.44)

where

ψj ⇔

{
⊤, if ▷◁ ∈ {>,≥};∧J

k=j

(
¬
(
(t[k] − t[j]) ▷◁ ξ

)
⇒
∨k−1

l=j T2.visit2_N
[l]
2

)
, if ▷◁ ∈ {<,≤}. (8.45)

Since timings support both lower and upper bounds, and since Boolean combina-
tions are allowed, it is possible to define interval boundaries and more.

Recall that the variables t [j] only depend on the lengths τ [j] of integrations, so the
timing constraints are checked at the end of each integration.
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8.3.3 Formula Size

Let NN be the size of the set of nodes N and NS the size of the set of segments S.
Although NS = O(NN

2), the graphs that model railway networks are usually sparse,
thus NS = Θ(NN). The number of trains (i.e. size of T ) should be negligible compared
to NN and NS . For each train, the number of all the variables scales to O(J) (recall that
J is the last discrete step), with the exception of auxiliary variables T.visit_N [j], which
scale to O(J ·NN), and the variables T.pos_S [j], which scale to O(J ·NS).

The number of particular differential equations and invariants, for each train, scales
to O(J) as well. The number of other atomic predicates, that are part of the railway
model, related to a separate train or not, scales to O(J ·NS

2).
In the case of schedule constraints, especially Formula 8.40 and Formula 8.44, the

number of produced atomic predicates corresponds to a polynomial of J (assuming
that the graph is sparse): O(J3) in the case of relative timings with the operator < or ≤
(Formula 8.44 and Formula 8.45), and O(J2) in the rest cases.

8.4 Experimental Part
In Sections 8.1, 8.2 and 8.3, we mentioned differences between our model and algorithm
compared to an approach that is based on dedicated railway simulations [91]. Although
we support a richer set of schedule constraints, here we stick to case studies that can be
handled by both approaches. Our model is not based on signal interlocking and exhibits
more nondeterminism (e.g., we allow the trains to wait in stations and before entering
the network). There are more differences between both the approaches, though. We
firstly focus on a qualitative analysis of the behavior of the tools, where the differences
are not that significant. Then, we also show numerical comparisons (e.g. the absolute
run-times) of the tools, with a proper discussion.

We use our model from Section 8.3 and our implementation [72] of the algorithm
from Chapter 6, and the railperfcheck tool [91]. Since we check strong satisfiability (Defi-
nition 20) of the formula, all nondeterminism in the model described above stems from
discrete decisions4. We focus on case studies where it is not trivial to decide whether
a plan that meets both ordering and timing constraints exists, that is, if the formula
is strongly satisfiable (sat), or not (unsat). For this, we generalized the experiments
named Gen in [91], where all the other experiments, in contrast, exhibit easily satisfiable
schedule constraints, which should not be challenging for approaches that are based on
SAT solving.

Both presented tools use Minisat [46] as the underlying SAT solver. We use Odeint [1]
as the ODE solver. We exclude execution time of our preprocessing (i.e., generating the
formula), which we did not optimize5.

4For example, although one requires interval timing constraints, this does not mean that all times
from the interval will be tried, only all discrete consequences that lead into this interval.

5In the worst case (NT = NS = 4, scenario all), the preprocessing takes 12 min.
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S ES1 S2E1 E2

11

21

31

12

22

32

Figure 8.4: An example of a serial-parallel infrastructure, with NS = 2 and NP = 3.

Specification. We use a serial-parallel network for our experiments—a track with NS

serially connected groups of NP identical parallel tracks with a station. See an exam-
ple in Figure 8.4. For our experiments, we will assume NS = NP . We use equivalent
trains T = {T1, . . . , TNT

} with acceleration rate A = 2, deceleration rate B = 1, velocity
limit Vmax = 40 and length L = 50. Each train is assigned to connection list (start , end),
which only contains the boundary nodes. As a result, multiple paths are possible (NNS

P ,
at most) for each train. Also, the trains are not allowed to stop at any station, but just
drive through, once they enter the network. In the case of [91], it is not possible to force
the trains not to stop at stations and to make them drive consecutively after each other,
due to signal interlocking. However, this fact affects only the numeric comparisons, not
the qualitative analysis.

First, we define a scenario nop with no schedule constraints at all, to show that the
trains can finish within the given J discrete steps—if J was too low, the result could
generally be unsat, even with no violations of schedule constraints. In our case, we
selected the number of unrollings J manually for each particular experiment—high
enough to allow all the trains to finish (i.e., to satisfy Formula 8.38). Such a parame-
ter is not needed in the case of railperfcheck.

Next, there are two regular scenarios, last and all , that are defined as follows:

• last : the last train TNT
must satisfy a relative timing, and the other trains Ti just

enter in a given order:

timing(TNT
, bnd) ∧

∧
i<NT

(
enterbefore(Ti, Ti+1) ∧ earlyafter(Ti+1, Ti)

)
, (8.46)

• all : each particular train Ti must satisfy a relative timing:∧
i

(
timing(Ti, bnd) ∧(
enterfirst(Ti) ∨

∨
j ̸=i

(
enterbefore(Tj, Ti) ∧ earlyafter(Ti, Tj)

)))
,

(8.47)

where Ti, Tj ∈ T , and with
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• timing(T, bnd)⇔ transfer(departure(T, start), arrival(T, end)) ▷◁ bnd ,

• enterbefore(T1, T2)⇔ departure(T1, start) < departure(T2, start),

• earlyafter(T1, T2)⇔ departure(T1, start) ≤ arrival(T2, end1), and

• enterfirst(T )⇔ departure(T, start) = 0,

where end1 is the joint node E1 in the figure. The purpose of earlyafter along with
enterbefore is to avoid long gaps between two consecutive trains, to reduce the amount of
nondeterminism of waiting of the trains. Parallel segments which come into the node
end1 are the first ones which do not block a preceding train from entering (according to
Formula 8.36). As a result, a next train is allowed to enter only as long as the successor
drives within these segments. In the case of railperfcheck, this is not necessary since wait-
ing is deterministic. Note that in scenario last , trains are fully ordered, while in scenario
all , they are not ordered at all.

Each case study is parametrized by a scenario, variables NT , NS ∈ {1, 2, 3, 4}, and
a timing upper bound bnd ∈ {101, 102, 103}. In our case, additionally, ρ = 30 (timeout
for functional variables in Section 8.3.1), and J = Γ(NT ), with Γ = {1 7→ 45, 2 7→ 80, 3 7→
115, 4 7→ 150}. In the case of [91], J is incrementally increased up to 2 ·NT . Since timings
with lower bounds and absolute timings are not supported by railperfcheck, we omit
them.

Both scenarios last and all are equivalent in cases with only one train (NT = 1). These
are the cases named Gen in [91].

Table 8.1: Running time comparison of nop scenario.

NT NS Result Our conflicts Their
1 2 sat 0.1 s 0 0 s

3 sat 0.1 s 0 0 s
4 sat 0.1 s 0 0 s

2 2 sat 0.4 s 4 0 s
3 sat 0.6 s 26 0.1 s
4 sat 1 s 51 0.7 s

3 2 sat 4.3 s 29 0 s
3 sat 8.3 s 284 0.3 s
4 sat 17 s 684 2.1 s

4 2 sat 39 s 106 0.1 s
3 sat 1.5 m 1559 0.6 s
4 sat 4 m 5100 4.3 s

Results. We present the qualitative results (sat or unsat) along with the run times of
the tools. Discussion and interpretation of the results follow in the next paragraph.

Firstly, let’s see cases with scenario nop, that is, with no schedule constraints. The
results are shown in Table 8.1. Since all the results are sat, it is proved that all trains can
finish within the corresponding J steps (i.e. Formula 8.38 holds). We additionally show
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Table 8.2: Running time comparison of last and all scenarios.

last all last all
NT NS bnd Result Our Their Our Their NT NS bnd Result Our Their Our Their

1 2 101 unsat 0.1 s 0 s 3 2 101 unsat 11 s 4.6 s 0.6 s 24 s
102 unsat → 0.1 s 0 s 102 unsat 1.1 m 4.6 s 2.6 m 24 s
103 sat 0.1 s 0 s 103 sat 3.7 s 0 s 4.2 s 0 s

3 101 unsat 0.1 s 0.3 s 3 101 unsat 38 s > 2 h 0.9 s > 2 h
102 unsat → 0.1 s 0.3 s 102 unsat 13 m > 2 h 16 m > 2 h
103 sat 0.1 s 0 s 103 sat 6.8 s 0.3 s 8.3 s 0.3 s

4 101 unsat 0.1 s 3.5 s 4 101 unsat 2.2 m > 2 h 1.1 s > 2 h
102 unsat → 0.2 s 3.5 s 102 unsat 1.1 h > 2 h 1 h > 2 h
103 sat 0.1 s 0 s 103 sat 13 s 2.1 s 16 s 2.1 s

