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Abstract

With Machine Learning (ML) gaining broader adoption and popularity, a new
paradigm focused on applying DevOps methodology to ML systems, known
as Machine Learning Operations (MLOps), has emerged. This thesis investi-
gates the application of the MLOps paradigm to the development life cycle of
an application utilizing ML provided by Profinit EU. In this thesis, MLOps is
introduced, its principles are described, and an overview of select MLOps tools
is provided. Based on this information, a pipeline to apply MLOps principles
is designed. The provided application is migrated to a cloud environment,
where the designed pipeline is implemented and used with the application.

Keywords MLOps, machine learning, cloud computing, DevOps, pipeline
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Abstrakt

S rastúcou popularitou strojového učenia (ML) sa objavila nová paradigma za-
meraná na aplikáciu metodiky DevOps na systémy ML, známa ako Machine
Learning Operations (MLOps). Táto práca skúma aplikáciu paradigmy MLOps
na životný cyklus vývoja aplikácie využívajúcej ML, poskytnutej spoločnosťou
Profinit EU. V práci je predstavená MLOps paradigma, opísané jej princípy
a uvedený prehľad vybraných nástrojov MLOps. Na základe týchto informácii
je navrhnutá pipeline na aplikovanie princípov MLOps. Poskytnutá aplikácia
je migrovaná do cloudového prostredia, kde je navrhnutá pipeline implemen-
tovaná a použitá s aplikáciou.

Klíčová slova MLOps, strojové učenie, cloud computing, DevOps, pipeline
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Introduction

Machine learning roots date back to the 1950s when Arthur Samuel invented
a program calculating each side’s winning chance in checkers. Since then, this
field has come a long way and has been unwinding faster and faster in the last
few years.

The advancements in this field have enabled us to use computers to accom-
plish tasks that were once thought impossible for them to achieve. From the
perspective of many researchers, the exploration of the capabilities of machine
learning is not showing signs of slowing down or stopping. To quote Dave Wa-
ters, “A baby learns to crawl, walk and then run. We are in the crawling stage when
it comes to applying machine learning.” [1].

In the same way, the baby who is learning to crawl needs to be taken care
of and looked after; machine learning needs to be looked after. The company
Profinit EU is fully aware of this fact and wants to get its machine learning
projects to crawl successfully. That is why they have offered to support re-
search and experiments in a new field called machine learning operations, or
MLOps for short. MLOps has emerged based on machine learning needs and
the needs of the people involved.

Machine learning operations are still in their infancy, so together with Pro-
finit EU, we see the need to experiment and explore this field to gain knowl-
edge and share it with others. Hopefully, this thesis will unveil the intricacies
of teaching the baby to crawl.

To apply our newly gained knowledge, an application utilizing machine
learning is provided by Profinit EU. We hope to be able to evaluate our strategy
and choices using this application and try to apply the MLOps principles when
deploying the application to the cloud services.

At the beginning of this thesis, the goal is to see and understand the ideas
of more experienced individuals. As mentioned before, since this field is rel-
atively new, it is essential to consider many opinions to get the whole picture.
Later, some of the tools in the vast landscape of MLOps tools will be described,
and some will be chosen based on our needs. Sometimes, the choices may be
excessive for our current use case, but they can be seen as necessary to gain uni-
versally applicable knowledge. After choosing the tools for the job, the plan is
to apply and integrate those tools to get the best experience possible. Finally,
we will look back and evaluate our solution to problems posed by machine
learning and reflect on the freshly gained insight into the new field of MLOps.
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To summarize, this thesis strives to advance the field of machine learning
by addressing the problems with the development and operations of machine
learning models and improving the state of the application provided by Pro-
finit EU along the way.
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Thesis’s Objective

The primary goal of this thesis is to get a good grasp of the MLOps paradigm
and its principles and later utilize them in designing a pipeline using tools
intended to help successfully implement this paradigm. The designed pipeline
will be implemented and used with an application provided by the company
Profinit EU.

At the beginning of this thesis, the reader will be introduced to the MLOps
paradigm and its principles. Since MLOps is the set of practices applied to
machine learning projects, we will introduce machine learning and parts of its
life cycle. Next, we will look at the tools available in the MLOps ecosystem
and choose the ones we see fit based on our needs and criteria. Following that,
there will be an overview of the application provided by Profinit EU.

Towards the end of this thesis, a pipeline that covers most of the steps in-
volved in successfully applying MLOps will be designed. The designed pipeline
will be implemented in a cloud environment and used with the provided ap-
plication, which will also be migrated to a cloud environment. After achieving
the goals we set out to do, we will reflect on our choices and offer our opinion
on how the solution could be enhanced or adjusted.

3



CHAPTER 1
Machine Learning Operations

At the beginning of this chapter, we will define machine learning and look at
the main differences between machine learning and traditional software devel-
opment. Based on the literature, we will highlight the challenges of machine
learning. Next, we will look at what steps a machine learning life cycle can
be comprised of and learn about a formalized process model to improve the
success of machine learning projects. Lastly, we will define the main focus of
the thesis, machine learning operations, and its principles.

1.1 Machine Learning

Machine Learning (ML) is a field of computer science focused on the develop-
ment of algorithms that allow computers to learn and improve from data [2].
With the trend of collecting data growing exponentially [3], ML has proven to
be a powerful tool for a wide range of problems. It is often used to solve tasks
that can be too complex to be solved traditionally. The main thing that differ-
entiates ML from traditional software is that instead of telling your computer
how to transform the data, you can provide the outputs and let your computer
figure out the pattern using an ML model [4] as shown in the diagram 1.1.

Data

Outputs

Machine

Learning
Patterns

Data

Patterns

Traditional

Software
Outputs

Figure 1.1: The computer learns the patterns instead of requiring hand-
specified patterns to calculate the outputs [4].
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1.2. Machine Learning Life Cycle

The difference between traditional software and ML allows the former to
use strong abstraction boundaries, encapsulation, and modular design, which
help create maintainable code [5]. However, the use of ML is necessary when
the desired behavior cannot be expressed in software logic without relying on
external data [6].

For us, this stresses that ML projects are composed of not just the model.
Many exceptional researchers argue that the data is the most critical part of
ML projects [7].

After considering the data and model, there is also the need to integrate
the ML model into existing software using code. This outlines the three levels
of change in ML projects – data, model, and code – where the trigger for a
build might come from [8]. One of the first papers focused on highlighting the
topic of technical debt in ML gave a name to this principle: Changing Anything
Changes Everything (CACE). [6]

1.1.1 Challenges with ML
The book IntroducingMLOps summarizes the three key reasons why managing
ML projects life cycle at scale is challenging [9]:

• Dependencies. As can be seen, there are many dependencies when de-
veloping an ML project. Data is not the only thing constantly changing;
often, business needs shift with time. Results must be monitored and
analyzed to ensure the expectations meet the original goal.

• Language barrier. ML project life cycle involves many people from dif-
ferent areas. These people often do not share the fundamental skills that
enable efficient communication.

• Staff skills. Data scientists are the main ingredient in ML project devel-
opment. The thing is that they are specialized in model building and
assessment rather than software development. Though this may change
over time, juggling many roles is often problematic.

Together, these areas pose a reason why most of the ML projects started in
companies never get deployed in the production [10].

1.2 Machine Learning Life Cycle

To get a feel for the steps that need to be taken to develop ML projects, we will
look at a high-level overview of ML life cycle and then introduce a formalized
process model. The actual steps taken in practice can vary significantly based
on the exact project requirements.

1.2.1 High-level Overview of ML Life Cycle
ML projects aim to build a statistical model by applying machine learning al-
gorithms to collected data and then provide the created model or use its in-
sights. This goal outlines a ML life cycle that can be divided into three high-
level phases: data engineering, model engineering, and model deployment.
Each of these three phases includes multiple steps that lead to the successful
creation of ML projects. [11]

5



1.2. Machine Learning Life Cycle

1.2.1.1 Data Engineering

For any data science project, acquiring and preparing the data for analysis is
necessary. The data can come from many sources in a variety of different for-
mats. In this phase, insights have to be gained from this data, and the goal is
to create training, validation, and testing datasets for the ML algorithms. This
phase might be comprised of the following steps [12, 13]:

• Data collection. First, the data needs to be collected using various frame-
works and formats. The data can also be generated or artificially en-
riched.

• Data exploration. The data needs to be profiled, and information about
the content and structure of the data needs to be obtained. Data scientists
use many metrics and visualizations of the data to gain knowledge and
intuition about the characteristics of the data. This intuition is then used
to choose the right methods in later steps.

• Data wrangling. This step is comprehensive and may involve various
activities. These include restructuring the obtained data, cleaning the
dataset, engineering new features, and enriching the data with addi-
tional context, among others.

• Data validation. To ensure there are no errors in the data, it should be
validated before continuing to the next phases. Skipping this step can
lead to failure to achieve the goal in the next phases.

• Data labeling. For supervised learning applications, the data points
need to be labeled to derive insights from the data later. This process can
be done manually or automated with other tools using machine learning.
Wrong labels can lead to incorrectly derived insights from the data later.

• Data splitting. To be able to train the machine learning models and later
validate their performance, the obtained data should be split into train-
ing, validation, and test datasets. The training dataset should contain
enough information for the model to derive insights and represent the
dataset as a whole. A validation dataset is used for hyperparameter op-
timization, influencing the model directly. The test dataset is separate
from the whole process to get an independent overview of the model’s
performance [14].

1.2.1.2 Model Engineering

The model engineering phase can start after the data is prepared in the data
engineering phase. Model engineering is the core phase of the ML life cycle
where the engineers write and execute ML algorithms to obtain an ML model.
The algorithms are provided with the data obtained and processed in the pre-
vious phase. The goal is to get a model that is the best possible for our use
case. We can achieve that by taking the following steps [12, 15]:

• Model selection and training. In this step, the engineer needs to design
or select a model architecture that provides the best results. Multiple
models are often chosen at first, and some may already be pre-trained.

6



1.2. Machine Learning Life Cycle

Then, they are trained and validated to find the best candidate. Based
on the validation results, the parameters of the models are optimized in
a process called hyperparameter optimization. After choosing the best
parameters, the model is then trained until the performance goal or other
conditions are met [14]. This final training is often the most resource-
intensive part of the ML life cycle.

• Model testing. After the final training of the model with the optimized
parameters, the model needs to be evaluated and tested to see the gen-
eralization error on unseen data that have not had any impact on the
model training. If the error rate is too high or the business objectives are
not met, it is necessary to re-initiate the model selection and training step
again.

• Model packaging. When the tests are successful, the model needs to
be serialized and packaged with the consideration of how it is going to
be deployed. There are multiple possible package formats, each with its
pros and cons [16].

1.2.1.3 Model Deployment

To successfully deliver an ML project, the model must be somehow provided
to the application that utilizes it. This can be done in various ways. After pro-
viding the model, this phase is still not finished since it is necessary to monitor
the model to observe its performance in production. The model deployment
phase may include these steps:

• Model serving. Depending on the context of the application, there are
multiple approaches to serving the final model. For example, the model
can be available as a service, dependency of the final application, the
predictions can be precomputed and stored in a database, and many oth-
ers. Based on the needs, the model can be served from different environ-
ments such as ML platform, Kubernetes cluster, serverless functions, and
others. [12]

• Model monitoring. After serving the model, we need to monitor it to
assess its performance in production. There are multiple performance
metrics that can be monitored. For example, monitoring should detect
data and concept drifts since they often have a big impact on the model’s
performance. Data drift covers the changes to the data distribution of in-
puts compared to training data input distribution. Concept drift is when
the properties of the target variable change. According to the monitoring
results, the engineers should investigate and take the necessary steps, or
an automated action can be performed. [17]

1.2.2 CRISP-ML(Q) – ML Process Model
The machine learning life cycle is often a complex process, which is why it can
benefit from standardization. With the rising interest in this field, efforts were
made to create a standard process model.

