

Ústav letadlovej techniky

Úprava konštrukcie krídelka rýchlostného letúnu Modification of a racing aircraft aileron structure

BAKALÁRSKA PRÁCA

2024

Jakub Lukáč

Študijný program: B2342 Teoretický základ strojního inženýrství
Študijný odbor: 2301R000 Študijní program je bezodborový
Vedúci práce: Ing. Jiří Brabec PhD.

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Lukáč	Jméno: Jakub	Osobní číslo: 501261
Fakulta/úst	av: Fakulta stro	ní	
Zadávající	katedra/ústav: Úst	av letadlové techniky	
Studijní pro	gram: Teoretický z	áklad strojního inženýrství	
Studijní ob	or: bez oboru		ļ
. ÚDAJE K E	BAKALÁŘSKÉ P	RÁCI	
Název bakalá	řské práce:		
Úprava kons	strukce křidélka ryd	hlostního letounu	
Název bakalá	řské práce anglicky:		
Modification	of a racing aircraf	aileron structure	
Pokyny pro vy	pracování:		
Pro vypracová 1) Popis stáva 2) Návrh úprac 3) Pevnostní k 4) Hmotový ro	ní proveďte: jícího stavu konstrukce / konstrukce ontrolu zbor	•	
Seznam dopo Die pokynů ve	ručené literatury: doucího		
Jméno a prac	oviště vedoucí(ho) b	akalářské práce:	
Ing. Jiří Bral	bec, Ph.D. ústav	letadlové techniky FS	
Jméno a prac	oviště druhé(ho) ved	oucí(ho) nebo konzultanta(ky) bakalářs	ké práce:
Datum zadár Platnost zadá	í bakalářské práce: ání bakalářské práce	26.04.2024 Termín odevzdáni	í bakalářské práce: 24.05.2024
ing. Jifi E podpis ve	Brabec, Ph.D. doucl(ho) práce	Ing. Milan Dvořák, Ph.D. podpis vedoucí(ho) ústavuňatedry	doc. Ing. Mirosiav Španiel, CSc. podpis dilkana(ky)
I. PŘEVZET	ÍZADÁNÍ		
Student bere na v Seznam použitě i	rédomi, že je povinen vypra iteratury, jiných pramenů a j	ovat bakalářskou práci samostatně, bez cizi pomoci, s nen konzultantů je třeba uvěst v bakalářské práci.	výjimkou poskytnutých konzultaci.
	Datum prevzeti zad	ani	Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC

Prehlásenie

Čestne prehlasujem, že som svoju bakalársku práci vypracoval samostatne a použil som iba podklady (literatúru, projekty, SW atď.) uvedené v priloženom zozname.

Nemám závažný dôvod proti užitiu tohoto školného diela v zmysle § 60 Zákona č.121/2000 Sb., o právu autorskom, o právach súvisiacich s právom autorským a o zmene niektorých zákonov (autorský zákon).

V Prahe dňa.....

.....

Podpis

Poďakovanie

Moja srdečná vďaka patrí vedúcemu práce, pánovi Ing. Jiřímu Brabcovi PhD., ktorý bol vždy k dispozícii a ochotný pomôcť, či už s poskytnutím odbornej literatúry, ale aj s riešeniami konkrétnych problémov, na ktoré som počas práce narazil. Ďalej by som veľmi rád poďakoval pánovi Ing. Karelovi Barákovi za dodatky v tematike výberu materiálov. V neposlednom rade by som rád poďakoval mojim rodičom najmä za kontrolu štylistiky a gramatiky práce.

Anotačný list

Meno:	Jakub Lukáč		
Názov práce:	Úprava konštrukcie krídelka rýchlostného letúnu		
Rok vypracovania:	2024		
Študijný program:	B2342 Teoretický základ strojního inženýrství		
Odbor štúdia:	2301R000 Študijní program je bezodborový		
Ústav:	Ústav letadlové techniky		
Vedúci BP:	Ing. Jiří Brabec PhD.		
Bibliografické údaje:	Počet strán 43		
	Počet obrázkov 15		
	Počet grafov 4		
	Počet tabuliek 36		
	Počet príloh 1		
Kľúčové slová:	Krídelko, hmotnosť, rýchlostný letún, zaťaženie,		
	pevnostný výpočet, kompozitné materiály		

Abstrakt:

Cieľom práce je nájsť takú konštrukčnú úpravu krídelka, pri ktorej sa podarí znížiť jeho hmotnosť. Letún, na ktorom krídelko funguje je rýchlostný letún, ktorý ma za cieľ prekonávanie rýchlostných svetových rekordov. Najprv sú v práci popísané doposiaľ urobené úpravy a návrhy krídelka. Následne je urobený široký rozbor materiálov pre použitie konštrukcie, nasledovaný výpočtom zaťaženia a pevnostného výpočtu. Na koniec práce je vyhotovený hmotnostný rozbor upravenej konštrukcie krídelka.

Anotation list

Name:	Jakub Lukáč		
Title of bachelor thesis:	Modification of a racing aircraft aileron structure		
Year:	2024		
Study program:	Theoretical fundamentals of mechanical engineering		
Department:	Department of Aerospace Engineering		
Supervisor:	Ing. Jiří Brabec PhD.		
Extent:	Number of pages 43		
Number of figures 15			
	Number of graphs 4		
	Number of tables 36		
	Number of attachments 1		
Key words:	Aileron, weight, high-speed plane, load, strenght calculation, composite materials		

Abstract:

The target of this thesis is to find such a structural modification of the aileron, which will reduce its weight. The airplane on which the aileron operates is a high-speed plane that aims to break world speed records. First, the modifications and designs of the aileron made so far are described in the work. Subsequently, a broad analysis of the materials used in the construction is made, followed by load calculation and strength calculation. At the end of the work, a weight analysis of the modified aileron structure is made.

Obsah

Zoznam skratiek a symbolov8		
Zoznam obrázkov		
Zoznam tabuliek9		
Zoznam grafov10		
Zoznam použitých programov10		
1 Úvod11		
2 Popis súčasného stavu12		
2.1 Popis súčasného stavu letúnu12		
2.1.1 Hmotnosť letúnu13		
2.1.2 Vybrané požiadavky letovej spôsobilosti predpisu UL-214		
2.2 Rozbor súčasného stavu krídelka16		
3 Návrh úpravy konštrukcie 21		
3.1 Voľba materiálov konštrukcie krídelka		
3.2 Zaťaženie krídelka 26		
3.2.1 Spojité zaťaženie28		
3.2.2 Výpočet reakcií		
3.2.3 Posúvajúca sila a ohybový moment		
3.2.4 Závesový moment		
3.2.5 Krútiaci moment k otáčavej osi krídelka		
3.3 Návrh posunutia nosníka krídelka40		
4 Pevnostný výpočet41		
4.1 Dimenzovanie pásnic		
4.2 Dimenzovanie stojny		
4.3 Dimenzovanie poťahu43		
4.3.1 Elastická os43		

	4.3.2	Predbežný návrh poťahu 4	.4
	4.3.3	Šmykový tok pre jednotlivé dutiny4	5
4	.4 St	abilita stojny a poťahu4	6
5	Hmotn	ostný rozbor4	8
6	Záver .	5	1
Použité zdroje			

Zoznam skratiek a symbolov

FAI – Fédération Aéronautique Internationale
MTOM – Maximálna vzletová hmotnosť (Maximum take-off mass)
HM – Grafitizované vlákno (High modulus – vyšší modul pružnosti)
HS – Karbonizované vlákno (High strength – vyššia pevnosť)
MP – Modul pružnosti

Zoznam obrázkov

. 11
. 16
. 17
. 17
. 18
. 20
21
27
. 27
. 30
. 30
. 32

Obrázok 13 Rez nosníka sprava II	. 33
Obrázok 14 Pôsobenia spojitého zaťaženia od nábežnej hrany	. 36
Obrázok 15 Čiarový návrh priečneho riadenia [12]	. 40
Obrázok 16 Prierez pásnic	.41

Zoznam tabuliek

Tabuľka 1 Základné parametre letúnu [2]12
Tabuľka 2 Predpokladané výkony pri MTOM [2]12
Tabuľka 3 Triedy letúnov [3]13
Tabuľka 4 Hmotnostná klasifikácia [3]14
Tabuľka 5 Aplikácie a ich príslušné doplnkové koeficienty bezpečnosti [4] 15
Tabuľka 6 Rozmery geometrie pôvodného návrhu krídelka [6] 17
Tabuľka 7 Rozmery geometrie upraveného návrhu krídelka [2]
Tabuľka 8 Porovnanie hmotností krídelka [2] [6]18
Tabuľka 9 Vlastnosti výstuže konštrukcie [2]19
Tabuľka 10 Vlastnosti matrice laminátu [2]19
Tabuľka 11 Vlastnosti jadra konštrukcie [2]19
Tabuľka 12 Hmotnostní rozbor krídelka [2] 20
Tabuľka 13 Porovnanie merných hmotností výstuží poťahov [7] 22
Tabuľka 14 Hustota vybranej epoxidovej živice [9]22
Tabuľka 15 Vlastnosti vybraného tužidla [9] 22
Tabuľka 16 Vlastnosti výstuží kompozitov pre konštrukciu krídelka
Tabuľka 17 Mechanické vlastnosti uvažovaných kompozitov [10]25
Tabuľka 18 Mechanické vlastnosti uvažovaných kompozitov [10]25
Tabuľka 19 Mechanické vlastnosti uvažovaných kompozitov [2] [10] 25
Tabuľka 20 Vlastnosti peny sendvičovej konštrukcie [11]26
Tabuľka 21 Zaťaženie krídelka posúvajúcou silou a ohybovým momentom 35
Tabuľka 22 Závesový moment krídelka bez uvažovania druhého závesu
Tabuľka 23 Zaťaženie krídelka krútiacim momentom
Tabuľka 24 Minimálne hrúbky laminátu 42

