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Abstract

This thesis provides an LL(1) parser for general expressions. Given correct
operator priority table, the parser is able to parse given input string and, if
successful, provide AST representation of the input. The thesis also provides
Pascal syntax grammar in the form of operators priority table to discuss and
develop the idea of describing programming language syntax using expressions.
The thesis is supported by a number of Pascal code examples, processed by
the developed parser, used together with the provided syntax table.

Keywords Parser, LL(1) Parser, Pascal, AST, Operators, General Expres-
sions, Grammars, Automata Theory

Abstrakt

Tato práce poskytuje parser LL(1) pro obecné výrazy. Za předpokladu správné
tabulky priorit operátor̊u je analyzátor schopen analyzovat daný vstupńı řetězec
a v př́ıpadě úspěchu poskytnout AST reprezentaci vstupu. Práce také posky-
tuje gramatiku syntaxe Pascalu ve formě tabulky priorit operátor̊u k diskuzi a
rozvoji myšlenky popisu syntaxe programovaćıho jazyka pomoćı výraz̊u. Práce
je podpořena řadou př́ıklad̊u kódu Pascal, zpracovaných vyvinutým parserem,
použitých spolu s poskytnutou syntaxovou tabulkou.

Kĺıčová slova Parser, LL(1) Parser, Pascal, AST, Operátory, Obecné Výrazy,
Gramatiky, Teorie Automat̊u
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Chapter 1

Introduction

Programming brings a lot of benefits to people: computer can automate dif-
ferent tasks, like calculations, manual labour in factories, even the thinking
process. However, all the good things come with a cost. The cost in our case
is the challenge of translating the way we, people, think into the way that a
computer can understand, which means, translating our thoughts into binary.
That is exactly where all the compiling and parsing appears. Compiler (just
as the parser, which is an integral part of the former one) is a tool that helps
us, people, to communicate with machines. It takes the code, written in the
human-friendly way with a help of some programming language and translates
this code into proper binary format, which is then used by machines.

This whole process of translation is a complex combination of different
steps, like creation of IR (Intermediate Representation), checking for syntac-
tic errors, application of some optimisations and finally, the code generation.
To simplify things, people have divided the whole compilation process into
different stages:

Front End: Given some initial source code, usually preprocessed by so
called lexer (also known as tokenizer, a tool that separates the whole code
into different tokens), it translates the code into IR, which can have a form
of an AST (Abstract Syntax Tree) or some stack-based structure. This IR
is then used in the following steps as the simplified and standardized code
representation. The IR is usually responsible for removal of all the syntactic
sugar and its main purpose is representation of the logical structure of the
code, rewritten into some standard form. Also at this stage, syntax of
the language is checked, so that any source code that does not match the
language syntax is handled properly.

Middle End: During this stage, the result of Front End, the IR is mod-
ified. This stage is responsible for all the optimisations of the code and
thus is optional - without it the code will still work, but it will have worse
performance than the modified one.

1
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Back End: The final part of the compilation and the very purpose of
it: final translation of (optionally) optimised IR into the machine-readable
representation.

Even though all these stages are interesting to analyze, this thesis covers
only one precise part of this great process: parsing. More precisely, LL(1)
parsing of general expressions and a theoretical possibility of covering entire
programming languages syntax using these expressions.

1.1 Thesis: Objectives and Contents

1.1.1 Objective of the Thesis
The primary objective of this thesis is to develop an LL(1) parser for general
expressions. By designing a parser, capable of handling general expressions, it
can be used in various ways:

Code Translation: Translating code from programming languages to
some IR or straight forward into machine code.

Education and Experimentation: Creating and testing new program-
ming languages, and serving as a demonstrative tool in schools and univer-
sities related to compilers and languages.

The secondary objective is exploration of a hypothesis that the entire syn-
tax of a programming language can be defined as an expression, represented
by a table of operator priorities. This exploration should be done by creat-
ing a priority table of operators that would be able, if used together with an
implemented parser, to decide syntactic correctness of an input code.

1.1.2 Contents
Chapter 2 (Basic Theory): Covers theoretical aspects such as automata
theory, grammars, language types, and operators.

Chapter 3 (Design): Discusses the challenges of the thesis topic, solu-
tions, and the algorithmic structure of the parser.

Chapter 4 (Implementation): Focuses on the coding details of the
parser, explaining the inner implementation and utilized structures.

Chapter 5 (Pascal language syntax in the form of general ex-
pressions): Develops the idea of describing programming language syntax
using expressions with the Pascal language taken as an example.
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Chapter 6 (Testing): Describes the testing methods, exceptional cases,
and provides further insights into the code structure and algorithmic as-
pects.

Chapter 7 (Technical Details): Details the file structure, prerequisites
for building and running the parser, and the steps for the build and run
sequence.

Chapter 8 (User Manual): Provides information for users to utilize the
parser, including method descriptions, class instances creation, and method
invocation interfaces.

Chapter 9 (Conclusion): Summarizes the work done, concludes the
completion of initial tasks, and suggests potential improvements and ex-
tensions.



Chapter 2

Basic Theory

This chapter focuses on the theoretical aspect of the thesis and aims to provide
all the necessary theoretical background to understand the topic.

2.1 Basic Notations

2.1.1 Alphabet
An alphabet is a finite set, whose elements are called symbols.[1]

2.1.2 String
A string over an alphabet is a finite sequence of symbols from that alphabet.
Other notions for strings are word and sentence. The empty string is denoted
by ϵ.[1]

2.1.3 Formal language
A formal language over an alphabet is any subset of the set of all strings
over the alphabet.[1]

2.2 The Chomsky Hierarchy

In computer science, particularly in formal languages and automata theory,
languages are classified by the complexity of their grammatical structure using
the Chomsky hierarchy. This classification includes several types of formal
languages, with the most relevant to compiler design and parsing being regular
languages and context-free languages.

