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Abstrakt

Tato práce představuje jazyk TinyGo a jeho překladač. TinyGo je zjednodušená
verze skutečného programovaćıho jazyka GoLang. Byl vytvořen pro vzdělávaćı
účely studia konstrukce kompilátoru a zachováńı nejd̊uležitěǰśıch princip̊u de-
signu Go. Kompilátor pracuje pro jazyk TinyGo a generuje ćılový kód pro malý
x86 VM z kurzu NIE-GEN. Kompilátor je oddělený pro snazš́ı pochopeńı jeho
část́ı a otevřený pro jakékoli rozš́ı̌reńı a upgrade.

Kĺıčová slova Kompilátor, AST, IR, Generováńı Kódu, Programovaćı Ja-
zyky

Abstract

This thesis presents the TinyGo language and its compiler. TinyGo is a simpli-
fied version of the real programming language GoLang. It was created for the
educational purpose of studying compiler construction and preserving the most
important design principles behind Go. The compiler works for a TinyGo lan-
guage, generating the target code for a tiny x86 VM from a NIE-GEN course.
The compiler is separated for an easier understanding of parts of it and open
for any extension and upgrade.

Keywords Compiler, AST, IR, Code Generation, Programming Languages
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Chapter 1
Introduction

Computers do not understand programming languages. Machines operate with
instructions, where each statement is a direct command to the computer’s
hardware. Such commands are very hard to read for people due to their ex-
treme level of detail (Listing 1.1). Another problem with machine languages is
portability. Different computers might accept different sets of instructions and
commands from one computer will not be processed by another.

1 .data
2 dividend dd 25
3 divisor dd 4
4 result dd 0
5
6 .text
7 mov eax , dword [ dividend ]
8 mov ebx , dword [ divisor ]
9 xor edx , edx

10 div ebx
11 mov dword [ result ], edx
12
13 mov eax , 4
14 mov ebx , 1
15 mov ecx , result
16 mov edx , 10
17 int 0x80
18
19 mov eax , 1
20 xor ebx , ebx
21 int 0x80

Listing 1.1: Program that computes the modulo of the number, written on a
machine code

Because of that, programming languages were created. They provide a
means for humans to communicate with computers in a structured and, at the
same time, understandable way. But this creates a gap, where humans write
programs on programming languages and computers understand instructions.
A popular way to solve it with using a translation program named compiler,
which takes a program written in a programming language and converts it into
an instruction set with the same meaning.

1



1. Introduction

1 func div(a,b val)(int , error){
2 if b == 0{
3 return -1, errors .New("")
4 }
5 return a / b
6 }

(a) GoLang

1 fn main () {
2 let x = String :: from("");
3 let y = x.clone ();
4 println! ("{}, {}",x, y);
5 }
6

(b) Rust

1 int* createInt () {
2 int* resutl ;
3 result = new int;
4 return resutl ;
5 }

(c) C++

1 (defun factorial (n)
2 (if (or (= n 0) (= n 1))
3 1
4 (* n ( factorial (- n 1))

)))
5

(d) Lisp

Listing 1.2: Example of the programs in different languages

There are various of programming languages (Listing 1.2). Different lan-
guages have different syntax, different features, and different ways to handle
them. As an example, Go can return from the function multiple values at the
same time(1.2a). In rust, any object has its owner and cannot be simply passed
to another variable (line 3 1.2b). C++ requires to manually allocate space for
some variables (1.2c). In Lisp, everything is a list and this language does not
have variables (1.2d).

It is therefore clear that different languages require different compilers to
translate them. However, the significance of the differences between these
compilers, who accept different languages, is not. It is possible, that compilers
would be divergent from each other. Or source language might not affect at all
and all compilers can be almost identical.

1.1 Compiler

Compilerstatement

statement

statement

Program Instruction set

Instruction

Instruction

Instruction

Figure 1.1: Compiler principle of work

Creation of the compiler is a substantial problem, that requires a lot of things
to be learned. The NIE-GEN and BIE-PJP courses in the CTU teach about
parsers, compiler construction, and different techniques for implementation.

2



1.2. TinyGo

To make the learning and developing process easier, mordern compilers splited
into three main parts (Figure 1.2):

• Front End : It is responsible for reading the input program and ana-
lyzing it. Then it transltes the input into the IR that is then processed
by the rest parts of the compiler.

• Middle End : The middle end is responsible for an IR optimization.
It takes the result from the front end and creates a better-quality code,
which then sends it to the next stage. However, this part is not mandatory
and compiler can work even without it.

• Back End : The back end takes the optimized IR and generates the
instruction set to a target machine, as the result of the compiler work.

Front-EndInput
code Middle-End Back-EndIR IR Target

code

Figure 1.2: Compiler scheme

1.2 TinyGo

Go (or Golang) is a high-level compiled programming language designed by
Google. It was chosen as a reference language for a compiler input because of
its grammar. It has a lot of syntactic sugars, which complicates the compiler,
and gives more opportunities to use different techniques to construct it.

1 package main
2
3 func init_values () (int ,int) {
4 return 1,2
5 }
6
7 func sum(a,b int) int {
8 return a + b
9 }

10
11 func main () {
12 var a,b int = init_values ()
13 c := sum(a,b)
14 if c == 3 {
15 Print("Value equals to 3!")
16 }
17 }

Listing 1.3: The program written in GoLang

TinyGo is a simplified subset of the Go. It has been simplified as much as
possible while keeping the most interesting components of the compiler to make
it more appropriate for an educational purpose to study compiler construction
and code generation. It supports functions, variables, pointers, named types1,
methods. Inside functions, language supports usual control flow statements

1In GoLang each type can have a shortcut on how to call it - a name. Types which is
used by its name called named type.

3



1. Introduction

(if , for, switch) and local variables. Basic data types have been stripped and
only floats, integers, structures, and pointers are kept.

1.3 Tiny x86

Different computers might accept different instructions. Covering all possible
instruction architectures will require an enormous amount of work. Luckely,
for the NIE-GEN course special instruction architectures was designed by Ivo
Strejc [1]. It is a virtual machine with custom ISA, created for an educational
purpous of studying code generation. Thanks to it, students can focus more
on the compiler itself instead of studying complex and hard architectures, such
as x86 or RISC-V.

Tiny x86 originally worked as a C++ library. It allowed through its in-
terface create instructions and build them into a target program. However,
Filip Gregor has extended it [2] with a CLI, which allowed not to use an inter-
face, create a target program, and only after that execute it. Such method is
preferred and in this thesis, we will use it to execute the program created by
compiler.

1.4 The Goal of Thesis

This thesis aims to look into the creation of the compiler. For it, we will design
a new language – TinyGo, a simplified version of the already existing language.
Next, it will be compared to a similar language, that has been created for the
same purpose – TinyC. Afterward, we will create a compiler for a TinyGo
language compare it with already existing compilers for a TinyC, and look
into how does introduction of the new language changes the structure of the
translation process.

1.5 Thesis Outline

In the following chapters, we will describe the TinyGo language and how the
compiler is constructed.

In Chapter 2 we will talk about various of different techniques and meth-
ods which is used in compiler construction. Will talk about their pros and
cons, which are better, and in which case any of them could be better to be
used.

Chapter 3 will describe the design of the TinyGo: what syntax does it
have, which features from the original language have been omitted, and how
the language differs from the similar one, TinyC, from the NIE-GEN course.
We will also talk about how the compiler is designed which techniques have
been used from chapter 2 and why.

Chapter 4 speaks about how methods from Chapter 3 are implemented.
It focused on implementation and how challenges have been overcome.

In the last chapters 5 and 6, we will talk about the result of the work. and
how the compiler works compared to a standard one of the original language.
Also, it will compare how long it takes and what is the quality of the code.
The last chapter will speak about the whole result, and what has been done.

4



1.5. Thesis Outline

Also, it will outline what hasn’t been done yet and what can be done in future
works, which will improve the current one.
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Chapter 2
Overview of a Modern Compiler

Compiler is a fundamental tool in computer science and software engineer-
ing, serving as a bridge between human-readable source code and machine-
executable instructions. Essentially, it’s a specialized program that translates
high-level programming languages like Java, C++, or Python into low-level
machine code that a computer can understand and execute directly.

Such ways have changed the programmer’s life by allowing them to ex-
press their ideas in high-level languages without the burden of dealing with
low-level instructions. With a compiler, programmers can focus on the logic
and structure of their code rather than dealing with the machine code’s direct
instructions. This abstraction allows developers to write code that is more
readable, maintainable, and portable across different platforms. By translat-
ing high-level code into machine-readable instructions, compilers bridge the
gap between human-readable languages and the binary language understood
by computers, facilitating the development of complex software systems with
efficiency and ease.

Modern compilers consist of several stages (Figure 1.2). However, to make
the process of development even easier, all of the stages are usually divided
into substages, where each of them plays their role. Such modularity gives a
lot of space for reuse – to create a compiler for a different machine, there is no
need to create a new compiler – Front and Middle ends can be used the same.
Only the Back end will be replaced with a different one, generating the target
code for a different ISA.

This chapter describes techniques currently used in compiler construction.
It will observe the usual structure of modern compilers, what each stage is
doing, and which techniques are used.

2.1 Front End

The front end is the first part of the compiler. It is responsible for processing
the input, the source language, and making it into a form of IR for the rest
compiler. This conversion process may occur straightforwardly if each language
keyword or construct corresponds directly to a form in the IR. However, if the
IR instruction is absent, it requires transforming into a series of IR instructions
that produce the equivalent outcome.

7



2. Overview of a Modern Compiler

Front-End

Lexer Parsertoken
seq.