Zoznam grafov

Graf 1 Priebeh spojitého zaťaženia v závislosti na vzdialenosti od koreňa	. 29
Graf 2 Posúvajúca sila na krídelku	. 35
Graf 3 Ohybový moment na krídelku	. 36
Graf 4 Krútiaci moment na krídelku	. 39

Zoznam použitých programov

Microsoft Word

Microsoft Excel

Autodesk Inventor

Catia V5

1 Úvod

V oblasti leteckého inžinierstva vie každý gram znamenať rozdiel maximálnej rýchlosti letu, a preto sa čoraz viac do popredia dostáva optimalizácia hmotnosti leteckých konštrukcii. Táto práca sa bude konkrétne venovať hmotnostnej optimalizácii krídelka, ktoré je jedno z kľúčových ovládacích prvkov letúnu ako takého. Optimalizácia ako taká by sa dala rozdeliť do dvoch sfér. Prvá, materiálová, kde je snaha s vybrať čo najvhodnejšie materiály pre konštrukciu z hľadiska hmotnosti, ale pri zachovaní potrebných mechanických vlastností a druhá konštrukčná, kde je zase snaha konštrukčnými úpravami ušetriť hmotnosť.

Letún, ktorého súčasťou je krídelko, ktoré bude v tejto práci hmotnostne a konštrukčne optimalizované, vychádza primárne z koncepčného návrhu pána Valentu, ktorá je obsahom jeho diplomovej práce z roku 2019. Jeho primárnym cieľom bolo vytvoriť návrh, ktorý má konkurovať, respektíve byť konkurencieschopný v prekonávaní svetových rýchlostných rekordov FAI v kategórii Microlight a Aeroplane. V závere diplomovej práce pána Valentu je uvedené, že jeho návrh letúnu je koncipovaný do kategórie Aeroplane, pretože tá umožňuje súťažiť vo viacerých hmotnostných kategóriách. [1]

Obrázok 1 Výkres letúnu [1]

2 Popis súčasného stavu

2.1 Popis súčasného stavu letúnu

Základné parametre koncepčného návrhu letúnu boli prevzaté z vypracovaných tabuliek z práce Ing. Ondreja Motla. [2]

Rozpätie	l [m]	6,538
Dĺžka	L [m]	5,355
Výška	H [m]	2,15
Plocha krídla	S [m²]	5,029
Hĺbka strednej aerodynamickej tetivy krídla	bsat[m]	0,786
Hĺbka krídla pri koreni	b₀ [m]	0,962
Hĺbka krídla na konci	b _k [m]	0,577
Profil krídla	AZDP2020	
Štíhlosť krídla	λ[-]	8,5
Zúženie krídla	η [-]	0,6
Uhol šípu krídla	χ[-]	0
Prázdna hmotnosť	ME [kg]	190,3
Maximálna vzletová hmotnosť	MTOM [kg]	345
Maximálna rýchlosť v horizontálnom lete	vн [km/h]	423,7
Maximálny kladný prevádzkový násobok	n+ [-]	6
Maximálny záporný prevádzkový násobok	n- [-]	-3

Tabuľka 1 Základné parametre letúnu [2]

Maximálna rýchlosť [m/s]	117,69
Maximálny dolet [km]	4250
Dolet pri rýchlosti 400 km/h [km]	1391,2
Maximálna vytrvalosť [h]	29,1
Minimálna rýchlosť klesania [m/s]	1,993
Maximálna rýchlosť stúpania [m/s]	18,2
Minimálny polomer zatáčky [m]	93,73
Dĺžka vzletu [m]	256,08
Doba vzletu [s]	10,26

Tabuľka 2 Predpokladané výkony pri MTOM [2]

2.1.1 Hmotnosť letúnu

Podľa oficiálnych pravidiel FAI je hmotnostná klasifikácia pokusu o rekord určená maximálnou hmotnosťou lietadla počas jeho letového výkonu. Letún sa musí pred vzlietnutím podrobiť váženiu v presnej konfigurácii, ktorá sa použije počas letu, s prihliadnutím na hmotnosť paliva, nákladu, príručného vybavenia, posádky a osobného vybavenia posádky. [3]

Napríklad ak sa zistí, že hmotnosť lietadla je o 50 kg nižšia ako následná klasifikácia hmotnosti a tolerancia mierky je v rozsahu +/- 75 kg, nie je možné jednoznačne určiť klasifikáciu lietadla. V dôsledku toho môže byť hmotnosť lietadla znížená odstránením paliva alebo vybavenia, alebo alternatívne môže byť na zistenie hmotnosti lietadla použitý vážiaci systém s užšou toleranciou. [3]

C	Aeroplanes
C-1	Pozemné letúny
C-2	Hydroplány
C-3	Obojživelné
Н	Jetlift

Tabuľka 3 Triedy letúnov [3]

Kategória	Hmotnosť OD [kg]	Hmotnosť DO [kg]
a/o	0	300
а	300	500
b	500	1000
С	1000	1750
d	1750	3000
e	3000	6000
f	6000	9000
g	9000	12000
h	12000	16000
i	16000	20000
j	20000	25000
k	25000	35000
I	35000	45000
m	45000	60000
n	60000	80000
0	80000	100000
р	100000	150000
q	150000	200000
r	200000	250000
S	250000	300000
t	300000	400000
u	400000	500000
v	500000	

Tabuľka 4 Hmotnostná klasifikácia [3]

V práci pána Valentu bolo uvedené, že jeho jednomiestny letún, je navrhnutý na MTOM = 345 kg, pričom existuje predpoklad, že na kratšej trati, kde je potrebná menšia hmotnosť paliva, je letún schopný súťažiť v kategórii do 300 kg (C-1a/o). Na dlhšie vzdialenosti, s vyšším množstvom pohonných palív, bude súťažiť v kategórii do 500 kg (C-1a). [1]

2.1.2 Vybrané požiadavky letovej spôsobilosti predpisu UL-2

Hlava A - UL 2 § 1

Stavebný predpis UL-2 stanovuje a upravuje letové požiadavky letovej spôsobilosti pre ultraľahké letúny riadené aerodynamicky, aby použitie takého letúnu

bolo bez problémov a nebola tak ohrozená bezpečnosť letovej premávky ako aj bezpečnosť tretích osôb. [4]

V hlave A ďalej predpis stanovuje, že letún, ktorý je kategoricky radený medzi UL letúny riadené aerodynamicky, musí mať MTOM menšiu ako 600 kg, vrátane záchranného systému a zároveň jeho minimálna pádová rýchlosť alebo najnižšia ustálená rýchlosť, pri ktorej je letún ovládateľný v pristávacej konfigurácii, nie je vyššia ako 83 km/h. [4]

Podľa predpisu sa letúnu povoľuje výhradne neakrobatická prevádzka, a teda nedovoľuje ostré zatáčky s náklonom nad 60°. Povolený je výhradne obrat potrebný pre normálne lietanie. [4]

Hlava C - UL 2 § 303 Súčiniteľ bezpečnosti

Ak nie je uvedená iná hodnota, predpis stanovuje použiť koeficient bezpečnosti rovný 1,5. Túto hodnotu je ďalej potrebné vynásobiť doplnkovým koeficientom bezpečnosti za predpokladu, že existuje neistota o pevnosti súčasti, ak je očakávaná strata pevnosti do najbližšej výmeny a nie sú prístupné presné pevnostné hodnoty, kvôli neznámym výrobným a skúšobným metódam. [4]

Spoje s vôľou, zaťažené rázovým namáhaním alebo vibráciami	2
Závesy kormidiel	4,44
Ložiska v riadení ťahadla	2,2
Ložiska v lanovom riadení	1,33
Odliatky	2
Kovania	1,15
Bezpečnostné pásy a sedačky	1,33

Tabuľka 5 Aplikácie a ich príslušné doplnkové koeficienty bezpečnosti [4]

Pre kompozitové konštrukcie predpis udáva koeficient bezpečnosti v rozmedzí 1,5 až 2,25. K tomu je možné aplikovať ešte zvyšujúci súčiniteľ, ktorý závisí na jednotlivých súčastiach, presnosti výpočtov, testovania vzoriek kompozitových materiálov a ich výsledkov, overenia výroby a kontrolných postupoch. [4]

Hlava C - UL 2 § 455 Krídelká

Predpis určuje, že krídelká musia byť navrhnuté s úvahou, že pri maximálnej výchylke krídelka, pri návrhovej rýchlosti obratov bude pôsobiť na letún násobok n rovný 2,66 a zároveň pri jednej tretine maximálnej výchylky, pri návrhovej rýchlosti strmého zostupného letu bude pôsobiť na letún tak isto násobok n rovný 2,66. [4]