4
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Figure 2.1 Chomsky Hierarchy of languages[2]

2.2.1 Regular Languages
Regular languages are the simplest formal languages, used for basic pattern
matching and text scanning tasks. They cannot handle nested structures, such
as matched parentheses or recursive function calls, common in programming
languages.

2.2.2 Context-Free Languages
Context-free languages are more powerful and expressive than regular lan-
guages. They can handle recursive and nested structures, making them suit-
able for describing the syntax of programming languages.

2.2.3 Context-Sensitive Languages
Context-sensitive languages are more powerful than context-free languages.
In these grammars, production rules can depend on the context surrounding
nonterminals, allowing for more complex structures.

2.2.4 Recursively Enumerable Languages
Recursively enumerable languages are the most powerful, defined by any
computable rule. They are not limited by memory or context, making them
impractical for syntax analysis and parsing.
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2.2.5 Formal Languages
Another definition for Formal languages is a set that unifies all previously
mentioned languages and include other languages that do not belong to any
of these groups.

2.3 Grammar

[1] At its core, a grammar is a tool for describing languages, formally defined
as a quadruple G = (N, E, P, S), where

N is a finite non-empty set of nonterminal symbols (auxiliary variables,
representing some syntactical parts).

E is a finite set of terminal symbols, representing the alphabet of the
language generated by the grammar. Elements of E and elements of N are
two disjoint sets.

P is a finite set of production rules (grammar rules).

S is the starting nonterminal symbol of the grammar; each sentence
generated by the grammar initially starts from it and then expands to its
final form by the grammar rules.

2.3.1 Grammar Rules
Grammar rules define how a grammar describes its language. In general,
grammar rules can have various available patterns. For each language type,
there is a grammar that generates it. However, the most important type of
rules for us right now is the one that defines context-free grammars. The rules
of a context-free grammar are defined in the following way:

A → a (2.1)

where A is a single nonterminal symbol, and a is a string of terminals
and/or nonterminals (which can be empty).[1]

This type of grammar rule (and grammar, consequently) is suitable for
defining the syntax of programming languages. One of the main formats for
writing these grammar rules is the Backus–Naur Form (BNF).
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2.4 Automata Theory

Automata theory is a fundamental part of theoretical computer science. It
deals with the design and analysis of algorithms and computational processes
for abstract machines or automata. These abstract machines are used to rec-
ognize patterns, process text, and model computational problems.

In the context of automata theory, to recognize a string or a pattern means
to determine, whether it is a part of a language or not.

2.4.1 Finite Automata
Finite automata are the simplest type of automaton. They are used to recog-
nize regular languages. There are two main types of finite automata: deter-
ministic finite automata (DFA) and non-deterministic finite automata (NFA).

2.4.1.1 Deterministic Finite Automata (DFA)

[1] A DFA is defined by a 5-tuple (Q, Σ, δ, q0, F ), where:

Q is a finite set of states.

Σ is a finite set of input symbols (alphabet).

δ is the transition function δ : Q × Σ → Q.

q0 is the initial state.

F is a set of accept states.

In a DFA, for each state and input symbol, there is exactly one transition
to a new state.

2.4.1.2 Non-deterministic Finite Automata (NFA)

[1] An NFA is similar to a DFA but allows for multiple transitions for a given
state and input symbol or even transitions without any input symbol (epsilon
transitions). It is defined by a 5-tuple (Q, Σ, δ, q0, F ), where:

Q is a finite set of states.

Σ is a finite set of input symbols (alphabet).

δ is the transition function δ : Q × Σ → 2Q (power set of Q).

q0 is the initial state.

F is a set of accept states.

NFAs are more flexible than DFAs, but both recognize the same class of
languages (regular languages).
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2.4.2 Pushdown Automata
[1] Pushdown automata (PDA) are used to recognize context-free languages.
A PDA is like a finite automaton but with an additional stack storage. It is
defined by a 7-tuple (Q, Σ, Γ, δ, q0, Z0, F ), where:

Q is a finite set of states.

Σ is a finite set of input symbols (alphabet).

Γ is a finite set of stack symbols.

δ is the transition function δ : Q × (Σ ∪ {ϵ}) × Γ → 2Q×Γ∗ .

q0 is the initial state.

Z0 is the initial stack symbol.

F is a set of accept states.

PDAs can use the stack to handle recursive and nested structures, making
them suitable for parsing context-free languages. Also, PDA is a computational
model of LL(1) parsers.

2.4.3 Turing Machines
[1] Turing machines are the most powerful type of automaton, capable of recog-
nizing recursively enumerable languages. A Turing machine is an abstract
model of computation that can simulate any algorithm. It is defined by a
7-tuple (Q, Σ, Γ, δ, q0, qaccept, qreject), where:

Q is a finite set of states.

Σ is a finite set of input symbols (alphabet).

Γ is a finite set of tape symbols, including the blank symbol.

δ is the transition function δ : Q × Γ → Q × Γ × {L, R}.

q0 is the initial state.

qaccept is the accept state.

qreject is the reject state.

A Turing machine has an infinite tape that it can read from and write to,
and a head that can move left or right along the tape. Linear-bounded TM is
a model for context-sensetive languages.
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2.5 Parsing

Parsing is the process of analyzing a string of symbols (usually, a code of
some programming language) according to the rules of a grammar. The goal
is to determine if the string can be generated by the grammar rules and what
sequence of rules generates it. This process is similar to checking some natural
language sentence to see if it makes sense grammatically and structurally. In
general terms, parsing is how a computer processes some sentence (code) to
ensure it follows the syntax rules of the grammar (programming language).

2.6 Recursive Descent Parsing

Recursive Descent parsing is a top-down parsing technique, meaning it
starts at the highest level of the grammar and works its way down to the
input, which is then processed from left to right. Also, it is an algorithmic
implementation of LL(1) parsing.