Input
lang.

syntax
tree Type Checker syntax

tree
IR Code

Generator IR

Figure 2.1: Structure of the Front End

Front-end with its task to translate the source program into IR usually
separated into parts:

• Lexical Analysis : It reads input and transforms it into a sequence of
the tokens, defined by the input language.

• Syntax Analysis : Takes tokens created before and represents the
program in the form of an AST.

• Semantic Analysis : The task is to check the correctness of the AST.

• IR Generator : After the check, correct AST is translated into an IR,
which will be used by other compiler modules.

2.1.1 Lexical Analysis

Input for the compiler is a stream of characters. Lexer (part of the compiler,
which is doing lexical analysis) reads all characters one by one and groups them
into tokens. Token is a basic lexical unit, representing one semantic item of the
input language. It might be a keyword (while, if ), number (5, 765), identifier
(i, vectorOfNumbers), etc. A token consists of two parts: name, a list of which
is predefined in the compiler, and an optional attribute value.

After processing and grouping, the lexer outputs the sequence of the tokens.
This sequence is sent forward to the next stage(Figure 2.1).

1 while i < 5 {
2 i++
3 }

(a) Input program

1 tok_while
2 tok_identifier (name = i)
3 tok_less
4 tok_intNumber (value = 5)
5 tok_figureBrOpen
6 tok_identifier (name = i)
7 tok_doublePluss
8 tok_figureBrClose
9

(b) Sequence of tokens

Listing 2.1: Lexer translation of the characters into tokens

8



2.1. Front End

On this step, there is no possible errors and compiler cannot fail. Lexer
does not know anything about syntax. And if tokens going to be in the wrong
order, Lexer will generate them in given order and sent on for the next stage.

2.1.2 Syntax Analysis
The second stage of the compiler’s front-end is syntax analysis. Block named
Parser is responsible for this. The parser uses a token stream from the lexer and
creates a tree-like intermediate representation, usually keeping the grammar
structure of the language. Such tree representation is called syntax tree in
which a tree node is an operation in an original language and children of the
node are his arguments. Such structure called an Abstract Syntax Tree (AST).

Also, this is the first and one of the two stages, where the compiler can
throw an error due to a mistake made in an input language. Parser verifies
the syntactical structure of a token sequence and if it is possible which such
order to create a correct syntax tree. If it is not possible, the compiler cannot
process it forward and therefore drops compilation at this stage, notifies about
the error, and terminates.

2.1.3 Semantic Analysis
Semantic analysis is a crucial phase within the compilation process, serving
as the checker in the compiler. Even grammatically correct input might not
make any sense. It verifies the correctness of the input program, analyzes the
source code, and checks for semantic errors: if the operations support types of
arguments, does variables were declared before their use, etc.

But not all mistakes should raise errors. There are some types of mis-
takes, which can handled by the compiler. Usually, they are called warnings.
Such mistakes will not cause any trouble to execute them but might lead to
unexpected or undefined results.

+

Int Float

(a) Before

+

Cast:
Int->Float Float

Cast:
Int->Float

(b) After

Figure 2.2: Shadow cast of the types by type checker

After this phase compiler must not raise any error. Therefore, semantic
analysis must ensure, that the program is correct and can be processed by the
rest of the compiler. If any critical error is detected, the semantic analysis must

9
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fail the compilation process and notify that about it. However, for non-fatal
errors, there might be many approaches. The way to handle such errors is left to
the discretion of the compiler. They could be completely ignored, due to their
non-critical nature or fail the compilation process, forcing the programmer to
create a correct input. Some compiler tries to solve such issues by the pre-build
solutions (Figure 2.2).

2.1.4 Intermediate Representation
In a modern compiler, the translation between the programming languages
and machine code is not direct. Inside of it, it uses intermediate representation
(IR). Such representation of the source code is easier to analyze and optimize.
Also, it makes the translation process much smoother: instead of transforming
high-level languages into a set of instructions, the first translation happens
from a complex language to a simpler one, and only after that it generates
instructions.

2.1.4.1 Types of IR

IR is not defined by the programming language. Different compilers have differ-
ent middle languages. All of these IRs also can classified into a different groups.
Ussualy, they divided by the form of the representations: flat, hierarchical (tree
or graph) or stack based.

Flat IR Flat IR is a low-level variant of the IRs. It is represented as the list of
instructions, where they are executed sequentially. Each instruction performs
one operation and returns the result to a temporary variable, which others will
later use. Labels and branches implement the control flow in such a variant.

Such representations are often favored for analyses and optimizations. Flated
IR more straightforward compared to a hierarchical representation. It is much
easier to traverse and analyze linear structures, than graphs. Also, memory
efficiency is higher. In

Tree-Based IR Another variant of the IR is a tree-based, where all instruc-
tions are represented as tree nodes and all arguments stored as subnodes. Such
representation is similar to an AST, rather than machine code, but the opera-
tions are much simpler.

The advantage of such representation is its similarity to the source language.
Tree-based IR can express most of the semantics from the input language. It
also allows the reuse of the type system and variables from a source language.

Stack-Based IR As the name implies, stack-based IR uses the stack for data
manipulation. In such a paradigm, the instruction does not have arguments as
children, like in tree IR, or links to another instruction, like in flat IR. They
take values from a stack, operating pop on a stack, which gives the most recent
value from it. When the result is calculated, it pushes it to a stack, from which
it later can be taken by another instruction.

Such an approach allows us to avoid the use of the complex addressing
system, straightforwardly picking and storing all values on a stack, using only
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two operations. Also, this decreases the instruction set of the IR, which also
can be called the advantage of such representation.

2.1.5 IR Generator

The last step of the front end – is to generate the IR from an AST and pass
it to the rest part of the compiler. This step can be performed only after a
semantic analysis, which will guarantee, that the program is safe. However,
it also can be performed simultaneously. Semantic analysis recursively goes
through the whole AST and verifies each node. After the node is verified, it
can be translated into a corresponding IR instruction.

Also, the process of generating the IR can be named as lowering. During
it, the compiler changes the program from the form of the syntax tree into
the IR. But not only the form is changed. With the switch of the level, the
compiler also loses some information, regarding the program. For example, a
type behind the pointers. Instructions do not know what are they dereferencing
and what type they are getting. However, the correctness of any operation has
been guaranteed by the type checker. Therefore, even without knowing the
type explicitly, we can be sure that all instructions will work correctly.

2.2 Middle End

The middle-end part (also referred to as an optimizer) is an inner part of the
compiler. Its primary purpous is to improve the efficiency and performance
of the generated code. Optimization techiques applied at this stage can range
from simple transformations of the single instructions to complex analyses of
the whole program and its flow.

One of the key challenges in developing a middle end is finding the right bal-
ance between the aggressiveness of optimizations and the time taken to perform
them. While more complex optimizations can lead to substantial performance
gains, they also might increase compilation time, which may not be acceptable
in all scenarios. Thus, compiler designers often need to make trade-offs to en-
sure that the optimizations applied in the middle end strike an optimal balance
between compilation speed and code quality.

The most popular optimizations, which used in modern compilers are:

• Dead Code Elimination : Dead code elimination is a compiler op-
timization technique aimed at removing code that is never executed or
whose results are never used. This includes variables, functions, or entire
code blocks that have become unreachable or redundant due to program
transformations or conditional branches. The process of dead code elim-
ination typically involves analyzing the program’s control flow graph to
identify code paths that cannot be reached during execution. This can
occur due to conditional statements that are always true or false, un-
reachable code after return statements or exceptions, or variables that
are assigned values but never used[3, 4].
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1 ...
2 %a = alloca i32
3 br label %end
4 %add = add nsw i32 7, 6
5 store i32 %add , ptr %a
6 end
7 %a.val = load i32 , ptr %a
8 ...

(a) Before

1 ...
2 %a = alloca i32
3 %a.val = load i32 , ptr %a
4 ...
5

(b) After

Listing 2.2: Example of elimination of the non-reachable code

• Constant Propagetion : Some variables do not depend on the input
and are already pre-defined with the constant values before the compi-
lation. In such a case, it is possible to eliminate the variable call and
replace it with the constant, reducing the memory use and streamlin-
ing the program’s execution. The process typically begins by analyzing
the program’s control flow and data flow to determine which variables
hold constant values at specific points in the code and if so, replace all
occurences of it with a constant value[3, 4].

1 %a = alloca i32
2 %add = add nsw i32 7, 6
3 store i32 %add , ptr %a
4 %a.val = load i32 , ptr %a

(a) Before

1 %a = alloca i32
2 store i32 13, ptr %a
3 %a.val = load i32 , ptr %a
4

(b) After

Listing 2.3: Example of the constant propagetion in the code

• Function Inlining : A function call is an expensive process, requiring
a pass of the parameters, stack manipulation, instruction pointer manip-
ulation, etc. Inserting the function code directly into the calling function
can result in faster execution and smaller code size. Inlining is particu-
larly effective for short and simple functions, as the overhead of function
call setup and termination can outweigh the actual computation per-
formed by the function. However, inlining larger functions can increase
code size and potentially degrade performance[5].

• Common Subexpression Elimination : Common subexpression
elimination is aimed at reducing redundant computations by identifying
and eliminating duplicate expressions within a program. In many pro-
grams, the same computation might occur multiple times, resulting in
unnecessary overhead. Eliminator works by analyzing the code to iden-
tify expressions that produce the same result and computing them only
once, storing the result in a temporary variable. Then, wherever the
expression occurs subsequently, the compiler replaces it with a reference
to the temporary variable. This optimization reduces both computation
time and memory usage[6, 4].
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1 %a = alloca i32
2 %b = alloca i32
3 %add1 = add nsw i32 7, 6
4 store i32 %add1 , ptr %a
5 %add2 = add nsw i32 7, 6
6 store i32 %add2 , ptr %b

(a) Before

1 %a = alloca i32
2 %b = alloca i32
3 %add1 = add nsw i32 7, 6
4 store i32 %add1 , ptr %a
5 store i32 %add1 , ptr %b
6

(b) After

Listing 2.4: Example of the common subexpression elimination

2.3 Back End

The back end is the last part of the compiler. It is responsible for producing
the result of the compilation – the target code. As an input, it takes an IR
produced by the previous parts. Mainly, the last part can be divided into two
big blocks:

• Instruction Selection : IR program should be translated into the
target code. To do so, for each instruction (or sequence of them) compiler
should find the set of machine code instructions, with the same semantics.

