
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Balancing Lemmata in Kernelization

Daria Objeleanscaia

doc. RNDr. Dušan Knop, Ph.D.

Informatics

Computer Science 2021

Department of Theoretical Computer Science

until the end of summer semester 2024/2025

Instructions

In 2015 Mnich and Wiese [1] used a so-called balancing lemma in the context of

scheduling – namely for Makespan minimization on Parallel Identical Machines. Their

use is in parameterized algorithmics where it is assumed that all processing are positive

integers and are bounded by the parameter p_max. They showed that one can always

transform an optimal solution to a more regular one, where for each job size, all but a

few jobs are distributed evenly among the given machines.

The proof of Mnich and Wiese crucially relies on the setting of parallel identical machines,

that is, it is not clear how to generalize their original proof even for the setting of related

machines (machines with different speed CPUs). The aim of this thesis is to study related

problems and discuss possible lines of generalizations while possibly describing many

wrong directions. A possible related problem could be the Equitable Connected Partition

problem in graphs with bounded vertex cover number [2]. Possible other directions for

kernelization can be found via a relation to integer linear programming [3].

Tasks of the thesis:

* Study and describe the balancing technique of Mnich and Wiese

* Describe the formalism of data-reduction techniques

* Try to apply the balancing technique (propose a proof of balancing lemma) for (a special

case of) Equitable Connected Partition for bounded vertex cover number

* Discuss the possible research directions.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 25 January 2024 in Prague.

References:

[1] Matthias Mnich, Andreas Wiese: Scheduling and fixed-parameter tractability.

Mathematical Programming 154(1-2): 533-562 (2015)

[2] Rosa Enciso, Michael R. Fellows, Jiong Guo, Iyad A. Kanj, Frances A. Rosamond, Ondřej

Suchý: What Makes Equitable Connected Partition Easy. IWPEC 2009: 122-133

[3] Dušan Knop, Martin Koutecký: Scheduling Kernels via Configuration LP. ESA 2022:

73:1-73:15

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 25 January 2024 in Prague.

Bachelor’s thesis

BALANCING LEMMATA
IN KERNELIZATION

Daria Objeleanscaia

Faculty of Information Technology
Department of Computer Science
Supervisor: doc. RNDr. Dušan Knop, Ph.D.
May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Daria Objeleanscaia. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Information
Technology. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Objeleanscaia Daria. Balancing Lemmata in Kernelization.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Tech-
nology, 2024.

Contents

Acknowledgments iii

Declaration iv

Abstract v

List of abbreviations vi

1 Introduction 1
1.1 Contribution . 2
1.2 Paper Organization . 2

2 Preliminaries 3
2.1 Graph Notions . 4
2.2 Parametrized complexity . 5
2.3 Kernelization . 6
2.4 N-Fold integer programming . 8

3 Related work 11

4 Current work 13

5 Conclusion 20
5.1 Further Work . 20

ii

I am grateful to my supervisor, doc. RNDr. Dušan
Knop, Ph.D., for their invaluable guidance and sup-
port throughout this research. Without their expertise
and encouragement, this work would not have been pos-
sible.

iii

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis. I acknowledge
that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Czech Technical University in Prague has the right to conclude a licence
agreement on the utilization of this thesis as a school work pursuant of Section
60 (1) of the Act.

In Prague on May 16, 2024

iv

Abstract

This thesis summarizes known results of the Equitable Connected Partition
problem and introduces a new kernelization algorithm proving that ECP ad-
mits a kernel of size 2O(k2) ·nO(1), when parameterized by vertex cover number
(k) of the input graph G

Keywords Linear Programming, kernelization, parameterized complexity,
balancing lemma, p-equitable graph partition

Abstrakt

Kĺıčová slova

v

List of abbreviations

ECP Equitable Connected Partition
FTP Fixed Parameter Tractable

VC Vertex Cover
ILP Integer Linear Programming

IP Integer Programming

vi

Chapter 1

Introduction

In graph theory, the Equitable Connected Partition (ECP) problem is a
fundamental optimization problem with various real-world applications. ECP
seeks to partition the vertices of a graph into equitable and connected subsets.
Equitability ensures that each subset has a nearly equal number of vertices,
while connectivity ensures that the subsets are connected, facilitating efficient
communication or resource allocation.

The main reason behind me starting this research was a problem I encoun-
tered at work. I work in a massive company with multiple working locations
across Europe and several projects in development. Each month we hire a
group of students which need to be allocated to some project. As we want
our company to work like workclock we need to allocate our resources effec-
tively and the best way to achieve effectiveness is optimization so I divided
into optimization problems research. ECP worked perfectly for my task. First
of all, we want all teams to be of approximately same size to ensure that each
projects gets equal attention, and that is where equitability comes in handy.
In the mean time, a team should be organized and united to achieve progress
so every team member should be included, and that is why we want to en-
sure connectivity of each component (team). Moreover, each project has core
employees that are in charge of its development cycle and ensure cooperation
between projects as we all work for common purpose. That could be easily
associated with vertex cover: if we assign this specific employees to be vertices
in vertex cover we ensure that everybody knows each other if not directly, then
via ’core vertex cover’ employees. New coming employees are not attached to
any project yet, and if we call them ’independent workers’, their similarity
to independent vertex set becomes obvious. This new people are attached to
one or more managers (vertex cover), who hired them, but did not make it to
a team yet. Last thing in question is how to combine all this constraints of
connectivity and equitability when adding new people? That is in fact topic
of the research of my thesis!

While ECP offered us valuable insights into our business dilemma rep-

1

Contribution 2

resented as graph partitioning problem, solving it efficiently is challenging,
especially for large graphs. Here’s where kernelization plays a crucial role.
Kernelization aims to simplify problem instances while preserving essential
properties, paving the way for more efficient algorithms.

