
Title:
Student:
Supervisor:
Study program:
Branch / specialization:
Department:
Validity:

Assignment of bachelor’s thesis

Application for booking beauty services
Arpan Tyagi
Ing. Ondřej Guth, Ph.D.
Informatics
Software Engineering
Department of Software Engineering
until the end of summer semester 2022/2023

Instructions

Study applications for searching and booking various types of services. Design and
implement a client-server solution for beauty services. The application should be
capable of listing services close to a given location, filtering based on various criteria,
and booking selected services. Deploy the server part using services of an online cloud
provider.

Electronically approved by Ing. Michal Valenta, Ph.D. on 17 August 2022 in Prague.

Bachelor’s thesis

Application for booking beauty services

Arpan Tyagi

Department of Software Engineering
Supervisor: Ing. Ondřej Guth, Ph.D.

May 18, 2023

Acknowledgements

I would like to express my profound gratitude to my supervisor, Ing. Ondřej
Guth, Ph.D., for his invaluable guidance and enduring patience throughout
the process of this work. His willingness to provide answers and clarifications
to my inquiries was instrumental to my understanding and progression.

Furthermore, I would express special thanks to Nikita Dvoriadkin, who
has been a close friend through this journey and provided valuable comments
to improve this work. Lastly, I wish to extend my sincere appreciation to
my family for their unwavering support and my girlfriend who has been a
pillar of strength during this academic journey. Their understanding and
encouragement have contributed significantly to the completion of this project.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 18, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Arpan Tyagi. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Tyagi, Arpan. Application for booking beauty services. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2023.

Abstrakt

Tato práce popisuje návrh a vývoj prototypu vyv́ıjej́ıćıho se systému pro
usnadněńı rezervace sch̊uzek v zař́ızeńıch kosmetických služeb. Prototypová
architektura zahrnuje aplikaci pro Android a server. Celý systém je vyv́ıjen v
souladu s nejlepš́ımi postupy vývoje softwaru. Očekává se, že server bude na-
sazen v cloudovém prostřed́ı, od kterého se očekává, že po úplné implementaci
poskytne optimálńı škálovatelnost a udržovatelnost.

Výsledkem této práce je vytvořeńı prototypu systému, který by měl sloužit
jako základńı platforma pro budoućı vylepšeńı. Očekává se, že tento prototyp
připrav́ı cestu pro komplexńı vývoj a př́ıpadné veřejné vydáńı produktu. To
představuje prvńı, ale zásadńı krok na širš́ı cestě uvedeńı tohoto inovativńıho
řešeńı na trh

Kĺıčová slova Rezervace, klient-server, Android, Kotlin, Heroku, Ktor

Abstract

This thesis outlines the design and prototype development of an evolving sys-
tem aimed at facilitating the booking of appointments at beauty service es-
tablishments. The prototype architecture encompasses an Android application
and a server. The entire system is developed adhering to software development

vii

best practices. The server deployment is envisaged within a cloud environ-
ment, which is expected to ensure optimal scalability and maintainability once
fully implemented.

As an outcome of this thesis, a prototype system has been established that
is intended to serve as the foundational platform for future enhancements. It
is anticipated that this prototype will pave the way for comprehensive devel-
opment and eventual public release of the product. This represents an initial,
yet critical, step in the broader journey of bringing this innovative solution to
market.

Keywords Booking, client-server, Android, Kotlin, Heroku, Ktor

viii

Contents

Introduction 1

1 Aims and Objectives 3
1.1 Specific Objectives . 3
1.2 Conclusion . 4

2 Market Research 5
2.1 Review of existing solutions . 5

2.1.1 Booksy . 5
2.1.2 Fresha . 6

2.2 Possible Improvements. 7
2.3 Conclusion . 8

3 Analysis 9
3.1 User Roles . 9
3.2 Requirements . 10

3.2.1 Functional Requirement 10
3.2.2 Non-Functional Requirement 11

3.3 Use cases . 11
3.4 Domain model . 11

4 Assessing the Tech Stack Choices 15
4.1 Development of Client . 15

4.1.1 Native vs Cross-Platform Development 15
4.1.2 Mobile Platform Selection for Prototype Development . 16
4.1.3 Choice of Programming Language 17

4.2 Selection of Server Framework 19
4.2.1 Spring Framework . 20
4.2.2 Ktor . 21
4.2.3 Final Decision . 21

ix

5 Design 23
5.1 Wireframes . 23
5.2 Client Server Architecture . 24
5.3 API design . 26
5.4 System Architecture . 26

5.4.1 User Authentication . 26
5.5 Final Architecture . 28
5.6 Android Design . 28

5.6.1 Application architecture 29
5.6.2 UI layer . 29

5.7 Server design . 30

6 Implementation 31
6.1 Android Implementation . 31

6.1.1 Libraries . 31
6.1.1.1 Jetpack Compose 31
6.1.1.2 Hilt . 31
6.1.1.3 Compose Destinations 32
6.1.1.4 Retrofit . 32

6.2 Server Implementation . 33
6.2.1 Libraries . 33

6.2.1.1 Ktor . 33
6.2.1.2 Exposed . 33

6.2.2 Image Storage . 34
6.2.3 Database . 34

6.3 Deployment . 34
6.3.1 Cloud infrastructure . 34
6.3.2 Android deployment . 35

7 User Testing, Feedback and Future Improvements 37
7.1 User testing . 37
7.2 Feedback . 38

7.2.1 Summary . 40
7.3 Future improvements . 40

Conclusion 43

Bibliography 45

A Acronyms 47

B Contents of enclosed CD 49

x

List of Figures

3.1 General use cases . 12
3.2 Domain model . 13

5.1 Login and Sign-up wireframes . 23
5.2 Business list wireframe . 24
5.3 Business details view wireframe . 25
5.4 Create bookings and list bookings wireframes 25
5.5 Recommended architecture by Google 29

6.1 Database model . 35
6.2 Cloud infrastructure . 36

xi

Introduction

Growing up in the suburbs of Gurugram, India, the simplicity of life was
mirrored in our routine visit to the local barber shop. It was a stone’s throw
away from our home, and my father knew the barber personally. We would
leisurely wait our turn, flipping through magazines, a practice that became as
much a part of the haircut experience as the haircut itself.

As I transitioned into adulthood and moved away from home, the task
of finding a new barber in a sea of choices was not as straightforward as
it once seemed. Navigating the options listed on Google, making sense of
the ratings, and then managing to book an appointment was unexpectedly
challenging. I found that appointment booking methods were primarily split
into two categories: calls and online reservations, and neither seemed ideal.

Making phone calls was restricted to business hours and often involved
tedious back-and-forths to align schedules. On the other hand, online reser-
vations, while seemingly convenient, were marred by clunky and slow user
interfaces that were anything but user-friendly.

