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Abstract

This bachelor’s thesis aims to set a new CFDmethodology for Formula Student team eForce
Prague Formula. The goal is to recognize the CFD requirements of the aerodynamics
group and develop a CFD simulation setup according to these requirements. Various
setups within the CFD software, both meshing and solver, were compared, and the best
option was chosen. Based on the comparisons, a new CFD method was created and fully
automatized.

Keywords:
CFD, Formula Student, meshing, solver, aerodynamics

Abstrakt

Tato bakalářská páce se zabývá návrhem nové CFD metodiky pro Formula Student tým
eForce Prague Formula. Ćılem je stanoveńı požadavk̊u aerodynamické skupiny na CFD
simulaci, a následné nastaveńı této simulace dle těchto požadavk̊u. Při nastavováńı simu-
lace bylo porovnáno několik zp̊usob̊u nastaveńı jak v meshingu, tak solveru. Na základě
těchto porovnáńı byla zvolena optimálńı metodika.

Kĺıčová slova:
CFD, Formula Student, meshing, solver, aerodynamika
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Miscellaneous Abbreviations
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CAD Computer aided design
BOI Body of influence
CoP Centre of pressure
AoA Angle of attack
GR Growth ratio
2D Two dimensional
3D Three dimensional
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Mathematical Terminology

Cl [1] Coefficient of lift
Cd [1] Coefficient of drag
y+ [1] Non dimensional distance from wall
Re [1] Reynolds number
ρ [kg/m3] Density
u [m/s] Velocity
L [m] Characteristic dimension for Re
µ [Pa.s] Dynamic viscosity
δ [m] Height of boundary layer
x [m] Characteristic dimension for boundary layer thickness
π Ludolph‘s number
Si Source term
C0 [1] User-defined empirical coefficient
C1 [1] User-defined empirical coefficient
v [m/s] Velocity
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Chapter 1

Introduction

A famous racing car driver Enzo Ferrari once allegedly said: “Aerodynamics are for people
who can‘t build engines.” Nowadays we can certainly tell how wrong his quota was, as
shown in Figure 1.1 Since the beginning of motorcar racing teams and engineers have been
trying to improve racecar aerodynamics in order to gain performance advantage over their
competitors and achieve faster lap times of their cars. The beginnings of these developments
were not easy for race car engineers since they could only rely on physics knowledge and
driver‘s feedback through trial and error method. The real breakthrough came in the 20th
century when the first CFD methods were developed and as their development continued,
CFD software became a crucial part of every professional race car development.
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Figure 1.1: Evolution of One-Lap Qualification Record at Indianapolis 500. Note the
biggest step over one year, in 1972, when the traditional front and rear wings were imple-
mented for the first time.[1]
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1.1. Formula Student

1.1 Formula Student

To understand why this thesis began and what this thesis aims for, the reader should
be confronted with a brief introduction to Formula Student competition. The first FS
competition was held in 1981 in USA from where it expanded all over the world. Now
(2024), there are 25 independent competitions in 5 continents. Some competitions share
the same organizer and the same set of rules. All European teams (except Great Britain)
follow the same rules released by the biggest and most prestigious FS competition in
the world, Formula Student Germany. This student program aims to broaden university
students‘ knowledge, both theoretical and practical. Any university can establish team
which has to design and build race car according to the current rules. Then the team
competes against other teams at mentioned competitions. Czech Technical University
in Prague has its own FS team, eForce Prague Formula, which competes in an electric
category with over 13 years of experience.

For more information about the competition visit the official site of Formula Stu-
dent Germany (www.formulastudent.de) and for more information about the team eForce
Prague Formula visit (www.eforce.cvut.cz).

1.2 Motivation

Until the 2024 FS season, there were two teams at CTU in Prague, eForce FEE Prague
Formula competing in electric/driverless category and CTU Cartech, a few years older team
competing in the combustion/hybrid category. As the new regulations and automotive
trends brought an end to combustion FS cars, the teams decided to merge for season 2024.
This merge brought many new challenges to the new team, especially because of different
design approaches in previously separated teams. These different approaches were visible
also in the aerodynamics department with the most significant difference - the approach
to CFD. Team CTU Cartech used Star CCM+ whereas eForce FEE Prague Formula used
Ansys Fluent software. All user interface experience and preferences of a single team‘s CFD
developers put aside, both software are the peak of what CFD industry offers. When both
software are used correctly and identically, there should not be any significant difference
in result. Some simulations may differ in computational time, but this also depends on the
specific use of the software.

However many differences were also examined in various stages of the simulation setup
such as surface mesh, volumetric mesh with prism layers, and choice of turbulence model.
This thesis should compare different approaches and establish a new methodology for
eForce Prague Formula team according to these observations because the simulation meth-
odology for season 2024 was based on Ing. Martin Ševč́ık masters thesis [2] even though
the simulation setup was already outdated. Moreover, the goal is to try completely new
methods such as GPU solver which can save more than 80 % of computational time.
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1.3. Requirements

1.3 Requirements

The aerodynamics group of eForce Prague Formula team is divided into two main develop-
ment groups. The first one is focused on CFD development whereas the second (and larger)
one is focused on aerodynamic package development in terms of CAD and manufacturing.
This group uses CFD results for a better understanding of their design changes in CAD
but the in-depth functionality and setup of the CFD software stays hidden to the group
members, mainly because of the specialization one needs to operate with CFD software.
The aerodynamics CFD workflow is visualized in Figure 1.2.

In conclusion, CFD software that allows users to upload new CAD model and obtain all
necessary results automatically is needed. So-called one-click simulation, however, brings
another problem: a possible lack of knowledge transfer among CFD engineers, especially
when a high level of automation is implemented. This problem can be avoided by creating
step-by-step tutorials for team novices.

Figure 1.2: Scheme of aerodynamics group CFD workflow
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1.4. Thesis Structure

1.4 Thesis Structure

The thesis is organized into 8 chapters as follows:

1. Introduction: Describes the motivation behind this thesis and recognizes require-
ments of eForce Prague Formula FS team.

2. CAD Model for CFD : This chapter discusses various approaches to CAD modelling
and its impact on CFD setup.

3. Mesh: In this section mesh refinement and boundary layer capture are the main
topics.

4. Boundary Conditions : In Chapter 4, boundary conditions for axial fan and cooling
are compared.

5. Turbulence models : Chapter 5 discusses one of the key aspects of this thesis. It
compares an already outdated turbulence model for FS race car simulation with a
newly proposed and adjusted model.

6. CFD Solver Computation: Compares various approaches to solution methodology in
terms of numerical accuracy, convergence criterion, and computational time. Also,
compares two different approaches in terms of computer hardware usage.

7. Final Simualtion: Summarizes the results of previous comparisons and defines a new
CFD methodology for FS team eForce Prague Formula.

8. Conclusion: Brings a conclusion to this thesis and proposes further research of CFD
methodology within eForce Prague Formula team.
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Chapter 2

CAD Model for CFD

First, we need to discuss the very beginning of every CFD simulation which is CAD model.
However, since this thesis is not about CAD modeling we will discuss this topic very briefly
and mention only some important aspects.

2.1 Simplification

CAD model of Formula Student race car is very complex, containing every component of
the car, from large parts such as monocoque to the smallest ones such as bolts, brackets,
and many others. This model would be overly detailed for whole car simulation, resulting
in problems with meshing and long computational time. Because of that, a simplified
CAD model is created. This model contains detailed parts crucial for influencing the
airflow around the car. Other parts such as previously mentioned bolts, brackets, etc. are
replaced with simple objects like cylinders or polyhedrons. Figure 2.1 shows the difference
between the standard front axle assembly and the CFD-optimized CAD model of the same
assembly.

Figure 2.1: Difference between standard CAD geometry (left) and simplified geometry
(right)
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2.2. Tyre Contact Patch

2.2 Tyre Contact Patch

Contact patch between the tyre and road is a crucial area for race car underbody aero-
dynamic performance since the rotating wheel creates inwash and outwash vortices which
influence airflow toward the rest of the car. Every tyre has a slightly different contact patch
depending on load, compound, and wear. Also, the tyre height which changes with tyre
load is important for open-wheeled cars regarding side wing and rear wing aerodynamical
performance.

Moreover, a tyre contact patch is an area with a sharp angle between the tyre and the
road but large geometry simplification can not be done because of the reasons mentioned
in the paragraph above. Various approaches to this problem exist. The most common
solutions are:

◦ Creating a solid block underneath the tyre to increase the contact patch angle

◦ Refining mesh underneath the tyre

Both mentioned approaches were simulated and compared to decide which solution is
the best for FS race car application. All simulation settings were kept the same for the
sake of valid CFD comparison.

2.2.1 Ideal Geometry With Solid Block

This approach should be the easiest for both modeling and meshing. Two different sizes
were compared - a smaller one (v1) and a bigger one (v2). Dimensions of both blocks are
shown in Figure 2.2.

Figure 2.2: Difference between a smaller block v1 (left) and a bigger block v2 (right)

The big block has proved to be the easiest and quickest solution. Having over 1 million
cells less (please note that because of the bad cells orthogonal quality, v1 mesh had to
be locally improved by BOI, for definition of BOI see Section 3.2) and no problem during

7



2.2. Tyre Contact Patch

volumetric meshing thanks to the lack of sharp radiuses create from big block robust
solution that does not require large mesh, which might be suitable for teams with lack
of computational power or inexperience with CFD, see Table 2.1. Table 2.2 shows a
comparison of aerodynamic performance. Especially the difference in lift is more than 9%.