2 2 101 unsat 0.4 s 0.6 s 0.2 s 0.9 s 4 2 101 unsat 3.6 m 33 s 1.2 s 9.3 m
102 unsat 2.2 s 0.6 s 2.5 s 0.9 s 102 unsat 13 m 33 s 21 m 9.3 m
103 sat 0.4 s 0 s 0.4 s 0 s 103 sat 25 s 0.1 s 39 s 0.1 s

3 101 unsat 0.8 s 1.8 m 0.3 s 3.5 m 3 101 unsat 31 m > 2 h 1.4 s > 2 h
102 unsat 8.9 s 1.8 m 9.2 s 3.5 m 102 unsat > 2 h > 2 h > 2 h > 2 h
103 sat 0.7 s 0.1 s 0.7 s 0.1 s 103 sat 51 s 0.6 s 1.4 m 0.6 s

4 101 unsat 1.6 s > 2 h 0.5 s > 2 h 4 101 unsat > 2 h > 2 h 2.1 s > 2 h
102 unsat 26 s > 2 h 29 s > 2 h 102 unsat > 2 h > 2 h > 2 h > 2 h
103 sat 1.1 s 0.7 s 1.1 s 0.7 s 103 sat 2 m 4.3 s 3.9 m 4.3 s

According to NS , the total number of nodes is 2 7→ 10, 3 7→ 17, 4 7→ 26, and more importantly, the number of possible paths for
each train is 2 7→ 4, 3 7→ 27, 4 7→ 256.

the number of conflicts which the SAT solver of our tool had to resolve with a backjump.
Note that all these conflicts are unrelated to schedule constraints, but are consequences
of violations of mutual exclusion conditions instead, as discussed earlier at Figure 8.3.

Concrete results of the scenarios last and all are shown in Table 8.2. Most impor-
tantly, the results of all the specified case studies of these scenarios are as follows:

• unsat when bnd ≤ 102: cases with lower timing upper bound are unsatisfiable,
that is, it is impossible for the trains to finish within this time bound,

• sat when bnd = 103: plans with high timing upper bound do exist.

Discussion. First, we compare the scenarios last and all . In the satisfiable cases, the
run times of both scenarios are similar. In the unsatisfiable cases, the run time of sce-
nario all is generally longer than that of last , because the trains are unordered and all
their permutations are tried, which is a significant effort with multiple trains. On the
other hand, to detect that the relative timing of the last train in scenario last is unfeasi-
ble, all the preceding trains have to be simulated first, regardless the timing. Depending
on the value of the timing upper bound bnd , it is not certain which part will dominate
the run time—simulations of the preceding trains, or of the last train. More on this
comparison follows later.

Next, we investigate the behavior of our tool and the tool railperfcheck [91]. We start
with railperfcheck. Recall that it handles mutual exclusion conditions using signal in-
terlocking, which is efficient for networks that do use signals. Moreover, they do sim-
ulations in lazy offline fashion, that is, only after a full propositional assignment was
found. This is especially efficient in the presented satisfiable cases. However, within
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the unsatisfiable cases of the scenarios last and all , it is entirely insensitive to the value
of bnd , because only the overall simulation is checked, independently from whether it
satisfies the timing or not. In this way, early detection of unsatisfiability is not possible,
and all NNS

P choices of paths are always examined.
In our case, the value of bnd has significant impact on pruning the searched state

space in our case—Formula 8.45 ensures termination of all search attempts where it is
already obvious that the timing cannot be satisfied. As a result, with growing size of the
network and the set of trains, unsatisfiability is detected more efficiently by our more
sophisticated algorithm. Consequently, if the timing upper bound is low (bnd = 101),
scenario all is always faster than scenario last in our case, because the unfeasible timing
of the train that enters first in the case of scenario all can be detected sooner than that in
the case of scenario last , where the train that must satisfy the timing is the last one (as
discussed above). For example, the run time of our tool in the cases with NT = NS = 3,
bnd = 101 was 1 s and 38 s in the case of scenario all and last , respectively, while with
bnd = 102, it was approximately 15 min in both cases. Also, in the case of just one
train (NT = 1), our algorithm detects the symmetry of parallel railroads, and prunes
alternative routes. This is especially significant in the cases with large infrastructure
(NS = 4) in Table 8.2.

When multiple trains drive consecutively, our method suffers from a number of mu-
tual exclusion conflicts (Formula 8.36). For example, in the case of the conflict captured
in Figure 8.3, we resolve it by backtracking the whole situation and seeking another
plan where train B enters later. The tool railperfcheck prevents such a conflict implicitly
within the simulator—by stopping train B at node 1 (if there is a signal) until the con-
flicting section becomes free. If the signal was not there, such a plan of two consecutive
trains would not even be considered.

Thus, it is not surprising that railperfcheck is much faster in the satisfiable cases, es-
pecially in the scenario nop. Our model and/or algorithm should be improved so that
such a scenario, with no schedule constraints, is trivial to be solved, like in the case
of [91].

When comparing the absolute run times of our tool and railperfcheck, we would like
to emphasize that the tools solve different problems, and even the underlying scenarios
last and all of the corresponding case studies are not equivalent in cases with multiple
trains (NT > 1). The issues stem from the way how mutual exclusivity of trains is han-
dled. In the case of railperfcheck, it is based on signal interlocking, where whole sections
surrounded by signals are being allocated for each train. Since the presented case stud-
ies do not require (nor allow) the trains to stop at stations, it would be necessary not
to put signals in the place of stations. However, this would also mean that each train
always allocates the whole network, so the next one would have to wait until the train
that is ahead exits at the boundary, resulting in way too long gaps between trains, and
thus in satisfying the timing constraints under different conditions. To avoid this, we
placed signals at stations. However, this allows situations like when a train stops in
a station and waits until another one overtakes it. While this does not harm the perfor-
mance in the case of the satisfiable cases, it has quite a significant effect on the run-time
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performance of unsatisfiable cases, because all combinations of particular overtakings
of trains are tried, in addition to all possible routes. We are not aware of a way how
to avoid these overtakings, though, even using additional ordering constraints, which
do not seem to be possible to be encoded in railperfcheck in the case of scenario all, be-
cause they do not allow Boolean combinations of particular ordering constraints. Also,
we did not allow stopping at stations in our case, because otherwise, it would yield
an even more difficult problem (with more nondeterminism) than in the case of railperf-
check, since we cannot set deterministic waiting times at stations, nor make the trains
stop at stations only when it is necessary to avoid a conflict of trains.

In Table 8.2, one can see that at least in the case of a single train (NT = 1), where both
approaches actually yield comparable problems, our approach performs significantly
faster within the unsatisfiable cases. In the rest unsatisfiable cases, our approach is
usually faster, but one has to take the differences of both approaches into consideration.
Nevertheless, in the case of low timing upper bound (bnd = 101), it is expectable that
even if railperfcheck did not consider plans with overtakings of the trains, our approach
would still be faster, because we prune the searched state significantly there.

Possible Improvements. In cases of a missed deadline by a train, a possibility is to
learn that all other trains, that are not faster6 than the one that participates in the conflict,
would miss the deadline too, if choosing the same route (if it is a part of their connec-
tion), and if they are constrained by such a deadline as well. Such more sophisticated
conflict reasoning would enhance, for example, solving the scenario all a lot, because it
would avoid trying all the permutations of the trains, in the unsatisfiable cases.

Finally, the synchronous model is not efficient, because the granularity of the dis-
cretization is too high. Furthermore, when resolving a conflict, the solver backtracks to
a previous state, causing to also throw away simulations that had nothing to do with
the conflict. This would not happen in an asynchronous model. It should be replaced
by an asynchronous model, with embedding some timing constraints also into the sys-
tems of ODEs, to achieve proper synchronization7. Note that this does not concern the
algorithm, only the encoding of a formula.

8.5 Conclusion

We presented a formalization of a low-level railway scheduling problem, where the dy-
namics of trains is described by differential equations, and where rich timing and order-
ing constraints are supported. We analyzed the behavior of our approach compared to
an existing method on selected case studies, and identified strong and weak aspects of
the run-time performance. We demonstrated that despite the complexity of our model,

6For example, train T2 is surely not faster than train T1 if T2.A ≤ T1.A ∧ T2.B ≤ T1.B ∧ T2.Vmax ≤
T1.Vmax ∧ T2.L ≥ T1.L.

7This would also allow efficient handling of timings with the relational operator =.
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the resulting problems can be solved successfully within a SAT modulo theory frame-
work. This opens the possibility of applying such techniques to further application
domains with similar complexity.
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CHAPTER 9
Multi-Agent Path-Finding

This chapter integrates a full version of our paper [76] into the dissertation thesis.
We introduce a new approach to solving a continuous-time version of the multi-

agent path-finding (MAPF) problem. The algorithm translates the problem into Satis-
fiability Modulo Theories (SMT) that can be solved by off-the-shelf solvers. This en-
ables the exploitation of conflict generalization techniques that such solvers can handle.
Computational experiments show that the new approach scales better with respect to
the available computation time than state-of-the-art approaches and is usually able to
avoid their exponential behavior on a class of benchmark problems modeling a typical
bottleneck situation.