It was during this quest for a new barber that I realized the need for a
unified, seamless platform that could bring together all the salons in a city. A
platform that would not only let users sift through various establishments but
also compare them based on reviews, ratings, and prices, and e�ortlessly book
appointments. A solution like this was conspicuously absent in the Czech
Republic, and thus, the seed for my project was sown.

1

Chapter 1

Aims and Objectives

The primary objective of this thesis is to design and develop a prototype
solution for discovering and booking beauty services in an easy and e�cient
manner. The system aims to facilitate browsing a selection of available beauty
businesses within a given city, allowing users to filter and sort establishments
based on various criteria.

The resulting prototype system should comprise two main components:
a server and a mobile client application. The server is responsible for han-
dling data storage, retrieval, and processing, while the mobile client provides
users with an accessible and intuitive interface for interacting with the system.
Both components should be designed using modern software development best
practices to ensure scalability, maintainability, and robustness.

1.1 Specific Objectives

1. Undertaking a meticulous analysis of existing beauty service booking solu-
tions to ascertain their strengths and weaknesses, thus gaining valuable
insights into the current market landscape.

2. Architecting a client-server system that supports a diverse range of func-
tionalities, including searching, filtering, booking, and managing book-
ings, catering to the varying needs of users.

3. Engineering a mobile application prototype that enables users to interact
seamlessly with the system, prioritizing quick scheduling of bookings.

4. Implementing a server component that capably manages data storage, re-
trieval, and processing information.

5. Deploying the server component on a cloud infrastructure to guarantee
scalability and ease of maintenance, anticipating future growth and ex-
pansion of the system.

3

1. Aims and Objectives

1.2 Conclusion

In fulfilling these objectives, the overarching aim of this thesis is to construct
an inclusive prototype system that addresses the complex task of locating
and scheduling appointments with beauty service establishments. This pro-
totype is set to incorporate a selection of anticipated features indicative of a
fully developed product. It establishes a solid foundation that paves the way
for subsequent enhancement and fine-tuning, ultimately leading to a robust
product ready for public release.

4

Chapter 2

Market Research

This chapter explores the existing landscape of booking systems that enable
users to secure bookings at nearby businesses that o�er beauty services. A
thorough examination of the strengths and weaknesses of prominent systems
in the market will be conducted, identifying potential opportunities.

To begin with the current market analysis I will shortlist a list of systems
already o�ering the service of booking beauty services. The process for select-
ing potential reservation systems to analyze will involve browsing the Google
Play Store. We’ll be focusing on applications with more than one hundred
thousand downloads and a user review rating of at least 4.5 stars. This ap-
proach will generate a comprehensive list of the current leading apps in the
market. Subsequently, these applications will be evaluated for their strengths
and weaknesses, providing valuable insights into the landscape of reservation
systems. Since the Apple app store doesn’t publish the number of times an
app has been downloaded, I will rely on the numbers from the Google Play
store for the number of downloads.

2.1 Review of existing solutions

2.1.1 Booksy

Downloads: 10 Million +

Rating: 4.9

Booksy[1] is a platform designed to facilitate bookings at nearby busi-
nesses. As a mobile app and online platform, Booksy enables users to schedule
appointments with local beauty and wellness professionals, including hairstylists,
nail technicians, and massage therapists. The app o�ers features such as real-
time availability, booking confirmations, and appointment reminders. Addi-
tionally, users can browse and search for service providers based on location,

5

2. Market Research

specialty, and availability, as well as view ratings from other users to support
informed decision-making.

Strengths

• Booksy is a large business and operates in six global markets - the US,
UK, Poland, Spain, Brazil and South Africa. The company claims to
have 13 million active users.[2]

• Mobile and web presence: The Booksy app is available on both iOS and
Android platforms, in addition to their web-based platform, providing
flexibility and convenience for users.

• Marketing tools for businesses: Booksy provides businesses with tools
for promotions, discounts, and loyalty programs, helping them attract
and retain customers.

Weakness

• Limited geographical coverage: Booksy is not available in all regions
or cities, potentially restricting its user base. Notably, Booksy is not
available in the Czech Republic.

• Subscription-based pricing for businesses: The subscription pricing model
may deter smaller businesses or those with limited budgets from using
the platform.

• Dependency on the network e�ect: Booksy’s success relies on attracting
both businesses and customers to its platform, which may be challenging
in areas with low adoption rates.

2.1.2 Fresha

Fresha[3] is an online platform and app that provides free business software for
salons, spas, gyms, and other wellness businesses. It allows these businesses to
manage their scheduling, point-of-sale, inventory, and other operational needs.
For customers, it provides an easy way to discover, book, and pay for services.

Downloads: 100 Thousand +

Rating: 4.7

6

2.2. Possible Improvements.

Strengths:

• Fresha operates in more than 120 countries, making it a widely accessible
platform for users and businesses.[4]

• The platform is user-friendly and supports both web and mobile appli-
cations, available on iOS and Android, providing flexibility and conve-
nience for users.

• Fresha o�ers a range of marketing tools and business management fea-
tures for service providers, such as inventory management, sta� man-
agement, and reporting.

• Integration of customer reviews and ratings helps users make informed
decisions while selecting service providers.

• Fresha o�ers a free booking platform for businesses, making it an at-
tractive option for small businesses and those with limited budgets.

Weaknesses:

• As a global platform, Fresha may face challenges in providing localized
support or addressing region-specific requirements.

• In areas with low adoption rates, users may find limited options for
service providers, a�ecting the platform’s utility.

Out of the numerous mobile applications analyzed for booking appoint-
ments at beauty businesses, only two met the selection criteria of having over
100,000 downloads and a user rating of 4.5 or higher on the app store. These
applications are Booksy and Fresha, which have demonstrated a significant
user base and positive reviews. Although there were two other applications
that facilitated appointment booking at nearby beauty businesses, they had
less than 100,000 downloads, indicating a smaller market presence. To main-
tain a focused analysis, the decision was made to concentrate on the appli-
cations with higher downloads and user ratings. This approach ensures that
the most prominent and successful applications in the market are evaluated,
providing valuable insights into their features, strengths, and weaknesses.

2.2 Possible Improvements.

An examination of the strengths and weaknesses of the identified platforms
reveals several opportunities for enhancing the technical implementation of the
proposed product. To address the gaps in existing solutions and di�erentiate
the new product, the following measures can be taken:

7

2. Market Research

1. Localized focus: The proposed product will cater specifically to the
Czech market, with an emphasis on Prague and other Czech cities. This
approach di�erentiates it from the U.S.-based solutions, which have lim-
ited presence in the region. Focusing on the local market allows the
application to cater to the unique needs of Czech users and businesses.