This thesis focuses on kernelizing the ECP problem, specifically parame-
terized by vertex cover. Vertex cover is a fundamental graph parameter with
significant theoretical and practical implications. By parameterizing ECP with
vertex cover, we aim to develop efficient algorithms that can handle large
graphs more effectively. Further paper will gently introduce all the back-
ground research on topic and essential graph knowledge to understand the
ECP problem and will present the derivation of its kernel.

1.1 Contribution

This thesis aims to come up with a new kernelization technique for the ECP
problem parameterized by vertex cover number, using N-Fold programming
methods.

▶ Theorem 1.1. The kernel of the Equitable Graph Partition (ECP
for short) parametrized by vertex cover of input graph can be solved in time
complexity 2O(k2) · nO(1).

The proof of Theorem 4.4 and the description of the technique is presented
in Chapter 4. In Chapter 2, we provide a comprehensive overview of the ECP
by introducing necessary notation and presenting the parameters.Finally, we
conclude in Chapter 5 by discussing possible directions for future research.

1.2 Paper Organization

For the ease of further understanding Chapter 2 will give a gentle yet concise
introduction to most of the terminology used later. It will introduce necessary
notions and definitions together with previous research results on the topic.
Main part of the thesis — the proof of Theorem 4.4 and the description of the
technique is presented in Chapter 4. Finally, we conclude in Chapter 5 by
discussing possible directions for future research.

Chapter 2

Preliminaries

Graph partitioning is a group of optimization problems, which aim to break an
input graph into pieces satisfying certain constraints, by partitioning vertex set
of the graph into disjoint subsets. The problem of graph partitioning or graph
clustering deals with the following task: given a graph G = (V, E), where V is
the set of graph vertices, E is set of its edges, group the vertices of a graph into
clusters. (One might be interested in cases where this graph is weighted, di-
rected, etc., but Hereafter, the term ‘graph’ refers to a connected, unweighted,
un-directed graph, unless stated otherwise.). Formally this problem can be
stated as follows
▶ Definiton 2.1 ([1]). The Graph Partitioning (GP for short) problem
can be defined as follows: Given a set of N nodes with a given connectivity,
partition them into K sets each with N/K nodes such that the net connectivity
(cut-size) is minimal between each set.

Now that we have discussed the general concept of graph partitioning, I
want to follow up with more constrained version of this problem — equitable
graph partitioning. In equitable graph partitioning, we aim to divide the graph
into clusters such that each cluster has nearly the same number of vertices,
such that clusters are connected components of the graph. This optimization
problem is a variation of traditional graph partitioning, where we introduce the
additional constraint of equitability. Formally, the equitable graph partitioning
problem can be defined as follows: it is a natural generalization of the Bisection
problem, in which the n vertices of a graph need to be partitioned into d
equal-sized parts, for some arbitrary given number d (instead of only two as
for Bisection problem). More formally the problem is defined as follows:
▶ Definiton 2.2. Balanced Partitioning

Let G = (V, E) be a graph, and let us have two positive integers k and d.
We say that V1, V2, . . . , Vr is the Balanced Partitioning of G if it is possible to
partition the vertices of G into d sets such that each set has a size of at most⌈

n
d

⌉
and the size of the cut is at most k. [2]

3

Graph Notions 4

Given all of the above we can finally state the main problem of the thesis –
Equitable Connected Partition (ECP) of the graph, which is the prob-
lem of partitioning a graph into a given number of partitions, such that each
partition induces a connected subgraph, and the partitions differ in size by at
most one. [3] Formally:

▶ Definiton 2.3. Equitable Graph Partitioning Let G = (V, E) be an
undirected graph. We say that V1, V2, . . . , Vr is a partitioning of V if and only
if ⋃r

i=1 Vi = V , and for all i, j, 1 ≤ i < j ≤ r, Vi ∩ Vj = ∅. A partitioning is
equitable if for all i, j, 1 ≤ i < j ≤ r, ||Vi| − |Vj || ≤ 1.[3]

The importance of the ECP problem comes from the fact of its ability to
partition datasets or systems into connected components while maintaining
balance and connectivity, making it a fundamental problem with diverse real-
world applications, such as: VLSI circuit design [4], parallel computing [5],
and image processing [6], among others. As we already know from previous
research:

2.1 Graph Notions

For graph-theoretical notation, we follow the monograph by Diestel [7].

▶ Definiton 2.4. A simple undirected graph G is a pair (V, E), where V is
a non-empty set of vertices and E ⊆ (V 2) is a set of edges. We set n = |V |
and m = |E|.

▶ Definiton 2.5. A graph is connected if for every pair of vertices u, v ∈
V , there exists a sequence of distinct vertices v1, . . . , vℓ such that v1 = u,
vℓ = v, and {vi, vi+1} ∈ E for every i ∈ [ℓ − 1].

▶ Definiton 2.6. Given a vertex v ∈ V , the neighborhood of v is N(v) = {u |
{u, v} ∈ E}. The size of the neighborhood of a vertex v is its degree, denoted
as deg(v) = |N(v)|.

▶ Definiton 2.7. A vertex cover of a graph G can also more simply be
thought of as a set S of vertices of G such that every edge of G has at least one
of member of S as an endpoint. The vertex set of a graph is therefore always
a vertex cover.

▶ Definiton 2.8. The smallest possible vertex cover for a given graph G is
known as a minimum vertex cover [8]. The size of the vertex cover of a graph
G is called the vertex cover number, denoted τ(G).

▶ Definiton 2.9. A set of vertices is a vertex cover iff its complement forms
an independent vertex set [8]

Parametrized complexity 5

From now one all graphs mentioned in this thesis are simple, which means
that they are unweighted, undirected, without loops and multiple edges (unless
stated otherwise).