Figure 2.3 shows drag over iterations and Figure 2.4 shows lift over iterations. In both
figures, there is a visible difference in convergence and final result which supports the
idea that the big block solution is more robust for meshing and solver but lacks real-life
accuracy.

Table 2.1: Mesh size comparison

Number of cells
Big Block 2 611 708
Small Block 3 683 233

Table 2.2: Values of drag and lift, last 300 iterations average

Drag [N] Lift [N]
Big Block 8.16 -10.04
Small Block 7.93 -9.12
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2.2. Tyre Contact Patch

2.2.2 Comparison of Ideal Geometry and Small Solid Block

Now that we have compared different sizes of solid block geometry and decided that a
smaller block is a better solution for our case, let’s compare the smaller block with abso-
lutely ideal geometry of the tyre. All settings of simulation were kept the same and both
tyres required additional BOI around the area of contact patch. Because every CFD mesh
is limited by its minimum size defined in scoped sizing, even ideal geometry tyre can not
stay intact. After a wrap was created around the ideal geometry tyre, a contact patch was
created by the limits of scoped sizing as shown in Figure 2.5. In the end, the size of the
contact patch of ideal tyre was almost identical to the size of a small solid block contact
patch. Refinement of ideal tyre scoped sizing might be done but the volumetric mesh would
be too great for whole car simulation then. As we mentioned the almost-identical contact
patch dimension in both cases, there is no surprise the results were identical as well, see
Table 2.3, Table 2.4, Figure 2.6 and Figure 2.7.

Figure 2.5: Ideal geometry before mesh (left) and ideal geometry after mesh (right)

Table 2.3: Mesh size comparison

Number of cells
Ideal 3 669 357
Small Block 3 683 233

Table 2.4: Values of drag and lift, last 300 iterations average

Drag [N] Lift [N]
Ideal 7.89 -9.07
Small Block 7.93 -9.12
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2.2. Tyre Contact Patch
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To summarize this research let’s compare all three variants. The tyre contact patch can
be simplified by creating solid block geometry to refine the sharp angle between the tyre
and the ground but we have to be very careful when choosing the dimensions of such a
block since it can drastically influence the result of our simulation. When choosing between
small block simplification and an ideal geometry approach, both simulations show the same
results so the decision depends on overall simulation setup and CFD software use. For
example, students from former FS team CTU Cartech used small block geometry because
they had problems with wrap generation around the sharp angles whereas students from
eForce FEE Prague Formula used a direct approach with ideal tyre geometry since their
Fluent workflow had no problem with such angles. The final pictures of this subsection
show a comparison of all three variants in terms of total pressure distribution at 2 mm
above ground (Figure 2.8). It is visible how different geometry approaches can change not
only the final result of the tyre but also the airflow towards other crucial aerodynamic
elements like the side wing and underbody.

Figure 2.8: Total pressure field from left side: Big Block, Small Block, Ideal geometry
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2.2. Tyre Contact Patch

2.2.3 Tyre Radius Regarding Tyre Load

In the previous subsection, we discussed the influence of tyre contact patch on the overall
simulation result. We supposed ideal tyre geometry however, the geometry of the tyre is
not always ideal in real race conditions. As more load is applied to the tyre, the geometry
changes as well. According to the data processed by eForce Prague Formula suspension
department, the tyre radius can change by ∼5 mm when a load of 300 N is applied to a
single wheel. Even higher load is possible when FS race car reaches its top speed during
acceleration for example. This tyre behaviour is not a problem of CFD methodology so no
comparison will be done in this work however, it is an interesting case which should be ex-
amined by eForce Prague Formula aerodynamics department in the following seasons. The
detailed relationship between tyre loaded radius and normal load is shown in Figure 2.9.

Figure 2.9: Relationship between tyre loaded radius and normal load
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2.3. Trailing Edge Geometry

2.3 Trailing Edge Geometry

Airfoils can have various shapes of trailing edges. Most common airfoils used for FS race
car have sharp trailing edges in the design phase. However, since all wings are hand-crafted
in a university workshop, the final geometry tends to be slightly different. Especially the
trailing edge becomes blunt after lamination, cutout, and final assembly. The thickness of
such trailing edge was measured to be approximately 1 mm. Further CFD research was
done to estimate the effect of this change in terms of wing performance. A conventional
Selig 1223 airfoil (commonly used airfoil amongst many FS teams) was used to create a
wing cascade from three identical airfoils, similar to wings used in Formula Student.

In order to receive the most reliable results, simulation settings were the following:

◦ Refined mesh at all trailing edges

◦ Poly-hexcore volumetric mesh

◦ 12 prisms layers with 1.5 growth ratio

◦ SST k-omega turbulence model

◦ Coupled solver with 2nd order upwind

Note that more prism layers with a smaller growth ratio might be used however, the
y+ values met the selected turbulence model criteria, as well as the height of the boundary
layer at single elements of the wing. Also, this simulation should go in hand with the
actual simulation setup used in whole-car simulation to verify the correctness of that setup
so a more refined prism layer would be uninformative.

The blunt geometry of the trailing edge has proved to be an easier and faster way for
simulation setup. No special operations during wrap generation nor prism layer generation
were needed. On the other hand, airfoil with an ideally sharp trailing edge needed more
pre-wrap preparations in terms of edge zone scoped sizing refinement. Stair stepping during
the generation of prism layers had to be adjusted also. Despite these differences in meshing,
the rest of the simulation steps and setup remained the same. The difference in meshes
between sharp and blunt trailing edge can be seen in Figure 2.10.

Results in Figure 2.11 show that the blunt trailing edge (real geometry on FS race
car) has slightly better aerodynamic performance than the sharp trailing edge (wing in
CAD model), even though, in theory, the ideal sharp edge should have better aerodynamic
performance. It is important to mention that the difference is so small that we could further
discuss whether the difference was made solely because of the geometry of the trailing edge
or because it was caused by other aspects such as the gap between flaps. Anyway, after
this comparison, we can say that there is no significant change in the results no matter
which geometry of trailing edge we use. Table 2.5 shows a negligible difference in mesh
size however, this might become a noticeable difference when computing whole-FS race
car simulation. With every prism layer and geometry complexity added, the number of
cells rapidly increases because the surface mesh at the sharp trailing edge must be refined

12



2.3. Trailing Edge Geometry

Figure 2.10: Mesh of sharp trailing edge (left) and mesh of blunt trailing edge (right)

accordingly. For the whole-car simulation, I would recommend using a blunt trailing edge
as it is an easier and more robust approach for the volumetric meshing process. Moreover,
the blunt trailing edge represents the actual FS race car trailing edges more accurately.

Table 2.5: Mesh size comparison

Number of cells
Sharp 4 734 471
Blunt 4 372 344
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Chapter 3

Mesh

This chapter focuses on, probably the most important, section of the CFD simulation
process. Underestimating the significance of both surface and volumetric fine mesh leads
to problems with the CFD solver, especially its initialization and convergence criterion.
Various applications require different mesh quality and size so many approaches exist.
Bodies of influence, tunnel size, prism layers, cell shape, and many more aspects can be
changed to reach the desired solver convergence and accuracy. The following sections focus
on different setup approaches and their influence of CFD simulation in terms of grid size,
simulation time, and result accuracy.

3.1 Testing mesh

Before we begin with our first comparison, the mesh used for this and the following simula-
tions should be defined. A simplified model of FS race car was created, consisting of chassis,
tyres, front wing, and rear wing. This model contains all parts that are important for the
representation of race car - chassis with the driver, moving wheels, front wing as an aero-
dynamic device with the lowest ground clearance, and rear wing as an aerodynamic device
with the most significant airflow separation. Other parts, such as suspension, rollover bar,
side wing, and cooling would only increase the simulation time without adding extra in-
formation to this comparison. The tunnel dimensions for this mesh are 7.2x7.2x33 meters.
This mesh, shown in Figure 3.1, is called ”CTU.24 demo” and will be used throughout
many following simulations and comparisons.
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3.2. Body Of Influence

Figure 3.1: CTU 24 demo mesh

3.2 Body Of Influence

Body of Influence (=BOI) is a mesh refinement near simulated objects. During the process
of meshing, cell size and cell growth ratio between the simulated object and virtual tunnel
(or similar boundary area) are defined in scoped sizing control. However, the general scoped
sizing selection only defines the maximum cell size and growth ratio within the simulated
area and the minimal/maximal cell size on selected faces or edges. This might become a
problem in the close surroundings of the simulated object.

Let’s suppose FS race car simulation where we set cell size (suppose standard size from
0.5 mm to 320 mm) and growth ratio (suppose standard ratio 1.3) on the car surface
and inside the tunnel. This scoped sizing will automatically generate cells of the same
size around the car without any regard for pressure or velocity field. The mesh will have
rapidly increased cell size in proximity to the car where many vortices are created. This
might cause trouble with solution convergence. A solution to this uncertainty might be
decreasing the growth ratio which would create larger amount of smaller cells. However,
this approach is far from ideal because it will also create many more cells in free-flow areas,
where fine mesh is not crucial for solution stability, thus increasing the computational time
with no benefit to the results.

