ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA STROJNÍ

ÚSTAV LETADLOVÉ TECHNIKY

DIPLOMOVÁ PRÁCE

VÝPOČTOVÉ MODELY PRO PŘEDBĚŽNÉ POSUZOVANÍ AEROELASTICKÉ ODOLNOSTI MALÝCH SPORTOVNÍCH LETOUNŮ

COMPUTATIONAL MODELS FOR PRELIMINARY ASSESSMENT OF THE AEROELASTIC ENDURANCE OF SMALL SPORT AIRCRAFT

2024

Autor: Bc. Jan Tetour

Vedoucí práce: doc. Ing. Svatomír Slavík, CS.c

Studijní program: N0716A270010 Letectví a kosmonautika

Specializace: N071TLBS Letadla a bezpilotní systémy

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Tetour	Jméno: Jan	Osobní číslo: 327404
Fakulta/ústav:	Fakulta stroji	ní	
Zadávající katedr	a/ústav: Úst a	av letadlové techniky	
Studijní program:	Letectví a ko	smonautika	
Specializace:	Letadla a bez	pilotní systémy	
ÚDAJE K DIPLO	OMOVÉ PRÁ	NCI	
Název diplomové pr	áce:		
Výpočtové model	y pro předběži	né posuzování aeroelastické odolno:	sti malých sportovních letounů.
Název diplomové pr	áce anglicky:		
Computational mo	dels for prelim	ninary assessment of the aeroelastic	endurance of small sport aircraft.
Pokyny pro vypraco	vání:		
 Ietounů. Analýzu potřebnýc Programové zprac Ověřovací výpočty Verifikací výsledků v zkouškách. Zhodnocení a dopo 	h vstupních char ování výpočtovýc na vybraném let ⁄ýpočtu flutteru sro pručení aplikovat	akteristik vybraných metodik. ch postupů. ounu. ovnáním se standardním průkazním výpočter elnosti jednotlivých metodik.	m založeném na pozemních frekvenčních
Seznam doporučene	é literatury:		
Dle pokynů vedoucíh	o diplomové prác	e	
Jméno a pracoviště	vedoucí(ho) di	plomové práce:	
doc. Ing. Svatomí	r Slavík, CSc.	ústav letadlové techniky FS	
Jméno a pracoviště	druhé(ho) vedo	oucí(ho) nebo konzultanta(ky) diplomov	/é práce:
Datum zadání diplo Platnost zadání dip	omové práce: 2 lomové práce:	26.04.2024 Termín odevzdání	diplomové práce: 24.05.2024
doc. Ing. Svatomír Sl	avík CSc	Ing. Milan Dvořák, Ph.D.	doc. Ing. Miroslav Španiel. CSc.
podpis vedoucí(ho)	práce	podpis vedoucí(ho) ústavu/katedry	podpis děkana(ky)

Datum převzetí zadání

Podpis studenta

Prohlášení

Prohlašuji, že jsem svou diplomovou práci vypracoval samostatně a použil jsem pouze podklady (literaturu, projekty, SW atd.) uvedené v přiloženém seznamu.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu § 60 Zákona č.121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon).

V Praze dne Podpis.....

Jan Tetour

Poděkování

Rád bych věnoval poděkování všem, kteří mi pomohli k vypracování této práce a přispěli svými zkušenostmi a radami. Především bych rád poděkoval svému vedoucímu panu doc. Ing. Svatomíru Slavíkovi, CS.c za čas a znalosti, které mi pomohly k hlubšímu proniknutí do problematiky a úspěšnému dokončení práce.

Dále bych chtěl poděkovat panu Ing. Alešovi Kratochvílovi, Ph.D za poskytnutí zdrojů k ověřovací analýze. V neposlední řadě bych věnoval poděkování svým nejbližším za podporu a trpělivost, kterou mi věnovali během studia.

Autor:	Bc. Tetour Jan
Název diplomové práce:	Výpočtové modely pro předběžné posuzovaní aeroelastické odolnosti malých sportovních letounů
Title of masters thesis:	Computational models for preliminary assessment of the aeroelastic endurance of small sport aircraft
Rok:	2024
Studijní program:	N0716A270010 Letectví a kosmonautika
Specializace:	N071TLBS Letadla a bezpilotní systémy
Ústav/odbor:	Ústav letadlové techniky
Vedoucí:	doc. Ing. Svatomír Slavík, CS.c
Bibliografické údaje počet stran:	101
Počet obrázků:	32
Počet Tabulek:	20
Počet příloh:	2
Klíčová slova:	Aeroelasticita, odolnost, Flutter, letoun, výpočet, simulace
Keywords:	Aeroelastic, endurance, Flutter, aircraft, math, simulation

Abstrakt

Diplomová práce se zabývá problematikou posuzování aeroelastické odolnosti malých sportovních letounů. Jádro práce tvoří návrh výpočtové metodiky na základě rešeršní analýzy z vhodných zdrojů. Zpracování výpočtového programu v prostředí softwaru Matlab. V následné části se práce zaměřuje na použití navrhnuté metodiky a je proveden výpočet aeroelastické odolnosti na zvoleném letounu. V závěru je provedeno ověření metodiky na výpočtovém případu srovnáním s výsledky z konvenčně provedené analýzy a zhodnocení navrhované metodiky.

Abstract

The thesis deals with the issue of assessing aeroelastic endurance of small sport planes. The core of the work is the proposal of a computational methodology based on research analysis from appropriate sources. The computational program is processed in the Matlab software environment. In the subsequent section, the work focuses on using the proposed methodology and the computation of aeroelastic endurance on the selected aircraft. In conclusion, the methodology is verified by a computational case study comparison with results from a conventionally performed analysis and the evaluation of the proposed methodology.

Obsah

1. Úvod		1
1.1. Zav	edení pojmů Terminologie	2
1.1.1.	Aeroelasticita	2
1.1.2.	Aeroelastická odolnost	2
1.1.3.	Flutter	2
1.1.4.	Torzní divergence	2
1.1.5.	Reverzace řízení	2
1.2. Hist	torie	3
1.3. Met	odika současnost	3
1.3.1.	Pozemní frekvenční zkouška (PFZ)	3
1.3.2.	MKP model	4
2. Rešerše	2	5
2.1. Úvo	od	5
2.2. Aer	oelastic Flutter Prevention in Gliders and Small Aircraft:	6
2.3. Rep	port NO 45. Simplified Flutter Prevention Criteria for Personal type Aircr	raft
6		
3. Analýza	vstupních charakteristik	7
3.1. Met	odika Aeroelastic Flutter Prevention	7
3.1.1.	Stanovení dílčích veličin (společných)	7
Návrhov	vá frekvence (fb)	7
Reduko	vaná vlnová délka (W _{red}).	9
3.1.2.	Výpočetní metody (společné)	9
3.1.3.	Metodika výpočtu pro jednotlivé konstrukční celky	.19
3.2. Met	odika Simplified Flutter Prevention.	.38
3.2.1.	Křídlo	.38
3.2.2.	Křidélka	.39
3.2.3.	Výškové kormidlo.	.40
3.2.4.	Směrové kormidlo	.41
3.2.5.	Plošky	.43
4. Výpočel	tní program	.45
4.1. Mat	lab	.45
4.2. Stru	uktura Programu	.45
4.2.1.	Úvodní část	.45
4.2.2.	Vstupní hodnoty	.46
4.2.3.	Výpočty	.47
4.2.4.	Výstupní soubor	.49
5. Ověřova	ací výpočty letounu	.50
5.1. Pop	bis letounu	.50
5.2. Zák	ladní technické údaje	.51
5.2.1.	, Muška	.51
5.2.2.	Technická data	.52
5.2.3.	Počítané konfigurace letounu	.52
-	5	

5.2.4	4. Vstupní hodnoty pro výpočet	.53
5.2.5	5. Vypočtené hodnoty	.60
6. Zhoo	dnocení metodik	82
6.1.	Shrnutí výsledků z navrhovaných metodik Aeroelastic Flutter Prevention,	
Simpli	fied Flutter Prevention	.82
6.1.1	1. Konfigurace těžká kormidla volná	.82
6.1.2	2. Obecné hodnocení metodik	.86
7. Ově	ření	.87
7.1.	Vlastní frekvence	.88
7.2.	Kritické rychlosti flutteru	.89
7.3.	Vyvážení	.93
8. Závě	ěr	.95
9. Přílo	hy	.97
9.1.	Příloha č.1	.97
9.2.	Příloha č.2	101

Seznam obrázků

Obr. 2 Skica vyvažování kormidel fig.8 [1]
Obr. 3 Normalizované průběhy antisymetrických ohybových módů [1]
Obr. 4 Normalizované průběhy symetrických ohybových módů [1]
Obr. 5 Graf stanovení polohy vyvážení dle fig.8 [1]16
$Ohr \in \mathcal{O}(n) = \frac{1}{2} Ohr $
Obr. 7 Vyvažování torzních módů trupu fig.12 [1]18
Obr. 8 Vývojový diagram aeroelastická odolnost křídla [1]22
Obr. 9 Experimentální stanovení tuhostních charakteristik [1]23
Obr. 10 Vývojový diagram vodorovná ocasní plocha [1]26
Obr. 11 Vývojový diagram svislá ocasní plocha [1]26
Obr. 12 Vývojový diagram T ocasních ploch [1]27
Obr. 13 Určení tuhostí kormidel [1]30
Obr. 14 Vývojový diagram aeroelastická odolnost křidélka [1]31
Obr. 15 Vývojový diagram aeroelastická odolnost klapky [1]33
Obr. 16 Vývojový diagram aeroelastická odolnost výškového kormidla [1]
Obr. 17 Vývojový diagram aeroelastická odolnost směrového kormidla [1]
Obr. 18 Graf dynamického vyvážení křidélka [2]39
Obr. 19 Paralelní vyvažování výškového, směrového kormidla [2]42
Obr. 20 Kolmé vyvažování výškového / směrového kormidla [2]43
Obr. 21 Úvod Matlab45
Obr. 22 Vstupní hodnoty Matlab46
Obr. 23 Výpočtová část Matlab47
Obr. 24 Funkce Matlab48
Obr. 25 Výstupní soubor Matlab49
Obr. 26 Atec 321 Faeta NG [8]50
Obr. 27 Muška Atec 321 Faeta NG [9]51
Obr. 28 Dynamické vyvážení křidélka – vyhodnocení [1]77
Obr. 29 Dynamické vyvážení klapky – vyhodnocení [1]78
Obr. 30 Kritická rychlost – ověřovací zpráva [10]89
Obr. 31 Vyvažování křidélka [1]93
Obr. 32 Vyvažování křidélka [10]94

Seznam Tabulek

Tabulka 1 Koeficient návrhové frekvence [1]	8
Tabulka 2 Redukovaná vlnová délka křídlo [1]	10
Tabulka 3 Konstanty pro výpočet torzní tuhosti [1]	12
Tabulka 4 Materiálové konstanty [1]	19
Tabulka 5 Odhad vlastních frekvencí ohybových módů [1]	20
Tabulka 6 Normalizované zkroucení $arphi$ 0 [1]	21
Tabulka 7 Materiálová konstanta VOP [1]	26
Tabulka 8 Technické údaje Atec 321 Faeta NG [9]	52
Tabulka 9 Těžká konfigurace letounu [10]	53
Tabulka 10 Lehká konfigurace letounu [10]	54
Tabulka 11 Konfigurace letounu volná kormidla [10]	54
Tabulka 12 Konfigurace letounu blokovaná kormidla [10]	55
Tabulka 13 Vstupní hodnoty výpočet letounu nezávislé [10]	55
Tabulka 14 Odhad vlastních frekvencí Aeroelastic Flutter Prevention [1]	60
Tabulka 15 Aeroelastic Flutter Prevention – souhrnné výsledky [1]	61
Tabulka 16 Vyhodnocení Simplified Flutter Prevention [2]	79
Tabulka 17 Shrnutí výsledků – Aeroelastic Flutter Prevention [1]	82
Tabulka 18 Shrnutí vyhodnocení Simplified Flutter Prevention [2]	84
Tabulka 19 Srovnání vlastních frekvencí [1] [10]	88
Tabulka 20 Vyhodnocení křidélka [1]	90

Seznam použitých programů

- [1] © 1994-2024 THE MATHWORKS, INC. *Math. Graphics. Programming.* Online. Dostupné z: <u>https://www.mathworks.com/products/matlab.html?s_tid=hp_ff_p_matlab</u>.
- [2] Autocad 2025, Autodesk, https://www.autodesk.com

Seznam zkratek/symbolů:

S [kg.m] f [hz]	statický moment frekvence kmitu
f _b [hz]	návrhová frekvence
Wred [-]	redukovaná vlnová délka
Δ <i>S</i> [kgm]	statický moment úseku kormidla
V _{krit} [m/s]	kritická rychlost flutteru
V _d [m/s]	návrhová rychlost letounu
k _{vd} [-]	koeficient bezpečnosti odstupu od návrhové rychlosti letounu V_{d}
kı [m]	koeficient zohledňující typ konstrukčního prvku (dáno empiricky)
V [m/s]	rychlost letu
l [m]	délka tětivy konstrukční části letounu
Vs [m/s]	pádová rychlost letounu
M [Nm]	zatěžující moment
φ [rad]	úhel zkrutu
<i>l_R</i> [m]	střední délka tětivy za osou otáčení
<i>F_r</i> [m]	plocha kormidla za osou otáčení
<i>P</i> [N]	síla na koncovém žebru volné části kormidla
s [m]	průhyb koncového žebra vzhledem k poslední podpoře

K_Q [kgm ²]	deviační moment k ose otáčení křidélka a kořeni křídla
$J_Q[\text{kgm}^2]$	moment setrvačnosti k ose otáčení kormidla
Δ <i>S</i> [kgm]	statický moment úseku kormidla
Δr_s [m]	poloha těžiště od osy otáčení
<i>a_i</i> [-]	amplituda vlastního tvaru módu
$h_{k_ko{ m \check{r}}en}$ [m]	tloušťka křídla v místě styku křídla s trupem
b [m]	rozpětí křídla
c [-]	materiálová konstanta
l _{k_kořen} [m]	délka tětivy v kořeni křídla
$arphi_0$ [-]	normalizovaný tvar průběhu zkroucení křídla
$\frac{\Delta J}{\Delta y}$ [kg/cm]	měrný moment setrvačnosti
I_d [cm ⁴]	modul tuhosti v krutu
G [kg/s²cm]	modul pružnosti ve smyku křídla
<i>l_f</i> [m]	délka tětivy křídla v 0,7 polorozpětí
f _t [Hz]	vlastní frekvence torzního flutteru
λ[-]	štíhlost křídla
P [daN]	zatěžující síla pro ohyb
M _T [daNm]	zatěžující síla pro krut
S [m]	průhyb křídla v místě zatížení
$ ho_0$ [kg/m³]	hustota vzduchu na hladině moře
ho [kg/m³]	hustota vzduchu v hladině letu
r _e [-]	poloha elastické osy od náběžné hrany v 70% polorozpětí křídla
	a od kořene vztažena na délku tětivy
<i>r</i> _s [-]	poloha těžiště od náběžné hrany v 70% polorozpětí křídla a od
	kořene vztažena na délku tětivy
<i>l_i</i> [m]	délka tětivy křídla v podélné ose letounu
l_m [m]	střední délka tětivy
k_T [daNm/rad]	tuhost v krutu

k _B [daNm/m]	tuhost v ohybu
S _w [m ²]	plocha křídla
m _w [kg]	hmotnost křídla bez spojovacích prvků s trupem
<i>V_{df}</i> [m/s]	max. rychlost letu
φ_Q [rad/Nm]	specifické zkroucení v polovině rozpětí křidélka
<i>F</i> _Q [m ²]	plocha křídla v úseku rozpětí křidélka
<i>h</i> _{<i>H</i>} [m]	kořenová tloušťka VOP
<i>b_H</i> [m]	rozpětí VOP
J _R [kgm ²]	moment setrvačnosti kormidla
m_i [kg]	hmotnost elementu řízení
J _i [kgm²]	moment setrvačnosti rotačního elementu systému řízení
J _{kn} [kgm²]	moment setrvačnosti řididla (řídící páka, volant, pedály)
$\frac{d\alpha_i}{d\beta}$ [rad]	úhel natočení elementu systému řízení v závislosti na úhlu
	natočení kormidla
$\frac{ds_i}{d\beta}$ [m]	posunutí elementu systému řízení v závislosti na úhlu natočení
	kormidla
k_s , k_A [kgm]	experimentálně zjištěné tuhosti křidélka pro symetrické a
	antisymetrické případy.
J _{QR} ′ [kgm²]	moment setrvačnosti křidélka s přídavným momentem
	setrvačnosti systému řízení. Zahrnuto 50% systému řízení v křídle
	pro SQ a 100% pro AQ
J _{Kn} ' [kgm²]	moment setrvačnosti řídící páky. Zahrnuto 50% systému řízení
	v trupu a 1kg závaží na řididle.
J _{WK} " [kgm²]	moment setrvačnosti s přídavným momentem setrvačnosti
	systému řízení. Zahrnuto 100% systému řízení v křídle a 25%
	v trupu pro SK a 50% v křídle pro AK

J _{HR} " [kgm ²]	moment setrvačnosti výškového kormidla s přídavným
	momentem setrvačnosti systému řízení. Zahrnuto 25% systému
	řízení pro SHR a 100% pro AHR
J _{Kn} " [kgm²]	moment setrvačnosti řídící páky. Zahrnuto 25% systému řízení
	pro SHR a 1kg závaží na řididle.
J _{SR} " [kgm²]	moment setrvačnosti směrového kormidla s přídavným
	momentem setrvačnosti systému řízení. Zahrnuto 25% systému řízení
J _{ped} " [kgm²]	moment setrvačnosti směrových pedálů. Zahrnuto 25% systému
	řízení [1]
Q_k [rad/lbft]	úhel zkrouceni v radiánech a polovině úseku na jednotkový
	moment působící na konci křidélka
<i>C</i> _{<i>k</i>} [ft]	délka tětivy ve středu úseku
S_k [ft]	délka úseku
$C_{oo} [ft]$	délka tětivy za osou otáčení a v místě měření vůle
<i>b</i> [ft]	tětiva VOP v polovině polorozpětí
S_{β} [lbft]	statický moment k ose otáčení Vk
I [lbft ²]	moment setrvačnosti k ose otáčení Vk
<i>V_f</i> [mph]	vstupní hodnota rychlosti flutteru hodnocení dle grafu paralelní vyvažování
<i>S</i> [ft]	polorozpětí vodorovné ocasní plochy
K [lbft ²]	deviační moment Vk k elastické ose hor. stabilizátoru a ose
	otáčení Vk
C_{oo} [ft]	délka tětivy za osou otáčení a v místě měření vůle
<i>S</i> _t [ft]	rozpětí plošky
<i>C</i> _{<i>l</i>} [ft]	tětiva kormidla za osou otáčení a polovině rozpětí plošky
<i>S_c</i> [ft]	šířka kormidla příslušné k plošce připojené

PFZ	pozemní frekvenční zkouška
S	symetrický ohybový mód křídla
A	antisymetrický ohybový mód křídla
VOP	vodorovná ocasní plocha
SOP	svislá ocasní plocha
Vk	výškové kormidlo
Sk	směrové kormidlo
SR	vertikální ohybový mód trupu
AR	horizontální ohybový mód trupu
RT	torzní ohybový mód trupu
SH	symetrický ohybový mód vodorovného stabilizátoru
AH	antisymetrický ohybový mód vodorovného stabilizátoru
ASR	antisymetrický mód směrového kormidla
AST	antisymetrický mód T-SOP
SQ	symetrický mód křidélka
AQ	antisymetrický mód křidélka
SK	symetrický mód klapky
AK	antisymetrický mód klapky
SHR	symetrický mód výškového kormidla
AHR	antisymetrický mód výškového kormidla
ASB	ohybový mód kýlové plochy
ST	symetrický torzní mód křídla
AT	antisymetrický torzní mód křídla

1. Úvod

Téma diplomové práce se zabývá metodami předběžného stanovení aeroelastické odolnosti letounů. Důraz je zde kladen na postupy aplikovatelné na malé sportovní letouny.

S rozvojem letectví a moderních leteckých konstrukcí spolu s možnostmi staveb ultralehkých letounů s vyššími letovými výkony došlo i ke změně požadavků na konstrukci a prokazování odolnosti těchto letounů. Zaměřeno na problematiku kmitání leteckých konstrukcí pak s vyššími letovými výkony, a to především s nárůstem návrhových rychlostní letounů je nutné zohlednit i kontrolu na vznik některého z dále zmíněných potenciálně nebezpečných aeroelastických jevů.

Pro konstrukce malých ultralehkých letounů, které jsou často stavěny v konceptu malosériové výroby či v mnoha případech jako experimentální stroje o jediném exempláři. Často jsou takovéto konstrukce letounů realizovány v amatérském prostředí.

Současný koncept zkoušení konstrukcí v podobě pozemní frekvenční zkoušky (PFZ) a MKP simulace je velmi časově a především finančně nákladný. Finanční náročnost procesu je limitem omezujícím možnost stavby těchto letounů.

Cílem této práce je návrh na znovuoživení analyticko-experimentálních postupů pro stanovení odolnosti leteckých konstrukcí na nežádoucí aeroelastické jevy. Jako výchozího bodu je využita k adaptaci postupů používaných před příchodem numerických simulačních modelů. Na těchto základech je tvořen návrh nové metodiky za použití současných poznatků z oboru aeroelasticity s ohledem na vhodnost použití pro letouny v režimu amatérských, malosériových staveb.

Nová metodika je uvažována jako zjednodušený postup na zhodnocení rizika vzniku nežádoucích, potenciálně nebezpečných jevů. Uvažovaná forma by měla dávat soubor návrhů na konstrukční úpravy, popř. způsoby ověření konstrukčních celků.

Spolehlivost navrhované metodiky bude ověřována porovnáním s konvenčními postupy. V rámci metodiky bude vytvořen výpočtový program v prostředí softwaru Matlab pro automatizaci stanovení výstupů.