2.2 Rozbor súčasného stavu krídelka

Krídelko funguje ako ovládací prvok na kontrolu náklonu letúnu. Je inštalované na koncoch krídla, zvyčajne zaberá asi tretinu odtokovej hrany krídla, presahujúc za klapkami. Krídelko je možné vychýliť na oboch koncoch krídla na vytvorenie náklonu na žiadanú stranu. [5]

Pôvodný návrh konštrukcie krídelka pochádza z bakalárskej práce Bc. Tomáša Rubánka. Autor vo svojej práci navrhol krídelko tvorené nosným poťahom vystuženým nosníkom v tvare C, ktorý je otvorený v smere letu a umiestený v najširšom mieste profilu a rebrami. Autor vo svojom návrhu uvažuje materiál, z ktorého má byť krídelko vyrobené, rovnaký ako materiál použitý v prvotnom koncepčnom návrhu celého letúnu, a teda z uhlíkového kompozitu vo forme prepregu. [6]

Obrázok 2 Návrh pôvodnej konštrukcie krídelka [6]

Geometriu krídelka autor ponechal z koncepčného návrhu letúnu. Parametre, s ktorými pracoval autor sú uvedené v tabuľke. [6]

Hĺbka krídelka pri koreni	b ₀ [mm]	289
Hĺbka krídelka na konci	b⊧ [mm]	173
Rozpätie krídelka	L [mm]	981
Vzdialenosť osi otáčania pri koreni	O₀ [mm]	45
Vzdialenosť osi otáčania na konci	O _k [mm]	31

Tabuľka 6 Rozmery geometrie pôvodného návrhu krídelka [6]

Obrázok 3 Pôdorys pôvodného návrhu krídelka [6]

Ďalej je krídelko upravované v diplomovej práci Ing. Motla. Autor vo svojej práci, na rozdiel od predbežného návrhu, upravuje obrys krídelka tak, aby rozmery koreňového a koncového rebra odpovedali 30% hĺbky krídla, aby tvar krídelka plynule nadväzoval na vztlakové klapky. Ing. Motl uvažuje kužeľový tvar nábežnej hrany krídelka. Podobne ako Bc. Rubánko, Ing. Motl krídelko tvorené nosným poťahom vystuženým nosníkom v tvare C, ktorý je otvorený v smere letu a umiestený v najširšom mieste profilu a použitie materiálov zhodných s materiálmi použitými na výrobu celého letúnu. [2]

Obrázok 4 Návrh upravenej konštrukcie krídelka [2]

Hĺbka krídelka pri koreni	bo [mm]	207,8
Hĺbka krídelka na konci	b⊾[mm]	173,1
Rozpätie krídelka	L [mm]	981
Vzdialenosť osi otáčania pri koreni	O₀ [mm]	32
Vzdialenosť osi otáčania na konci	Ok [mm]	26,6

Tabuľka 7 Rozmery geometrie upraveného návrhu krídelka [2]

Obrázok 5 Pôdorys upraveného návrhu krídelka [2]

Pre porovnanie je pridaná tabuľka navrhnutých hmotností krídelka, navrhnutých oboma autormi.

Autor návrhu	Celková hmotnosť
krídelka	krídelka [kg]
Bc. Rubánko	0,616
Ing. Motl	0,414

Tabuľka 8 Porovnanie hmotností krídelka [2] [6]

Východzím návrhom konštrukcie krídelka bude teda návrh konštrukcie pána Motla. Materiály, ktoré autor pri konštrukcii použil, sú prevažne materiály kompozitné. Na stojnu hlavného nosníku a poťah bola použitá uhlíková tkanina s keprovou väzbou. Na horné a dolné pásnice zase uhlíková tkanina jednosmerná. Matricou laminátu autor vybral epoxidovú živicu L 285 MGS. [2]

Materiál:	Plošná hustota [g/m²]	Hustota [kg/m³]
Uhlíková tkanina jednosmerná	200	1780
Uhlíková tkanina s keprovou väzbou	160	1780

Tabuľka 9 Vlastnosti výstuže konštrukcie [2]

Materiál:	Hustota pri 25 °C [g/cm ³]
Epoxidová živica L 285 MGS	1,23
Tužidlo H286 do epoxidových živíc	0,97

Tabuľka 10 Vlastnosti matrice laminátu [2]

Stojnu hlavného nosníku a poťah autor uvažuje ako sendvičovú konštrukciu.

Ako jadro sendvičovej konštrukcie autor použil penu Airex C70.55. [2]

Materiál:	Hustota [kg/m ³]	Pevnosť v šmyku [MPa]
Airex C70.55	60	0,7

Tabuľka 11 Vlastnosti jadra konštrukcie [2]

Typ uloženia koncového závesu krídelka bol v pôvodnom návrhu profilovaný ako oko a vidlica, koreňový záves zase letmo uložený. Na obidvoch závesoch sú uvažované kĺbové ložiská SKF GE 5 E s vonkajším priemerom 14mm, zalisované v dierach závesov. Materiál závesov je plech zo zliatiny hliníku 2024 T3 s hrúbkou 4mm. Čapy závesu a ovládacieho tiahla sú tvorené lícovanými skrutkami s priemerom 5 mm a pevnostnou triedou 8.8. [2]

Obrázok 6 Detail závesov krídelka [2]

Na záver tejto kapitoly bol prevzatý hmotnostný rozbor všetkých dielov konštrukcie krídelka navrhnutých z práce pána Motla.

Diel:	Hmotnosť dielu [kg]
Nosník	0,92
Poťah	0,154
Rebro	0,003
Závesy	0,046
Spojovací materiál	0,034
Lepené spoje	0,086

Tabuľka 12 Hmotnostní rozbor krídelka [2]

Celková hmotnosť krídelka v návrhu pána Motla vychádza 0,414 kg. Z rozboru je zrejmé, že najväčší podiel na hmotnosti krídelka má nosník, ktorý je hlavným nosným prvkom celej konštrukcie.

3 Návrh úpravy konštrukcie

3.1 Voľba materiálov konštrukcie krídelka

Výber materiálov pre návrh krídelka je dôležitou súčasťou konštrukcie. Na materiály leteckých konštrukcií sa kladú vysoké technické požiadavky, ktorými sú nízka merná hmotnosť, vysoká pevnosť, vysoké moduly pružnosti, vysoké medze únavy, stálosť mechanických vlastností, odolnosť proti opotrebovaniu, ako aj antikorózne vlastnosti. Aj keď vývoj materiálov leteckých súčastí prešiel určitým trendom, v dnešnej dobe sa začínajú do popredia dostávať najmä zliatiny hliníka a kompozitné materiály. [7]

Kompozitné materiály pozostávajú z dvoch alebo viacerých substancií. V letectve je kompozitom uvažovaný hlavný materiál, pozostávajúci z prameňa silných vlákien držaných spojivom vo forme živice. Tieto materiály vedia jednoducho formovať krivkové tvary akejkoľvek veľkosti, ktoré rezultujú v aerodynamicky jemné plochy. [8]

Obrázok 7 Ťahový diagram vybraných vlákien [8]

Nosník krídelka, obdobne ako v pôvodnom návrhu krídla, bude tvorený stojnou a pásnicami. Na stojnu a poťah krídelka bude použitá sendvičová konštrukcia. Sendvičové materiály sú usporiadané vrstvy, ktoré sú navzájom prepojené. Sendvičová konštrukcia sa skladá z dvoch tenkých poťahov a ľahkého jadra. Materiál poťahu bude uvažovaný kompozitný, ktorého výstuž môžu tvoriť uhlíkové vlákna (karbonizované a grafitizované), sklené vlákna alebo ich tkaniny. Za zmienku určite stojí použitie Kevlarových vlákien, tie sa však pri konštrukciách krídeliek nepoužívajú. [7]

Výstuž:	Merná hmotnosť [kg/m³]:
Uhlíkové vlákno (karbonizované vlákno)	1900
Uhlíkové vlákno (grafitizované vlákno)	1800
Kevlarové vlákno	1450

Tabuľka 13 Porovnanie merných hmotností výstuží poťahov [7]

Matricou laminátu bola vybratá epoxidová živica LH 385, na základe odporúčaní z katalógu firmy Havel Composites, ktorý túto živicu udáva ako alternatívu s menšou hmotnosťou k epoxidovej živici L 285 MGS, ktorá je certifikovaná pre letecký priemysel. Spolu s epoxidovou živicou bolo vybraté tužidlo 285 MGS. [9]

Epoxidová živica LH 385		
Hustota pri 25 °C [g/cm ³]	1,12 - 1,16	

Tabuľka 14 Hustota vybranej epoxidovej živice [9]

Tužidlo H285 do epoxidových živíc		
Hustota pri 23 °C [g/cm ³] 0,94 - 0,97		
Pomer miešania (váhovo)	100:40	
Spracovateľnosť pri 20 °C [min]	50	

Tabuľka 15 Vlastnosti vybraného tužidla [9]

Hustota matrice je vypočítaná z hmotnostného pomeru hustoty živice a tužidla.

$$\rho_{matrice} = \frac{1,14 \times 100 + 0,96 \times 40}{140} = 1089 \, kg/m^3 \tag{3.1}$$