The best and most used solution is to create virtual areas around the simulated object,
where large velocity and pressure gradients are expected and then set the required cell size
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3.2. Body Of Influence

within this area. By doing so, a fine mesh can be generated in the specific surroundings of
the car whereas larger cells can be applied to free-flow areas as shown in Figure 3.2.

Figure 3.2: Mesh without BOI (left) and with BOI (right)

To support this theory, the following simulation was performed. Two identical models,
CTU.24 demo, were created with one model wrapped without BOI and the second one
with BOI. Compared parameters were the following:

◦ Mesh size

◦ Coefficient of drag - last 100 iterations average

◦ Coefficient of lift - last 100 iterations average

◦ Centre of pressure (CoP)

◦ Velocity in 6 selected points

◦ Time of numerical solution

The results are shown in Table 3.1 and Figures 3.3, 3.4, 3.5, and 3.6.

Table 3.1: no BOI and BOI comparison

Mesh refinement no BOI BOI
Mesh size 18 mil 23 mil
Coefficient of drag (last 100 it. avg.) -214 772 1.58
Coefficient of lift (last 100 it. avg.) -152 797 -3.56
Centre of pressure (% rear axle) n/a 54.2
Time of numerical solution 35 min 65 min
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Figure 3.6: BOI Velocity Report

From the results in Table 3.1, Cd and Cl reports in Figures 3.3 and 3.4, and velocity
reports in Figures 3.5 and 3.6 is obvious how much difference local mesh refinement can
make. The simulation without any mesh refinement had 5 million cells less and its com-
putational time was almost 50 % faster, however, the price in terms of solution stability
was unacceptable. The refined mesh solution convergence was within 4 % whereas the un-
refined mesh proved to be extremely unstable after 400 iterations. Such instability might
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be caused by a single cell that could not, potentially, cause any significant disturbance in
many other simulations without mesh refinement. However, this represents a huge risk
for serial CFD automatization within the aerodynamic group development so BOI should
never be neglected. Nevertheless, further research on this topic should be done by eForce
Prague Formula aerodynamic group because decreasing the BOI to its minimum, while
maintaining sufficient solution stability, might significantly save computational time.

3.3 Prism Layer

This section aims to explain the basic theory behind boundary layer capture in CFD and
why it is so important to the overall simulation result. Before we continue, some values
and terms should be explained.

3.3.1 Reynolds Number

Reynolds number is a non-dimensional number that can be defined as a ratio of inertial and
viscous forces. It is one of the key numbers for aerodynamics because it allows to compare
various geometries regardless of their dimensions and flow velocity. This is crucial for
example when a wind tunnel test is performed. To save the cost of wind tunnel testing,
and because some real-life objects might be too big for conventional wind tunnels, smaller
models are tested in wind tunnel. To ensure wind tunnel results are valid with reality, the
Reynolds number must be preserved:

Re =
ρ · u · L

µ
(3.1)

where ρ is density of the fluid, u is velocity of the fluid, L is the characteristic dimension,
and µ is dynamic viscosity of the fluid.

3.3.2 Boundary Layer

The boundary layer is a region near a wall (or any surface in general) where the velocity
of airflow increases from u = 0 at the wall to u = u∞, where u∞ is freestream velocity.
Figure 3.7 shows the boundary layer evolvement along a flat plane where δ is the height of
a boundary layer. If we consider an undisturbed flow in front of the flat plate, the initial
boundary layer will be laminar, becoming turbulent afterwards. The change between the
laminar and turbulent boundary layer depends on the Reynolds number but it is important
to mention that this change does not happen when the Reynolds number reaches a certain
value but a certain range. The laminar boundary layer has a lower surface friction resulting
in lower friction drag however, for race car applications turbulent boundary layer is usually
preferred as the airflow separation is delayed because of the momentum transfer normal to
the direction of average speed.[1]
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3.3. Prism Layer

Figure 3.7: Boundary layer scheme[1]

3.3.3 Capture of Boundary Layer in CFD

To capture a boundary layer in CFD, a prism layer is used for the discretization of the
velocity gradient within the boundary layer. There are various shapes of prism layer cells
as well as their number, minimal height, and growth ratio. All these parameters can be
changed in order to achieve a solid capture of the boundary layer. The following parameters
should not be neglected:

The height of the prism layer should be the same or higher than the expected
thickness of the turbulent boundary layer. The height can be expressed as:

δ = 0.37 ·
(

x

Re
1/5
x

)
(3.2)

where δ in turbulent boundary layer thickness, x is characteristic dimension, and Rex
is Reynolds number based on the characteristic dimension x.

The height of the first prism should comply with the selected turbulence model
and its criterion for y+ dimensionless value according to the law of the wall pictured in
Figure 3.8. This figure shows three regions of the wall law. In viscous sublayer y+ ∈< 0, 5)
the velocity gradient is computed directly from the velocity values at each prism layer
whereas in the logarithmic-law region y+ ∈ (30, 300⟩, the height of the first prism layer is
greater than the thickness of the boundary layer itself so the velocity gradient is computed
using a mathematical formula. The range of y+ ∈ ⟨5, 30⟩, the so-called buffer layer, is to
be avoided since both of the previously mentioned approaches are inaccurate in this region.
From the facts presented in this paragraph, the logarithmic-law approach might seem like
the best option since we need only one or a few prisms to capture the velocity gradient
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instead of the viscous sublayer approach however, the logarithmic-law approach proved
to be inaccurate when complex geometries with adverse pressure gradients are simulated
which is exactly the case of FS race car. [3]

Figure 3.8: Law of the wall [4]

The growth ratio (=GR) of each prism should be as low as possible to ensure the
most accurate velocity gradient coverage, especially near the wall where the gradient is the
greatest. The optimal growth ratio should be recommended by every software developer.
According to Ansys Fluent, the optimal growth ratio is 1.2. [3]

Minimal amount of prisms in the prism layer should be recommended by the soft-
ware developer as well. Again, according to Ansys, the minimal amount of layers should
be at least 10 for general simulation purposes and at least 15 layers for complex geometries
such as FS race car. [5]
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3.3.4 Theory Verification in CFD

To support the previously mentioned theory and recommendations, three simulations were
done. For the first two simulations, GOE 226 airfoil was used in 3D CFD simulation. To
observe various prism layer setup behaviours in different airflow conditions, two angles of
attack (=AoA) were chosen according to Cl/Alpha plot for Re = 500000, as shown in
Figure 3.9. The angle of attack 0° provides stable airflow around the airfoil whereas airflow
separation happens when AoA 15° is reached. To preserve Reynolds number, the chord of
the airfoil was set to 0.5 m and freestream velocity to 14.2 m/s. The wingspan was 1.2 m
with an endplate (0.575x0.95x0.006 m) at each end to avoid unfavourable vortices.

Figure 3.9: GOE 226 Cl/Alpha plot for Re = 500000 [6]

For both angles of attack, four different prism layer setups were compared. The first
prism height was set to 0.025 mm to reach the desired y+ ∈< 0, 5) value, and the total
height of the prism layer was computed to 13.538 mm according to equation 3.2. The
Low GR means the lowest growth ratio while reaching the lowest height of the overall
prisms layer. The Mid GR was a compromise between the growth ratio and total prism
layer height, with a higher growth ratio than recommended and a lower total prism layer
thickness than computed. The High GR version has the highest growth ratio however, it
complies with the required total thickness. The last setup is to set a benchmark for other
versions as the growth ratio was kept 1.2 and also the minimal total thickness was reached,
resulting in a total number of 26 prism layers. Table 3.2 shows specific values of parameters
for each setup. It is important to mention that the airfoil had race car orientation so the
result of the coefficient of lift will be negative.
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Table 3.2: GOE 226 prism layer setup

1st prisms height
[mm]

GR Layers Total height
[mm]

26 prisms 0.025 1.2 26 14.18
Low GR 0.025 1.2 15 1.8
Mid GR 0.025 1.3 15 4.182
High GR 0.025 1.45 15 14.57

Compared parameters were the following:

◦ Coefficient of drag - last 100 iterations average

◦ Coefficient of lift - last 100 iterations average

◦ Difference [%] from the benchmark simulation with 26 prisms

◦ Simulation stability in terms of Cl and Cd

After 500 iterations, the following results were obtained for AoA 0°:

Table 3.3: GOE 226 with AoA 0° prisms setup comparison

Cd (last 100 it. avg.) Cl (last 100 it. avg.) Difference [%]
(Cd/Cl)

26 prisms 0.039 -0.564 0/0
Low GR 0.035 -0,521 10/8
Mid GR 0.039 -0.569 0/1
High GR 0.038 -0.563 3/0.2
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From the results shown in Table 3.3, Figure 3.10, and Figure 3.11, is visible that
all setups provide a stable solution. Both Mid GR and High GR are very close to the
benchmark whereas the Low GR is 8-10 % of the benchmark version. However, CFD
results of FS race car are expressed in values with two decimal places instead of three so if
we were to use this criterion then even the Low GR version would be 0 % of the benchmark
in terms of Cd and 7 % in terms of Cl. Let us compare the AoA 15° to find out if the same
trends apply when the airflow is separated from the airfoil.