9.1 Introduction

Multi-agent path finding (MAPF) [115, 106, 89, 122] is the problem of navigating agents
from their start positions to given individual goal positions in a shared environment so
that agents do not collide with each other. The standard discrete variant of the MAPF
problem is modeled using an undirected graph in which k agents move instantaneously
between its vertices. The space occupancy by agents is modeled by the requirement
that at most one agent reside per vertex and via movement rules that forbid conflicting
moves that traverse the same edge in opposite directions.

Standard discrete MAPF however lacks expressiveness for various real life problems
where continuous time and space play an important role such as robotics applications
and/or traffic optimization [50, 92].

This drawback of standard MAPF has been mitigated by introducing various gen-
eralizations such as multi-agent path-finding with continuous time (MAPFR) [4]. This
allows more accurate modeling of the target application problem without introducing
denser and larger discretizations. Especially in applications, where agents correspond
to robots, it is important to consider graph edges that interconnect vertices correspond-
ing to more distant positions. It is unrealistic to consider unit time for such edges as

129



9. MULTI-AGENT PATH-FINDING

done in the standard MAPF, hence general duration of actions must be adopted. The
action duration often corresponds to the length of edges which implies fully continuous
reasoning over the time domain.

In this chapter, we show how to solve the MAPFR problem by directly translating
it to an SMT problem (Section 2.4). In this chapter, we will use the theory of quantifier
free linear real arithmetic (Section 2.4.1), denoted as QF_LRA in SMT-LIB (Section 5.3.1).
This will allow us to reason about time in MAPF modeled in a continuous manner.

An example of a state-of-the-art approach for MAPFR is Continuous-time Conflict-
based Search (CCBS) [4], a generalization of Conflict-based Search (CBS) [114] that rep-
resents one of the most popular algorithms for MAPF. State-of-the-art approaches search
for optimal plans. However, in real-world applications, where the formalized MAPF
problem results from an approximation of the original application problem, an overly
strong emphasis on optimality is often pointless. Moreover, it may result in non-robust
plans that are difficult to realize in practice [7]. Hence we aim for a sub-optimal method
whose level of optimality can be adapted to the needs in the given application domain.

Unlike methods based on CCBS that approaches the optimum from below by iterat-
ing through plans that still contain collisions, our method approaches the optimum from
above, iterating through collision-free plans. This has the advantage that—after finding
its first plan—our method can be interrupted at any time, still producing a collision-free,
and hence feasible plan. This anytime behavior is highly desirable in practice [82].

Another advantage over existing methods is the fact that the objective function is a
simple expression handed over to the underlying SMT solver. This allows any objective
function that the SMT solver is able to handle without the need for any algorithmic
changes.

We did experiments comparing our method with the state-of-the-art approaches
CCBS and SMT-CCBS [4] on three classes of benchmark problems and various numbers
of agents. The results show that our method is more sensitive to time-outs than the ex-
isting approaches, typically being able to solve more instances than existing approaches
for high time-outs and less for lower time-outs. Future improvement of computer effi-
ciency will consequently make the method even more competitive.

Moreover, for one class of benchmark problems—modeling a bottleneck situation
where all agents have to queue for passing a single node, the new method usually
avoids the exponential behavior of CCBS and SMT-CCBS whose run-times explode
from a certain number of agents on. Such bottleneck situations frequently occur for
certain types of application problems (e.g., in traffic problems or navigation of charac-
ters in computer games through tunnels and the like).

Further Related Work: Existing methods for generalized variants of MAPF with con-
tinuous time include variants of Increasing Cost Tree Search (ICTS) [120] where dura-
tions of individual actions can be non-unit. The difference from our generalization is
that agents do not have an opportunity to wait an arbitrary amount of time but wait
times are predefined via discretization. Similar discretization has been introduced in
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the Conflict-based Search algorithm [34]. Since discretization in case of ICTS as well
as CBS brings inaccuracies of representation of the time, it is hard to define optimality.
Moreover, a more accurate discretization often increases the number of actions, which
can lead to an excessively large search space.

Our method for MAPFR comes from the stream of compilation-based methods for
MAPF, where the MAPF instance is compiled to an instance in a different formalism
for which an off-the-shelf efficient solver exists. Solvers based on formalisms such as
Boolean satisfiability (SAT) [118, 117], Answer Set Programming [19], Constraint Pro-
gramming (CP) [105, 55], or Mixed-integer Linear Programming (MILP) [79] exist. The
advantage of these solvers is that any progress in the solver for the target formalism can
be immediately reflected in the MAPF solver that it is based on.

The earlier MAPF method related to SMT (the SMT-CBS algorithm) [117] separates
the rules of MAPF into two logic theories, one theory for conflicts between agents and
one theory for the rest of the MAPF rules. The two theories are used to resolve conflicts
between agents lazily similarly as it is done by the CBS algorithm.

The application of SAT and SMT solvers to planning problem different from MAPF
is not new [104, 81, 30], usually in the context of temporal and numerical planning—
extensions of the classical planning problem with numerical variables. We have used
an SMT solver for a specific planning problem with multiple agents (Chapter 8), em-
ploying however a synchronous model that identifies each step of the unrolled planning
problem with a fixed time period.

9.2 Problem Definition
We follow the definition of multi-agent path finding with continuous time (MAPFR)
from [4].

We define a MAPFR problem by the tuple (G,M,A, s, g, coord), where G = (V,E)
is a directed graph with V modeling important positions in the environment and E
modeling possible transitions between the positions, M is a metric space that models
the continuous environment, A = {a1, a2, ..., ak} is a set of agents, functions s : A → V
and g : A → V define start and goal vertices for the agents, and coord : V → M assigns
each vertex a coordinate in metric space M .

The edges E define a set of possible move actions, where each e = (u, v) ∈ E is
assigned a duration eD ∈ R>0 and a motion function eM : [0, eD] → M where eM(0) =
coord(u) and eM(eD) = coord(v). In addition to this, there is infinite set of wait actions
associated with each vertex v ∈ V such that an agent can wait in v any amount of time.
The motion function for a wait action is constant and equals to coord(v) throughout the
duration of the action.

We define collisions between a pair of agents based on a collision-detection predicate
ISCOLLISION ⊆ A × A × M × M such that ISCOLLISION(ai, aj,mi,mj) if and only if
the bodies of agents ai and aj overlap at coordinates mi and mj . For this purpose, we
assume that the bodies are open sets and overlapping is understood to be strict. Hence
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agents are permitted to touch if they are assumed to have a closed boundary which is
not defined as a collision.

The algorithm described in this chapter is abstract in the sense that it does not ex-
plicitly restrict the class of motion actions. Instead it assumes that it is possible to do
collision detection and avoidance, as described in Section 9.5. This is possible, for ex-
ample, if the agents and motion functions are described by polynomials, due to the fact
that the theory of real closed fields allows quantifier elimination. Note that this allows
the modeling of non-constant agent speed and of movements along non-linear curves.
Still, in our implementation, for reasons of efficiency and ease of implementation, the
motion functions are required to be linear.

Given a sequence of actions π = (e1, e2, ..., en), we generalize the duration and mo-
tion functions from individual actions to overall π which we denote by πD and πM , re-
spectively. Let π[: n′] = (e1, e2, ..., en′) denote the prefix of the sequence of actions, then
πD =

∑n
i=1 eiD and analogously π[: n′]D =

∑n′

i=1 eiD. The motion function πM needs to
take into account the relative time of individual motion functions eiM , that is: πM(t) =
e1M(t) for t ≤ e1D, ..., πM(t) = en′M(t − π[: n′ − 1]D) for π[: n′ − 1]D ≤ t ≤ π[: n′]D, ...,
πM(t) = enM(enD) for πD < t. The last case means that the agent stops after executing
the sequence of actions and stays at the coordinate of the goal vertex.

Definition 25. There is a collision between sequences of actions πi and πj if and only if ∃t ∈ [0,
max{πiD, πjD}] such that ISCOLLISION(ai, aj, πiM(t), πjM(t)).

Definition 26. A pre-plan of a given MAPFR problem (G,M,A, s, g, coord) is a collection of
sequences of actions π1, π2, ..., πk s.t. for every i ∈ {1, . . . , k}, πi(0) = s(ai) and πi(πiD) =
g(ai). A plan for given MAPFR problem P is a pre-plan of P whose sequences are pair-wise
collision free.