2.7 LL(1) Parsing and General Expressions

Parsing, a mathematically-based algorithm, has two main families: LL and
LR. The primary difference between these types is the direction of derivation:
LL parsers follow the leftmost derivation, while LR parsers follow the reverse
of rightmost derivation. Each family has different members, such as LL(0),
LL(1) for LL parsers, and LR(0), SLR(1), LALR(1), CLR(1) for LR parsers.

This thesis focuses on LL(1) parsers. The name ”LL(1)” indicates:

The first ”L” stands for left-to-right input scanning.

The second ”L” stands for leftmost derivation.

The number ”1” denotes the lookahead tokens used. The lookahead, com-
bined with the current parsing state, determines the next rule to apply.

For a parser to be LL(1), each combination of state and lookahead must
uniquely determine the next action. If there is more than one possible transi-
tion, the parser is not LL(1).

General expressions, in this context, are combinations of literals, variables,
operators, and function calls that produce a value when evaluated. These
expressions are divided into levels, each expanding into an alternating combi-
nation of operators and other levels or into a higher priority level, which must
be evaluated first.
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2.8 Operators in Mathematical Terms

Operators are special symbols in programming that perform operations on
one or more operands (the values that operators affect). From a mathematical
perspective, operators have several properties that define how they behave:

Arity: This refers to the number of operands an operator acts upon. Unary
operators work on one operand, binary operators on two, etc.

Associativity: This property defines how operators of the same prece-
dence are grouped in the case of having no parentheses to specify the order
of evaluation. For example, in arithmetic, the addition operator (+) is left-
associative, meaning 1 + 2 + 3 + 4 + 5 is grouped as (((1 + 2) + 3) + 4) + 5.

Precedence: Some operators act before others unless parentheses change
this order. For instance, multiplication in arithmetic has higher precedence
than addition.

Left/Right: Left and right denote whether operator has left and right
operands respectively. Different combinations define different types of op-
erators: infix, prefix, postfix and circumfix.

2.9 How to Design a Grammar for Expressions

2.9.1 Table Levels
Assuming levels with higher numbers have higher priority, the grammar will
contain the following types of rules:

Li → ⟨rules for each operator on i-th level⟩ | Li+1

Lmax → ⟨rules for possible values⟩ (and circumfix operators, explained later)

The idea is that in the AST, the root will be an operator with the lowest
priority. We follow the recursive descent principle of constructing the AST:
either we choose an operator on this level or move up to the next (higher
priority) level until we reach the top, which will contain just values as leaves.

2.9.2 Operator Rules
The basic structure of the rule looks like this: (in this notation, ”?” means
optional and ”( ... )*” means repeated zero or more times)

Li → LEFT? ⟨operator token⟩(MIDDLE ⟨operator token⟩)∗ RIGHT?
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LEFT, MIDDLE, and RIGHT will be some non-terminal symbols chosen
later based on operator properties. The middle part appears only in the case
of multi-token operators (e.g., ternary operator).

For each operator on the i-th level, we add the following rule:

Li → LEFT? ⟨op token⟩(MIDDLE ⟨op token⟩)∗ RIGHT?

where:

LEFT

Li if left associative (left operand mandatory)
Li+1 if not left associative and has a left operand
empty if does not have a left operand (left associativity not allowed)

MIDDLE

Lmin in all cases. This part is repeated for each of the operator tokens
after the first one.

RIGHT

Li if right associative (right operand mandatory)
Li+1 if not right associative and has a right operand
empty if does not have a right operand (right associativity not allowed)

All operators on the same level must have the same associativity. Other
properties, in general, do not have to be shared.

The highest priority level must be non-associative and therefore can contain
only circumfix operators (which include values as well).

2.10 References for further study

To get better and more detailed understanding of such concepts as parsing,
compiler design and Automata theory, you are advised to read the following
related books:”Introduction to Automata Theory, Languages, and Computa-
tion”[3] and ”Compilers: Principles, Techniques, and Tools”[4]



Chapter 3

Design

To begin with, let’s recap the main task of this thesis: implementing a general
expression parser.

3.1 Initial Input

The alphabet of tokens and a table of operator priorities.

3.1.1 Table Content
The table must contain the following elements:

Existence of left/right operands (prefix, infix, postfix, circumfix).

Number of tokens (allowing general arity of an operator).

Associativity of a level in the table (left, right, none).

3.2 Input

A string that needs to be parsed according to the initially provided table.

3.3 Output

A boolean value indicating the parsing result. In case of success, the AST
representation of the input string.

12
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3.4 Main Design Idea

At the core of the solution is the concept of a structure called Parsed Storage
(PS). This structure is used to store parsed elements. These elements are
either tokens or other Parsed Storages, filled by the Recursive Descent parsing
algorithm. They form an alternating sequence: if at the end of the storage is a
token, only a PS can be pushed in and vice versa. PS creates an intermediate
representation of the currently parsed part of the input string at each moment
and each level. This helps navigate the parser and solve problems described
further in this chapter. It might be beneficial to treat PS as a dynamic version
of an AST, which builds itself gradually until it matches some expression.

3.5 Design Challenges

3.5.1 Left Recursion
Left recursion is a well-known problem for LL parsers. Essentially, left recur-
sion means that there is a grammar rule for some nonterminal A that refers
back to itself on the leftmost side of the right-hand side of the rule, either
directly or indirectly. In other words, there is a rule that transforms some
A into Aa, where a is the suffix of the rule and A is the left-recursive prefix.
This situation is dangerous for LL(1) parsers as it may cause infinite recursion,
causing the whole parsing process to never terminate.

3.5.1.1 Left Recursion Solution

The issue of left recursion is solved by the runtime transformation of left-
recursive rules into right-recursive ones. It works technically the same as
transforming a left-recursive rule by the following operation:

E → E + T | T

becomes

E → TE′

and

E′ → +TE′ | ϵ

where ϵ represents the empty element.