Pre výrobu kompozitov je uvažovaná technológia ručného kladenia. Technológia ručného kladenia rezultuje k presýteniu tkaniny tak, že výsledná hrúbka laminátu má 40% objemový podiel vlákien výstuže a 60% podiel matrice.

$$\rho_{A_{lam}} = (0.4 \times \rho_{vl\acute{a}kien} + 0.6 \times \rho_{matrice}) \times t_{lamin\acute{a}tu}$$
(3.2)

Kde hrúbka laminátu sa dá vypočítať ako pomer plošnej a objemovej hustoty.

$$t_{lamin\acute{a}tu} = \frac{\rho_{A_{vl\acute{a}kien}}}{\rho_{vl\acute{a}kien}} \times \frac{1}{40}$$
(3.3)

Тур	Väzba	Plošná hmotnos ť [g/m²]	Hustota vlákien [kg/m³]	Hrúbka textúry [mm]	Hrúbka lam. pri 40% presýtení [mm]	Ploš. hm. lam. pri 40% presýt. [g/m²]
Aeroglass 17	Plátno	17	2500	0,0068	0,017	28,11
Aeroglass 25	Plátno	25	2500	0,01	0,025	41,34
Aeroglass 48	Plátno	48	2500	0,0192	0,048	79,37
Aeroglass 80	Kepr/plátno	79	2500	0,0316	0,079	130,62
Aeroglass 110	Kepr/plátno	102	2500	0,0408	0,102	168,65
Aeroglass 130	Plátno	130	2500	0,052	0,13	214,95
Aeroglass 140	Plátno	148	2500	0,0592	0,148	244,71
Aeroglass 163	Kepr/plátno	158	2500	0,0632	0,158	261,24
Aeroglass 200	Kepr/plátno	198	2500	0,0792	0,198	327,38
Aeroglass 220	Plátno	208	2500	0,0832	0,208	343,91
Aeroglass 280	Kepr/plátno	297	2500	0,1188	0,297	491,06
Aeroglass 390	Kepr/plátno	396	2500	0,1584	0,396	654,75
Interglass 02034	Plátno	24,5	2500	0,0098	0,025	41,34
Interglass 02037	Plátno	47,5	2500	0,019	0,048	79,37
Interglass 90070	Plátno	81	2500	0,0324	0,081	133,93
Interglass 91111	Satén	105	2500	0,042	0,105	173,61
Interglass 92110	Kepr	163	2500	0,0652	0,163	269,51
Interglass 92145	UD	220	2500	0,088	0,22	363,75
Interglass 92125	Kepr	280	2500	0,112	0,28	462,96
Interglass 92140	Kepr	390	2500	0,156	0,39	644,83
Uhlíkové vlákna jec	lnosmerné, 50K	50	1800	0,02778	0,07	96,14
Uhlíkové vlákna jec	lnosmerné, 50K	80	1800	0,04444	0,112	153,83
Uhlíkové vlákna jec	lnosmerné, 50K	100	1800	0,05556	0,139	190,91
Uhlíkové vlákna jec	lnosmerné, 50K	125	1800	0,06944	0,174	238,98
Uhlíkové vlákna jec	lnosmerné, 50K	150	1800	0,08333	0,209	287,05
Uhlíkové vlákna jec	lnosmerné, 50K	200	1800	0,11111	0,278	381,81
Uhlíkové vlákna jednosmerné, 50K		300	1800	0,16667	0,417	572,71
Uhlíkové vlákna jednosmerné, 50K		400	1800	0,22222	0,556	763,62
Uhlík. tkanina 3K	Kepr/plátno	160	1800	0,08889	0,223	306,27
Uhlík. tkanina 3K	Kepr/plátno	200	1800	0,11111	0,278	381,81
Uhlík. tkanina 3K	Kepr	245	1800	0,13611	0,341	468,33
Uhlík. tkanina 3K	Kepr/plátno	280	1800	0,15556	0,389	534,26
Uhlík. tkanina 3K	Kepr	600	1800	0,33333	0,834	1145,42

Tabuľka 16 Vlastnosti výstuží kompozitov pre konštrukciu krídelka

Výpočet mechanických vlastností kompozitov je pomerne náročný. V tabuľke prikladám výsledné mechanické vlastnosti kompozitov s epoxidovou matricou, uvažovaných pre konštrukciu krídelka získané experimentálnymi skúškami. [10]

Kompozit:	Orientácia vlákien	Pevnosť v ťahu - pozdĺžna [MPa]	Pevnosť v ťahu - priečna [MPa]	Pevnosť v tlaku - pozdĺžna [MPa]
HS	0	1241,05	55,15	1241,05
Uhlíkové vlákna	45°	159,95	159,95	164,78
HM	0	758,42	27,57	689,47
Uhlíkové vlákna	45°	116,52	116,52	124,1
Sklené vlákna typ S	0	1509,95	51,02	509,52
Sklené vlákna typ E	0	723,94	70,32	475,73
Aramid	0	1378,95	29,64	275,79

Tabuľka 17 Mechanické vlastnosti uvažovaných kompozitov [10]

Kompozit:	Orientácia vlákien	Pevnosť v tlaku - priečna [MPa]	Pevnosť v šmyku [MPa]	Medzi vrst. pev. v šmyku [MPa]
HS	0	206,84	82,73	89,63
Uhlíkové vlákna	45°	164,78	451,6	-
НМ	0	137,89	62,05	68,94
Uhlíkové vlákna	45°	124,1	297,85	-
Sklené vlákna typ S	0	154,44	-	75,84
Sklené vlákna typ E	0	227,52	54,46	-
Aramid	0	137,89	62,05	-

Tabuľka 18 Mechanické vlastnosti uvažovaných kompozitov [10]

Kompozit:	Orientácia vlákien	MP v ťahu – pozdĺž. [GPa]	MP v ťahu - priečny [GPa]	MP v šmyku [GPa]
HS	0	144,78	11,72	4,48
Uhlíkové vlákna	45°	36,6	36,6	38,05
HM Uhlíkové	0	172,36	11,72	4,48
vlákna	45°	36,6	36,6	44,54
Sklené vlákna S	0	53,08	18,61	-
Sklené vlákna E	0	29,16	12,54	3,51
Aramid	0	75,84	5,51	2,06

Tabuľka 19 Mechanické vlastnosti uvažovaných kompozitov [2] [10]

Jadro sendvičovej konštrukcie bolo opäť zvolené z katalógu firmy Havel Composites. ROHACELL je polymethakrylimidová (PMI) pevná pena s uzatvorenými pórmi. Má výborné mechanicko-tepelné vlastnosti. Na rozdiel od iných typov penových výstuží, táto pena ponúka najlepší pomer hmotnosti a mechanických vlastností. Ďalšia vlastnosť peny je, že sa nezdeformuje ani pri vyšších teplotách. Typ tejto peny určený pre letecké konštrukcie je ROHACELL 31A. ROHACELL je kompatibilný s bežnými metódami spracovania kompozitov ako napríklad vstrekovanie alebo autokláva. [9]

ROHACELL 31A		
Hustota [kg/m³]	32	
Pevnosť v šmyku [MPa]	0,4	
Pevnosť v ťahu [MPa]	1	
Modul pružnosti v ťahu [MPa]	36	
Modul pružnosti v šmyku [MPa]	13	

Tabuľka 20 Vlastnosti peny sendvičovej konštrukcie [11]

V predbežnom výbere peny sendvičovej konštrukcie je uvažovaná menej hmotnejšia pena ako v pôvodnom návrhu, avšak stojna nosníku ako aj poťah sú namáhané predovšetkým na šmyk. Je preto možné, že po pevnostných výpočtoch bude musieť byť táto pena, ktorá má nižší modul pružnosti v šmyku, prehodnotená.

3.2 Zaťaženie krídelka

Na základe úpravy profilu krídla je geometria krídelka limitovaná pôvodným návrhom. Pre malý uhol šípu krídla (približne 4,54°), môže byť uvažované zjednodušenie výpočtu, kde bude nábežná hrana uvažovaná ako kolmica na hĺbku krídelka pri koreni ako aj hĺbku krídelka na konci.

Obrázok 8 Základná geometria krídelka

Na stanovenie zaťaženia krídelka je potrebné nasledovať predpis UL 2, kde je naznačené prevádzkové zaťaženie krídelka *W*. [4]

Obrázok 9 Zaťaženie krídelka podľa UL 2 [4]

Kde o.o. je otáčavá osa krídelka a b_{KR} je hĺbka krídelka. Priemerné prevádzkové zaťaženie sa určí podľa vzťahu prevzatého z predpisu.

$$\overline{W} = 17,24 \times \frac{MTOM}{S} \ge 575 \ [Pa]$$
 (3.4) [4]

$$\overline{W} = 17,24 \times \frac{345 \ kg}{5,029 \ m^2} = 1182,7 \ge 575 \ [Pa]$$
 (3.5)

kde \overline{W} je priemerné prevádzkové zaťaženie, MTOM je maximálna vzletová hmotnosť a *S* je plocha krídla.