2.2 Parametrized complexity

In computer science, parameterized complexity is a branch of computational
complexity theory that focuses on classifying computational problems accord-
ing to their difficulty with respect to multiple parameters of the input or out-
put. The complexity of a problem is then measured as a function of those
parameters. This allows the classification of NP-hard problems on a finer scale
than in the classical setting, where the complexity of a problem is only mea-
sured as a function of the input size. This appears to have been first demon-
strated in Gurevich, Stockmeyer & Vishkin [9]. The first systematic work on
parameterized complexity was done by Downey & Fellows [10]. For detailed
understanding of parameterized complexity I refered to these literature [11, 12,
13], and further on represent a short compilation of it. The NP-hardness of a
problem implies that, unless P = NP, there is no polynomial-time algorithm
that is able to solve it. This can be solved by analyzing parameterized com-
plexity of the problem. In this case, the running time is analyzed in finer detail:
instead of expressing it as a function of the input size, one or more parameters
of the instance are defined, and we investigate the effect of these parameters
on the running time. The goal is to design algorithms that work efficiently if
the parameters of the input instance are small (even if the size of the input is
large). [14] Thus, the main objective is to bound the computational challenge
of the ”hard” part of the problem by this one or more parameters(k), while
ensuring that the remaining part, which depends on the input size (n), can be
solved efficiently

The existence of efficient solving algorithms for NP-hard problems is con-
sidered unlikely, if input parameters are not fixed; all known solving algorithms
for these problems require time that is exponential in the total size of the input.
However, some problems can be solved by algorithms that are exponential only
in the size of a fixed parameter while polynomial in the size of the input. Such
an algorithm is called a fixed-parameter tractable (FPT) algorithm, because
the problem can be solved efficiently (i.e., in polynomial time) for constant
values of the fixed parameter.

▶ Definiton 2.10. Problems in which some parameter k is fixed are called
parameterized problems.[13]

▶ Definiton 2.11. A parameterized problem that allows for such an FPT
algorithm is said to be a fixed-parameter tractable problem and belongs to the
class FPT.

.

Kernelization 6

For equitable connected partition, parameterized complexity offers a sys-
tematic approach to handle its computational complexity. By focusing on
the parameter k, which could represent factors such as partition balance or
graph structural properties, FPT algorithms efficiently manage the inherent
complexities of the problem, providing a more effective solution than tradi-
tional algorithms solely based on input size. In parameterized complexity the
central notion of efficiency is fixed parameter tractability. FPT contains the
fixed parameter tractable problems, which are those that can be solved in
time f(k) · |x|O(1) for some computable function f. Typically, this function
is thought of as single exponential, such as 2O(k), but the definition admits
functions that grow even faster. This is essential for a large part of the early
history of this class. The crucial part of the definition is to exclude functions of
the form f(n, k), such as kn. The running time of a fixed parameter tractable
algorithm is polynomial in the size of the input but can be exponential in terms
of parameters.

A surprisingly large number of intractable problems have been shown to
exhibit fixed parameter tractable algorithms. A kernelization algorithm is a
polynomial time algorithm reducing instances of parameterized problems to
equivalent instances whose size can be upper bounded by a function of the
parameter. Thus kernelization can be seen as a refinement of the notion of the
classical polynomial time tractability from a parameterized perspective.

▶ Theorem 2.12. The parameterized problem is said to admit a kernel if
there is a polynomial time algorithm (the degree of polynomial is independent
of k), called a kernelization algorithm, that reduces the input instance down to
an instance with size bounded by some function h(k) of k only, while preserving
the answer. If the function h(k) is polynomial in k, then we say that the problem
admits a polynomial kernel.

In this thesis we would consider the kernelezation of The ECP problem
with vertex cover (k) as fixed parameter, which in fact will prove:

▶ Theorem 2.13. Equitable Connected Partition is in FPT with respect to
the minimum size of a vertex cover vc(G). [3]

2.3 Kernelization

Kernelization is a powerful technique used in parameterized complexity theory
to preprocess instances of a problem, reducing them to a simpler form while
preserving the answer to the problem. The goal of kernelization is to decrease
the size of the problem instance while preserving its initial characteristics. In
essence, kernelization separates the easy part of the problem, which can be
solved efficiently, from the hard part (essential complexity of the problem),
which is encapsulated in the parameter k.

Kernelization 7

▶ Definiton 2.14. A kernelization algorithm for a parameterized prob-
lem L ⊆ Σ∗ × N is an algorithm that, for an instance (I, k) ∈ Σ∗ × N, runs in
time O(|I|c), where c is a constant, returns an instance (I ′, k′) ∈ Σ∗ × N, and
the following properties hold:

(I, k) ∈ L if and only if (I ′, k′) ∈ L,

k′ ≤ k,

|I ′| ≤ g(k), for some function g : N → N. [15]

Thus, the result of a the kernelization algorithm is referred to as a kernel,
with the function g denoting its size. If the function g is polynomial, the kernel
is to be considered polynomial as well.

▶ Example 2.15. As for our problem: an ETC problem admits a polynomial
kernel if there is a polynomial time algorithm that for any instance (G, k)
of the problem outputs a new instance (G′, k′) such that G′ has number of
vertices bounded by k′ and G has a vertex cover at most k if and only if G′

has a vertex cover of size at most k′.

The kernelization process typically begins with the identification of problem-
specific reduction rules.

▶ Definiton 2.16 (Reduction rule). Reduction rule A reduction rule for a
parameterized problem L ⊆ Σ∗×N is a function ϕ : Σ∗×N → Σ∗×N, such that,
for an instance (I, k) ∈ Σ∗ × N, the function ϕ is computable in polynomial
time with respect to both k and the size of I, and returns an equivalent instance
(I ′, k′). [15]

These rules are then applied iteratively to the input instance in order to
simplify it while preserving the solution’s existence. The process continues
until no further reduction is possible, resulting in a reduced instance (kernel)
of initial input which retains the essential complexity of the original problem
while significantly decreasing its size. Finally, a fixed-parameter tractable
algorithm is applied to the kernel to find the solution.