We define several types of cost functions that we denote by cost(Π), for a given plan
Π. For example, we will work with sum-of-costs (in this case, cost(Π) =

∑k
i=1 cost(πiD)),

or makespan.
For a MAPFR problem P , we denote by opt(P ) its optimal plan and by optpre(P ) its

optimal pre-plan. Clearly cost(optpre(P )) ≤ cost(opt(P )), but optpre(P ) is much easier to
compute than opt(P ) since it directly follows from the plans of the individual agents.

For our approach, the following two observations are essential:

• Multiple subsequent wait actions can always be merged into a single one without
changing the overall motion.

• It is always possible to insert a wait action of zero length between two subsequent
move actions—again without changing the overall motion.

Due to this, we can restrict the search space to plans for which each wait action is im-
mediately followed by a move action and vice versa. Our SMT encoding will then be
able to encode wait and move actions in pairs, which motivates counting the number
of steps of plans by just counting move actions. Hence, for a sequence of actions π we
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denote by |π| the number of move actions in the sequence, and for a plan Π, we call
|Π| := maxki=1|πi| the number of steps of plan Π.

9.3 Algorithm
Our goal is to encode the planning problem in an SMT theory that is rich enough to
model time and to represent conflict generalization constraints. Since SMT solvers only
encode a fixed number of steps, we have to use a notion of optimality that takes this into
account. Hence the first optimization criterion is the number of steps, and the second
criterion cost, which we optimize up to a given δ > 0:

Definition 27. A plan Π satisfying a MAPFR problem P is minstep δ-optimal iff

• |Π| = min{|Π| | Π is a plan of P}, and

• cost(Π) ≤ (1 + δ) inf{cost(Π′) | |Π′| = |Π|}.

The result is Algorithm 9.1. It searches from below for a plan of minimal number of
steps, and then minimizes cost for the given number of steps using iterative bisection.
For this, it uses a function findplan that searches for a plan with a fixed number of states
whose cost is between some minimal and maximal cost and that we will present in more
details below in Algorithm 9.2.

When using a SAT solver to implement the function findplan, it would be an overkill
to encode the whole planning problem at once, since we would have to encode the avoid-
ance of a huge number of potential collisions. Instead, we will encode this information
on demand, initially looking for a pre-plan, and adding information on collision avoid-
ance only based on collisions that have already occurred.

However, whenever a collision occurs, we do not only avoid the given collision,
but also collisions that are in some sense similar. We will call this a generalization of a
collision which we will also formalize in Section 9.5.

So denote by φP,h,t,t an SMT formula encoding the existence of a pre-plan Π of
MAPFR-problem P with number of steps h and cost in [t, t], that is, |Π| = h and cost(Π) ∈
[t, t] (see Section 9.4 for details). We will use an SMT solver to solve those formulas and
assume that for any formula φ encoding a planning problem, sat(φ) either returns the
pre-plan satisfying φ or ⊥ if φ is not satisfiable.

The result is Algorithm 9.2 below.
Note that if p ̸= ⊥, the pre-plan p may have several collisions. The algorithm leaves

it open for which of those collisions to add collision avoidance information into the
formula φcnew . The algorithm leaves it open, as well, how much to generalize a found
collision occurring at a certain point in time. In our approach, we use a specific choice
here that we will describe in Section 9.5.

Theorem 1. The main algorithm is correct, and if t̂ is chosen as (1 − c)tmin + ctmax, for some
fixed c ∈ (0, 1), then it also terminates.
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Algorithm 9.1: Main algorithm MAPF-LRA.

MAPF-LRA(P, δ)→ popt
Input:

- a MAPFR problem P = (G,M,A, s, g, coord)
- δ ∈ R>0

Output:
- popt : a minstep δ-optimal plan for P

h← |optpre(P )|
tmin ← cost(optpre(P ))
C ← ∅
(p, C)← findplan(P, h, tmin ,∞, C)
while p = ⊥ do

h← h+ 1
(p, C)← findplan(P, h, tmin ,∞, C)

popt ← p
while cost(popt) > (1 + δ)tmin do

let t̂ ∈ (tmin , cost(popt))

(p, C)← findplan(P, h, tmin , t̂, C)

if p = ⊥ then tmin ← t̂ else popt ← p

return popt

Proof. Since |optpre(P )| is a lower bound on the number of steps of any plan of P , h ≤
min{|Π| | Π is a plan of P} at the beginning of the first while loop. After termination
of the first while loop, h = min{|Π| | Π is a plan of P}. Moreover, the second while
loop does not change h, and hence the result of the algorithm certainly satisfies the
first condition of Definition 27. Throughout the first loop, tmin is a lower bound on all
collision free plans, and throughout the second loop, it is a lower bound on all collision
free plans that take h steps, and popt contains a h-step plan. Hence, after termination of
the second loop also the second condition of Definition 27 holds.

Finally, if c ∈ (0, 1), cost(popt) − tmin goes to zero as the second-while loop iterates.
Hence the termination condition of this loop must eventually be satisfied.

9.4 SMT Encoding

In this section, we present an encoding of the planning problem from Section 9.2 as
an SMT formula in the quantifier-free theory of linear real arithmetic QF_LRA. Here we
concentrate on the formula φP,h,t,t that models time constraints of the agents and their
paths in graph G but does not model collisions of the agents and metric space M . We
leave the SMT encoding of collision avoidance to the next section.
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Algorithm 9.2: Function findplan that searches for a plan with a bounded cost.

findplan(h, tmin, tmax, C)→ (p, C ′)
Input:

- h ∈ N0

- tmin ∈ R≥0

- tmax ∈ R≥0 ∪ {∞}
- C: a set of formulas that every plan must satisfy

Output:
- p: either a plan Π with |Π| = h and cost(π) ∈ [tmin, tmax], or
⊥, if such a plan does not exist

- C ′: a set of formulas that every plan must satisfy

p← sat(φP,h,tmin,tmax ∧
∧

φc∈C φc)

while ¬[p = ⊥ ∨ p is collision-free] do
let φcnew represent the generalization of collisions in p
C ← C ∪ {¬φcnew}
p← sat(φP,h,tmin,tmax ∧

∧
φc∈C φc)

return (p, C)

Variables. As usual in planning applications of SAT solvers [104], we unroll the plan-
ning problem in a similar way as in Bounded Model Checking (Section 2.5), where each
step 0, 1, . . . , h corresponds to one wait and one move action. As a consequence, un-
rolling over h steps corresponds to search for a pre-plan Π with |Π| = h.

Note that h corresponds to the maximum of the steps of all agents, so an agent that
already reached the goal in step j < h may remain in the same state in steps j, . . . , h,
without any further actions.

Each agent is modeled using a separate set of Boolean and real-valued variables. For
each agent a ∈ A and discrete step j, we define variables V [j]

a , T [j]
a , w[j]

a and m
[j]
a : We

model the vertex position of the agent by V [j]
a which is a Boolean encoding of a vertex

v ∈ V usingO(|V |) orO(log(|V |)) Boolean variables. We will use the notation V [j]
a = v to

denote a constraint that expresses that an agent occupies vertex v ∈ V at the beginning
of discrete step j. We will also use V [j]

a ̸= v as an abbreviation for ¬
(
V

[j]
a = v

)
.

Next, we model time constraints of the agent using real variables T [j]
a , w[j]

a , and m
[j]
a .

The variables T [j]
a model the absolute time when the agent occupies a vertex that cor-

responds to V
[j]
a , before it takes further actions within discrete step j (or later). The

variables w[j]
a model the duration of wait actions and the variables m[j]

a the duration of
move actions.

Finally, we use an auxiliary real variable λ that, for a pre-plan Π, corresponds to
cost(Π). The objective is to minimize this variable. There may be arbitrary linear con-
straints on the variable, allowing specification of rich cost functions.
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Constraints. We define (1) initial and goal conditions on the agents, (2) constraints
that ensure that the agents follow paths through the graph G, and (3) time constraints
that correspond to occurrences of the agents at vertices of the graph. For that, we only
use the variables defined above.

The initial and goal conditions ensure that each agent a visits the start and goal
vertex at the beginning and end of the plan, respectively: V [0]

a = s(a) ∧ V [h]
a = g(a).

To ensure that the agents follow paths through the graph G, we use for each agent
a and j < h a constraint ensuring that the pair of vertex positions V [j]

a and V
[j+1]
a corre-

sponds to an edge of the graph G. However, this is not necessarily the case for an al-
ready finished agent, that is, if V [j]

a = g(a), then also V [j+1]
a = g(a) is allowed.

The time constraints ensure that the initial value of time of all agents is zero: T [0]
a = 0.