In 2019, a conference paper by Amershi et al. [18] described a machine learn-
ing life cycle of projects at Microsoft. This was later revised and built upon by

7



1.2. Machine Learning Life Cycle

a 2021 paper by Studer et al. [19], which proposed a process model for the de-
velopment of machine learning expanding on CRISP-DM¹ model.

This process model is called CRoss-Industry Standard Process model for
the development of Machine Learning applications with Quality assurance
methodology (CRISP-ML(Q)). It proposes six phases displayed in diagram 1.2,
from defining the scope to maintaining the deployed ML application.

CRISP-ML(Q)
Process Model

Business and
Data

Understanding

Data
Preparation

Modeling

Evaluation

Deployment

Monitoring
and

Maintenance

Figure 1.2: Illustration of the six phases of CRISP-ML(Q) process model [19].

For each phase of the model, the quality assurance approach requires the
definition of requirements and constraints. After that, the specific tasks can
be instantiated. In each task, specific risks that might negatively impact the
efficiency and success of ML project need to be identified. Quality assurance
methods are used to mitigate these risks. [19]

Each of the six phases is described below in some detail to show what the
phase’s concern is.

1.2.2.1 Business and Data Understanding

The initial phase concerns defining the business objectives, translating them
to ML objectives, collecting and verifying the data quality, and assessing the
project feasibility. In this step, measurable success criteria should be defined.
Based on these criteria, decisions should be made in the process’s later steps.

¹ Proposed standard process model for data mining. See paper [20].
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1.2.2.2 Data Preparation

Using the insights from the preceding data understanding phase, this phase
produces a data set for the following modeling phase. During this phase, the
data is selected and cleaned. New features are derived from the existing ones
and standardized.

1.2.2.3 Modeling

This is an ML-specific part of the process. This phase aims to specify one or
several models to be deployed in the production. Generally, it includes model
selection, model specialization, and model training tasks. Various metadata
should be collected to ensure the method and results are reproducible. If the
modeling phase reveals erroneous data, backtracking to the data preparation
phase is necessary.

1.2.2.4 Evaluation

The model engineering phase is followed by a model evaluation phase, often
known as offline testing. The performance of the model needs to be examined
on a test set. Checking the model’s robustness using noisy or wrong input data
is also preferred.

Documenting all outcomes of this phase is recommended, as is the case
with the preceding phases. The model deployment decision should be made
by domain experts using the success criteria defined in previous phases. If the
developers cannot meet the success criteria, a decision to backtrack to earlier
phases or stop the project may be in place.

1.2.2.5 Deployment

The deployment phase focuses on the process of ML model integration into
the existing software system. Deployment approaches differ depending on
the use case and the fashion of prediction. Most often, predictions are done in
batches or online.

Tasks in this phase include evaluating hardware requirements for infer-
ence, model evaluation in the production environment, testing, planning for
outages, and setting up the deployment strategy for new model versions.

1.2.2.6 Monitoring and Maintenance

Without maintaining and monitoring the model, there are risks of performance
degradation. This can lead to false predictions and can cause errors in the sub-
sequent systems depending on those predictions. The main risk is the “model
staleness” effect, which occurs when the model’s performance drops as it starts
operating on unseen data.

The best practice to avoid performance drops is to monitor and maintain
the model by evaluating the results and deciding whether re-training is neces-
sary. [19]
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1.3 Machine Learning Operations

To address at least some of the challenges of developing ML projects, a new
paradigm called Machine Learning Operations (MLOps) has emerged, com-
bining the practices from different fields: Machine Learning, DevOps, and
Data Engineering [21].

Machine
Learning

DevOps
Data

Engineering

MLOps

Figure 1.3: MLOps combines practices from different fields [21].

Much like other emerging technologies, there is no agreed-upon definition
for the term MLOps. The literature focused on conceptualizing this term often
highlights that MLOps is a paradigm aimed at getting the machine learning
projects to production by bridging the gap between Development (Dev) and
Operations (Ops) [22, 21]. Some go as far as to summarize it as applying De-
vOps methodology to ML systems [23]. Similarly to DevOps, it is character-
ized as streamlining and standardization of ML life cycle management [9].

Figure 1.4: Interest over time in MLOps based on Google Trends data [24].

This paradigm is quickly becoming a critical component in successful ML
project development. It is also reflected by the growing popularity of this
paradigm captured by Google Trends in figure 1.4.
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As mentioned before in the section 1.1 introducing ML, MLOps is trying
to tackle the complexity arising from the fact that ML projects are made up of
code, data, and models. This makes it the critical difference between MLOps
and DevOps, which is why the latter is not immediately transferable to the
development of ML projects.

Much like other paradigms, there is no one-fits-all way to implement MLOps
paradigm. What MLOps does is that it provides the practitioners with in-
sights and best practices to increase efficiency and help achieve business goals
faster. Unfortunately, due to the age and the broad scope of the life cycle of
ML projects, there are often discrepancies in the literature concerning the best
practices and application of this paradigm. [25]

1.3.1 DevOps
To get a better picture, let us look at DevOps software development methodol-
ogy. DevOps combines Development (Dev) and Operations (Ops) to increase
the efficiency, speed, and security of software development and delivery of
the product compared to traditional processes. This methodology provides a
competitive advantage thanks to being more nimble. [26]

The DevOps methodology aims to shorten the development life cycle and
provide continuous delivery with high quality. It comprises four key princi-
ples that guide application development and deployment effectiveness. The
key principles dictate the aspects of modern software development:

• Automation of the software development life cycle. It is necessary
to automate testing, builds, releases, and other manual tasks that slow
down the delivery process or can introduce human error.

• Collaboration and communication. Effective communication and col-
laboration are essential in DevOps.

• Continuous improvement and minimization of waste. To enhance the
efficiency, improvements should be made constantly. Teams should reg-
ularly look for ways to avoid wasting time and enhance the process.

• Hyperfocus on user needs with short feedback loops. Using automa-
tion, improved communication and collaboration, and continuous im-
provement, DevOps teams should focus on what users want and how to
provide it. [26]

1.3.2 Data Engineering
Data engineering is at the root of most of the ML projects. This process fo-
cuses on designing and building systems to collect and analyze raw data from
various sources and multiple formats. Data is essential for businesses since it
enables them to derive insights to achieve their business goals. It is concerned
with many different tasks, such as acquisition, cleaning, conversion, storage,
and the architecture of data pipelines. [27]
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1.4 Principles of MLOps

As mentioned before, due to the MLOps paradigm being relatively new and
broad in scope, it is not well formalized and agreed upon what are the main
principles of MLOps. To provide the reader with the overview of MLOps prin-
ciples, we have chosen to use the description of the principles from the paper
by Kreuzberger et al. [22] where a mixed-method research was conducted, in-
cluding a literature review, a tool review and expert interviews. The descrip-
tion of some of these principles is expanded by information from other sources.

In the context of MLOps, a principle is viewed as a guide on how to apply
said paradigm. The paper mentioned above outlines nine principles described
below [22]:

• CI/CD Automation. Continuous Integration (CI) and Continuous De-
livery (CD) steps such as build, test, delivery, and deployment should
be automated. CI/CD puts principles of DevOps into practice, with the
CI/CD pipeline being considered the backbone of DevOps. This princi-
ple provides the developers with quick feedback regarding the results of
certain life cycle steps.

• Workflow orchestration. ML workflow pipeline tasks can be organized
to Directed Acyclic Graphs (DAGs). Considering the relationships and
dependencies, DAGs define the order of task execution. Workflow or-
chestration coordinates the ML workflow according to the DAGs.

• Reproducibility. In the machine learning project, it should be possible
to reproduce an ML experiment and obtain the same results. We want
to avoid non-determinism and store the values of variable inputs.

• Versioning. Versioning is essential to ensure reproducibility and trace-
ability. These are often necessary for compliance and auditing reasons.
Everything from data to model and code should be versioned.

• Collaboration. It should be possible for the developers to work collab-
oratively on the data, model, and code for the ML project. Collabora-
tion aims to reduce domain silos between different roles by emphasizing
communication and collaborative work.

• Continuous training and evaluation. The need for continuous train-
ing and evaluation stems from changes in the data. It is enabled by a
monitoring component, a feedback loop, and an automated ML work-
flow pipeline. It is necessary to include an evaluation run after train-
ing the model to assess the change in model quality. [22] To avoid high
costs associated with the continuous retraining of the model, it should
be carefully considered how often the retraining should happen or use
online machine learning, where the training steps are iterative compared
to training on full data set [28].

• ML metadata tracking/logging. In order to help with traceability, the
information about each execution of the ML pipeline should be recorded.
This also helps with debugging errors and anomalies. For each run, it is
helpful to store the following metadata: the code of the pipeline, date and
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time of the execution, duration of the pipeline run, model parameters,
and model performance metrics; it would also be beneficial to store the
data and artifacts from the pipeline, or at least pointers to them. [29]

• Continuous monitoring. Since ML models’ performance can degrade
for various reasons, we need to monitor it. Monitoring does not need to
be limited only to the model since the errors can appear in other parts of
the ML project. The monitoring statistics can act as a trigger for a new
pipeline run or to begin experimenting again. Retraining should lead to
model recovery. [17]

• Feedback loops. To ensure the quality of models in the model engi-
neering phase, insights from the quality assessment steps might require
changes in the data engineering phase. This necessitates including feed-
back loops in the ML development process. Another feedback loop is
needed from the production environment, facilitated by the monitoring
component, to developers or to trigger the retraining as mentioned in the
previous principles. [9]

These principles form an overview of what an effective ML project should
include. The more principles are implemented in the ML development pro-
cess, the more streamlined it should become.

In the next chapter, we will look at some of the tools that help implement
the principles.
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CHAPTER 2
MLOps Tools and Frameworks

After gaining knowledge of what MLOps is and the principles of MLOps that
should be applied in practice, we will get an overview of tools available in the
MLOps landscape and their usage.

Many of the tools in the MLOps landscape do not focus solely on one goal,
which is why they often have overlapping features. It is challenging to catego-
rize them into distinct groups. We have split the tools based on their primary
goal – the feature they focus on the most.

In the past few years, many open-source and closed-source tools were de-
veloped and made available to the public. Open-source solutions have gained
much traction thanks to their flexibility, community support, and adaptabil-
ity to various workflows. On the other hand, closed-source platforms often
provide enterprise-grade features, enhanced security, and dedicated user sup-
port.

2.1 Criteria for Selecting MLOps Tools

The selection of tools discussed in this chapter is guided by a set of criteria
established in collaboration with Profinit EU. A primary objective of this col-
laboration is to avoid the issue of vendor lock-in – a scenario where a customer
becomes so reliant on a particular vendor’s products and services that switch-
ing to another vendor becomes excessively expensive, both financially and in
terms of time and resources [30]. To avoid this risk, we narrowed our search
to open-source tools that can be self-hosted without any licensing costs. This
approach ensures that Profinit EU can maintain flexibility and independence
from any single vendor’s ecosystem.

The landscape of MLOps tools has become exceedingly vast, so we will
also consider the tool’s popularity and maturity. Choosing a relatively new
tool may prove problematic since more breaking changes may be made than
with mature and more popular tools.

2.2 End-To-End MLOps Platforms

To avoid dealing with the issues related to integrating multiple products in the
MLOps pipeline, it might be worth looking at end-to-end MLOps platform of-
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ferings. These provide a unified ecosystem, focusing on the entire ML work-
flow, from the early phase of data engineering through model engineering,
and provide tools to enable deployment with monitoring [31].

End-to-end MLOps platforms are offered mostly as closed-source enter-
prise platforms such as Amazon SageMaker, Microsoft Azure Machine Learn-
ing, Google Cloud Vertex AI, and many others. We chose to avoid these plat-
forms for the reasons described in the section 2.1.

2.2.1 Core Features
Features of the end-to-end MLOps platforms can vary significantly based on
the chosen platform. The features pointed out below are some that should be
included in the platform. In the next few sections, we will look at some com-
ponents that should be parts of the end-to-end MLOps platforms, and their
more specific features should be included in these core features as well.