1.1. Zavedení pojmů Terminologie

1.1.1. Aeroelasticita

Jako vědní obor zabývající se interakcí mezi aerodynamickými silami vznikajícími za letu a konstrukčními celky letounu, resp. dynamické odezvy letounu v podobě deformací či kmitání konstrukce. Tyto projevy jsou velmi nebezpečné svými destrukčními účinky na konstrukci, ovlivněním řiditelnosti letounu a jejich obtížné předvídatelnosti.[4]

1.1.2. Aeroelastická odolnost

1.1.3. Flutter

Nestacionární aeroelastický jev vyskytující se na leteckých konstrukcích. Projevuje se v podobě samobuzeného kmitání křídel či jiných částí letounu. Kmitání je buzeno aerodynamickými silami a v případě shody buzení, frekvenčního nalazení konstrukce a nízké hodnoty tlumení dochází k nekontrolovatelnému kmitání končící destrukcí součásti. [4]

1.1.4. Torzní divergence

Stacionární aeroelastický jev způsobující torzní deformaci zejména u křídel. Je často způsoben malou torzní tuhostí v kombinaci s nevyváženými hmotami. Obdobně jako Flutter jde o velmi nebezpečný jev končící destrukcí konstrukce. [4]

1.1.5. Reverzace řízení

Stacionární aeroelastický jev projevující se změnou smyslu odezvy na pokyn řízení. Často se vyskytuje např. u výškového kormidla, kde při vhodných podmínkách letu a konstrukční konfigurace ocasních ploch dojde vlivem aerodynamických sil k deformaci, která otočí smysl reakce letounu na pokyn pilota. [4]

1.2. Historie

S projevy Aeroelasticity se letectví potýká již od prvních letů bratří Wrightů dodnes. Již první letouny poháněné motorem z počátku 20 století se setkávaly s torzní divergencí křídel a měly za příčinu selhání konstrukce s katastrofickými následky. S příchodem samonosných křídel a konstrukcí z ocelových slitin a rostoucími letovými výkony se letečtí konstruktéři začali setkávat i s dalšími dnes již popsanými jevy, zejména výše popsaným flutterem či reverzací řízení. [4]

Napříč historií se měnily i přístupy ke studiu těchto jevů a jejich prevenci. V počátku mezi užívané postupy nejčastěji patřil experiment v kombinaci s inženýrskou úvahou.

Později s rozvojem oboru aeroelasticity se spolu s experimentem začínají formulovat první snahy o analytický popis problému, který se stane hlavním nástrojem do příchodu rozvoje virtuálních simulací. [3]

S příchodem výpočetní techniky se výpočetní metodika musela přizpůsobit a došlo ke změně z analytické podoby výpočtů na numerické modely vhodné pro strojové zpracování. Tento trend postupuje do dnešních dnů, kdy je stále více využíváno virtuálních simulačních metod. [4]

1.3. Metodika současnost

V současné době nejčastěji používaná metodika stanovení odolnosti proti projevům Aeroelasticity představuje komplexní a časově i finančně náročný soubor zahrnující pozemní frekvenční zkoušku a MKP simulaci. [3]

1.3.1. Pozemní frekvenční zkouška (PFZ)

Spočívá v experimentálním stanovení modálních parametrů (vlastní frekvence, tvary, tlumení) letounu. Slouží jako podklad pro naladění MKP výpočetního modelu. Součástí zkoušky je stanovení hmotnostních charakteristik letounu (hmotnosti, statické momenty,

momenty setrvačnosti a přídavné momenty). Modální parametry se stanovují na letounu umístěném v kontrolovaném prostředí (teplotně, vibračně) a uvolněném ve všech osách s dostatečným odstupem vlastní frekvence uložení. Letoun je osazen budiči kmitů osazenými siloměry a snímači zrychlení na vhodných tuhých místech konstrukce pro záznam odezvy na buzení. Získaný záznam signálu ze snímačů je digitálně zpracován do podoby hodnot modálních parametrů částí konstrukce. [3]

1.3.2. MKP model

Pomocí metody konečných prvků je sestaven zjednodušený výpočtový model letounu a pomocí okrajových podmínek naladěn (optimalizován) dle výstupu z PFZ. Řešením MKP simulace je výstup kritických parametrů pro vznik např. flutteru v podobě kritické rychlosti. [3]

2. Rešerše

2.1. Úvod

Byla provedena analýza dostupných zdrojů, postupů používaných pro stanovení aeroelastické odolnosti. Analýzu je zaměřena na aplikovatelnost, potřeby stavby malých sportovních letounů. Jak bylo nastíněno v úvodním slovu práce, realizace staveb zmíněných letounů probíhá často ve velmi omezených sériích, kusové či dokonce v podobě amatérské stavby.

Zvažované postupy by měly v maximální možné míře záviset na vstupních hodnotách nepožadujících nákladné zkoušky vyžadující vysokou odbornost a složité přístrojové zkušební zařízení. Vhodné jsou postupy zahrnující nenáročné experimenty, jednoduchá měření provedená na konstrukci letounu, popř. využívající matematické vztahy založené na statistickém vyhodnocení realizovaných staveb a jejich spolehlivosti. Vzhledem k těmto požadavkům bylo nutné zahrnout především starší zdroje z doby před příchodem numerických simulačních metod.

Roztříděním analyzovaných zdrojů byla zpracována rešeršní databáze uvedená vzhledem k rozměrnosti v samostatné příloze č.3 (rešerše.xlsx). Databáze je členěná na základní konstrukční části letounu, pro které se běžně hodnotí aeroelastická odolnost.

Třídění databáze: Křídlo

- Trup
- Výškové kormidlo
- Směrové kormidlo
- Křidélka
- Klapky
- Plošky (odlehčovací, vyvažovací)

Pro každý konstrukční celek je přiřazena metodika (zdroj), ze kterého daný postup vychází. V následné posloupnosti jsou ke každému postupu přiřazeny vstupní veličiny a výstupní veličiny, kritéria v případě kriteriálního přístupu.

Vyhodnocením získané databáze pro výše uvedené předpoklady bude použito jako jádro budoucí metodiky následující zdroje:

- Aeroelastic Flutter Prevention in Gliders and Small Aircraft, Walter Stender, Fritz Kiessling, Institut für Aeroelastik Göttingen
- Report 45. Simplified Flutter Prevention Criteria for Personal type Aircraft, Robert Rosenbaum, A. A. Vollmecke

Výše uvedené zdroje pojednávají o způsobech nalezení parametrů nutných pro stanovení flutterové odolnosti, popř. dalších jevů jako je torzní divergence, reverzace řízení. Zde je nastíněn stručný popis filozofie těchto metodik. Podrobnější rozebrání jednotlivých postupů pocházejících z těchto zdrojů bude uvedeno ve stati Analýza vstupních charakteristik. [1] [2]

2.2. Aeroelastic Flutter Prevention in Gliders and Small Aircraft:

Metodika obsahuje široký soubor postupů zajišťující hodnocení aeroelastické odolnosti letounu. Jsou zde uvedeny metody pro hrubé stanovení veličin z geometrických, experimentem, staticky získaných vstupních hodnot, tak i spolehlivější metody založené na vstupech získaných z PFZ.[1]

Zpráva poskytuje postupy pro přímé stanovení kritických rychlostí Flutteru, tak i nepřímé postupným vylučováním jednotlivých módů, popř. stanovení modálních parametrů. Zpráva také pojednává o možnostech hmotového vyvažování pro jednotlivé konstrukční celky. Pro určité metody zpráva čerpá i ze staršího zdroje NO.45. Úvod zprávy je částečně zaměřen na podmínkách a způsobu provádění PFZ. [1]

2.3. Report NO 45. Simplified Flutter Prevention Criteria for Personal type Aircraft

Tato zpráva je datována více do historie než předchozí a poskytuje trochu odlišný přístup ke stanovení aeroelastické odolnosti. Uvedené postupy se více opírají o statisticky, popř. experimentem získané vstupní hodnoty. Následné hodnocení odolnosti / rizik vzniku aeroelastických jevů je založeno na kriteriálním hodnocení jednotlivých konstrukčních celků.[2]

3. Analýza vstupních charakteristik

V analýze vstupních charakteristik na základě zpracované rešerše bylo provedeno rozdělení budované metodiky na základní dva celky dle použitých zdrojů (Aeroelastic Flutter Prevention, Simplified Flutter Prevention). U každého celku byl zpracován vývojový diagram postupného stanovení aeroelastické odolnosti pro každý konstrukční celek letounu. V následné části byl stanoven postup pro každý bod vývojového diagramu se seznamem potřebných vstupů, výpočtu veličin a stanovení výstupní hodnoty kritéria.

3.1. Metodika Aeroelastic Flutter Prevention

V následují stať je zaměřena na podrobnější rozebrání jednotlivých postupů použitých dle této metodiky. V úvodu jsou postupy výpočtu dílčích veličin, popř. postupů společných pro více konstrukčních celků letounu. Následně je rozebrán postup vyšetřování pro každý dílčí konstrukční prvek.

3.1.1. Stanovení dílčích veličin (společných)

V této části je uvedeno stanovení dílčích veličin, které jsou společné pro více konstrukčních celků letounu.

Návrhová frekvence (fb)

Významnou roli v postupech stanovení aeroelastické odolnosti dle metodiky Aeroelastic Flutter Prevention zastává návrhová frekvence. Představuje maximální vlastní frekvenci kmitání (min. vlnovou délku w) konstrukčního celku, kde je možné očekávat Flutter. Tato hodnota je vázaná na návrhovou rychlost letu V_d, délku tětivy a empiricky stanovený koeficient k_l. [1]

$$f_b = k_l \cdot \frac{V_d \cdot k_{vd}}{l} [Hz] \quad \{1\} [1]$$

fb [Hz] návrhová frekvence

Vd [m/s] návrhová rychlost letounu

kvd [-] koeficient bezpečnosti odstupu od návrhové rychlosti letounu Vd

(dáno stavebním předpisem)

 $k_{\rm l}$ [m] koeficient zohledňující typ konstrukčního prvku (dáno empiricky) dle následující tabulky

K∟	TYP KONSTRUKČNÍHO PRVKU
0,42	Křídla samonosná / vzpěrová štíhlost <9
0,30	Křídla štíhlost >9 symetrické módy
0,16	Křídla štíhlost >9 antisymetrické módy
0,21	Vodorovné ocasní plochy
0,17	Svislé ocasní plochy

Tabulka 1 Koeficient návrhové frekvence [1]

I [m] délka tětivy konstrukční části letounu:

Obr. 1 Délka tětivy [1]

Redukovaná vlnová délka (Wred)

Jedná se o vlnovou délku vyjádřenou poměrem rychlosti letu a součinu délky tětivy s vlastní frekvencí konstrukčního prvku. Jde o bezrozměrnou veličinu využívanou ve statickém záznamu vyhodnocení rozsahu redukovaných vlnových délek (wred), kde byl zaznamenán výskyt Flutteru na letecké konstrukci. Data byla získávána z vyhodnocení leteckých nehod. Z důvodu obtížného vyhodnocení může být tento rozsah zatížen poměrně významnou statistickou chybou.[1]

$$w_{red} = \frac{V}{l \cdot f} \begin{bmatrix} - \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix}$$

V [m/s] rychlost letu

f [Hz] vlastní frekvence

I [m] délka tětivy konstrukční části letounu

3.1.2. Výpočetní metody (společné)

V následujících řádcích jsou nadefinovány výpočetní metody (kontroly) pro stanovení aeroelastické odolnosti společné pro více konstrukčních částí. Jednotlivé metody jsou očíslovány. Číslování je následně použito ve vývojových diagramech, tabulkách hodnot pro jednotlivé konstrukční celky a výpočetní program v softwaru Matlab.

(1) Kontrola odstupu vlastní frekvence od návrhové frekvence (fb)

Pokud je pro konstrukční celek jeho vlastní frekvence příslušného módu větší než jeho návrhová frekvence f_b, lze tento mód vyloučit z dalšího posuzování jako nerizikový. Návrhová frekvence je stanovena pro hodnotu rychlosti V_d násobenou bezpečnostním koeficientem. [1]

$$\frac{f_{m\acute{o}du}}{f_b} > 1 [-] \{3\} [1]$$

fmódu [Hz] vlastní frekvence příslušného módu

 f_b [Hz] návrhová frekvence stanovená dle vzorce {1}

(2) Kontrola intervalu redukované vlnové délky

Výpočet horní hranice redukované vlnové délky w_{max} pro rychlost letu V_d násobenou bezpečnostním koeficientem dle vzorce {2}. A dle stejného vzorce w_{min} pro pádovou rychlost letu V_s. [1]

Riziko výskytu flutteru lze očekávat, pokud nastane pro daný mód průnik intervalů (w_{min},w_{max}) stanovené s intervaly dle následující tabulky. [1]

 $(W_{min}, W_{max})_{m \acute{o} du} \in (W_{min}, W_{max})_{tabelovan\acute{e}} \quad \{4\} [1]$

Typ křídla	Wmin	Wmax
Křídla štíhlosti>9 symetrické módy	4,0	8,7
Křídla štíhlosti>9 antisymetrické módy	7,7	23
Křídla štíhlosti<9 samonosná vzpěrová	2,9	5,8
Dvouplošníky	2,75	5,4
Vodorovné ocasní plochy	5,7	13,2
Svislé ocasní plochy	7,1	21

Tabulka 2 Redukovaná vlnová délka křídlo [1]

(6) Volný chod kormidel

Metodika stanovuje kritérium maximálního přípustného volného chodu kormidla. Volný chod je měřen experimentálně zafixováním systému řízení a změřením posunu odtokové hrany v místě střední tětivy kormidla. Změřená hodnota nesmí přesáhnout hodnotu stanovenou dle následujícího vztahu. [1]

$$S_r = 2 \cdot \sqrt{l_R \cdot V_{d.} \cdot K_{vd}} \ [mm] \{5\} \ [1]$$

 k_{vd} [-] koeficient bezpečnosti odstupu od návrhové rychlosti letounu V_d

 l_R [m] střední délka tětivy za osou otáčení

Vd [m/s] návrhová rychlost letounu

(7) Kontrola párování módů

K párování jednotlivých módů dochází, pokud jejich vlastní frekvence jsou dostatečně blízko sebe a jeden z módu mění úhel náběhu. Symetrické módy a antisymetrické módy se vzájemně nepárují. Pro křidélka výškové kormidlo a klapku je uvažován poměr vlastních frekvencí jako rizikový, pokud náleží intervalu (0.7,1.3), pro párování klapky s křidélky vhledem k přísnějšímu požadavku na vyvážení je interval (0.85,1.15). Uvedené intervaly jsou uvažovány jako doporučené. Chybí informace, jakým způsobem byly stanoveny a je zde riziko snížené spolehlivosti. [1]

(8) Kontrola torzní / ohybové tuhosti kormidel

Britské předpisy (British civil Airworthiness requirements) uvádí vztah pro výpočet torzní, ohybové tuhosti volné části kormidel. Z důvodu obecnosti vztahu bez specifikace, pro jaké módy nebo vlastní frekvence je platný, je vhodné brát tuto kontrolu jako méně spolehlivou. [1]

Tuhost kormidla je možné stanovit pomocí experimentu následovně:

Případ torze:

Pro křidélka, klapky, směrové kormidlo je měřená zkrutná vzdálenost rovna 80% délky. Pro výškové kormidlo 90% rozpětí jednoho kormidla. Kormidlo je zatíženo momentem na jednom konci měřené délky a odečítán úhel zkrutu na druhém. [1]

Experimentálně změřená tuhost se poté posuzuje s analyticky stanoveným vztahem:

$$\frac{M}{\varphi} \geq \frac{l_R F_r}{c} \cdot V_d \cdot K_{vd} \left[Nm/rad \right] \{6\} [1]$$

M [Nm] zatěžující moment

 φ [rad] úhel zkrutu

 l_R [m] střední délka tětivy za osou otáčení

 F_r [m] plocha kormidla za osou otáčení

 k_{vd} [-] koeficient bezpečnosti odstupu od návrhové rychlosti letounu V_d

Vd [m/s] návrhová rychlost letounu

C [-] konstanta

Tabulka 3 Konstanty pro výpočet torzní tuhosti [1]

Konstrukční celek	С
Křidélka, klapka se spojitým rozložením vyvážení nebo bez vyvážení	68
Křidélka, klapka s lokálním vyvážením	22
Výškové kormidlo bez vyvážení	39
Výškové kormidlo s rohovým nebo tyčovým lokálním vyvážením na konci kormidla	28
Směrové kormidlo	46

Případ ohybu:

Experimentální měření ohybové tuhosti je provedeno následovně:

Kormidlo je zatíženo statickou silou na koncovém žebru volné části a deformace kormidla je měřena vůči poslední podpoře. [1]

$$\frac{P}{s} = 1,5 \cdot l_R \cdot (\text{Vd} \cdot \text{kvd})^2 \ [N/m] \ \{7\} \ [1]$$

P [N] síla na koncovém žebru volné části kormidla

s [m] průhyb koncového žebra vzhledem k poslední podpoře

 l_{R} [m] střední délka tětivy za osou otáčení

 k_{vd} [-] koeficient bezpečnosti odstupu od návrhové rychlosti letounu V_d

Vd [m/s] návrhová rychlost letounu

(9) Kontrola maximální dovolené nevyváženosti kormidel

Metoda vychází ze starší metodiky a upravuje ji vzhledem k modernějším konstrukcím letounů používaných v dnešní době. Původní metodika vycházela z návrhů tehdejších letounů a zohledňovala mohutnější kormidla a systémy řízení pomocí lan, které vyžadovaly přísnější kritéria na vyvážení než současné konstrukce s méně mohutnými kormidly a systémem řízení pomocí táhel. [1]

Metoda pokrývá první symetrický (S1) a antisymetrický (A1) mód křídla. Pro vyšší módy nelze tuto metodu využít. [1]

$$\frac{K_Q}{J_Q} = 4,8 - \frac{V_d \cdot K_{vd}}{4 \cdot l \cdot f} \quad [-] \ \{8\} \ [1]$$

 K_0 [kgm²] deviační moment k ose otáčení křidélka a kořeni křídla

Jo[kgm²] moment setrvačnosti k ose otáčení kormidla

I [m] délka tětivy konstrukční části letounu obr.1

f [Hz] vlastní frekvence

 k_{vd} [-] koeficient bezpečnosti odstupu od návrhové rychlosti letounu V_d

Vd [m/s] návrhová rychlost letounu

(10) Vyvažování kormidel dle fig.8

Metoda udává optimalizační postup vyvážení kormidel. Podstatou je rozdělení kormidla na několik stejných částí a pro každou z nich nalezení těžiště od osy otáčení a dílčí hmotnost. Jako další vstupní parametr je zde hodnota normalizovaného vlastního tvaru. Pro vlastní tvary lze použít standardní průběhy udávané pro křídlo. [1]

Obr. 2 Skica vyvažování kormidel fig.8 [1]

Postup stanovení potřebného vyvážení je následující:

Stanovení statických momentů pro dílčí části

$$\Delta S = \Delta r_s \cdot \Delta m \ [kgm] \ \{9\} \ [1]$$

ΔS [kgm] statický moment úseku kormidla

 Δr_s [m] poloha těžiště od osy otáčení

V případě potřeby plného statického vyvážení je moment stanoven ze vzorce:

$$S_{static} = \sum \Delta S \ [kgm] \{10\}[1]$$

antisymetrické tvary 1,2 1 0,8 0,6 amplituda[-] 0,4 0,2 0 -0,2 -0,4 -0,6 -0,8 x [-]

Normalizované průběhy ohybových módů:

Obr. 3 Normalizované průběhy antisymetrických ohybových módů [1]

Obr. 4 Normalizované průběhy symetrických ohybových módů [1]

Pro získání křivek průběhu vyvážení jsou použity následující vzorce:

$$A_{i} = \frac{\sum_{i}^{n} (\Delta S \cdot a_{i})}{a_{i}} \quad [-] \ \{11\} \ [1]$$

ΔS [kgm] Statický moment úseku kormidla

a_i [-] amplituda vlastního tvaru módu

Plné dynamické vyvážení kormidla je poté získáno jako průsečík křivek průběhů vyvážení pro vyhodnocované dva módy. Z určeného průsečíku módů lze také stanovit polohu umístění přídavné vyvažovací hmoty. [1]

Metodu lze aplikovat i na částečné vyvážení módu. Poloha vyvažovací hmoty je v tomto případě dána hodnotou požadovaného vyvážení a bodem odpovídají této hodnotě na křivce vyvážení. Z výše popsaného také vyplývá omezení této metody. Aplikovatelná je pouze na bodové vyvažování kormidel. [1]

Obr. 5 Graf stanovení polohy vyvážení dle fig.8 [1]

(11) Snížení požadavku na vyvážení

Pro párování módů udává metodika možnost snížení požadavku na vyvážení. Jde o empiricky prokázané pravidlo. Pokud je hodnota snížení požadavku dle následujícího vzorce menší než 1, je možné touto hodnotou vynásobit hodnotu potřebného vyvážení a získat tak redukovaný požadavek na vyvážení módu. [1]

Nevyváženost_{dov} =
$$\sqrt{\frac{f_1}{f_2}}$$
 [-] {12} [1]

 f_1, f_2 [Hz] vlastní frekvence módů

(12) Hmotové vyvažování dle fig.12

U směrového a výškového kormidla metodika udává výpočet dovolené nevyváženosti pro ohybové a torzní módy trupu. [1]

Ohybové módy:

Obr. 6 Vyvažování ohybových módů trupu fig.12 [1]

Torzní módy:

Obr. 7 Vyvažování torzních módů trupu fig.12 [1]

Metoda je vyvázána na geometrické, momentové a modální charakteristiky kormidel. Metoda neudává postup stanovení polohy vyvažovací hmoty. [1]

Vstupní veličiny:

S [kgm] statický moment kormidla k ose otáčení.