• Register Allocation and Assignment : While the Instruction Selec-
tion translates an IR program into a machine code, it makes it with the
assumption, that it has an unlimited number of registers. Physical ma-
chines are limited by the universe and cannot have infinite registers. The
register allocator decided, which registers should be in work and which
should be spilled into the MM.

Back-End

ParserIR Type Checker Target
Code

Target Code
with virt.
registers

Figure 2.3: Structure of the Back End

2.3.1 Instruction Selection
After the creation and optimization of an IR code, it needs to be translated
into a target code, which will be executed on a machine. This task requires
creating a mapping from an IR instruction into a target language. Implemen-
tation of it is not a trivial task, because not all IR instructions can be mapped
one-to-one with target instruction. Also, it could be that different sets of tar-
get instructions have the same behavior and correspond to one IR line(Figure
later).
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The instruction selection problem can be considered as a pattern-matching
problem, since each pattern of IR instructions will correspond to a target code
with the same semantics. The procedure of selection can be divided into two
subproblems[7]:

• pattern matching – find all possible blocks of a target code with the
same semantics, as the input IR code.

• patern selection – choose the most optimal block from others.

To solve it, there are various of different approaches. The most straightfor-
ward way: each IR instruction has a pre-defined target code. It is very easy to
implement, but it will create a lot of redundant loads and store instructions.
Another way is to use advantage, that instruction selection defined as a match-
ing problem, and try to solve it in this way. Formalizing these two methods,
two main approaches were created:

• macro expansion – selector takes the IR code and list of pre-defined
skeletons of the target code and compares them until they match.

• covering (tree, DAG or graph ) – selector covers IR code with pat-
terns with different shapes, trying to find the optimal one.

2.3.1.1 Macro Expansion

Due to its straightforward nature, this method was the first one, which was
used. Even nowadays some compilers, such as GCC, still use this approach,
but combined with powerful heuristics.

The macro expansion deals with instruction selection as a separate problem:
it goes through all IR instructions and matches each with an already pre-
defined set of macros. Whenever it finds a match – it uses matched target code
(macros). Therefore it is a greedy algorithm – it produces solutions locally and
does not see the whole picture. Such an approach makes generation fast and
easy to implement.

However, making it in such a way will cause a lot of problems. While
a greedy algorithm finds a solution locally, globally it might be not optimal
at all, and the general quality of the code will be low. It will produce a lot
of redundant loads and store instructions and will be inefficient. Such issues
could be solved by additional optimizations. Or, to avoid them at all, another
approach could be used.

2.3.1.2 Graph Covering

Assuming, that IR code can be represented as a graph, the graph covering
method can be used. The idea of this method is to ”cover” a graph with
patterns, such that every node is under exactly one pattern. For that, the
compiler is required to have a built-in set of patterns, which will cover the
graph. Not hard to see, that macro expansion can be viewed as a special
case of the covering – all patterns is a one node size and each node translated
separately.

Also, covering processes might be simpler for a certain types of graphs. One
such case - the tree. Thanks to the shape, each node has exactly one parent,
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which omits potential overlaps. In addition, it will be much easier to process
it, due to the possibility of using dynamic programming to traverse the graph
and covering with the local-optimal solutions.

2.3.2 Register Allocation and Assignment
During instruction selection, registers were out of scope. Assignments, store,
and load operations were executed above abstract registers. An approach not
to do anything and keep everything in a MM, loading before each operation
and storing it back after, could be used. However, it would significantly affect
the speed of a program since such operations are very costly[4]. Therefore,
registers must be used. They are the fastest computational units. But the
number of registers is limited and not all values can be stored in them. So,
correct and efficient usage of them is an important task.

To simplify the task, it can be subdivided into two problems:

• Register allocation – find out, which variables temporarily will be
stored in registers.

• Register assignment – which register will be used for a variable at the
exact time.

Unfortunately, the optimal solution for this task is classified as a NP-
problem and cannot be solved in a reasonable time[4]. Therefore, all solutions,
that are going to be described lately, are heuristic methods, which create rea-
sonable solutions in a reasonable time.

2.3.2.1 Linear Scan Register Allocation

Linear scan register allocation is a linear algorithm, that greedily allocates
registers. It uses a liveness analysis[8], computing the live interval for each
register and computing the local optimal solution for such intervals[9]. Such
an algorithm works very fast, in linear time, not requiring a lot of pre-work to
be done. Price for it is the less optimal solution, than other approaches.

2.3.2.2 Register Allocation by Graph Coloring

Another way to solve this problem is to rephrase it to another one: each virtual
register is a node and they somehow need to be painted into a limited number
of colours[10, 11]. Because K graph coloring is a NP-problem, an optimal
solution cannot be created at an appropriate time. Therefore, the algorithm
for it is based on various of different heuristics. For them to work correctly,
different preparations and pre-analyses are required. One such is a liveness
analysis[8], which collects information about each register life span.

2.4 Existing Compilers

In terms of studying compiler construction, it’s appropriate to talk about exist-
ing modern compilers. There are plenty of them, for different languages and for
different machines. The two main compilers, that would be worth talking, are
the GCC (C Compiler) , and the LLVM. These two compilers have a modular
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construction [12, 13], which makes it easier to study each stage of it, because
of their independence.

2.4.1 GCC
The GCC (GNU Compiler Collection) is a suite of compilers for various pro-
gramming languages, primarily C, C++, and Fortran. It is has been developed
in 1987 as a free compiler under the public[14]. GCC compiler is one of the most
widely used compiler toolchains in the world, known for its high performance
and extensive optimization capabilities.

IR

For better optimization, the GCC compiler uses several different IR, and exe-
cutes different optimizations on a different representation, that is better suited
for it. In total, GCC uses three IR:

• GENERIC, which plays a role as a high-level representation for a front-
end. It is a tree-based IR and has the same form, as the AST of the
source language.

• GIMPLE is created from a GENERIC tree. It serves as a true internal
language, being in the middle between the front end and back end. Most
of the optimization is applied to this representation, due to its flat nature.
Generates the RTL after itself for a back end.

• RTL serves as a low-level representation. It represents the program in
terms of register-level operations and is closer to the machine language
level compared to others IRs.

Back End

The back end of the GCC, as has been stated before, uses RTL. Before it is
converted into a machine code, the compiler runs its final operations to make
the output better. After the RTL generation from the GIMPLE, the compiler
performs the last optimizations, such as common sub-expression elimination,
peephole optimization, tail call elimination, etc. Next, it starts allocation reg-
isters. RTL originally uses unlimited virtual registers, which cannot be repre-
sented on a virtual machine. In the end, it changes the RTL instruction with
the target machine one and outputs the final result into a binary file, which
can be executed later.

2.4.2 LLVM
The LLVM (Low-Level Virtual Machine) is a compiler infrastructure project
designed for the optimization and compilation of the programming languages.
Originally developed at the Unniversity of Illinois, LLVM has evolved into a
into a comprehensive system that includes various components.

Such components is a key feature of LLVM. it has a modular design, which
allows developers to easily add support for new programming languages and
target architectures. It’s widely used in both academia and industry, serving
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as the foundation for various programming language implementations (such as
Swift, Rust, GoLang, etc.) and tools (compiler frameworks, static analyzers,
etc.).

IR

LLVM IR is designed to be platform-independent and expresses code in a form
that’s close to machine code but still retains some high-level language con-
structs. It is a very powerful tool and one of the biggest advantages of the
compiler – it represents the semantics of the source program in a way that’s
easy for optimization and code generation passes to manipulate.

1 define i32 @main () #0 {
2 %a = alloca i32
3 %b = alloca i32
4 %c = alloca i32
5 %a.val = load i32 , ptr %a
6 %b.val = load i32 , ptr %b
7 %add = add i32 %a.val , %b.val
8 store i32 %add , ptr %c
9 %c.val = load i32 , ptr %c

10 ret i32 %c.val
11 }

Listing 2.5: Program written on LLVM IR

It has a flat representation in a SSA form, which gives plenty of room for
various optimization and analyses to produce a better output. It applies such
algorithms as loop optimizations, function inlinings, strength reductions, dead
code eliminations, and many others.

Back End

Just like GCC, LLVM also has several layers of IR. The lowest one is a LLVM
bitcode, which is a target-independent machine code representation. LLVM
bitcode is a portable binary format that represents the program’s semantics
and control flow in a platform-independent manner. This bitcode is then used
as input to the target-specific code generation phase, where it creates a machine
code for a specific target architecture.
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Chapter 3
Compiling Pragramming Languages

Programming languages are formal languages designed to communicate instruc-
tions to a computer. They provide a means for humans to write code that
computers can understand and execute. Each programming language comes
with its own syntax, semantics, and set of rules, which govern how instructions
are written and interpreted. These languages serve as a bridge between human
thought processes and machine operations, allowing programmers to develop
software and algorithms to solve various problems.