3.5.2 Prefix Collision
One of the main problems faced during the development of the solution was
the prefix problem. If there are two or more rules with the same prefix, it
creates ambiguity in the grammar.
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3.5.2.1 Prefix Collision Solution

For LL(1) grammars, this problem is generally solved via the ”Left factoriza-
tion” technique. This method unifies the prefix part of all rules that share
one, and then adds one nonterminal after the prefix, which then branches into
all initial grammar rules (without the prefix, of course). An example of this
factorization is as follows:

A → CB1 | CB2

transforms into

A → CA′

and

A′ → B1 | B2

However, to use this method, some pre-processing must take place, which
is unnecessary as the Parsed Storage structure handles this case: during the
parsing process, it stores the already parsed part inside. For example, after
parsing C from the original first rule, it will be stored inside PS. Even if the
whole rule fails, the parsed nonterminal C (the result of parsing it) will still
be stored inside the PS, and when the second rule is parsed, the nonterminal
C will be simply matched, and then the rest of the rule will be parsed.

3.5.3 Two Rules with One Being the Prefix of An-
other

Another common parsing problem appears when there are two or more rules,
where one rule is the prefix of another. One example of this problem is the
dangling else statement: a parsing problem in which an optional else clause in
an if-then(-else) statement creates ambiguity in nested conditions.

3.5.3.1 Problem Solution

To solve this problem, some important information must be told beforehand.
During the parsing process of a level, all of its operators are being parsed in
some order. If rules are represented by some table in the thesis paper, for
example like rules describing the syntax of Pascal5.1, they are being parsed
from top to bottom. This applies to inner-level parsing as well. This is done
intentionally to solve this prefix rule problem.

To make parsing unambiguous in case of encountering such prefix rule
problem, we must ensure that, when we are putting rules in the table, that
the longest rule will have some preference and will be parsed before its shorter
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counterpart. This principle can be shown in action on the dangling else exam-
ple, which is explained in the section 5. In case of problematic rules having
an optional left operand, before parsing the body of a operator, optional left
operand must be parsed, so this fact must be taken into account when arrang-
ing rules inside a table. To get some examples of how to handle these rules
and how parsing algorithm works in general, visit the Testing section6.1 of the
thesis.



Chapter 4

Implementation

This chapter will be centered around implementation details with the main
focus on Parsed Storage and general structure of all the elements of the code.

4.1 Parsed Storage

Class of PS is defined as a wrapper class over
std :: vector < std :: variant < ParsedStorage, Token >>
It also has a special variable, storageIndex, which holds the index of the

next element of a storage that we need to match. If storageIndex is equal to
the size of the storage, it means that the storage is completely reparsed, so the
next time some token or another PS will be parsed, it will be actually inserted
and not only matched.

PS as the wrapper adds some rules to pushing back things into it’s inner
vector: it requires every next pushed element to be of the different type (there
are two types, STORAGE and TOKEN in this std :: variant), so for example,
if current element at the back of the storage has the type of a TOKEN, then
only STORAGE type can be pushed, otherwise, any attempt to push another
TOKEN will result in an runtime exception. This rule does not apply to the
initially pushed element - it can have any type. By forcing this rule, PS makes
its inner storage work as an imitation of an universal AST node, which can be
partially defined before completing its definition.

There is also the system of packing and unpacking storages. Storage is
packed if it contains only one element: another storage. Packed storage means
that it’s only inner storage is well-defined, so it works as the marker of com-
pleting parsing process of some storage - in the end of parsing process, in case
of success, the storage is packed. This creates a rule: if there is a storage inside
of another storage, it means that the inner substorage is well-defined, so it will
not be modified in the future by any means.

16
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4.2 Table Parser

Table Parser (TP) has the following inner deffinition:

class TableParser
{
public:

TableParser( ParsingLayers layers ) : layers(
std::move(layers) ) {};↪→

bool parse ( const std::string& input );

bool compareStorage( const ParsedStorage& otherStorage );

private:
ParsingLayers layers;
ParsedStorage parsedAST;
Tokenizer tokenizer;

};

Code listing 4.1 Inner state of a TP

Its layers must be defined in the process of the initialization of the table,
so once initialized, it cannot change it’s table (this behaviour can be changed
easily if it is requested). Layers correspond to the priority table of parsing.

ParsedAST is an instance of PS. After the parsing process, in case of suc-
cess, AST representation of the parsed string will be stored there. In case of
failure the content of parsedAST in undefined.

Tokenizer is the lexical analyzer of the parser, it is fed new string each time
parsing method is invoked.

compareStorage is the method, created mainly for the testing purposes.

4.3 Parsing Layers

Parsing Layers is basically a container for layers, it has a collection of layers
and different methods to get and set its inner layers.
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4.4 Parsing Layer

Parsing Layer is, in some way, also just a collection of different Atomic Oper-
ations, united under the same layer, so it as well has some setting and getting
methods for its inner operations. Also, it provides a method to parse a layer:

bool ParsingLayer::parse(ParsingLayers &layers, ParsedStorage
&storage,↪→

Tokenizer &tokenizer, size_t layerIndex) const {
for ( auto op = operators . begin(); op != operators .

end(); ) {↪→

if ( op -> parse( layers, storage, tokenizer, layerIndex
) ) {↪→

if ( associativity != LEFT && storage . isPacked() )
return true;↪→

op = operators.begin();
} else

++op;
storage . resetPosition();

}

auto nextLayer = layers . getLayer( layerIndex + 1 );
return storage.isPacked() || ( nextLayer

&& nextLayer->parse(layers, storage, tokenizer,
layerIndex + 1) );↪→

}

Code listing 4.2 Parse method of a Parsing Layer

The logic of this method is relatively simple: it goes through all operations
of a layer and tries to parse them. This operation returns true in two cases,
successful parsing or the case when optional left operand returns false, but
current PS was empty, so it means that some higher priority operations failed,
but still, it might have written something in the storage, so we inherit it and
try to parse the whole layer again with the new PS content. In case that no
operation succeeded, it means that we still should try to parse one layer lower
because of the definition of general expressions.