Jr [kgm2] moment setrvačnosti kormidla k ose otáčení

l∟ [m] tětiva ocasních ploch

K [kgm²] deviační moment kormidla k ose otáčení, ose trupu

s∟ [m] vzdálenost tětivy l∟ od osy trupu

V_{df} [m/s] maximální prokazovaná rychlost letu pro letové zkoušky

(v práci počítáno s $V_{d.} \cdot K_{vd}$)

fB [Hz] vlastní frekvence ohybu trupu

f_{RT} [Hz] vlastní frekvence torzního módu trupu [1]

3.1.3. Metodika výpočtu pro jednotlivé konstrukční celky

Křídlo

Pro křídlo metodika nabízí několik možných přístupů pro stanovení aeroelastické odolnosti. Zahrnuje způsoby získání modálních parametrů experimentální cestou a na jejich základě stanovení odolnosti. Také postupy přímého stanovení kritické rychlosti flutteru. Jednotlivé postupy jsou rozebrány dále v této kapitole. [1]

Stanovení vlastních frekvencí

Metodika nabízí postupy odhadu vlastní frekvence na základě geometrických charakteristik křídla, empiricky stanovených koeficientů, popř. experimentem určené první vlastní torzní frekvence. [1]

Ohybové módy

Odhad prvního symetrického módu křídla:

$$f_{S1} = \frac{h_{k_ko\check{r}en}}{b^2} \cdot \left(\frac{15 \cdot b}{h_{k_ko\check{r}en}} + c \pm 500\right) [Hz] \quad \{13\} [1]$$

 $h_{k \ kor en}$ [m] tloušťka křídla v místě styku křídla s trupem

b [m] rozpětí křídla

c [-] materiálová konstanta, dáno dle následující tabulky

Tabulka 4 Materiálové konstanty [1]

С	MATERIÁL KŘÍDLA	
3500	hliníkové slitiny	
3100	dřevo	
2800	kompozity	

Odhad antisymetrických a vyšších módů křídla:

Metodika stanovuje výpočet vlastních frekvencí pro vyšší a antisymetrické módy jako poměr k prvnímu symetrickému ohybovému módu. Koeficienty poměrů dle následující tabulky. [1]

$$f_{(s_i,A_i)} = k_f \cdot f_{S1} [Hz] \{14\} [1]$$

OHYBOVÝ MÓD	kr křídla štíhlosti <9	k _f křídla štíhlosti >9	
S2	3.4	3,1	
S3	8	7,2	
S4	-	12,3	
A1	2.1	2.05	
A2	5.9	5.5	
A3	-	10.3	

Tabulka 5 Odhad vlastních frekvencí ohybových módů [1]

Torzní módy

Hrubý odhad prvního torzního symetrického módu

$$f_{t1} = c_t \cdot \frac{h_{k_ko\check{r}en}}{l_{k_ko\check{r}en} \cdot b} [Hz] \{15\} [1]$$

hk kořen [m] tloušťka křídla v místě styku křídla s trupem

b [m] rozpětí křídla

 c_t [-] materiálová konstanta 2100-2800 konstanta pro skořepiny hliníku, dřevo, GRP (skelný kompozit). Nižší číslo c_t pro částečnou skořepinu s velkými prostupy. Vyšší pro materiál rozkládající ohybový moment na celý díl. Nelze použít u dílu s velkými osamocenými hmotami daleko od kořene. [1]

l_{k_kořen} [m] délka tětivy v kořeni křídla

Přesnější odhad prvního torzního symetrického módu fig.9

Metoda spočívá v rozdělení křídla na osm stejných částí. Pro každý začátek a konec části je nutné stanovit měrný moment setrvačnosti $\frac{\Delta J}{\Delta y}$ (moment setrvačnosti dělený délkou části) a pro každou část modul tuhosti v krutu I_d . [1]

Z takto stanovených vstupních hodnot je dle následujících početních operací stanovena první vlastní frekvence torzního módu. Vstupní vlastní tvary normalizovaného zkroucení φ_0 jsou empiricky stanoveny z řady vibračních zkoušek a lze je převzít z následující tabulky. [1]

Č. ŘEZU	${oldsymbol{arphi}}_0$
1	0
2	0,115
3	0,288
4	0,458
5	0,625
6	0,766
7	0,878
8	0,959
9	1

Tabulka 6 Normalizované zkroucení $arphi_0$ [1]

$$A = \sum_{1}^{9} \varphi_0 \ [-] \ \{16\} \ [1]$$

$$B = \sum_{1}^{8} \frac{\left(\varphi_{0(9-i)} \cdot \left(\frac{\Delta J}{\Delta y}\right)_{9-i} + \varphi_{0(10-i)} \cdot \left(\frac{\Delta J}{\Delta y}\right)_{10-i}\right)}{I_{d_{(9-i)}}} \text{ [kgcm^3] } \{17\} \text{ [1]}$$

$$f_{t1} = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{G \cdot A}{\Delta y^2 \cdot B}} \quad [\text{Hz}] \quad \{18\} \ [1]$$

 φ_0 [-] normalizovaný tvar průběhu zkroucení křídla

 $\frac{\Delta J}{\Delta v}$ [kg/cm] měrný moment setrvačnosti

 I_d [cm⁴] modul tuhosti v krutu

G [kg/s²cm] modul pružnosti ve smyku křídla.[1]. Vzhledem k časté kombinaci různých materiálů nacházejících se v konstrukci křídla je tato hodnota obtížně stanovitelná.
Postup kontroly křídla na aeroelastickou odolnost

Dle vývojového diagramu níže jsou na křídle provedeny následné výpočty.

Obr. 8 Vývojový diagram aeroelastická odolnost křídla [1]

(1) Kontrola odstupu vlastní frekvence od návrhové frekvence (fb)

Metoda výpočtu je popsána ve stati společné výpočetní metody a číslem metody (1).

Pro křídlo je kontrolován odstup vlastní frekvence od návrhové frekvence fb pro ohybové (S, A) a torzní (ST) módy. Vlastní frekvence jsou získány odhadem, převzetím z PFZ nebo experimentem. Postup získání vlastních frekvencí pro křídlo byl popsán v předchozích statích. Kontrola je pak následně provedena pro všechny zmíněné vlastní frekvence a vyhodnoceno vyloučení nerizikových módů. [1]

(2) Kontrola intervalu redukované vlnové délky

Metoda výpočtu je ve stati společné výpočetní metody a číslem metody (2).

Pro křídlo kontrolován stejný rozsah módů a vlastních frekvencí jako pro předchozí metodu č.2. [1]

(3) Odhad kritické rychlosti flutteru

Metodika poskytuje metodu přímého stanovení kritické rychlosti torzního flutteru křídla. Je založená stanovení kritické redukované vlnové délky ze statistického sběru dat z PFZ a následného určení závislosti na parametru štíhlost křídla dvoubodovou interpolací. Vyjádřením rychlosti vznikne následující vztah: [1]

$$V_{krit} = 1, 2 \cdot l_f \cdot f_t \cdot \sqrt{\lambda} \ [m/s] \ \{19\} \ [1]$$

Vkrit [m/s] kritická rychlost flutteru

l_f [m] délka tětivy křídla v 0,7 polorozpětí

 f_t [Hz] vlastní frekvence torzního flutteru

λ [-] štíhlost křídla

(4) Odhad kritické rychlosti flutteru BCAR

Další možností přímého stanovení kritické rychlosti pro torzní Flutter nabízí britské předpisy o letové způsobilosti British Civil Airworthiness regulations (BCAR). Jedná se o vzorec s empiricky získanými parametry. Jak vstupní hodnoty metoda uvažuje geometrické parametry křídla, parametry prostředí letu, tuhostní charakteristiky křídla. [1]

Pro tuhostní charakteristiky metoda udává způsob stanovení experimentem.

Obr. 9 Experimentální stanovení tuhostních charakteristik [1]

$$V_{krit} = \frac{0.94}{\rho_0^{1/2}} \cdot \left(\frac{r_e}{r_s^4}\right)^{1/3} \cdot \left(\frac{l_i}{l_m}\right)^{3/4} \cdot \left(1 + \frac{0.8}{\lambda}\right) \cdot \left(1 + \frac{\lambda^2}{38} \cdot \frac{k_T}{k_B}\right) \cdot \left(\frac{k_T}{l_m \cdot S_w}\right)^{1/2} \cdot \left(1 + 1.68 \cdot \frac{\rho}{\rho_0} \cdot \frac{l_m \cdot S_w}{m_w}\right) [m/s] \ \{20\} \ [1]$$

P [daN] zatěžující síla pro ohyb

 M_T [daNm] zatěžující síla pro krut

 φ [rad] zkrut křídla v místě zatížení

S [m] průhyb křídla v místě zatížení

Vkrit [m/s] kritická rychlost flutteru

 ρ_0 [kg/m³] hustota vzduchu na hladině moře

 ρ [kg/m³] hustota vzduchu v hladině letu

 r_e [-] poloha elastické osy od náběžné hrany v 70% polorozpětí křídla a od kořene vztažena na délku tětivy

 r_s [-] poloha těžiště od náběžné hrany v 70% polorozpětí křídla a od kořene vztažena na délku tětivy

 l_i [m] délka tětivy křídla v podélné ose letounu

 l_m [m] střední délka tětivy

 λ [-] štíhlost křídla

- k_T [daNm/rad] tuhost v krutu
- k_B [daNm/m] tuhost v ohybu

S_w [m²] plocha křídla

 m_w [kg] hmotnost křídla bez spojovacích prvků s trupem

Omezení metody:

Při použití výše popsaného vztahu je nutné zohlednit následující limity metody.

Vztah obsahuje empiricky stanovené korekční koeficienty a je tedy nutné dodržet jednotky vstupních hodnot. Pokud čtvrtá závorka dosáhne hodnoty 1.3, pak je nutné počítat s hodnotou 1.3. Vztah vykazuje vysokou nepřesnost pro extrémně lichoběžníková křídla. [1]

Pokud vlastní frekvence torzních kmitů dosáhne 5x základní vlastní frekvence ohybového módu, pak kritické rychlosti vyjdou příliš vysoké. Metoda není použitelná pro nekonvenční konfigurace, tvary křídel a pro úhel šípu větší než 5°.[1]

Metoda neuvažuje významné hmoty aplikované za hranici 70% polorozpětí křídla ve směru od jeho kořene. Významné hmoty aplikované za elastickou osu křídla značně redukují získanou kritickou rychlost flutteru. [1]

(5) Stanovení maximální rychlosti letu pro letové zkoušky flutteru

Dle následujícího postupu je možné dále stanovit odhad maximální rychlosti letu pro praktické testování letových flutterových zkoušek. [1]

$$V_{df} = \frac{0.26}{\sqrt{\varphi_Q \cdot F_Q}} \ [m/s] \ \{21\} \ [1]$$

V_{df} [m/s] max. rychlost letu

 φ_0 [rad/Nm] specifické zkroucení v polovině rozpětí křidélka

Fo [m²] plocha křídla v úseku rozpětí křidélka

Trup

Pro trup nejsou dány podrobnější postupy stanovení aeroelastické odolnosti. Pro ověření je zde možnost kontroly odstupu vlastní frekvence od návrhové frekvence fb dle metody č.1 a nalezení rizikových módů v případě vlastní frekvence menší než návrhové frekvence v souladu s popsanou metodou č.1. [1]

Dle metody č.1 jsou kontrolovány následující módy:

(1) Kontrola odstupu vlastní frekvence od návrhové frekvence (fb)

Vůči návrhové frekvenci VOP:	Vůči návrhové frekvenci SOP:
Vertikální ohyb trupu (SR)	Horizontální ohyb trupu (AR)
Horizontální ohyb trupu (AR)	Torzní ohyb trupu (RT) [1]
Torzní ohyb trupu (RT) [1]	

Ocasní plochy (celek)

Vodorovná ocasní plocha (VOP)

Vlastní frekvence symetrického ohybového módu (SH1)

Vlastní frekvenci prvního ohybového módu lze odhadnout dle následujícího vzorce

$$f_{sh} = \frac{h_H}{b_H^2} \cdot \left(\frac{15 \cdot b_H}{h_H} + C_H \pm 500\right)$$
[Hz] {22} [1]

 h_H [m] kořenová tloušťka VOP

b_H [m] rozpětí VOP

 C_H [-] materiálová konstanta, dáno dle následující tabulky

Tabulka 7 Materiálová konstanta VOP [1]

Obr. 10 Vývojový diagram vodorovná ocasní plocha [1]

(1) Kontrola odstupu vlastní frekvence od návrhové frekvence (fb)

Dle popisu metody uvedené pod číslem (1) je vodorovné ocasní plocha kontrolována na odstup vlastní frekvence symetrických a antisymetrických vibračních módů VOP (SH, AH). Vlastní frekvence jsou stanoveny experimentem popsaným výše nebo převzaty z PFZ. [1]

(2) Kontrola intervalu redukované vlnové délky

Metoda výpočtu č.2 popsána ve stati společné výpočetní metody.

Svislá ocasní plocha (SOP)

Obr. 11 Vývojový diagram svislá ocasní plocha [1]

(1) Kontrola odstupu vlastní frekvence od návrhové frekvence (fb)

Dle popisu metody uvedené pod číslem (1) je svislá ocasní plocha kontrolována na odstup vlastní frekvence antisymetrického vibračního módu SOP (ASB). Vlastní frekvence převzaty z PFZ. [1]

(2) Kontrola intervalu redukované vlnové délky

Metoda výpočtu č.2 popsána ve stati společné výpočetní metody.

Svislá ocasní T plocha (SOP)

Obr. 12 Vývojový diagram T ocasních ploch [1]

(1) Kontrola odstupu vlastní frekvence od návrhové frekvence (fb)

Dle popisu metody uvedené pod číslem (1) je svislá ocasní plocha kontrolována na odstup vlastní frekvence antisymetrického vibračního módu T-SOP (AST). Vlastní frekvence převzaty z PFZ. [1]

Metody vyšetřování aeroelastické odolnosti Kormidel

Přídavné momenty setrvačnosti systému řízení

Pro stanovení vlastních frekvencí kormidel je nutné zohlednit přídavné momenty setrvačnosti systému řízení kormidel. [1]

Metodika rozlišuje dva základní principy zahrnutí vlivu přídavných momentů: [1]

Tuhý (kinematicky kmitající)

Uvažuje celý systém řízení jako soubor nekonečně tuhých elementů kmitajících ve shodě s kormidlem. Hodnoty $J_{xR'}$ a $J_{Kn'}$ jsou stanoveny následovně. [1]

$$J_{xR'} = J_R + \sum_{i}^{n} \left(m_i \left(\frac{ds_i}{d\beta} \right)^2 + J_i \left(\frac{d\alpha_i}{d\beta} \right)^2 \right) + J_{kn} \left(\frac{d\alpha}{d\beta} \right)^2 \ [\text{kgm}^2] \ \{23\} \ [1]$$

$$J_{kn'} = J_{kn} \left(\frac{d\alpha}{d\beta}\right)^2 \text{ [kgm^2] } \{24\} \text{ [1]}$$

 J_R [kgm²] moment setrvačnosti kormidla

m_i [kg] hmotnost elementu řízení

 J_i [kgm²] moment setrvačnosti rotačního elementu systému řízení

 J_{kn} [kgm²] moment setrvačnosti řididla (řídící páka, volant, pedály)

 $\frac{d\alpha_i}{d\beta}$ [rad] úhel natočení elementu systému řízení v závislosti na úhlu natočení kormidla

 $\frac{ds_i}{d\beta}$ [m] posunutí elementu systému řízení v závislosti na úhlu natočení kormidla

Netuhý (pružně kmitající)

Je dán celý systém řízení jako soubor pružných elementů. Metodika vyžaduje přerozdělení vlivu elementu řízení dle uzlového bodu [1]

Hodnoty $J_{xR''}$ a $J_{Kn''}$ jsou stanoveny následovně:

$$J_{xR''} = J_R + \frac{1}{2} \sum_{i}^{n} \left(m_i \left(\frac{ds_i}{d\beta} \right)^2 + J_i \left(\frac{d\alpha_i}{d\beta} \right)^2 \right)_{elemety \ od \ kormidla \ do \ uzlového \ bodu}$$
 [kgm²] {25} [1]

$$J_{kn''} = J_{kn} \left(\frac{d\alpha}{d\beta}\right)^2 + \frac{1}{2} \sum_{i}^{n} \left(m_i \left(\frac{ds_i}{d\beta}\right)^2 + J_i \left(\frac{d\alpha_i}{d\beta}\right)^2\right)_{elemety \ od \ uzlov\acute{e}ho \ bodu \ k \ \check{t}ididlu} \ [kgm^2] \ \{26\} \ [1]$$

 J_R [kgm²] moment setrvačnosti kormidla

m_i [kg] hmotnost elementu řízení

J_i [kgm²] moment setrvačnosti rotačního elementu systému řízení

 J_{kn} [kgm²] moment setrvačnosti řididla (řídící páka, volant, pedály)

 $\frac{d\alpha_i}{d\beta}$ [rad] úhel natočení elementu systému řízení v závislosti na úhlu natočení kormidla

 $\frac{ds_i}{d\beta}$ [rad] posunutí elementu systému řízení v závislosti na úhlu natočení kormidla

Přerozdělení vlivu jednotlivých částí systému řízení dle uzlového bodu je v praxi obtížně zjistitelné a je nutné se s tímto faktorem nějakým způsobem vypořádat. [1]

Křidélka

Vlastní frekvence (SQ, AQ).

Jako podklad pro následné kontroly aeroelastické odolnosti metodika stanoví výpočetní vztah pro první vlastní frekvence symetrické a antisymetrické módy křidélka (SQ, AQ). [1]

Vztah založen na vstupních parametrech tuhosti, statického momentu, momentu setrvačnosti křidélka a přídavného momentu setrvačnosti systému řízení křidélka. [6] Pro křidélko je uvažován systém řízení jako tuhý (kinematicky kmitající).[1]

Symetrický mód (SQ):

$$f_{Sq} = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{k_s}{J_{QR'}}}$$
 [hz] {27} [1]

Antisymetrický mód (AQ):

$$f_{Aq} = \frac{1}{2 \cdot \pi} \cdot \sqrt{k_A \cdot \left(\frac{1}{J_{QR'}} + \frac{2}{J_{Kn'}}\right)} \quad \text{[hz]} \ \{28\} \ \text{[1]}$$

 k_s , k_A [kgm] experimentálně zjištěné tuhosti křidélka pro symetrické a antisymetrické případy. [1]

 $J_{QR'}$ [kgm²] moment setrvačnosti křidélka s přídavným momentem setrvačnosti systému řízení. Zahrnuto 50% systému řízení v křídle pro SQ a 100% pro AQ[1]

 $J_{Kn'}$ [kgm²] moment setrvačnosti řídící páky. Zahrnuto 50% systému řízení v trupu a 1kg závaží na řididle. [1]

Tuhosti:

$$k_s = c_s \cdot c_p \cdot \frac{\Delta P}{\Delta S_s}$$
 [kgm] $k_a = c_s \cdot c_p \cdot \frac{\Delta P}{\Delta S_a}$ [kgm] {29} [1]

Tuhosti je možné stanovit pomocí experimentu dle postupu na následujícím obrázku.

Podstatou je zafixování řídící páky (volantu), zatížení silou P dle znázornění a měření deformací s_r, s_l. [1]

Obr. 13 Určení tuhostí kormidel [1]

Postup kontroly křidélka na aeroelastickou odolnost

Dle vývojového diagramu níže jsou na křidélku provedeny následné výpočty.

Obr. 14 Vývojový diagram aeroelastická odolnost křidélka [1]

- (6) Volný chod [1]
- (8) Kontrola torzní / ohybové tuhosti křidélka [1]
- (9) Kontrola maximální dovolené nevyváženosti křidélka [1]
- (10) Vyvažování kormidel dle fig.8 [1]
- (11) Snížení požadavku na vyvážení [1]

Metody výpočtu popsány ve stati společné výpočetní metody. Pro vyvažování jsou uvažovány módy nevyloučené kontrolami předchozími dle vývojového diagramu. [1]

(1) Kontrola odstupu vlastní frekvence od návrhové frekvence (fb)

Dle popisu metody uvedené pod číslem (1) je křidélko kontrolováno na odstup vlastní frekvence symetrických a antisymetrických vibračních módů křidélka (SQ, AQ). Vlastní frekvence jsou stanoveny experimentem popsaným výše nebo převzaty z PFZ. [1]

(7) Kontrola párování módů

Dle popisu metody uvedené pod číslem (7) je křidélko kontrolováno na odstup vlastní frekvence vibračních módů křidélka (SQ, AQ) od ohybových módů křídla (S, A). Pro kontrolu jsou uvažovány módy nevyloučené dle metody (1). Vlastní frekvence stanoveny souhlasně s předchozím bodem. [1]

Klapky

Vlastní frekvence (SK, AK).

Jako podklad pro následné kontroly aeroelastické odolnosti metodika stanoví výpočetní vztah pro první vlastní frekvence symetrické a antisymetrické módy klapky (SK, AK). [1]

Vztah založen na vstupních parametrech tuhosti, statického momentu, momentu setrvačnosti klapky a přídavného momentu setrvačnosti systému řízení. [6] Pro klapku je uvažován systém řízení jako tuhý (kinematicky kmitající) pro symetrické případy a netuhý (pružně kmitající) pro antisymetrické případy.[1]

Symetrický mód (SK):

$$f_{Sk} = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{k_s}{J_{WK'}}}$$
 [hz] {30} [1]

Antisymetrický mód (AK):

$$f_{Ak} = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{k_a}{J_{WK''}}} \text{ [hz] } \{31\} \text{ [1]}$$

 k_s , k_A [kgm] experimentálně zjištěné tuhosti klapky pro symetrické a antisymetrické případy. Stanovení shodné s křidélky. [1]

 $J_{WK''}$ [kgm²] moment setrvačnosti s přídavným momentem setrvačnosti systému řízení. Zahrnuto 100% systému řízení v křídle a 25% v trupu pro SK a 50% v křídle pro AK [1]

Postup kontroly křidélka na aeroelastickou odolnost

Dle vývojového diagramu níže jsou na klapce provedeny následné výpočty.

Obr. 15 Vývojový diagram aeroelastická odolnost klapky [1]

(6) Volný chod [1]

- (8) Kontrola torzní / ohybové tuhosti klapky [1]
- (9) Kontrola maximální dovolené nevyváženosti klapky [1]
- (10) Vyvažování kormidel dle fig.8 [1]

Metody výpočtu jsou popsány ve stati společné výpočetní metody. Pro vyvažování uvažovány módy nevyloučené kontrolami předchozími dle vývojového diagramu. [1]

(1) Kontrola odstupu vlastní frekvence od návrhové frekvence (fb)

Dle popisu metody uvedené pod číslem (1) je klapka kontrolována na odstup vlastní frekvence symetrických a antisymetrických vibračních módů klapky (SK, AK). Vlastní frekvence stanoveny experimentem popsaným výše nebo převzaty z PFZ. [1]

(7) Kontrola párování módů

Dle popisu metody uvedené pod číslem (7) společných postupů je klapka kontrolována na odstup vlastní frekvence vibračních módů klapky (SK, AK) od ohybových módů křídla (S, A). Pro kontrolu jsou uvažovány módy nevyloučené dle metody (1). Pro klapku je dále kontrolováno vzájemné párování s křidélkem. Kontrolována je vzdálenost vlastních frekvencí (SK/SQ, AK/AQ). Vlastní frekvence stanoveny souhlasně s předchozím bodem. [1]

Výškové kormidlo

Vlastní frekvence (SHR, AHR).