Front-EndInput
code Middle-End Back-EndIR IR Target

code

Figure 3.1: Programming language as the input on the scheme

The evolution of programming languages has been influenced by factors such
as technological advancements, user requirements, and programming paradigms.
As a result, new languages continue to emerge, each aiming to address specific
needs or improve upon existing languages. Moreover, programming languages
play a crucial role in shaping the way software is developed, maintained, and
scaled in various domains, including web development, artificial intelligence,
and scientific computing.

One fundamental aspect of programming languages is their ability to ex-
press algorithms and manipulate data structures. This capability enables pro-
grammers to create complex software systems ranging from simple scripts to
large-scale applications. Additionally, programming languages can be classified
into different paradigms, such as imperative, functional, and object-oriented,
each offering unique approaches to solving computational problems. Another
way to classify languages is by how they are translated. One such class is lan-
guages, processed by the compiler. This class of languages is called compiled
programming languages.

Compiled programming languages are those where the programming lan-
guage is translated into instructions before execution. This translation typically
made using a compiler, which converts a source language, into a machine code
that the computer’s processor can directly understand and execute.

One of the primary advantages of compiled languages is their efficiency, as
the compiled code usually runs faster than interpreted code since it’s already
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translated into machine language. Examples of compiled languages include C,
C++, and Rust, which are known for their performance and versatility. Despite
the initial overhead of compilation, compiled languages are favored for system-
level programming, high-performance computing, and applications where speed
is crucial. Another key benefit of compiled languages is their ability to produce
executable files, which can be run on any compatible system without requiring
the source code or an interpreter. Additionally, compiled languages often offer
strong static typing and compile-time error checking, which can help catch bugs
early in the development process and improve code robustness. Also, compiling
languages

3.1 C

The C programming language stands as one of the most foundational and
enduring languages in the realm of computer science and software engineering.
Developed by Dennis Ritchie at Bell Labs in the early 1970s, C was born out
of a necessity to create a flexible and efficient tool for system programming. Its
design principles emphasize portability, efficiency, and a clear, concise syntax,
making it a versatile choice for a wide range of applications, from operating
systems to embedded systems and everything in between.

1 int arr [100];
2 ...
3 for (int i = 0; i < 100; ++i)
4 for (int j = 0; j < 99; ++j)
5 if (arr[j + 1] < arr[j]){
6 int tmp = arr[j + 1];
7 arr[j + 1] = arr[j];
8 arr[j] = tmp;
9 }

Listing 3.1: Example of the program written on C

At its core, C is a structured, procedural language, meaning that it follows
a logical flow of control through functions and code blocks. It eschews the more
abstract and complex features found in later languages in favor of simplicity
and directness. This simplicity, however, belies its power; C provides low-level
access to memory through pointers, enabling developers to manipulate data
and resources at a granular level, a capability crucial for tasks like memory
management and hardware interaction.

One of the defining characteristics of C is its close relationship with the
underlying hardware of a computer system. Unlike higher-level languages that
abstract away many details of the machine, C offers a level of control that al-
lows programmers to optimize their code for performance and efficiency. This
closeness to the hardware, coupled with its minimalistic syntax and powerful
features, has made C the language of choice for building many of the founda-
tional components of modern computing, including operating systems, compil-
ers, and device drivers.

Meanwhile, it is a key feature of the language, but it is also a big disad-
vantage of it. Being a low-level, C does not have much pre-build functionality.
Lack of abstraction in many operations requires for programmer to manually
control them, while a compiler could easily handle it. For example, in doing
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concurrent programming in C programmer must do everything by himself, us-
ing POSIX library pthreads, where each move must be done by the programmer
manually.

3.2 GoLang

Go, often referred to as Golang, is a statically typed, compiled programming
language designed by Google. It is influenced by languages like C and Pascal
but aims to provide a simpler and more efficient way to build software, es-
pecially for large-scale systems. It was developed as an addition to C/C++,
improving the weak sides of these languages, which Google found critical for
itself.

1 var arr [8] int = {1, 4, 6, 9, 11, 12, 17, 22}
2 var l, r, resutl = 0, 7, -1
3 for ; r > l ; {
4 m := (l+r) / 2
5 if arr[m] == n {
6 result = m
7 break
8 }
9

10 if arr[m] > m {
11 r--
12 } else {
13 l++
14 }
15 }

Listing 3.2: Example of the program written on Go

The philosophy behind the GoLang revolves around simplicity and effi-
ciency. For simplicity, Go has a very minimalistic and intuitive syntax, making
it easy to understand programs written on it and to learn it. The language
avoids unnecessary complexity and features, that could lead to ambiguity or
confusion. Efficiency of the Go is manifested in its high level. Being a not
true OOP language, it still supports it and allows programmers to avoid the
reinvention of the wheel.

Even Go was inspired by C, the only thing it got from it is syntax. These
two languages look very familiar when they are written side by side ??. It
allows programmers in C/C++ to easily understand programs written in Go
and to learn it. On the other hand, Go is a high-level programming language
with all the ensuing consequences.

The main feature of the language is concurrent programming. The whole
language was built around the idea of making use of multi-threading program-
ming as easy as possible. To call a gorutine, a thread in Go, the programmer
just needs to write a keyword go before the function call. For communica-
tion between gorutines, channels is used. It is a mechanism to synchronize
thread execution. It provides a way for one goroutine to send data to another
goroutine in a safe way.

21



3. Compiling Pragramming Languages

3.3 Comparison of the C and GoLang

GoLang was created with an eye to C and looks very familiar. However, it is
a different language and even if it looks the same, it has a lot of differences,
which makes them not as similar as it may seem at first glance.

3.3.1 Syntax
These two langauges have a very similar syntax. This was done specifically, to
facilitate learning a GoLang for people, who already knew how to program on
C/C++. However, these are still two different languages, created in a different
time.

3.3.1.1 Basic Grammar

The most basic statements, such as for loop and if -else branching, are almost
identical. In both languages, for loops consist of 4 main parts: init-expression,
usually containing the declaration of the iterated variable, condition expression,
lopp-expression, and the body. The first real differences can be noticed in the
variable declaration. In Go, each variable declaration (Listing A.2) starts with
the keyword var (Listing 4.2a). Also, if the user provides an initial value for a
variable, the specification of a type can be omitted. In that case, the variable
will take the type of value, which is assigned to it. At the same time, in C
variable declaration starts with its type (Listing 4.2b) and it cannot be omitted,
even if an initial value is provided.

1 // value of a is 0
2 var a int
3
4 var b = 1.2

(a) GoLang

1 // value of a is unknown
2 int a;
3
4 float b = 1.2;
5

(b) C

Listing 3.3: Example of the variable declarations in languages

Another noticeable difference is a semicolon. While C requires them after
each statement, in Go they are optional: a new line plays the role of a separator.
But if multiple statements have to be written in one line – semicolon should
be put between them.

3.3.1.2 Functions and Methods

Another major difference is in methods and functions. In C++ 2 and in the Go,
functions can be declared only on the top-level and it is not possible to create
them inside another function 3. Functions in a C++ start with the type, which
it returns. After it is followed by the name of the function. Next, arguments of
the function are declared in brackets (Listing 3.4b). At the same time, GoLang

2Because in C there are no methods, in this comparison, we will use C++, which is an
extension of the C language

3We do not count lambda functions in this context
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has a slightly different order of function signature. It starts with the keyword
func and is followed by the name of it. The return type is declared at the end,
right before the body of the function. Also, it is possible not to specify the
type for each argument and group them up (Listing 5.3a,A.3).

Methods in both languages are also slightly different. The main distinction
is in the place, where methods are declared. In Go, methods are the same,
as regular functions – they are declared on the top level. The distinguishing
feature of the method is a special signature right before the name. In the
brackets programmer specifies the inner name of the structure, which will be
used inside the method to refer members of it, and for which type the method
provides new behavior. Such type can be either the structure itself, or a pointer
to it (Listing 5.3a). In C++, methods are located inside the structure, for which
it creates a new behavior. In that case, no additional signatures are needed
and methods look identical to the functions (Listing ??).

1 // function
2 func sum(a,b int) int {
3 return a + b
4 }
5
6 // structure with methods
7 type student struct {
8 age , grade int
9 }

10
11 func (stud * student ) setAge (

new_age int){
12 stud.age = new_age
13 }
14
15 func (stud student ) getAge ()

int {
16 return stud.age
17 }

(a) GoLang

1 // function
2 int sum(int a, int b){
3 return a + b;
4 }
5
6 // structure with methods
7 struct student {
8 int age , grade;
9

10 void setAge (int new_age ){
11 age = new_age ;
12 }
13
14 int getAge (int new_age ){
15 return age;
16 }
17 }
18

(b) C

Listing 3.4: Example of functions and methods in languages

In addition, Go allows to return of multiple values from a function (Listing
3.5). To do it, instead of providing a function with just one return type, the
programmer must write multiple types in brackets. In that case, the function
will be able to provide a value for multiple variables on the left side of the
assignment. However, the return type is not a tuple – such functions cannot
be assigned to a single variable or being used in an expression. The only way
to use it is in a direct assignment, where a number of variables on the left side
is the same, as the number of return values.

1 func f() (int ,int ,int){
2 return 1,2,3
3 }
4 ...
5 var a,b,c = f()
6
7 // ERROR . Not allowed
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8 var d = f()

Listing 3.5: Example of multiple return values

3.3.2 Static Typing
Typing in programming languages refers to the system used to define and en-
force the data types of variables and expressions within the language. It de-
termines how the programming language treats different types of data, such as
integers, strings, floating-point numbers, etc. Primarily, there are two types of
typing systems: dynamic and static.

In dynamically-typed languages, variables are not explicitly declared with
a data type. Instead, the type of a variable is determined at runtime based on
the value assigned to it. Dynamic typing allows for more flexibility but can also
lead to errors if types are not handled carefully. Examples of dynamically-typed
languages include Python, JavaScript, and Ruby.