The if statement in the parsing loop is for successful parsing operations of
right recursive or not recursive in general rules.

Also, storage.isPacked() here works as marker of a successful parsing,
because of the way packing system works for Parsed Storages.
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4.5 Atomic Parsing Operations

Atomic Parsing operations are characterized by the following member vari-
ables: two boolean flags for existence of left and right optional operands and
a vector of tokens. All of the initialization is done in the constructor.

Main feature of Atomic Parsing operations is its ”parse” method as it
features, the runtime transformation of left recursive rules into right recursive
ones. Also, the logic for inheritance of storages from the failed optional left
operand parsing is described there. The method itself and its helping methods
are defined in the following way:
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bool AtomicParsingOp::parse(ParsingLayers &layers, ParsedStorage
&storage,↪→

Tokenizer &tokenizer, size_t layerIndex)
const {↪→

auto upperLayer = layers.getUpperLayer(),
nextLayer = layers.getLayer(layerIndex + 1);

//Parse optional left operand
if ( this -> hasLeftOperand() ) {

bool storageWasEmpty = storage . empty();
if ( !nextLayer ) throw std::runtime_error("Wrong expression

format:↪→

operator has left operand at the last
layer.");↪→

if ( !parseInnerLayer( layers, storage, tokenizer,
layerIndex + 1, nextLayer ) ) {

if ( storageWasEmpty && !storage . empty() )
return true;

else
return false;

}
}
//Parse necessary first token
if ( !parseInnerToken( storage, tokenizer, tokens.front() ) )

return false;
//Parse middle part
for (size_t tokenPos = 1; tokenPos < tokens.size(); ++tokenPos) {

if ( !parseInnerLayer( layers, storage, tokenizer, 0,
upperLayer )↪→

|| !parseInnerToken( storage, tokenizer, tokens . at(
tokenPos ) ) )↪→

return false;
}
//Parse optional right operand
if ( this -> hasRightOperand() ) {

switch ( layers . getLayer( layerIndex ) -> getAssociativity()
) {↪→

case RIGHT:
if ( !parseInnerLayer( layers, storage, tokenizer,

layerIndex,↪→

layers . getLayer(
layerIndex ) ) )↪→

return false;
break;

default:
if ( !parseInnerLayer( layers, storage, tokenizer,

layerIndex + 1, nextLayer ) )↪→

return false;
}

}
//Mark completion of the storage
storage.pack();
return true;

}

Code listing 4.3 Parse method of Atomic Parsing operations
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bool AtomicParsingOp::parseInnerLayer(ParsingLayers &layers,
ParsedStorage &storage, Tokenizer &tokenizer,
size_t layerIndex, const ParsingLayer *layer) {

ParsedStorage exploringStorage;
if ( storage . reparsed() ) {

if ( layer -> parse( layers, exploringStorage, tokenizer,
layerIndex ) ) {↪→

storage . pushBack( exploringStorage . getPackedStorage()
);↪→

} else {
if ( storage.empty() ) {

std::swap( storage, exploringStorage );
return false;

} else {
throw std::logic_error("Parsing error while having

something in the↪→

storage -> two unfinished storages ->
parsing failed.");↪→

}
}

} else {
return storage . matchSubstorage();

}

return true;
}

bool AtomicParsingOp::parseInnerToken(ParsedStorage &storage,
Tokenizer &tokenizer, Token token) {

if ( storage . reparsed() ) {
if ( !tokenizer . tokenMatch( token ) )

return false;
storage . pushBack( token );

} else {
return storage . match( token );

}

return true;
}

Code listing 4.4 Helper methods of parse method



Chapter 5

Pascal Language Syntax in
the Form of General

Expressions

This chapter focuses on the second objective of this thesis: possibility of de-
scribing a programming language using general expressions. The best way of
exploring this topic is via creating a grammar for some sample programming
language. In our case, Pascal was chosen to be a language: it has simple
enough syntactic structure and it also provides official grammar that describes
it’s syntax.

Priority table5.1, used in this thesis, was created based on the following
book: ”Pascal User Manual and Report”[5]. The original grammar with a
complete description of language features is available via the link, provided in
the Bibliography.

Also note that there exists a ”dangling else” problem in the table. However,
the parsing process is still unambiguous and the else statement is guaranteed
to belong to the closest if statement. This is achieved by correct placement of
two rules for the if statement and the fact, that when parsing a level, operators
of a rule are parsed from top to bottom, hence if-then-else rule is parsed before
if-then rule and so if there is an ”else” token, if-then-else rule will be chosen,
while if there are no ”else” statement, if-then-else rule will fail and the next
one on the queue will be if-then statement, which at that time will already be
completed in a PS, so it will be simply matched.

22
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5.1 Arising Expression’s Issues

This chapter asks one important question: is it possible to describe a syntax
of programming language utilizing only expressions? The simplest answer to
this question is no. The main reason is the lack of control over rule definitions.
We simply do not have enough control to restrict a language the way we want.
The source of this issue is the way general expressions are defined: we can
either stay on the same level in case of some rule being recursive, go down one
level (either as a part of some rule or as the default case when a nonterminal
goes to a nonterminal one level lower), or go to the lowest priority level when
parsing something in between two tokens. Staying on the same level creates
no issues, while going one layer down can be somewhat handled by clever rule
rearranging. However, there still might be some unsolvable situations, like ”to”
and ”downto” operators in the Pascal grammar5.1: we should not be able to
compare them and at the same time there should never appear any comparison
as their operands, so if these rules are the way they are in the grammar, they
produce invalid statements, when used in comparison operators, while if they
are moved up the table, there is a chance of getting comparison as operands,
which also results in an invalid language element. But that’s not the only
problem.