Jako podklad pro následné kontroly aeroelastické odolnosti metodika stanoví výpočetní vztah pro první vlastní frekvence symetrické a antisymetrické módy výškového kormidla (SHR, AHR). [1]

Vztah založen na vstupních parametrech tuhosti, statického momentu, momentu setrvačnosti výškového kormidla a přídavného momentu setrvačnosti systému řízení. [6] Pro výškového kormidlo je uvažován systém řízení jako netuhý (pružně kmitající).[1]

Symetrický mód (SHR):

$$f_{SHr} = \frac{1}{2 \cdot \pi} \cdot \sqrt{k_s \cdot \left(\frac{2}{J_{HR''}} + \frac{2}{J_{Kn''}}\right)} \text{ [hz] } \{32\} \text{ [1]}$$

Antisymetrický mód (AHR):

$$f_{AHr} = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{2 \cdot k_a}{J_{HR''}}} \text{ [hz] } \{33\} \text{ [1]}$$

 k_s , k_A [kgm] experimentálně zjištěné tuhosti výškového kormidla pro symetrické a antisymetrické případy. Stanovení shodné s křidélky. [1]

 J_{HR} " [kgm²] moment setrvačnosti výškového kormidla s přídavným momentem setrvačnosti systému řízení. Zahrnuto 25% systému řízení pro SHR a 100% pro AHR [1]

 $J_{Kn''}$ [kgm²] moment setrvačnosti řídící páky. Zahrnuto 25% systému řízení pro SHR a 1kg závaží na řididle. [1]

Postup kontroly výškového kormidla na aeroelastickou odolnost

Dle vývojového diagramu níže jsou na výškového kormidlu provedeny následné výpočty.

Obr. 16 Vývojový diagram aeroelastická odolnost výškového kormidla [1]

(6) Volný chod [1]

- (8) Kontrola torzní / ohybové tuhosti výškového kormidla [1]
- (10) Vyvažování kormidel dle fig.8 [1]
- (11) Snížení požadavku na vyvážení [1]
- (12) Hmotové vyvažování dle fig.12 [1]

Metody výpočtu jsou popsány ve stati společné výpočetní metody. Pro vyvažování uvažovány módy nevyloučené kontrolami předchozími dle vývojového diagramu. [1]

(1) Kontrola odstupu vlastní frekvence od návrhové frekvence (fb)

Dle popisu metody uvedené pod číslem (1) je výškové kormidlo kontrolováno na odstup vlastní frekvence symetrických a antisymetrických vibračních módů výškového kormidla (SHR, AHR). Vlastní frekvence stanoveny experimentem popsaným výše nebo převzaty z PFZ. [1]

(7) Kontrola párování módů

Dle popisu metody uvedené pod číslem (7) je výškové kormidlo kontrolováno na odstup vlastní frekvence vibračních módů výškového kormidla (SHR, AHR) od ohybových módů VOP (SH), ohybových módů trupu (SR) a torzních módů trupu (RT). Pro kontrolu jsou uvažovány módy nevyloučené dle metody (1). Vlastní frekvence stanoveny souhlasně s předchozím bodem. [1]

Směrové kormidlo

Vlastní frekvence (ASR).

Jako podklad pro následné kontroly aeroelastické odolnosti metodika stanoví výpočetní vztah pro první vlastní frekvence symetrické módy směrového kormidla (ASR). [1]

Vztah založen na vstupních parametrech tuhosti, statického momentu, momentu setrvačnosti směrového kormidla a přídavného momentu setrvačnosti systému řízení. [6] Pro směrové kormidlo je uvažován systém řízení jako netuhý (pružně kmitající).[1]

Antisymetrický mód (ASR):

$$f_{SHr} = \frac{1}{2 \cdot \pi} \cdot \sqrt{k_a \cdot \left(\frac{1}{J_{SR''}} + \frac{1}{J_{ped''}}\right)} \text{ [hz] {34} [1]}$$

 k_A [kgm] experimentálně zjištěná tuhost směrového kormidla pro antisymetrické případy. Stanovení shodné s křidélky. [1]

 $J_{SR''}$ [kgm²] moment setrvačnosti směrového kormidla s přídavným momentem setrvačnosti systému řízení. Zahrnuto 25% systému řízení [1]

J_{ped}" [kgm²] moment setrvačnosti směrových pedálů. Zahrnuto 25% systému řízení [1]

Postup kontroly směrového kormidla na aeroelastickou odolnost

Dle vývojového diagramu níže jsou na směrovém kormidlu provedeny následné výpočty.

Obr. 17 Vývojový diagram aeroelastická odolnost směrového kormidla [1]

- (6) Volný chod [1]
- (8) Kontrola torzní / ohybové tuhosti směrového kormidla [1]
- (10) Vyvažování kormidel dle fig.8 [1]
- (11) Snížení požadavku na vyvážení [1]
- (12) Hmotové vyvažování dle fig.12 [1]

Metody výpočtu jsou popsány ve stati společné výpočetní metody. Pro vyvažování uvažovány módy nevyloučené kontrolami předchozími dle vývojového diagramu. [1]

(1) Kontrola odstupu vlastní frekvence od návrhové frekvence (fb)

Dle popisu metody uvedené pod číslem (1) je směrové kormidlo kontrolováno na odstup vlastní frekvence antisymetrických vibračních módů výškového kormidla (ASR). Vlastní frekvence stanoveny experimentem popsaným výše nebo převzaty z PFZ. [1]

(7) Kontrola párování módů

Dle popisu metody uvedené pod číslem (7) je směrového kormidla kontrolováno na odstup vlastní frekvence vibračních módů směrového kormidla (ASR) od ohybových módů SOP (ASB), ohybových módů trupu (AR) a torzních módů trupu (RT). Pro kontrolu jsou uvažovány módy nevyloučené dle metody (1). Vlastní frekvence stanoveny souhlasně s předchozím bodem. [1]

3.2. Metodika Simplified Flutter Prevention.

V následující stati jsou podrobněji rozebrány kriteriální postupy stanovení aeroelastické odolnosti konstrukce dle metodiky Simplified Flutter Prevention. Metodika je členěna dle jednotlivých konstrukčních celků a předpokládá pro vyloučení výskytu některého z aeroelastických jevů splnění všech podmínek. [2]

3.2.1. Křídlo

Křídlo je posuzováno vzhledem k tuhostnímu kritériu zajišťujícímu dostatečnou aeroelastickou odolnost proti nestacionárním jevům (flutteru), tak i stacionárním (torzní divergenci, reverzaci řízení). Metoda vyžaduje experimentální změření tuhosti křídla. [2]

$$\sum_{1}^{4} Q_{k} \cdot C_{k}^{2} \cdot \Delta S_{k} \leq \frac{200}{(V_{d} \cdot K_{vd})^{2}} [35] [2]$$

 k_{vd} [-] koeficient bezpečnosti odstupu od návrhové rychlosti letounu V_d

Vd [mph] návrhová rychlost letounu

 Q_k [rad/lbft] úhel zkrouceni v radiánech a polovině úseku na jednotkový moment působící na konci křidélka

- C_k [ft] délka tětivy ve středu úseku
- S_k [ft] délka úseku

3.2.2. Křidélka

Pro křidélka metodika uvádí dvě kritéria kontroly na volný chod a dynamické vyvážení. [2]

Volný chod

Obdobně jak bylo uvedeno v metodice Aeroelastic Flutter Prevention hodnotí se experimentálně změřená vůle chodu křidélka při fixaci druhého s maximální dovolenou. [2]

$$v$$
ů le_zm ěř en á $\leq 0,025 \cdot C_{oo} \{36\} [2]$

 $C_{oo} [ft]$ délka tětivy za osou otáčení a v místě měření vůle

Dynamické vyvážení křidélka

Metoda porovnává experimentálně stanovenou hodnotu vyvážení s mezní danou grafem uvedeným níže a vázanou na návrhovou rychlost V_d. [2]

$$\frac{K}{I} \leq \left(\frac{K}{I}\right)_{mez}^2 \{37\} [2]$$

K [lbft²] deviační moment křidélka k uzlové čáře základního ohybového módu křídla a ose otáčení křidélka (osu uzlové čáry možné nahradit podélnou osou trupu) [2]

I [lbft2] moment setrvačnosti k ose otáčení křidélka [2]

Obr. 18 Graf dynamického vyvážení křidélka [2]

3.2.3. Výškové kormidlo

Kontrola výškového kormidla je dělena na paralelní vyvažování postihující párování vertikálního ohybu trupu a symetrické rotace výškového kormidla a kolmé vyvažování zahrnující párování torzního módu trupu s antisymetrickou rotací výškového kormidla. [2]

Kolmé vyvažování není třeba vyšetřovat, pokud antisymetrický mód VK (AHR) je větší než 1,5 násobek vlastní frekvence torzního módu trupu (RT). [2]

Paralelní vyvažování

$$\gamma \leq (\lambda)_{mez}^{2} \{38\} [2]$$

$$\gamma = \frac{b \cdot S_{\beta}}{I \cdot 2} \{39\}[2]$$

b [ft] tětiva VOP v polovině polorozpětí

 $S_{\beta}[lbft]$ statický moment k ose otáčení VK

I [lbft2] moment setrvačnosti k ose otáčení VK

V_f vstupní hodnota rychlosti flutteru hodnocení dle grafu paralelní vyvažování

$$V_f = \frac{V_d \cdot K_{vd}}{b \cdot f_v} \{40\}[2]$$

 k_{vd} [-] koeficient bezpečnosti odstupu od návrhové rychlosti letounu V_d

Vd [mph] návrhová rychlost letounu

 f_v [cpm] vlastní frekvence vertikálního ohybového módu trupu (SR)

Kolmé vyvažování

$$\gamma \leq (\lambda)_{mez}^2 \{41\} [2]$$

$$\gamma = \frac{b \cdot K}{I \cdot S} \left\{ 42 \right\} [2]$$

b [ft] tětiva VOP v polovině polorozpětí

S [ft] polorozpětí vodorovné ocasní plochy

K [lbft²] deviační moment VK k elastické ose hor. stabilizátoru a ose otáčení VK l [lbft²] moment setrvačnosti k ose otáčení VK

 V_f vstupní hodnota rychlosti flutteru hodnocení dle grafu kolmého vyvažování

$$V_f = \frac{V_d \cdot K_{vd}}{b \cdot f_\alpha} \{43\}[2]$$

 k_{vd} [-] koeficient bezpečnosti odstupu od návrhové rychlosti letounu V_d

Vd [mph] návrhová rychlost letounu

 f_{α} [cpm] vlastní frekvence torzního módu trupu (RT)

3.2.4. Směrové kormidlo

Kontrola směrového kormidla je dělena analogicky k výškovému kormidlu na paralelní a kolmé vyvažování. Párování horizontálního ohybového módu trupu (AR) s módem rotace směrového kormidla (ASR), torzního módu trupu (RT) s rotací směrového kormidla (ASR). [2]

Paralelní vyvažování

$$\gamma \leq (\lambda)_{mez}^2 \{44\} [2]$$

$$\gamma = \frac{b \cdot S_{\beta}}{I \cdot 2} \{45\}[2]$$

b [ft] tětiva SOP v polovině polorozpětí

 $S_{\beta}[lbft]$ statický moment k ose otáčení SK

I [lbft2] moment setrvačnosti k ose otáčení SK

 V_f vstupní hodnota rychlosti flutteru hodnocení dle grafu paralelní vyvažování

$$V_f = \frac{V_d \cdot K_{vd}}{b \cdot f_h} \{46\}[2]$$

 k_{vd} [-] koeficient bezpečnosti odstupu od návrhové rychlosti letounu V_d

Vd [mph] návrhová rychlost letounu

 f_h [cpm] vlastní frekvence horizontálního ohybového módu trupu (AR)

Kolmé vyvažování

$$\gamma \le (\lambda)_{mez}^2 \{47\} [2]$$
$$\gamma = \frac{b \cdot K}{L \cdot S} \{48\} [2]$$

b [ft] tětiva SOP v polovině polorozpětí

S [ft] polorozpětí svislé ocasní plochy

K [lbft²] deviační moment SK k elastické ose trupu a ose otáčení SK

I [lbft2] moment setrvačnosti k ose otáčení SK

V_f vstupní hodnota rychlosti flutteru hodnocení dle grafu kolmého vyvažování

$$V_f = \frac{V_d \cdot K_{vd}}{b \cdot f_\alpha} \{49\}[2]$$

 k_{vd} [-] koeficient bezpečnosti odstupu od návrhové rychlosti letounu V_d

Vd [mph] návrhová rychlost letounu

 f_{α} [cpm] vlastní frekvence torzního módu trupu (RT)

Obr. 19 Paralelní vyvažování výškového, směrového kormidla [2]

Obr. 20 Kolmé vyvažování výškového / směrového kormidla [2]

3.2.5. Plošky

Vratné plošky

Dle metodiky je pro vratné plošky (myšleno např. odlehčovací, přitěžovací plošky) vyžadováno 100% statické vyvážení. [2]

Nevratné plošky

Pro nevratné plošky (např. trimovací plošky) je možné obdobně využít požadavku 100% statického vyvážení nebo vyhodnotit následující tři kritéria. [2]

Krit-1:

Pro všechny polohy kormidla příslušící plošce nelze plošku vychýlit při zatížení momentem. Kritérium je krajně nespolehlivé vzhledem ke skutečnosti, že není definována tolerance vychýlení ani maximální zatěžující moment. [2]

Krit-2:

Obdobně jak bylo uvedeno ve stati kritérií pro křidélka, hodnotí se experimentálně změřená vůle chodu plošky při fixaci kormidla, mechanismu ovládání plošky s maximální dovolenou vůlí. [2]

$$v$$
ůle_změřená $\leq 0,025 \cdot C_{oo}$ {50} [2]

Coo [ft] délka tětivy za osou otáčení a v místě měření vůle

Krit-3:

Hodnotí se nejnižší vlastní frekvence (mód rotace nebo torze) plošky změřené na letounu a porovnává se s následujícími analyticky stanovenými vlastními frekvencemi. [2]

$$f_{t} \ge (f_{a}, f_{b})_{min} \quad \{51\} [2]$$

$$f_{a} = \frac{63 \cdot V_{d} \cdot K_{vd} \cdot S_{t}}{C_{l} \cdot S_{c}} \quad \{52\} [2]$$

 k_{vd} [-] koeficient bezpečnosti odstupu od návrhové rychlosti letounu V_d

Vd [mph] návrhová rychlost letounu

 S_t [ft] rozpětí plošky

 C_l [ft] tětiva kormidla za osou otáčení a polovině rozpětí plošky

S_c [ft] šířka kormidla příslušné k plošce připojené

 f_b [cpm] 200 pro letouny s V_d <200mph

 f_b [cpm] >10 Vd pro letouny s Vd >200mph

4. Výpočetní program

Pro automatizaci výpočtu dle postupů stanovených metodik z předchozího bodu byl napsán výpočetní skript v prostředí softwaru Matlab.

Program ze zadaných vstupních hodnot vypočte výstupní hodnoty dle jednotlivých metodik Aeroelastic Flutter Prevention, Simplified Flutter Prevention a zapíše hodnoty do výstupního souboru Output_aero_fl.txt.

4.1. Matlab

Software Matlab je výkonný programovací jazyk a prostředí určené především pro numerické výpočty, vizualizace a analýzu dat. Je vyvíjen společností © 1994-2024 The MathWorks, Inc. MATLAB nabízí širokou škálu nástrojů a funkcí pro manipulaci s daty, výpočty, modelování a simulace, práce s vektory, maticemi.[7]

4.2. Struktura Programu

4.2.1. Úvodní část

```
1
         clear all;
 2
         close all;
 3
         clc;
 4
         delete('output aero fl.txt')
 5
         diary('output_aero_fl.txt')
 6
    Ð
 7
         %_____
 8
         % misto pro popis letounu
 9
 10
              uvod={ 'Letoun- ATEC 321 FAETA NG';...
                    'report No. VZP/ULT/3/2020';...
11
 12
                    'CZECH TECHNICAL UNIVERSITY IN PRAGUE';...
 13
                    'FACULTY OF MECHANICAL ENGINEERING';...
                    'Department of Aerospace Engineering';...
 14
 15
                    'pocitana tezka konfigurace, kormidla volna'
 16
                    'pro NaN vystupni hodnoty nutne mereni na letounu'};
 17
                    disp(uvod);
18
19
        20
         % zadej hodnotu '1' pro volbu metodiky
 21
         % pro vylouceni metodiky z vypoctu zadej hodnotu '0'
 22
         metodika stender=1;
23
         metodika_no45=1;
24
```

Obr. 21 Úvod Matlab

V úvodní části skriptu jsou zapsány základní informace o ověřovaném letounu a technické zprávě, se kterou byla metodika ověřována. Úvodní popis tvoří hlavičku výstupního souboru. Pod úvodní hlavičkou následuje zadání volby výstupu, která určí, zda bude počítána metodika Aeroelastic Flutter Prevention, Simplified Flutter Prevention. Volba se dle popisu uskuteční zapsáním hodnoty 1 pro povolení výpočtu a 0 pro vynechání výpočtu.

4.2.2. Vstupní hodnoty

30	-	% ************************************
31		%*************************************
32	L	% ************************************
33		
34		
35		%/////////////////////////////////////
36		
37		%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
38	T	% vlastni torzni frekvence fig 9 {metoda-no [1 2 3]}
39	L	% ••••••••••••••••••••••••••••••••••••
10		fig figg-[NaN NaN NaN NaN NaN NaN NaN NaN]; %1 ubel torzni deformace
40		delta i delta v fige-[NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
41		% nordil momentu setnyasnesti na dalku useku knidla
42		% rozali momentu setrvacnosti na deiku useku kriala
45		Id_TIg9=[Nan Nan Nan Nan Nan Nan Nan Nan Nan J;%3 [kg/cm] modul tunosti v
44		% Krutu
45		GENAN; %3 [kg/s2cm] modul pruznosti ve smyku (mat. kridia)
46		delta_y=NaN; %4 [cm] delka useku kridla
4/		
48		
49		
135	Ξ	%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
136	T	%vlastní frekvence křidélka
137	L	%>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
138		
139		ds1 krid=[0.033 0.058 NaN]: %38 [m] vektor posun teziste elementu svstemu
140		% rizeni kridelek v 1 kridle
141		da1 krid=0.646; %39 [m] uhel rotace teziste elementu systemu rizeni
142		% kridelek v 1 kridle
143		ie1 krid=0.00012: %40 [kgm2] moment setrvacnosti rotacniho elementu
144		% systemu rizeni kridelek v 1 kridle
145		db krid=0.585: %41 [rad] vektor zmena uhlu natoceni kridelka
146		ikn krid=0.00385: %42 [kgm2] moment setrvacnosti ridici paky kridelka
147		da stick krid=0.803: %43 [rad] zmena uhlu natoceni rididla
148		m1 krid=[0.107 0.415 NaN]: %36 [kg] vektor hmotnosti elementu systemu
149		% rizeni kridelka v 1 kridle
150		// TIZCHI KIIMCIKU V I KIIMIC
100	_	

Obr. 22 Vstupní hodnoty Matlab

Vstupní hodnoty jsou tříděny dle metodik, konstrukčních celků a jednotlivých postupů. Každé vstupní hodnotě je přiřazena proměnná, číslo vstupní hodnoty, jednotky a krátký popis hodnoty. Pro neznámé proměnné je namísto hodnoty zapsán znak "NaN,,, který umožní výpočet a současně označí ve výstupním souboru hodnoty nestanovené z důvodu chybějících vstupních hodnot.

4.2.3. Výpočty

593		
594	%% METODIKA STENDER	
595	if metodika stender==1	
596	disp('[)
597	disp('[MTODIKA_STENDERMTODIKA_STENDER]'	ś
598	disp('[]'	ŝ
590	disp([]	'
599	disp()	
600		
601	%%1 Vypocet kridio %%	
602	disp(`[====================================)
603	disp('')	
604	%01-4 odhad vlastni frekvence sym. ohybovych modu (dle Stender IV.)	
605	fs1=tl_kridlo_koren/(b^2)*(15*b/tl_kridlo_koren+c_fs1);	
606		
648 🖃	% frekvencni kontrola izolovaneho kridla torznimi modv (dle Stender)>	
649	% ft kridla musi byt dostatecne nad fb	
650	% kridla> fr koef >1	
651	kontrola fr kr w20 ft1-ft1/fb w20 lf07: $\%$ [Hz] pro samonocna a vznerova	
652	% knidla mala stillasti / ftl bruby adad	
652	% kituta male stiniosti / iti mudy ounau kontnolo fi kituta male sumotnicku	
653	KONCHOIA_N_KN_W4_HCI=HCI/HD_W4_IN0/, % [H2] pro scinia kriula symetricky	
054	% flutter / ftl nruby odnad	
055		
656	Kontrola_tr_kr_W29_tt2=tt2_tig9/tb_W29_1t0/; % [HZ] pro samonosna a	
657	% vzperova kridla male stihlosti / ft2_fig9 presnejsi	
658	kontrola_tr_kr_w4_tt2=tt2_tig9/tb_w4_lt07; % [Hz] pro stihla kridla	
659	% symetricky flutter /ft2_fig9 presnejsi	
660		
661	kontrola_fr_kr_w29_pfz_st=f_kr_st_pfz./fb_w29_lf07; % [Hz] pro samonosna	
662	% a vzperova kridla male stihlosti /PFZ-symetricky	
663	kontrola_fr_kr_w29_pfz_at=f_kr_at_pfz./fb_w29_lf07; % [Hz] pro samonosna	
664	% a vzperova kridla male stihlosti /PFZ-antisymetricky	
665	kontrola_fr_kr_w4_pfz_st=f_kr_st_pfz./fb_w4_lf07; % [Hz] pro stihla kridla	
666	% symetricky flutter /PFZ	
667		
668	<pre>disp(['kontrola odstupu vl. frekvence kridla od navrhove frekvence'</pre>	
669	' kridla fb (dle Stender) pro vylouceni modu hodnota'	
670	' musi byt vetsi nez [1]: '])	
671	disp(' ')	
672	disp('///////////////torzni mody////////////////////////////////////	
673	<pre>disp('pro letouny s samonosnymi a vzperovymi kridly male stihlosti:')</pre>	
674	<pre>disp('[ST1/AT1]-hruby odhad>')</pre>	
675	disp(kontrola_fr_kr_w29_ft1)	
676	<pre>disp('[ST1/AT1]-dle fig.9 presnejsi>')</pre>	
677	disp(kontrola_fr_kr_w29_ft2)	
678	<pre>disp('[ST1,ST2]-PFZ>')</pre>	
679	disp(kontrola_fr_kr_w29_pfz_st)	
680	<pre>disp('[AT1,AT2]-PFZ>')</pre>	
681	disp(kontrola_fr_kr_w29_pfz_at)	
682	<pre>disp('pro letouny s stihlymi kridly:')</pre>	
683	<pre>disp('[ST1/AT1]-hruby odhad>')</pre>	
684	disp(kontrola_fr_kr_w4_ft1)	
685	<pre>disp('[ST1/AT1]-dle fig.9 presnejsi>')</pre>	
686	disp(kontrola fr kr w4 ft2)	
687	disp('[ST1.ST2]-PFZ>')	
688	disp(kontrola fr kr w4 pfz st)	

Obr. 23 Výpočtová část Matlab

Výše zobrazený skript dává příklad uspořádání výpočtové části. Výpočet jednotlivých metod je členěn obdobně jako vstupní hodnoty dle metodik, konstrukčních částí letounu a jednotlivých postupů. Výstupní hodnoty jsou vypisovány pomocí příkazu ,,disp,, do Command Window a následně zapsány do výstupního souboru.

```
1906
           %% funkce %%
1907
1908
           %redukovana vlnova delka
1909
           function w_r=w_red(l,f,v)
1910
               %{
1911
               w_r - redukovana vlnova delka [-]
1912
              l-tetiva [m]
1913
              f-vlastni frekvence [Hz]
1914
               v-rychlost letu [m/s]
1915
               %}
1916
               w_r=v./(l*f);
1917
           end
1918
1919
1920
1921
           % pridavny moment setrvacnosti systemu rizeni 1. pripad-tuhy system
1922 📮
          function jsyst=j_sys_tuhy(da1,je1,da2,je2,ds1,ds2,db,m1,m2,jkn, ...
1923
               da_stick,k1,k2)
1924 📋
          %{
1925
          dsa-vektor posun / rotace teziste elementu systemu rizeni, indexy
1926
           deli pomery vlivu [m,rad]
1927
           db-vektor zmena uhlu natoceni kormidla [rad]
          m-vektor hmotnosti elementu, indexy deli pomery vlivu [kg]
1928
1929
          jkn- moment setrvacnosti rididla [kgm2]
1930
          da_stick- zmena uhlu natoceni rididla [rad]
          k- koeficient ponizeni vlivu [-]
1931
1932
1933
           %}
1934
               jsyst=sum(k1*(m1.*(ds1./db).^2+je1.*(da1./db).^2)+ k2*(m2.* ...
1935
                   (ds2./db).^2+je2.*(da2./db).^2))+jkn*(da_stick/db)^2;
1936
           end
```

Obr. 24 Funkce Matlab

V koncové části skriptu jsou zapsány všechny funkce interně používané pro výpočet hodnot. Každá funkce je opatřena komentářem a popisem proměnných.