The significance of polynomial kernels lies in their relationship with fixed-
parameter tractability (FPT) algorithms. If a problem has a polynomial kernel,
then it is fixed-parameter tractable, meaning there exists an algorithm that
can solve the problem efficiently in fixed-parameter time.

The following paragraphs are a condensed compilation of important facts
inspired by [14], that are important for further development of our problem:
The relationship between kernelization, FPT complexity, and the P = NP
problem is complex. If we start with an instance I of an NP-hard problem
and can show that in polynomial time we can replace this with an equivalent
instance I ′ with |I ′| < |I|, then that would imply P =NP. While the existence
of a polynomial kernel for a problem implies that it is not NP-hard, it does
not necessarily mean that P = NP.

N-Fold integer programming 8

Furthermore, some problems are fixed-parameter tractable but still NP-
hard, indicating that fixed-parameter tractability and polynomial kernels do
not fully resolve the P = NP question. However, kernelization offers a pow-
erful tool for efficiently solving certain NP-hard problems since it has become
possible to derive upper and lower bounds on the sizes of reduced instances
(kernels).

2.4 N-Fold integer programming

In this section, we introduce the concept of N-fold integer programming, a
powerful technique that forms the backbone of our approach to addressing the
Equitable Connected Partition problem’s kernel.

We start by introducing the concept of linear integer programming, which
serves as a foundation for understanding the more general case of N-fold in-
teger programming. Linear integer programming is a simpler form, where the
objective function is the sum of a single linear function. Then, we extend
this concept to N-fold integer programming, where the objective function is
the sum of N linear functions. Each linear function may have its own set of
variables and coefficients. The goal is to find integer values for the variables
that optimize the objective function. Therefore, linear integer programming
can be seen as a specific case of N-fold integer programming where N is 1.

▶ Definiton 2.17. The integer programming problem is an optimization prob-
lem, where N denotes the set of non-negative integers, A is an integer matrix
and b, c are integer vectors of suitable dimensions: min{cT x | Ax = b, x ∈ Nq}.
[16]

It is well-known to be generally NP-hard but polynomial time solvable in fixed
dimension q, see [17]. For easier understanding of the concept, let us explain
the essence of the method on an example

▶ Example 2.18. Problem:
A farmer wants to maximize profit by planting wheat and barley on 240 acres
of land. Each acre of wheat yields a profit of $40 and requires $60 investment,
while each acre of barley yields a profit of $30 and requires $50 investment.
The total budget for planting is $6000.

Objective: Maximize the profit.
Constraints:

Total land: x + y ≤ 240 acres
Total budget: 60x + 50y ≤ 6000
Non-negativity: x ≥ 0, y ≥ 0

Solution:

N-Fold integer programming 9

1. Objective Function:
Maximize Z = 40x + 30y

2. Constraints:

x + y ≤ 240
60x + 50y ≤ 6000
x ≥ 0, y ≥ 0

Standard Form of Linear Programming:

minimize cT x subject to Ax = b, x ∈ Nq

Where:
c = [−40, −30] is the cost vector, representing the coefficients of the objective function.
b = [240, 6000] is the right-hand side vector, representing the constraints.

A =
[

1 1
60 50

]
is the constraint matrix.

x = [x, y] is the vector of decision variables.
N represents the set of non-negative integers.
q = 2 represents the number of decision variables.

In recent years, integer linear programming (ILP) has become a very useful
tool in the design and analysis of fixed-parameter tractable algorithms [18].
One of the best known results in this line of research is probably Lenstra’s
algorithm, roughly showing that ILP with bounded number of variables is
solvable in FPT time [17].

Now, when we are set on what ILP is, we can go on with defining what
N-Fold IP is. Formally the n-fold integer programming problem is defined as
follows (remark here after we base on [16]):

▶ Definiton 2.19. Given a p × q integer matrix A, positive integer n, and
integer vectors b = (b0, b1, . . . , bn) and c = (c1, . . . , cn), where b0 ∈ Zq, bk ∈ Zp,
and ck ∈ Zq for k = 1, . . . , n, the problem is to find a non-negative integer
vector x = (x1, . . . , xn), where xk ∈ Nq for k = 1, . . . , n, that minimizes the
objective function cT x = ∑n

k=1 ckxk. This is subject to the following equations:
n∑

k=1
xk = b0, Axk = bk for k = 1, . . . , n

The term “n-fold integer programming” refers to the problem being al-
most separable into n similar programs: min{ckx : Axk = bk, xk ∈ Nq} in

N-Fold integer programming 10

fixed dimension. However, the constraint ∑n
k=1 xk = b0 binds these programs

together, resulting in an integer program in large variable dimension nq.
The n-fold matrix of A can be represented as the following (q + np) × nq

matrix, where Iq is the q × q identity matrix:
A 0 · · · 0
0 A · · · 0
...

...
0 0 · · · A
Iq Iq · · · Iq


Here, Iq is the q × q identity matrix.

▶ Theorem 2.20. Fix any integer matrix A. Then there is a polynomial
time algorithm that, given any n and any integer vectors b and c, solves the
corresponding n-fold integer programming problem.

Building upon previous example of linear programming, I will explain the
essence of the N-Fold method when introducing my solution to ECP inChap-
ter 4. In fact, N-Fold is in essence just N linear programming problems com-
bined together and represented as a matrix.