3.2.1 Spojité zaťaženie

Z priebehu naznačeného prevádzkového zaťaženia, je možné získať spojité zaťaženie pôsobiace na krídelko nasledujúcim vzťahom.

$$q(z) = \overline{W} \times b(z) [N/m]$$
(3.6)

$$q(z) = 1182,7 \times b(z) [N/m]$$
(3.7)

kde q(z) je spojité zaťaženie ako funkcia rozpätia a b(z) hĺbka krídelka ako funkcia rozpätia. Spojité zaťaženie pri koreni krídelka q_0 je vyjadrené vzťahom,

$$q_0 = 1182,7 \times b_0 = 1182,7 \times 0,2078 = 245,77 N/m$$
 (3.8)

kde b_0 je hĺbka krídelka pri koreni. Spojité zaťaženie na konci krídelka q_k zase vzťahom,

$$q_k = 1182,7 \times b_k = 1182,7 \times 0,1731 = 204,73 N/m$$
(3.9)

kde b_k je hĺbka krídelka na konci krídelka. Je zrejmé, že hĺbka krídelka má s ohľadom na jeho rozpätie lineárny charakter. Prepis funkcie hĺbky krídelka v závislosti rozpätí *z* je

$$b(z) = b_0 - \frac{b_0 - b_k}{L} \cdot z$$
(3.10)

Po dosadení rovnice (3.10) do rovnice (3.7) je získaný finálny tvar spojitého zaťaženia závislí na rozpätí krídelka z.

$$q(z) = q_0 - \frac{q_0 - q_k}{L} \cdot z$$
(3.11)

$$q(z) = 245,76506 - 41,83454638 \cdot z \tag{3.12}$$

Graf 1 Priebeh spojitého zaťaženia v závislosti na vzdialenosti od koreňa

Analyticky môže byť prepis funkcie uvažovaný aj z voľného konca krídelka, pre prípad využitia metódy rezu z tohto konca.

$$q(\bar{z}) = q_k + \frac{q_0 - q_k}{L} \cdot \bar{z}$$
(3.13)

3.2.2 Výpočet reakcií

Pre výpočet reakcií je potrebné nahliadať na krídelko ako na nosník umiestnený na dvoch podporách, zaťažený spojitým zaťažením. Vzdialenosť závesov, ktoré reprezentujú väzby, boli navrhnuté v pôvodnom návrhu. [2]

Obrázok 10 Priebeh spojitého zaťaženia na nosníku

Po uvoľnení a nahradený väzieb reakciami, je naznačená staticky určitá úloha.

Obrázok 11 Uvoľnený nosník

Plocha spojitého zaťaženia predstavuje lichobežník, z výpočtu obsahu tohto lichobežníka bude získaná výslednica spojitého zaťaženia – sila Q.

$$Q = \frac{(q_0 + q_k) \cdot L}{2} = \frac{(245,77 + 204,73) \cdot 0,981}{2} = 220,97 N$$
(3.14)

Pôsobisko sily Q sa nachádza v ťažisku lichobežníkového obrazca, tvoreného spojitým zaťažením. Ťažisko lichobežníka sa získa vzťahom

$$G(y_Q, z_Q) = \left[\frac{h}{2}, \frac{(a+2\cdot b)\cdot h}{3\cdot (a+b)}\right] [m]$$
(3.15)

Po dosedení geometrie obrazcu spojitého zaťaženia krídelka

$$G(y_Q, z_Q) = \left[\frac{0,981}{2}, \frac{(245,77+2\cdot204,73)\cdot0,981}{3\cdot(245,77+204,73)}\right]$$
(3.16)

$$G(y_Q, z_Q) = [0,4905; 0,4756] m \tag{3.17}$$

Následne môže byť vyjadrená statická rovnováha síl na súradnici *y* (súradnica *x* je v našom prípade irelevantná) a momentová rovnováha pri koreni.

$$\sum F_{y}: -R_{0} - R_{A} + Q = 0$$
(3.18)

$$\sum M_0 : -R_A \cdot l_{0A} + Q \cdot z_Q = 0 \tag{3.19}$$

kde R_0 je reakcia od závesu pri koreni, R_A je reakcia druhého závesu krídelka, I_{0A} je vzdialenosť medzi závesmi krídelka a z_Q je vzdialenosť pôsobiska sily Q od koreňa krídelka.

$$R_A = \frac{Q \cdot z_Q}{l_{0A}} = \frac{220,97 \cdot 0,4756}{0,6812} = 154,28 \,N \tag{3.20}$$

$$R_0 = Q - \frac{Q \cdot z_Q}{l_{0A}} = Q \left(1 - \frac{z_Q}{l_{0A}} \right) = 220,97 \cdot \left(1 - \frac{0,4756}{0,6812} \right) = 66,69 N$$
(3.21)

3.2.3 Posúvajúca sila a ohybový moment

Pre nájdenie posúvajúcej sily a ohybového momentu bude použitá metóda rezu. Táto metóda je vhodnejšia pre nutnosť rozdelenia nosníka do dvoch polí. V našom prípade je vhodnejšie postupovať z voľného konca, a teda sprava. Pre zjednodušenie bude tento krát obrazec spojitého zaťaženie rozdelený na obdĺžnik a trojuholník.

Obrázok 12 Rez nosníka sprava I

Pre $\overline{z_1} \in (0; L - l_{0A})$ platí statická rovnováha na súradnici y a momentová rovnováha v bode rezu.

$$\sum F_{y}: T_{I} + Q_{I_{\Delta}} + Q_{I_{\Box}} = 0$$
(3.22)

$$\sum M_1 : -M_{o_I} + Q_{I_{\Delta}} \cdot \frac{1}{3} \cdot \overline{z_1} + Q_{I_{\bullet}} \cdot \frac{1}{2} \cdot \overline{z_1} = 0$$
(3.23)

kde *T* je posúvajúca sila v bode rezu, *Q* je výslednica spojitého zaťaženia a M_0 je ohybový moment v mieste rezu.

$$T_{I} = -Q_{I_{d}} - Q_{I_{\bullet}} = -\frac{(q(\bar{z_{1}}) - q_{k}) \cdot \bar{z_{1}}}{2} - q_{k} \cdot \bar{z_{1}}$$
(3.24)

$$M_{o_{I}} = Q_{I_{\Delta}} \cdot \frac{1}{3} \cdot \bar{z_{1}} + Q_{I_{\bullet}} \cdot \frac{1}{2} \cdot \bar{z_{1}}$$
(3.25)

Dosadením (3.13) do (3.24) a (3.25) je získaná funkcia posúvajúcej sily T(z) a ohybového momentu $M_0(z)$ pre prvé pole.

$$T_I = -\frac{\left(\frac{q_0 - q_k}{L} \cdot \overline{z_1}\right) \cdot \overline{z_1}}{2} - q_k \cdot \overline{z_1}$$
(3.26)

$$M_{o_{I}} = \frac{\left(\frac{q_{0} - q_{k}}{L} \cdot \overline{z_{1}}\right) \cdot \overline{z_{1}}}{2} \cdot \frac{1}{3} \cdot \overline{z_{1}} + q_{k} \cdot \overline{z_{1}} \cdot \frac{1}{2} \cdot \overline{z_{1}}$$
(3.27)

Obrázok 13 Rez nosníka sprava II

Pre $\overline{z_2} \in (L - l_{0A}; L)$ platí, platí statická rovnováha na súradnici y a momentová rovnováha b bode rezu.

$$\sum F_{\mathcal{Y}}: T_{II} + Q_{II_{\Delta}} + Q_{II_{\blacksquare}} - R_A = 0$$
(3.28)

$$\sum M_1 : -M_{o_{II}} + Q_{II_{\Delta}} \cdot \frac{1}{3} \cdot \overline{z_1} + Q_{II_{\bullet}} \cdot \frac{1}{2} \cdot \overline{z_1} - R_A \cdot (\overline{z_2} - (L - l_{0A})) = 0$$
(3.29)

kde T je posúvajúca sila v bode rezu, Q je výslednica spojitého zaťaženia a M_0 je ohybový moment v mieste rezu.

$$T_{II} = -Q_{II_{\Delta}} - Q_{II_{\bullet}} + R_A = -\frac{(q(\bar{z_2}) - q_k) \cdot \bar{z_2}}{2} - q_k \cdot \bar{z_2} + R_A$$
(3.30)

$$M_{o_{II}} = Q_{II_{\Delta}} \cdot \frac{1}{3} \cdot \bar{z_1} + Q_{II_{\bullet}} \cdot \frac{1}{2} \cdot \bar{z_1} - R_A \cdot (\bar{z_2} - (L - l_{0A}))$$
(3.31)

Dosadením (3.13) do (3.30) a (3.31) je získaná funkcia posúvajúcej sily T(z) a ohybového momentu $M_0(z)$ pre prvé pole.

$$T_{II} = -\frac{\left(q_k + \frac{q_0 - q_k}{L} \cdot \bar{z_2} - q_k\right) \cdot \bar{z_2}}{2} - q_k \cdot \bar{z_2} + R_A$$
(3.32)

$$M_{o_{II}} = \frac{\left(\frac{q_0 - q_k}{L} \cdot \bar{z_2}\right) \cdot \bar{z_2}}{2} \cdot \frac{1}{3} \cdot \bar{z_2} + q_k \cdot \bar{z_2} \cdot \frac{1}{2} \cdot \bar{z_2} - R_A \cdot (\bar{z_2} - (L - l_{0A}))$$
(3.33)