2. Limited but focused feature set: Unlike existing applications that
o�er a multitude of features, some of which may not be useful to users
(e.g., Booksy’s articles and blog posts), the proposed product will pri-
oritize a streamlined prototype with a limited, yet focused, feature set.
The primary goal is to facilitate quick and easy bookings for users, elim-
inating extraneous features that may detract from the core functionality
of the reservation system. This approach aims to improve overall user
satisfaction and e�ciency in booking beauty services.

2.3 Conclusion

In conclusion, the comprehensive analysis of existing reservation systems has
yielded valuable insights into the market landscape, user-interface design, and
best practices for developing a booking application. This knowledge has served
as a foundation for the design and development of a solution for reserving
beauty services, targeting specifically the Czech market. By creating a stream-
lined prototype with a focused feature set, the proposed application aims to
address the unique needs and preferences of users within this region. As a re-
sult, the developed prototype application is poised to establish a competitive
advantage within the Czech market.

8

Chapter 3

Analysis

In this chapter, the objective is to build upon the research conducted in the
previous chapter by identifying potential user roles within the application.
This will involve the formulation of functional and non-functional require-
ments, as well as the definition of specific use cases. The intent is to provide a
comprehensive understanding of the system’s requirements, ensuring that the
proposed solution e�ectively addresses the needs of its users in a systematic
and well-structured manner.

3.1 User Roles

In this system designed for finding and booking beauty services, there will be
several user roles, with distinct privileges and responsibilities. Some common
user roles in such a system could include:

1. Customer: Customer is the primary users of the system. They can
browse and filter through available beauty businesses, view detailed in-
formation about the services o�ered and finally make bookings. They
can also leave reviews and ratings.

2. System Administrator: System administrators are responsible for
managing the overall platform. They can oversee and moderate user ac-
counts (both customers and business administrators), monitor and en-
force compliance with the platform’s terms and policies, handle disputes
and support requests, and maintain the platform’s overall functionality,
security, and performance.

3. Business Administrator(out of scope): Business administrators
represent the beauty businesses within the system. They have the abil-
ity to see and manage their business profile, including uploading images,
providing descriptions, and listing services and their respective prices.
Business administrators can also manage their schedules, respond to

9

3. Analysis

customer reviews on their business, track customer history, and view
customer reviews and ratings

In this thesis, the primary objective is to develop a customer-facing mobile
application for discovering and booking beauty services. By focusing on a mo-
bile application explicitly designed for customers, the user experience can be
more targeted, ensuring that features and functionalities cater to the unique
requirements of customers seeking and scheduling beauty services. By concen-
trating on the customer-facing mobile application, this thesis strives to deliver
an optimized solution that addresses the core aim of simplifying the process
of finding and booking beauty services for customers. The development of a
separate business-facing application or web interface, tailored to the specific
needs of beauty businesses, will be deemed beyond the scope of this thesis.

3.2 Requirements

This section will describe the functional and non-functional requirements.
These requirements were formulated based on the goals of this thesis and
modern standards of software development.

3.2.1 Functional Requirement

F1: Browse Business and Services o�ered by them. The user should
be easily able to browse businesses o�ering his desired services near
him. Moreover, he should be able to filter them through some criteria,
like location proximity or business rating.

F2: User Sign up and Log In The user should be able to create a new
account or sign in to his existing account.

F3: Booking Management The user should be able to create, update and
delete bookings created by him. A user should be able to easily browse
through his bookings and manage them.

F4: Browse Reviews A user should be able to read reviews and see ratings
for a business that have been written by other users.

While a comprehensive system should ideally provide numerous features
catering to various aspects of the business, it is essential to acknowledge the
distinct requirements of businesses compared to those of general users, as
discussed in section 3.1. The unique needs of business users warrant the
development of a separate application tailored to their specific demands. For
the sake of conciseness, this thesis will focus on MVP features intended for
general users and the development of a user-centric application. A dedicated
business application would serve as an advantageous extension of this thesis,
warranting further exploration in future research.

10

3.3. Use cases

3.2.2 Non-Functional Requirement

NF1: Client. A client application that can run on a modern smartphone.

NF2: Server A Server that can communicate with the mobile client.

NF3: Localization Application should be in English, although the client
should be developed in such a way that languages can be quickly be
added in the future.

NF4: Extensibility Because the goal of this thesis is to implement a pro-
totype of client and server application, the application itself must be
extensible, that is, it must provide the ability to easily add new features
or extend current ones.

3.3 Use cases

This section describes the use cases of the application.

UC1: Log in Anonymous user should be able to log into the application
using their email and password.

UC2: Register Anonymous user should be able to register and create an
account in the system.

UC3: Browse Businesses Registered user should be able to browse avail-
able business in his location, he should be able to filter the listed busi-
nesses based on some criteria.

UC4: Browse Services o�ered by a business Registered user should be
able to select a listed business and be able to look at services o�ered by
the business.

UC5: Browse Reviews of a business Registered user should be able to
select a listed business and read reviews left by other users.

UC6: Create Bookings Registered user should be able to create a booking
at a business listed on the system.

UC7: View Bookings Registered user should be able to see all of their
present and past bookings.

UC8: Filter Businesses Registered users should be able to filter through
businesses based on their location and their ratings.

3.4 Domain model

Analysis of the requirements and use cases, which were described before, has
led to the creation of the domain model, shown in the Figure 3.2.

11

3. Analysis

Figure 3.1: General use cases

12

3.4. Domain model

Figure 3.2: Domain model

13

Chapter 4

Assessing the Tech Stack

Choices

4.1 Development of Client

When making mobile application there are two paths which a developer can
take either Native Mobile Development or Cross-Platform development. The
next sections tries to analyze the advantages and disadvantages of both.

4.1.1 Native vs Cross-Platform Development

The following section is based on [5]
When making a mobile applications, there are two paths that a devel-

oper can take: either Native Mobile Development or Cross-Platform Mobile
Development. Native Mobile Development refers to the process of building
an application specifically for a single platform, like Android or iOS, using
their respective programming languages - Kotlin/Java and Swift/Objective-
C. These applications are optimized for the operating system they’re built for,
providing a high performance and seamless user experience that aligns with
the platform’s guidelines.

On the other hand, Cross-Platform Development involves creating applica-
tions that can operate on multiple platforms, usually both Android and iOS,
from a single codebase. This is made possible by frameworks such as React
Native, Flutter, or Xamarin. While this approach may increase development
speed and reduce costs by reusing code, it might not always be able to provide
the same level of performance and native-like user experience.

The next sections attempt to analyze the advantages and disadvantages of
both Native Mobile Development and Cross-Platform Development.

Performance: Native mobile applications generally o�er superior perfor-
mance compared to cross-platform applications, as they are optimized

15

4. Assessing the Tech Stack Choices

for specific platforms and compiled using the platform’s core program-
ming language and APIs Cross-platform applications may experience
reduced performance due to the additional layer of computation intro-
duced by the custom runtime.