A statically typed language is one in which variable types are explicitly
declared at compile time and checked for consistency before the program is
executed. This means that you must declare the data type of each variable
when you define it, and once defined, the variable cannot change its data type.

GoLang and C are both classified as statically typed. In both languages,
type checking typically occurs during the compilation phase, where the com-
piler analyzes the code to ensure that operations are performed only on vari-
ables of compatible types. This helps catch many potential errors before the
program is run, reducing the likelihood of type-related bugs.

3.3.3 Concurrency
Concurrent programming is a paradigm in computer science that deals with the
execution of multiple tasks (or processes) at the same time. Unlike sequential
programming, where tasks are executed one after the other, concurrent pro-
gramming allows tasks to overlap in time, potentially running simultaneously.

Both languages support it. GoLang has built-in tools for it, such as gor-
outines, lightweight threads, channels, and synchronization primitives like mu-
texes and wait groups. This makes it easier for developers to write concurrent
programs without dealing with low-level details. At the same time, C does not
have such things. For concurrency, it uses a POSIX library pthreads, which
deals with threads on the low level, where the programmer controls everything
by himself, giving room for errors and memory leaks.

3.3.4 Memory Management
Memory management in C and Go presents a contrast reflecting their respective
language design philosophies. C, being a low-level language, demands manual
memory management, where everything is controlled by a programmer and
he is responsible for making everything safe. It gives control over memory
allocation and deallocation but increases the risk of memory-related bugs. On
the other hand, GoLang, being a high-level language, manages the memory
automatically. It decides on its own, whether variables can be allocated on a
stack, or should be placed in a heap. Also, it contains a garbage collector in
its compiler, to handle memory deallocation seamlessly.
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3.3.5 Error Handling

Error handling is a critical aspect of programming languages, allowing develop-
ers to manage unexpected situations that may occur during program execution.
Different programming languages offer various mechanisms for handling errors.
Here are some common approaches:

• Exceptions : When an error occurs, an exception is raised, and the
program looks for an exception handler to catch and deal with it. This
mechanism separates the error-handling logic from the regular code flow,
making the code cleaner and more manageable.

• Return Values : Particularly popular around functional languages.
Functions return either a result or an error code, and the caller must
check the return value to determine if an error occurred.

• Error Codes : Functions return a special value (typically -1 or NULL)
to indicate an error condition, and the caller must check this value and
handle the error accordingly.

In C programming, error handling is commonly done using error codes
and return values. In the first case, there are global variables. If during the
function execution error appears, such a variable is set to an error value. After
the function, the caller checks if any error occurs and behaves on the value of a
variable. In the second case, the function may return specific values to indicate
error conditions (Listing 3.6b).

By the guideline, in Go, programmers should handle errors using return
values. It is not hard, especially using the Go feature, which allows to return
of multiple values at the same time (Listing 3.5). Any function along with
a result, if it exists, returns a special variable of a type error, which can be
checked after the call of the function (Listing 3.6a).

1 func div(a,b int) (int ,error){
2 if b == 0 {
3 return 0, errors .New("div

by zero")
4 }
5 return a / b, nil
6 }
7 ...
8 result , err := divide (a,b)
9 if err != nil{

10 ...
11 }

(a) GoLang

1 //0-OK , 1- division by 0..
2 int error = 0;
3
4 int div1(int a, int b){
5 if (b == 0){
6 error = 1;
7 return 0;
8 }
9 return a / b;

10 }
11 int div2(int a,int b,int* res)

{
12 if (b == 0)
13 return -1; // ERROR.
14 *res = a / b;
15 return 0; // SUCCESS
16 }
17

(b) C

Listing 3.6: Error handling in languages
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3.3.6 Top-level Declarations

As stands on the official GoLang webpage language specification[15]:

The scope of an identifier denoting a constant, type, variable, or
function (but not method) declared at top level (outside any func-
tion) is the package block.

This means, that all variables, types, constants, and functions, declared on
the top level (globally) are declared for the scope of the whole file and can be
accessed anywhere, even before its place of the declaration in the file (Listing
3.7).

However, it creates a problem of loop dependencies, where one variable
might depend on another, which depends on the first one. Language compiler
can detect it and programs with such a problem will not compile.

1 ...
2 // OK
3 int a = b
4 int b = 12
5
6 // ERROR
7 int c = d
8 int d = c
9 ...

Listing 3.7: Example of GoLang top level declarations

3.3.7 Object-Oriented Programming

3.3.7.1 Polymorphism

Polymorphism refers to the ability of different types to be treated as the same
type in certain contexts. This allows code to be written in a more generic way,
where different types can be used interchangeably as long as they adhere to a
common interface.

C++ and GoLang have radically different approaches to achive the poly-
morphism4. C++ achive it through the function overriding (Listing 3.8b). This
occurs when a derived class provides a specific implementation of a method that
is already defined in its base class. The function in the derived class ”overrides”
the function in the base class.

In Go polymorphism is achived through interfaces. In such case, different
types can be treated as the same interface type, allowing for code flexibility
and reuse (Listing 3.8a). An interface defines a set of methods, and any type
that implements those methods satisfies the interface implicitly. This allows
different types to be treated uniformly if they fulfill the requirements of the
interface.

4C does not support OOP. Because of that, comparison is going to be with a C++, which
is a C language with an extra features and extensions
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1 type human interface {
2 getAgeStatus () string
3 }
4
5 type student struct {
6 }
7 type teacher struct {
8 }
9

10 func (s student ) getAge ()
string {

11 return "Young"
12 }
13
14 func (t techer ) getAge ()

string {
15 return "Old"
16 }

(a) GoLang

1 struct human {
2 virtual string getAge ();
3 }
4
5 struct student : human{
6 string getAge (){
7 return "Young";
8 }
9 }

10
11 struct teacher : human{
12 string getAge (){
13 return "Old";
14 }
15 }
16

(b) C

Listing 3.8: Example of the polymorphism in languages

3.3.7.2 Inheritance

C is not an OOP language and in this scope, GoLang is much ahead. However,
both languages do not support inheritance in the full sense of this word. In C
it is only possible to have an ”inherent” structure as a member (Listing 3.9b).
In Go, such a thing is called composition. It allows not to specify the name to
an ”inherent” member. But the use of it will still require access through the
name of the type (student.human.age (Listing 3.9a)).

1 type human struct {
2 age int
3 }
4
5 type student struct {
6 human
7 grade int
8 }

(a) GoLang

1 typedef struct {
2 int age;
3 } human;
4
5 typedef struct {
6 human human;
7 int grade;
8 } student ;
9

(b) C++

Listing 3.9: Example of the member inheritance in languages
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Chapter 4
Design And Implementation

This chapter first will talk about the TinyGo and its specifications: how it
looks like and the differences with a GoLang. Then, we will discuss the com-
piler creation: its design, what choices have been made, and how they are
implemented.

4.1 TinyGo

TinyGo was created for an educational purpose to study the compiler construc-
tion. Modern high-level languages are overwhelmed with various of different
features and syntactic sugars, that might be not too important in terms of
studying code generation. TinyGo solves it, preserving the most important
design principles behind Go and, at the same time, omitting not-so-valuable
features.

1 func fib(n int) int {
2 if n < 1 {
3 return -1
4 }
5 if n == 1 || n == 2 {
6 return n
7 }
8 var a = fib(n - 1)
9 var b = fib(n - 2)

10 return a + b
11 }

Listing 4.1: Function written on a TinyGo, that computes the nth fibonacci
number

4.1.1 TinyGo Specifications
To preserve a TinyGo to be a subset of the Go and not just a similar language, it
was very important to save the main design principles of the GoLang (4.1.2.1).
One such principle is simplicity. This is expressed in the grammar of the
language. TinyGo fully repeats the syntax of the original language and utilizes
the same grammar. The grammar of the TinyGo is included in appendix B.

Alongside simplicity, another major principle is efficiency. TinyGo preserves
it as much as possible, giving the program a variety of supported syntactic
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sugars and high-level language features, such as OOP features. Unfortunately,
the time is limited and it was not possible to implement everything. Some
aspects of the language have been removed, even the crucial ones, such as
concurrent programming.

4.1.2 Omitted features
TinyGo was created for educational purposes to study languages and compiler
creation. Original GoLang is a big language, created over the years by many
people. It has a huge amount of different features, created through time. Al-
though a lot of them are useful, not all of them are too important in the case
of studying compiler construction.

Some of such features are just syntactic sugars and do not mean a lot. Some
of them might be important, but the time it would cost to implement them
does not correspond to the value they will bring. List of them is presented
below.

4.1.2.1 Concurrent programming

It is a big and important part of a GoLang (Section ). But this feature depends
mostly on the target machine rather than on the compiler. Unfortunately, Tiny
x86 does not support multi-threading and it is not possible to make it work.

4.1.2.2 Interfaces

Interfaces is a special mechanism, that allows classes to hide implementation
and internal fields, leaving only relevant information to the outside world (Sec-
tion 3.3.7.1). Such feature is an important part of any Object-Oriented lan-
guage, such as GoLang. But it is very hard to make the compiler support it.
It would require an enormous amount of time to make it. Because of the lack
of time and complexity of it, TinyGo does not support interfaces.

4.1.2.3 Generic programming

Generic programming is a programming paradigm, which allows to write code
without specifying the type of the variables and leaving it for a compiler to
deal with. Addition of the generics into the language would not change the
compiler substantially. It would be nullified on the stage of IR by the front
end. But it would take a lot of time implementing it, not just changing the
parser, but adding the block to generate a new code for genetic functions.
Therefore, generics is not supported by the compiler.