For j > 0, they assume that during each discrete step, an agent may first wait and
then it moves, resulting in the constraint T [j]

a = T
[j−1]
a + w

[j−1]
a +m

[j−1]
a . For the waiting

times, we require w[j]
a ≥ 0. In addition, we ensure that at least one agent starts to move

at the beginning of a plan without waiting, asserting
∨

a∈Aw
[0]
a = 0. For the moving

times, if j < h we ensure that m[j]
a corresponds to the duration of the edge between V [j]

a

and V
[j+1]
a . In addition, m[j]

a = 0 if j = h or V [j]
a = g(a) ∧ V [j+1]

a = g(a).
Note that agents are modeled asynchronously, meaning that for a pair of agents

a, b ∈ A, T [j]
a and Tb

[j] corresponds not necessarily to the same moment in time. This
implies that comparing times and the corresponding positions of agents, in order to
check whether there are collisions, cannot be done in a straightforward way, and in the
worst case, variables corresponding to all discrete steps must be examined.

We present two variants of cost functions: sum of costs, defined as λ =
∑

a∈A T
[h]
a ,

and makespan, defined as λ = maxa∈A T
[h]
a . To ensure that the formula φP,h,t,t satisfies

the bounds of the cost function, we simply require λ ≥ t ∧ λ ≤ t. An example of
an alternative cost function is λ =

∑
a∈A

∑h−1
j=0

(
2m

[j]
a + w

[j]
a

)
which prefers minimizing

moving times over waiting times and can therefore result in more power-optimal plans.
Building the formula φP,h,t,t from scratch after each increase of the number of steps h

would be inefficient. Hence we build the formula incrementally. However, some parts
of the formula (e.g., the cost functions or constraints such as V [h]

a = g(a)), explicitly
depend on h, and hence need to be updated when h is increased. Here we use the
feature of modern SMT solvers, that allow the user to cancel constraints asserted after a
previously specified milestone, and to reuse the rest.

9.5 Collision Detection and Avoidance
Whenever the algorithm findplan from Section 9.3 computes a pre-plan that still con-
tains a collision, it represents the generalization of collisions by a formula φcnew whose
negation it then adds to the formula passed to the SMT solver. We will now discuss
how to first detect collisions and how to then construct the formula φcnew generalizing
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detected collisions. Here, we will assume precise arithmetic, deferring the discussion of
implementation in finite computer arithmetic to Section 9.6.

Collision Detection. Assume that two agents a and b follow their motion functions
αMa : [0, αDa] → M and αMb : [0, αDb] → M with durations αDa and αDb, respectively,
corresponding to either a move or a wait action. Assume that the agents start the mo-
tions at points in time τ̂a and τ̂b, respectively. To determine whether there is a collision,
we will use the abstract predicate ISCOLLISION introduced in Section 9.2. Based on this,
we can check for a collision of two agents that follow motion functions starting at certain
times:

Definition 28. For two motion functions αMa and αMb with respective starting times τ̂a and τ̂b,
INCONFLICTa,b(αMa, αMb, τ̂a, τ̂b) iff

∃t ∈ [τ̂a, τ̂a + αDa] ∩ [τ̂b, τ̂b + αDb] . ISCOLLISION(a, b, αMa(t− τ̂a), αMb(t− τ̂b)).

We will now discuss the construction of the formula φcnew that generalizes collisions
of pre-plans found in Algorithm 9.2. A found pre-plan may result in several such colli-
sions. We start with generalizing one of them and consider two cases: The case of a col-
lision between two moving agents, and the case of a collision between a waiting and
a moving agent. We can ignore the case when both agents are waiting: Such a conflict
either should have been avoided already in the previous discrete steps, or the agents
must in the case of a conflict overlap right at the beginning of a pre-plan, resulting in
a trivially infeasible plan.

Collisions While Moving. In this case, one of the two agents has to wait until the
conflict vanishes. We are interested in waiting the minimal time and hence define
SAFEa,b(αMa, αMb, τ̂a, τ̂b) :=

inf{τa | τ̂a < τa,¬INCONFLICTa,b(αMa, αMb, τa, τ̂b)}.

Note that τ̂a < SAFEa,b(αMa, αMb, τ̂a, τ̂b) ≤ τ̂b + αDb. Here, the lower bound is a conse-
quence of the assumption that agents are open sets which makes collisions happen in the
interior of those sets. The upper bound follows from the fact that INCONFLICTa,b(αMa,
αMb, τ̂b + αDb, τ̂b) is always false.

Assume that we detected a conflict between two move actions starting at times τ̂a
and τ̂b and hence INCONFLICTa,b(αMa, αMb, τ̂a, τ̂b). We know that any value of τa with
τ̂a ≤ τa < SAFEa,b(αMa, αMb, τ̂a, τ̂b) also leads to a conflict. In addition—letting the sec-
ond agent wait—any value of τb with τ̂b ≤ τb < SAFEb,a(αMb, αMa, τ̂b, τ̂a) also leads to a
conflict.

However, we know even more. For seeing this, observe that INCONFLICTa,b is invari-
ant wrt. translation along the time-axes, that is, for every ∆ ∈ R, INCONFLICTa,b(αMa,
αMb, τ̂a, τ̂b) iff INCONFLICTa,b(αMa, αMb, τ̂a + ∆, τ̂b + ∆) which can be seen by simply
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translating the witness t from Definition 28 by the same value ∆. Due to this, the same
conflict happens for all pairs (τa, τb) with the same relative distance as the relative dis-
tance of (τ̂a, τ̂b). Hence we know that both

τ̂a − τ̂b ≤ τa − τb < SAFEa,b(αMa, αMb, τ̂a, τ̂b)− τ̂b

and

τ̂b − τ̂a ≤ τb − τa < SAFEb,a(αMb, αMa, τ̂b, τ̂a)− τ̂a

lead to a conflict.
Multiplying the second inequality by −1, we get

τ̂a − SAFEb,a(αMb, αMa, τ̂b, τ̂a) < τa − τb ≤ τ̂a − τ̂b

and combining the result with the first inequality, we get

τ̂a − SAFEb,a(αMb, αMa, τ̂b, τ̂a) < τa − τb
∧ τa − τb < SAFEa,b(αMa, αMb, τ̂a, τ̂b)− τ̂b.

For applying this to the variables of the SMT encoding described in Section 9.4, we
denote this formula by φmm(a, b, αMa, αMb, τ̂a, τ̂b, τa, τb), replacing the arguments by the
corresponding terms from the SMT encoding. More concretely, we observe that the start
of a move action of agent a at step ja is modeled by the term Ta

[ja] + wa
[ja] and the start

of a move action of agent b at step jb by the term Tb
[jb] + wb

[jb].
Now assume that we detected a conflict of two agents a and b moving along respec-

tive edges (ua, va) and (ub, vb), starting in discrete steps ja and jb and times T̂a[ja] + ŵa
[ja]

and T̂b
[jb] + ŵb

[jb] (the hats denoting the values assigned to the respective variables). In
this case, INCONFLICTa,b(αMa, αMb, T̂a

[ja]+ ŵa
[ja], T̂b

[jb]+ ŵb
[jb]), and the formula φcnew has

the form

Va
[ja] = ua ∧ Va[ja+1] = va

∧ Vb[jb] = ub ∧ Vb[jb+1] = vb

∧ φmm(a, b, (ua, va)M , (ub, vb)M ,

T̂a
[ja] + ŵa

[ja], T̂b
[jb] + ŵb

[jb],

Ta
[ja] + wa

[ja], Tb
[jb] + wb

[jb]).

This means that there are 6 possibilities how to resolve such a conflict (changing one
of the four vertices of edges along which the two move actions took place or changing
one of the two starting times of the move actions).

Now we also discuss conflicts where a waiting agent participates.
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Collisions While Waiting. We also have to ensure that no collisions happen while
an agent a is waiting. In principle, the motion function αMa can also be constant, and
hence one might be tempted to just specialize the formula for two moving agents to this
case. However, unlike move actions, wait actions do not have fixed durations, but their
duration is a consequence of the timing of the previous and following move action. We
take this into account, generalizing the given conflict over arbitrarily long wait actions.

So assume an agent a waiting at a point xa ∈ M and an agent b following motion
function αMb starting from time τ̂b. Assume that a collision happens at a certain point in
time t̂. So we have τ̂b ≤ t̂ ≤ τ̂b + αDb ∧ ISCOLLISION(a, b, xa, αMb(t̂− τ̂b)).

Let τ̂a be the end of the move action of the waiting agent a before this waiting period
and let τ̂ ′a be the starting time of the move action of the waiting agent after this waiting
period. We illustrate the relationship of the variables in Figure 9.1.

Figure 9.1: Illustration of action times and durations of an agent awaiting on an agent b.

So we compute the beginning of the collision t a,b,xa,αMb,τ̂b
:=

inf{τ̂b ≤ t ≤ t̂ | ISCOLLISION(a, b, xa, αMb(t− τ̂b))}

and its end ta,b,xa,αMb,τ̂b :=

sup{t̂ ≤ t ≤ τ̂b + αDb | ISCOLLISION(a, b, xa, αMb(t− τ̂b))}.