Access to Platform-Specific Features: Native applications can access the
full feature set of the device, providing a richer and more integrated user
experience. Cross-platform frameworks may lag in integrating the latest
platform-specific features and updates, potentially limiting the applica-
tion’s capabilities. For our prototype this is useful, since we want to
quickly access the device’s location.

Security: Native mobile applications are more secure than their cross-platform
counterparts, as they have access to the built-in security features of the
device’s operating system. Cross-platform applications may not provide
the same level of security.

Development Costs and Time: Although cross-platform development can
save time and resources by sharing code between platforms, the associ-
ated complexities and limitations may o�set these benefits. Native de-
velopment ensures a more streamlined development process and easier
maintenance due to the singular focus on a specific platform.

Upon evaluating these factors, it is clear that native mobile development
presents several advantages for the prototype application, including optimal
performance, access to platform-specific features and a streamlined develop-
ment process. While cross-platform development o�ers advantages such as
reduced development costs and rapid deployment, the potential drawbacks in
terms of performance, feature availability, and user experience make native
development a more suitable choice for the prototype application. Therefore,
after carefully considering the pros and cons of both native mobile develop-
ment and cross-platform tools, the decision has been made to adopt native
mobile development for the prototype application.

4.1.2 Mobile Platform Selection for Prototype Development

For the prototype, given the time constraints, it has become necessary to
develop a client for only one of the two popular mobile platforms: Android or
iOS. The decision will be based on the following factors:

1. Market Share: Android holds a significantly larger market share com-
pared to iOS. By targeting Android, the application has the potential to
reach a wider audience, which could contribute to an increased user base
and overall success. In the Czech Republic, the market share of Android
stands at 71.83%, whereas iOS holds 27.48% (as of April 2023)[6].

16

4.1. Development of Client

2. Development Language The choice of development language for the
prototype can influence the decision between Android and iOS plat-
forms. If the individual developer possesses proficiency in Kotlin or
Java, Android may emerge as a more suitable choice. On the other
hand, if the developer demonstrates expertise in Swift or Objective-C,
selecting iOS could be a more appropriate fit.

3. Development Cost and Time Android development can prove to be
more time-consuming and costly due to device fragmentation. This re-
quires the developer to ensure compatibility across a diverse range of
devices and screen resolutions. Conversely, iOS development is gener-
ally faster and less expensive because of the limited number of devices
and hardware configurations.

Upon careful evaluation of these factors, it is clear that selecting a mobile
platform that aligns with my expertise will facilitate faster prototype devel-
opment. Moreover, considering the market share advantage, it is prudent to
opt for the Android platform for the prototype development. This decision
not only leverages my familiarity with the tech stack but also capitalizes on
Android’s dominant market share.

4.1.3 Choice of Programming Language

In the realm of Android application development, there are two primary pro-
gramming languages to consider: Java and Kotlin. Both languages o�er
unique advantages and disadvantages that must be carefully weighed before
making a decision. Java, as the original language for Android development,
has established a robust ecosystem, extensive libraries, and a large developer
community. However, Kotlin gained o�cial support from Google in 2017 and
became Google’s recommended language for Android development in 2019.
Most importantly it o�ers interoperability with Java.[7]

Advantages of Java

1. Mature ecosystem: Java has been the primary language for Android
development since its inception, leading to a rich ecosystem of libraries
and resources.

2. Large developer community: Java’s longstanding presence in the An-
droid development landscape has resulted in a vast community of devel-
opers who can provide support and share knowledge.

Advantages of Kotlin

1. Concision: Java’s syntax is verbose compared to Kotlin, which can make
code more di�cult to read and maintain.

17

4. Assessing the Tech Stack Choices

a) Kotlin does not require a class declaration for the main method,
making the code more concise.

b) Kotlin uses ‘val‘ and ‘var‘ for declaring immutable and mutable
variables, respectively, simplifying the syntax.

c) Kotlin supports default arguments and named parameters, reduc-
ing the need for method overloading and leading to more concise
code.

d) Kotlin has built-in support for coroutines, which allow for eas-
ier asynchronous programming, without requiring verbose callback
structures like those often found in Java.

e) Kotlin has powerful type inference while Java has limited type in-
ference capability. This means that in Kotlin, you often don’t have
to explicitly specify the type of every variable you declare, leading
to more concise code.

2. Null Safety: Kotlin’s null safety is one of its most significant advantages
over Java. It helps prevent null pointer exceptions, which are common
errors in Java. Listing 4.1 demonstrates the null safety of Kotlin over
Java.

a) In Kotlin, by default, variables cannot hold a null value. To declare
a nullable variable, you must use the ”?” modifier (e.g., ”String?”).
This explicit declaration makes it clear which variables can be null,
leading to fewer null-related errors.

b) The safe call operator ”?.” in Kotlin allows you to call a method or
access a property on a nullable type without risking a NullPoint-
erException. If the variable is null, the entire expression evaluates
to null.

c) Kotlin provides the Elvis operator (”?:”) for providing a default
value if a nullable expression evaluates to null

3. Compatibility: Kotlin is designed to be fully inter operable simple and
stateless scheme, allowing developers to utilize existing Java libraries and
frameworks while gradually transitioning to Kotlin. This compatibility
ensures a smooth migration and enables Kotlin code to coexist with Java
code in the same project. Kotlin

Taking into account the various advantages of Java and Kotlin, it be-
comes clear that Kotlin is the better choice for modern Android application
development. Kotlin’s concise syntax, improved null safety, and full interop-
erability with Java make it an attractive option for developers seeking a more
e�cient and enjoyable programming experience.Furthermore, with Google’s

18

4.2. Selection of Server Framework

Listing 4.1: Kotlin vs Java conciseness
//Java
pub l i c c l a s s Nu l lSa f e ty {

pub l i c s t a t i c void main (St r ing [] a rgs) {
St r ing s t r = n u l l ;

// This w i l l throw a Nul lPo interExcept ion
i n t l ength = s t r . l ength () ;

}
}

// Kot l in
fun main () {

var s t r : S t r ing ? = n u l l

// This won ’ t compile , prevent ing a Nul lPo inte r
// Exception
va l l ength = s t r . l ength

// To s a f e l y c a l l a method on a n u l l a b l e type ,
// use the s a f e c a l l operator
va l l ength = s t r ? . l ength

}

o�cial support and recommendation for Kotlin as the preferred language for
Android development, the Kotlin ecosystem and community are expected to
continue growing, leading to more resources, libraries, and tools tailored to
the needs of Android developers.