4.2.4. Výstupní soubor

Náhled na úvodní část výstupního souboru se stanovenými hodnotami. Výstupní soubor je koncipován se strukturou skriptu a je členěn dle metodik, konstrukčních celků letounu a jednotlivých metod.

______ Stanoveni aeroelasticke odolnosti _____ {'Letoun- ATEC 321 FAETA NG' } { 'report No. VZP/ULT/3/2020' } {'CZECH TECHNICAL UNIVERSITY IN PRAGUE' } { 'FACULTY OF MECHANICAL ENGINEERING' } {'Department of Aerospace Engineering' } {'pocitana tezka konfigurace, kormidla volna' } {'pro NaN vystupni hodnoty nutne mereni na letounu'} kontrola odstupu vl. frekvence kridla od navrhove frekvence kridla fb (dle Stender) pro vylouceni modu hodnota musi byt vetsi nez [1]: pro letouny s samonosnymi a vzperovymi kridly male stihlosti: [ST1/AT1]-hruby odhad --> 0.8737 [ST1/AT1]-dle fig.9 presnejsi--> NaN [ST1,ST2..]-PFZ --> 0.7554 1.6519 NaN NaN [AT1,AT2..]-PFZ --> 0.7439 1.7190 NaN pro letouny s stihlymi kridly: [ST1/AT1]-hruby odhad --> 1.2232 [ST1/AT1]-dle fig.9 presnejsi--> NaN [ST1,ST2..]-PFZ --> 1.0576 2.3126 NaN NaN

Obr. 25 Výstupní soubor Matlab

5. Ověřovací výpočty letounu

V této stati se budu zabývat výpočtem aeroelastické odolnosti vybraného letounu. Pro výpočet jsou použity v předchozích statích nadefinované výpočetní metodiky Aeroelastic Flutter Prevention a Simplified Flutter Prevention. Samotné vyhodnocení je provedeno pomocí sestaveného programu v prostředí softwaru Matlab.

5.1. Popis letounu

Výpočet aeroelastické odolnosti byl proveden Pro letoun Atec 321 Faeta NG

Jde o malý sportovní ultralehký dvoumístný dolnoplošník se samonosným křídlem vyráběný firmou Atec a certifikovaný Amatérskou leteckou asociací (LAA) pod stavebním předpisem UL-2. Letoun je celokompozitové konstrukce s uspořádáním posádky side by side a max. vzletovou hmotností (MTOW) 600 kg. [8]

Obr. 26 Atec 321 Faeta NG [8]

5.2. Základní technické údaje

5.2.1. Muška

Obr. 27 Muška Atec 321 Faeta NG [9]

5.2.2. Technická data

Tabulka 8	Technické	údaie Ateo	321	Faeta	NG	<i>[</i> 91
						L-1

Rozpětí křídla	9,6m	Cestovní rychlost Vc	242 km/h / 131 kt
Délka trupu		Nepřekročitelná rychlost V _{NE}	272 km/h / 148 kt
Výška	2,1 m	Min. rychlost s klapkami V_{S0}	56 km/h / 30 kt
Plocha křídla	10,1 m ²	Min. rychlost bez klapek $V_{\mbox{S1}}$	75 km/h / 40 kt
Rozpětí VOP	2,4 m	Provozní násobky	4 / -2 g
Rozchod kol	2,0 m	Dolet	2000 km
Prázdná hmotnost	320 kg	Spotřeba paliva (180/245 km/h)	9/14 L/h
Max. vzletová hmotnost	600 kg		
Obsah nádrže	2 x 50 L		
Max. hmotnost zavazadel	20 kg		

5.2.3. Počítané konfigurace letounu

Letoun je počítán pro dvě hmotnostní konfigurace zatížení letounu, těžká a lehká. Kormidla jsou počítána v konfiguracích volná a blokovaná. [10]

Lehká konfigurace:

Hmotnost Prázdného letounu 318,5 kg Pilot 60 kg Palivo 0 kg Celková hmotnost 378,5 kg [10] Těžká konfigurace:

Hmotnost Prázdného letounu 318,5 kg Pilot 203,5 kg Palivo 78 kg Celková hmotnost 600 kg [10]

5.2.4. Vstupní hodnoty pro výpočet

V následující tabulce jsou uvedeny vstupní veličiny pro výpočet dle metodik.

Hodnoty veličin "NaN, jsou vloženy pro vstupy, pro které je nutné provést experiment a nebo je nebylo možné stanovit jinou metodou. Tabulka těchto hodnot je uvedena v příloze č.1.

Níže je definována tabulka hodnot pro počítané konfigurace letounu. Číslo (No.) odpovídá číslu vstupní veličiny ve výpočetním programu je možné ho vyhledat funkcí Ctrl+F a zadáním (%No.)

Těžká konfigurace:

No.	Název	Hodnota	Jednotky	Název proměnné Matlab
164	vl. frekvence torzního ohybového módu trupu RT1 a RT2	[11.75 40.08]	Hz	f_trup_rt_pfz
163	vl. frekvence bočního ohybového módu trupu AR1 a AR2	[13.88 41.54]	Hz	f_trup_ar_pfz
23	vlastni frekvence ohybového módu křídla [A1 A2 A3]	[15.06 59.18 NaN NaN]	Hz	f_kr_a_pfz
162	vl. frekvence vertikálního ohybového módu trupu SR1 a SR2	[16.46 52.71]	Hz	f_trup_sr_pfz
21	vlastni frekvence torzního módu křídla [AT1 AT2 AT3]	[30.92 71.45 NaN]	Hz	f_kr_at_pfz
20	vlastni frekvence torzního módu křídla [ST1 ST2 ST3]	[31.4 68.66 NaN NaN]	Hz	f_kr_st_pfz
22	vlastni frekvence ohybového % módu křídla [S1 S2 S3]	[8.34 43.7 NaN NaN]	Hz	f_kr_s_pfz
125	vl. frekvence sym. ohybového módu PFZ	25.18	Hz	f_sh_pfz
161	vl. frekvence ohybového módu SOP PFZ	35.82	Hz	f_sop_asb_pfz
126	vl. frekvence antisym. ohybového módu VOP PFZ	76.58	Hz	f_ah_pfz

Tabulka 9 Těžká konfigurace letounu [10]

Lehká konfigurace:

No.	Název	Hodnota	Jednotky	Název proměnné Matlab
164	vl. frekvence torzního ohybového módu trupu RT1 a RT2	[12.08 39.79]	Hz	f_trup_rt_pfz
163	vl. frekvence bočního ohybového módu trupu AR1 a AR2	[14.11 38.81]	Hz	f_trup_ar_pfz
23	vlastni frekvence ohybového módu křídla [A1 A2 A3]	[17.68 59.52 NaN NaN]	Hz	f_kr_a_pfz
162	vl. frekvence vertikálního ohybového módu trupu SR1 a SR2	[15.48 53.05]	Hz	f_trup_sr_pfz
21	vlastni frekvence torzního módu křídla [AT1 AT2 AT3]	[31.23 70.08 NaN]	Hz	f_kr_at_pfz
20	vlastni frekvence torzního módu křídla [ST1 ST2 ST3]	[30.41 68.36 NaN NaN]	Hz	f_kr_st_pfz
22	vlastni frekvence ohybového % módu křídla [S1 S2 S3]	[8.59 43.92 NaN NaN]	Hz	f_kr_s_pfz
125	vl. frekvence sym. ohybového módu VOP PFZ	24.96	Hz	f_sh_pfz
161	vl. frekvence ohybového módu SOP PFZ	36.12	Hz	f_sop_asb_pfz
126	vl. frekvence antisym. ohybového módu VOP PFZ	77.78	Hz	f_ah_pfz

Tabulka 10 Lehká konfigurace letounu [10]

Kormidla volná:

Tabulka 11 Konfigurace	letounu v	volná	kormidla	[10]
------------------------	-----------	-------	----------	------

No.	Název	Hodnota	Jednotky	Název proměnné Matlab
87	vlastni frekvence % rotačního módu klapky [AK1 AK2]	[13.13 NaN NaN NaN]	Hz	f_klapka_ak_pfz
86	vlastni frekvence rotačního módu klapky [SK1 SK2]	[19.19 NaN NaN NaN]	Hz	f_klapka_sk_pfz
34	vlastni frekvence rotačního módu křidélka [SQ1 SQ2]	[20.08 64.46 NaN NaN]	Hz	f_krid_sq_pfz
35	vlastni frekvence rotačního módu křidélka [AQ1 AQ2]	[6.25 66.34 NaN NaN]	Hz	f_krid_aq_pfz
155	vl. frekvence antisym. rotačního módu SK PFZ	[7.45 13.37]	Hz	f_sk_asr_pfz
121	vl. frekvence sym. rotačního módu VK PFZ	3.82	Hz	f_vk_shr_pfz
122	vl. frekvence antisym. rotačního módu VK PFZ	33.19	Hz	f_vk_ahr_pfz

Kormidla blokovaná:

No.	Název	Hodnota	Jednotky	Název proměnné Matlab
87	vlastni frekvence % rotačního módu klapky [AK1 AK2]	[13.13 NaN NaN NaN]	Hz	f_klapka_ak_pfz
86	vlastni frekvence rotačního módu klapky [SK1 SK2]	[19.19 NaN NaN NaN]	Hz	f_klapka_sk_pfz
34	vlastni frekvence rotačního módu křidélka [SQ1 SQ2]	[24.29 65.72 NaN NaN]	Hz	f_krid_sq_pfz
35	vlastni frekvence rotačního módu křidélka [AQ1 AQ2]	[22.01 67.27 NaN NaN]	Hz	f_krid_aq_pfz
155	vl. frekvence antisym. rotačního módu SK PFZ	[7.19 14.02]	Hz	f_sk_asr_pfz
121	vl. frekvence sym. rotačního módu VK PFZ	23	Hz	f_vk_shr_pfz
122	vl. frekvence antisym. rotačního módu VK PFZ	32.08	Hz	f_vk_ahr_pfz

Tabulka 12 Konfigurace letounu blokovaná kormidla [10]

Vstupní parametry nezávislé na konfiguraci letounu:

No.	Název	Hodnota	Jednotky	Název proměnné Matlab
38	vektor posun těžiště elementu systému řízení křidélek v 1 křídle	[0.033 0.058 NaN]	m	ds1_krid
50	kolmá vzdálenost těžiště segmentu křidélka od osy rotace, řez v místě dle matice y_krid_fig8	[0.074 0.074]	m	rs_krid_fig8
92	kolmá vzdálenost těžiště segmentu klapky od osy rotace, řez v místě dle matice y_klapka_fig8	[0.077 0.077]	m	rs_klapka_fig8
36	vektor hmotnosti elementu systému řízení křidélka v 1 křídle	[0.107 0.415 NaN]	kg	m1_krid
91	vzdálenost řezu klapky od kořene křídla	[0.657 1.972]	m	y_klapka_fig8
51	hmotnost segmentu křidélka,	[0.663 0.663]	kg	m_krid_fig8

Tabulka	13	Vstupní	hodnoty	výpočet	letounu	nezávislé	[10]
---------	----	---------	---------	---------	---------	-----------	------

93	hmotnost segmentu klapky, řez v místě dle matice y_klapka_fig8	[1.969 1.969]	kg	m_klapka_fig8
49	vzdálenost řezu křidélka od kořene křídla	[2.934 3.534]	m	y_krid_fig8
84	moment setrvačnosti rotačního elementu systému řízení v trupu	0.000049	kgm ²	je2_klapka_tuh y
83	moment setrvačnosti rotačního elementu systému řízení v 1 křídle	0.000098	kgm ²	je1_klapka_tuh y
85	moment setrvačnosti rotačního elementu systému řízení, od klapky k uzlovému bodu	0.000098	kgm ²	je1_klapka_net uhy
118	moment setrvačnosti k ose otáčení elementu systému řízeni VK, od uzlového bodu k řididlu	0.0001	kgm ²	je1_vk_rididla
40	moment setrvačnosti rotačního elementu systému řízení křidélek v 1 křídle	0.00012	kgm²	je1_krid
146	moment setrvačnosti k ose otáčení elementu systému řízeni SK, od SK k uzlovému bodu	0.00013	kgm ²	je1_sk
112	moment setrvačnosti k ose otáčení elementu systému řízeni VK, od VK k uzlovému bodu	0.0004	kgm ²	je1_vk
42	moment setrvačnosti řídící páky křidélka	0.00385	kgm ²	jkn_krid
153	moment setrvačnosti řídících pedálů SK	0.00649	kgm ²	jkn_sk
119	moment setrvačnosti řídící páky VK	0.015	kgm ²	jkn_vk
47	moment setrvačnosti křidélka, řez v místě dle matice y_krid_fig8	0.023	kgm ²	j_krid
105	statický moment výškového kormidla	0.023	kgm	sm_vk
106	moment setrvačnosti výškového kormidla	0.024	kgm ²	j_vk
141	moment setrvačnosti směrového kormidla	0.035	kgm ²	j_sk
144	vektor posun těžiště elementu systému řízení SK, od SK k uzlovému bodu	0.0505	m	ds1_sk
110	vektor posun těžiště elementu systému řízení VK, od VK k uzlovému bodu	0.051	m	ds1_vk
67	vektor hmotnosti elementu systému řízení klapky v trupu	0.052	kg	m2_klapka_tuh y
115	vektor posun těžiště elementu systému řízení VK, od uzlového bodu k řididlu	0.056	m	ds1_vk_rididla
68	vektor posun těžiště elementu systému řízení klapky v 1 křídle	0.07	m	ds1_klapka_tuh y

69	vektor posun těžiště elementu systému řízení klapky, od klapky k uzlovému bodu	0.07	m	ds1_klapka_net uhy
63	moment setrvačnosti klapky	0.074	kgm ²	j_klapka
149	[rad] vektor posun / rotace těžiště elementu systému řízení SK, od uzlového bodu k řididlu	0.08	m	ds1_sk_rididla
128	kořenová tloušťka VOP	0.081	m	tl_vop_koren
70	vektor posun těžiště elementu systému % řízení klapky v trupu	0.083	m	ds2_klapka_tuh y
65	vektor hmotnosti elementu systému řízení klapky v 1 křídle	0.119	kg	m1_klapka_tuh y
66	vektor hmotnosti elementu systému řízení klapky v 1 křídle	0.119	kg	m1_klapka_net uhy
150	vektor hmotnosti elementu systému řízení SK, od uzlového bodu k řididlu	0.119	kg	m1_sk_rididla
46	statický moment křidélka	0.134	kgm	sm_krid
116	vektor hmotnosti elementu systému řízení VK, od uzlového bodu k řididlu	0.134	kg	m1_vk_rididla
140	statický moment směrového kormidla	0.185	kgm	sm_sk
14	kořenová tloušťka křídla	0.215	m	tl_kridlo_koren
108	délka VK za osou otáčení	0.217	m	cs_vk
45	délka křidélka za osou otáčení	0.25	m	cs_krid
90	délka klapky za osou otáčení	0.25	m	cs_klapka
142	délka SK za osou otáčení	0.297	m	cs_sk
62	statický moment klapky	0.331	kgm	sm_klapka
44	plocha křidélka	0.348	m2	S_krid
158	plocha SK	0.42	m2	S_sk
152	moment setrvačnosti k ose otáčení elementu systému řízeni SK, od uzlového bodu k řididlu	0.438	kgm ²	je1_sk_rididla
148	vektor hmotnosti elementu systému řízení SK, od SK k uzlovému bodu	0.462	kg	m1_sk
124	plocha VK	0.5	m²	S_vk
114	vektor hmotnosti elementu systému řízení VK, od VK k uzlovému bodu	0.546	kg	m1_vk
41	vektor změna úhlu natočení křidélka	0.585	rad	db_krid
39	úhel rotace těžiště elementu systému řízení křidélek v 1 křídle	0.646	m	da1_krid
129	délka tětivy v polovině VOP	0.648	m	lh
88	plocha klapky	0.658	m²	S_klapka
151	vektor úhlu rotace těžiště elementu systému řízení SK, od uzlového bodu k řididlu	0.68	rad	da1_sk_rididla
117	vektor úhlu rotace těžiště elementu systému řízení VK, od uzlového bodu k řididlu	0.698	rad	da1_vk_rididla
111	vektor úhlu rotace těžiště elementu systému řízení VK, od VK k uzlovému bodu	0.75	rad	da1_vk
-----	---	--------	-------------------	-----------------------
154	změna úhlu natočení řididla	0.75	rad	da_stick_sk
80	vektor úhel rotace těžiště elementu systému řízení klapky v 1 křídle	0.799	rad	da1_klapka_tuh y
82	vektor úhel rotace těžiště elementu systému řízení klapky, od klapky k uzlovému bodu	0.799	rad	da1_klapka_net uhy
43	změna úhlu natočení řididla	0.803	rad	da_stick_krid
147	vektor změna úhlu natočení SK	0.803	rad	db_sk
156	tětiva směrového kormidla ve vzdálenosti 0.7 od torzní osy trupu	0.811	m	lv_07
81	vektor úhel rotace těžiště elementu systému řízení klapky v trupu	0.869	rad	da2_klapka_tuh y
33	délka tětivy v polovině křidélka	0.875	m	lq
113	vektor změna úhlu natočení VK	0.89	rad	db_vk
120	změna úhlu natočení řididla	0.89	rad	da_stick_vk
17	délka tětivy v 0.7 vzdálenosti od kořene křídla	0.943	m	lf_07
159	vzdálenost od elastické osy trupu ke konci % svislých ocasních ploch	1.032	m	s_sop
160	délka tětivy v polovině SOP	1.043	m	ls
61	délka tětivy v polovině klapky	1.121	m	lk
183	koeficient bezpečnosti odstupu kritické rychlosti flutteru od Vd (zvolit dle požadavku stavebního předpisu)	1.2	-	k_vd
11	hustota vzduchu na hladině moře	1.225	kg/m³	ro_0
182	hustota vzduchu (letová)	1.225	kg/m ³	ro
127	délka polorozpětí VOP	1.229	m	s_vop
15	délka tětivy v kořeni křídla	1.295	m	l_kridlo_koren
109	hmotnost VK	1.615	kg	m_vk
145	vektor úhlu rotace těžiště elementu systému řízeni SK, od SK k uzlovému bodu	1.7	rad	da1_sk
143	hmotnost SK	1.958	kg	m_sk
89	vzdálenost tětivy klapky od osy trupu	1.97	m	sl_klapka
18	plocha křídla (celého)	10.1	m²	F
107	rozpětí VOP celého	2.6	m	bh
180	pádová rychlost letounu	20.833	m/s	VS
24	c=3500(dural) c=3100(dřevo) c=2800(kompozit), korekce +-500	2800	-	c_fs1
48	vzdálenost tětivy křidélka od osy trupu	3.895	m	sl_krid
64	hmotnost klapky	3.938	kg	m_klapka
19	hmotnost křídla bez spojovacích prvků s trupem	36.76	kg	mf
123	konstanta [39] pro VKbez vyvážení [28] pro VK s lokálním vyvážením	39	-	c_bcar_vk

157	konstanta SK	46	-	c_bcar_sk
52	konstanta [68] pro křidélka se spojitým nebo žádným vyvážením [22] pro křidélka s lokálním vyvážením	68	-	c_bcar_krid
52	konstanta [68] pro křidélka se spojitým nebo žádným vyvážením [22] pro křidélka s lokálním vyvážením	68	-	c_bcar_klapka
181	návrhová rychlost letounu	77.77	m/s	vd
16	rozpětí křídla celého	9.6	m	b

5.2.5. Vypočtené hodnoty

Byl proveden výpočet aeroelastické odolnosti letounu pro vstupní hodnoty a konfigurace letounu. Pro výpočet využit dříve sestavený výpočetní program ve vývojovém prostředí Matlab.

Pro daný letoun byly ověřovány dvě letové konfigurace, těžká a lehká. Pro každou letovou konfiguraci byl dále spočítán letoun s kormidly volnými a blokovanými.

Výpočet je zpracován z výpočetního programu do tabulek, které jsou rozděleny dle jednotlivých metod a konfigurací. Vzhledem ke kriteriální podobě výpočtu jsou výsledky, pro které nebyly splněny podmínky metody, zvýrazněny červenou barvou.