Compared parameters were the same and after 500 iterations, the following results were
obtained for AoA 15°:

Table 3.4: GOE 226 with AoA 15° prisms setup comparison

Cd (last 100 it. avg.) Cl (last 100 it. avg.) Difference [%]
(Cd/Cl)

26 prisms 0.205 -1.562 0/0
Low GR 0.211 -1.630 3/4
Mid GR 0.211 -1.600 3/2.5
High GR 0.204 -1.544 0.5/1.2
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The results in Table 3.4 show that the greater the overall thickness of the prism layer
was, the more similar the result was to the benchmark simulation with 26 prisms. This
supports the theory that the prism layer is crucial for capturing the boundary layer and
its velocity gradient so the overall thickness should not be neglected even at the expense
of a higher growth ratio. Figures 3.12 and 3.13 also show that the lower prism layer
thickness was, compared to the estimated boundary layer thickness, the solver faced greater
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instability as part of the boundary layer was computed by standard polyhedra cells. A
comparison of the velocity field and prism layers is shown in Figures 3.14 and 3.15.

Figure 3.14: Comparison of prism layers for
GOE 226 AoA 0°. Descending from the top:
26 prisms, Low GR, Mid GR, High GR.

Figure 3.15: Comparison of prism layers for
GOE 226 AoA 15°. Descending from the top:
26 prisms, Low GR, Mid GR, High GR.

Finally, to conclude this research about the prism layer and its setup, a real-case scen-
ario was simulated. A rear wing from the development stages of FS race car named CTU.24
was used. The setup, as shown in Table 3.5, was the same as in the case of GOE 226 airfoil
except one more version was simulated. The version is called ”Optimal” and it applies
various growth ratios and total prism layer thickness on specific parts of the wing accord-
ing to its dimensions so that smaller elements of the rear wing can have a lower growth
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ratio while fulfilling the requirements of the boundary layer thickness, thus optimizing
the relation between growth ratio and prism layer thickness. Detailed ”Optimal” setup
parameters are shown in Table 3.7.

Table 3.5: FS race car rear wing prism layer setup

1st prisms height
[mm]

GR Layers Total height
[mm]

26 prisms 0.025 1.2 26 14.18
Low GR 0.025 1.2 15 1.8
Mid GR 0.025 1.3 15 4.182
High GR 0.025 1.45 15 14.57
Optimal 0.025 1.3 - 1.44 15 4.182 - 13.431

Table 3.6: Optimal prism layer setup

1st prisms height
[mm]

GR Layers Total height
[mm]

Large Flap 0.025 1.44 15 13.431
Middle Flap 0.025 1.35 15 6.368
Small Flap 0.025 1.3 15 4.182
Endplate 0.025 1.44 15 13.431

Compared parameters were the same as in the case of GOE 226 airfoil and after 500
iterations, the following results were obtained:

Table 3.7: GOE 226 with AoA 0° prisms setup comparison

Cd (last 100 it. avg.) Cl (last 100 it. avg.) Difference [%]
(Cd/Cl)

26 prisms 2.384 -5.424 0/0
Low GR 2.364 -5.409 1/0.3
Mid GR 2.309 -5.292 3/2.4
High GR 2.339 -5.333 2/1.7
Optimal 2.374 -5.412 0.4/0.2

Table 3.7 shows surprising results when the lowest growth ratio version is nearly similar
to the benchmark value of 26 prisms. Also, the Optimal version proved to be highly
accurate. Because the low-growth version proved to be less accurate when airflow was
attached in GOE 226 comparison (and the rear wing is the most extreme version where
airflow separation usually happens on FS race car), the ”Optimal” setup seems to be the
most suitable one for FS race car application. However, according to Figures 3.16 and
3.17, Mid GR and High GR provided the best solver stability so for FS race car simulation
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I would recommend using the ”Optimal” setup where airflow separation is expected and
High GR setup where airflow tends to stay attached.
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Chapter 4

Boundary Conditions

Boundary conditions are an essential part of every CFD simulation setup. Some of these
conditions are part of almost every possible fluid-flow simulation, such as velocity/pressure
inlet/outlet. Every FS race car simulation also has boundary conditions applied to the
tunnel floor (moving wall in translational motion) and tyres (also moving wall but in
rotational motion which adds tangential velocity to the cell on the tyre surface). These
mentioned boundary conditions are not anything new to Formula Student community and
every team uses them. However, more advanced boundary conditions that have result on
the overall aerodynamic performance of the FS race car exist. This chapter is about these
boundary conditions, their setup and comparison.

4.1 Axial Fan on FS Race Car

Every FS race car regardless of its powertrain needs a cooling system. Most of FS in-
ternal combustion engines require cooling of the engine and turbocharger. Electric vehicles
have similar requirements for cooling - motors, motor controllers, and more advanced ones,
autonomous units as well. These cooling systems usually need 1-2 fans per radiator how-
ever, since these fans were never significantly powerful (some teams use even PC cooling
fans), its correct setup was never a big issue. This was all changed by Formula Student
Germany rules 2020v1 when a powered ground effect was no longer restricted. Some teams
started experimenting with actively sucked air from the underbody of their cars. Team
eForce Prague Formula has decided to apply this innovation to its new car for season 2024
by adding two Schubeler DS-86-AXI HDS 7.5 kW fans behind side wings. Since this is a
really powerful axial fan, various approaches for fan boundary conditions in CFD should
be compared.

4.1.1 2D fan zone

The first, easiest, and fastest approach is the 2D fan zone. A single plane is inserted
between the rotor and stator, usually in the middle of the fan blades area. This plane
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4.1. Axial Fan on FS Race Car

has an internal function that makes the plane ”invisible” to the airflow but boundary
conditions can still be applied to this plane. This area is then changed to 2D fan zone in
the solver where the fan curve is defined. The fan curve, as shown in Figure 4.1, provides
information about pressure jump dependent on the flow rate through the fan and should
be available at every fan manufacturer. The swirl of the fan can be adjusted by modifying
the tangential velocity profile in the setup.
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Figure 4.1: Fan curve of Schubeler DS-86-AXI HDS 7.5 kW [7]

4.1.2 3D fan zone

The 3D fan zone boundary condition works similarly to the 2D fan zone. Two planes
defining the area of fan blades are inserted into the mesh and then the planes intersect
the mesh into two fluid regions. One region is the standard fluid region as in case of FS
race car simulation however, the second fluid region is defined as a momentum source, also
known as the 3D fan zone function which simulates the effect of an axial fan by applying
a distributed momentum source in a toroid-shaped fluid volume. The 3D fan zone offers
some advantages over other fan functions[5]:

◦ 3D fan zone can simulate swirl and radial velocities whereas the 2D fan zone simulates
mainly axial flow. Swirl can then be modified by defining the tangential and radial
velocities.

◦ The 3D fan zone offers comparable results to MRF (more about MRF in the next
section) without the need to model the blades, resulting in smaller mesh and faster
simulation.
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4.1.3 Moving Reference Frame

Moving reference frame, also known as MRF, is the most accurate method for the simu-
lation of axial fans and all other kinds of rotating objects with non-filled geometry such
as wheel rims, propellers, and turbomachinery. The meshing method is similar to the
previously mentioned approaches. The area with fan blades between the rotor and stator
is separated by two planes, resulting in two fluid objects. The fluid object containing fan
blades is then selected as an MRF. The biggest advantage over 2D/3D fan zone conditions
is that Ansys Fluent can use GPU solver for MRF whereas other momentum sources for
fan boundary conditions (such as 2D and 3D fan zone) are not available for GPU solver
yet. This method, however, has also many limitations such as:

◦ Because all blades of the fan must be finely wrapped, the resulting mesh is much
larger than previously mentioned 2D/3D approaches. This is especially ineffective
when MRF condition should be used in the whole FS race car CFD simulation.

◦ The MRF approach needs an extremely precise CAD model of the fan blades, espe-
cially in case of powerful fans like the Schubeler DS-86-AXI HDS 7.5 kW used for
eForce Prague Formula CTU.24 car. Even a slight change in geometry can result in
inaccurate results. Unfortunately, not many fan manufacturers are willing to share
their CAD model of blades used in their fans. Figure 4.2 shows the difference between
Schubeler DS-86-AXI HDS real geometry and CAD geometry that is publicly avail-
able. Notice the difference in the fan tip shape, slightly different shape of blades, and
completely different stator cover behind the blades.[7]

Figure 4.2: Difference between Schubeler fan available CAD geometry (left) and real fan
geometry (right)
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4.1.4 Fan Boundary Conditions Comparison

All three mentioned approaches were simulated and compared to find the best possible
solution for FS race car simulation. Compared parameters were the following:

◦ Mass flow rate through the fan

◦ Area weighted average velocity through fan inlet

◦ Mesh size

◦ Time of numerical solution

The results in Table 4.1 show a similarity between 2D and 3D fan zones. On the other
hand, the MRF boundary condition shows completely different results, presumably because
of the previously mentioned differences in fan casing and blades geometry. Because of that,
only 2D and 3D fan zones will be presumed as the optimal choice for FS race car CFD
simulation. The 2D fan zone requires fewer cells because the mesh refinement around the
fan blades area is simplified to a single plane instead of a tortoid shape, resulting in faster
computational time. The mass flow rate is almost identical which is no surprise since both
fan boundary conditions operated only with the axial source term defined by the fan curve.