4.1.2.4 Garbage collector

It is a memory management unit. It reclaims memory, that has been allocated
by the program and is no longer referenced by any pointer or value in a program.
Such a feature is a key one in languages without a manual memory control
because it makes sure, that all memory allocated by a user is going to be cleared
and the user does not need to think about it. Implementation of such a feature
is too complicated and would require to creation of whole new units, which
must to taken care of. This thesis focuses on the basic compiler construction
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and due to its nature, does not go into the most deep insides of the code
generation. Also because of the lack of time, the garbage collector does not
implemented in the compiler.

4.2 Design

The 2 chapters have provided all necessary information, to make a compiler
design. In this section, we will talk that the design solution being used to
create a compiler and why. To ensure the modularity of the compiler, just like
in modern ones, all parts were designed separately and do not depend on each
other.

4.2.1 Front-End

4.2.1.1 Lexer And Parser

The first two blocks of the compiler are merged and working together. This
was done in order not to store the result of the lexer in the memory. Working
simultaneously, the lexer generates a new token only if it is asked by the parser.
Such a design allows a decrease in the memory and time complexity and creates
an AST right after reading the input, skipping part of generating the sequence
of tokens.

Lexer block works only with the file. After receiving the signal, it greedily
starts reading the character stream from the file, until it will not form a token.
Next, it returns it to a caller. Meanwhile, the parser does the more global task,
parsing the language grammar with the tokens. With getting new tokens,
the parser matches them with grammar, expanding the rules or doing the
comparison operation.

With the expansion, the parser creates a new node for an AST. It is a child
of the node, in which rule the expansion happened and it’s an optional child
going to be any expansions made from the current rule.

4.2.1.2 Type Checker

In the AST, the type checker recursively visits and verifies the correctness of
the built tree. It starts from the root of the tree and traverses all of its children.
It also has its own space for internal information, called IRContext. This space
has all the information on the current situation, while it passes over the AST.
It stores the declared variables, named types, return type, loops stats, etc.

For the program level (in the root node), the checker runs twice for each
declaration. It is not possible without it, because the top-level declarations in
the TinyGo work without the order (Section ) and to process them, we must
sort. On the first run, it collects information about the declarations and their
dependencies. For the type, dependence is a custom type, which is allocated
inside. It is not possible to allocate size for the type, without knowing the
precise size of its member (obviously, this does not apply to a pointer type).
For the global variables, dependence is a variable, that stands in the r-value.
It would not be possible to determine the value if some of them would form a
cycle.
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After the information is gained, it is sorted. It uses an algorithm of a topo-
logical sort (Listing 4.2). If any variable/type does not depend on anything,
it can be declared and should be removed from the right side of other vari-
ables/types. This continues until all variables/types are declared or there are
no more items, that have no dependencies. The second case means, that there
is a loop declaration and, therefore, such a program terminates and reports the
fail.

1 var a = b + e
2 var b = e
3 var c = 12
4 var d = e * 2
5 var e = c + 17

(a) Original language

1 var c = 12
2 var e = c + 17
3 var d = e * 2
4 var b = e
5 var a = b + e
6

(b) After sorting

Listing 4.2: Topological sort of the variables

Then initial preparation is finished, it can start checking the program. First,
it starts declaring types in the order, issued by the previous step. After types,
variables, and constants are declared. In the end, it starts to declare the
functions and checks the function’s body.

The process of verification of the function’s body is much easier. Every
statement must be executed by order in which it is written and, therefore,
there are no forward declarations and the type checker is fairly straightforward
here. It visits every AST node and checks for its correctness. Usually, it
synthesizes type of the node from its children and then propagates it to be the
child for the rest nodes.

4.2.1.3 IR

From the different possible types of IR listed in the section 2.1.4.1, we have
decided to choose the flat IR. Such a choice was made because it was easier to
optimize. It is going to be crucial, because the instruction selection algorithm,
which is going to be discussed later, was chosen the not optimal, and middle-
end optimizations can save the quality of the result.

1 function %main , arguments : , return : {
2 % a.addr = alloca i32
3 % b.addr = alloca i32
4 %0 = call: scan arguments : % a.addr
5 %1 = call: scan arguments : % b.addr
6 %a = load from: % a.addr
7 %b = load from: % b.addr
8 %sum = binop add first: %a, second : %b
9 %2 = call: print arguments : %sum

10 ret
11 }

Listing 4.3: Program in IR for computing the sum of numbers

A whole IR program is a list of functions and each of them consists of a
list of instructions inside. Each instruction is a 3-address code because all of
them have up to three operands and an argument. The grammar of the IR is
presented in the Appendix B.
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This IR is inspired by the LLVM one and completely copies its structure.
All instructions have their analogs in LLVM IR and are almost identical. This
gives a big advantage to an optimizer. There are already implemented plenty
of different optimization algorithms for such IR and it is possible to reuse them,
without big changes in the input. Also, IR is a low-level, which makes it easier
to implement the back end of the compiler.

4.2.1.4 IR Generation

The IR is low-level and cannot represent all possible features of the source
language. In the process of converting the TinyGo in the intermediate language,
it lowers all such possible features and creates a plaint IR.

1 package main
2
3 func init () (int ,int) {
4 return 1,2
5 }
6
7 func main () {
8 var a,b = init ()
9

10 }

1 function %init; arguments : (’
ptr ’ %1) , return : ’nothing
’ {

2 %3 = alloca ’ptr ’
3 store what: %1 where: %3
4 %6 = load from: %3
5 %7 = get member from: %6;

which: 0
6 %9 = create int constant 1
7 store what: %9 where: %7
8 %11 = get member from: %6;

which: 1
9 %12 = create int constant 2

10 store what: %12 where: %11
11 ret ’nothing ’
12 }
13
14 function %main; arguments : ,

return : {
15 %1 = alloca {i32 , i32}
16 %2 = alloca i32
17 %3 = alloca i32
18 %4 = call %init arguments :

(%1)
19 %5 = get member from: %1;

which: 0
20 %6 = load from: %5
21 store what: %6 where: %5
22 %8 = get member from: %1;

which: 1
23 %9 = load from: %5
24 store what: %9 where: %8
25 ret ’nothing ’
26 }
27

Listing 4.4: Go function which returns more than one variable in IR

The generator goes recursively through the whole tree and performs the
translation. Each node expands to a set of the IR instructions and saves it to
a corresponding function. But IR is flated and
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4.2.2 Middle end
The middle end has been not included in this work. The lack of time prevents
from creating it. However, the TinyGo IR is helping here. It has a similar
structure to one of the most bride used intermediate languages, LLVM IR, and
it is possible to make an optimization from it. The grammar of both languages
is similar and modular construction of the compiler would allow to just put it
in the middle. This fact makes the implementation of the middle end not so
valuable.

4.2.3 Back end
4.2.3.1 Instruction Selection

For the instruction selection, the macro expansion has been used as an algo-
rithm. It has been chosen as the selector, due to the low-level nature of the
TinyGo IR. It is already very near to the target code and generating the target
instructions from an intermediate one is a trivial task. Also, being a low-level,
IR instructions is almost a target instruction, allowing to describe each of it
with the small number of machine ones.

Generation of the instructions is going sequentially, by the same order from
the IR. Each instruction has a pre-defined target code, to which it is translated.
It’s only inserting the register numbers and pointers to a stack in the right place
and outputting the result.

4.2.3.1.1 Calling Convetion For the calling convention, we decided to
make everything through the stack. Before the function is called, it reserves the
place for the return values. After that, it pushes the arguments of the function
to it. With the call, it places the return pointer for the return instruction. Also
with the return pointer, it stores the previous value of the basic pointer, which
will be picked up with the return (Figure 4.1).

Local 1
Local n

high

low

Return
value
Arg 1
Arg n

Return
Addr

Old
BP

Local 1
Local n

...
SP

BP

Figure 4.1: Look of the stack

4.2.3.2 Register Allocation and Assignment

Tiny x86 being the VM, unlike the physical ones, supports the unlimited num-
ber of registers in itself. These features allow for the compiler to not care about
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the spiling of the registers and always carry values in them.
TinyGo compiler uses it and does not implement any register allocation

algorithms and uses all of them. It has a module, that is responsible for giving
registers to the instructions. But right now the work of it is straightforward
– for each new result, that is stored in a register, the allocator gives a new
register, which was not used before, and saves information about it. If other
instructions ask for a value, it will return the already allocated register with
the value in it.
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Chapter 5
Evaluation

After the implementation, we have got a working compiler for a TinyGo lan-
guage. This chapter first will overview the result of the work and what it is
doing. Next, we will compare it to other and already-created TinyC compilers
to see their differences.

5.1 TinyGo Compiler

The main objective of this thesis was to create a working compiler for TinyGo.
Since the TinyGo is a subset of the original Go language, it must support
programs written on it, except for some features (4.1.2). It can be tested on
the basic examples, taken from the official language specifications.