• Version control. Building on the described MLOps principles, the plat-
form should enable version control for various ML artifacts. This helps
to ensure reproducibility and collaboration, simplifying the process of
sharing artifacts.

• Data management and preprocessing. The platform should provide ca-
pabilities for the data engineering phase of the ML development process.
The steps that should be supported by the end-to-end MLOps platform
include data ingestion, storage, preprocessing, labeling, versioning, and
others described in the subsection 1.2.1.1.

• Workflow orchestration. Tools for automated workflow orchestration
should be included in the platform to automate the processes tied to
data engineering and model training. The workflow orchestration com-
ponent should enable dependency management, task scheduling, error
handling, and overall simplification of the management of ML work-
flows.

• Experimentation and model development. Developers should have avail-
able tools to support the model engineering phase described in the sub-
section 1.2.1.2. These tools should enable the developer to run exper-
iments, explore different algorithms and architectures, compare their
performance, and find the optimal parameters of the model. This should
be enabled by using tools for hyperparameter tuning, automated model
selection, and visualization of model metrics.

• Model deployment and serving. Models built in the model engineering
phase should be easily deployed using features provided by the plat-
form, such as containerization, API management, and infrastructure scal-
ing based on demand.

• Model monitoring and performance tracking. Getting information about
the model’s declining performance in production is essential to ensure
reliability. That is why the platform should provide capabilities to mon-
itor and track the performance of the deployed ML model. This includes
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tools for logging, monitoring model metrics, detecting anomalies, and
alerting.

• Integration with ML tools and libraries. It is important for the platform
to be able to integrate with existing and new ML tools and libraries. This
provides flexibility and extensibility by filling in the gaps in the devel-
opment process. Developers can leverage their preferred tools and many
resources to increase productivity and use new technologies. [31, 32]

2.2.2 Available Platforms
Most end-to-end MLOps platforms are closed-source or open-source only spe-
cific components of their implementation. For this reason, only one platform
is described below. That platform is open-source and has all its main compo-
nents available.

2.2.2.1 Kubeflow

Figure 2.1: Kubeflow logo [33].

Website www.kubeflow.org
Creator Google
Maintainer Kubeflow Contributors
Release Year 2018
License Apache License, Version 2.0

Table 2.1: The basic information on Kubeflow [33].

Kubeflow is an open-source project developed to make deployments of ma-
chine learning workflows on Kubernetes simple, portable, and scalable. It is
closely tied to the Kubernetes platform, meaning Kubeflow can be deployed
only on Kubernetes.

It implements a variety of ML tools in the form of components -— from
data preprocessing to model training and serving —- and provides a unified
interface to manage them. This allows data scientists and ML engineers to
focus more on their models and less on infrastructure management.

The main components often distributed with the installations of Kubeflow
are:

• Kubeflow Notebooks – Web-Based IDEs,

• Kubeflow Pipelines – Workflows/Schedules,

• Central Dashboard – Web Interfaces,
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• Training Operator – Model Training,

• Katib – Model Tuning,

• KServe – Model Serving.

These components are not everything Kubeflow has to offer. Using exter-
nal add-ons created by us or the community is also possible. This way, it is
possible to add, for example, a feature store, different tools for serving mod-
els, visualisations. . .

Figure 2.2: Screenshot of the Kubeflow Central Dashboard UI [33].

As mentioned in the first few lines, Kubeflow is built on top of the Ku-
bernetes platform. This gives Kubeflow all of the advantages that come with
Kubernetes, from the ability to deploy on any infrastructure (where Kuber-
netes can run) to managing loosely coupled microservices and on-demand
scaling. [33]

What is unfortunate is that Kubeflow is pretty complex, and a lot of its doc-
umentation is outdated. The loose coupling of its components comes with the
benefit of choosing which components to use. However, different components
may rely on different versions of the same dependencies, causing problems.

Advantages

+ Simple scalability using Kubernetes.
+ Portability across environments.
+ Large ecosystem.
+ Comprehensive ML toolkit with various tools for ML projects.

Disadvantages

- Setup and configuration are complex.
- Running Kubeflow at scale is resource-intensive.
- High maintenance overhead.
- Outdated parts of documentation.

17



2.3. Workflow Orchestration and Pipelining

2.3 Workflow Orchestration and Pipelining

Workflow orchestration and pipelining tools are essential for streamlining and
automating complex ML workflows [31].

An ML workflow refers to the sequence of steps needed to be taken when
building an ML project. We have outlined the possible steps in ML workflow
in subsection 1.2.1. For example, the workflow can include data collection,
data preprocessing, model selection, and model training. A pipeline is the
implementation of the workflow.

Workflow orchestration and pipelining tools help automate and manage
workflows and pipeline infrastructure. This is often facilitated by task orches-
tration using Directed Acyclic Graphs (DAGs). [22]

2.3.1 Core Features
The workflow orchestration and pipelining tools should provide the following
features [31, 34]:

• Dependency management. Arguably, the most important feature of
workflow orchestration tools is the ability to define dependencies be-
tween workflow tasks and automatically execute them in the correct or-
der. It is necessary that all of the dependencies of a task are satisfied
before executing it. Most of the tools define the workflows as DAG of
tasks.

• Workflow monitoring and visualization. The workflow orchestration
tool should provide workflow monitoring and visualization to get an
idea of what is happening when running workflows. The monitored in-
formation can include evidence of the workflow runs, the progress of the
running workflows, inputs and outputs of the workflows, and other in-
formation. Visualization of workflow task dependencies is also a helpful
feature.

• Workflow scheduling and triggering. To be able to run workflows effec-
tively and without manual intervention, the workflow orchestration tool
should allow workflow scheduling and triggering using various sources.
Scheduling (running the workflow on a set schedule) is most often pro-
vided by cron expressions. Webhooks are used to provide the ability to
trigger workflows from various sources.

• Reproducibility and versioning. Two of the principles of MLOps out-
lined were reproducibility and versioning. Workflow orchestration tools
should support reproducibility by providing a way to capture the work-
flow configuration with code, datasets, and dependencies included. The
workflows should be ideally versioned so that each workflow run has the
necessary artifacts to reproduce it.

• Error handling and retry mechanisms. Workflow orchestration tools
should handle errors gracefully, ensuring the reliability and robustness
of ML workflows. The tools should provide retry mechanisms to handle
failures and retry failed tasks. Failures should provide information to
the developers so they are able to debug failed workflows.
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• Distributed computing and scalability. With the ML being applied to
larger and larger tasks, the workflow orchestration tool should provide
the necessary scaling to handle resource-intensive workflows. Scaling
is most often done by distributing the computing tasks and requesting
additional resources necessary for the workflows.

2.3.2 Available Tools
Nowadays, multiple open-source tools are available in the workflow orches-
tration space. Workflow orchestration can be applied to other fields, not just
ML, so there are tools that are not just ML-specific. We will limit our exten-
sive overviews to tools that consider the needs of ML and provide information
about a select number of tools.

2.3.2.1 Flyte

Figure 2.3: Flyte logo [35].

Website www.flyte.org
Creator Lyft
Maintainer Flyte
Release Year 2019
License Apache License, Version 2.0

Table 2.2: The basic information on Flyte [35].

Flyte is a powerful open-source Kubernetes-native workflow orchestrator
designed to streamline the development and execution of data-intensive work-
flows, especially in the fields of data science and machine learning. It provides
libraries in multiple languages, including Python, Java, Scala, and JavaScript.

It allows for very complex workflows, which in turn means there is a steep
learning curve associated with this tool. In Python, workflows are defined
using decorators provided by Flyte’s library. Flyte also provides integrations
with various popular MLOps tools.

Flyte allows data flow tracking to provide data lineage, enables dynamic
workflow definition, and provides data visualization. These are all very valu-
able features for the developers. Workflows can be scheduled, run from the
UI, or triggered remotely.

Development with Flyte can start in a local setting and seamlessly transi-
tion to production environments on major cloud platforms like AWS, GCP,
and Azure. The orchestrator supports cloud-native deployments, which al-
lows leveraging cloud-specific features such as spot instances and GPU accel-
eration for cost efficiency and performance enhancement. [35]
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Figure 2.4: Screenshot of the Flyte UI.

Advantages

+ High workflow scalability.
+ Integrations with other MLOps tools.
+ Powerful workflow control features.

Disadvantages

- Steep learning curve.
- Deployment is resource intensive.

2.3.2.2 Metaflow

Figure 2.5: Metaflow logo [36].

Website www.metaflow.org
Creator Netflix
Maintainer Outerbounds
Release Year 2019
License Apache License, Version 2.0

Table 2.3: The basic information on Metaflow [36].

Metaflow is an open-source workflow orchestration framework that makes
the process of developing and deploying data-intensive, particularly machine
learning, workflows straightforward. The interaction with Metaflow is through
a library that provides a unified API that offers access to tools necessary for
data workflows.
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Metaflow is compatible with Python and R language and any of their li-
braries, which makes it a very versatile tool. Workflows in Python are defined
as subclasses of a class provided by Metaflow, and the steps are defined by
creating methods of the class with Metaflow-specific decorators applied.

Workflows in Metaflow can be dynamic based on the data, and the steps of
the workflows can create visualizations rendered in the Metaflow UI. Metaflow
has a powerful plugin system where additional features required by the devel-
opers can be added.

The development of the workflows can be initiated locally, where every-
thing is orchestrated in the local environment. Once there is a need to pro-
ductionalize the workflows, Metaflow can be deployed to a Kubernetes cluster
or AWS cloud, where it can utilize AWS-specific features such as AWS Batch.
Once deployed, the workflows can utilize the available resources to scale.

Figure 2.6: Screenshot of the Metaflow Monitoring UI when deployed [37].

When deployed in Kubernetes, the underlying workflow orchestrator that
Metaflow uses can be either Apache Airflow or Argo Workflows, both of which
are well-established in the Kubernetes ecosystem. Using Argo Workflows and
Argo Events, Metaflow allows for simple workflow scheduling and trigger-
ing. [36]

Advantages

+ Simple to use, can be used locally.
+ Built-in version control for pipeline artifacts with deduplication.
+ Efficient scaling with cloud integration.
+ Card visualization for flows.
+ The open-source version offers the same functionality as managed.

Disadvantages

- Lacking administration tools.
- Missing proper user isolation.
- Missing versioning of workflows.
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2.3.2.3 ZenML

Figure 2.7: ZenML logo [38].

Website www.zenml.io
Creator ZenML
Maintainer ZenML
Release Year 2021
License Apache License, Version 2.0

Table 2.4: The basic information on ZenML [38].

ZenML is one of the newer offerings in the workflow orchestration field.
The approach ZenML takes is a bit different from other workflow orchestration
tools. It is geared towards being a MLOps platform by integrating the popular
tools in the MLOps landscape. This puts it in a spot where it is not an end-
to-end MLOps platform but also not just a plain workflow orchestration tool
either. It is considered a workflow orchestration tool since its core feature is
that it provides a way to define ML workflows.

Its development is highly focused on abstracting the integration of other
tools in the MLOps landscape by providing a way to register the tools into
the ZenML stack. Currently, over fifty supported tools can be integrated with
ZenML and easily used thanks to the abstracted ZenML API in the designed
workflows. Custom integration can be created as well to support any tool nec-
essary for the job.

Figure 2.8: Screenshot of the ZenML UI [38].
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This integration-focused philosophy allows for great extensibility of the
tool, providing a way to create multiple stacks using various tools for the out-
lined step in the ML life cycle. For example, multiple underlying orchestration,
artifact tracking, or data validation technologies can be used for the workflows.

ZenML provides tools enabling the reproducibility of ML workflows by
automatically tracking and versioning stacks, pipelines, artifacts, and source
code.