Table 4.1: 2D fan zone, 3D fan zone, and MRF comparison

Boundary condition 2D fan zone 3D fan zone MRF
Mass flow rate [kg/s] 0.546 0.554 0.707
Area weighted average [m/s] 50.787 54.575 133.789
Mesh size 4.2 mil 4.35 mil 10.1 mil
Time of numerical solution 70 min (CPU) 90 min (CPU) 17 min (GPU)

The biggest difference was in the velocity field as shown in Figure 4.3 and Table 4.1.
The picture clearly shows that the 3D fan zone estimates much greater velocity behind
the fan. This finding is important especially for the aerodynamic design of FS race car.
The fan outlet velocity and swirl can significantly influence the behaviour of other aero-
dynamic parts in near proximity to the fan. Unfortunately, it is hard to conclude which
of these boundary conditions is more accurate for this specific case. In general, the 3D
fan zone should provide more complex and accurate results since it includes swirl and ra-
dial velocities by default however, we can not conclude the real accuracy of these boundary
conditions to the true fan performance. Because of that, extensive research and data meas-
urement should be made when FS team decides to implement such a powerful fan into its
aerodynamical concept. By measuring the velocity and pressure field around the fan, the
boundary conditions setup can be then adjusted to match the actual fan performance.
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4.2. Radiator on FS Race Car

Figure 4.3: Velocity field for different fan boundary conditions. Descending from the top:
2D fan zone, 3D fan zone, and MRF

4.2 Radiator on FS Race Car

The radiator of FS race car is simulated as a porous zone. The setup is the same as in the
case of the 3D fan zone - two planes marking the inlet and outlet of the radiator core are
intersected with the radiator frame. Two fluid regions are then created and the fluid region
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between these intersected planes is defined as a porous zone. Thanks to the research of
former CTU Cartech member, Otakar Volek, team eForce Prague Formula now possesses
a radiator curve which shows the pressure drop relevant to freestream velocity. Ansys
Fluent allows setting the porous zone behaviour as a power law of the velocity magnitude
according to equation 4.1:

Si = −C0|v|C1 (4.1)

where Si is the source term, C0 and C1 are user-defined empirical coefficients. [5]

The data gathered by Otakar Volek can be fitted to the power law curve which shows
the required empirical coefficients for our porous zone setup as shown in Figure 4.4. For
our case C0 = 604.76 and C1 = 1.531 then.

Figure 4.4: Data from radiator measurement fitted to power law curve
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This section demonstrated how boundary conditions for FS race car radiator can be
defined and Figure 4.5 shows how such a radiator can work in CFD simulation. Please note
that this case was made only for demonstration purposes and the shape of the radiator is
not the same as on a real FS race car (however the boundary conditions would remain the
same in both cases).

Figure 4.5: Contour of static pressure and velocity pathlines around radiator
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Chapter 5

Turbulence Models

As we discussed in section 3.3, every laminar flow might change to turbulent according to
various criteria such as Reynold number and complexity of the geometry. The transition
between laminar and turbulent flow is solved by three approaches. The first approach is
called DNS (Direct Numerical Solution) which solves fully unsteady Navier-Stokes equa-
tions however, this approach demands an extreme computational power and is only ap-
plicable to problems with simple geometry and low Reynold numbers so only academic
research can be made with this approach. The second method called LES (Large Eddy
Simulation) solves the largest eddies directly and the smaller ones are modeled. It is a less
power-consuming method than DNS but the mesh and computational power requirements
are still often beyond the possibilities of industry solutions. Because of that, the third
method called RANS (Reynolds Averaged Navier-Stokes Simualtion), is commonly used
for industry applications. This approach solves time-averaged flow where all eddies are
modeled. Various mathematical models exist for this approach but only two of them will
be mentioned and compared in this work. [3]

5.1 k-epsilon Models

It is important to imagine k-ϵ more like a family of various models than just one turbulence
model. All of them are 2 equational models with one equation for turbulent kinetic energy
(k), and the second one for turbulent dissipation rate (ϵ). Three varieties of the k-ϵ model
exist in Ansys Fluent:

◦ Standard k-ϵ

◦ RNG k-ϵ

◦ Realizable k-ϵ

All these models share similar forms of transport equations however they differ in other
aspects such as the method of calculating turbulent viscosity. Both RNG and Realizable
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models offer a significant improvement in terms of streamline curvatures, vortices, and
rotation over the Standard k-ϵ model. Anyway, all of these models show insensitivity in
cases where adverse pressure gradient and boundary layer separation are present. Because
of that, these models are not recommended for external flow simulations where they tend
to show too optimistic results in terms of aerodynamic performance. This is exactly the
case of FS race car simulation and I did not intend to mention nor anyhow compare
these models with more advanced ones such as SST k-ω but to my unpleasant discovery
many FS teams use the k-ϵ based models since they require less computational power,
use smaller meshes, and show very stable results (not necessarily accurate). This was
exactly the case of FS team eForce Prague Formula that used a Realizable k-ϵ model with
enhanced wall treatment throughout the 2024 season. This method was developed by Ing.
Martin Ševč́ık in his Masters degree thesis ”Aerodynamics design methodology of Formula
Student car”. It is a very well-written thesis where he compared Realizable k-ϵ model with
enhanced wall treatment and SST k-ω model in similar CFD software to Ansys Fluent. He
also substantiated his simulations by pressure-strips validation on real FS race car. This
research showed that between these two turbulent models, there was a 4% difference in
the coefficient of lift and almost a 5% difference in the centre of pressure where the biggest
difference in result was at the rear wing where airflow separation is expected due to the
high angle of attack. This difference is also supported by Figure 5.1 where the Realizable
k-ϵ model with enhanced wall treatment (V1 a, V2 a) shows approximately -0.5 better
coefficient of lift than the SST k-ω model (V1 b, V2 b). Lines 100 1, 100 3, and 100 5
show the data from pressure strips. [2] [5] [8]

Figure 5.1: Validation of CFD simulations via pressure strips [2]
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5.1. k-epsilon Models

Another example of k-ϵ models inaccuracy was observed by Ing. Lukáš Pacoň in his
Bachelor thesis ”CFD Simualtion Validation Tests in Wind Tunnel” where he compared
the k-ϵ model with the data from wind tunnel measurement of FS race car rear wing.
The data from Figure 5.2 show a significant difference between the simulation (red line
means downforce, green line means drag) and wind tunnel measurement (blue line means
downforce, orange line means drag). X-axis shows force [N] and y-axis shows freestream
velocity [m/s]. Notice the large difference in lift as the speed increases. For FS race car
simulation where the average speed is considered to be 15 m/s, the difference was almost
20 %. [9]

Figure 5.2: Validation of CFD simulations via wind tunnel measurement [9]

To conclude all the facts mentioned above, the Realizable k-ϵ model with enhanced wall
treatment and all other k-ϵ based models are very inaccurate for needs of FS race car simu-
lation. Even though they require less computational power, smaller and far more primitive
meshes, and provide stable solutions. All these aspects might be favourable for new FS
teams who are inexperienced in meshing or they do not use any aerodynamic assemblies
with parts of high angle of attack or vortex generators. However, for FS team eForce
Prague Formula with its computational hardware capabilities and long CFD experience,
k-ϵ models should never be used.
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5.2. k-omega Models

5.2 k-omega Models

The k-ω as well as k-ϵ in not only one model. Ansys Fluent offers three k-ω based models.

◦ Standard k-ω

◦ BSL k-ω

◦ SST k-ω

◦ Generalized k-ω (GEKO)

The k-ω based models offer many advantages over the k-ϵ models, especially in terms
of flow prediction in viscous sublayer. They are known to better and more accurately
predict adverse pressure gradients, which in terms of aerodynamic engineering, means
airflow separation and less downforce. However, the Standard k-ω model faces problems
with large sensitivity in the freestream area far from the wall. This problem was solved
by introducing SST k-ω turbulence model which uses ω model for near-wall turbulence
modelling and ϵ modelling for freestream. For complex geometries like FS race car where
many vortices and possible flow separations are expected, the SST k-ω is more suitable
than k-ϵ turbulence model according to Ansys. When no experimental data are obtained
from real-life testing, the default constants of each turbulence model are recommended to
be preserved. When a large amount of data is collected from real-life testing, the most
advanced model called GEKO can be used to further adjust the turbulence model for the
specific needs of FS race car simulations. This model allows the user to further define
additional constant parameters without having a negative impact on the basic calibration
of the model. Choosing the GEKO model might be the next step for FS race car CFD
simulation however, strong real-life data and a proper understanding of the impact of these
constants on simulation results are required. [5]

5.3 Models Comparison

In the previous sections, we have mentioned all important turbulence models that can be
used in FS race car applications. The two main models, Realizable k-ϵ and SST k-ω were
compared in order to find the best possible solution for CFD simulations within eForce
Prague Formula team. The Realizable k-ϵ model with enhanced wall treatment used by
Ing. Martin Ševč́ık in alternative software to Ansys Fluent as mentioned in Section 5.1.
and used by eForce Prague Formula during the 2024 season (in the following comparison
named ”2024 model”) was compared with the SST k-ω turbulence model. It is important
to mention that both simulations differ in meshing approach according to the needs of each
turbulence model.
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Compared parameters were the following:

◦ Coefficient of drag - last 100 iterations average

◦ Coefficient of lift - last 100 iterations average

◦ Centre of pressure (CoP)

◦ Mesh size

◦ Time of numerical solution

The results after 1000 iterations are shown in Table 5.1 below:

Table 5.1: Turbulence models comparison

Turbulence model ”2024 model” SST k-omega
Coefficient of drag (last 100 it. avg.) 1.767 1.699
Coefficient of lift (last 100 it. avg.) -5.04 -4.697
Centre of pressure (% rear axle) 49.5 53.3
Mesh size 20 mil 33.5 mil
Time of numerical solution 40 min (GPU) 8 hours (CPU)

Table 6.1 clearly shows a huge difference in results between both turbulence models.
The ”2024 model” shows a worse coefficient of drag by almost 4 %. However in the
most important parameter for vehicle performance, coefficient of lift, the ”2024 model” is
approximately 7 % more optimistic than the SST k-ω. Moreover, the difference in centre
of pressure was 3.8 % however, the fact that the centre of pressure has shifted rearwards
in the case of SST k-ω is quite surprising. According to the general theory of turbulence
models, the rear wing where flaps with the highest angles of attack occur should have
the most adverse pressure gradient from all other car parts, therefore the SST k-ω should
solve the separation more accurately, resulting in lower downforce of the rear wing that,
in conclusion, results in the centre of pressure shifting toward the front of the car, not
otherwise. However, the SST k-ω converged around the 200th iteration and then started
oscillating with an amplitude of 2 % around the final value whereas the ”2024 model” did
not converge even after 1000 iterations so we might assume that even the centre of pressure
shown by SST k-ω model is more accurate than the ”2024 model”. The ”2024 model” had
around 10 million cells less, resulting in much faster computational time mainly because
the GPU solver which, in the case of SST k-ω, required more GPU memory than was
available by PC hardware so the standard CPU solver had to be used. More about CPU
and GPU solver in Section 6.3. Another important aspect of every CFD simulation is y+
value which in the case of SST k-ω was everywhere below 4.5 except suspension and rollbar
tubes as shown in Figure 5.3. In the ”2024 model” around 50 % the cells were in the range
of y+ ∈ ⟨5, 30⟩ and many of them were even in areas where flow separation is expected.
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5.3. Models Comparison

Figure 5.3: Comparison between y+ values in SST k-ω (left) and ”2024 model” (right)
simulations. The contours show green for y+ ∈< 0, 5), red for y+ ∈ ⟨5, 30⟩, and blue color
for y+ ∈ (30, 300⟩

The difference in coefficient of lift is shown in Figure 5.4. Notice how the ”2024 model”
si more optimistic in pressure coefficient at all parts of the car. An especially large difference
is visible on the first flap of the front wing as well as the centre part of the whole front wing.
Pressure contours on the side wing show a lower pressure coefficient throughout the whole
surface of the lower skin except of the edge of the side wing endplate where large vortex
is created. This further shows how the ”2024 model” is less sensitive to airflow separation
from the surface and is also worse in terms of vortices prediction. Another difference worth
mentioning is the middle part of the rear wing where the SST k-ω shows much greater
airflow separation caused by the driver‘s helmet and autonomous systems camera on the
roll bar.
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5.3. Models Comparison

Figure 5.4: Comparison between pressure coefficient in SST k-ω (left) and ”2024 model”
(right) simulations

This comparison proves that only SST k-ω or more advanced turbulence models should
be used for FS race car CFD simulation even though a more advanced meshing approach,
larger mesh size, more hardware capabilities, and more computational time are required. In
case of lower hardware capabilities, simpler bodywork geometry with a precise turbulence
model is a better option than a simpler turbulence model in exchange for complex geometry
with multiple-element wings and vortex generators on a car. Remember that the quality
of results should always stand before the quantity!
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Chapter 6

CFD Solver Computation

Now that we finished the simulation setup, let’s discuss the importance of the solver com-
putation setup. Even though this topic might seem like a different category of CFD
simulation, it is tightly connected to the mesh and solver setup. Different meshes with
various boundary conditions, especially large and complex ones, might require different
solver approaches. Also, there should be differences in terms of computational time, sta-
bility, accuracy, and hardware requirements regarding the selected approach of the solver
computation. This chapter focuses on two main aspects of CFD solver computation -
Simple/Coupled scheme and comparison of GPU/CPU solver.

6.1 Single and Double Precision

Every numerical simulation needs some standard in terms of number representation to
ensure accurate results throughout all different simulations and computational software.
According to IEEE 754 Standard, two main approaches to number format exist. These
numbers are called floating-points. Computer software uses binary digits (also known as
bits) instead of decimal places and there are two main approaches to this floating-point
representation, single-precision and double-precision. These approaches differ in bits used
to represent actual numbers. For better understanding let’s assume an irrational number
like π=3.1415926535...Using for example π=3.1415926 during calculation will result in a
more accurate result than using only π=3.14. The single-precision computing uses 32 bits
to represent the actual number, 8 bits are used for the exponent, and 23 bits for mantissa
(to represent the fractional part), whereas double-precision uses 64 bits, 11 bits used for
the exponent and 52 bits for the mantissa. In general, the single-precision method is faster
in terms of computational time but lacks the accuracy of the double-precision method,
which is also preferable for complex simulations. [10]

To find out how this theory could affect the result of FS race car simulation, simple
research was performed. Both simulations were computed with exactly identical model
(CTU.24 demo), mesh, and other settings. The computation length was set to 2000 it-
erations to observe possible differences in convergence and overall stability. The solution
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6.1. Single and Double Precision

Method was set to SIMPLE (more about solution methods in Section 6.2) because of the
GPU solver memory requirements. Compared parameters were the following:

◦ Coefficient of drag - last 100 iterations average

◦ Coefficient of lift - last 100 iterations average

◦ Solver stability

◦ Centre of pressure (CoP)

◦ Time of numerical solution

◦ Solver stability

◦ GPU memory usage

◦ RAM usage

The results are shown in Table 6.1 and Figures 6.1, and 6.2 below.

Table 6.1: Sigle and double precision comparison

Precision Single Double
Coefficient of drag (last 100 it. avg.) 1.64 1.64
Coefficient of lift (last 100 it. avg.) -3.67 -3.64
Centre of pressure (% rear axle) 54.9 54.8
Time of numerical solution 33 min 33 min
GPU memory usage 28.6 GB 42.7 GB
RAM usage 97 GB 111 GB
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Figure 6.1: Stability of drag report compar-
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Figure 6.2: Stability of lift report compar-
ison

From the values summarized above we can assume that there is no significant difference
in the result between single and double precision. The oscillation of the most important
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parameter of FS race car, lift, was within 1 % in both cases. The difference in the centre of
pressure was also 0.1 %. A very noticeable difference is however in hardware requirements,
where a single precision solver used ≈ 33 % less GPU memory and ≈ 13 % less RAM.
This knowledge will be used in the following section, where various solution methods will
be compared.

6.2 Solver Methods

This section compares solver methods. There are two types of solvers. Density-based solver
which solves equations for continuity, momentum, and energy in vector form. This solver
is used when a strong coupling or interdependence exists between density, energy, and
momentum. Some exemplary use cases are for example high-speed flow with combustion,
hypersonic flow, or shock interactions. The second type of solver, pressure-based, takes
momentum and pressure as the primary variables. It is widely used since this solver can
be applied to most engineering applications where incompressible or low-speed compress-
ible flows are assumed. For FS race car simulation, a pressure-based solver is used. This
solver also offers two types of algorithms for pressure-velocity coupling. Coupling methods
are numerical algorithm that uses a combination of continuity and momentum equations
to derive an equation for pressure (or pressure correction) when using a pressure-based
solver. In this section, we will compare the most common methods used in FS - segregated
(also known as SIMPLE) and coupled method. The main difference between these two al-
gorithms is that SIMPLE solves the momentum equation and pressure-correction equation
sequentially, whereas the coupled algorithm solves the momentum and pressure equations
simultaneously. Because of that, the convergence of SIMPLE method is usually slower but
1.5-2x less memory is required. Both solver methods should have theoretically the same
accuracy if both reach the same convergence criterion. [11]

To compare these two methods, model CTU.24 demo was used. Solver precision was
set to single, as we demonstrated no influence on the result in the previous Section 6.1
and GPU solver was used (GPU solver will be discussed in the next Section 6.3). The
computation length was set to 2000 iterations to observe possible difference in convergence
and overall stability.

Compared parameters were the following:

◦ Coefficient of drag - last 100 iterations average

◦ Coefficient of lift - last 100 iterations average

◦ Centre of pressure (CoP)

◦ Solver stability

◦ Time of numerical solution

◦ Convergence speed

◦ GPU memory usage
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◦ RAM usage

The results are shown in Table 6.2 and Figures 6.3, 6.4 below.

Table 6.2: SIMPLE and Coupled method comparison

Solver method SIMPLE Coupled
Coefficient of drag (last 100 it. avg.) 1.64 1.59
Coefficient of lift (last 100 it. avg.) -3.67 -3.57
Centre of pressure (% rear axle) 54.9 54.3
Time of numerical solution 33 min 135 min
GPU memory usage 28.6 GB 69.3 GB
RAM usage 97 GB 99 GB
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Figure 6.3: Stability of drag report compar-
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From monitored results, we can assume that the coupled method is less ”optimistic” in
terms of downforce which is always the better assumption for FS race car CFD simulation
since vehicle performance and lap time simulations are connected to the aerodynamical
performance of the car. Too optimistic results might lead to false perception about the
real vehicle performance. The computational speed difference has proved to be significant
as well. Also, Figure 6.4 shows that the coupled method is more stable and converges
faster, see the difference in the first 500 iterations. The result of the final Cl in the
SIMPLE method could be surely approximated from a section of 1500 - 1600 iterations
whereas the final Cl in the Coupled method could be surely approximated from a section
of 300 - 400 iterations, resulting in a reduction of computational time of Coupled method
to approximately 27 minutes which is even faster than the SIMPLE method.