So for any wait action of agent a starting at τa and ending at τ ′a and any move action
of agent b starting at τb, the collision happens if the upper bound ta,b,xa,αMb,τ̂b is after the
end of the previous action and the lower bound t a,b,xa,αMb,τ̂b

is before the beginning of
the next action. The result is

τa − τb < ta,b,xa,αMb,τ̂b − τ̂b
∧ t a,b,xa,αMb,τ̂b

− τ̂b < τ ′a − τb,

which we will denote by φwm(a, b, xa, αMb, τ̂b, τa, τ
′
a, τb).

Now we again apply this to the variables of the SMT encoding described in Sec-
tion 9.4, replacing the arguments of the formula φwm(a, b, xa, αMb, τ̂b, τa, τ

′
a, τb) by their

corresponding terms from the SMT encoding. So when we detect a conflict between
an agent a that waits at vertex ua at time step ja and an agent b moving along an edge
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(ub, vb) at time step jb, starting at T̂b[jb] + ŵb
[jb], the formula φcnew has the form

Va
[ja] = ua

∧ Vb[jb] = ub ∧ Vb[jb+1] = vb

∧ φwm(a, b, coord(ua), (ub, vb)M ,

T̂b
[jb] + ŵb

[jb],

Ta
[ja], Ta

[ja] + wa
[ja], Tb

[jb] + wb
[jb]).

We ended up with a conflict clause that actually does not depend on a previous move
action. In the case where the wait action does not have a next move action, the conflict
clause can be modified in a straightforward way.

Further Generalization. To fully exploit the computational effort that is necessary to
find pre-plans, we generate generalizations for all conflicts a found pre-plan contains.
Hence we check for conflicts between all pairs of agents, discrete steps and correspond-
ing move and wait actions.

We further generalize the conflicts such that we also check for other conflicts of the
given pair of agents when taking a move action from the same source to a different
target vertex.

We did not find it useful to furthermore generalize the conflicts to further pairs of
agents and/or discrete steps.

9.6 Implementation

Collision Detection and Avoidance. We implemented the predicates and functions
introduced in Section 9.5 as follows:

• We assume that each agent a is abstracted into an open disk with a fixed ra-
dius ra ∈ R>0. Hence for agents a and b, ISCOLLISION(a, b, ca, cb) iff ||ca − cb|| <
ra + rb, where ca, cb ∈M are respective centers of the disks of the agents.

• We assume that the agents move with constant velocity following straight lines of
the edges. As a result, INCONFLICTa,b corresponds to checking whether a quadratic
inequality has a solution in the intersection of the time intervals from Defini-
tion 28.

• Exploiting the observation that SAFEa,b(αMa, αMb, τ̂a, τ̂b) ∈ (τ̂a, τ̂b + αDb] we com-
pute the resulting value by binary search of the switching point τa in the interval
for which ¬INCONFLICTa,b(αMa, αMb, τa, τ̂b) and INCONFLICTa,b(αMa, αMb, τa − ϵ,
τ̂b), for a small enough ϵ > 0.
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Floating-point Numbers. Our simulations of collisions of agents are based on floating-
point computation whereas SMT solvers treat linear real arithmetic precisely, using ra-
tional numbers for all computation. There are two main issues here:

• Conversion of a floating point number to a rational number may result in huge
integer values for the numerator and denominator, although the intended value is
very close to a simple rational or even integer number.

• Conversion of rational numbers to floating point numbers, and the following com-
putation in floating point representation may incur approximation errors (e.g., due
to round-off or discretization). For example, this may lead to the situation where—
in the case of a collision between two moving agents—the added conflict clause
does not require the waiting agent to wait long enough to completely avoid the
same collision. Hence a very close collision may re-appear, and the same situation
may repeat itself several times.

We overcome these deficiencies with an overapproximation of the conflict intervals
along with simplification of the resulting rational numbers using simple continued frac-
tions and best rational approximation: in the case that a floating-point value x is respec-
tively a lower or a higher bound of a conflicting interval, the result corresponds to the
best rational approximation from (x − ϵ, x] or [x, x + ϵ), respectively, for an ϵ that is
large enough. This not only avoids the re-appearance of the same conflict but also maps
floating-point values that are close to each other to the same rational numbers, avoiding
the appearance of tiny differences between rational numbers that tend to clog the SMT
solver.

Heuristics. The formula passed to the SMT solver often represents a highly undercon-
strained problem, spanning a huge solution space. Due to this, it is essential that the
SMT solver chooses a solution in a goal oriented way in order to maximize the chances
of hitting upon a δ-optimal plan, or at least to concentrate search on the most promis-
ing part of the solution space which also concentrates the addition of conflict avoidance
clauses to this part. For this, we prefer transitions to vertices that lie on shorter paths to
the goal over transitions to vertices that lie on longer paths. This can be easily precom-
puted using Dijkstra’s algorithm for all vertices with a fixed start and goal.

Nonetheless, using such heuristics does not evade the problem of encoding all the
transitions into the formula, which floods the SMT solver with a lot of constraints that
are not essential for arriving at the desired plan. Also, conversion of the resulting for-
mula to CNF might be expensive.

Tools. We implemented the resulting algorithm on top of MathSAT5 [33] SMT solver.
We incrementally build the formula described in Section 9.4 using API. However, since
we do not even require the SMT solver itself to handle optimization, it is easy to re-
place the API calls to another SMT solver that handles QF_LRA. We also implemented
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a visualization tool of MAPFR problems. Our tools are available online and are open-
source [70, 71].

9.7 Computational Experiments
We compare run-times of our implementation from Section 9.6 denoted as SMT-LRA
and state-of-the-art tools CCBS and SMT-CCBS, both presented in [4], which define the
MAPFR problem in a similar way. These tools search for optimal plans, which is more
difficult than searching for sub-optimal plans, such as minstep δ-optimal plans in our
case. However, as discussed in the introduction, not only that the price of getting op-
timal plans may be too high, but the resulting plans may also be not an ideal fit in
practice, due to possible requirements on flexible dispatchability of the plans, and due
to the fact that the dynamics of the agents may not be modeled accurately. Based on
these observations, we consider the comparisons to be practically reasonable.

There are also differences concerning the function that is being optimized which is
sum of costs in the case of CCBS and makespan in the case of SMT-CCBS. We support
both of these cost functions in the form of a parameter. While there are certainly in-
stances where the choice of the cost function qualitatively matters, [4] showed that both
the tools yield similar respective costs of the resulting plans within their benchmarks.
Hence, comparing such tools with different objectives also makes sense.

In the following experiments, we will use a similar setup to [4], that is, similar to
both of the presented state-of-the-art tools.

We will start with the description of the benchmarks. Finally, we will present and
discuss the computational results of the performed experiments.

9.7.1 Description of Benchmarks
A benchmark is specified by a graph and a set of agents, each defined by a radius and
a starting and goal vertex. The following benchmarks use the same radius for all agents,
and hence we will not discuss radii anymore.

We did experiments with three classes of problems: empty, roadmap and bottle-
neck. Benchmarks empty and roadmap are adopted from [4] and correspond to MAPF
maps from the Moving AI repository. Our bottleneck benchmark is an additional
simple experiment that identifies a weakness of the state-of-the-art approaches. A more
detailed description of the benchmarks follows below.

We did not include benchmarks with large graphs (i.e. with a high number of ver-
tices or edges), because our current algorithm encodes the whole graph into the formula,
as discussed within heuristics in Section 9.6.

Empty Room. This benchmark is based on a graph that represents an empty square
room with 16× 16 vertices—the result of grid approximations of MAPF maps from the
Moving AI repository [4].
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Interconnection of the vertices depend on a neighborhood parameter n, which de-
fines that each vertex has exactly 2n neighbors (with the exception of boundary vertices).
For example, n = 2 corresponds to a square grid, n = 3 extends the square grid of di-
agonal edges, etc. Using such a graph, it may be necessary to include a high amount of
useless edges in order to cover a suitable number of realistic movements of the agents.
On the other hand, it might be possible to exploit the fact that such graphs are highly
symmetric.

The resulting benchmark empty represents a model with no physical obstacles. Still,
with an increasing number of agents k, the number of possible collisions of the agents
grows significantly, because most of the shortest paths lead via central regions of the
graph.

Roadmap. Unlike the previous benchmark, here the maps from the Moving AI repos-
itory are not approximated based on grids but based on the “roadmap-generation tool
from the Open Motion Planning Library (OMPL), which is a widely used tool in the
robotics community”. Such an approximation results in asymmetric graphs with possi-
bly very different lengths of edges. On one hand, such edges can model realistic route
choices of the agents. On the other hand, the number of possible places where agents
are allowed to wait in order to avoid collisions may be too low, if the edges are too
long—since we only allow waiting at vertices.

We follow the original benchmarks where the roadmap generation was applied on
a large map den520d which comes from the field of video games. It is possible to
set various levels of discretization (i.e. density) of the original map. Here, we only
experimented with benchmarks with the lowest density, denoted as sparse.