The biggest problem arises when we go to the lowest priority case, as the
thing between two tokens can be completely anything since it starts from the
lowest priority. For example, it creates a problem if we have some unique part
of the language which should not be repeated more than once. We should
somehow define it by creating a sequence of rules of some levels that defines
it. If we create these rules and insert them in the operators’ priority table, it
means that these rules will be accessible at least from the lowest priority level.
Consequently, any rule with more than one token will be able to reproduce
this ”unique” part inside of it. This issue can be illustrated with an example
from the Pascal language:

assert( parser.parse("program ImperfectionTest;\n"
"begin\n"
" program HelloWorld;\n"
" begin\n"
" writeln('Hello, world!')\n"
" end\n"
"end")

);

Code listing 5.1 Expressions imperfection test

This code snippet should not be part of a language because of the repeated
program definition. However, due to the begin − end rule at the level 45.1,
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there can be anything in between ”begin” and ”end,” which creates this invalid
statement.

For these reasons, there is no way to restrict anything in between two
tokens by pure syntax. Thus, it is impossible to describe the entire syntax of
a programming language as an expression.

However, there are some ways to deal with these issues.

5.2 Possible solutions

The issues described above exist because there is no way to apply any restric-
tions on the inner nonterminals of a rule. However, this limitation applies to
purely syntactic solutions. From the perspective of semantics, there is a way
to restrict unwanted strings from appearing in the language. If we take any
rule from any context-free grammar, each nonterminal transforms into some
combination of terminals and nonterminals. In general expressions, there is no
way to restrict any nonterminal except the leftmost and rightmost ones if they
exist (they can be somewhat restricted by the level as they cannot transform
into something of lower precedence than the level they are currently on). In
ordinary grammar, each nonterminal is restricted by the type of nonterminal
that it transforms into. For example:

A → BC

Here, nonterminal A goes to two other nonterminals, the first of which
has the type B and the second one has the type C. These nonterminals can
be anything, but they must satisfy their type. The same approach can be
applied to general expressions and their operators’ priority table. The best
way to restrict unnecessary rule transitions is by applying some expressions
type checking.

Given example from above5.1, this situation is possible because of begin −
end rule, specifically, the lowest priority element that appears in between two
given tokens. This element can be any string from the language, which can cre-
ate a bunch of unwanted elements in the language. However, if the element in
between the tokens was restricted to be some special type, for example, ”state-
ment” type, it would not allow any other type to appear there, so the double
definition of a program in that case could not appear as program definition
would have some other type, located higher in the table.

Same applies for ”to” and ”downto” examples. There could be some type
restriction that would allow comparison operators to have only some ”value”
types as their operands and that would exclude two problematic operators
from the list of possible operands.
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5.3 Summing Things Up

To sum things up, it is not possible to implement the precise syntax of a
programming language using only general expressions due to the lack of con-
trol over grammar rule transitions. However, syntactic rules can define some
super-set of a language, that would include some additional invalid statements,
removal of which then could be done by imposing restrictions based on the type
of expressions that each rule takes and produces. Also, some more restrictions
could be applied via variable scoping system, but this would violate the prin-
ciples of context-free parsing, as variable scopes can only be handled using
context-sensitive grammars.
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Operators Associativity Priority Level Commentary
program NONE 0

, RIGHT 1
;
:

label NONE 2
const
type
var

procedure
function

with do RIGHT 3
for do

repeat until
while do

if then else
if then

goto
begin end NONE 4

case of end
case of end

:= RIGHT 5
<> LEFT 6
=
in
<
>

<=
>=
to NONE 7

downto
+ LEFT 8
−
or
∗ LEFT 9

div
mod
and

packed RIGHT 10
array [ ] of

record end structure declaration
set of
file of

.. NONE 11 interval
− RIGHT 12

not
+
ˆ pointer dereferencing

ˆ NONE 13 pointer declaration
. LEFT 14 attribute access

( ) LEFT 15 function call
[ ] array access

integer value NONE 16
real value
identifier

( )
string value

nil
[ ] empty set

[ ] set

Table 5.1 Pascal parsing layers and their operators (top-down parsing)



Chapter 6

Testing

This chapter focuses on the testing part of the task. There will be unit tests
for the Parsed Storage (PS) structure and system tests for the Table Parser
(TP) class with one predefined priority table. The current implementation
includes only basic format checks for the table, such as ensuring the highest
priority operations do not have any right or left optional operands (to prevent
access out of bounds of the layers collection).

6.1 Tested Aspects of PS

Initial state check (checks the status of PS in the initial state)

Basic content matching (checks matching methods to work correctly with
small input)

Attempt to break the format by pushing two subsequent Parsed Storages
(results in an exception)

Content matching after the attempt to break the format (checks that after
throwing an error content remains unchanged)

Token mismatch inside a storage (checks the case when a storage token is
mismatched)

Substorage mismatch (same as above, but with a PS)

Packing and unpacking (create a copy of a storage, pack the original PS
and then check its content to match the copy)

Safety check for memory address copying (checks that during assignment
no address data is copied)

Another attempt to break the format, now by inserting two subsequent
tokens (results in an exception, state of PS is unchanged)

27
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Operators Associativity Priority Level
? : RIGHT 1
? ! RIGHT 1

<> >= RIGHT 2
<> RIGHT 2
/ LEFT 3

/ = LEFT 3
? > RIGHT 4

:= RIGHT 4
+ LEFT 5
- LEFT 5
* LEFT 6
/ LEFT 6

? ; RIGHT 7
? < RIGHT 7

a NONE 8
b NONE 8
c NONE 8

( ) NONE 8

Table 6.1 Parsing layers and their operators (top-down parsing)