<u>z</u> [m]	q [N/m]	T [N]	M _o [Nm]
0,981	245,76	-66,69	0
0,8	238,19	-22,89	-8,09
0,7	234,01	0,72	-9,19
0,6	229,83	23,91	-7,96
0,5	225,64	46,69	-4,42
0,4	221,46	69,04	1,37
0,3	217,28	90,98	9,37
0,2998	217,27	91,02	9,39
0,2998	217,27	-63,26	9,39
0,2	213,1	-41,78	4,15
0,1	208,91	-20,68	1,03
0	204,73	0	0

Tabuľka 21 Zaťaženie krídelka posúvajúcou silou a ohybovým momentom

Graf 2 Posúvajúca sila na krídelku

Graf 3 Ohybový moment na krídelku

3.2.4 Závesový moment

Spojité zaťaženie krídelka q, na vzdialenosti od otáčavej osi r, spôsobuje spojité krútivé zaťaženie q_k . Pre vyšetrenie síl na tiahlo riadenia nie je závesový moment, vyvolaný týmto zaťažením, ovplyvnený druhým závesom.

$$q_k(z) = r(z) \cdot q(z) \tag{3.34}$$

Po zjednodušení geometrie krídelka môže byť rozmer ramena *r(z)* odvodený z geometrie krídelka a obrazca priemerného prevádzkového zaťaženia *W*. [4]

Obrázok 14 Pôsobenia spojitého zaťaženia od nábežnej hrany

Vzdialenosť pôsobenia spojitého zaťaženia od nábežnej hrany krídelka b_q je získaná superpozíciou zaťaženia jednotlivých obrazcov zaťaženia.

$$q(z) \cdot b_q(z) = q_{\blacksquare} \cdot r_{\blacksquare} + q_{\varDelta} \cdot r_{\varDelta}$$
(3.34)

$$b_q(z) = \frac{W \cdot \frac{O^2(z)}{2} + \frac{1}{2} \cdot W \cdot (b(z) - O(z)) \cdot \left(O(z) + \frac{1}{3} \cdot (b(z) - O(z))\right)}{W \cdot O(z) + \frac{1}{2} \cdot W \cdot (b(z) - O(z))}$$
(3.35)

Rameno na ktorom pôsobí závesový moment *r*, sa odvodí jednoducho ako rozdiel vzdialenosti pôsobenia spojitého zaťaženia od nábežnej hrany a vzdialenosti otáčavej osi od nábežnej hrany krídelka.

$$r(z) = b_q(z) - O(z)$$
(3.36)

Keďže je funkcia *r(z)* príliš zložitá aj pre numerický výpočet, je zvolená aproximácia tejto funkcie polynómom prvého stupňa.

$$r(z) = -\frac{13}{2000} \cdot z + \frac{387}{10000}$$
(3.37)

Dosadením (3.12) a (3.37) do rovnice (3.34) je získaná funkcia spojitého krútivého zaťaženia q_k .

$$q_k(z) = \frac{7}{28} \cdot z^2 - \frac{651}{200} \cdot z + \frac{9511}{1000}$$
(3.38)

Závesový moment na otáčavú osu krídelka je integrál z funkcia spojitého krútivého zaťaženia q_k.

$$M_k(z) = \int q_k \cdot dz = \frac{7}{84} \cdot z^3 - \frac{651}{400} \cdot z^2 + \frac{9511}{1000} \cdot z - 7,85$$
(3.39)

Integračná konštanta bola získaná z podmienky, že krútiaci moment na konci krídelka sa rovná nule.

z [m]	O [m]	r [m]	Mk [Nm]
0	0,032	0,0387	-7,85
0,1	0,0314	0,0381	-6,92
0,2	0,0309	0,0374	-6,01
0,3	0,0303	0,0368	-5,14
0,4	0,0298	0,0361	-4,3
0,5	0,0292	0,0355	-3,49
0,6	0,0287	0,0348	-2,71
0,681	0,0283	0,0342	-2,1
0,681	0,0283	0,0342	-2,1
0,7	0,0281	0,0342	-1,96
0,8	0,0276	0,0335	-1,24
0,9	0,027	0,0329	-0,54
0,981	0,0266	0,0323	0

Tabuľka 22 Závesový moment krídelka bez uvažovania druhého závesu

3.2.5 Krútiaci moment k otáčavej osi krídelka

Krútiaci moment k otáčavej osi krídelka je spôsobený posúvajúcou silou *T* od spojitého zaťaženia na krídelku. Opätovne, ako v prípade vyšetrovania posúvajúcej sily a ohybového momentu, je potrebné uvažovať dve polia.

$$M_{k_I}(z) = T_I(z) \cdot r(z) \tag{3.40}$$

$$M_{k_{II}}(z) = T_{II}(z) \cdot r(z)$$
(3.41)

Rameno *r*(*z*) bolo odvodené v podkapitole *Závesový moment*.

<u>z</u> [m]	O [m]	r [m]	Mk [Nm]
0,981	0,032	0,0387	-2,5809
0,8	0,031	0,0375	-0,8584
0,7	0,0305	0,0368	0,0265
0,6	0,0299	0,0362	0,8655
0,5	0,0294	0,0355	1,6575
0,4	0,0288	0,0349	2,4095
0,3	0,0283	0,0342	3,1115
0,2998	0,0283	0,0342	3,1129
0,2998	0,0283	0,0342	-2,1635
0,2	0,0277	0,0336	-1,4038
0,1	0,0272	0,0329	-0,6804
0	0,0266	0,0323	0

Tabuľka 23 Zaťaženie krídelka krútiacim momentom

Graf 4 Krútiaci moment na krídelku

3.3 Návrh posunutia nosníka krídelka

Motiváciou pre posunutie osi otáčania krídelka je overenie a prípadnú nápravu, či po upravení geometrie krídelka neprekročí hodnota zaťaženia síl na pilota stanovenú hodnotu predpisom UL-2. [4]

Obrázok 15 Čiarový návrh priečneho riadenia [12]

V bakalárskej práci, autor Vysocký, navrhol prevody pre prične riadenie letúnu. Výsledný prevodový pomer pre priečne riadenie *i* bol stanovený ako,

$$i = 6,294$$
 (3.42) [12]

Sila v ťahadle krídelka *F* je určená zo závesového momentu na os otáčania *M*_k podelenú vzdialenosťou oka závesu a ťahadla *d*.

$$F = \frac{M_k}{d} = \frac{7,85}{0,036} = 218 \, N \tag{3.43}$$

Výsledná sila, ktorá pôsobí na pilota F_{pilot} bude vypočítaná cez prevod i ako,

$$F_{pilot} = \frac{F}{i} = \frac{218}{6,294} = 34,64 N < 200 N$$
(3.44) [4]

Z výsledku je zrejmé že otáčavú os, ako aj nosník krídelka, nie je potrebné posúvať.

4 Pevnostný výpočet

4.1 Dimenzovanie pásnic

Hlavný nosný prvok krídelka, nosník, sa skladá z pásnic a stojny. Pri predbežnom návrhu je možné zanedbať malý vplyv pozdĺžneho ohybového napätia na stojne a preto je možné predpokladať, že celý ohybový moment je zachytený pozdĺžnym napätím iba v pásniciach. [13]

Obrázok 16 Prierez pásnic

Kvadratický moment prierezu pásnice J_0 k stredovej osi pásnice sa vypočíta ako,

$$J_0 = \int_{-t/2}^{t/2} y^2 \cdot dA = b \cdot \int_{-t/2}^{t/2} y^2 \cdot dy = \frac{1}{12} \cdot b \cdot t^3$$
(4.1)

kde *b* je šírka pásnice a *t* je hrúbka laminátu. Pre nájdenie kvadratického momentu k hlavnej osi bude použitá Steinerová veta pre posun súradnicového systému.

$$J_{x} = 2\left(J_{0} + t \cdot b \cdot \frac{h_{e}^{2}}{4}\right) = 2 \cdot t \cdot b \cdot \left(\frac{t^{2}}{12} + \frac{h_{e}^{2}}{4}\right) = \frac{1}{2} \cdot t \cdot b \cdot h_{e}^{2}$$
(4.2) [13]

Maximálne napätie prenášané ohybom σ_{max} na pásniciach sa dá vyjadriť ako,

$$\sigma_{max} = \frac{M_{o_{max}}}{W_o} = \frac{M_{o_{max}}}{J_x} \cdot \frac{h_e}{2}$$
(4.3)

kde $h_e \approx h_{st}$ je výška nosníku. Pri prostom ohybe, vzniká na pásniciach jednoosá napätosť. Preto treba brať do úvahy, že dovolené napätie bude rozdielne pre ťahovú a tlakovú pásnicu.

$$\sigma_{Dt} = \frac{\sigma_{pt}}{k} \tag{4.4}$$

$$\sigma_{Dd} = \frac{\sigma_{pd}}{k} \tag{4.5}$$

Po dosadení rovnice (4.2) a (4.4) do (4.3) je odvodená pevnostná podmienka pre minimálnu hrúbku laminátu.

$$t_{min} \ge \frac{M_{o_{max}} \cdot k}{\sigma_{pd} \cdot b \cdot h_{st}} \tag{4.6}$$

	Pevnosť v tlaku [MPa]	Minimálna hrúbka laminátu [mm]
Úhlíkové vlákno (karbonizované vlákno)	1241,05	0,031179288
Úhlíkové vlákno (grafitizované vlákno)	689,47	0,056122899
Sklené vlákno	475,73	0,081338269