1 package main
2
3 func main () {
4 var a = 0
5 if a == 0
6 print(a)
7 }

(a) Wrong syntax of the if branch

1 package main
2
3 func main () {
4 var a time
5 }
6

(b) Wrong type

1 package main
2
3 func main () {
4 var a int
5 var b = &a
6 if a == b {
7 print (1)
8 }
9 }

(c) Unmatched types

1 package main
2
3 func main () {
4 var a,a int
5 }
6

(d) Creates 2 variables with the same
name

Listing 5.1: Example of the wrong programs
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1 package main
2
3 func main () {
4 var a,b int
5 scan (&a)
6 scan (&b)
7
8 var add , sub , mul , div = a +

b, a - b, a * b, a / b
9

10 print(add)
11 print(sub)
12 print(mul)
13 print(div)
14 }

(a) Basic arithmetics

1 package main
2
3 func main () {
4 var a, b int
5 scan (&a)
6 scan (&b)
7
8 if (a == b){
9 print (1)

10 } else{
11 print (2)
12 }
13 }
14

(b) If/else branching

1 package main
2
3 func main () {
4 var a = 0
5 var b int
6 scan (&b)
7
8 for i := 0; i < b; ++i {
9 a += 2

10 }
11
12 print(a)
13 }

(c) For loops

1 package main
2
3 type student struct {
4 grade ,age int
5 }
6
7 func main () {
8 var a student
9 scan (&a.grade)

10 scan (&a.age)
11 }
12

(d) Structures

1 package main
2
3 func main () {
4 var a int
5 var b *int
6 b = &a
7 scan(b)
8 print(a)
9 }

(e) Pointers

1 package main
2
3 func main () {
4 var a [10] int
5 for i := 0; i < 10; ++i {
6 scan (&a[i])
7 }
8 }
9

(f) Arrays

Listing 5.2: Different programs written to test the compiler
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1 package main
2
3 func fib(n int){
4 if n < 1 {
5 return -1
6 }
7 if n == 1 || n == 2 {
8 return n
9 }

10
11 var a = fib(n - 1)
12 var b = fib(n - 2)
13 return a + b
14 }
15
16 func main () {
17 var a int
18 scan (&a)
19 print(fib(a))
20 }

(a) Functions

1 package main
2
3 type human struct {
4 age int
5 }
6
7 func (h *human) setAge (val int

) {
8 h.age = val
9 }

10
11 func (h human) getDoubleAge ()

int {
12 h.age *= 2
13 return h.age
14 }
15
16 func main () {
17 var a human
18 a. setAge (12)
19 print(a. getDoubleAge ())
20 }
21

(b) Methods

Listing 5.3: Example of using functions and methods

First, the compiler must not tolerate the wrong input and fail it without
finishing the process. TinyGo meets it, failing the programs, that are written
with mistakes, and not compiling them. The parser can detect, if the input
does not meet the grammar of the language and the compiler will fail (Listing
5.1a). Even if the input matches with the grammar, it is not the guarantee
of the correct program. After that, the type checker takes the job and fails
all other problems, such as the unknown type (Listing 5.1b), not comparable
types (Listing 5.1c) or declaration of the two variables with the same names
(Listing 5.1d).

But the compiler should not only fail the wrong input but process the cor-
rect ones. TinyGo compiler also copes with it, accepting the correct inputs,
processing them, and outputting the corresponding programs, written in ma-
chine code. Examples of the correct inputs can be programs, presented in
Listing 5.2. It contains a lot of different programs, which test various of differ-
ent statements and situations. Also, TinyGo is an Object-Oriented language
and, therefore, supports methods (Listing 5.3b).

All of these, and more, tests are located in the same place with the compiler,
in the subdirectory called tests/, and can be executed before its usage, to test
the correctness of the translator.

5.2 Influence of the TinyGo in Compiler

In the first chapter, we were not sure, how the input languages affect the
compiler and its structure. In this chapter, we can evaluate the influence of
the source language on the compiler and which parts depend on it. We will
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discuss, how much the source language affects different parts of the compiler
and will compare it to others.

5.2.1 Front end
The part, that accepts and processes the input should be affected by it. Most
compilers have the same steps to accepting the language. The only thing that
changes is an implementation. Different languages have different grammars
and rules. The parser goes through the language grammar and an AST is a
language representation in the form of the tree. But all of them are done by
the same structure, accepting the tokens, expanding the rules, and creating
the tree representation of it. At the end of the part, the front end generates
the program in a new language, which does not connect to the source one, and
passes it to the next part.

5.2.2 Middle end
After the language is lowered to the IR, it loses information about itself. The
IR has the same behavior, but it had nothing to do with the original input,
because it already fully translated to another, absolutely different language.
The middle end analyzes and optimizes such representation. Therefore, because
the IR does not connect to the original language, the middle end also does not
depend on it.

5.2.3 Back end
By analogy with the middle end, the back end also is not influenced by the
source language. It accepts the IR code and translates it to the target. Because
it takes as the input only the middle representation, which does not connect
to the input, this part also does not depend on the programming language.

5.2.4 Other Compilers
The degree of influence can be not only analyzed but also compared to already
existing solutions. We can try to find the similar by their nature compiler with
the different source languages and compare their structure to this one.

We will look to the very similar compilers, that have been written by other
students as their master theses [16, 17]. They have the same nature, being the
educational projects, processing the languages, that were created also to be an
educational stand for studying the compiler construction.

In both works, the authors describe the same components, as have been
mentioned in this work. Moreover, both compilers have the same structure,
as a TinyGo one. The only difference is in the implementation of the front
end. For different languages, different parsers and checkers are needed. But
after that, compilers utilize the same structure and have the same components.
Having the different IRs does not change the whole picture, they process them
identically. Also, theoretically, all IRs can be converted to the one, which will
make them identical.

This finding corresponds with the previous sections – the source language
does not affect the compiler construction much. All compilers have the same
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structure and translate the code in the same way. They require different im-
plementations of the parser, to process the different rules, but all of them have
the same stages and do the same steps.
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Conclusion

In this thesis, we have designed a TinyGo language – a simplified version of
the GoLang. Go as any language has its important design principles. TinyGo
mostly preserves them, being the true sub-set language of the original one and
at the same time omitting other things, being a not overwhelmed language,
that is a good fit for studying the compiler creation.

Also, we have overviewed the most popular design solutions during the
compiler creation and designed a compiler for TinyGo. The compiler is com-
posed only of two main parts (front end and back end). The modularity and
simplicity made it a great tool for an education purpose.

Comparison with the other compilers has shown, that source language does
not significantly affect the modular compilers. With the modular design, the
only part that depends on the input language is the front end. After that,
it lowers the program into an IR, where the features of the original language
are not presented and divided into a set of simpler instructions with the same
behavior. Although different compilers have different IR, all of such represen-
tations have the same nature to be a middle language in the compiler and do
not depend on the input. All other parts, such as the middle and back end,
depend only on IR, meaning they are not affected by the source language.

Future Work

The creation of the compiler is a substantial problem. Despite the fact, that
the TinyGo compiler is done, there are plenty of different places available for
improvements and updates in the future.

The first place for updates is the front end. TinyGo does not support a lot
of different things for an original language. To make a language support new
features, an extension of the front-end is required, as the module, processes the
language and converts it for the rest of the compiler. The possible extensions
of it are with interfaces, generic programming, etc.

The middle end currently does not exist at all. Plenty of optimizations have
been described and that exists. They are all can be applied. And thanks to
modularity, the addition of them would not cause any significant code changes.
The list of possible optimizations has been described in the second chapter 2.2.

The last place for potential improvements is the back end. We have de-
scribed different algorithms during the code generation. TinyGo utilizes the
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not optimal ones and it can be changed with the better ones. Another ap-
proach to the back-end improvements is expansion. Now, it supports only the
Tiny x86 architecture. In the future, it can be converted into a list of different
machine codes, making the compiler more cross-platform.
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Acronyms

AST Abstract Syntax Tree.

BIE-PJP Parsers and Compilers.

CLI Command Line Input.

CTU Czech Technical University in Prague.

DAG Directed acyclic graph.

IR Intermediate Represintation.

ISA Instruction Set Architecture.

MM Main Memmory.

NIE-GEN Compiler Constrcution.

OOP Object-Oriented Programming.

SSA Single Static Assignment.

VM Virtual Machine.
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Appendix A
TinyGo Grammar

A.1 Notation

1 [] - option (0 or 1 time)
2 {} - repetition (0 to n times)
3 () - grouping
4 | - alternation
5 identifier with capital letters -- non terminal symbol
6 "..." - terminal symbols inside quotation marks

A.2 Program

1 SOURCEFILE := PACKAGE ";" { ( DECLARATION | FUNCTION ) ";" }
2 PACKAGE := " package " IDENTIFIER

Listing A.1: Grammar of the program

A.3 Declarations

1 DECLARATION := CONSTDECL | TYPEDECL | VARDECL
2
3 CONSTDECL := "const" ( CONSTPRIME | "(" { CONSTPRIME ";"} ")" )
4 CONSTPRIME := IDENTIFIER_LIST [TYPE] "=" EXPR_LIST
5
6 TYPEDECL := "type" ( TYPEPRIME | "(" { TYPEPRIME ";"} ")")
7 TYPEPRIME := IDENTIFIER ["="] TypeOfAssign
8
9 VARDECL := "var" ( VARPRIME | "(" { VARPRIME ";"} ")")

10 VARPRIME := IDENTIFIER_LIST ( (TYPE [ "=" EXPR_LIST ]) | "="
EXPR_LIST )

11
12 SHORT_DECL := IDENTIFIER_LIST ":=" EXPR_LIST

Listing A.2: Grammar of declarations

A.4 Functions and methods
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1 FUNCTION := "func" [ METHOD_SIGNATURE ] IDENTIFIER SIGNATURE BLOCK
2
3 METHOD_SIGNATURE := "(" IDENTIFIER TYPE ")"
4 SIGNATURE := PARAMETERS [ RESULT ]
5 PARAMETERS := "(" [ PARAMETER_LIST ] ")"
6 PARAMETER_LIST := PARAMDECL {"," PARAMDECL }
7 PARAMDECL := IDENTIFIER_LIST TYPE
8 RESULT := PARAMETERS | TYPE

Listing A.3: Grammar of the function (method) declaration

A.5 Types

1 TYPE := TYPE_NAME | TYPE_LIT | "(" TYPE ")"
2 TYPE_NAME := IDENTIFIER
3 TYPE_LIT := BASE_TYPES | STRUCT_TYPE | POINTER_TYPE
4 BASE_TYPES := "int8" | "int32" | "int" | "int64" | "float"
5
6 STRUCT_TYPE := " struct " "{" { FIELD_OF_STRUCT ";"} "}"
7 FIELD_OF_STRUCT := IDENTIFIER_LIST TYPE
8
9 POINTER_TYPE := "*" TYPE