6.2 Tested Aspects of Table Parser

Basic functionality check (parse "a + b", check the return value and inner
AST structure)

Left recursive rules check (parse "a + b + c", check the state of the AST
to correspond to the left recursive definition)

Right recursive rules check (parse "a := b := c", check the state of AST
to correspond to the right recursive definition)

Layers combination check (parse "a := a + b", check the basic layers in-
teractions and correct order of evaluation defined by the priorities)

Storage coming from below check (parse "a ? b : a + b", details in
the next section)

Storage coming from above check (parse "? a <", details in the next
section)

Storage transition on the same layer check (parse "a ? b ! a + b",
check that in case of failure of one rule on a layer, PS moves on to the next
one correctly)
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Rules, one of which is the prefix of another: short one is in the table second
(correct version check, parse "<> a >=", checks dangling else-like situation,
rules in the table are placed correctly, so parsing is done correctly)

Rules, one of which is the prefix of another: short one is in the table first
(incorrect version check, parse "/ a =", checks dangling else-like situation,
rules in the table are placed incorrectly, breaking the defined rules for such
cases, so parsing fails as it matches the prefix rule and returns true, without
checking for the next rule, which is the correct one)

Invalid sentence check (parse "a ? b : : a + b", get token mismatch)

Invalid sentence check (parse "a + a a", check for cases where some first
part of the string is correctly created according to the table rules, while
some part of the string is left unparsed)

6.3 Tested Aspects of the Pascal grammar

The grammar for the Pascal language can be found at the following index:5.1.
The parser used in the tests is the original TP.

Hello world test:

assert( parser.parse("program HelloWorld;\n"
"begin\n"
" writeln('Hello, world!')\n"
"end")

);

Code listing 6.1 HelloWorld test
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Record test:

assert( parser.parse("program RecordExample;\n"
"type\n"
" Person = record\n"
" name: string[50];\n"
" age: integer\n"
" end;\n"
"\n"
"var\n"
" p: Person;\n"
"\n"
"begin\n"
" p.name := 'John Doe';\n"
" p.age := 30;\n"
" writeln('Name: ', p.name);\n"
" writeln('Age: ', p.age)\n"
"end")

);

Code listing 6.2 Record test

Dangling else test (with else):

assert( parser.parse("program ConditionalExample;\n"
"var\n"
" a, b: integer;\n"
"begin\n"
" a := 15;\n"
" b := 20;\n"
" if a > b then\n"
" writeln('a is greater than b')\n"
" else\n"
" writeln('a is not greater than b')\n"
"end")

);

Code listing 6.3 Dangling else test (with else)
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Dangling else test (without else):

assert( parser.parse("program ConditionalExample;\n"
"var\n"
" a, b: integer;\n"
"begin\n"
" a := 15;\n"
" b := 20;\n"
" if a > b then\n"
" writeln('a is greater than b')\n"
"end")

);

Code listing 6.4 Dangling else test (without else)

Imperfection test (this should not be possible, but it is because of the way
general expressions work → to fix this behaviour some expression type
checking must be implemented):

assert( parser.parse("program ImperfectionTest;\n"
"begin\n"
" program HelloWorld;\n"
" begin\n"
" writeln('Hello, world!')\n"
" end\n"
"end")

);

Code listing 6.5 Imperfection test
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Dangling else test ( nested if case ):

assert( parser.parse("program ConditionalExample;\n"
"begin\n"
" if a > b then\n"
" if a = b then\n"
" a\n"
" else\n"
" b\n"
"end")

);

Code listing 6.6 Dangling else test ( nested if case )

Token mismatch test:

assert( !parser.parse("program HelloWorld;\n"
"not begin\n"
" writeln('Hello, world!')\n"
"end")

);

Code listing 6.7 Token mismatch test

Rules, one of which is the prefix of another: short one is in the table second
(correct version check, parse "<> a >=", checks dangling else-like situation,
rules in the table are placed correctly, so parsing is done correctly)

Rules, one of which is the prefix of another: short one is in the table first
(incorrect version check, parse "/ a =", checks dangling else-like situation,
rules in the table are placed incorrectly, breaking the defined rules for such
cases, so parsing fails as it matches the prefix rule and returns true, without
checking for the next rule, which is the correct one)

Invalid sentence check (parse "a ? b : : a + b", get token mismatch)

Invalid sentence check (parse "a + a a", check for cases where some first
part of the string is correctly created according to the table rules, while
some part of the string is left unparsed)

6.4 Important Tests

This section focuses on two test cases and their significance in terms of the
algorithm behind the parsing process. These cases are:
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"a ? b : a + b" and "? a <"
According to the table structure, the first rule behaves as follows: Initially,

the first rule of the table will try to parse its optional left operand. To do so,
it will go down the table and, during that process, will try to parse the first
rule of layer under index 6. It will eventually fail, but it will obtain a PS with
some storage(a), token question mark, and another storage(b) sequence in
it. Then, it will propagate this storage upwards until it reaches the first rule,
which will match the storage elements and complete the parsing process (by
packing itself). This demonstrates the concept of storage coming from below.

The second test mirrors the first one. Here, due to the absence of optional
left operands for all potentially needed rules, it will start by matching tokens.
It begins with the lower priority rule at layer 3, fails, and then propagates
the storage down by trying to parse rules of lower layers (refer to the code
listing 4.2, especially the return statement). This illustrates the concept of PS
coming from above.

These test cases are not special in terms of implementation handling. Al-
though they inspired the creation of the PS structure, they are highlighted
here to demonstrate the inner logic of the code, the idea of PS, and how it is
used in the code.