Tabuľka 24 Minimálne hrúbky laminátu

4.2 Dimenzovanie stojny

Pevnostná podmienka pre minimálnu hrúbku laminátu stojny sa získa z maximálnej posúvajúcej sily *T*. [13]

$$t_{min} \ge \frac{T_{max} \cdot k}{h_{st} \cdot \tau_D}$$

(4.7) [13]

	Pevnosť v šmyku [MPa]	Minimálna hrúbka laminátu [mm]
Úhlíkové vlákno (karbonizované vlákno)	451,6	0,00996676
Úhlíkové vlákno (grafitizované vlákno)	297,85	0,015111596
Sklené vlákno	54,46	0,082647613

Tabuľka 25 Minimálne hrúbky laminátu

4.3 Dimenzovanie poťahu

4.3.1 Elastická os

Pre šmykových tokov v jednotlivých dutinách je potrebné nájsť polohu elastickej osi. Vzorec pre výpočet súradnice elastickej osi $x_{E.O.}$ bol prevzatý z predošlých prác. [2] [6]

$$x_{E.O.} = \frac{-2 \cdot s_1 \cdot (s_1 \cdot U_2 + U_1 \cdot h_s + U_2 \cdot h_s)}{(s_1 + h_s) \cdot (s_1 \cdot s_2 + s_1 \cdot h_s + s_2 \cdot h_s)} + \frac{2 \cdot U_1}{s_1 + h_s}$$
(4.8) [2] [6]

z [mm]	0	681,2	981
h _{st} [mm]	56	49	45,5
s1 [mm]	143,7	130,5	125,3
s ₂ [mm]	312,8	274	254,6
U ₁ [mm ²]	2888	2334	2122
U ₂ [mm ²]	4308	3297	2848
x _{E.O.} [mm]	8,06	7,53	7,46

Tabuľka 26 Vzdialenosť elastickej osi od nosníka

Krútiaci moment na elastickej osi $M_{k E.O.}$ sa vypočíta z rovnováhy momentov k elastickej ose krídelka.

$$M_{k_{E.O.}} = T \cdot (r - r_s - x_{E.O.}) = M_k - T \cdot (r_s - O(z) + x_{E.O.})$$
(4.9)

Z	0	<0;I _{0A} >	<i<sub>0A ;L></i<sub>
T [N]	-66,69	91	-93,26
M _k [Nmm]	-2580,9	3112,9	-2163,5
x _{E.O.} [m]	8,06	7,53	7,53
r _s [m]	53,3	48,9	48,9
M _{k E.O.} [Nmm]	-622,8816	889,77	114,8418

Tabuľka	27	Moment k	elastickei	ose
			0.000.0000	000

4.3.2 Predbežný návrh poťahu

Pre predbežný návrh bude uvažovaná jedna dutina tvorená poťahom. Po obvode dutiny je krútiacim momentom $M_{k E.O.}$ tvorený šmykový tok q.

$$q = \frac{M_{k_{E.O.}}}{2U} \tag{4.10}$$

kde *U* je plocha prierezu dutiny. Šmykové napätie, od šmykového toku *q*, sa rovná

$$\tau = \frac{q}{t} \tag{4.11}$$

kde *t* je hrúbka poťahu bez uvažovanie sendvičového jadra. Po dosadení rovnice (4.7) do rovnice (4.8) je vyjadrená pevnostná podmienka pre minimálnu hrúbku poťahu.

$$t_{min} \ge \frac{M_{k_{E.O.max}} \cdot k}{2 \cdot U \cdot \tau_D}$$
(4.12)

	Pevnosť v šmyku [MPa]	Minimálna hrúbka laminátu [mm]
Úhlíkové vlákno (karbonizované vlákno)	451,6	0,00045
Úhlíkové vlákno (grafitizované vlákno)	297,85	0,00068
Sklené vlákno	54,46	0,0037

Tabuľka 28 Minimálne hrúbky laminátu

4.3.3 Šmykový tok pre jednotlivé dutiny

Šmykový tok q sa pre jednotlivé dutiny určí z momentovej rovnováhy pre obe dutiny, takzvaný Bredtov vzťah.

$$M_{k_{E.O.}} + 2 \cdot U_1 \cdot q_1 + 2 \cdot U_2 \cdot q_2 = 0$$
(4.13)

Keďže má táto rovnica dve neznáme, je potrebné uvažovať aj deformačnú podmienku skrútenia oboch dutín ϑ , ktorá musí byť konštantná. [14]

$$\vartheta_1 = \vartheta_2 \tag{4.14} [14]$$

$$\frac{1}{2 \cdot U_1} \cdot \oint \frac{q_1}{G \cdot t} d_s = \frac{1}{2 \cdot U_2} \cdot \oint \frac{q_2}{G \cdot t} d_s \tag{4.15} [14]$$

Obe dutiny sú uvažované o rovnakej hrúbke laminátu ako aj rovnakom materiály. Po zjednodušení a integrácii,

$$U_2 \cdot (q_1 \cdot s_1 + (q_1 + q_{st} - q_2) \cdot h_{st}) = U_1 \cdot (q_2 \cdot s_2 + (q_2 - q_{st} - q_1) \cdot h_{st})$$
(4.16)

$$q_{1} = \frac{-(U_{1} \cdot s_{2} + U_{1} \cdot h_{st} + U_{2} \cdot h_{st}) \cdot \frac{M_{k_{E.O.}}}{2 \cdot U_{2}} - (U_{1} + U_{2}) \cdot h_{st} \cdot q_{st}}{U_{2} \cdot s_{1} + U_{2} \cdot h_{st} + 2 \cdot U_{1} \cdot h_{st} + \frac{U_{1}}{U_{2}} \cdot (U_{1} \cdot s_{2} + U_{1} \cdot h_{st})}$$
(4.17)

$$q_2 = \frac{-M_{k_{E.O.}} - 2 \cdot U_1 \cdot q_1}{2 \cdot U_2} \tag{4.18}$$

Šmykový tok v stojne q_{st} sa vypočíta ako,

$$q_{st} = \frac{T}{h_{st}}$$
(4.19) [14]

Z	0	<0;I _{0A} >	<i<sub>0A ;L></i<sub>
q _{st} [N/mm]	-1,19	1,86	-2,05
q1 [N/mm]	0,3	-0,47	0,39
q ₂ [N/mm]	-0,13	0,2	-0,31

Tabuľka 29 Šmykové toky v dutinách

Pre určenie celkového šmykového toku prechádzajúceho stojnou q_c je potrebné uvažovať sumu šmykových tokov prechádzajúcich v dutinách a šmykového toku prechádzajúcich stojnou.

$$q_c = q_{st} + q_1 + q_2 \tag{4.20}$$

4.4 Stabilita stojny a poťahu

Je predpokladané, že najväčšie riziko straty stability hrozí v najväčšej dutine krídelka. S ohľadom na toto tvrdenie bude kontrolovaná iba zadná dutina a stojna. Výpočet kritického šmykového napätia τ_k , a teda aj pevnostnej podmienka pre minimálnu hrúbku laminátu, eventuálne sendvičovej konštrukcie, je prevzatý z dizertačnej práce pána Funkeho. [15]

$$k \cdot \tau_k = \kappa \cdot k^* \cdot E \cdot \left(\frac{t}{b_D}\right)^2 \tag{4.21} [15]$$

kde κ zvyšujúci koeficient tuhosti, k^* je súčiniteľ vzperu, E je modul pružnosti a b_D je rozpätie dutiny v prípade poťahu alebo výška nosníku v prípade stojny. Minimálna hrúbka laminátu, poprípade sendviča sa vypočíta ako,

$$t_{min} \ge \sqrt[3]{\frac{k \cdot q \cdot b_D^2}{\kappa \cdot k^* \cdot E}}$$
(4.22)

z	<0;I _{0A} >		<i<sub>0A ;L></i<sub>	
	Uhlíková tkanina	Sklené vlákna	Uhlíková tkanina	Sklené vlákna
b _D [mm]	158		138	
q[N/mm]	0,2		0,31	
к [-]	3		3	
k* [-]	5,1		5,6	
E [MPa]	36600	29160	36600 29160	
t [mm]	0,27171778	0,293100063	0,278507785	0,300424394

Tabuľka 30 Minimálne hrúbky laminátu/sendviča poťahu [2] [15]

z	<0;I _{0A} >		<i<sub>0A ;L></i<sub>	
	Uhlíková tkanina Sklené vlákna		Uhlíková tkanina	Sklené vlákna
b _D [mm]	57		49	
q[N/mm]	1,19		1,35	
к [-]	3		3	
k* [-]	4,8		5	
E [MPa]	36600	29160	36600 29160	
t [mm]	0,254611806	0,27464797	0,236834718	0,25547195

Tabuľka 31 Minimálne hrúbky laminátu/sendviča stojny [2] [15]

5 Hmotnostný rozbor

Dôležitou súčasťou práce je určenie hmotnosti konštrukcie. Keďže nebolo potrebné robiť konštrukčné úpravy krídelka, je štruktúra geometrie krídelka zachovaná po vzore pôvodného návrhu. Na určenie hmotnosti jednotlivých dielov krídelka je potrebné zistiť plochu jednotlivých dielov krídelka, keďže sa v konštrukcii uvažujú lamináty kompozitných materiálov. Plochy sú následne prenásobené plošnou hmotnosťou pre jednotlivé lamináty vypočítané v podkapitole *3.1 Voľba materiálov konštrukcie krídelka*. V prípade sendvičovej konštrukcie sa uvažuje hrúbka peny 1 mm, z ktorej sa následne odvodzuje objem jadra, ktorý je prenásobený hustotou peny.