In conclusion, Kotlin o�ers a more modern, expressive, and safer approach
to Android development while maintaining compatibility with Java’s extensive
ecosystem. Adopting Kotlin for Android development is a forward-thinking
decision that is likely to benefit developers and their projects in the long run.

4.2 Selection of Server Framework

When selecting a server framework for your application, it is essential to
consider various factors such as performance, ease of use, and compatibil-
ity with the chosen programming language. Popular server frameworks in-
clude Node.js, Django, Ruby on Rails, and Express.js, among others. Each
of these frameworks has its strengths and weaknesses, and your choice should

19

4. Assessing the Tech Stack Choices

ultimately be driven by your application’s specific requirements and your fa-
miliarity with the underlying technology.

In order to maintain consistency throughout the development process, it is
advantageous to select a server framework that supports Kotlin as the primary
development language. By utilizing Kotlin across both client and server sides,
developers can leverage their existing knowledge and expertise, streamlining
the development process and enhancing overall productivity. This consistency
in the technology stack will enable seamless integration and facilitate easier
maintenance of the entire system. Moreover, the unified language choice min-
imizes the learning curve associated with mastering multiple languages and
frameworks, allowing me to focus on creating a high-quality, coherent appli-
cation.

After applying the filter of server framework supporting Kotlin as devel-
opment language I have found two popular frameworks for my system Spring
and Ktor.

When comparing the server frameworks Spring and Ktor for Kotlin-based
development, several pros and cons emerge for each option. An analysis of
these factors can guide the decision-making process for selecting the most
suitable framework for my application.

4.2.1 Spring Framework

The Spring Framework, first released in 2004, is a robust tool utilized predom-
inantly for Java application development. Its primary objective is to stream-
line server development, providing pre-made solutions to common challenges
including security, dependency injection, and testing. This comprehensive
framework, however, carries a certain complexity due to its expansive nature,
which can make its mastery a challenging endeavor. Thus, while it o�ers nu-
merous advantages, its sheer size could potentially be perceived as a drawback,
especially for those seeking to fully comprehend its extensive capabilities.

Advantages:

• Since being first released in 2004, the framework has matured and es-
tablished a large community.

• Comprehensive documentation and support resources.

• Wide array of tools and integrations.

Disadvantages:

• A steeper learning curve for developers new to the framework.

• Relatively higher resource consumption and larger a footprint.

• Doesn’t support Kotlin coroutines, since the framework is Java First.

20

4.2. Selection of Server Framework

4.2.2 Ktor

Ktor, a relatively novel framework dedicated to server creation, is currently
undergoing active development. Distinguished by its ”Kotlin-first” approach,
Ktor leverages advanced features of the Kotlin language, such as its suc-
cinct syntax and support for coroutines. However, as an emergent framework,
Ktor’s ecosystem of plugins and libraries is comparatively limited, and it may
not o�er pre-built solutions for certain problems. This potential drawback ne-
cessitates that developers using Ktor be prepared to devise their own solutions
for any issues not addressed by the existing framework.

Advantages:

• Designed specifically for Kotlin, ensuring seamless integration and com-
patibility.

• Lightweight and relatively easy to learn.

• Simple and intuitive API, leading to a shorter learning curve.

Disadvantages:

• Smaller community and fewer resources compared to Spring.

• Since the framework is very new, it might be di�cult to find support, if
some roadblocks are encountered.

4.2.3 Final Decision

Both frameworks o�er distinct advantages and disadvantages, In light of the
comparison, Ktor emerges as the preferred choice for the application, primarily
due to its design focus on Kotlin, lightweight nature, and simplicity. These
advantages align with the goal of maintaining consistency in the technology
stack and enable me to create an e�cient, high-performing application with
ease.

21

Chapter 5

Design

5.1 Wireframes

To facilitate a comprehensive understanding of the application’s interface and
to aid in designing the server requests, wireframes have been prepared. These
wireframes, which serve as visual blueprints of the application’s screens, are
grounded in the use cases identified during the analysis phase. This approach
ensures that the design and functionality of the application align with its
intended user interactions and requirements.

Figure 5.1 demonstrates the screens related to sign in and sign up scenarios,
and covers use cases UC1 and UC2.

Figure 5.1: Login and Sign-up wireframes

23

5. Design

Figure 5.2: Business list wireframe

Figure 5.2 demonstrates the screen which allow users to see all businesses
in a list view with brief details. The screen is also capable of listing businesses
based on their distance to user’s location. As is demonstrated by the top
button which sorts the list based on their distance from the user. This Covers
UC3 and UC8.

Figure 5.3 shows the business detail screen,which allows the user to see
the services o�ered and the reviews at a business. Hence, it covers UC4 and
UC5.

Figure 5.4 shows the create booking screen, which allows the user to create
a new booking and also lists all the past and upcoming bookings of a user.
This finally covers the use cases UC6 and UC7

5.2 Client Server Architecture

The client-server model is a distributed application architecture that divides
tasks or workloads between providers of a resource or service, known as servers,
and service requesters, known as clients.

In the proposed system, a pragmatic approach has been employed to ad-
here to the client-server model, separating responsibilities to ensure an e�cient
and modular system. The server-side is responsible for tasks such as storing

24

5.2. Client Server Architecture

Figure 5.3: Business details view wireframe

Figure 5.4: Create bookings and list bookings wireframes

25

5. Design

and retrieving data related to beauty services, businesses, and user bookings.
It also manages user authentication, authorization, and overall system secu-
rity. The server communicates with the client through well-defined APIs,
facilitating a structured and consistent data exchange.

Conversely, the client-side is responsible for o�ering a user-facing interface,
enabling users to interact with the system. Prohibiting them from performing
illegal operations The client retrieves data from the server, processes it, and
presents it to users in an organized and comprehensible manner, ensuring a
seamless user experience.

5.3 API design

Prior to commencing the implementation of the server and client components,
it is imperative to establish a well-defined API specification that will gov-
ern the communication between these two elements. The design of the API
endpoints adheres to the best practices of Representational State Transfer
(REST) API design, as delineated in the relevant literature. Drawing upon
the database model and established best practices, three primary resources
have been identified, and corresponding endpoints have been devised to fa-
cilitate seamless interaction between the client and server components. By
creating a robust API specification, the foundation is set for the successful
development and integration of the system’s various components, ultimately
ensuring an e�cient and reliable communication channel.

The design of the endpoints themselves follows the best practices of Repre-
sentational state transfer (REST) API design from [8]. Based on the Database
model and practices mentioned, I have identified 3 resources and created end-
points based on them:

Businesses: Those endpoints start with “/businesses” and cover operations
that are related to business and resources associated with a business like
reviews and services.

Bookings: They start with “/bookings” and allows the client to get and
manage bookings.

User: Endpoints from this group start with “/users” and expose the func-
tionality of logging in and registering a new user.