This leads to the conclusion that the Coupled method with its current settings is more
suitable for FS race car CFD simulation. However, further research within eForce Prague
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Formula team might be done to find out whether the SIMPLE method with finer meshing
might achieve faster computational time while maintaining the same accuracy.

6.3 CPU vs GPU Solver

CPU solver has been widely used and established for a long time however, in recent years,
GPU acceleration became popular thanks to its speed incomparably faster than CPU
solver. In the 2023/2024 FS season, the team eForce Prague Formula was for the first
time in its 16-year history able to run CFD simulation calculated by GPU solver thanks to
generous sponsorship from Lenovo, providing the team with powerful workstations capable
of GPU acceleration and solution. This section compares CPU and GPU solvers in terms
of their speed, stability, accuracy, and also available features within the solver.

The comparison was performed on the following hardware with model CTU.24 demo:

◦ CPU: AMD Ryzen Threadripper PRO 5995WX 64-Cores, Base speed: 2.7 GHz,
Boost frequency: 4.5 GHz, Logical processors: 1281, Threads: 7088

◦ GPU: 2x NVIDIA RTX A6000, Dedicated GPU memory: 47.5 GB, Shared GPU
memory: 128 GB2

◦ RAM: 256 GB

The compared simulation setups are shown in Table 6.3. The reason for choosing single
precision in GPU solver was the GPU‘s limited memory3, however, in Section 6.1 we
have compared the difference between single and double precision which showed to be
irrelevant for our case. The computation length was set to 1500 iterations to observe
possible difference in convergence and overall stability.

Table 6.3: Simulation setups

Solver CPU GPU
Solver method Coupled Coupled
Precison Double Single

1Only 30 processors were used during simulation. When selecting more than 30 processors, the PC
tended to shut down, probably because of an insufficient power supply unit inside the PC

2Shared memory could not be used since the computer lacked NVLink
3Coupled method with double precision was performed as well but the simulation failed during initial-

ization due to lack of GPU dedicated memory
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Compared parameters were the following:

◦ Coefficient of drag - last 100 iterations average

◦ Coefficient of lift - last 100 iterations average

◦ Centre of pressure (CoP)

◦ Solver stability

◦ Time of numerical solution

◦ Convergence speed

◦ GPU memory usage

◦ RAM usage

The results are shown in Table 6.4 and Figures 6.5 and 6.6.

Table 6.4: CPU and GPU precision comparison

Solver CPU GPU
Coefficient of drag (last 100 it. avg.) 1.56 1.59
Coefficient of lift (last 100 it. avg.) -3.58 -3.57
Centre of pressure (% rear axle) 54.3 54.3
Time of numerical solution 15 hrs 2.25 hrs
GPU memory usage 0 GB 69.3 GB
RAM usage 141 GB 99 GB
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It is clear that the GPU solver delivers a huge advantage in terms of computational time
which was 85 % less than when the CPU solver was used while maintaining the same result
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accuracy. The GPU solver also proved to be more stable even though single precision was
used. This might be caused by the new update of Ansys Fluent (version 2024r1) where the
GPU solver was introduced as non-Beta version for the first time. However, a GPU solver
might not always be suitable for FS race car simulation because of the following reasons:

◦ Some features and boundary conditions like momentum sources (2D/3D fan zone)
are not possible in GPU solver. MRF must be used instead, significantly increasing
the number of cells in the mesh (+≈ 7mil cells), resulting in possible dedicated GPU
memory overload.

◦ This simulation with a simplified FS race car model as mentioned in Section 3.1
already reached 69.3 GB of dedicated GPU memory, out of the theoretical 95 GB in
total.

To summarize this research, GPU solvers are the future of CFD simulations. They
can provide very fast and accurate results which might be helpful especially when solving
smaller meshes that are not very demanding for memory. For FS race car fully automated
CFD simulation in eForce Prague Formula, the CPU solver is still a better option for the
following reasons:

◦ Team eForce Prague Formula possesses with only one workstation capable of GPU
simulations.

◦ The script for CPU simulation can be also used on university servers, where many
simulations are still performed, even though the servers might be slower.

◦ The CPU solver can solve momentum sources such as 2D/3D fan zones which are
more accurate approach when a precisely accurate CAD model of the fan is not
available.
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Chapter 7

Final Simualtion

When all important meshing and solver settings were compared, it is time to define a new
CFD methodology for the development of FS race car external aerodynamics of eForce
Prague Formula team for season 2025. The following changes were made compared to the
CFD simulation used in season 2024:

◦ The tyre contact patch will be solved by precise surface wrap, not by degeneration
of the tyre geometry.

◦ All trailing edges will have a minimum thickness of 1 mm. This approach is more
accurate to the real-life geometry of the flaps used on FS race car. Moreover, this
approach simplifies the mesh generation resulting in better quality cells, easier and
more robust automatization, and a lower number of cells used in mesh.

◦ The bodies of influence were examined to be critical for computational stability
however their size was reduced as well as the size of the tunnel domain.

◦ The setup of prisms for capturing the boundary layer was chosen according to Sub-
section 3.3.4 results. Each part of FS race car (flap, tyre, endplate, chassis etc.)
has its unique values of growth ratio and total prism layer height according to the
expected boundary layer thickness.

◦ SST k-ω turbulence model was chosen as the most accurate one within hardware
computational power capabilities

◦ For the early stages of development where simpler geometry without source terms is
used, a GPU solver might be used to maximize the number of simulations in a short
period. As the geometry becomes more complex (more flaps, vortex generators, fans
etc.) the simulation will be solved by the CPU.

◦ The simulation setup is supported by learning materials for new members of eForce
Prague Formula team to ensure smooth knowledge transfer throughout many seasons.
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7.1 Automatization

As stated in Section 1.3, CFD automatization is a vital feature for fast aerodynamic devel-
opment within eForce Prague Formula team. There are two approaches to the automatiz-
ation of Ansys Fluent simulation setup - Python script and Journal file.

7.1.1 PyFluent

Ansys software offers an additional Python package called PyAnsys, respectively PyFluent
in the case of Fluent software. This additional tool offers large control over Fluent auto-
matization with a wide range of adjustments relevant to standard code functions such as
”if” conditionals. However, this package is a relatively new function with minimal inform-
ation online and also requires good knowledge of Python environment. Moreover, some
of the standard commands in Fluent GUI or console are not established in PyFluent yet.
These factors create a very complex problem for Fluent automatization of cases such as
FS race car external aerodynamic simulation. However, further research should be focused
on this automatization process.

7.1.2 Fluent Journal File

Another, much simpler, automatization approach called Journal exists. Fluent can remem-
ber the simulation workflow and choice of parameters in GUI which is then transferred into
a text file. This text file can then be read to the new mesh and all GUI functions will be
automatically selected by the Journal file. The biggest issue with this approach is that
all variables and parameters are fixed by the Journal file. When repairing the mesh, the
number of iterations depends on the quality and number of bad cells. This might result in
an unnecessary number of repair iterations for good meshes and vice versa. Moreover, each
Journal file defines all parts of the car and their name within its code so when adding a
new part or removing some old one, all code lines with appropriate parts must be removed,
adjusted, or a new Journal file must be created. Another problem with the Journal script
is its inability to incorporate 3D fan zone boundary conditions. Every 3D fan zone requires
upload of a fan curve text file which contains ID number of the 3D fan zone. Unfortunately,
the ID of every zone changes randomly in every simulation so it can not be predicted in
the text file, resulting in different zone ID that creates error while importing the fan curve.
Only MRF or 2D fan zone can be used with the Journal file. Nevertheless, this issue can be
bypassed by optimization of 2D fan zone according to the 3D fan zone or MRF results. On
the other hand, the biggest advantage over the Pyfluent script is the simplicity and speed
of creating a Journal file. One can simply manually set up a random simulation within
a few hours and the Journal file can then be used for other simulations that follow the
Journal script rules. This means that every Fluent user can create his own automatization
script regardless of his abilities with other development software. Therefore, the Journal
file was chosen as the better option for CFD automatization of our specific case of FS race
car simulation (chosen for season 2025 and until PyFluent automatization is established).
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The Journal created as a part of this thesis is not only responsible for meshing and solver
but also for postprocessing when simulation results, pictures, and report are created and
saved.

7.1.2.1 Knowledge Transfer

Last, but not least I can not help but highlight the importance of a good knowledge
database and knowledge transfer throughout the FS team. The best FS teams are known
to slowly but steadily improve their multiple-season lasting concept and vision. Every
design decision is supported by thorough research before changes are implemented and
time, personal, and financial aspects are always the main factor of these design decisions.
These teams and their members can grow because, from every research, development,
success or even failure, there is a lesson learned which is passed every season to the new
generation. On the other hand, most of FS teams try to design and manufacture the best
possible race car within a single season without fully understanding the whole process of
race car development, manufacturing, and data gathering. These teams can win only once
in a few years if they happen to be lucky that season. Without a proper understanding of
past development, there is no move forward in race car design. A similar situation, with
CFD, occurred at eForce aerodynamics group during the 2024 season. The group used
conventional CFD software with full automatization, similar to Ansys Fluent. This CFD
automatization and its CFD software setup was created by a former CTU Cartech member
in season 2021, as already mentioned. Unfortunately, only a few years after the release of
the CFD automatization, there was only one person in the team who was able to somehow
adjust the automatization script. The rest of the aerodynamic group became disinterested
in CFD and its methodology. This led to the overall team’s misconception about CFD
when many aerodynamicists within the team did not understand the vast majority of the
results generated from CFD simulations because they were never explained the theory and
basic principles behind the automatization. Also, it is worth mentioning that this method
has not significantly improved since its release in 2021 and if it was not for this thesis, the
method would not have changed until the 2026 season at least.