Bottleneck. Benchmark bottleneck models the problem of steering k agents from k
initial vertices through a single transfer vertex to k goal vertices. Hence the transfer ver-
tex represents a bottleneck every agent has to pass through. We place the initial and goal
vertices (i.e., altogether 2k vertices) on a circle whose center is formed by the transfer
vertex. An example of the benchmark with k = 4 is illustrated in the Figure 9.2, where
the bigger colored disks denote the agents at their starting positions and the smaller
disks denote the vertices of the graph, where the colored ones in addition indicate goal
positions of the corresponding agents.

The task here boils down to just choosing a certain order of the agents. Resolving
such a benchmark problem can still result in an exponential complexity in the number
of agents k—if just various permutations of the agents are tried, without a thorough
exclusion of the conflicting time intervals of particular agents.

9.7.2 Experimental Setup

In the case of benchmarks empty and roadmap, we observe whether particular exper-
iments finish within a given timeout. The set of experiments contains instances where
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Figure 9.2: Bottleneck benchmark with k = 4 agents.

the number of agents ranges from 1 to 64 (none of the tools managed to finish with more
agents within the selected timeouts). For each number of agents k ∈ {1, . . . , 64}, each
start and goal vertex of each agent is pre-generated in 25 random variants. Here, when
generating the variants for agent k+1, all the previous k agents are reused and only the
positions of the new one are generated randomly. The result is 64× 25 = 1600 instances
for each of empty (for each neighborhood n) and roadmap.

The subject of our interest is how the evaluated algorithms scale with time, so we ran
all the experiments with different timeouts ranging from 30 seconds up to 16 minutes
(with exponential growth) and observed how many instances finished in time. We will
show the results in the form of box plots.

To also directly illustrate the relationship of the number of solved instances and k, we
will also show success rate plots, that is, plots with the ratios of the number of solved
instances out of the total number of instances (i.e. out of 25) wrt. a given number of
agents k, and with a fixed timeout.

Our tool SMT-LRA is in addition parametrized by a cost function—either makespan
or sum of costs—and by a sub-optimal coefficient δ ∈ {1, 1

2
, 1
4
}. In the plots, the pa-

rameters are denoted in the form (C, δ), where C is either M (makespan) or S (sum of
costs). In all experiments, the higher δ was, the more instances were solved. Hence, to
make the box plots more compact, we merged all the variants of δ related to the same

144



9.7. Computational Experiments

cost function such that the boxes of the variants with lower δ overlay the boxes of the
variants with higher δ. Also, higher values of δ correspond to lighter colors. For exam-
ple, boxes δ = 1

4
overlay boxes δ = 1

2
, but the magnitudes of both boxes are still visible

since the number of solved instances is always lower in the case of δ = 1
4

than in the
case of δ = 1

2
. As a result, for each timeout in the box plot, our tool always takes two

columns, each consisting of three (overlaid) boxes. In the case of success rate plots, we
use dashed curves in the case of our tool in order to increase readability, and include all
curves that correspond to the variants of δ, where again higher values of δ correspond
to lighter colors.

We will provide tables to further illustrate the effect of parameter δ. For this, ob-
serve that Algorithm 9.1 terminates as soon as cost(popt) ≤ (1 + δ)tmin , which ensures
δ-optimality. However, the ratio cost(popt)/tmin , that we call guaranteed ratio, may ac-
tually be well below the required value 1 + δ, meaning that the algorithm produced
a better plan than required. The tables contain the average of the guaranteed ratio of
plans that finished within 16 min (with lower timeouts, the ratios are even lower).

In the case of benchmark bottleneck, we only focus on the runtime of the evalu-
ated tools for some numbers of agents ranging from 2 to 30. In the case of our imple-
mentation, we again include all the variants of parameters mentioned above. We used
timeout 30 min to set some upper boundary on the runtimes of the tools.

We executed all the benchmarks on a machine with Intel(R) Xeon(R) Gold 6254 CPU
@ 3.10GHz, with 180 cores and 1TB memory. To unify the runtime environment, we
reused and adapted the scripts from the previous experiments [4] which are a part of the
SMT-CCBS tool. These scripts do not exploit all the available resources of the machine,
though. Still, none of the evaluated tools use parallel computation—the cores are only
used to run multiple benchmarks concurrently.

9.7.3 Results
Empty Room. Recall that benchmark empty is parametrized by its neighborhood n
which means that vertices have approximately 2n neighbors. We did experiments with
n ∈ {2, 3, 4, 5}, all of which are shown in box plots in Figure 9.3. We also provide
Table 9.1 with guaranteed ratios of the resulting plans, depending on n.

We first focus on the comparison of the selected cost functions in the case of our
tool. We see that usually the cases that optimize the sum of costs perform better than
the cases optimizing makespan. Observe, though, that the results are similar in the case
of δ = 1

4
which correspond to the boxes at the base. We explain these as that in the

case of the sum of costs there are more possibilities for how to reduce the cost of the
plan than in the case of makespan where the cost usually depends on just one agent,
regarding the symmetry of the graph. We assume that at the same time, this is the
reason why, in the case of makespan, there are lower increases in the number of solved
instances with growing δ compared to the variant which optimizes the sum of costs.
Also, notice that in the cases of neighborhood n = 2 and especially n = 5, there are
quite low performance growths with increasing δ, which may be caused by the fact that
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(c) n = 4
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(d) n = 5
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Figure 9.3: Comparison of the number of solved instances of benchmark empty with
given n wrt. a given timeout.

the actual guaranteed ratio is lower than in other cases of n, namely with δ = 1 (see
Table 9.1). Furthermore, [4] showed that these corner cases of n are actually the least
useful benchmarks: benchmarks with n = 3 offer much faster plans than in the case of
n = 2, and n = 5 on the other hand provide only very low improvement over the case
of n = 4. All in all, our approach scales well with the growing timeouts, in every case
of neighborhood n, cost function and parameter δ.

Now we also focus on the state-of-the-art tools, where we will actually confirm the
observations made in [4]. These tools are consistent in the sense that the lower parame-

146



9.7. Computational Experiments

Table 9.1: Average guaranteed ratios of SMT-LRA in benchmark empty wrt. the param-
eters of the tool and a given n.

(C, δ) \ n 2 3 4 5
(M, 1) 1.45 1.55 1.54 1.43
(S, 1) 1.56 1.57 1.56 1.40
(M, 0.5) 1.29 1.33 1.32 1.29
(S, 0.5) 1.30 1.30 1.31 1.26
(M, 0.25) 1.16 1.18 1.18 1.17
(S, 0.25) 1.16 1.15 1.15 1.14

ter n, the faster their algorithm—because there are fewer possible paths to the goals. In
our case, the observation holds as well, but with one exception in the case of n = 2 vs.
n = 3, where the runtime of the experiments with the lowest neighborhood is higher.
The reason is that the graphs with higher n allow that the shortest paths to the goals take
fewer edges—which in our case becomes more important than the number of possible
choices, because our current algorithm is sensitive to the number of edges in the graph
which we all encode into the formula.

The state-of-the-art tools usually perform better than our tool when the timeout is
less or equal to 1 min. SMT-CCBS performs especially well in the case of n = 2 because
it maps a lot of time points to the same values since many of them are integer values.
We however consider this case to be the least useful benchmark referring to the ear-
lier discussion and in addition since the square grids are not too realistic models and
can also be handled by standard MAPF approaches (which are currently much faster
than MAPFR approaches). Although SMT-CCBS scales better with time than CCBS, the
highest growth of the number of solved instances still occurs in the case of our approach,
even in the cases of δ = 1

4
which correspond to the boxes of our algorithm at the base. In

the cases of n ≥ 3 and δ = 1, which correspond to the upmost boxes of our algorithm,
we outperform the state-of-the-art tools if the timeout is high.

We also provide Figure 9.4 with success rate plots. Here we selected timeout 8 min
(480 s). Recall that for our tool, we distinguish the curves that correspond to higher δ by
lighter colors. Within a single cost function, especially in the case of the sum of costs, the
distances between the curves of particular cases of δ seem to be quite uniform, which
confirms the observations based on Figure 9.3 that in many cases our algorithm scales
well with the parameter δ. At the same time, the plots also confirm that sometimes in
the case of makespan the performance does not increase much with growing δ.

In the case of all the tools, especially in the case of our tool, there happen to be
glitches in the success rates—sometimes the performance increases a bit with a higher
number of agents. In some cases, it is probably just caused by inaccurate measurements,
however approaches that are based on a SAT solver (SMT-CCBS) or even an SMT solver
(SMT-LRA) may naturally exhibit such behavior since the algorithms are more complex
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(b) n = 3
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(c) n = 4
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(d) n = 5
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Figure 9.4: Comparison of the success rates of benchmark empty with given n within
timeout 8 min wrt. a number of agents.

and not that straightforward like CBS-based algorithms.