5.4 System Architecture

5.4.1 User Authentication

Ktor’s documentation provides a valuable resource on the available options for
authentication and authorization, Subsequently, the below paragraph draws
inspiration from the source[9].

26

5.4. System Architecture

Requirement F2 states a crucial need to equip users with the capability to
authenticate themselves, a common requirement in contemporary information
systems, including the one under development in this thesis. I spent time
trying to analyze all the options supported out of the box by Ktor. The below
list will briefly discuss the available options.

HTTP Basic A widely used, protocol-based authentication method where a
client sends a user and password to the server with each request. It is a
simple and stateless scheme.

Bearer Token (JWT) Utilizing JSON Web Tokens (JWT), this method
provides a stateless and secure way of authenticating users. The server
issues a token to the client, which the client then includes in subsequent
requests.

LDAP Lightweight Directory Access Protocol is a complex and robust method
primarily used in corporate environments. It authenticates users against
an existing directory server, often containing user credentials and other
organizational data.

OAuth A comprehensive protocol that allows third-party applications to
grant limited access to an HTTP service. It can be used for various tasks,
such as letting users authenticate with external services like Google or
Facebook.

Session They provide a way to preserve certain data across subsequent ac-
cesses. They allow maintaining data across requests, o�ering a more
sophisticated way of tracking and authenticating users over multiple re-
quests.

Custom Ktor also provides an API for creating custom plugins, which can
be used to implement your own plugin for handling authentication and
authorization.

Upon evaluating the available options, A custom solution was dismissed
because of the potential for severe security vulnerabilities. Among the re-
maining options, JSON Web Tokens were selected as the most suitable for
this application, largely due to my familiarity with the technology and several
inherent benefits discussed below.

JWTs are stateless[10], meaning they don’t require the server to store ses-
sion information about the user. This attribute greatly enhances load balanc-
ing e�ciency, which is crucial for potential distributed deployment scenarios
in the future. Moreover, JWTs are versatile, supporting various authenti-
cation schemes and securely containing user information, thereby enhancing
data security and integrity.

27

5. Design

Another significant advantage of JWTs is their capacity to o�er a smooth
authentication experience across a range of services or microservices. This
quality will be particularly beneficial if the application architecture expands
or diversifies in the future. The choice of JWTs aligns with the objective of a
secure, e�cient, and adaptable application design.

Here is a simplified overview of user authentication flow using JWT:

1. User Authentication When a user logs into the application using his
username and password, the server verifies the user’s credentials.

2. Token Generation If the credentials are valid, the server generates a
JWT. This token includes a payload containing information about the
user. Ktor’s JWT feature can be used to generate this token.

3. Token Issuance The server then sends this JWT back to the client ap-
plication.

4. Authenticated Requests The client app securely stores this JWT, and
for each subsequent requests that require authentication, the client app
adds the JWT to the request’s Authorization header.

5. Token Validation The server, upon receiving these requests, validates
the JWT. If the token is valid, the server processes the request. If the
token is not valid (or is missing), the server responds with an error.

6. Token Refresh The token will have a predefined expiration set and once
the token expires the user will need to request a new token.

5.5 Final Architecture

Having established the tech stack, crafted the wireframes, defined the REST
endpoints, and selected JWT for user authentication, it’s now time to de-
lineate the complete system architecture. The system is designed to meet
all stipulated requirements, encompassing a mobile client and a server. User
authorization is facilitated through JWT tokens, and all communication is
conducted via HTTP. The database, also hosted in the cloud, communicates
using Java Database Connectivity. This comprehensive layout illustrates the
cohesive, interconnected structure of the system, ensuring clarity and e�ciency
in its operation.

5.6 Android Design

This section describes the important decisions in the Client Application.

28

5.6. Android Design

Figure 5.5: Recommended architecture by Google

5.6.1 Application architecture

The selection of an appropriate architectural framework is an essential deci-
sion that necessitates careful deliberation before the commencement of the
development process. In this context, the architecture proposed by Google
[11], as depicted in Figure 5.5, was the chosen blueprint for our project. The
principal merit of embracing this recommended architectural design lies in its
inherent ability to facilitate the segregation of concerns. This is e�ectuated
by the systematic partitioning of di�erent The inclusion of an optional do-
main layer is contingent upon its necessity. This design philosophy ensures
a cleaner, more manageable codebase, reinforcing the decision to adopt this
architecture.

5.6.2 UI layer

This paragraph is based on article on article from Android documentation.[11]
To Display the UI Layer, I have decided to use MVVM architectural pattern
in my application, for its e�ectiveness in facilitating a structured and main-
tainable codebase in Android development. This pattern encourages a distinct
separation of concerns, with each component assuming responsibility for a spe-
cific aspect of the application. The Model represents data and business logic,
the View is in charge of user interface and presentation, and the ViewModel
orchestrates communication between the Model and View. By implementing
the MVVM pattern, developers can establish a modular structure, which in
turn simplifies debugging, testing, and code reuse. Moreover, MVVM pro-

29

5. Design

motes scalability and eases the process of accommodating new requirements,
solidifying its status as a highly recommended best practice in Android devel-
opment.

5.7 Server design

The architecture of server is a three-layered application consisting of (persis-
tence layer, business layer, and presentation layer. As was taught in the course
BIE-TJV (Java Technologies) [12]

Presentation layer This layer is responsible for creating routes that expose
the server’s functionality via a REST API, using the HTTP protocol. It
essentially provides an interface for users and other systems to interact
with the application.

Business layer Situated between the presentation and data layers, the busi-
ness layer encapsulates the core application logic of the server. This
includes processing incoming data, applying business rules, and prepar-
ing data for storage or dissemination.

Data layer The underlying layer is the data layer, whose primary function is
data persistence. In this architecture, it interfaces with an SQL Server
database, ensuring that all data manipulated by the business layer is
accurately stored and readily available for retrieval.

Maintaining a clean and e�cient architecture is paramount. In this de-
sign, the Presentation Layer communicates exclusively with the Domain Layer,
which in turn interfaces with the Data Layer. Importantly, there are no depen-
dencies in the opposite direction, maintaining a unidirectional flow of commu-
nication and dependencies. This structure promotes loose coupling between
the layers, enhancing the system’s adaptability. As future modifications be-
come necessary, this architecture ensures that changes can be implemented
with minimal impact on the overall system. This setup not only simplifies
maintenance but also facilitates potential future expansions or adaptations,
thus underscoring the architecture’s robustness.

30

Chapter 6

Implementation

6.1 Android Implementation

In section 4.1.3, I already reason my choice of Kotlin for the development of
the android mobile client.

6.1.1 Libraries

In this section I would like to go over the external libraries I have used in the
development of this thesis.