It is compatible with Python, and its orchestration functionality is provided
using decorators from its library. ZenML can be used locally, or the library can
be configured to interact with a remote deployment of ZenML when there is a
need for scalability.

Most of the ZenML code is open-source, but some of the more advanced
features are only available in the managed ZenML Cloud version of the tool².
This may be perceived as a threat, where the user may be forced to upgrade
based on the missing features.

The great thing about ZenML is that it is infrastructure agnostic, meaning
that the underlying deployment infrastructure can be provisioned using any
of the leading cloud providers.

ZenML is a promising tool that is becoming increasingly mature with time.
New features are being added regularly, which may improve the ML experi-
ence of this tool. [38]

Advantages

+ Option to run locally.
+ Infrastructure stack abstraction through unified ZenML API.
+ Great documentation.
+ Integration of the most popular tools.

Disadvantages

- Regular changes to the ZenML API.
- Feature discrepancy between open-source and managed version.

2.3.3 Other Tools
Besides the tools with in-depth overviews, various other tools exist in the space
of workflow orchestration and pipelining tools. These tools also provide sim-
ilar functionalities and may be a better fit depending on the requirements and
properties of the ML project. All of the following tools are open-source.

• DVC (Data Version Control) is a tool tailored for ML projects. It offers
simple workflow orchestration by defining DAG pipelines using YAML
to run various commands in steps. The main focus of the tool is data
and model versioning to enhance project reproducibility and collabora-
tion. [39]

² Comparison between open-source version and ZenML Cloud managed version is available at:
www.zenml.io/open-source-vs-cloud.
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• Prefect is a workflow orchestration tool that focuses on simplicity and
fault tolerance, providing robust automation and monitoring capabilities
for complex data pipelines. [40]

• Argo Workflows is a Kubernetes-native workflow engine focused on gen-
eral workflows. Argo Workflows supports the orchestration of parallel
jobs and complex data processing tasks across scalable environments. It
is often used as a base workflow engine for ML-specific workflow orches-
tration tools. [41]

• Apache Airflow is designed for creating, scheduling, and monitoring
workflows, featuring extensive integration options and a detailed man-
agement interface. It is one of the most mature workflow orchestration
tools often used as a base workflow engine. [42]

2.4 Experiment Tracking

Experiment tracking tools are essential for the model engineering phase in ML
development. They allow proper management of experiments and their arti-
facts such as parameters, metrics, models, and others [43]. Many times, devel-
opers track the results of their experiments manually, writing metrics down
into tables. This process is tedious and error-prone.

During the model engineering phase, developers should utilize these tools
to log the results of the experiments programmatically and to visualize and
compare their results later. Experiment tracking tools enable the developers
to draw quick conclusions based on the saved information and easily choose
the right model for the task. [44]

2.4.1 Core Features
The following features should be provided by the experiment tracking tools [44,
31]:

• Metadata logging tools. Experiment tracking tools should provide mech-
anisms to log all of the necessary metadata associated with the model
training experiment. This metadata can include parameters, metrics,
notes, and other artifacts created during the run.

• Visualization and comparison of experiments. To compare the logged
experiments, these tools should provide ways to visualize the recorded
data, allowing for a simple way to compare the models created. In the
visualizations, input parameters, resulting metrics, and other metadata
associated with the experiment can be compared.

• Model versioning and lineage. Not all experiment tracking tools pro-
vide a model registry component, but it is certainly a valuable feature
to have included in the experiment tracking tool. That way, experiments
can have their resulting models associated with them, and a final trained
model can be easily chosen based on the experiment visualizations in the
tool.
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• Integrations. It is crucial that experiment tracking tools allow for inte-
gration with popular ML libraries. These integrations often enhance the
experience of using these tools by allowing automatic logging without
the need to log every artifact from the run manually. It is also impor-
tant that the experiment tracking tool can be used inside orchestrated
workflows and with CI/CD tools.

2.4.2 Available Tools
In the open-source space, there are not many experiment tracking tools avail-
able. Most of the tools in the MLOps landscape provide managed versions of
their tools to be profitable and to support development. When using managed
tools, the maintenance complexity is much lower, and it might be worth con-
sidering paying for such tools. However, open-source tools still exist in this
space, and we chose the following tools for a more in-depth overview.

2.4.2.1 Aim

Figure 2.9: Aim logo [45].

Website www.aimstack.io
Creator AimStack
Maintainer AimStack
Release Year 2020
License Apache License, Version 2.0

Table 2.5: The basic information on Aim [45].

Aim is an open-source experiment tracking tool providing visualizations
of complex metadata to allow for quick comparison of experiments. Its pow-
erful UI enables the developers to compare a variety of metadata types such
as metrics, parameters, text, images, and others. Another feature of the UI is a
complex query language that makes it possible to view experiments based on
a set of requirements.

An overview of the logged metadata can be done through each run sepa-
rately, or there are tabs in the UI based on the metadata type. In each of these
tabs, the developer can create a visualization, helping them to get an idea of
the experiments’ results. These visualizations can be bookmarked for quick
access later. Data can also be accessed through Aim’s API, which is abstracted
by its client library.

The main functionality is provided as a Python library to be integrated into
model experiment runs to enable logging. Aim’s library integrates multiple
popular ML tools to enable logging metrics automatically without much man-
ual logging code. Aim can be used locally or deployed as a remote tracking
server to enable collaboration on ML projects.
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Figure 2.10: Screenshot of the Aim UI.

Aim’s powerful UI can also be integrated with other backends, not just its
own. It can be used, for example, with MLflow or spaCy backends. [45]

Advantages

+ Integrations with popular libraries.
+ Powerful visualization UI.
+ Various metadata type comparisons.
+ Can be run directly in Jupyter notebooks.

Disadvantages

- Complicated self-hosting.
- Missing user isolation.
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2.4.2.2 MLflow

Figure 2.11: MLflow logo [46].

Website www.mlflow.org
Creator Databricks
Maintainer Databricks
Release Year 2018
License Apache License, Version 2.0

Table 2.6: The basic information on MLflow [46].

MLflow is an open-source ML platform with a primary focus on experi-
ment tracking. It provides multiple components that are helpful along the ML
life cycle, including metadata tracking, model registry, and model deployment
components. This makes it versatile in the MLOps pipeline since it can replace
multiple services.

MLflow tracking allows the users to track ML experiments and log respec-
tive metadata such as parameters, metrics, dataset information, and other ar-
tifacts. The model registry is closely tied with experiments, where each exper-
iment run can have a model logged to the registry as its output.

MLflow’s UI allows a quick preview of past experiments and their respec-
tive runs. In the experiment preview, the developers can compare metrics,
which enables them to choose the best model. All of the resources in the
MLflow deployment can be accessed through API, allowing data to be re-
trieved programmatically.

Figure 2.12: Screenshot of the MLflow UI [46].
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MLflow can be used locally or deployed as a remote tracking server. Re-
mote deployment allows for collaboration where the developers can compare
ML experiment runs. When deployed, the model registry component can be
used to retrieve tagged models for production.

Since MLflow has become very popular in the MLOps space, it is compati-
ble with a variety of tools and libraries. New integrations and plugins are still
being created. [46]

Advantages

+ Includes extra functionality.
+ Popular in the MLOps landscape.
+ API for multiple languages.
+ Well documented.
+ Good compatibility.

Disadvantages

- Limited scalability.
- Missing user isolation.

2.4.3 Other Tools
There are other tools available in the experiment tracking landscape. Except
for MLflow, it seems that the most popular solutions for experiment tracking
are the managed ones. The reason for this might be that most of the managed
tools are free for individual and academic use, which makes it compelling to
use since there is a simple setup process associated with these tools. Other
open-source tools which also provide managed experience are:

• As mentioned before, DVC (Data Version Control) includes multiple
components helpful in the ML process. One of the components included
is the experiment tracking tool. [39] Visualizations provided by this tool
are a little less powerful compared to the applications mentioned before.

• Sacred offers experiment tracking but does not allow for collaboration
since it is available only locally. The front end is not included by default,
but there are community efforts to provide UI for the metadata stored by
this tool. [47]

2.5 Other Categories

In the past few sections, we have presented the crucial tools for implement-
ing the pipeline. The exact MLOps pipeline needs to be adjusted according to
the project requirements. There are other tools that may be beneficial or even
necessary for some projects, which is why we will give a short overview of
additional tools in the MLOps landscape.

28



2.5. Other Categories

2.5.1 Data Storage and Versioning
As mentioned in the chapter 1 describing machine learning itself, data is one
of the crucial ingredients in ML project development. However, handling data
in ML projects can become problematic since large amounts of data are often
needed to train ML models properly. Data storage and versioning tools try to
solve these problems by providing a way to store, version, and distribute larger
amounts of data. This allows for collaboration, versioning, and reproducibility,
as pointed out in the MLOps principles.

Most of the tools in this space provide Git-like versioning features that al-
low for the easy storage, loading, and versioning of datasets. Some of the open-
source tools include:

• DVC (Data Version Control) extends version control systems to handle
large data files. It tracks versions using lightweight metafiles while the
actual data is stored in a remote repository. DVC integrates seamlessly
with existing Git workflows. DVC also provides other tools that are help-
ful in the ML life cycle, as mentioned before. [39]

• Git LFS enhances Git by allowing users to manage large files without
bloating their repositories. It stores references to large files in Git, while
the files themselves are hosted on a separate server. [48]

• Pachyderm is not only a data version and storage tool, but it also pro-
vides data-driven pipeline orchestration. Data versioning is done in a
manner similar to a Git workflow, where there are commits, branches,
and other familiar concepts. [49]

2.5.2 Feature Stores
Feature stores act as a central hub for feature data and metadata in ML projects.
They enable collaboration and reusability of features extracted by data engi-
neers, reducing duplication of data engineering efforts. [50]

• Feast is an open-source customizable operational data system to manage
and serve machine learning features. [51]

• Hopsworks is a modular data platform. It can be used as a standalone
feature store, and it also includes other functionalities that enable the
development and operation of feature pipelines. [52]

2.5.3 Hyperparameter Optimization
Hyperparameter optimization tools can be used to get the best set of param-
eters for a model on a particular dataset. By using these tools, the developer
can avoid the tedious manual work of setting the parameters manually. [53]

• Optuna is an open-source framework for hyperparameter optimization
in ML. It implements a variety of algorithms to search hyperparameter
space and find optimal values. Optuna also provides a dashboard to get
a real-time preview of tuning. [54]
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• Ray Tune is an open-source Python library for experiment execution and
hyperparameter tuning. Ray Tune excels in scaling the tuning process
by utilizing parallelization across multiple nodes without any changes
to code. [55]

2.5.4 Model Registry
The model registry component provides a centralized repository to enable ef-
fective model management and documentation. Models and their associated
metadata are stored together. Having a model registry helps with collabora-
tion and versioning.

• MLflow, described in the subsection 2.4.2.2, also includes a model reg-
istry component. Having the model registry in the experiment tracking
tool allows us to find the exact experiment and metadata associated with
the model. [46]

• Verta Model DB is an open-source model registry component of the
Verta MLOps platform. Its model registry can be used separately, but
usage of the whole platform may be beneficial. [56] The development of
this project is currently not very active.