A similar scenario should never happen again so more effort should be put into the
theory of aerodynamics and CFD, instead of grinding every possible gain of downforce
by spending all time designing more and more aerodynamic parts on the FS race car.
Furthermore, CFD tutorials for novices were made during the 2024 season to provide better
knowledge transfer and to enlighten all members about why specific setups, methods, and
variables were chosen.

7.2 Postprocessing

This section aims to demonstrate how simulation results can be visualised during post-
processing and how this visualization can help during results understanding, following the
right design decisions. It is not necessarily the topic of this thesis however not many
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publications show or explain how to approach this problem. Because of that, the most
important visualisations for FS race car simulation will be explained in two separate sub-
sections regarding their automatization. Car axis and cutting planes will be mentioned so
just to clarify the axis system of FS race car, pitch is around the Y-axis, roll is around the
X-axis, and rotation is around the Z-axis.

7.2.1 Automatized Visualizations

These visualizations are an essential part of every FS race car simulation results so they
can be automatized to save postprocessing time and also ensure the same properties of
the picture so that all simulations can be compared with the same postprocessing setup.
Some of these visualizations are also saved as a scene image which allows the user to read
the scene in Ansys Viewer where the user can rotate, move, and zoom in/out as required.
Other visualisations are saved only as a PNG image from a specific point of view or cutting
plane.

7.2.1.1 Pressure Coefficient

This is the absolute standard of every FS race car CFD simulation. The pressure coefficient
is a non-dimensional value so that various design iterations can be compared equally.
This contour can show areas with lower or higher pressure and also outline possible flow
separation to the experienced user.

Figure 7.1: Contour of pressure coefficient
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7.2.1.2 Velocity and Iso-surface

The velocity magnitude contour as shown in Figure 7.2 shows velocity magnitude across
the whole domain of the cutting plane. The velocity magnitude contour, when combined
with other visualizations such as the pressure coefficient, can help understand the airflow
behaviour better. The pictures are created in an XZ-plane with a Y-axis spacing of 0.05 m.
The second velocity visualisation, as shown in Figure 7.3, shows something different. The
iso-surface shows an area of a constant value which is set to 0 m/s. By doing so, the user
receives an image of the airflow separation where the green area divides the flow velocity
of positive and negative values.

Figure 7.2: Contour velocity magnitude, XZ-plane

Figure 7.3: Contour velocity magnitude, iso-surface
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7.2.1.3 Total Pressure and Iso-surface

Figure 7.4. shows total pressure across the domain in a YZ-plane with an X-axis spacing of
0.05 m. This contour helps to understand the vortices and their origin. Areas with lower
values of total pressure are less favourable for aerodynamical devices and their perform-
ance so engineers should try to avoid such areas by correct channelling of these vortices.
Figure 7.5 shows the iso-surface of total pressure 0 Pa (note that the 0 Pa is a relative
value to the reference pressure which is 101 352 Pa). This can reveal parts with high drag
and also show how parts especially in front of the car influence the airflow towards the
rear.

Figure 7.4: Contour of total pressure, YZ-plane

Figure 7.5: Contour of total pressure, iso-surface
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7.2.1.4 X-wall Shear Stress

The name of this subsection already tells what this visualization shows. The contour
range is specific for this case as only the border between the positive and negative values
is important. Airflow separation from the surface happens when the colour changes from
pink to blue (X-axis positive-direction shear stress becomes negative-direction). This can
highlight the areas where design change is needed, assuming the flow separation is not by
design of course.

Figure 7.6: Contour of wall shear stress in X-direction

7.2.1.5 Wall y+

As already discussed in Sections 3.3.3 and 5.3, the y+ value visualisation shows the re-
finement quality of the prism layer. Where y+ ∈ ⟨5, 30⟩, the mesh must be adjusted to
meet the desired y+ value. This contour is not especially useful for engineers developing
aerodynamic devices but is extremely important for CFD engineers. When y+ ∈ ⟨5, 30⟩
at some aerodynamical part of the car, the mesh must be refined immediately otherwise
further development of that part might be useless as the airflow is not predicted correctly
there. An example of the y+ contour is shown in Figure 5.3. at page 38.
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7.2. Postprocessing

7.2.1.6 RMSE Static Pressure

The RMSE (Roor Mean Square Error) shows the fluctuation between the expected and
observed values of Static Pressure. In CFD application this visualization shows the areas
with the highest result oscillation which might lead to solution instability. The solution to
this might be local mesh refinement. Another meaning of this visualisation might be an
indication of unsteady behaviour in the flow. The RMSE contour, as the y+, is mainly an
informative tool for CFD engineers.

Figure 7.7: Contour RMSE static pressure

7.2.2 User-defined Visualizations

The user-defined visualizations have no limit in terms of customization. Moreover, the
standard automatized visualizations are great for the display of whole-car properties but
they might not always provide the required picture or angle of view in some specific cases.
Because of that, all engineers participating in the development of aerodynamic devices
should be able to display their own customized visualizations.

7.2.2.1 Pathlines

One example for all might be the development of the front wing endplate which is a device
to enhance the aerodynamic performance of the front wing by separating low and high
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7.2. Postprocessing

pressure areas between the front wing flaps and freestream next to the wing. Moreover,
the endplate vortex generators help to guide the airflow around the car, reducing the
overall drag of the car and redirecting the dirty air from leading to other aerodynamic
parts of the car such as the underbody. Correctly defined pathlines might be extremely
useful for a better understanding of the airflow exiting the front wing. Pathlines as shown
in Figure 7.8 could never be automatized because, for every specific case, the origin and
amount of pathlines must be customized.

Figure 7.8: Velocity pathlines of front wing endplate
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Chapter 8

Conclusions

As a result of this thesis, a new CFD methodology was developed according to the re-
quirements of FS team eForce Prague Formula. The requirements are specified in the first
chapter, which also explains the motivation behind this thesis and the principle of Formula
Student. In the second chapter, the ideal CAD geometry of car tyre and flaps trailing edge
for this new methodology was established. The additional geometry between the tyre and
the road has proved to be unnecessary if the tyre is wrapped correctly. The trailing edge
was set to be modelled with 1mm thickness in CAD in order to preserve the reality of the
FS race car aerodynamic devices as well as to simplify the meshing process. Chapter 3
showed the importance of local mesh refinement (BOI) and also showed the importance of
boundary layer capture which proved to be crucial for the accuracy. After this research,
all parts of the car have their unique setup for the prism layer. The different approaches to
axial fan and radiator setup were compared in Chapter 4. Because of the CFD automatiz-
ation, the 2D fan zone was chosen as the best solution. The inaccurate turbulence model
used by eForce Prague Formula team during previous seasons was compared and replaced
by a more accurate turbulence model SST k-ω in Chapter 5. Chapter 6 compared various
approaches to simulation solver. The single precision was established as a sufficient method
for this CFD simulation thanks to its lower demand on computational power while main-
taining the same accuracy. The Coupled method was selected as a better option for season
2025 however, future research might be done to find the limits of the SIMPLE method. To
summarize this chapter, CPU and GPU solvers were compared. The GPU solver should be
used during the early stages of development thanks to its magnificent speed advantage over
the CPU solver. Unfortunately, the GPU solver proved to be suboptimal for simulations
of axial fans and the PC hardware capabilities were too low for the whole FS race car
with complex geometries. Because of that, the CPU solver should be used during the later
stages of development or when an axial fan is present in a FS race car CFD simulation.
The last chapter demonstrates the final simulation which might be used for season 2025.
This simulation was created and set up based on results from all previous chapters.
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8.1. Future Work

8.1 Future Work

The following research might be done as a success to this thesis:

◦ The change of tyre radius when a normal load is applied, as mentioned in Sec-
tion 2.2.3, might be examined to find a possible influence of aerodynamic devices
behind the wheels.

◦ To find the best possible ratio between the mesh size and solution accuracy, the size
of BOI and tunnel might be thoroughly examined as well.

◦ Section 3.3 established a new methodology for the generation of prism layers where
every part of the car has its unique setup. In pursuit of the smallest mesh possible,
research about different prism layer setups on a single part would be very interesting.
For example chassis of the car requires a fine prism layer on the underbody whereas
the sides and top of the monocoque can be computed by wall functions. This might
lead to the use of, for example, 15 prism layers on the underbody and 2 prism layers
on the other faces. The problem is however far more complex as connecting such
different prisms on a single part leads to cell quality issues.

◦ The SIMPLE method, as discussed in Section 6.2, would deserve its own deep research
in order to reach the limits of this method compared to the Coupled method.

◦ And finally, a complete CFD automatization via PyFluent would be a breakthrough
not only for eForce Prague Formula, but for the whole FS community.
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