Metodika Aeroelastic Flutter Prevention – vyhodnocení

Na následujících stranách jsou uvedeny kompletní zpracované výsledky pro počítané konfigurace.

Vlastní frekvence ODHAD							
mód	[Hz]	mód	[Hz]				
S1	8,09	AQ1	NaN				
S2	27,52	SK1	NaN				
S3	64,76	AK1	NaN				
A1	17	SHR1	NaN				
A2	47,76	AHR1	NaN				
ST1/AT1 (hrubý odhad)	36,32	SH1	NaN				
ST1/AT1 (přesnější odhad)	NaN	ASR1	NaN				
SQ1	NaN						

Tabulka 14 Odhad vlastních frekvencí Aeroelastic Flutter Prevention [1]

konfigurace:		těžká	kormidla:		volná	
	kontrola	číslo metody:	1			
	odstupu vl. fr	ekvence od n	ávrhové frekver	nce fb	metodika:	Aeroelastic Flutter Prevention
	pro vyl	oučení módu	jako nerizikovéł	no hodnota mus	í být větší než 1	
	vl. frekvence	stanovena z:	e z: Experiment / -		Torze křídlo –	Torze křídlo – fia.9
mód	vl. frek. [Díl]	fb [Díl]		analytický	nruby odnad	(přesnější)
S1	křídlo	křídlo	0,20	0,19		
S2	křídlo	křídlo	1,05	0,66		
S3	křídlo	křídlo		1,56		
A1	křídlo	křídlo	0,36	0,71		
A2	křídlo	křídlo	1,42	1,15		
ST1	křídlo	křídlo	0,76		0,87	NaN
ST2	křídlo	křídlo	1,65			
AT1	křídlo	křídlo	0,74		0,87	NaN
AT2	křídlo	křídlo	1,72			
SQ1	křidélko	křidélko	0,45	NaN		
SQ2	křidélko	křidélko	1,44			
AQ1	křidélko	křidélko	0,14	NaN		
AQ2	křidélko	křidélko	1,48			
SK1	klapka	klapka	0,55	NaN		
AK1	klapka	klapka	0,38	NaN		
SR1	trup	vop	0,54			
SR2	trup	vop	1,74			
AR1	trup	vop	0,46			
AR2	trup	vop	1,37			
RT1	trup	vop	0,39			
RT2	trup	vop	1,33			
AR1	trup	sop	0,91			
AR2	trup	sop	2,73			
RT1	trup	sop	0,77			
RT2	trup	sop	2,63			
SH1	vop	vop	0,83	1,02		
AH1	vop	vop	2,53			
SHR1	vk	vk	0,13	NaN		
AHR1	vk	vk	1,10	NaN		
ASB1	sop	sop	2,35			
ARS1	sk	sk	0,49	NaN		
ARS2	sk	sk	0,88			

Tabulka 15 Aeroelasti	c Flutter Prevention -	souhrnné výsledky [1]
-----------------------	------------------------	-----------------------

kor	konfigurace: těžká kormidla:		blokována			
	kontrola	izolované ko	onstrukční čás	ti	číslo metody:	1
	odstupu vl. fr	nce fb	metodika:	Aeroelastic Flutter Prevention		
	pro vyl	oučení módu	jako nerizikovél	no hodnota mus	ií být větší než 1	
	vl. frekvence	stanovena z:	Experiment / J		Torze křídlo –	Torze křídlo - fig.9
mód	vl. frek. [Díl]	fb [Díl]		analytický	nruby odnad	(přesnější)
S1	křídlo	křídlo	0,20	0,19		
S2	křídlo	křídlo	1,05	0,66		
S3	křídlo	křídlo		1,56		
A1	křídlo	křídlo	0,36	0,71		
A2	křídlo	křídlo	1,42	1,15		
ST1	křídlo	křídlo	0,76		0,87	NaN
ST2	křídlo	křídlo	1,65			
AT1	křídlo	křídlo	0,74		0,87	NaN
AT2	křídlo	křídlo	1,72			
SQ1	křidélko	křidélko	0,54	NaN		
SQ2	křidélko	křidélko	1,47			
AQ1	křidélko	křidélko	0,49	NaN		
AQ2	křidélko	křidélko	1,50			
SK1	klapka	klapka	0,55	NaN		
AK1	klapka	klapka	0,38	NaN		
SR1	trup	vop	0,54			
SR2	trup	vop	1,74			
AR1	trup	vop	0,46			
AR2	trup	vop	1,37			
RT1	trup	vop	0,39			
RT2	trup	vop	1,33			
AR1	trup	sop	0,91			
AR2	trup	sop	2,73			
RT1	trup	sop	0,77			
RT2	trup	sop	2,63			
SH1	vop	vop	0,83	1,02		
AH1	vop	vop	2,53			
SHR1	vk	vk	0,76	NaN		
AHR1	vk	vk	1,06	NaN		
ASB1	sop	sop	2,35			
ARS1	sk	sk	0,47	NaN		
ARS2	sk	sk	0,92			

kor	konfigurace: lehká kormidla:		volná			
	kontrola	izolované ko	onstrukční čás	ti	číslo metody:	1
	odstupu vl. fr	metodika:	Aeroelastic Flutter Prevention			
	pro vyl	oučení módu	jako nerizikovéł	no hodnota mus	sí být větší než 1	
	vl. frekvence	stanovena z:	PFZ	Experiment / odhad	Torze křídlo –	Torze křídlo – fig.9
mód	vl. frek. [Díl]	fb [Díl]		analytický	nruby odnad	(přesnější)
S1	křídlo	křídlo	0,21	0,19		
S2	křídlo	křídlo	1,06	0,66		
S3	křídlo	křídlo		1,56		
A1	křídlo	křídlo	0,43	0,71		
A2	křídlo	křídlo	1,43	1,15		
ST1	křídlo	křídlo	0,73		0,87	NaN
ST2	křídlo	křídlo	1,64			
AT1	křídlo	křídlo	0,75		0,87	NaN
AT2	křídlo	křídlo	1,69			
SQ1	křidélko	křidélko	0,45	NaN		
SQ2	křidélko	křidélko	1,44			
AQ1	křidélko	křidélko	0,14	NaN		
AQ2	křidélko	křidélko	1,48			
SK1	klapka	klapka	0,55	NaN		
AK1	klapka	klapka	0,38	NaN		
SR1	trup	vop	0,51			
SR2	trup	vop	1,75			
AR1	trup	vop	0,47			
AR2	trup	vop	1,28			
RT1	trup	vop	0,40			
RT2	trup	vop	1,32			
AR1	trup	sop	0,93			
AR2	trup	sop	2,55			
RT1	trup	sop	0,79			
RT2	trup	sop	2,62			
SH1	vop	vop	0,83	1,02		
AH1	vop	vop	2,57			
SHR1	vk	vk	0,13	NaN		
AHR1	vk	vk	1,10	NaN		
ASB1	sop	sop	2,37			
ARS1	sk	sk	0,49	NaN		
ARS2	sk	sk	0,88			

kor	konfigurace: lehká kormidla:		blokována			
	kontrola	izolované ko	onstrukční čás	ti	číslo metody:	1
	odstupu vl. fr	nce fb	metodika:	Aeroelastic Flutter Prevention		
	pro vyl	oučení módu	jako nerizikové	ho hodnota mus	í být větší než 1	
vl. frekvence		stanovena z:	Experiment / J		Torze křídlo –	Torze křídlo – fig.9
mód	vl. frek. [Díl]	fb [Díl]		analytický	nruby odnad	(přesnější)
S1	křídlo	křídlo	0,21	0,19		
S2	křídlo	křídlo	1,06	0,66		
S3	křídlo	křídlo		1,56		
A1	křídlo	křídlo	0,43	0,41		
A2	křídlo	křídlo	1,43	1,15		
ST1	křídlo	křídlo	0,73		0,87	NaN
ST2	křídlo	křídlo	1,64			
AT1	křídlo	křídlo	0,75		0,87	NaN
AT2	křídlo	křídlo	1,69			
SQ1	křidélko	křidélko	0,54	NaN		
SQ2	křidélko	křidélko	1,47			
AQ1	křidélko	křidélko	0,49	NaN		
AQ2	křidélko	křidélko	1,50			
SK1	klapka	klapka	0,55	NaN		
AK1	klapka	klapka	0,38	NaN		
SR1	trup	vop	0,54			
SR2	trup	vop	1,74			
AR1	trup	vop	0,47			
AR2	trup	vop	1,28			
RT1	trup	vop	0,40			
RT2	trup	vop	1,32			
AR1	trup	sop	0,93			
AR2	trup	sop	2,55			
RT1	trup	sop	0,79			
RT2	trup	sop	2,62			
SH1	vop	vop	0,83	1,02		
AH1	vop	vop	2,57			
SHR1	vk	vk	0,76	NaN		
AHR1	vk	vk	1,06	NaN		
ASB1	sop	sop	2,37			
ARS1	sk	sk	0,47	NaN		
ARS2	sk	sk	0,92			

ko	onfigurace:	těžká	korm	nidla:	blokc	ována	/ volná				
Kontrola intervalu redukované vlnové dél			vé délk	кy		číslo metody:		2			
pro vyloučení módu jał průniku intervalů (Wm stanoven		o nerizik in,Wmax ým interv	kového n k) tabelo valem	esmí do vaných	ojít k se		metodika:	Aero Flu Preve	elastic itter ention		
	křídlo			2,9				5	,8		
vodoro	ovné ocasní plochy	Wr	nin	5,7		Wmax		13,2			
svisl	lé ocasní plochy			7,1				2	21		
vl. frekv	vence stanovena z:	Pi	=Z	Experiment / odhad analytický		Experiment / odhad analytický		Torze křídlo – hrubý odhad		Torze fiç (přes	křídlo – ȝ.9 ₀nější)
mód	vl. frek. [Díl]	Wmin	Wmax	Wmin	Wmax	Wmin	Wmax	Wmin	Wmax		
S1	křídlo	2,65	11,87	2,73	12,23						
S2	křídlo	0,51	2,26	0,80	3,60						
S3	křídlo			0,34	1,53						
A1	křídlo	1,47	6,57	1,30	5,82						
A2	křídlo	0,37	1,67	0,46	2,07						
ST1	křídlo	0,70	3,15			0,61	2,73	NaN	NaN		
ST2	křídlo	0,32	1,44								
AT1	křídlo	0,71	3,20								
AT2	křídlo	0,31	1,39								
SH	vop	1,28	5,72	1,04	4,66						
AH	vop	0,42	1,88								
ASB1	sop	0,56	2,50								

ko	onfigurace:	lehká	korm	idla:	bloko	vána	/ volná				
ĸ	Kontrola intervalu redukované vlnové délky						číslo metody:		2		
pro vyloučení módu jal průniku intervalů (Wm stanover		ko nerizik nin,Wmax ným inter	o nerizikového nesmí dojít k in,Wmax) tabelovaných se ým intervalem				metodika:	Aero Flu Preve	oelastic itter ention		
	křídlo			2,9				5	,8		
vodorc	ovné ocasní plochy	Wn	nin	5	,7		Wmax	13	3,2		
svis	lé ocasní plochy			7,1				2	1		
vl. frekv	vence stanovena z:	PF	Z	Experiment / odhad analytický		Experiment / odhad analytický		Torze křídlo – hrubý odhad		Torze fiç (přes	křídlo – g.9 nější)
mód	vl. frek. [Díl]	Wmin	Wmax	Wmin	Wmax	Wmin	Wmax	Wmin	Wmax		
S1	křídlo	2,57	11,52	2,73	12,23						
S2	křídlo	0,50	2,25	0,80	3,60						
S3	křídlo			0,34	1,53						
A1	křídlo	1,25	5,60	1,30	5,82						
A2	křídlo	0,37	1,66	0,46	2,07						
ST1	křídlo	0,73	3,25			0,61	2,73	NaN	NaN		
ST2	křídlo	0,32	1,45								
AT1	křídlo	0,71	3,17								
AT2	křídlo	0,32	1,41								
SH	vop	1,29	5,77	1,04	4,66						
AH	vop	0,41	1,85								
ASB1	sop	0,55	2,48								

konfigurace:		těžká	kormidla:	volná
k	ontrola párová	ní	číslo metody:	7
Kontrola d	odstupu vl. frekv	rencí módů	metodika:	Aeroelastic Flutter Prevention
pro vyloučení párování módu jako nerizikového hodnota nesmí být v intervalu:		(0,7,1,3)	Párování křidélka / klapky:	(0,85,1,15)
vl. frekvence stanovena z: podíl módů	Experiment	Experiment / PFZ	PFZ / Experiment	PFZ / PFZ
S1/SQ1	NaN	0,40	NaN	0,42
S2/SQ1	NaN	1,37	NaN	2,18
S3/SQ1	NaN	3,22		
A1/AQ1	NaN	2,71	NaN	2,41
A2/AQ1	NaN	7,64	NaN	9,47
S1/SQ2		0,13		0,13
S2/SQ2		0,43		0,68
S3/SQ2		1,00		
A1/AQ2		0,26		0,23
A2/AQ2		0,72		0,89
S1/SK1	NaN	0,42	NaN	0,43
S2/SK1	NaN	1,43	NaN	2,28
S3/SK1	NaN	3,37		
A1/AK1	NaN	1,29	NaN	1,15
A2/AK1	NaN	3,64	NaN	4,51
SK1/SQ1	NaN	NaN	NaN	0,96
AK1/AQ1	NaN	NaN	NaN	2,10
SK1/SQ2		NaN		0,30
AK1/AQ2		NaN		0,20
SH1/SHR1	NaN	8,10	NaN	6,59
SR1/SHR1			NaN	4,31
SR2/SHR1			NaN	13,80
ASB1/ASR1			NaN	4,81
ASB1/ASR2				2,68
AR1/ASR1			NaN	1,86
AR2/ASR1			NaN	5,58
AR1/ASR2				1,04
AR2/ASR2				3,11
RT1/ASR1			NaN	1,58
RT2/ASR1			NaN	5,38
RT1/ASR2				0,88
RT2/ASR2				3,00

konfigurace:		těžká	kormidla:	blokována
k	ontrola párová	číslo metody:	7	
Kontrola d	odstupu vl. frekv	rencí módů	metodika:	Aeroelastic Flutter Prevention
pro vylouč módu jako ı hodnota n inter	ení párování nerizikového nesmí být v rvalu:	(0,7,1,3)	Párování křidélka / klapky:	(0,85,1,15)
vl. frekvence stanovena z: podíl módů	Experiment	Experiment / PFZ	PFZ / Experiment	PFZ / PFZ
S1/SQ1	NaN	0,33	NaN	0,34
S2/SQ1	NaN	1,13	NaN	1,80
S3/SQ1	NaN	2,67		
A1/AQ1	NaN	0,77	NaN	0,68
A2/AQ1	NaN	2,17	NaN	2,69
S1/SQ2		0,12		0,13
S2/SQ2		0,42		0,66
S3/SQ2		0,99		
A1/AQ2		0,25		0,22
A2/AQ2		0,71		0,88
S1/SK1	NaN	0,42	NaN	0,43
S2/SK1	NaN	1,43	NaN	2,28
S3/SK1	NaN	3,37		
A1/AK1	NaN	1,29	NaN	1,15
A2/AK1	NaN	3,64	NaN	4,51
SK1/SQ1	NaN	NaN	NaN	0,79
AK1/AQ1	NaN	NaN	NaN	0,60
SK1/SQ2		NaN		0,29
AK1/AQ2		NaN		0,20
SH1/SHR1	NaN	1,34	NaN	1,09
SR1/SHR1			NaN	0,72
SR2/SHR1			NaN	2,29
ASB1/ASR1			NaN	4,98
ASB1/ASR2				2,55
AR1/ASR1			NaN	1,93
AR2/ASR1			NaN	5,78
AR1/ASR2				0,99
AR2/ASR2				2,96
RT1/ASR1			NaN	1,63
RT2/ASR1			NaN	5,57
RT1/ASR2				0,84
RT2/ASR2				2,86

konfigurace:		lehká	kormidla:	volná
k	ontrola párová	ní	číslo metody:	7
Kontrola odstupu vl. frekvencí módů		rencí módů	metodika:	Aeroelastic Flutter Prevention
pro vyloučení párování módu jako nerizikového hodnota nesmí být v intervalu:		(0,7,1,3)	Párování křidélka / klapky:	(0,85,1,15)
vl. frekvence stanovena z: podíl módů	Experiment	Experiment / PFZ	PFZ / Experiment	PFZ / PFZ
S1/SQ1	NaN	0,40	NaN	0,43
S2/SQ1	NaN	1,37	NaN	2,19
S3/SQ1	NaN	3,23		
A1/AQ1	NaN	2,72	NaN	2,83
A2/AQ1	NaN	7,64	NaN	9,52
S1/SQ2		0,13		0,13
S2/SQ2		0,43		0,68
S3/SQ2		1,01		
A1/AQ2		0,26		0,27
A2/AQ2		0,72		0,90
S1/SK1	NaN	0,42	NaN	0,45
S2/SK1	NaN	1,43	NaN	2,29
S3/SK1	NaN	3,37		
A1/AK1	NaN	1,29	NaN	1,35
A2/AK1	NaN	3,64	NaN	4,53
SK1/SQ1	NaN	NaN	NaN	0,96
AK1/AQ1	NaN	NaN	NaN	2,10
SK1/SQ2		NaN		0,30
AK1/AQ2		NaN		0,20
SH1/SHR1	NaN	8,10	NaN	6,53
SR1/SHR1			NaN	4,05
SR2/SHR1			NaN	13,89
ASB1/ASR1			NaN	4.85
ASB1/ASR2				2,70
AR1/ASR1			NaN	1,89
AR2/ASR1			NaN	5,21
AR1/ASR2				1,06
AR2/ASR2				2,90
RT1/ASR1			NaN	1,62
RT2/ASR1			NaN	5,34
RT1/ASR2				0,90
RT2/ASR2				2,98

konfig	jurace:	lehká	kormidla:	blokována
k	ontrola párová	ní	číslo metody:	7
Kontrola odstupu vl. frekvencí módů		rencí módů	metodika:	Aeroelastic Flutter Prevention
pro vylouč módu jako i hodnota r intei	ení párování nerizikového nesmí být v rvalu:	(0,7,1,3)	Párování křidélka / klapky:	(0,85,1,15)
vl. frekvence stanovena z: podíl módů	Experiment	Experiment / PFZ	PFZ / Experiment	PFZ / PFZ
S1/SQ1	NaN	0,33	NaN	0,35
S2/SQ1	NaN	1,13	NaN	1,81
S3/SQ1	NaN	2,67		
A1/AQ1	NaN	0,77	NaN	0,80
A2/AQ1	NaN	2,17	NaN	2,70
S1/SQ2		0,12		0,13
S2/SQ2		0,42		0,67
S3/SQ2		0,99		
A1/AQ2		0,25		0,26
A2/AQ2		0,71		0,89
S1/SK1	NaN	0,42	NaN	0,45
S2/SK1	NaN	1,43	NaN	2,29
S3/SK1	NaN	3,37		
A1/AK1	NaN	1,29	NaN	1,35
A2/AK1	NaN	3,64	NaN	4,53
SK1/SQ1	NaN	NaN	NaN	0,79
AK1/AQ1	NaN	NaN	NaN	0,60
SK1/SQ2		NaN		0,29
AK1/AQ2		NaN		0,20
SH1/SHR1	NaN	1,34	NaN	1,09
SR1/SHR1			NaN	0,72
SR2/SHR1			NaN	2,29
ASB1/ASR1			NaN	5,02
ASB1/ASR2				2,58
AR1/ASR1			NaN	1,96
AR2/ASR1			NaN	5,40
AR1/ASR2				0,99
AR2/ASR2				2,77
RT1/ASR1			NaN	1,68
RT2/ASR1			NaN	5,53
RT1/ASR2				0,86
RT2/ASR2				2,84

konfig	jurace:	těžká	kormidla:	volná
snížení požadavku na vyvážení		číslo metody:	11	
Kontrola odstupu vl. frekvencí módů			metodika:	Aeroelastic Flutter Prevention
Pokud je stanovená hodnota menší než 1, mohu snížit potřebné vyvážení násobením touto hodnotou				
vl. frekvence stanovena z: podíl módů	Experiment	Experiment / PFZ	PFZ / Experiment	PFZ / PFZ
S1/SQ1	NaN	0,63	NaN	0,64
S2/SQ1	NaN	1,17	NaN	1,48
S3/SQ1	NaN	1,80		
A1/AQ1	NaN	1,65	NaN	1,55
A2/AQ1	NaN	2,76	NaN	3,08
S1/SQ2		0,35		0,36
S2/SQ2		0,65		0,82
S3/SQ2		1,00		
A1/AQ2		0,51		0,48
A2/AQ2		0,85		0,94
SH1/SHR1	NaN	2,85	NaN	2,57
AH1/AHR1				1,52
SR1/SHR1			NaN	2,08
SR2/SHR1			NaN	3,71
RT1/AHR1				0,59
RT2/AHR1				1,10
ASB1/ASR1			NaN	2,19
ASB1/ASR2				1,64
AR1/ASR1			NaN	1,36
AR2/ASR1			NaN	2,36
AR1/ASR2				1,02
AR2/ASR2				1,76
RT1/ASR1			NaN	1,26
RT2/ASR1			NaN	2 <u>,32</u>
RT1/ASR2				0,94
RT2/ASR2				1,73

konfigurace:		těžká	kormidla:	blokována
snížení požadavku na vyvážení		číslo metody:	11	
Kontrola odstupu vl. frekvencí módů			metodika:	Aeroelastic Flutter Prevention
Pokud je stanovená hodnota menší než 1, mohu snížit potřebné vyvážení násobením touto hodnotou				
vl. frekvence stanovena z: podíl módů	Experiment	Experiment / PFZ	PFZ / Experiment	PFZ / PFZ
S1/SQ1	NaN	0,58	NaN	0,59
S2/SQ1	NaN	1,06	NaN	1,34
S3/SQ1	NaN	1,63		
A1/AQ1	NaN	0,88	NaN	0,83
A2/AQ1	NaN	1,47	NaN	1,64
S1/SQ2		0,35		0,36
S2/SQ2		0,65		0,82
S3/SQ2		0,99		
A1/AQ2		0,50		0,47
A2/AQ2		0,84		0,94
SH1/SHR1	NaN	1,16	NaN	1,05
AH1/AHR1				1,55
SR1/SHR1			NaN	0,85
SR2/SHR1			NaN	1,51
RT1/AHR1				0,61
RT2/AHR1				1,12
ASB1/ASR1			NaN	2,23
ASB1/ASR2				1,60
AR1/ASR1			NaN	1,39
AR2/ASR1			NaN	2,40
AR1/ASR2				0,99
AR2/ASR2				1,72
RT1/ASR1			NaN	1,28
RT2/ASR1			NaN	2,36
RT1/ASR2				0,92
RT2/ASR2				1,69