2.5.5 Model Deployment and Serving
Created models need to be deployed into production. There are many ways to
deploy a model into production. These tools should provide automated scal-
ing and load balancing across multiple instances of deployed models. Batch
processing and real-time inference should be supported as deployment pat-
terns. [31]

• BentoML is an open-source model serving framework that provides a
unified format to package various ML models into deployments. This
package can then be built into a Docker image to be deployed to Docker-
compatible platforms. [57]

• MLflow, described in the subsection 2.4.2.2, also provides model deploy-
ment and serving tools among its many features. Models registered into
its registry can be easily served locally for testing. Then, they can be
packaged as a Docker image, which can then be deployed to Docker-
compatible platforms. This Docker image exposes an API where the in-
ference requests are processed. [46]

2.5.6 Model Monitoring
To get insights after the ML model has been deployed into production, model
monitoring platforms should allow the developers to detect issues such as data
or concept drift. According to the monitoring results, steps should be taken to
fix detected issues. [17]

• Deepchecks is an open-source solution including multiple components
to test, monitor, and evaluate the model’s performance across its entire
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development process. It provides a beautiful dashboard to preview gath-
ered insights. The downside is that the open-source version is limited to
monitoring only one model per deployment. Deepchecks cannot be used
locally. [58]

• Evidently AI comes with an extensive library of reports, test suites, and
a monitoring dashboard. Evidently AI can be used locally, or the dash-
board can be deployed as an external service. Evidently AI is still in a
pretty early development, which means features are being added very
often. [59]
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CHAPTER 3
Provided Application

In this chapter, we will analyze the application that uses machine learning pro-
vided by Profinit EU. First, we will introduce the application while redacting
its primary purpose and implementation details since it is Profinit’s intellec-
tual property. Next, there will be a high-level overview of the architecture and
the technologies used. Since the goal of this thesis is not the application de-
velopment but rather the use of general principles applicable universally, we
should not look at the code architecture in great detail. Lastly, we will look at
the current deployment strategy.

3.1 Overview

The provided application is available in the form of a web application that uti-
lizes a great amount of processed data to achieve its main business task. It has
yet to be provided to customers. The development began in April 2021 inter-
nally with the intention to sell the application to customers if it successfully
solves their business problems. The application is moderately complex, and
since its development sprung off of an Minimum Viable Product (MVP), its
architecture evolved iteratively.

Nowadays, the application is becoming more mature and production-ready.
Large amounts of data and leveraging machine learning make the life cycle of
this application considerably more complex than other applications since the
development of the model is technically separate from the development of the
web application.

3.1.1 Application Architecture
Components of the application are displayed in the diagram 3.1, which de-
scribes the high-level architecture.

The user interacts with the web application instance using an Application
Programming Interface (API) or Web User Interface (UI). They can make a
query that gets sent from the web application using a message broker to a
task queue for processing. This enables asynchronous processing of length-
ier tasks, which would otherwise block user interaction for some time. If the
query is done using an API, the user is given a task ID, and the task is pro-
cessed asynchronously. Otherwise, the task gets awaited if it is done through

32



3.1. Overview

User

Task Queue
Task QueueWeb ApplicationWeb Application

Message broker

Task queueShared folder

Database

Web application

Figure 3.1: High-level diagram of architecture of the provided application.

Web UI. The task queue worker updates information about the task’s status,
and the task result is passed to the web application using a shared folder be-
tween the web application and the task queue. Users can retrieve the result
of a task by making requests about the task’s status and requesting its result
when the task is finished processing. Data for the task processing and other
information are stored in the database.

3.1.2 Technologies Used
Since the application utilizes machine learning, it may come as no surprise that
the language used to implement both the task queue and the web application
is Python. Exact technologies used to provide the functionality are shown in
a diagram 3.2. Below is an overview of each of the technologies used in the
implementation.

• Python. “Python is an interpreted, object-oriented, high-level programming
language with dynamic semantics.” [60] Thanks to its large ecosystem of
libraries and modules focused on data science, it is an excellent choice
for applications utilizing machine learning.

• Flask. Flask is a micro web framework written in Python that provides
configuration and conventions with sensible defaults. Since it is a micro
web framework, it does not include any database abstraction layer, form
validation, or other tools out of the box, but it provides support for exten-
sions to add such features. [61] Using Flask’s client-side session enabled
by storing cookies in the client’s browser, the web application instance is
stateless.
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Figure 3.2: High-level diagram displaying the technologies used for each com-
ponent of the application.

• Gunicorn. “Gunicorn ’Green Unicorn’ is a Python WSGI HTTP Server for
UNIX³. It’s a pre-fork worker model. The Gunicorn server is broadly compatible
with various web frameworks, simply implemented, light on server resources,
and fairly speedy.” [62] This server is used to serve the Flask application to
clients.

• Celery. Celery is an open-source distributed task queue library written
in Python [63]. It processes tasks created by the users using the Flask
web application. Processing can be done asynchronously, or the web
application can await the tasks. The results of the tasks are stored in the
database, and the resulting assets are shared with the web application
using a shared folder between the web application and the workers.

• RabbitMQ. RabbitMQ is an open-source messaging and streaming bro-
ker [64]. This technology provides communication between the web ap-
plication and the Celery workers of the task queue.

• PostgreSQL. PostgreSQL is an open-source object-relational database sys-
tem that uses and extends the SQL language [65].

3.1.3 Use of Machine Learning
For our assignment, it is necessary to understand how machine learning is
utilized in this application.

By analyzing the source code and communicating with the developers, we
have learned that the application uses the machine learning model to calcu-
late a metric based on features extracted from the initial dataset. This metric
calculation is done in advance using batch inference before the application is

³ Unix is a family of multitasking, multi-user computer operating systems.

34



3.2. Development

deployed, and the results are saved in the database. When answering the user’s
queries, data is retrieved from the database and returned to the user.

The model is also used during the operation of the application, but only
when answering user queries done through the Web UI, to calculate SHapley
Additive exPlanations (SHAP)⁴ values explaining the result of the query based
on the input features.

The application uses the model by packaging it and including it in the task
queue. This was done because the model size is less than two megabytes, and
the inclusion, as opposed to the separate deployment of the model, seemed
more straightforward to the application developers.

3.2 Development

Only a few developers were working on this solution during the application’s
development. Thanks to this fact, the collaboration on the development was
pretty straightforward, with the developers communicating directly with each
other.

Everything regarding the application is kept in the same repository, includ-
ing the initial data, analysis notebooks, tasks code, and web application code.
From the information obtained by discussing with the application’s develop-
ers, we have learned that the application is developed on a Virtual Machine
(VM) exposed to the developers.

3.2.1 Development Process
The development process of this application can be split into parts, consider-
ing the necessary steps taken from the conception to the current state of the
application’s components.

• Data Engineering. When the development started, a folder was created
on the development VM in which a Git repository was initialized. The
obtained unprocessed data was not versioned into the repository since it
is over three gigabytes in size.
The data was later processed and analyzed, resulting in features used
by the model to predict the result. Transformed data in the final state
was versioned using Git Large File Storage (LFS). One of the reasons for
versioning this data was that it is required to set up the application.
Data gathering for the purposes of the application is done with the help
of scripts that are run manually since the data does not dynamically
change. The sources for the gathered data are primarily static, with the
decisions of the inclusion of new sources of data related to the business
problem at hand being made manually.

• Model Development. Based on the features computed from the data,
an analysis was performed concerning model choice and hyperparam-
eter tuning. This helped the model achieve the optimal results when
calculating the resulting metric based on the input features.

⁴ See paper [66].
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Currently, the model is not continuously developed since the application
data stays mostly the same. When there is a decision to include new data
related to the business problem, the model is refined based on the result
of an analysis of the newly included data.

• Web Application Development. After developing the model, the web
application was created to expose the data obtained from the analysis to
the potential users of the application using API or Web UI.
Minor changes to the model do not necessitate changes to the application.
However, including new data sources may lead to changes to the web
application since the relevant data to the result of the query is displayed
to the user.

• Task Queue Development. Alongside the web application development,
code for tasks to be executed in the task queue was developed. As men-
tioned before in the section 3.1, the web application depends on the task
queue to process longer-running tasks.
The packaged model is included in this application component since it
is used to explain the results of the user query when querying the appli-
cation using the Web UI.

• Application Testing. Developers of the application created tests. These
tests were automated using GitLab CI/CD pipelines. The tests build
a test image against which end-to-end and integration testing is per-
formed.

3.3 Deployment

The application is currently deployed to a VM with publicly exposed HTTP
endpoints accessible by the users⁵. It is packaged into a Docker container im-
age and orchestrated using Docker Compose.

The deployment consists of four Docker containers. One is for the web
application, another for the Celery worker, and the last two are for the Post-
greSQL database and RabbitMQ message broker. These containers communi-
cate using the Docker network. The shared folder between the web application
and the Celery worker is provided by Docker volume and stored on the VM
file system. Another Docker volume is provisioned on the file system for the
data of the PostgreSQL database. The deployment diagram of the provided
application is depicted in diagram 3.3.

⁵ Endpoints may be exposed using reverse-proxy application.
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Figure 3.3: Deployment diagram of the application.

3.3.1 Deployment Process
The application is deployed manually, taking a series of steps to get the nec-
essary data, train the model, create assets, and package it all into the Docker
image. This Docker image is then run as the application in a container orches-
trated by Docker Compose. The deployment process can be summarized into
the following steps:

1. Connect to the VM using SSH.

2. Pull the changes from the remote GitLab repository.

3. Run the orchestration scripts for the creation of the application’s static
assets.

4. Train the model with the new data and predict the values of the metric.

5. Rebuild the image for the web application and worker⁶.

6. Swap the currently running containers of web application and worker.

7. Fill the database with the newly obtained and orchestrated data.

⁶ Worker and the web application run using the same image, using different entrypoint.
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This process is also illustrated in a diagram 3.4. After successfully complet-
ing all of these steps in order, the new version of the application with the new
model and data is deployed on the VM.
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Figure 3.4: Deployment process diagram of the application with depicted
manual steps that must be taken to deploy the new version of the application.
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CHAPTER 4
Pipeline Design

This chapter will describe an extensible and portable ML pipeline design. This
design will be later utilized as the base for the pipeline implementation for the
provided application. First, we will describe the requirements that we posed
that should be satisfied by the pipeline. Later, we will introduce the designed
pipeline and its components. Lastly, we will provide reasons for the tools cho-
sen in the pipeline.

4.1 Design Considerations

The preceding chapters provided an overview of MLOps, the tools available to
implement its principles, and the application provided by Profinit EU. From
the description of the provided application, it is clear that no resource-heavy
and complex machine learning is being done, so it is worth considering whether
implementing a pipeline using any previously described tools is even neces-
sary. Considering the experimental nature of this thesis, described in the in-
troduction, we have decided to implement the pipeline but with a focus on
project portability and extensibility.

4.2 Requirements

To get a concrete description of what we want to achieve with our implemen-
tation of the MLOps pipeline, we have created a set of requirements to be met
by the final design. Requirements for the pipeline are divided into two distinct
groups: functional and non-functional requirements.

4.2.1 Functional Requirements
Functional requirements define the system features that need to be imple-
mented. To get a solid grasp on the MLOps principles and tools, we have
established the following requirements:

• FR1: Workflow orchestration
The pipeline should enable the orchestration of workflows facilitated by
defining steps that will be taken when the workflow is executed. Steps
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in workflow orchestration should have the ability to branch out dynam-
ically based on the data at runtime.

• FR2: Experiment tracking
Developer should have the ability to compare different experiments per-
formance preferably in an easy-to-use and accessible UI.

• FR3: Model registry
Models should be saved to a model registry, where they can be down-
loaded and preferably tagged based on their characteristics and utiliza-
tion (for example, whether the model is ready for production, needs eval-
uation, or shows a specific behavior to be analyzed).

• FR4: Deployment monitoring
Monitoring of the deployment should be enabled by the pipeline so that
when the performance degrades, necessary steps can be taken or au-
tomated based on the insights from monitoring. Monitoring insights
should be available programmatically, and a UI should also be available.

• FR5: Data versioning
Data necessary for the ML project should be versioned to get the exact
data used for the model training.

4.2.2 Non-Functional Requirements
Non-functional requirements dictate the characteristics that the implemented
system should pose. Since this is an experimental implementation, we have
concluded the following non-functional characteristics that focus on future im-
provements:

• NFR1: Extensibility
Pipeline design should be extensible. It should be possible to add addi-
tional features and make improvements after it has already been imple-
mented.

• NFR2: Project portability
The pipeline design should be created in a way that is not specific to
any particular project in which it may be utilized. In some projects,
changes may be necessary, but the divergence from the base pipeline
design should be minimal.