6.1.1.1 Jetpack Compose

This passage is based on [13]
Jetpack Compose, a modern toolkit for building native Android UI, has

been employed in the development of my application. It utilizes a declarative
approach to UI design, significantly simplifying the process of creating com-
plex interfaces. This reduces boilerplate code, allowing developers to focus
on the core functionality of their app. Jetpack Compose also provides state
management tools, that help to maintain a consistent UI state across the ap-
plication. Furthermore, it integrates seamlessly with other Jetpack libraries,
ensuring compatibility with existing Android infrastructure. Its adoption in
my application has led to a streamlined development process, with a clear,
maintainable codebase and an e�cient, reactive UI system.

6.1.1.2 Hilt

Utilizing dependency injection (DI) in modern application development is crit-
ical, as it promotes modularity, maintainability, and test-ability. Hilt, a DI
library recommended by Google for Android development, is employed in this
application to achieve these benefits. Built on top of the Dagger library, Hilt
aims to simplify the infrastructure, enhance readability, and provide superior

31

6. Implementation

integration with the Android framework. Incorporating Hilt into the appli-
cation is essential for several reasons, such as facilitating a modular codebase
through its module system, enabling cleaner and more maintainable code by
managing dependency instantiating, simplifying the process of testing by al-
lowing developers to e�ortlessly replace dependencies with test doubles, and
providing seamless integration with Android components for a cohesive devel-
opment experience. In summary, the use of Hilt in this application is crucial
for promoting a modular, maintainable, and testable codebase while ensuring
the application’s architecture adheres to best practices in modern application
development.

6.1.1.3 Compose Destinations

This passage is based on [14] Compose-Destinations is a library extending
Jetpack Compose Navigation, designed to improve navigation within Android
applications. Jetpack Compose Navigation is a declarative framework facili-
tating seamless transitions between composables, while Compose-Destinations
augments this functionality by providing a structured approach to defining and
managing navigation routes. The key advantages of Compose-Destinations
over Jetpack Compose Navigation include type-safe Kotlin DSL, which allows
developers to declare navigation destinations using a Kotlin DSL, eliminat-
ing string-based route definitions and reducing runtime errors. This approach
enhances readability and maintainability, promoting a more organized and
maintainable codebase. Furthermore, Compose-Destinations serves as a com-
prehensive navigation solution by supporting deep-linking, nested navigation,
and backstack management, o�ering a complete solution for various naviga-
tion scenarios. In conclusion, Compose-Destinations is a valuable addition
to Jetpack Compose Android applications, providing an enhanced navigation
experience and promoting a more organized and maintainable codebase.

6.1.1.4 Retrofit

In contemporary application development, e�cient and streamlined network
communication is essential. Retrofit, a type-safe HTTP client for Android
and Java, is a widely adopted library that simplifies this task. Developed by
Square, Retrofit is preferred by many developers due to its various advantages,
including type safety, which ensures that the types of data being sent and
received are consistent, thus reducing potential errors. The library allows
developers to define network API calls using simple, declarative interfaces,
resulting in clean and maintainable code. Retrofit seamlessly integrates with
JSON parsing libraries, such as Gson and Moshi, simplifying the process of
parsing API responses into domain objects. By incorporating Retrofit into
the application, the developer can e�ectively manage network communication,

32

6.2. Server Implementation

minimize errors, and streamline the development process, while adhering to
best practices.

6.2 Server Implementation

In section 4.2 we have already reasoned are reasoning for selecting Ktor frame-
work for our server. In section 5.7 I discussed the organisation of code in our
server.

6.2.1 Libraries

In this section I will talk about the details of external libraries used in the
development of the server for its implementation.

6.2.1.1 Ktor

Ktor was used for server development in this project. Being first released in
2018, I was afraid that it would be di�cult to find help online, If I got stuck or
found hidden bugs. But Ktor has very detailed and in depth documentation[15]
that helped me whenever I got stuck. It is modular by design, enabling devel-
opers to select features they require without unnecessary bloat. Some note-
worthy modules include Locations[16], which provide typed routing and are
used to define REST endpoints. Authentication[9] is another essential module
that manages the authentication of users out of the box. Ktor also provides
Database and Exposed modules for connecting and interacting with databases.

When I got started with Ktor, I started with their Getting started with
HTTP API tutorial[17] which taught me the basics of the framework, after
that I immediately started applying my knowledge gathered from BIE-TJV[12]
course to develop the server.

6.2.1.2 Exposed

Exposed[18] is a lightweight SQL library used within the Ktor framework for
this project. It provides an idiomatic Kotlin API to connect and interact with
relational databases. The library stands out due to its two distinct layers of
database access: a typesafe SQL wrapping DSL and a light object-relational
mapping (ORM) layer. The DSL layer allows developers to write SQL queries
in a typesafe manner, while the ORM layer provides a more abstract way
to work with databases, using Kotlin classes and objects. Additionally, the
Exposed library handles connection pooling, a feature that significantly en-
hances performance when working with databases, particularly under high
load. Its compatibility with various SQL dialects like PostgreSQL, MySQL,
Oracle, SQLite, SQL Server, and H2 o�ers flexibility and ease of use, making
it a valuable asset in the project.

33

6. Implementation

6.2.2 Image Storage

Storing images for businesses and the services they o�er raised a unique chal-
lenge in this project - the need for substantial storage space. High-resolution
images that businesses would ideally want to display can be sizeable and
storing such large images directly in the database would rapidly inflate the
database costs. Thus, it was essential to explore alternative storage strategies.

Upon researching, I discovered that numerous cloud storage providers o�er
services tailored for storing data. The top three providers, namely Amazon
AWS, Google GCP, and Microsoft Azure, all o�er such services. Given my
prior experience with AWS S3 Bucket services, I decided to opt for this plat-
form.

With a swift configuration process, the S3 Bucket was ready to accept
image data and return corresponding URLs. These URLs could then be used
to retrieve images on the mobile client. As the business images are intended
for public view, there are no inherent security risks, allowing me to configure
the S3 Bucket to return publicly accessible URLs. This decision facilitated
an e�cient, secure, and cost-e�ective solution for storing and retrieving large
image files.

6.2.3 Database

Azure[19] SQL Database, a cloud-based relational database service from Mi-
crosoft, was utilized in this project. It o�ers scalable and highly available
SQL database functionality with minimal maintenance, making it an excel-
lent choice for my Ktor server. Leveraging Azure SQL Database eliminated
the need for manual setup and maintenance of the database server, allowing
for more focus on application development. I quickly created tables and its
attributes for my database on the server side code and the Exposed library
generated the SQL code which will generate the actual tables on connected
Azure Database instance Model is represented by figure 6.1.

6.3 Deployment

6.3.1 Cloud infrastructure

To make the server accessible from any location, I had to deploying it to a cloud
environment. In exploring options for this requirement, I referred back to
Ktor’s deployment documentation [20]. This source o�ers guides for deploying
the server to three platforms, namely, AWS Elastic Beanstalk, Google GCP
Engine, and Heroku.