Chapter 3

Related work

My research is most based on finding provided in the referenced literature in my
assignment [19, 20, 2], The provided papers explore different aspects of graph
partitioning, with a focus on parameterized complexity, which can provide
context for my related work on ”equitable graph partition parametrized by
vertex cover.”

In the first paper by Rene van Bevern and colleagues, the focus is on
balanced partitioning, specifically Bisection and Vertex Bisection problems,
which involve partitioning a graph into equal-sized parts while minimizing the
number of edges or vertices that need to be removed to achieve this. The
paper highlights that while the Vertex Bisection problem can be particularly
challenging, being W[1]-hard when parameterized by both the number of ver-
tices removed and the number of resulting connected components, it becomes
fixed-parameter tractable (FPT) when the number of resulting connected com-
ponents is fixed. This insight is particularly relevant as it suggests a method-
ological approach because it enforces certain structural constraints (like fixed
connected components).

Further, they emphasize that the equitable partitioning can be explored
with a similar parameterized approach by focusing on the vertex cover as a
parameter.

The extension of these findings to equitable partitions would involve lever-
aging the small vertex cover size to manage the complexity of partitioning,
ensuring each part is not only equal in size but also retains necessary con-
nectivity properties. The approach would likely involve iterative methods to
test all possible partitions that can be derived from the vertex cover and the
independent set, as outlined in their discussions on algorithmic adaptability
for partitioning into more than two parts.

Overall, the research presented in these papers provides foundational algo-
rithms and complexity results that could be adapted and extended to the study
of equitable graph partitions parameterized by vertex cover. One good direc-
tion for research is to enhance the algorithm provided by me using Balancing

11

12

Lemmata by [20].

Chapter 4

Current work

In this section, we propose a new kernelization algorithm for Equitable graph
partition problem parameterized by vertex cover number.

For simplicity, in what follows, any graph mentioned is simple, which means
that they are unweighted, undirected, without loops and multiple edges. Each
graph has its vertex cover Vc together with a positive integer k, which refers to
the size of the vertex cover Vc . Similarly, a set of vertices I corresponds to the
complement of the vertex cover Vc, i.e., independent set of the given graph G.

Let us recall the problem we are dealing with:

▶ Definiton 4.1 (Equitable Connected Graph Partitioning Problem). Let
G = (V, E) be a simple graph with vertex cover set Vc ⊆ V , |Vc| = k, where
k ∈ N. We say that W1, W2, . . . , Wl, where l ∈ N is the Equitable Con-
nected Graph Partition if:⋃l

i=1 Wi = V ,

The subgraph induced by each Wi is connected

|Wi| = |Wj | ± 1 for all i, j.

In this section, we introduce a new way to solve the Equitable Graph
Partition problem, focusing on the size of the vertex cover. Let’s start by
formally defining the problem: given a simple graph G = (V, E) and a vertex
cover Vc of size k, we aim to split the graph into connected parts, with each
part having about the same number of vertices and being connected.

Our method involves several steps:

1. Firstly, we introduce a function dividing the vertex cover into distinct sub-
sets. This function generates all possible variations, thereby all potential
mappings of vertex cover vertices to partitions.

13

14

2. Subsequently, we process each generated mapping. To reinforce the con-
nectivity of the resulting partitions, we allocate k or fewer vertices, from
the independent set to each subset of the vertex cover.

3. Next, we write down the constraints of the Equitable Graph Partition
problem, converting them further into N-Fold matrix.

4. Finally, we solve this matrix to find the solution to the Equitable Graph
Partition problem and demonstrate the equivalence between the Equitable
Graph Partition problem and its representation in the form of an N-Fold
matrix.

By following these steps, we hope to come up with a good way to solve the
Equitable Graph Partition problem efficiently and understand it better using
the matrix representation.

We begin dealing with the problem with a simple observation: For any i
from 1 to l, Wi ∩ Vc = ∅.

This is because each partition Wi is connected, as required by the problem
definition. If Wi did have at least one vertex from the vertex cover, then
all its vertices would come from the independent set, meaning they are not
connected.

Since we want to consider ECP’s version parametrized by vertex cover we
start by finding vertex cover of the graph. For that purposes several algorithms
can be used: Greedy Algorithm, Approximation Algorithm using Maximal
Matching, Exact Algorithm using Brute-Force, Exact Algorithm using Integer
Linear Programming (ILP).

Among these algorithms, the greedy algorithm and the approximation al-
gorithm using maximal matching have the best time complexity. The greedy
algorithm has a better theoretical complexity, but the approximation algorithm
often gives better practical results.

Now that we have found the vertex cover, we define a function

f : V → [l]

which maps vertices from the vertex cover set with size k to partitions from
W1 to Wl, where l is the number of partitions. Each partition contains at
least one vertex from the vertex cover, due to our previous observation (i.e.,
Wi ∩ Vc, ∀i), which can be stated as:
f : [k] → [l] is lk.

f : [k] → [l]
This function separates Vertex cover into l subsets: Q1, . . . , Ql. The num-

ber n of such functions f : [k] → [l] is lk, as each element in the domain [k]
can be mapped to any of the l elements in the co-domain [l].
Moreover, since each partition contains at least one vertex from vertex cover:

where l ≤ k, thus n ≤ lk ≤ kk

15

Further on, we consider one by one all of the partitions of the vertex cover
produced by our function, which is, in fact, set of subsets of vertex cover:
Q1 · · · Ql. Since vertex cover vertices are already allocated to specific parts we
are only left to deal with Independent vertex set IS, where IS = V \ Vc. We
would like to break it into subsets IQ1 to IQl

, such that all vertices belonging to
IQi , for ∀i, neighbourhood of that vertex is equal to Qn. (∀v ∈ IQ : N(v) = Q).
Now that we have found the vertex cover, we define a function

f : V → [l]

which maps vertices from the vertex cover set with size k to partitions from
W1 to Wl, where l is the number of partitions. Each partition contains at
least one vertex from the vertex cover, due to our previous observation. (i.e.,
Wi ∩ Vc, ∀i), which can be stated as:
f : [k] → [l] is lk.

f : [k] → [l]

This function tries all possible non-empty subsets of the vertex cover. The
number n of functions f : [k] → [l] is lk, as each element in the domain [k] can
be mapped to any of the l elements in the co-domain [l].
Moreover, since each partition contains at least one vertex from vertex cover:

where l ≤ k, thus n ≤ lk ≤ kk .