Roadmap. Figure 9.5 shows how particular tools scale with time in the case of bench-
mark roadmap. Clearly, SMT-CCBS does not handle this benchmark well, independent
of the chosen timeout. By contrast, CCBS performs very well, especially with smaller
timeouts. However, at the timeout of 4 min (240 s) it reaches a point after which it al-
most stops scaling with time at all. In our case, the variants that optimize the sum of
costs or makespan perform almost the same. However, the performance depends a lot
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Figure 9.5: Comparison of the number of solved instances of benchmark roadmap wrt.
a given timeout.

on parameter δ. For example, with δ = 1, which corresponds to the upmost boxes, our
approach scales very well and outperforms CCBS for timeouts greater or equal to 4 min.
However, in the cases of δ = 1

4
(i.e., the boxes at the base), the algorithm is not compet-

itive with CCBS and scales poorly. We explain this as follows: the roadmap graph is
highly asymmetric and contains a lot of long edges, compared to the graphs in bench-
mark empty. Therefore, the shortest paths to the goals often consist of a low number of
edges. At the same time, paths to the goals with similar distances can actually consist
of a different number of edges. Thus, once we find a (collision-free) plan and fix the
number of steps h for all agents, it may happen that when optimizing the plan, we miss
alternative paths that consist of more steps which could be essential to arriving at easier
possibilities of finding faster plans.

In addition, we provide Table 9.2 with the guaranteed ratios of our tool. The ratios
are quite high in the cases of δ = 1, which can explain why the difference in the number
of solved instances is so high compared to δ = 1

2
, and also compared to benchmark

empty, where the guaranteed ratios are lower.
Similarly to benchmark empty, we also provide a plot with success rates of the tools,

in Figure 9.6, again with the timeout of 8 min. Here the success rates are well distributed
with no anomalies.

Bottleneck. We summarize the runtimes of benchmark bottleneck of particular
tools in Table 9.3. In the case of SMT-CCBS, we excluded the built-in verification of
the solutions which here seemed to be very time-consuming. In our case, we merge all
the corresponding cases of parameter δ into a single column since the runtimes were
almost the same regardless of the parameter. We further merge both cost functions M
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Table 9.2: Average guaranteed ratios of SMT-LRA in benchmark roadmap wrt. the
parameters of the tool.

(C, δ)

(M, 1) 1.64
(S, 1) 1.65
(M, 0.5) 1.31
(S, 0.5) 1.31
(M, 0.25) 1.14
(S, 0.25) 1.14
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Figure 9.6: Comparison of the success rates of benchmark roadmap within timeout
8 min wrt. a number of agents.

and S into one column s.t. the respective runtimes are separated by a pipe character.
The average guaranteed ratio of our presented plans is 1.08 in the case of makespan (M)
and 1.04 in the case of the sum of costs (S).

It is clear that the runtimes of both state-of-the-art solvers exhibit an exponential
relationship with the number of agents k, while our algorithm is much less sensitive.
For example, CCBS is fastest until k = 6 but after that point our SMT-LRA dominates
the runtime. The reason is that we resolve the conflicts of agents using the learning
mechanism of generalized conflict clauses where the timing constraints efficiently ex-
clude inappropriate orderings of the agents, making the benchmark fairly easy for our
approach—which is consistent with the observation that such a problem is indeed triv-
ial, as discussed in the description of benchmarks. For example, the problem is easily
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9.8. Conclusion

Table 9.3: Comparison of the runtimes in seconds of benchmark bottleneck with
a given number of agents.

k SMT-CCBS CCBS SMT-LRA(M|S)
2 0.00 0.00 0.01 | 0.01
3 0.47 0.00 0.02 | 0.02
4 > 1800 0.00 0.04 | 0.02
5 ? 0.01 0.03 | 0.03
6 ? 0.05 0.07 | 0.05
7 ? 0.45 0.08 | 0.06
8 ? 3.52 0.15 | 0.08
9 ? 43.99 0.15 | 0.11

10 ? 720.27 0.22 | 0.14
11 ? > 1800 0.26 | 0.17
15 ? ? 0.46 | 0.42
20 ? ? 0.79 | 0.97
30 ? ? 4.88 | 5.63

solvable using an ad-hoc approach. Nevertheless, such bottlenecks may appear as a part
of more complex problems where a sophisticated algorithm instead of an ad-hoc should
be used.

Profiling. Profiling of our tool showed that the simulations used for collision detection
and avoidance take a negligible part of the runtime. Instead, most of the time is spent in
the SMT solver itself. If our approach was applied to benchmarks with large graphs (as
discussed above), then also encoding the formula, conversion to CNF, etc., would take
an additional important part of the runtime.

9.8 Conclusion
We have demonstrated how to solve the continuous-time MAPF problem (MAPFR) by
direct translation to SAT modulo linear real arithmetic. While the approach insists only
on sub-optimality up to a certain factor, it shows several advantages over state-of-the-
art algorithms, especially better scaling wrt. an increasing time budget and its ability
to efficiently handle bottleneck situations. Our approach also allows for easy change
of the objective function to another. The downside is a certain basic translation effort,
especially for problems depending on large graphs.

In future work, we will explore a lazy approach to translation that only generates the
information necessary for solving the current problem instance. This will be especially
relevant in practical applications where similar problems have to be solved repeatedly.
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9. MULTI-AGENT PATH-FINDING

Moreover, we will generalize the method to problems with non-linear motion func-
tions, allowing both non-linear geometry of the involved curves and the modeling of
non-linear dynamical phenomena such as acceleration of agents. The method will also
benefit from the fact that the efficiency of SMT solvers is currently improving with each
year.
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CHAPTER 10
Conclusion

We introduced a new method for checking satisfiability of logical formulas that involve
ordinary differential equations (ODEs), which we handle using the same semantics as
in simulation tools, motivated by industrial practice. In Chapter 4, we defined a logical
theory and the resulting problem, Boolean Satisfiability Modulo Differential Equation
Simulations. In Chapter 6, we designed a corresponding solver that aims at deciding
strong satisfiability of a formula of our theory. Our implementation of the solver, UN/-
SOT, tightly integrates handling of Boolean and floating-point constraints, including
ODEs.

In Chapter 7, we showed several interesting case studies with models that involve
ODEs encoded into logical formulas. The models are followed by experimental results
of the case studies where we used our implementation of the solver. For some of the
models, we also compared the results with a state-of-the-art SAT modulo ODE solver,
which handles differential equations based on classical mathematical semantics. The
experiments showed promising results of our tool, where we solve the corresponding
problems efficiently and much faster than the state-of-the-art tool, especially in the cases
when the formula is satisfiable.

Importantly, Chapter 8 introduced an example of a planning problem. Unlike the
benchmarks used in state-of-the-art approaches and in Chapter 7, the benchmark prob-
lem exhibits both non-trivial discrete and continuous phenomena. The resulting prob-
lem comes from the domain of railway scheduling, where we simulate train networks
at a low level and where a number of timing and ordering constraints can appear. The
experiments showed that our solver is competitive with methods based on dedicated
railway simulators while being more general and extensible.

Finally, in Chapter 9 we also presented a new approach to solving a continuous-time
version of the multi-agent path-finding (MAPF) problem, MAPFR. In the approach,
we exploit conflict generalization techniques that stem from linear real arithmetic con-
straints. In addition to this, collision detection and avoidance of the agents yields non-
linear constraints which we handle based on simulations (i.e., floating-point computa-
tion). The simulations do not involve differential equations though and we handle them
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10. CONCLUSION

using an off-the-shelf SMT solver instead of our implementation UN/SOT. Still, we de-
signed the model such that it allows to increase the complexity of the simulations, for
example with ODEs. Computational experiments showed that our approach scales bet-
ter wrt. the available computation time than state-of-the-art approaches and is usually
able to avoid their exponential behavior on a class of benchmark problems modeling
a typical bottleneck situation.

10.1 Future Work
In the future, we intend to work:

• On search heuristics for more efficient handling of satisfiable inputs, for example,
based on data-driven approaches such as machine learning.

• On deduction techniques that would improve the learning mechanism of our solver
and proving the unsatisfiability of formulas. A possible way is to handle interval
constraints with an interval arithmetic, such as affine arithmetic.

• On a more general handling of final conditions that would allow checking sat-
isfiability of a broader set of formulas, and not only strong satisfiability. Using
an interval arithmetic is one of the possibilities how to support this.

• On a replacement of the synchronous model of the railway scheduling problem to
an asynchronous model. Also, we may allow more nondeterminism in the model.

• On a lazy approach to translation of a MAPFR problem instance that only gener-
ates the information necessary for solving the current instance. This will be espe-
cially relevant in practical applications where similar problems have to be solved
repeatedly.

• On a generalization of our MAPFR method to problems with non-linear motion
functions, allowing both non-linear geometry of the involved curves and the mod-
eling of non-linear dynamical phenomena such as acceleration of agents.
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