• NFR3: Scalability
Scalability with the growing resource demand should be possible. It also
applies in reverse; when the resources are not utilized, they should be
downscaled to a minimum.

• NFR4: Maintainability
It should not be difficult to update the pipeline or change parts of the
underlying infrastructure.

• NFR5: Recoverability
When some pipeline steps fail, they should not pose a risk to systems
availability, and there should be a way to recover from a failure.
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• NFR6: Infrastructure vendor independence
With minor changes, the pipeline should be implementable on an infras-
tructure provided by another vendor or an on-premise infrastructure.

4.3 Pipeline Overview

The final design of the pipeline is very complex, utilizing multiple tools in a
highly interconnected manner to try and fulfill all of the requirements set be-
forehand. Due to the complexity, here we provide only a simplified overview
of the components of the designed pipeline. The tool providing the CI/CD
is left out of the diagram since it and its jobs should be chosen based on the
implementation requirements.
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Figure 4.1: Diagram of the pipeline with details omitted, capturing the main
components of the pipeline

4.3.1 Process Description
The pipeline starts with a data processing component utilizing Metaflow with
Argo Workflows as an orchestrator. This part provides the workflow orches-
tration capabilities to implement steps of the data engineering phase. Metaflow
also provides a data versioning feature. The processing can be initiated man-
ually or based on an event using Argo Events.

After processing the data, the model training workflow is implemented us-
ing Metaflow and Argo Workflows. One of the outputs of this step – the meta-
data used to track the experiment is pushed to MLflow. MLflow also acts as a
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model registry component, enabling the versioning of models and comparing
their metrics. The trained model is pushed to the model registry.

When the models and their experiments are compared, and the best is se-
lected, batch predictions can be made utilizing Metaflow and Argo Workflows.
Suppose the project does not utilize batch predictions, and the model must be
deployed in an application as a dependency or inference service. In that case,
the developer should choose a way to pack the model or the application into a
Docker image and deploy it on the cluster.

The model or application deployment should generate usage logs, which
can then be scraped using Fluent Bit. These logs are then pushed into the
Elasticsearch database. Logs in the database can be previewed using Kibana.

These logs are processed using scheduled runs of Metaflow workflows us-
ing Argo Workflows scheduling capabilities. After processing the logs, reports
and tests can be created using the Evidently AI monitoring tool and are pushed
into the Evidently AI monitoring UI.

Based on the results of tests or outputs of the reports created using Evi-
dently AI, the developer can trigger retraining, or it can be triggered automat-
ically using the Argo Events webhook feature.

4.4 Component Overview

Given the requirement for scalability [NFR3] and to broaden the knowledge of
modern technologies, Kubernetes is chosen as the base system for the pipeline.

Another benefit of using this technology is that we satisfy the requirement
of infrastructure vendor independence [NFR6] since Kubernetes can be in-
stalled manually on-premise, in the cloud, or is provided as a service by most
of the big cloud providers such as Amazon Web Services EKS, Azure AKS,
Google Cloud GKE, and many others. . .

4.4.1 Data Processing
The data processing component is facilitated by Metaflow deployed with the
Argo Workflows orchestrator. This technology allows orchestrating workflows
using steps to define a DAG satisfying [FR1].

Deployed on Kubernetes, Metaflow also allows to scale based on the re-
source requirements set by the developer [NFR3].

In the Metaflow framework, there is also an ability to version artifacts cre-
ated in the workflow; this can be used to version the data [FR5].

Data processing can be initiated on schedule, manually, or using any of
the event sources compatible with Argo Events. Multiple triggering options
provide flexibility when considering different needs for data processing based
on a project requirements [NFR2].

When some step of the workflow fails, Metaflow allows the restart of a
workflow run from the failed step with a new fixed pipeline published [NFR5].

4.4.2 Model Training
The model training component uses the same tools as the data processing com-
ponent. Using the same tools means that it offers the same features, which are
applicable and beneficial for model training.
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Metaflow poses no limitations on the compatibility of libraries used since
Metaflow API in scripts is provided as a Python library. This allows the de-
velopers to use a variety of different tools to create, train, tune, and perform a
variety of other tasks with their models in their Python scripts [NFR1, NFR2].

Metaflow does not have to be used only in the pipeline. It can execute
separate workflows for each user, allowing the developers to experiment with
more resources available than in their local environment and check whether
the workflow runs correctly in the remote environment.

4.4.3 Experiment Tracking
MLflow is used as an experiment tracking tool [FR2]. It allows the model train-
ing workflow to save metadata about the executed training runs. Metadata can
include dataset information, parameters, metrics, tags, and artifacts. Thanks to
the UI exposed by the MLflow service, developers can quickly get an overview
of experiments and compare the results.

MLflow supports most of the commonly used ML libraries and frameworks.
However, if the developers opt for some not widely used or custom solution,
they can use it with MLflow after following steps in its documentation [NFR1].

4.4.4 Model Registry
MLflow includes a model registry component in its features. In collaboration
with the experiment tracking feature, this component provides model lineage
(information about the experiment that produced the model), model version-
ing, model aliasing, tagging (used to store information on which Metaflow
workflow trained the model), and annotations [FR3].

As mentioned in the section 1.4, versioning is one of the key principles to
properly implementing the MLOps paradigm, and this component provides
the versioning of the model part of the ML process.

The aliasing feature of the MLflow model registry is used in this pipeline
to label the model with the best performance, which can then be downloaded
during the deployment step using the alias. When running the training exper-
iment, the registered model can be automatically aliased, or the alias can be
applied manually after the experiment has finished.

4.4.5 Model Deployment
Since there are various possible deployment strategies for ML models, this part
of the pipeline design is unopinionated. The preferred way of deployment is
using a Docker container, which provides a portable packaged environment.
There are multiple solutions providing model-serving capabilities that can be
used with this setup.

If necessary, as is the case with the provided application, it is possible to
deploy not just the ML model as a service but the whole application, with the
model included. The deployment strategy depends very much on the exact
architecture of the application utilizing ML.

Our pipeline only requires the deployment to generate logs of interactions
with the model, enabling us to monitor the model’s performance.
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Our pipeline also allows batch inference using workflow orchestration pro-
vided by Metaflow and Argo Workflows. Using these tools comes with all of
the benefits mentioned above. For example, the workflow can be triggered on
schedule or using a webhook with optionally provided parameters. Batch in-
ference results can be saved as Metaflow artifacts, or there are other options
like uploading them to object storage, for example.

4.4.6 Monitoring
Monitoring is designed in a non-invasive way, where the developers do not
need to make many adjustments to the model/application except to log the
interactions with the ML model using standard output logs.

The EFK (Elasticsearch, Fluent Bit, Kibana) monitoring stack is selected
to aggregate logs generated by the deployment. Each component of the EFK
stack has a specific function in the log aggregation and management process.
Elasticsearch is used to store and index logs. Fluent Bit collects the logs from
the deployment, enriches them with additional information, and ingests them
into Elasticsearch. Kibana allows the developers to visualize logs and interact
with the data stored in Elasticsearch. This stack is not ML-specific; it is widely
used in the industry.

To get ML-specific metrics and monitoring, we utilize this stack with the
help of the Evidently AI ML monitoring tool. Using the Argo Workflows work-
flow scheduling feature, we can schedule the monitoring based on our need
to run at regular intervals. During the workflow run, the data is loaded from
the Elasticsearch database and preprocessed. Then, the original data used to
train the deployed model can be loaded from the Metaflow workflow (which
trained the deployed model) and used to generate reports and run tests using
Evidently AI. Results of the reports and tests are then pushed into Evidently
AI monitoring dashboard [FR4].

Insights gained from this process can be then used to trigger training work-
flow automatically (using Argo Events webhook) or manually by the devel-
oper after viewing the results in the monitoring dashboard. This completes
the feedback loop where the model needs to be retrained based on its perfor-
mance when deployed in production.

4.5 Tool Selection

The exact tool selection is based mainly on the experience of developers at Pro-
finit EU. The tools described in the previous chapter have a similar feature set,
making selection of the right tools complicated without long-term evaluation
of each tool in practice. Given the thesis’s limited timeframe, we have settled
on the abovementioned tools after a short trial of the overviewed tools in chap-
ter 2.

The selected tools are easily replaceable by another candidate tool, and the
pipeline is modular. The separation of concerns of each tool enables maintain-
ability [NFR4]. Since the tools are separate, they do not strongly depend on
the versions of other tools in the pipeline, making the upgrades more straight-
forward as well.
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4.5.1 Workflow Orchestration and Pipelineing
Metaflow with Argo Workflows as the orchestration backend is chosen as the
workflow orchestration and pipelineing tool. This tool is selected thanks to
its flexibility and extensive feature set of the open-source version, which is
the same as with the managed version. Another advantage is the automatic
tracking of the metrics and pipeline running information and a simple setup
for local experimentation and development. In addition to Metaflow and Argo
Workflows, Argo Events is deployed to trigger workflows based on various
inputs and events.

4.5.2 Experiment Tracker
MLflow is the tool of choice when considering experiment tracking. It was
chosen because it is a versatile tool providing valuable components for ML
projects. Its integration of the model registry with experiment tracking proved
helpful in picking the best model based on the visualizations in the MLflow UI.
MLflow can also be used locally without the need for external deployment.
Another reason is its popularity. The tool has a large user base, detailed doc-
umentation, and many available tutorials.

4.5.3 Monitoring Component
For monitoring, Evidently AI was chosen because its open-source version has
all of the necessary features available without any limitations compared to the
managed version. Similar to other tools chosen in the pipeline, Evidently AI
can be used locally. This tool is still in its early development, but it has already
become very popular.
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CHAPTER 5
Pipeline Implementation and

Application Migration

This chapter focuses on the actual implementation of the experimental pipeline
for the provided application. First, the underlying infrastructure with the tools
used for deployment is described. Next, there is an overview of the resources
deployed for the pipeline implementation. After that, the migration of the
application to the Kubernetes cluster is described. Lastly, there is a look at
CI/CD automation used in the pipeline and a summary to paint a picture of
the process when using the pipeline.

5.1 Infrastructure

Infrastructure is at the foundation of the pipeline and application deployment.
For this experimental instance of the pipeline, a cloud computing based infras-
tructure with Kubernetes as the underlying system for the pipeline is chosen
based on the pipeline’s and tools’ requirements.

5.1.1 Cloud Computing
Cloud computing or “the cloud”⁷ provides users with on-demand resources
and computing power. Many companies are moving to the cloud since it pro-
vides excellent scalability and lowers maintenance costs, and the companies
pay only for the resources they have used [68].

The cloud computing platform Microsoft Azure has been chosen as the
infrastructure provider for this project. This choice technically has no implica-
tions on the pipeline, but some platform-specific technologies that have their
counterparts in different provider offerings are used.

Microsoft Azure is chosen as an experiment since Profinit EU runs most of
its infrastructure on Amazon Web Services (AWS). This choice allows them to
evaluate the viability of the Microsoft Azure cloud computing provider better
and avoids running everything under one provider.

⁷ Stemming from the tech industry slang term, where the internet was represented as a cloud in
the diagrams [67].
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5.1.2 Kubernetes
Based on the requirements of the tools used in the pipeline and the need for
vendor independence and scalability, Kubernetes has been chosen as the sys-
tem for pipeline and application deployment.

Kubernetes is the most widely used orchestration platform for managing
containerized applications [69]. Initially developed by Google, it is currently
an open-source project under the Cloud Native Computing Foundation (CNCF).
It provides automation when it comes to deploying, managing, and scaling
containerized applications.

Containers provide an isolated environment to run applications where the
code is packaged with all its dependencies to enable portability between dif-
ferent computing environments. Kubernetes utilizes these containers using
different container runtimes to run a set of containers in Pods. A Pod is the
smallest deployment unit in the Kubernetes system.

Kubernetes contains various objects in its API, each with its purpose. These
objects hold information about the expected and current state of the objects’
operation.