▶ Remark 4.2. IQ ⊆ I is set of Independent vertices that are attached only to
vertices of a specific subset Q of the vertex cover.

To ensure connectivity of the k subsets of vertex cover we generated. We do
it by preassigning k or less vertices from independent set to make each partition
connected. We use k or less vertices because a tree is the least connected type
of graph, which need exactly k − 1 ≤ k edges to ensure connectivity.

To proceed with our kernelization process of the problem, we need to rep-
resent it in an N-fold programming form. Applying the N-fold form to the
problem of ECP involves dealing with both local and global constraints to find
an optimal division of a graph. Here’s how these concepts apply:

Local Constraints
Mutual Exclusivity Each vertex v in the graph G is assigned to one and

only one partition Wi.

Partition Coverage Ensures complete and exclusive coverage of all vertices
in the graph by the partitions.

16

Global Constraints
Total Equitability The overall partition must balance the number of vertices

across subgraphs as evenly as possible. This is a global constraint because
it concerns the relationship between all subgraphs rather than conditions
within any single one.

Now that I have outlined the local and global constraints, I proceed to
define these constraints in detail:

When addressing the Mutual Exclusivity when allocating the vertices from
an independent set into l partitions, I introduce l binary variables for each
vertex in the IS. These binary variables serve to denote whether a given ver-
tex is allocated to a particular partition. Specifically, let Xv1

1 , Xv1
2 , . . . , Xv1

l

represent the binary variables associated with vertex v1, where l denotes the
number of partitions. Consequently, the summation across all such variables
belonging to a single vertex is constrained to yield a value of 1, due to the fact
that each vertex is exclusively allocated to exactly one partition. Thus:

k∑
i=1

Xv
i = 1, for ∀v in the independent set. (4.1)

▶ Remark 4.3. To ensure that partitions stay connected we add the constraint:
all binary variables of form Xvn

k are set to zero if vertex vn is not connected
to any of the vertex cover vertices of the k − th partition.

To represent the global constraint that ensures all partitions have approx-
imately the same size, we can express it mathematically using the cardinality
of intersections and the sum of binary variables:

⌊
n

k

⌋
=

k∑
i=1

|Vc ∩ Wi| +
∑

v∈Vind

Xv
i for i ∈ [k] (4.2)

In this equation:

n is the total number of vertices in the graph.

k is the number of partitions.⌊
n
k

⌋
represents the floor function of n

k , ensuring that each partition has
approximately the same size.

Vc is the vertex cover of the graph.

Wi is the i-th partition.

Vind is the independent set of vertices.

Xv
i represents the binary variable associated with vertex v for partition Pi.

17

This equation states that the size of each partition (determined by the
floor function) should be equal to the sum of the cardinality of the intersection
between the vertex cover and the i-th partition, plus the sum of all binary
variables associated with independent vertices belonging to the i-th partition,
for each i from 1 to l.

Thus, we come to the following N-Fold form:

M =



1 1 . . . 1 0 . . . 0
0 0 . . . 0 1 . . . 1
...

...
...

0 0 . . . 0 0 . . . 0
1 1 . . . 1 1 . . . 1

|Vc ∩ W1| |Vc ∩ W2| . . . |Vc ∩ Wk| Xv
1 . . . Xv

k
...

...
...

|Vc ∩ W1| |Vc ∩ W2| . . . |Vc ∩ Wk| Xv
1 . . . Xv

k


Now that I was able to represent ECP in form of an N-fold matrix I can

apply The Hemmecke-Shmuel-Romanczuk algorithm, which is an efficient al-
gorithm for solving N-fold integer programming problems, presented in details
in this paper. [21] Thus, by applying following algorithm we obtain the main
objective of this thesis:

▶ Theorem 4.4. The Kernel for the Equitable Graph Partition prob-
lem, parameterized by the vertex cover of the input graph, can be found in time
complexity 2O(k2) · nO(1), where n is the number of vertices in the graph and k
is the size of the vertex cover.

To establish the theorem, I need to demonstrate the equivalence between
the Equitable Connected Graph Partitioning (ECP) problem and its
representation in the form of an N-Fold matrix. Specifically, I aim to establish
that the existence of a solution for the ECP implies the existence of a cor-
responding solution for the N-Fold matrix representation. Conversely, I seek
to prove that the presence of at least one solution for the N-Fold matrix im-
plies the existence of a solution for the ECP. This bidirectional correspondence
underscores the equivalence between the two problem formulations. Formally:

▶ Theorem 4.5. Let G = (V, E) be a graph with vertex set V and edge
set E. Let k be the number of partitions in the ECP problem, and let M be
the corresponding N-Fold matrix representation. The Equitable Connected
Graph Partitioning problem is equivalent to its representation as an N-Fold
matrix if and only if the following statements hold:

1. If there exists a solution S for the ECP problem, then there exists a corre-
sponding solution x for the N-Fold matrix M .

2. Conversely, if there exists at least one solution x for the N-Fold matrix M ,
then there exists a solution S for the ECP problem.

18

Proof.
Statement one To prove the first statement, we need to show that if there
exists a solution S for the Equitable Connected Graph Partitioning (ECP)
problem, then there exists a corresponding solution Q for the N-Fold matrix M .