6.5 How to Perform Testing: From Constructing
to Testing

6.5.1 PS Testing
To create tests, we must first identify the possible testable aspects. In the
case of PS, it is straightforward: you can either test its inner content using
the equality operator or perform structural checks, which are more superficial.
Essentially, you either check the structure of the upper layer of the storage us-
ing match and matchSubstorage methods, or you create an expectedStorage
with the elements you expect to see in the testing storage and then compare
them using the equality operator. Constructing a parsed storage is simple:
when initialized by default, it is empty, so you use the pushBack method
(which has overloads for both storages and tokens) to get the desired storage
and then perform the tests.

6.5.2 Table Parser Testing
For testing an instance of TP, the basic steps are the same: initialize it by
providing some layers, then try to parse some strings.

As with PS, for TP, you can check two things: the parsing result (the
return value of the parse method) or the content of the AST after parsing.
Checking the parsing result is straightforward as it is a return value, while
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checking the AST content is more complex. To check the AST in the current
implementation, the only way is through the compareStorage method. It
works the same way as the comparison operator for PS: it compares the content
of the storage inside a parser with some other storage provided as an argument.
Important: do not forget to pack the storage in the argument, as the storage
inside the parser will be packed if the parse method returns true.

To construct the TP instance, you can use the following code as an example.
Additionally, there is a sample for AST comparison below.
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TableParser parser(
ParsingLayers()
.addLayer(

ParsingLayer( LEFT )
.addOperator( AtomicParsingOp( { tok_plus }, true,

true ) )↪→

.addOperator( AtomicParsingOp( { tok_minus },
true, true ) )↪→

)
.addLayer(

ParsingLayer( NONE )
.addOperator( AtomicParsingOp( { tok_a }, false,

false ) )↪→

.addOperator( AtomicParsingOp( { tok_b }, false,
false ) )↪→

.addOperator( AtomicParsingOp( { tok_c }, false,
false ) )↪→

.addOperator( AtomicParsingOp( { tok_op_par,
tok_cl_par }↪→

, false,
false
) )

↪→

↪→

)
);

Code listing 6.8 TP construction example

auto sumAB = ParsedStorage()
.pushBack( ParsedStorage().pushBack( tok_a ) )
.pushBack( tok_plus )
.pushBack( ParsedStorage().pushBack( tok_b ) ).pack();

assert( parser.parse( "a + b + c" ) );
assert( parser.compareStorage(

ParsedStorage()
.pushBack( sumAB.getPackedStorage() )
.pushBack( tok_plus )
.pushBack( ParsedStorage().pushBack( tok_c )

).pack()↪→

)
);

Code listing 6.9 AST comparison example
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Technical Details

7.1 Requirements to Build and Run

The code does not utilize any external libraries, nor it requires any modern
C++ features, so the only requirement is a gcc compiler that supports C++
standard of 20.
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7.2 Content of CMakeFile.txt

cmake_minimum_required(VERSION 3.27)
project(Bachelor_Thesis)

set(CMAKE_CXX_STANDARD 20)

add_executable(Bachelor_Thesis main.cpp
ParsedStorage/ParsedStorage.cpp
ParsedStorage/ParsedStorage.h
TableParser/TableParser.cpp
TableParser/TableParser.h
ParsingLayers/ParsingLayer/ParsingLayer.cpp
ParsingLayers/ParsingLayer/ParsingLayer.h
AtomicParsingOp/AtomicParsingOp.cpp
AtomicParsingOp/AtomicParsingOp.h
Tokenizer/Tokenizer.cpp
Tokenizer/Tokenizer.h
ParsingLayers/ParsingLayers.cpp
ParsingLayers/ParsingLayers.h)

Code listing 7.1 CMakeFile.txt content



Chapter 8

User Manual

This chapter is aimed to provide enough knowledge about TP class for a general
person, not involved in the process of creation of this project, to be able to use
this class for their own purposes.

8.1 Methods’ Description

8.1.1 Constructor
To construct a TP instance one needs to provide the single required parame-
ter - Parsing Layers instance that will define the priority table for the parser.
Warning, this layers instance is not processed at the moment of creation, nei-
ther it is checked to obey all the necessary rules of the defined priority table
format (more precisely, there is no check of positioning of prefix rules, so the
whole table can be ambiguous, if the prefix case is not handled correctly: to
learn more about this issue, go to 3.5.3).

8.1.2 Parse Method
Method parse is used to parse the input string parameter. All the rules in
the process of parsing are taken from initial priority table, which is provided
in the constructor.

8.1.3 Compare Storage Method
CompareStorage method compares the inner storage of a parser with some
other storage, which is provided as an argument to the method call.
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8.2 Instances Creation

TP instance is created via constructor call, no more methods are needed, after
constructor call, the parser is complete. To see the example of how to initialize
TP instances, visit Code listing 6.8.

8.3 Methods’ Pre Requirements

All the methods of a parser have no special pre requirements, except for
compareStorage method, which should be called after some parse method
call. Violation of this rule will not result in any kind of error or an exception,
it will result in a plain comparison of some storage with an empty inner storage
of a perser as initially the storage is initialized by the default constructor and
thus is empty.



Chapter 9

Conclusion

The primary objective of the thesis is complete, LL(1) parser for general ex-
pressions is implemented and all the challenges that appeared in the process
are solved. Also, secondary objective, the idea of creating a programming lan-
guage parser, based exclusively on general expressions, is developed as well.
The result of research into this field showed that it is not possible to create an
expression that would precisely describe a programming language syntax, as
the purely syntactic solution does not impose enough restrictions on the gram-
mar to generate the required language. Nevertheless, expression can generate
super-set of the language, which then can be further restricted by applying
some expressions type checking, along with some variable scopes system. The
latter violates the principles of context-free languages and thus makes the lan-
guage context-sensitive.
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Appendix A

Context of attached media

A.1 Files Structure

Bachelor Thesis ....................................... Root directory
AtomicParsingOp
ParsedStorage
ParsingLayers

ParsingLayer
TableParser
Tokenizer
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