Listing A.4: Grammar of types

A.6 Numbers and Identifier

1 IDENTIFIER := LETTER { LETTER | DIGIT}
2
3 NUM := INT_NUM | DEC_FLOAT_NUM
4
5 INT_NUM := DEC_NUM | HEX_NUM | OCT_NUM | BIN_NUM
6 DEC_NUM := "0" | ("1" .. "9") [ ["_"] DEC_DIGS ]
7 HEX_NUM := "0" ("x" | "X") ["_"] HEX_DIGS
8 OCT_NUM := "0" ("o" | "O") ["_"] OCT_DIGS
9 BIN_NUM := "0" ("b" | "B") ["_"] BIN_DIGS

10
11 DEC_DIGS := ("0" .. "9") {["_"] ("0" .. "9")}
12 HEX_DIGS := ("0" .. "f") {["_"] ("0" .. "f")}
13 OCT_DIGS := ("0" .. "7") {["_"] ("0" .. "7")}
14 BIN_DIGS := ("0" | "1") {["_"] ("0" | "1")}
15
16 DEC_FLOAT_NUM := DEC_DIGS "." [ DEC_DIGS ]

Listing A.5: Grammar of numbers and identifier

A.7 Numbers and Identifier

1 IDENTIFIER := LETTER { LETTER | DIGIT}
2
3 NUM := INT_NUM | DEC_FLOAT_NUM
4
5 INT_NUM := DEC_NUM | HEX_NUM | OCT_NUM | BIN_NUM
6 DEC_NUM := "0" | ("1" .. "9") [ ["_"] DEC_DIGS ]
7 HEX_NUM := "0" ("x" | "X") ["_"] HEX_DIGS
8 OCT_NUM := "0" ("o" | "O") ["_"] OCT_DIGS
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A.8. Statements

9 BIN_NUM := "0" ("b" | "B") ["_"] BIN_DIGS
10
11 DEC_DIGS := ("0" .. "9") {["_"] ("0" .. "9")}
12 HEX_DIGS := ("0" .. "f") {["_"] ("0" .. "f")}
13 OCT_DIGS := ("0" .. "7") {["_"] ("0" .. "7")}
14 BIN_DIGS := ("0" | "1") {["_"] ("0" | "1")}
15
16 DEC_FLOAT_NUM := DEC_DIGS "." [ DEC_DIGS ]

Listing A.6: Grammar of numbers and identifier

A.8 Statements

1 STATEMENT := DECLARATION | IF_STMT | SWITCH_STMT | FOR_STMT | "
break" | " contunie " | RETURN_STMT | SIMPLE_STMT

2 SIMPLE_STMT := SHORT_DECL | EMPTY | ASSIGMENT | EXPR
3
4 IF_STMT := "if" EXPR_STMT BLOCK [" else" (BLOCK | IF_STMT )]
5
6 SWITCH_STMT := " switch " [ EXPR ] "{" { CASE_CLAUSE } "}"
7 CASE_CLAUSE := SWITCH_CASE ":" STATEMENT_LIST
8 SWITCH_CASE := "case" EXPR_STMT | " default "
9

10 FOR_STMT := "for" FOR_CLAUSE BLOCK
11 FOR_CLAUSE := [ SIMPLE_STMT ] ";" [ EXPR_STMT ] ";" [ SIMPLE_STMT ]
12
13 RETURN_STMT := " return " EXPR_STMT
14
15 ASSIGMENT := IDENTIFIER_LIST OP EXPR_LIST
16 OP := [’+’ | ’-’ | ’*’ | ’/’ | ’%’] =

Listing A.7: Grammar of statements

A.9 Expression

1 EPSILON :=
2
3 EXPR_STMT := E11
4
5 E11 := E10 E11_PRIME
6 E11_PRIME := "||" E10 E11_PRIME | ϵ
7
8 E10 := E9 E10_PRIME
9 E10_PRIME := "&&" E9 E10_PRIME | ϵ

10
11 E9 := E8 E9_PRIME
12 E9_PRIME := "|" E8 E9_PRIME | ϵ
13
14 E8 := E7 E8_PRIME
15 E8_PRIME := "&" E7 E8_PRIME | ϵ
16
17 E7 := E6 E7_PRIME
18 E7_PRIME := "==" E6 E7_PRIME | "!=" E6 E7_PRIME | ϵ
19
20 E6 := E5 E6_PRIME
21 E6_PRIME := "<" E5 E6_PRIME | ">" E5 E6_PRIME | "=>" E5 E6_PRIME |

"<=" E5 E6_PRIME | ϵ
22
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23 E5 := E4 E5_PRIME
24 E5_PRIME := "+" E4 E5_PRIME | "-" E4 E5_PRIME | ϵ
25
26 E4 := E2 E4_PRIME
27 E4_PRIME := "*" E2 E4_PRIME | "/" E2 E4_PRIME | "%" E2 E4_PRIME | ϵ
28
29 E2 := "+" E2 | "-" E2 | "++" E2 | "--" E2 | "!" E2 | E1
30
31 E1 := E0 E1_PRIME
32 E1_PRIME := "++" E1_PRIME | "--" E1_PRIME | "(" EXPR_LIST ")"

E1_PRIME | "." E0 E1_PRIME | ϵ
33
34 E0 := "(" E11 ")" | NUM | IDENTIFIER

Listing A.8: Grammar of expressions

A.10 List

1 IDENTIFIER_LIST := IDENTIFIER {"," IDENTIFIER }
2 EXPR_LIST := EXPR_STMT {"," EXPR_STMT }
3 STATEMENT_LIST := { STATEMENT ";"}
4
5 BLOCK := "{" STATEMENT_LIST "}"

Listing A.9: Grammar of lists
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Appendix B
IR Grammar

This chapter describes the grammar of the Intermediate Language used in a
TinyGo language.

B.1 Variables and Types

1 VARIABLE := ’%’ (’a’ - ’z’ | ’A’ - ’Z’ | 0 - 9) {’a’ - ’z’ | ’A’ -
’Z’ | 0 - 9}

2
3 TYPE := (’int ’ | ’float ’ | ’ptr ’ | (’array[’ INT ’]’ TYPE) | (’{’ {

TYPE ’,’} ’}’))

Listing B.1: Variables and types grammar

B.2 Constants

1 INT := 1 - 9 {0 - 9}
2 FLOAT := 1 - 9 {0 - 9} ’.’ {0 - 9}
3 PTR := INT | ’nullptr ’
4 STRUCT := ’{’ {( INT | FLOAT | PTR | VARIABLE ) ’,’} ’}’
5
6 CONST := INT | FLOAT | PTR | STRCUT
7
8 CONSTINST = VARIABLE ’= create ’ TYPE CONST

Listing B.2: Grammar of constanst in IR

B.3 Functions

1
2 FUNCTION := ’function ’ VARIABLE ’arguments :’ {TYPE VARIABLE ’,’} ’

return :’ TYPE ’{’ FUNCTIONBLOCK
3
4 FUNCTIONBLOCK := {INST}
5 INST := CALLINST | ALLOCAINST | STOREINST | LOADINST | MEMCPYINST |

MEMACCINST | LABELINST | CONDJUMPINST | JUMPINST | ARITHOPINST
| SCANINST | PRINTINST | CASTINST | RETINST

6
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7 CALLINST := VARIABLE ’= call:’ VARIABLE ’arguments :’ { VARIABLE ’,’}

Listing B.3: Grammar of the functions

B.4 Memory Access and Allocation Instructions

1
2 ALLOCAINST := VARIABLE ’= alloca ’ TYPE [CONST]
3 STOREINST := ’store what :’ VARIABLE ’ where:’ VARIABLE
4 LOADINST := VARIABLE ’= load from:’ VARIABLE
5
6 MEMCPYINST := ’copy content from:’ VARIABLE ’to:’ VARIABLE ’size:’

INT
7 MEMACCINST := VARIABLE ’= get member from:’ VARIABLE ’which:’ INT

Listing B.4: Memory instructions grammar

B.5 Control Flow Instructions

1 LABELINST := VARIABLE
2 CONDJUMPINST := ’cond jump condition :’ VARIABLE ’if true:’ VARIABLE

’if false:’ VARIABLE
3 JUMPINST := ’jump ’ VARIABLE

Listing B.5: Grammar for control flow

B.6 Other Instructions

1
2 AIRTHOP := ’add ’ | ’sub ’ | ’mul ’ | ’div ’ | ’mod ’ | ’fadd ’ | ’fsub ’

| ’fmul ’ | ’fdiv ’ | ’EQ ’ | ’NQ ’ | ’LT ’ | ’LE ’ | ’GT ’ | ’GE ’
3
4 ARITHOPINST := VARIABLE ’= binop ’ AIRTHOP ’first:’ VARIABLE ’second

:’ VARIABLE
5
6 SCANINST := VARIABLE ’= scan ’
7
8 PRINTINST := ’print:’ VARIABLE
9

10 CASTINST := VARIABLE ’= cast ’ VARIABLE ’to:’ TYPE
11
12 RETINST := ’ret ’ [ VARIABLE ]

Listing B.6: Grammar of the other instructions
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Appendix C
Contents of attachments

readme.txt ......................... the file with the content description
src........................................the directory of source codes

CompilerForTinyGo .................. the source code of the compiler
thesis...............the directory of LATEX source codes of the thesis

text...........................................the thesis text directory
thesis.pdf............................the thesis text in PDF format
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