The deployment of a Kubernetes system also called a Kubernetes cluster, is
often distributed on multiple nodes. In each deployment, there needs to be a
Control Plane component, managing the nodes, exposing the Kubernetes API,
and overall ensuring smooth operation of the cluster. One significant advan-
tage of Kubernetes is that it can be run on various infrastructure setups. This
advantage makes the technology a great choice since it does not lock us into
just one infrastructure vendor.

Deployments of applications or workloads to Kubernetes are defined using
declarative manifests where the objects the developer wants to have deployed
are specified. These manifests can be JSON or YAML files following a defined
schema.

Interaction with the Kubernetes cluster is done through the API exposed
by the cluster’s Control Plane. The developers often use the command line
tool kubectl for the interaction. This tool abstracts the API into command op-
tions. [70]

This technology is very complex and has many intricacies, so we avoid go-
ing deeper, given the limited scope of the thesis.

5.2 Tools

Multiple tools are utilized to implement the pipeline and migrate the applica-
tion. Here is a short overview of each of the tools and their purpose.

5.2.1 Terraform
To allow repeatable builds and safe changes to the infrastructure, the Infras-
tructure as Code (IaC) tool Terraform is used. Terraform allows us to efficiently
manage the resources used in the cloud and deployed on the provisioned Ku-
bernetes cluster.

The infrastructure is defined using Terraform configuration files. These
configuration files use declarative Terraform language to describe the intended
goal. Using the Terraform configuration files, Terraform allows us to plan
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and make changes to the infrastructure. After making the changes, Terraform
stores the state of the provisioned resources. The state is then taken into ac-
count when planning new changes to the infrastructure. [71]

Terraform
configuration files

Terraform

Variables Terraform
state

Service
providers

Figure 5.1: Terraform takes configuration files with variables and, with the
information stored in the state, it plans and provisions or changes resources
provided by service providers.

Terraform creates and manages resources in services using APIs abstracted
by Terraform providers. These providers allow us to create necessary resources
in the Microsoft Azure cloud, on the Kubernetes Cluster provisioned in the
cloud, and in Profinit’s GitLab instance.

In the implementation, the resources are split into Terraform modules, which
enable the encapsulation of the infrastructure parts. The modules can be de-
ployed separately if their dependencies are satisfied.

5.2.2 Helm
Helm, as a Terraform provider, is utilized to deploy tools for the pipeline and
application where possible.

Helm enables simple installation, upgrading, and application management
for Kubernetes applications. Applications packaged using Helm are called
charts. These Helm charts contain all Kubernetes object definitions necessary
to run the application.

Kubernetes object definitions in the Helm charts are often templated to al-
low configuration and portability of application deployment. This way, appli-
cations packaged using Helm can be used in many different environments; the
only difference is the configuration values provided. [72]

Many of the tools chosen for the pipeline provide either official Helm charts
or third-party Helm charts developed and maintained by the community or
other companies. Using these charts with the Terraform provider allows us to
easily deploy the tools to the provisioned Kubernetes cluster.

Some of the tools in the pipeline do not provide Helm charts. A custom
definition of the Kubernetes objects necessary to run the application is written
for these tools. Creating charts for these applications is not viable since a lot
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of experience and time is necessary to create a maintainable and configurable
chart.

5.2.3 Kustomize
Kustomize is selected as the tool to deploy the provided application to the
Kubernetes cluster. It allows the developer to parameterize vanilla Kuber-
netes manifests without creating complex templates of the object definitions,
as is the case with Helm. Using Kubernetes manifests with Kustomize is more
straightforward, but on the other hand, it does not provide such configuration
freedom and portability as Helm does.

The great thing about Kustomize is that its features are also built into kubectl,
the default command line utility to communicate with a Kubernetes cluster. [73]

Kubernetes
manifests

Kustomize

Adjusted
Kubernetes manifestskustomization files

Figure 5.2: Based on the configuration specified in kustomization files, vanilla
Kubernetes manifests are processed by Kustomize and adjusted.

In the deployment of the application, Kustomize is used as a simple way
to enable the application to be deployed to multiple environments. These en-
vironments can include, for example, a development or production environ-
ment. Using Kustomize removes the need for duplication, allowing us to write
the manifests only once and adjust them per environment.

5.2.4 GitLab CI/CD
As previously mentioned in section 1.4 describing the principles of MLOps,
one principle is CI/CD automation. In the overview of the pipeline design,
the CI/CD tool is left out of the diagram. The reason for this decision is that
the tool choice is highly dependent on what the company is using, and it is not
deterministic to the overall pipeline function. In this case, to integrate all of
the services and enable the automation of CI and CD, GitLab CI/CD is used.

GitLab CI/CD is a CI/CD tool that allows us to write CI/CD pipelines
consisting of jobs automating the tasks that need to be done to build, test, and
deploy the application and various other tasks. Steps in the jobs are run on a
GitLab runner, which provides an environment in which the commands de-
fined in a job are executed. [74]
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Figure 5.3: Diagram of the implemented pipeline. Application deployment
and certain deployment details are omitted due to the complexity of the solu-
tion.

5.3 Pipeline Implementation

In the diagram 5.3, there is an overview of the deployed pipeline. Resources
in the diagram are labeled and split into different groups to form logical units.
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The beginning letters of the label concern the group, and the number is used
to order the resources.

Resources for the pipeline designed in chapter 4 are defined and deployed
using Terraform. The pipeline implementation is split into two Terraform mod-
ules, the infra module (I) and services module (S). Implementation is split
to allow for portability. With few adjustments, the services module would
be deployable on top of different infrastructure resources.

Flows of the Metaflow workflow orchestrator are Python scripts where a
workflow is defined. These flows (F) play a significant role in pipeline opera-
tion, so they are depicted in the diagram as well.

Since the provided application needs to be migrated to the cloud, there
will be a section devoted to the application migration and deployment itself.
In this diagram, the application (A) is abstracted to show the interactions in
the pipeline.

CI/CD component (C) is also illustrated in the diagram. This component
enables the CI/CD automation specific to our case. In this case, the CI/CD
is covered using GitLab CI/CD. An overview of CI/CD automation will be
provided in a future section.

5.3.1 infra Terraform Module
The infra Terraform module (I) contains the definitions of underlying re-
sources that the MLOps tools are dependent on. These resources are all de-
ployed in the Microsoft Azure cloud.

• (I1) Azure Kubernetes Service (AKS). Since Kubernetes is selected as an
underlying system for the pipeline and application deployment, AKS is
used to provision a Kubernetes cluster. An advantage of using AKS is
the reduced complexity of Kubernetes management since many of the
management tasks are offloaded to Azure. The cluster utilizes only one
worker node and cheap spot nodes to minimize the costs during this ex-
periment.

• (I2) Azure Blob Storage. Metaflow, MLflow, and Argo need object stor-
age to save the artifacts. Azure Blob Storage in the Azure Storage Ac-
count is used as the object storage for these services.

• (I3) Azure Database for PostgreSQL. Multiple of the services used in the
MLOps pipeline require a PostgreSQL database. The managed Azure
Database for PostgreSQL – Flexible Server is deployed to avoid the man-
agement complexity of running a database in the Kubernetes cluster and
to avoid deployment difficulties. Multiple databases have to be created
inside the managed PostgreSQL resource. One database is for Metaflow,
another for Argo, and the last for MLflow.

5.3.2 services Terraform Module
Services for the MLOps pipeline implementation are defined in the services
Terraform module (S). These services are described in the chapter 4 concerning
the pipeline design. The infra Terraform module needs to be deployed before
this module. Terraform automatically figures out this dependence.
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• (S1) Metaflow, Argo Workflows, Argo Events. The main component of
the pipeline is the workflow orchestrator. Metaflow, in combination with
Argo Workflows and Argo Events, provides this functionality. Argo
Workflows and Argo Events provide Helm charts for deploying these
services. These Helm charts were deployed using Terraform Helm provider.
Metaflow was deployed based on Kubernetes manifest definitions in Ter-
raform [75] provided by Outerbounds – the maintainers of Metaflow.
Metaflow and Argo Workflows store data in the provisioned PostgreSQL
database and Azure Blob Storage object storage.

• (S2) MLflow. Experiment tracking tool MLflow is deployed using a Helm
chart with the Terraform Helm provider. MLflow connects to the provi-
sioned PostgreSQL database and stores data in the Azure Blob Storage
object storage.

• (S3) Elasticsearch, Kibana. These monitoring tools are deployed using
the official Kubernetes controller – Elastic Cloud on Kubernetes. This
controller is first deployed using a Helm chart, and then another Helm
chart deploys the Elasticsearch and Kibana instances themselves. In the
configuration, the Elasticsearch is configured to run with minimal re-
source requirements to save costs during this experiment. Elasticsearch
persists its data using a PersistentVolumeClaim Kubernetes object.

• (S4) Fluent Bit. Similarly to other tools, the log aggregation and for-
warding tool Fluent Bit is also deployed using a Helm chart with the
Terraform Helm provider. Fluent Bit is automatically configured to re-
trieve logs from the Pods running in the cluster and forward them to the
Elasticsearch service.

• (S5) Evidently AI. The model monitoring tool, Evidently AI, is deployed
using custom Kubernetes object definitions for Terraform Kubernetes
provider. These definitions contain the Deployment of the application,
a Service to expose it, and a PersistentVolumeClaim to persist its data.

5.3.3 Metaflow Flows
In the diagram 5.3 of the implemented pipeline, there are two Metaflow flows
depicted (F1, F2). The amount of registered flows and their purpose can vary
depending on the current needs of the developers and the application. These
two are displayed in the diagram because flows with similar purposes are go-
ing to be present in every pipeline implementation, and they help illustrate
the workflow of the pipeline.

Metaflow flows are Python scripts that utilize the API provided by Metaflow
to enable workflow orchestration. These flows can be registered automatically
to the Kubernetes cluster in a CI/CD pipeline. There is also an option to reg-
ister flows manually as the developer experiments with their implementation.

In the implementation of the pipeline, the suggested flows should have the
following purposes:

• (F1) Training Flow. As the name suggests, this Metaflow flow covers
the training of the ML model. This means the flow loads the data nec-
essary for the training and starts the experiment training run. Data for
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the training run can be versioned using Metaflow’s built-in versioning
capabilities or pushed into some object storage. During the training run,
metadata, metrics, and other artifacts should be stored in the MLflow ex-
periment. Finally, when the model training is done, the resulting model
should be pushed into the MLflow’s model repository.

• (F2) Monitoring Flow. This flow enables monitoring of the model’s per-
formance. Model inference logs are scraped and ingested into Elastic-
search using Fluent Bit. This flow then, on a set schedule or with another
trigger, pulls the stored data from the Elasticsearch service, computes the
monitoring metrics, and pushes them into Evidently AI monitoring UI.
Alerts based on the derived information can also be sent to developers
from this flow.

5.4 Application Migration

One of the requirements set by Profinit EU is that the application described in
the chapter 3 is supposed to run in the cloud. Since a Kubernetes cluster (I1)
is already provisioned for the described MLOps pipeline for the application,
we agreed to deploy the application to the same Kubernetes cluster.

Ingress-NGINX

AKS
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Provided
application

Azure
Database

for
PostgreSQL

Azure Blob
Storage

AI3

Azure
Container
Registry

AI1 AI2

I1
A1

A2

A4

A3

Figure 5.4: Diagram of the resources for the migrated application.

The application migration is split into two parts when moving into the
cloud environment. The first part is the resources necessary for the application
to run. The second part is the application deployment itself.
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Resources necessary for the application migration are created using Ter-
raform. To separate the resources for the application from the ones for the
pipeline, they are extracted into the application Terraform module.

The application is continuously deployed using GitLab CI/CD pipeline by
applying Kubernetes manifests configured per environment using Kustomize.

5.4.1 application Terraform Module
We provision the necessary resources in the cloud and inside the Kubernetes
cluster using Terraform. All of the resources for the application (except the
Kubernetes cluster itself (I1), provisioned in the pipeline infra module) are
provisioned inside the application module in the Terraform project.