Diel	Plocha dielu [m²]	Objem jadra [m³]
Pásnice	0,02307844	
Stojna	0,229259066	0,000229259
Poťah	0,383543209	0,000383543

Tabuľka 32 Geometria pôvodného návrhu [2]

$$m_i = n \cdot \rho_{A_{lam}} \cdot S_i + \rho_{jad} \cdot V_i [g]$$
(5.1)

kde *n* je počet vrstiev laminátu, $\rho_{A_{lam}}$ je plošná hmotnosť laminátu pri 40% presýtení, *S_i* je plocha dielu prevzatá z pôvodného návrhu, ρ_{jad} je objemová hustota jadra za predpokladu použitia peny s hrúbkou 1 mm a *Vi* je objem jadra.

Materiál laminátu	Aeroglass 140	Aeroglass 80
Materiál peny		ROHACELL 31A
Počet vrstiev [-]	2	2
t _{laminátu} [mm]	0,296	0,158
t _{sendviča} [mm]		1,158
ρ _{laminátu} [g/m²]	244,71	130,62
ρ _{peny} [g/m ³]		32000
Hmotnosť stojny [g]	112,2039718	67,22792838

Tabuľka 33 Rozbor hmotnosti stojny

Materiál laminátu	Aeroglass 110
Počet vrstiev [-]	1
t _{Iaminátu} [mm]	0,102
$\rho_{\text{laminátu}} [g/m^2]$	168,65
Hmotnosť pásnic [g]	3,892178906

Tabuľka 34 Rozbor hmotnosti pásnic

Materiál laminátu	Aeroglass 163	Aeroglass 80
Materiál peny		ROHACELL 31A
n [-]	2	2
t _{laminátu} [mm]	0,316	0,158
t _{sendviča} [mm]		1,158
$\rho_{\text{laminátu}} [g/m^2]$	261,24	130,62
$\rho_{peny} \left[g/m^3\right]$		32000
Hmotnosť poťahu [g]	200,3936558	112,4702106

Tabuľka 35 Rozbor hmotnosti poťahu

Rebro, závesy, spojovací materiál a lepené spoje krídelka sú prevzaté z pôvodného návrhu, keďže ich hmotnosť sa už nedá viac redukovať. [2]

Diel krídelka		Hmot. upravenej konštrukcie [g]		Hmotnosť pôvodnej konštrukcie [g]
Nocník	Pásnice	3,9	71 1 2	92
NOSTIK	Stojna	67,23	/1,12	
Poťah	11		2,47	154
Rebro			3	3
Závesy	\times	4	-6	46
Spojovací materiál		34		34
Lepené spoje	\bigvee	8	6	86

Tabuľka 36 Rozbor hmotností dielov krídelka [2]

Hmotnosť celého krídelka sa spočíta ako suma hmotností všetkých dielov, poprípade spojovacieho materiálu.

$$m = \sum m_i = 71,12 + 112,47 + 3 + 46 + 34 + 86 [g]$$
(5.2)

$$m = 352,59 \ g = 0,35259 \ kg \tag{5.3}$$

Hmotnosť pôvodnej konštrukcie bolo rovná 414 g, to znamená že sa konštrukciu podarilo odľahčiť o niečo vyše 61 g.

6 Záver

Táto bakalárska práca je venovaná úprave konštrukcie krídelka rýchlostného letúnu, ktorý má za cieľ prekonávanie rýchlostných svetových rekordov. V úvode sú popísané predošlé návrhy a úpravy krídelka. Následne je v tejto práci uvedené porovnanie jednotlivých materiálov a ich vlastností, ako aj hrúbky laminátov jednotlivých kompozitov pri zvolenej technológii výroby kompozitov. Výber vhodných materiálov konštrukcie je dôležitou súčasťou hmotnostnej optimalizácie akejkoľvek leteckej časti. Keďže na rozdiel od iných je krídelko časť konštrukcie, ktorá nie je príliš namáhaná, je možné vybrať kompozity aj s relatívne horšími mechanickými vlastnosťami. Je bežnou praxou, že sú v dnešnej dobe krídelka vyrábané najmä z kompozitov tvorených z uhlíkových tkanín, keďže majú nižšiu objemovú hustotu vlákien. Veľkou výhodou sklených vlákien je však dostupnosť tkanín s markantne nižšou plošnou hustotou, takže vo finále je možné vytvoriť menej hmotnejšiu konštrukciu.

V rámci konštrukčných úprav existuje značná limitácia geometrie celého krídla. V práci je prekontrolovaná sila pôsobiaca na pilota, ktorá by v prípade presahu dovolenej hodnoty zo stavebného predpisu musela byť upravená. Úprava bola uvažovaná cez posunutie otáčavej osi bližšie k pôsobisku zaťaženia, tým by sa znížil závesový moment, vďaka čomu by sa znížili aj sily v riadení.

Dôležitým aspektom v inžinierstve je súčasnosti aj cena. Pri obmene materiálov konštrukcie z uhlíkových tkanín na sklené sa môžu ušetriť financie, keďže kompozity vyrobené zo sklených vlákien sú všeobecne lacnejšie ako kompozity z vlákien uhlíkových.

Konštrukciu sa podarilo odľahčiť oproti pôvodnému návrhu. V budúcnosti by bolo vhodné vykonať pevnostnú analýzu dostupným výpočtovým programom. Následne by bolo vhodné vykonať skúšky kompozitov uvažovaných v konštrukcii, keďže je veľmi náročné nájsť spoľahlivé dáta materiálových vlastností týchto kompozitov.

51

Použité zdroje

- [1] J. Valenta, "Koncepční návrh rychlostního letounu," [Online]. Available: https://dspace.cvut.cz/bitstream/handle/10467/84757/F2-DP-2019-Valenta-Jakub-Diplomova%20prace%20-%20Koncepcni%20navrh%20rychlostniho%20letounu.pdf?sequence=-1&isAllowed=y. [Cit. 11 Január 2024].
- [2] O. Motl, "Rekonstrukce křídla rychlostního letounu," [Online]. Available: https://dspace.cvut.cz/bitstream/handle/10467/99301/F2-DP-2022-Motl-Ondrej-Rekonstrukce_kridla_rychlostniho_letounu.pdf?sequence=-1&isAllowed=y. [Cit. 11 Január 2024].
- [3] Fédération Aéronautique Internationale , "Section 2 Aeroplanes," [Online]. Available: https://www.fai.org/sites/default/files/sc_section_2_2023.pdf. [Cit. 11 Január 2024].
- [4] Letecká amatérská asociace ČR, "Požadavky letové způsobilosti SLZ Ultralehké letouny řízené aerodynamicky," [Online]. Available: https://docplayer.cz/132935732-Ul-2-cast-ipozadavky-letove-zpusobilosti-slz-ultralehke-letouny-rizene-aerodynamicky-vydani.html. [Cit. 11 Január 2024].
- [5] A. K. Kundu, M. A. Price a D. Riordan, Conceptual Aircraft Design, WILEY, 2019.
- [6] T. Rubánko, "Návrh křidélka pro rychlostní letoun," [Online]. Available: https://dspace.cvut.cz/bitstream/handle/10467/90406/F2-BP-2020-Rubanko-Tomas-Navrh%20kridelka%20pro%20rychlostni%20letoun.pdf?sequence=-1&isAllowed=y. [Cit. 11 Január 2024].
- [7] S. Slavík, Stavba Letadel, Praha: České vysoké učení technické v Praze, 1997.
- [8] J. Cutler a J. Liber, Understanding Aircraft Structures, Oxford: Blackwell Publishing, 2005.
- [9] Composites Havel, "© 2018-2024 Havel Composites," [Online]. Available: https://www.havel-composites.com/cs/. [Cit. 11 Január 2024].

- [10] D. P. Raymer, "Aircraft Design: A Conceptual Approach," [Online]. Available: https://www.airloads.net/Downloads/Textbooks/Aircraft%20Design-A%20Conceptual%20Approach.pdf. [Cit. 11 Január 2024].
- [11] Evonik Operations GmbH, "Product Information ROHACELL®A," [Online]. Available: https://products.evonik.com/assets/34/00/ROHACELL_A_2022_April_EN_243400.pdf. [Cit. 11 Január 2024].
- [12] D. Vysocký, "Návrh primárního řízení sportovního letounu," [Online]. Available: https://dspace.cvut.cz/handle/10467/96039. [Cit. 2 Apríl 2024].
- [13] J. Špunda, Pevnostní výpočet a navrhování materálově úsporných tenkostěnných konstrukcí IV. Část, Praha: Dům techniky ČVTS Praha, 1973.
- [14] J. Špunda, Pevnost leteckých konstrukcí, Brno: VTA AZ, 1955.
- [15] H. Funke, Systematische Entwicklung von Ultra-Leichtbaukonstruktionen in Faserverbund-Wabensandwichbauweise am Beispiel eines Kleinflugzeuges, 2001.