Let’s state there exists a solution S for the ECP problem. We’ll proceed
to show that S corresponds to a valid solution Q for the N-Fold matrix M .

Since S is a solution for the ECP problem, it satisfies all the constraints of
the problem, including the connectivity constraint that each partition induces
a connected subgraph.

To begin, it’s important to establish that our proposed solution for the
Equitable Connected Graph Partitioning (ECP) problem, denoted as S, aligns
precisely with a single N-Fold matrix representation. This representation in-
cludes all predefined vertex assignments, including the partitioning of the ver-
tex cover into subsets and the assignment of vertices from the independent
set to ensure partition connectivity. Further one we will consider exactly this
specific N-Fold matrix. Moreover, we have to take into consideration (4.3).
For that we go through that all binary variables of form Xvn

k that were set to
zero in the N-Fold matrix, and check that vertex vn /∈ partition k. Thus the
constrain is satisfied.

We proceed to validate the size constraint(4.2). Given the partition size
is already determined by the solution S of our Equitable Connected Graph
Partitioning (ECP) problem, we assess the size constraint in the N-Fold matrix
representation form. Once we confirm that the obtained number aligns, the
constraint is verified.

Now, let’s interpret S as a solution for the N-Fold matrix M . For each
vertex v ∈ V , we assign v to the partition corresponding to its cluster in S.
Specifically, if vertex v belongs to partition i in S, then we set x∗

i = 1 and
x∗

j = 0 for all j ̸= i. Therefore, the set of conditions (4.1) for v is verified.
This assignment ensures that each vertex is assigned to exactly one par-

tition, satisfying the constraints of the N-Fold matrix M . Additionally, since
S satisfies the connectivity constraint of the ECP problem, each partition in-
duced by Q will be connected.

Therefore, we’ve shown that if there exists a solution S for the Equitable
Connected Graph Partitioning (ECP) problem, then there exists a correspond-
ing solution Q for the N-Fold matrix M .

Statement two To prove the second item, we need to show that if there
exists at least one solution Q for the N-Fold matrix M , then there exists a
solution S for the Equitable Connected Graph Partitioning (ECP) problem.

Let’s state there exists at least one solution Q for the N-Fold matrix M .
We’ll proceed to show that Q corresponds to a valid partitioning of the graph
G = (V, E).

Since Q is a solution for the N-Fold matrix M , it satisfies all constraints of
the linear programming problem associated with M . Specifically, for each row

19

of M , the sum of the variables xi corresponding to the partitions should equal
the total number of vertices in V . This ensures that each vertex is assigned to
exactly one partition and satisfies (4.1) constraint.

Now, let’s interpret Q as a partitioning of the vertices of G. For each ver-
tex v ∈ V , we assign v to the partition corresponding to the non-zero entry in
Q associated with v. Since Q satisfies the constraints of M , this assignment
ensures that each vertex is assigned to exactly one partition. Moreover, due
to remark (4.3) our preliminary vertex assignment guess and setting of some
binary variables to zero ensures connectivity and does not allow us to mod-
ify graph by adding non-existent edges, thus we do not create non-existent
solutions of ECP and satisfy the connectivity constraint.

Therefore, we’ve shown that if there exists at least one solution Q for the
N-Fold matrix M , then there exists a solution S for the Equitable Connected
Graph Partitioning (ECP) problem. To obtain the Equitable Connected Graph
Partitioning (ECP) solution from a solution in the N-Fold matrix representa-
tion, we need to interpret the values of the binary variables correctly.

Given a solution Q for the N-Fold matrix M , where Q = (Q1, Q2, . . . , Qk),
where k is the number of partitions, we can interpret each binary variable Xi

as follows:

If Xi = 1, then the corresponding vertex is assigned to partition i.

If Xi = 0, then the corresponding vertex is not assigned to partition i.

By interpreting the values of the binary variables in this way, we can obtain
a partitioning of the vertices of the graph G = (V, E) into k partitions.

Now, we are only left to prove that (4.2) holds, which is trivial after previous
step of the proof. We sum all of the binary variables representing vertices
belonging to same i − th partition in our N-Fold matrix to get the size of the
partition and check whether it corresponds to the size of partition we got for
ECP in previous step.

Therefore, by reading the values of the binary variables in the N-Fold
matrix solution, we can obtain a valid solution for the Equitable Connected
Graph Partitioning problem.

Chapter 5

Conclusion

This thesis provided a kernelization algorithm for the Equitable Connected
Graph Partition problem that returns a kernel in 2O(k2) · nO(1) time. The
result supports the idea that vertex cover number is a suitable parameter for
kernalizing the problem.

5.1 Further Work

This kernelization technique can be further improved by incorporating the
Balancing Lemma when distributing k vertices from the independent set to
ensure that the vertex cover subsets are connected.

In future research, exploring the integration of the Balancing Lemma into
the kernelization process for Equitable Connected Graph Partitioning (ECP)
problems could result in more efficient algorithms for solving ECP problems,
especially in scenarios where balanced connectivity is crucial, such as network
design and optimization.

20

Bibliography

1. FLOUDAS, Christodoulos A; PARDALOS, Panos M (eds.). Encyclopedia
of optimization. Boston, MA: Springer US, 2009.

2. BEVERN, René van; FELDMANN, Andreas Emil; SORGE, Manuel;
SUCHÝ, Ondrej. On the Parameterized Complexity of Computing Bal-
anced Partitions in Graphs. Theory of Computing Systems. 2016, vol. 58,
no. 4, pp. 709–745.

3. ENCISO, Rosa; FELLOWS, Michael R.; GUO, Jiong; KANJ, Iyad; ROSA-
MOND, Frances; SUCHÝ, Ondřej. What Makes Equitable Connected
Partition Easy. Parameterized and Exact Computation,Lecture Notes in
Computer Science. 2009, vol. Not available, pp. 122–133. issn 0302-9743,
issn 1611-3349. Available from doi: 10.1007/978-3-642-11269-0_10.