konfig	jurace:	lehká	kormidla:	volná
snížení	požadavku na	vyvážení	číslo metody:	11
Kontrola odstupu vl. frekvencí módů			metodika:	Aeroelastic Flutter Prevention
Pokud je stanovená hodnota menší než 1, mohu snížit potřebné vyvážení násobením touto hodnotou				
vl. frekvence stanovena z: podíl módů	Experiment	Experiment / PFZ	PFZ / Experiment	PFZ / PFZ
S1/SQ1	NaN	0,63	NaN	0,65
S2/SQ1	NaN	1,17	NaN	1,48
S3/SQ1	NaN	1,80		
A1/AQ1	NaN	1,65	NaN	1,68
A2/AQ1	NaN	2,76	NaN	3,09
S1/SQ2		0,35		0,37
S2/SQ2		0,65		0,83
S3/SQ2		1,00		
A1/AQ2		0,51		0,52
A2/AQ2		0,85		0,95
SH1/SHR1	NaN	2,85	NaN	2,56
AH1/AHR1				1,53
SR1/SHR1			NaN	2,01
SR2/SHR1			NaN	3,73
RT1/AHR1				0,60
RT2/AHR1				1,09
ASB1/ASR1			NaN	2,20
ASB1/ASR2				2,70
AR1/ASR1			NaN	1,38
AR2/ASR1			NaN	2,28
AR1/ASR2				1,03
AR2/ASR2				1,70
RT1/ASR1			NaN	1,27
RT2/ASR1			NaN	2,31
RT1/ASR2				0,95
RT2/ASR2				1,73

konfigurace:		lehká	kormidla:	blokována
snížení požadavku na vyvážení		číslo metody:	11	
Kontrola odstupu vl. frekvencí módů			metodika:	Aeroelastic Flutter Prevention
Pokud je sta	novená hodnot náso	a menší než 1, r bením touto hod	nohu snížit potře Inotou	ebné vyvážení
vl. frekvence stanovena z:	Experiment	Experiment / PFZ	PFZ / Experiment	PFZ / PFZ
S1/SQ1	NaN	0.58	NaN	0.59
S2/SQ1	NaN	1.06	NaN	1.34
S3/SQ1	NaN	1,63		.,
A1/AQ1	NaN	0.88	NaN	0.90
A2/AQ1	NaN		NaN	1,64
S1/SQ2		0,35		0,36
S2/SQ2		0,65		0,82
S3/SQ2		0,99		
A1/AQ2		0,50		0,51
A2/AQ2		0,84		0,94
SH1/SHR1	NaN	1,16	NaN	1,04
AH1/AHR1				1.56
SR1/SHR1			NaN	0,85
SR2/SHR1			NaN	1,51
RT1/AHR1				0,61
RT2/AHR1				1,11
ASB1/ASR1			NaN	2,24
ASB1/ASR2				1,61
AR1/ASR1			NaN	1,40
AR2/ASR1			NaN	2,32
AR1/ASR2				1,00
AR2/ASR2				1,66
RT1/ASR1			NaN	1,30
RT2/ASR1			NaN	2,35
RT1/ASR2				0,93
RT2/ASR2				1,68

konfigurace:		těžká / lehká	kormidla:	volná / blokována
Kontre	olo volnáho oh	číslo metody:	6	
Kontro		bdu	metodika:	Aeroelastic Flutter Prevention
Hodnoty zde uvedené jsou hodnoty limitní. Změřená hodnota vůle na letounu na odtokové hraně v místě střední tětivy musí být menší než hodnota limitní				
konstrukční celek: křidélka klapka			výškové kormidlo	směrové kormidlo
limitní hodnota [mm]	3,93	3,27	3,05	3,57

konfigurace:	těžká	kormidla:	volná / blokovaná			
Kontrola maximální dovolené nevyváženosti kormidel		číslo metody:	9			
		metodika:	Aeroelastic Flutter Prevention			
Stanov	Stanovená hodnota musí být menší než hodnota limitní					
vl. frekvence z: experiment PFZ						
konstrukční celek	stanovená	limitní	limitní			
křidélka	10,21	1 74	1 02			
klapka	3,97	1,74	1,00			

konfigurace:	lehká	kormidla:	volná / blokovaná		
Kontrola maximální dovolené nevyváženosti kormidel		číslo metody:	9		
		metodika:	Aeroelastic Flutter Prevention		
Stanovená hodnota musí být menší než hodnota limitní					
vl. frekvence z:		experiment	PFZ		
konstrukční celek	stanovená	limitní	limitní		
křidélka	10,21	1 74	1.02		
klapka	3,97	1,74	1,92		

konfigurace:	těžká / lehká	kormidla:	volná / b	lokovaná	
			číslo metody:	8	
Kontrola torzní /	metodika:	Aeroelastic Flutter Prevention			
Stan	Stanovená hodnota musí být větší než hodnota limitní				
	torze [N	m/rad]	ohyb	[N/m]	
konstrukční celek	stanovená	limitní	stanovená	limitní	
křidélka	NaN	11,1429	NaN	3266,00	
klapka	NaN	21,069	NaN	3266,00	
výškové kormidlo	NaN	24,2299	NaN	2835,00	
směrové kormidlo	NaN	23,6175	NaN	3880,00	

konfigurace:	těžká kormidla: volná / bl			lokovaná	
	číslo metody:	12			
Hmotové vy	metodika:	Aeroelastic Flutter Prevention			
Stanovená hodnota dovoleného nevyvážení musí být menší než hodnota limitní					
	ohyb	[N/m]			
konstrukční celek	stanovená	limitní	stanovená	limitní	
výškové kormidlo	0,34	0,624	0,62	0,22	
směrové kormidlo	1,99	0,624	5,51	1,09	

konfigurace:	lehká	kormidla:	volná / blokovaná		
	číslo metody:	12			
Hmotové vy	metodika:	Aeroelastic Flutter Prevention			
Stanovená hodnota dovoleného nevyvážení musí být menší než hodnota limitní					
	ohyb	[N/m]			
konstrukční celek	stanovená	limitní	stanovená	limitní	
výškové kormidlo	0,34	0,66	0,62	0,12	
směrové kormidlo	1,99	0,66	5,51	1,13	

Odhad kritické rychlosti torzního flutteru

Odhad kritické rychlosti torzního flutteru na základu vl. frekvencí								
vl. frekvence z:	hrubý odhad [m/s]	přesnější fig.9 [m/s]	PFZ [m/s]					
Vkrit. Odhad	124,14	NaN	105.69					
Odhad Vkrit. dle British Airwortthiness Regulations (BCAR)								
Vkrit (BCAR)	NaN							

Stanovení vyvážení dle metody č.10

Pro klapku a křidélko bylo stanoveno potřebné dynamické vyvážení. Dle grafu pro stanovení hodnoty potřebného vyvážení je volen přístup na straně bezpečnosti a jsou vybrány kombinace módů s nejvyšší mírou potřebného vyvážení. Ostatní módy budou převáženy a bude u nich tedy zaručena bezpečnost. Tato optimalizační metoda vyvážení je použitelná především pro bodové vyvažování a poskytuje tedy i informaci o umístění vyvažovací hmoty po rozpětí.

Obr. 28 Dynamické vyvážení křidélka – vyhodnocení [1]

Obr. 29 Dynamické vyvážení klapky – vyhodnocení [1]

Vyhodnocení konfigurací dle metodiky Simplified Flutter Prevention

Níže jsou prezentována data vyhodnocení aeroelastické odolnosti dle metodiky Simplified Flutter Prevention. Metodika pro vyloučení rizika flutteru vyžaduje splnění všech uvedených kritérií paralelně. Část z kritérií není vyhodnocena z důvodu praktického zaměření na experimentální získání vstupních hodnot, která během vyhodnocení nebyla k dispozici. [2].

Křídlo					
kritérium torz	zního tuhostního faktoru F				
torzně ohybový flutter, divergence a reverzace křidélek je vyloučena, pokud F stanovené je menší než F_limit					
stanovená hodnota [-] limitní hodnota [-]					
NaN 0,0046					
	Křidélka				
kritérium dyna	amického vyvážení křidélka				
stanovená hodnota [-]	limitní hodnota [-]				
NaN	2,13				
kritérium volného chodu křidélek					
stanovená hodnota [-] limitní hodnota [-]					
NaN	NaN				

Tabulka 16 Vyhodnocení Simplified Flutter Prevention [2]

	Plošky					
požadavek na 100% statické vyvážení k ose otáčení nevratné plošky / vratné plošky nebo splnění kritérií níže:						
kritérium volne	kritérium volného chodu nevratné plošky					
stanovená hodnota [ft]	limitní hodnota [ft]					
NaN	NaN					
kritérium vlastní (torze Flutter je vyloučen pokud	/ rotace) frekvence nevratné plošky min. vl. frekvence plošky na letounu je větší než:					
stanovená hodnota [Hz]	limitní hodnota Vd do 200 mph [Hz]					
NaN 3,33						
	limitní hodnota Vd nad 200 mph [Hz]					
	2087					

	Výškové kormidlo							
kritérium	kritérium paralelního vyvažování výškového kormidla. Flutter je vyloučen, pokud hodnota vyvážení je menší než limitní							
stand	ovená hodno	ta vyváž	žení [-]	lin	nitní hodnota	a vyváže	ení [-]	
těžká / volná	těžká / blokovaná	lehká / volná	lehká / blokovaná	těžká / volná	těžká / blokovaná	lehká / volná	lehká / blokovaná	
0,31	0,31	0,31	0,31	0,88	0,97	0,88	0,97	
vyvažo	kritériu vání není vy	m kolme žadovár	ého vyvažov no, pokud je	⁄ání výšk poměr v	ového korm I. frekvencí	idla AHR / 1	,5*RT>1	
	AHR [c	pm]		RT limit [cpm]				
těžká / volná	těžká / blokovaná	lehká / volná	lehká / blokovaná	těžká / volná	těžká / blokovaná	lehká / volná	lehká / blokovaná	
1,88	1,82	1,83	1,77	0,55	0,53	0,55	0,53	
kritériun	kritérium kolmého vyvažování výškového kormidla. Flutter je vyloučen, pokud hodnota vyvážení je menší než limitní							
stanovená hodnota vyvážení [-]			limitní hodnota vyvážení [-]			ení [-]		
těžká / volná	těžká / blokovaná	lehká / volná	lehká / blokovaná	těžká / volná	těžká / blokovaná	lehká / volná	lehká / blokovaná	
NoN	NIeNI	NISNI	NeN	1 5 4	4.5.4	1.64	1.01	

	směrové kormidlo							
kritérium paralelního vyvažování směrového kormidla. Flutter je vyloučen, pokud hodnota vyvážení je menší než limitní								
stand	ovená hodno	ta vyváž	žení [-]	lin	nitní hodnota	a vyvážo	ení [-]	
těžká / volná	těžká / blokovaná	lehká / volná	lehká / blokovaná	těžká / volná	těžká / blokovaná	lehká / volná	lehká / blokovaná	
2,76	2,76	2,76	2,76	2,35	2,35	2,41	2,41	
					-		-	
kritérium	n kolmého vy ł	važovár nodnota	ní směrovéh vyvážení je	o kormic menší n	lla. Flutter je ež limitní	e vylouč	en, pokud	
stand	ovená hodno	ta vyváž	žení [-]	lin	nitní hodnota	a vyváže	ení [-]	
těžká / volná	těžká / blokovaná	lehká / volná	lehká / blokovaná	těžká / volná	těžká / blokovaná	lehká / volná	lehká / blokovaná	
NaN	NaN	NaN	NaN	4,73	4,73	5,04	5,04	

6. Zhodnocení metodik

V následující kapitola je zaměřena na shrnutí výsledků z navrhovaných metodik, obecné zhodnocení metodik a způsobu interpretace výsledků.

6.1. Shrnutí výsledků z navrhovaných metodik Aeroelastic Flutter Prevention, Simplified Flutter Prevention

6.1.1. Konfigurace těžká kormidla volná

kor	konfigurace: těžká kormidla:		nidla:	vo	ná	
	kontrola iz	číslo metody:	1			
	odstupu vl. frek	metodika:	Aeroelastic Flutter Prevention			
	pro vylou	čení módu	jako nerizikové	ho hodnota mus	sí být větší než	1
	vl. frekvence sta	anovena z:		Experiment /	Torze křídlo	Torze křídlo
mód	vl. frek. [Díl]	fb [Díl]	PFZ	odhad analytický	– hrubý odhad	– fig.9 (přesnější)
S1	křídlo	křídlo	0,20	0,19		
S2	křídlo	křídlo	1,05	0,66		
A1	křídlo	křídlo	0,36	0,71		
ST1	křídlo	křídlo	0,76		0,87	NaN
AT1	křídlo	křídlo	0,74		0,87	NaN
SQ1	křidélko	křidélko	0,45	NaN		
AQ1	křidélko	křidélko	0,14	NaN		
SK1	klapka	klapka	0,55	NaN		
AK1	klapka	klapka	0,38	NaN		
SR1	trup	vop	0,54			
AR1	trup	vop	0,46			
RT1	trup	vop	0,39			
AR1	trup	sop	0,91			
RT1	trup	sop	0,77			
SH1	vop	vop	0,83	1,02		
SHR1	vk	vk	0,13	NaN		
ARS1	sk	sk	0,49	NaN		
ARS2	sk	sk	0,88			

Tabulka 17 Shrnutí výsledků – Aeroelastic Flutter Prevention [1]

kon	figurace:	těžká	korm	nidla:	vo	Iná					
Kontrola intervalu redukované vlnové délky							číslo metody:		2		
pro vyloučení módu jako nerizikového nesmí dojít k průniku intervalů (Wmin,Wmax) tabelovaných se stanoveným intervalem						metodika:	Aero Flu Preve	elastic tter ention			
	křídlo			2,9				5	,8		
vodorovne	é ocasní plochy	Wmin		5,7		Wmax		Wmax		13	3,2
svislé c	ocasní plochy			7	7,1				1		
vl. frekver	nce stanovena z:	PF	Z	Experi odł analy	ment / nad /tický	, Torze křídlo – hrubý odhad		Torze – fi (přes	křídlo g.9 nější)		
S2	křídlo	0,51	2,26	0,80	3,60						
ST1	křídlo	0,70	3,15			0,61	2,73	NaN	NaN		
AT1	křídlo	0,71	3,20								
SH	vop	1,28	5,72	1,04	4,66						

konfigurace		těžká	kormidla:	volná		
kontrola	kontrola párování					
Kontrola odstupu	metodika:	Aeroelastic Flutter Prevention				
pro vyloučení párování nerizikového hodnota ne intervalu:	(0,7,1,3)	Párování křidélka / klapky:	(0,85,1,15)			
vl. frekvence stanovena z:		Experiment /	DE7 /			
podíl módů	Experiment	PFZ	Experiment	PFZ / PFZ		
A1/AK1	NaN	1,29	NaN	1,15		
SK1/SQ1	NaN	NaN	NaN	0,96		
AR1/ASR2				1,04		
RT1/ASR2				0,88		

konfigurace:	těžká	kormidla:	volná / blokovaná					
Kontrola m	aximální vváženosti	číslo metody:	9					
kormi	del	metodika:	Aeroelastic Flutter Prevention					
Stanoven	Stanovená hodnota musí být menší než hodnota limitní							
vl. frekvence z:		experiment	PFZ					
konstrukční celek	stanovená	limitní	limitní					
křidélka	10,21	1 74	1.02					
klapka	3,97	1,74	1,03					

konfigurace:	těžká	kormidla:	volná / blokovaná				
	číslo metody:	12					
Hmotové vy	metodika:	Aeroelastic Flutter Prevention					
Stanovená hodnota dovoleného nevyvážení musí být menší než hodnota limitní							
	torze [N	Nm/rad]	ohyb [N/m]				
konstrukční celek	stanovená	limitní	stanovená	limitní			
výškové kormidlo	0,34	0,624	0,62	0,22			
směrové kormidlo	1,99	0,624	5,51	1,09			

Tabulka 18 Shrnutí vyhodnocení Simplified Flutter Prevention [2]

	směrové kormidlo							
kritérium paralelního vyvažování směrového kormidla. Flutter je vyloučen, pokud hodnota vyvážení je menší než limitní								
stanovená hodnota vyvážení [-]			limitní hodnota vyvážení [-]					
těžká / volná	těžká / blokovaná	lehká / volná	lehká / blokovaná	těžká / volná	těžká / blokovaná	lehká / volná	lehká / blokovaná	
2,76	2,76	2,76	2,76	2,35	2,35	2,41	2,41	

V návaznosti na výše uvedené shrnutí je zde uveden podrobnější postup vyhodnocení dle navrhnutých metodik. Postup je demonstrován na těžké konfigurace letounu s volnými kormidly. Postup je obecně platný pro všechny počítané konfigurace a vyhodnocení uvedené v předchozí kapitole

Aeroelastic Flutter Prevention

Základ tvoří kontrola oproti návrhové frekvenci f_b , kde jsou nalezeny rizikové módy (ozn. červeně). Následně jsou módy hodnoceny na redukovanou vlnovou délku, ze které mohou vzejít další rizikové módy. Pro nevyloučené módy je provedena kontrola párování s módy měnící úhel náběhu, kde jsou módy potvrzeny případně vyloučeny. Dále jsou provedeny kontroly vyvážení, resp. návrh vyvážení hmot dle postupu č. 10 nebo č.12. [1]

Pro souhrn konfigurace výše je zřejmé, že pro první kritérium posouzení vůči návrhové frekvenci f_b jsou zde jako rizikové nalezeny všechny první módy všech základních částí letounu. Následně byly kontrolou na redukovanou vlnovou délku potvrzeny první torzní módy křídla, druhý ohybový mód křídla a první ohybový mód vodorovného stabilizátoru. Z kontroly párování jsou z nevyloučených módů vyhodnoceny jako rizikové první antisymetrický vibrační mód klapky v párování s prvním antisymetrickým módem klapky. Dále párování prvních módů klapky a křidélka, prvního antisymetrického horizontálního ohybového módu trupu a druhého antisymetrického rotačního módu směrového kormidla. Dále potom první torzní mód trupu s druhým rotačním antisymetrickým módem směrového kormidla. Následuje zhodnocení rizikových módů s ohledem na vyvážení a návrh dovyvážení konstrukčních částí, popř. jiná úprava pozitivně modifikující aeroelastickou odolnost, např. zvýšení tuhosti části.[1]

Simplified Flutter Prevention

Vyhodnocení spočívá v kriteriálním splnění všech nadefinovaných podmínek pro zajištění bezpečnosti proti vzniku aeroelastických jevů. Pro souhrn těžké konfigurace zmíněné výše by bylo nutné provést dovyvážení směrového kormidla.[2]

6.1.2. Obecné hodnocení metodik

Aeroelastic Flutter Prevention

Metodika Aeroelastic Flutter Prevention široce spoléhá na modální parametry, resp. především na vlastní frekvenci jednotlivých částí letounu. Z vlastních frekvencí je počítána redukovaná vlnová délka, do které jsou dodány informace o návrhové rychlosti a tětivy jako geometrickém parametru letounu, šířeji popsáno v teoretické části. Vedle modálních, geometrických informací dále metoda hojně využívá statických údajů v podobě koeficientů či kritérií vstupujících do jednotlivých metod. Zdroj, ze kterého je vycházeno [1], byl vydán v roce 1991 a částečně čerpá i ze starších metodik. Jak již bylo zmíněno metodika částečně spoléhá na statistické metody, které byly stanoveny na letounech dané doby a již úplně neodpovídají současným konstrukcím.[1]

Významnou změnou, pokud se bavíme o srovnání o konstrukcích letounů a jejich vývoji, zaznamenali například používané materiály pro stavbu letadel. Pro moderní celoskořepinové letouny je předpokládatelné, že použití statistických koeficientů stanovených z konstrukcí používající dřevo či příhradové konstrukce potažené pružnými materiály může být zatíženo značnou nejistotou. [1]

Také u srovnání starších konstrukcí s moderními zde změny doznaly i např. rozměry křidélek, kde nastala znatelná redukce, která může mít za následek zcela jiné chování v podobě aeroelastické odezvy a požadavků na vyvážení. Další omezení metodiky spočívají, mimo přímé metody stanovení kritické rychlosti metodou BCAR, v absenci zohlednění výšky letu, která má podstatný vliv na rychlost flutteru. Také absence postupů stanovené modálních trupu např. trupových módů limituje metodiku a vyžaduje informace doplněné z PFZ.[1]

Simplified Flutter Prevention

Metodika založena tech. zprávě z roku 1955 [2]. Jedná se ještě o poznání starší metodiku než případě Aeroelastic Flutter Prevention a bude tedy pro ni platit omezení ohledně srovnání s dobovými letouny. Výhodou této metodiky je přímočarost stanovení odolnosti konstrukce pomocí jednoduchých kriteriálních srovnání. Zároveň tato jednoduchost sebou nese pochybnosti o spolehlivosti metodiky.[2]

Zpráva, např. stejně jako Aeroelastic Flutter Prevention, neřeší výšku letu, dále pak oproti předchozí i přídavné momenty systému řízení. Nezohledňuje vyvažování klapek nebo T-ocasní plochy. Z velké části spoléhá na statistiku, experimentálně zjištěné parametry, které je někdy obtížné realizovat. Toto platí i pro metodiku Aeroelastic Flutter Prevention. Nutnost provedení experimentů limitovala i provedení této práce a z tohoto důvodu nebyly stanoveny všechny kritéria, které metodika poskytuje. [2]

7. Ověření

Návrhové metodiky podrobím srovnání s konvenčně používanou metodou k ověření aeroelastické odolnosti v podobě pozemní frekvenční zkoušky a MKP simulace dle tech. zprávy Flutter Analysis of The Atec 321 Faeta NG. [10].

Pro ověření jsou použity stejné okrajové podmínky a konfigurace. Obě práce uvažují posuzování odolnosti vůči návrhové rychlosti V_d zvětšenou o bezpečnostní koeficient 1,2. Shodně také obě práce vyhodnocují dvě hmotnostní letové konfigurace a volná blokovaná kormidla.