As described in the application architecture overview, its components in-
clude the Flask web application, Celery worker, RabbitMQ message broker,
and PostgreSQL database. We provision some of these components and other
resources to allow the application’s deployment inside the Kubernetes clus-
ter. Here is an overview of the resources provisioned in the application Ter-
raform module.

• (AI1) Azure Blob Storage. Azure Blob Storage object storage available
in the Azure Storage Account stores the data necessary for the training
and static asset generation when building the application. This resource
helps to avoid storing the data in the Git repository.

• (AI2) Azure Container Registry. Built images of the application need to
be pushed to a container registry to be pulled into the Kubernetes cluster
and deployed. Azure Container Registry is provisioned exactly to solve
this problem. In practice, this resource allows the storage of Docker and
Open Container Initiative (OCI) images and all other OCI artifacts.

• (AI3) Azure Database for PostgreSQL. Similarly to the database service
used for the services database, Azure Database for PostgreSQL is provi-
sioned. Connection to this database is publicly available since some of
the management tasks for the application need to be done manually.

• (A2) RabbitMQ. This resource allows the Flask web application and the
Celery worker to communicate. RabbitMQ’s proper deployment and de-
ployment management are complex tasks, but choosing a Helm chart to
deploy this resource simplifies these tasks. This resource is deployed
into the Kubernetes cluster using a Helm chart and the Terraform Helm
provider.

• (A3) Ingress-NGINX. An Ingress Kubernetes resource exposes the appli-
cation from inside the cluster. Ingress-NGINX is chosen as the Ingress
Controller due to its popularity and portability between cloud environ-
ments [76]. This resource is deployed into the Kubernetes cluster using
a Helm chart and the Terraform Helm provider.

• (A4) cert-manager. The cert-manager is deployed in the Kubernetes clus-
ter to allow for secure communication between the users and the appli-
cation. cert-manager obtains TLS certificates from various issuers [77]; in
our case, it is the Let’s Encrypt issuer. These certificates can then be used
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with the Ingress resource. This resource is deployed into the Kubernetes
cluster using a Helm chart and the Terraform Helm provider.

5.4.2 Application Deployment
Vanilla Kubernetes manifests are written to deploy the application itself (A1)
into the Kubernetes cluster, and the Kustomize overlays are used to adjust
these manifests per environment. Since the application already uses Docker
for containerization, the existing Docker images can be used in the Kubernetes
cluster.
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Figure 5.5: Diagram of the provided application deployed in Kubernetes clus-
ter

The application consists of two Deployments managing ReplicaSets. One
of the Deployments is for the Flask web application, and the other is for the Cel-
ery worker. Configuration for the application is provided using ConfigMaps.
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Credentials to connect to the database and message broker and pull secret for
the container registry are provided using Secrets. Each Flask web application
pod and the Celery worker pods have a ReadWriteMany volume mounted to
provide the shared folder. This volume is claimed by a PersistentVolume-
Claim, which is provisioned on Azure using one of the provided Storage-
Classes. Lastly, the Flask web application is exposed using a Service in the
cluster, and Ingress provides the external access.

Docker images for the deployment of the pods are pulled from the Azure
Container Registry. The application connects to the RabbitMQ running in the
cluster and the managed PostgreSQL database.

This deployment is depicted in the diagram 5.5. Connection to the external
services is not shown in the diagram.

5.5 CI/CD Automation

One of the principles of MLOps described in the section 1.4 is CI/CD automa-
tion. The CI/CD automation component (C) in this implementation is GitLab
CI/CD, as mentioned previously.

GitLab CI/CD runs its jobs on a runner provided by Profinit EU. This
runner communicates with the Kubernetes cluster using a GitLab agent (C1),
which is deployed using an official Helm chart with Terraform Helm provider.
Terraform also creates necessary CI/CD environment variables for the jobs.

The diagram 5.3 highlights only the most important jobs. These jobs can
be used as suggestions when implementing pipelines on different projects.
Various other jobs can be added based on the requirements. Here is a short
overview of each of the jobs:

• (C2) Register flows. When a developer changes the definition of any
Metaflow flows, a CI/CD job automatically registers the new version in
the Kubernetes cluster.

• (C3) Trigger retraining. Retraining can be triggered based on multiple
criteria, as described in the previous chapters. One of the ways to trig-
ger the retraining can be using a CI/CD job, which runs, for example,
automatically on changes or when a developer triggers it from GitLab’s
UI.

• (C4) Build application. A build job for the final application can be present
in the implemented pipeline. This job can, for example, use the MLflow’s
model registry to download a tagged model or retrieve necessary arti-
facts from the Metaflow flow’s run. Details of this job are left out because
they are specific to the provided application.

• (C5) Deploy application. Finally, a job to deploy the application to the
cluster should be present. In this case, this job applies the Kubernetes
manifests adjusted per environment using Kustomize.
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5.6 Pipeline Summary

To summarize the pipeline implementation and give an idea of the process
when using the pipeline, below is an ordered list of steps happening in the
pipeline.

1. Metaflow flows are registered into the Kubernetes cluster.

2. Training flow is triggered. The model is trained and saved with its arti-
facts to MLflow.

3. Model training results can be manually analyzed in the MLflow UI, and
if the newly trained model is better than the older ones, it can be selected
for deployment.

4. Application is built. During the build, the model chosen for deployment
is downloaded with its artifacts.

5. The built application is deployed to the Kubernetes cluster.

6. Application runs, and the logs from its usage are scraped using Fluent
Bit and ingested into Elasticsearch.

7. Monitoring flow pulls the saved logs, calculates insights using the Evi-
dently AI library, and pushes the derived information into the Evidently AI
monitoring UI. This flow can also send alerts to developers based on the
derived information.

8. The Developer can then act based on alerts received or the information
in the Evidently AI monitoring UI.

Steps happening in the pipeline can be adjusted based on the needs of spe-
cific projects thanks to the pipeline’s flexibility. The described steps are just
one way to implement the pipeline used in the prototype for the provided ap-
plication.
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CHAPTER 6
Discussion

The last few chapters provided an overview of MLOps pipeline design and its
implementation. The designed pipeline was successfully deployed and used
with the application provided by Profinit EU. This process has provided us
with valuable insights, which are written in the following sections.

6.1 Comparison with Original State

Compared to the original state of the application, many of the associated man-
ual activities with the deployment are now automated. The application is de-
ployed continuously on changes. The model for the application can be easily
retrained on new data, and all trained models are versioned. Metrics are col-
lected from application usage to assess performance regularly. On the other
hand, the deployment is much more complex, with many tools involved. It is
also an expensive solution due to the amount of resources used in the cloud
environment.

6.2 Downsides

There are multiple downsides related to using the designed pipeline. Some of
them were already mentioned when describing the pipeline design. Below is
a comprehensive list of the downsides with short elaborations.

• Many of the tools in the pipeline do not provide user isolation. When a
user has access to the tool, they have access to everything that the cer-
tain tool manages. This way, there could be unwanted consequences for
mistakes, or a malicious actor could take advantage of this fact.

• Due to the amount of tools, the pipeline is overly complex. Because of
this, it may be difficult for developers to use this pipeline. Usage requires
knowledge of multiple tools and their interactions, which many devel-
opers do not have.

• For small projects, using this pipeline may be costly. Another thing that
does not help is that valuable resources are used for the Kubernetes clus-
ter management. Consider using this pipeline when there is a need for
scalability and resource-intensive workflows.
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• There is a need for a custom authentication layer. For reference, in the
implementation for Profinit EU, authentication is solved using OAuth2
Proxy with the Ingress-NGINX external OAuth authentication access
method. Their GitLab instance is used as an OAuth 2.0 authentication
identity provider for the OAuth2 Proxy. Kubectl’s port forwarding func-
tionality is used for programmatic access to the APIs, which is not an
elegant solution.

6.3 Future Work

This pipeline design and implementation should mainly demonstrate how to
apply the principles of MLOps. Of course, it is not directly applicable to all
existing cases and needs to be adapted to the specific requirements of a given
case. Here, we see some possible work that could be done in the future to
improve the solution and provide a better developer experience. This work is
described in the following points.

• The source code provided in the archive of this thesis focuses on a specific
implementation for the provided application. On the basis of the design
and this source code, it would be useful to create a template on which
implementations for other projects could be based.

• As mentioned in the downsides, the authentication is currently not solved
elegantly. A way to authenticate in the pipeline and provide both browser
access to the UIs and programmatic access to the APIs would be a great
addition to this pipeline.

• For projects where the pipeline is not being retrofitted, it would be a good
idea to enhance the design with recipes for model deployment options.
This way, a recipe can be chosen and used in the pipeline without much
hassle when a new solution is developed.

• Monitoring resource usage would be a beneficial addition to this pipeline.
There are multiple off-the-shelf solutions for monitoring inside a Kuber-
netes cluster. Implementing any of these solutions should be considered
in the future.
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Conclusion

The main goal of the thesis was to design and implement an MLOps pipeline.
Implementing the MLOps pipeline meant deploying the designed pipeline in
practice and applying it to an application provided by Profinit EU. Before the
pipeline could be applied to the application, the application had to be migrated
to a cloud environment. Other goals that supported the primary goal were
to get a good grasp of the MLOps paradigm and its principles and to get an
overview of tools available in the MLOps landscape.

In order to achieve these goals, the theoretical concepts of ML and MLOps
were first introduced. Following the introduction, there was an overview of
open-source tools and their purposes in the MLOps paradigm. The applica-
tion provided by Profinit EU was then analyzed. After this analysis, it was con-
cluded that the application does not necessitate an extensive solution. How-
ever, it was chosen to proceed with the pipeline design to gain knowledge. An
extensible and portable pipeline was designed using open-source tools. Fi-
nally, the designed pipeline was implemented and successfully used with the
application, which was migrated to the cloud environment.

The work on this thesis proved to be very difficult. This difficulty stems
mainly from the sheer amount of new tools that we had to familiarize ourselves
with and use. Another thing is that when working with infrastructure, the
feedback loops on changes are long.

In conclusion, this thesis successfully designed and implemented a pipeline
to apply the MLOps principles to the application provided by Profinit EU. The
pipeline design provides a starting point for anyone wanting to enhance the
development of applications utilizing ML by applying MLOps principles.
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APPENDIX A
Acronyms

API Application Programming Interface.

AWS Amazon Web Services.

CACE Changing Anything Changes Everything.

CD Continuous Delivery.

CI Continuous Integration.

CNCF Cloud Native Computing Foundation.

CRISP-DM CRoss Industry Standard Process for Data Mining.

CRISP-ML(Q) CRoss-Industry Standard Process model for the development
of Machine Learning applications with Quality assurance methodology.

DAG Directed Acyclic Graph.

DevOps Development and Operations.

GCP Google Cloud Platform.

HTTP Hypertext Transfer Protocol.

IaC Infrastructure as Code.

LFS Large File Storage.

ML Machine Learning.

MLOps Machine Learning Operations.

MVP Minimum Viable Product.

OCI Open Container Initiative.
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SHAP SHapley Additive exPlanations.

SQL Structured Query Language.

UI User Interface.

VM Virtual Machine.

WSGI Web Server Gateway Interface.
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APPENDIX B
Contents of the Archive

README.md.................. information about the contents of the archive
src ............................. directory containing the implementation

.devcontainer...............directory for the development container
mlops....directory containing the pipeline implementation and scripts
.gitlab-ci.yml....................GitLab CI/CD pipeline definition
README.md..................... information about the implementation

thesis ......................... directory containing the text of the thesis
assets...............directory containing the assets used in the thesis
chapters.................directory containing the text of the chapters
bibliography.bib.......................................bibliography
FITthesis.cls...................LATEX template for theses at FIT CTU
main.tex ....................................... main LATEX source file
thesis.pdf..................................................this PDF
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