4. BHATT, Sandeep N.; LEIGHTON, Frank Thomson. A framework for
solving VLSI graph layout problems. Journal of Computer and System
Sciences. 1984, vol. 28, no. 2, pp. 300–343. Available from doi: 10.1016/
0022-0000(84)90071-0.

5. ARBENZ, Peter; LENTHE, G. Harry van; MENNEL, Uche; MÜLLER,
Ralph; SALA, Marzio. Multi-level µ-finite element analysis for human
bone structures. In: KÅGSTRÖM, Bo; ELMROTH, Erik; DONGARRA,
Jack; WAŚNIEWSKI, Jerzy (eds.). Proceedings of the 8th International
Workshop on Applied Parallel Computing, PARA ’06. Springer, 2007,
vol. 4699, pp. 240–250. Lecture Notes in Computer Science. Available
from doi: 10.1007/978-3-540-75755-9_30.

6. LUCERTINI, Mario; PERL, Yehoshua; SIMEONE, Bruno. Most uniform
path partitioning and its use in image processing. Discrete Applied Math-
ematics. 1993, vol. 42, no. 2, pp. 227–256. Available from doi: 10.1016/
0166-218X(93)90048-S.

7. DIESTEL, Reinhard. Graph Theory. 5th. Springer, Berlin, Heidelberg,
2017. Available from doi: 10.1007/978-3-662-53622-3.

21

https://doi.org/10.1007/978-3-642-11269-0_10
https://doi.org/10.1016/0022-0000(84)90071-0
https://doi.org/10.1016/0022-0000(84)90071-0
https://doi.org/10.1007/978-3-540-75755-9_30
https://doi.org/10.1016/0166-218X(93)90048-S
https://doi.org/10.1016/0166-218X(93)90048-S
https://doi.org/10.1007/978-3-662-53622-3

Bibliography 22

8. PEMMARAJU, Sriram; SKIENA, Steven. Computational Discrete Math-
ematics: Combinatorics and Graph Theory with Mathematica®. Cam-
bridge University Press, 2003.

9. GUREVICH, Yuri; STOCKMEYER, Larry; VISHKIN, Uzi. Solving NP-
hard problems on graphs that are almost trees and an application to
facility location problems. Journal of the ACM. 1984, pp. 459–473.

10. DOWNEY, Rod G.; FELLOWS, Michael R. Parameterized Complexity.
Springer, 1999. isbn 978-0-387-94883-6.

11. DOWNEY, R. G.; FELLOWS, M. R. Fundamentals of Parameterized
Complexity. Springer, 2013.

12. FLUM, J.; GROHE, M. Parameterized Complexity Theory. Springer, 2006.
13. NIEDERMEIER, Rolf. Invitation to Fixed-Parameter Algorithms. Oxford

University Press, 2006. isbn 978-0-19-856607-6.
14. MARX, D. Parameterized Complexity and Approximation Algorithms.

The Computer Journal. 2007, vol. 51, pp. 60–78. issn 0010-4620, issn
1460-2067. Available from doi: 10.1093/comjnl/bxm048.

15. FOMIN, Fedor V.; LOKSHTANOV, Daniel; SAURABH, Saket; ZEHAVI,
Meirav. Kernelization: Theory of Parameterized Preprocessing: Theory
of parameterized preprocessing. United Kingdom: Cambridge University
Press, 2019. isbn 978-1-107-05776-0. Available from doi: 10.1017/9781107415157.
Publisher Copyright: © Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh,
and Meirav Zehavi 2019.

16. DE LOERA, Jesús A.; HEMMECKE, Raymond; ONN, Shmuel; WEIS-
MANTEL, Robert. N-fold integer programming. Discrete Applied Math-
ematics. 2007, vol. 155, no. 8, pp. 1020–1030. Available from doi: 10.
1016/j.dam.2007.06.009.

17. HENDRIK W. LENSTRA, Jr. Integer programming with a fixed number
of variables. Mathematics of Operations Research. 1983, vol. 8, no. 4.
Available from doi: 10.1287/moor.8.4.538.

18. GAVENČIAK, Tomáš; KOUTECKÝ, Martin; KNOP, Dušan. Integer
programming in parameterized complexity: Five miniatures. Discrete Op-
timization. 2022, vol. 44, p. 100596. Available from doi: 10.1016/j.
disopt.2020.100596. Optimization and Discrete Geometry.

19. KNOP, Dušan; KOUTECKÝ, Martin. Scheduling Kernels via Configu-
ration LP. In: ESA. 2022.

20. MNICH, Matthias; WIESE, Andreas. Scheduling and fixed-parameter
tractability. Mathematical Programming. 2015, vol. 154, no. 1-2, pp. 533–
562.

https://doi.org/10.1093/comjnl/bxm048
https://doi.org/10.1017/9781107415157
https://doi.org/10.1016/j.dam.2007.06.009
https://doi.org/10.1016/j.dam.2007.06.009
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1016/j.disopt.2020.100596
https://doi.org/10.1016/j.disopt.2020.100596

Bibliography 23

21. HEMMECKE, Raymond; ONN, Shmuel; ROMANCHUK, Lyubov. N-
fold integer programming in cubic time. Mathematical Programming. 2009,
vol. 120, no. 1, pp. 263–279.

	Acknowledgments
	Declaration
	Abstract
	List of abbreviations
	Introduction
	Contribution
	Paper Organization

	Preliminaries
	Graph Notions
	Parametrized complexity
	Kernelization
	N-Fold integer programming

	Related work
	Current work
	Conclusion
	Further Work