Vzhledem k rozdílnému přístupu vyhodnocení, kde pro konvenční způsob je výsledkem hodnota kritické rychlosti příslušného módu, je v navrhované metodice majorita postupů založena kriteriálním hodnocení rizikovosti módu. Minoritně poté přímá metoda stanovení krit. rychlosti. [1]

7.1. Vlastní frekvence

Níže uvedeno srovnání vlastních frekvencí stanovené metodikou a ověřovací zprávou. Navrhovaná metodika se omezuje pouze na odhady základních módů a nerozlišuje hmotnostní konfigurace letounu. Níže jsou uvedeny vl. frekvence křídla, pro které byly dostupné vstupní parametry. Vlastní frekvence ostatních konstrukčních částí vyžadují experimentální vstupní data.[1]

	Metodika Aeroelastic Flutter	Zpráva Flutter Analysis of The Ate 321 Faeta NG (PFZ)		
	Prevention	těžká	lehká	
mód	[Hz]	[Hz]	[Hz]	
S1	8,09	8,34	8,59	
S2	27,52	43,73	43,92	
S3	64,76			
A1	17	15,06	17,68	
A2	47,76	59,18	59,52	
ST1	36,32 (hrubý	31,34	30,41	
AT1	odhad)	30,92	31,23	

Tabulka 19 Srovnani vlastnich frekvenci [1] [10]	Tabulka	19	Srovnání	vlastních	frekvencí	[1]	[10]
--	---------	----	----------	-----------	-----------	-----	------

Ze srovnání je zřejmé vzhledem ke skutečnosti, že vl. frekvence dle navrhované metodiky jsou odhadovány, je u prvního ohybového symetrického módu křídla dobrá shoda s hodnotou z PFZ. U ostatních a zejména vyšších módů je zde znatelný rozdíl hodnot.[1]

7.2. Kritické rychlosti flutteru

Při hodnocení prvního antisymetrického módu rotace křidélka, pro který byla vyhodnocena rychlost flutteru v ověřovací zprávě nižší než požadované 1,2Vd.[1]

Mass config.	Lifting surface	Shapes	Control	Flaps	Altitude	V _{FLEAS} [km/h]	V _{FL} / V _D EAS	Flutter Case
Usht	Ming	Summatria	Free		0 m	509	1.82	Aileron
Light Wing	Symmetric	Free	'n	3 000 m	430	1.54	symmetric	
Usht		Commentation	Dischard		0 m		-	Aileron
Light Wing	Symmetric	Blocked	_ '''	3 000 m	402	1.44	symmetric	
Light	Ming	Antisummetric	Free	In	0 m	345	1,23	Aileron
Light	Light Wing	Antisymmetric	Free		3 000 m	302	1.08	antisymmetric
Light	Ming	Antisummetric	Blockod	la.	0 m		-	Aileron
Light Wing		Antisymmetric	BIOCKED	in	3 000 m	265	0.95	antisymmetric

Mass config.	Lifting surface	Shapes	Control	Flaps	Altitude	V _{FL EAS} [km/h]	V _{FL} /V _D EAS	Flutter Case			
Heaver	Wing	Summotric	Free	la.	0 m	-	-	Aileron			
Heavy wing	Symmetric	Free	in	3 000 m	502	1.79	symmetric				
Harris	Winn	Cummetrie	Dischard		0 m		-	Aileron			
Heavy Wing	Symmetric	вюскей		3 000 m	485	1.73	symmetric				
User	Mine	Antinumentals	5	E.c.		5 m		0 m	302	1.08	Aileron
Heavy Wing	Antisymmetric	Free	in	3 000 m	297	1.06	antisymmetric				
		Anticummetric			0 m	-	-	Aileron			
Heavy Wing	wing	Antisymmetric	BIOCKED	m	3 000 m		-	antisymmetric			

Obr. 30 Kritická rychlost – ověřovací zpráva [10]

Srovnání s přímou metodou výpočtu kritické rychlosti stanovené dle metodiky Aeroelastic Flutter Prevention.

Odhad kritické rychlosti torzního flutteru						
vl. frekvence z: hrubý odhad [km/h] PFZ [km/h]						
V _{krit} . odhad	380,484					

Z hodnot stanovených metodikou, která hodnotí letoun jako celek bez dalšího rozlišení, je zřejmé, že takto stanovené rychlosti jsou násobně vyšší, a lze tedy vnímat metodu jako méně spolehlivou.

U kriteriálního srovnání pro zmíněné módy z ověřovací zprávy je provedeno vyhodnocení dle metodiky Aeroelastic Flutter Prevention.

kor	nfigurace:	těžká	korr	nidla:	,	volná	
	kontrola izo	olované ko	číslo metody:	1			
	odstupu vl. frekv	ence od ná	metodika:	Aeroelastic Flutter Prevention			
	pro vyloučení módu jako nerizikového hodnota musí být větší než 1						
	vl. frekvence sta	anovena z:		Experiment /	Torze křídlo		
mód	vl. frek. [Díl]	fb [Díl]	PFZ	odhad analytický	– hrubý odhad	Torze křídlo – fig.9 (přesnější)	
AQ1	křidélko	křidélko	0,14	NaN			

Tabulka 20 Vyhodnocení křidélka [1]

koi	nfigurace:	lehká	korr	nidla:	volná		
	kontrola izo	číslo metody:	1				
	odstupu vl. frekv	ence od ná	metodika:	Aeroelastic Flutter Prevention			
	pro vyloučení módu jako nerizikového hodnota musí být větší než 1						
vl. frekvence stanovena z:				Experiment /	Torze křídlo		
mód	vl. frek. [Díl]	fb [Díl]	PFZ	odhad analytický	– hrubý odhad	(přesnější)	
AQ1	křidélko	křidélko	0,14	NaN			

koi	nfigurace:	lehká	korr	nidla:	blo	kována	
	kontrola izc	číslo metody:	1				
	odstupu vl. frekv	metodika:	Aeroelastic Flutter Prevention				
	pro vyloučení módu jako nerizikového hodnota musí být větší než 1						
vl. frekvence stanovena z:				Experiment /	Torze křídlo		
mód	vl. frek. [Díl]	fb [Díl]	PFZ	odhad analytický	– hrubý odhad	Torze křídlo – fig.9 (přesnější)	
AQ1	křidélko	křidélko	0,49	NaN			

konfigurace: těžká			kormidla:	volná
k	ontrola párová	ání	číslo metody:	7
Kontrola c	odstupu vl. frekv	metodika:	Aeroelastic Flutter Prevention	
pro vyloučení párování módu jako nerizikového hodnota nesmí být v intervalu:		(0,7,1,3)	Párování křidélka / klapky:	(0,85,1,15)
vl. frekvence stanovena z: podíl módů	Experiment	Experiment / PFZ	PFZ / Experiment	PFZ / PFZ
A1/AQ1	NaN	2,71	NaN	2,41
A2/AQ1	NaN	7,64	NaN	9,47
AK1/AQ1	NaN	NaN	NaN	2,10

konfig	jurace:	lehká	kormidla:	volná
k	ontrola párová	ání	číslo metody:	7
Kontrola c	odstupu vl. frekv	metodika:	Aeroelastic Flutter Prevention	
pro vyloučení párování módu jako nerizikového hodnota nesmí být v intervalu:		(0,7,1,3)	Párování křidélka / klapky:	(0,85,1,15)
vl. frekvence stanovena z: podíl módů	Experiment	Experiment / PFZ	PFZ / Experiment	PFZ / PFZ
A1/AQ1	NaN	2,72	NaN	2,83
A2/AQ1	NaN	7,64	NaN	9,52
AK1/AQ1	NaN	NaN	NaN	2,10

konfigurace:		lehká	kormidla:	blokována
k	ontrola párová	číslo metody:	7	
Kontrola odstupu vl. frekvencí módů			metodika:	Aeroelastic Flutter Prevention
pro vyloučení párování módu jako nerizikového hodnota nesmí být v intervalu:		(0,7,1,3)	Párování křidélka / klapky:	(0,85,1,15)
vl. frekvence stanovena z: podíl módů	Experiment	Experiment / PFZ	PFZ / Experiment	PFZ / PFZ
A1/AQ1	NaN	0,77	NaN	0,80
A2/AQ1	NaN	2,17	NaN	2,70
AK1/AQ1	NaN	NaN	NaN	0,60

konfigurace:	těžká	kormidla:	volná / blokovaná					
Kontrola m	aximální vváženosti	číslo metody:	9					
kormi	del	metodika:	Aeroelastic Flutter Prevention					
Stanoven	Stanovená hodnota musí být menší než hodnota limitní							
vl. frekvence z:		experiment	PFZ					
konstrukční celek	stanovená	limitní	limitní					
křidélka	10,21	1 74	1 02					
klapka	3,97	1,74	1,00					

Pro kontrolu vůči návrhové rychlosti jsou křidélka hodnocena jako nevyhovující. U kontroly párování s ohybovými módy křídla se jeví jako nevyhovující pouze lehká konfigurace s blokovanými kormidly, a to v kombinaci s prvním antisymetrickým módem ohybu křídla. Při kontrole na maximální dovolenou nevyváženost hodnota vysoce překračuje hodnotu dovolenou a dle kritéria je hodnoceno jako nevyhovující.[1]

7.3. Vyvážení

Navrhovaná metodika stanovuje možnosti vyvažování kormidel. Zde dle metodiky navrhnu potřebné vyvážení dle Metody č. 10. Z níže uvedeného grafu je vyhodnocena potřebná míra vyvážení 0.118 kgm. Také je zde navržena optimální poloha umístění vyvažovací hmoty po rozpětí křídla 3.25m od kořene křídla. Dle metody je uvažována nejméně příznivá kombinace módů. [1]

Dle tohoto přístupu jsou ostatní kombinace převáženy, což není nevýhodné. Negativní stránka přístupu spočívá v přidané hmotnosti. Je tedy na inženýrském zhodnocení, zda je voleno plné dynamické vyvážení nebo např. uvažováno pouze statické vyvážení, které zde má nižší hodnotu.[1]

Obr. 31 Vyvažování křidélka [1]
V ověřovací zprávě je stanovena vyvažovací hmota dle následujícího grafu. V příloze č.8 zprávy je navržena vyvažovací hmota 400g na rameni 150mm od osy otáčení křidélka. Pokud je navrženo shodné rameno vyvážení a srovnávány hmoty potřebné pro vyvážení, navrhovaná hmota dle metody č.10 by měla hodnotu 787g. Je tedy zřejmé, že z pohledu plného dynamického vyvážení je tato metoda velmi konzervativní.[1] [10]

Obr. 32 Vyvažování křidélka [10]

8. Závěr

Z úvodního seznámení se s danou problematikou a provedené rešeršní práce byla stanovena kostra budoucí metodiky hodnocení aeroelastické odolnosti se zaměřením na malé sportovní letouny a potřeby pro jejich stavbu, zkoušení. Ze stanovené kostry byla rozpracována metodika obsahující dva základní přístupy.

Složitější a komplexnější přístup hlouběji hodnotící aeroelastickou odolnost pomocí analyticko – kriteriálního přístupu s významným podílem experimentálního získávání vstupních dat, také určitou dávkou flexibility v podobě možnosti převzetí vstupních dat z pozemních frekvenčních zkoušek. Druhá metoda spoléhá větší měrou na experiment a je maximálně zjednodušena. Pro výpočet byl navrhnut a zpracován výpočetní program ve vývojovém prostředí softwaru Matlab. Pro daný reprezentativní případ letounu byl proveden výpočet a ověření pomocí tech. zprávy vypracované na základě pozemních frekvenčních zkoušek a MKP simulace.

V případě zaměření se na hodnocení spolehlivosti navrhovaných metodik, komplexnější z nich na daném ověřovacím letounu vykazuje značnou konzervativnost a v důsledku by použití této metody pro konstrukční úpravy letounu znamenalo znatelné navýšení hmotnosti. Vyhodnocením byla stanovena značná část prvních módů jako nevyhovující. Metodika také ukázala určitou dávku nespolehlivosti pro některé metody stanovení veličin. Například přímý odhad kritické rychlosti torzního flutteru, která vychází danou metodou významně vyšší. Nezanedbatelné jsou i rozdíly v modálních parametrech vyšších módů v porovnání s pozemní frekvenční zkouškou. V opozici k tomuto je nutné mít na zřeteli, že byl vyhodnocen jediný případ letounu a závěry tedy dávají spíše náhled na způsob fungování metodiky. Statisticky je samozřejmě studie o jednom vzorku nevýznamná a ověření metody by vyžadovalo mnohem širší vzorek pro zajištění spolehlivosti vyhodnocení.

Dalším možným vývojem metodiky, je zde určitě prostor pro provedení plného rozsahu experimentů, které metodika nabízí. Zaměřením se na zvýšení spolehlivosti používaných metod modifikací statisticky získaných koeficientů, které by více odpovídaly moderním konstrukcím. Také programové zpracování metody nabízí široké možnosti dalšího vývoje v podobě např. návrhu uživatelského rozhraní či další rozšíření metodiky jako takové.

Seznam použité literatury

- [1] STENDER, Walter, KIESSLING, Fritz. Aeroelastic Flutter Prevention in Gliders and Small Aircraft. DLR, Gottingen, 1991,s.60
- [2] ROSENBAUM, Robert, VOLLMECKE, A. A. (ed.). Simplified Flutter Prevention Criteria For Personal Type Aircraft. In: . 1955, s. 26.
- [3] R. WRIGHT, Jan a E. COOPER, Jonathan. Introduction to Aircraft Aeroelasticity and Loads. The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England: John Wiley, 2007. ISBN 978-0470-85840-0.
- [4] Doc. Ing. DANĚK, Vladimír CSc. *Aeroelasticita*. Vysoké učení technické v Brně, Fakulta strojní, 1986
- [5] KONVALINKA, Michael. *Metodický pokyn pro stanovení hmotnostních charakteristik leteckých konstrukcí*. CLVK ČVUT v Praze, 2009.
- [6] Ing. SOMMER, Tomáš, Ing. KRATOCHVÍL, Aleš. Experimentální zjištění hmotnostních charakteristik pevných ploch a kormidel. ULT ČVUT v Praze, 2013.
- [7] © 1994-2024 THE MATHWORKS, INC. Math. Graphics. Programming. Online.

Dostupné z: https://www.mathworks.com/products/matlab.html?

s_tid=hp_ff_p_matlab. [cit. 2024-05-19].

[8] ATEC V.O.S. ATEC 321 FAETA NG. Online. ATEC V.O.S. Dostupné

z: <u>https://www.atecaircraft.eu/letadla/atec-321-faeta-ng</u>. [cit. 2024-05-19].

- [9] ATEC 321 FAETA NG: Letová a provozní příručka. Online. Libice nad Cidlinou, květen 2019. Dostupné také z: <u>https://www.atecaircraft.eu/ke-stazeni</u>.
- [10] ING. ALEŠ KRATOCHVÍL, PH.D.; ING. FRANTIŠEK BROŽ; BC. ONDŘEJ PLAJDIČKA; DOC. ING. SVATOMÍR SLAVÍK, CSC. a ING. TOMÁŠ JÁNOŠÍK. FLUTTER ANALYSIS OF THE ATEC 321 FAETA NG. PDF. Praha, 2020.

9. Přílohy

9.1. Příloha č.1

Vstupní hodnoty nestanovené [10]

No.	Název	Hodnota	Jednotky	Název proměnné Matlab
37	modul tuhosti v krutu	[NaN NaN NaN NaN NaN NaN NaN NaN]	kg/cm	ld_fig9
1	úhel torzní deformace normalizováno	[NaN NaN NaN NaN NaN NaN NaN NaN NaN]	-	fi0_fig9
2	rozdíl momentu setrvačnosti na délku úseku křídla	[NaN NaN NaN NaN NaN NaN NaN NaN NaN]	kg/cm	delta_j_delta_y_fig9
102	vzdálenost řezu VK od kořene VK dle Aeroelastic Flutter Prevention fig.8	[NaN NaN NaN NaN NaN NaN]	m	y_vk_fig8
103	kolmá vzdálenost těžiště segmentu VK od osy rotace, řez v místě dle matice y_vk_fig8 dle Aeroelastic Flutter Prevention fig.8	[NaN NaN NaN NaN NaN NaN]	m	rs_vk_fig8
104	hmotnost segmentu VK, řez v místě dle matice y_vk_fig8 dle Aeroelastic Flutter Prevention fig.8	[NaN NaN NaN NaN NaN NaN]	kg	m_vk_fig8
137	vzdálenost řezu SK od kořene SK dle Aeroelastic Flutter Prevention fig.8	[NaN NaN NaN NaN NaN NaN]	m	y_sk_fig8
138	kolmá vzdálenost těžiště segmentu SK od osy rotace, řez v místě dle matice y_sk_fig8 dle Aeroelastic Flutter Prevention fig.8	[NaN NaN NaN NaN NaN NaN]	m	rs_sk_fig8
139	hmotnost segmentu SK, řez v místě dle matice y_sk_fig8 dle Aeroelastic Flutter Prevention fig.8	[NaN NaN NaN NaN NaN NaN]	kg	m_sk_fig8
167	úhel zkroucení v radiánech a polovině úseku na jednotkový moment působící na konci křidélka	[NaN NaN NaN NaN]	rad/lbft	Q_no45
168	délka tětivy ve středu úseku	[NaN NaN NaN NaN]	ft	c_no45
3	modul pružnosti ve smyku (mat. křídla)	NaN	kg/s²cm	G
4	délka úseku křídla	NaN	cm	delta_y

5	zatěžující síla pro ohyb Aeroelastic Flutter Prevention fig.10	NaN	daNm	Ρ
6	průhyb křídla v místě zatížení silou P dle Aeroelastic Flutter Prevention fig.10	NaN	m	S
7	úhel natočení křídla v místě zatížení momentem Mt dle Aeroelastic Flutter Prevention fig.10	NaN	rad	fi_fig10
8	kroutící moment dle Aeroelastic Flutter Prevention fig.10	NaN	daNm	mt
9	poloha elastické osy od náběžné hrany v 70% polorozpětí křídla a od kořene vztažená na délku tětivy	NaN	-	re
10	poloha těžiště od náběžné hrany v 70% polorozpětí křídla a od kořene vztažená na délku tětivy	NaN	-	rs
12	úhel zkroucení křídla v polovině křidélka	NaN	rad/Nm	fi_q
13	plocha křídla v úseku křidélka	NaN	m²	F_q
25	vzdálenost zatěžující síly od osy otáčení křidélka	NaN	m	cp_krid
26	zatěžující síla v těžišti křidélka	NaN	N	p_tez_krid
27	deformace křidélka ss=def. zatěžovaného -deformace opačného dle fig.1	NaN	m	ss_krid_sym
28	deformace klapky ss=def. zatěžovaného +deformace opačného dle fig.1	NaN	m	ss_krid_at
29	zatěžující torzní moment křidélka	NaN	Nm	mt_krid
30	úhel zkrouceni křidélka	NaN	rad	fi_krid
31	zatěžující síla na koncovém žebru volné části křidélka	NaN	Ν	p_bcar_krid
32	průhyb koncového žebra vzhledem k poslední podpoře křidélka	NaN	m	s_bcar_krid
53	vzdálenost zatěžující síly od osy otáčení klapky	NaN	m	cp_klapka
54	zatěžující síla v těžišti klapky	NaN	N	p_tez_klapka
55	deformace klapky ss=def. zatěžovaného -deformace opačného dle fig.1	NaN	m	ss_klapka_sym
56	deformace křidélka ss=def. zatěžovaného +deformace opačného dle fig.1	NaN	m	ss_klapka_at
57	zatěžující torzní moment klapky	NaN	Nm	mt_klapka
58	úhel zkrouceni klapky	NaN	rad	fi_klapka

59	zatěžující síla na koncovém žebru volné části klapky	NaN	N	p_bcar_klapka
60	průhyb koncového žebra vzhledem k poslední podpoře klapky	NaN	m	s_bcar_klapka
94	zatěžující torzní moment VK	NaN	Nm	mt_vk
95	úhel zkrouceni VK	NaN	rad	fi_vk
96	zatěžující síla na koncovém žebru volné části VK	NaN	N	p_bcar_vk
97	průhyb koncového žebra vzhledem k poslední podpoře VK	NaN	m	s_bcar_vk
98	vzdálenost zatěžující síly od osy otáčení VK	NaN	m	cp_vk
99	zatěžující síla v těžišti VK	NaN	N	p_tez_vk
100	deformace vk ss=def. zatěžovaného -deformace opačného dle fig.1	NaN	m	ss_vk_sym
101	deformace vk ss=def. zatěžovaného +deformace opačného dle fig.1	NaN	m	ss_vk_at
130	zatěžující torzní moment SK	NaN	Nm	mt_sk
131	úhel zkrouceni SK	NaN	rad	fi_sk
132	zatěžující síla na koncovém žebru volné části SK	NaN	N	p_bcar_sk
133	průhyb koncového žebra vzhledem k poslední podpoře SK	NaN	m	s_bcar_sk
134	vzdálenost zatěžující síly od osy otáčení SK	NaN	m	cp_sk
135	zatěžující síla v těžišti SK	NaN	N	p_tez_sk
136	deformace sk ss=def. zatěžovaného +deformace opačného dle fig.1	NaN	m	ss_sk_at
165	délka tětivy v polovině v-tail ocasní ploch	NaN	m	lv
166	vl. frekvence AST mód T-SOP PFZ	NaN	Hz	f_sk_ast_pfz
169	délka úseku	NaN	ft	delta_s_no45
170	naměřená vůle chodu křidélka při fixaci druhého.	NaN	ft	vule_kridelka_no45
171	délka tětivy za osou otáčení v místě měření křidélka	NaN	ft	c00_no45
172	deviační moment křidélka k uzlové čáře základního ohybového módu křídla a ose otáčení křidélka (osa uzlové čáry možné nahradit podélnou osou trupu)	NaN	lbft ²	k_krid_no45
173	deviační moment VOP k elastické ose hor. stabilizátoru a ose otáčení výškového kormidla	NaN	lbft ²	kh_no45

174	deviační moment SOP k elastické ose trupu a ose otáčení směrového kormidla	NaN	lbft ²	ks_no45
175	délka tětivy za osou otáčení v místě měření plošky	NaN	ft	c00_plosky_no45
176	min. vl. frekvence torzní / ohyb plošky na letounu	NaN	Hz	f_min_plosky_no45
177	šířka plošky (ploška> ft_min_plošky)	NaN	ft	st_plosky_no45
178	tětiva plošky (ploška> ft_min_plosky)	NaN	ft	ct_plosky_no45
179	šířka kormidla příslušné plošky připojené	NaN	ft	cs_kormidlo_no45

9.2. Příloha č.2

Vstupní hodnoty rozměry letounu [10]