After studying all three guides, I found Heroku’s deployment process to be
the most intuitive. A particularly appealing feature was the ability to directly
connect my GitHub repository to Heroku, enabling automatic deployments to

34

6.3. Deployment

Figure 6.1: Database model

production with every push or merge to the main branch. Therefore, I decided
to use Heroku for the deployment of the server.

The final architecture of the application, including this cloud deployment,
is illustrated in Diagram 6.2. This setup ensures that the mobile client can
access the server from anywhere, an essential feature for the application’s
usability.

6.3.2 Android deployment

At this stage, my prototype application is not prepared for public distribution,
so I have not taken steps to publish it on the Google Play Store. However,
the application’s build system, Gradle, enables swift creation of an Android
Package (APK). This APK is essentially an installation package, allowing

35

6. Implementation

Figure 6.2: Cloud infrastructure

users to install the application on their devices. For now, I plan to distribute
the APK manually to interested testers.

36

Chapter 7

User Testing, Feedback and

Future Improvements

7.1 User testing

In the process of developing the application prototype, I sought to gather
diverse feedback to enhance the app’s functionality and user experience. Con-
versations with friends and colleagues revealed a keen interest in the appli-
cation, leading me to recruit them for user testing. To broaden the feedback
spectrum, I also involved older relatives, ensuring insights from a wide age
range and varied backgrounds.

Since the prototype wasn’t ready for deployment on Google Play Store,
I supplied the testers with the Android Application Package (APK) and an
installation manual. Test credentials were provided, enabling them to log
into the application and explore its features. To make the testing process
more engaging, the database was pre-populated with dummy data, such as
sample businesses, their services, and customer reviews. This allowed testers
to experience the app more realistically and provide more relevant feedback.
The tasks given to each tester were as follows:

1. Open the application and log in using the provided credentials.

2. Try to list all the businesses that are within 5 kilometers of your location.

3. Try to open a business’s page and list all the services provided by them.

4. Try to open a business’s page and list all the reviews left by other users.

5. Try to create a booking at a business of your choice.

6. Finally try to find the booking you just created in ”My Bookings” Tab.

After the testers completed these tasks, I gave them a set of questions and
asked for their honest feedback about the application.

37

7. User Testing, Feedback and Future Improvements

1. Were you easily able to perform all of the requested tasks ?

2. Did you encounter any bugs or unexpected behaviour ?

3. What do you think about the concept of the application ? How can this
be improved ?

4. What is the thing about the application you did not like ?

The majority of user testing participants successfully executed the tasks
and conveyed positive feedback about the application prototype. However, it’s
possible that their relationship with me may have influenced their responses
to be overly positive. Therefore, I will concentrate on presenting the more
critical feedback, as it o�ers valuable insights for improving the application.

7.2 Feedback

User 1

1. Yes, But once I sorted the businesses by rating, I was unable to sort
them back, the application provided no such functionality.

2. Yes, I found the behaviour of manually entering the distance to filter
the businesses quite weird.

3. Possible, further polishing the UI, by maintaining more consistent design
choices.

4. Although this is a prototype, I would like to see more features in the
future version of the app.

User 2

1. Yes, the overall operation was smooth. However, I experienced some dif-
ficulty understanding the booking process as it lacked clear instructions.

2. The user interface seemed a bit cluttered. Simplifying and streamlining
the display could improve the user experience.

3. I believe the concept is quite useful. One improvement could be the
incorporation of a more personalized recommendation system based on
user preferences.

4. More Features, Ability to select services that I want to receive to be
listed in my Bookings.

38

7.2. Feedback

User 3

1. Yes, but it took a while to understand how to filter businesses by dis-
tance, the design for that is not intuitive.

2. Yes, It did.

3. The concept of the application is good, but I rarely visit a new saloon, I
always get my haircut from the same barber, thus eliminating the need
for such an application.

4. The user interface is a bit cluttered, making it hard to focus on the
necessary information.

User 4

1. Mostly.

2. Yes.

3. The concept is interesting. An improvement could be to add a feature
that allows users to see available time slots for each business.

4. The colors and design could be improved to be more pleasant.

User 5

1. Yes, but I struggled to find the log-out option. It was not intuitively
placed.

2. Yes, I couldn’t filter businesses based on the services they o�er.

3. The concept is promising, but it could be improved by adding a feature
that allows users to mark businesses as favorites.

4. I did not like the lack of a search function. It was cumbersome to scroll
through all the businesses.

User 6

1. I was not able to find the log-out option.

2. Yes, I did not like the behaviour of searching by distance, which requires
the number of kilometers typed out.

3. I loved the concept and would love to see it released with full feature
set.

4. Despite the requirement to log-in to be able to browse the businesses, a
user should be able to browse without being logged in.

39

7. User Testing, Feedback and Future Improvements

7.2.1 Summary

The feedback from the prototype testing is encouraging, with most testers able
to accomplish the assigned tasks, indicating a robust foundation for future
application development. Importantly, the concept was widely appreciated,
with a majority of testers expressing a desire for additional features. However,
the feedback also highlighted areas for improvement, especially in terms of
user interface design. A notable area of concern was the UI element that
required users to input the search radius in kilometers, which was seen as
not intuitive. The feedback suggests that addressing this issue should be a
priority in the next iteration of the application. Several testers also raised
issues regarding the application’s log-out functionality and the inconsistency
in the color scheme. Given this feedback, future development plans should
include consulting with a designer to ensure a cohesive and user-friendly design
aesthetic for the application. The aim would be to address these concerns
while maintaining the application’s functionality and improving the overall
user experience.

7.3 Future improvements

Since the focus of the thesis was to develop a MVP prototype, It only imple-
mented the most sought after feature, but the user feedback says that there
is also room for improvement in the current feature set.

Browsing for Guest Users The testing process revealed that the obliga-
tion to log in to browse available businesses and services could poten-
tially deter users. Future iterations should consider allowing users to
explore o�erings without without needing to log in, thus facilitating a
more user-friendly experience.

Caching At present, the application operates exclusively in online mode due
to the absence of local database functionality. While this is acceptable
for a prototype, it is recommended that future versions include data
caching and paging implementation to optimize performance and mini-
mize unnecessary network resource consumption.

Unit Testing and Integration Tests The rapid pace of prototype devel-
opment frequently necessitated swift modifications, which made unit
testing somewhat burdensome due to the constant need for updates.
Nonetheless, future iterations should strive for industry-standard code
coverage, emphasizing the importance of robust unit testing and inte-
gration tests.

Czech Language support Since the goal of our application is to capture
the Czech market, It is therefore important to add support for Czech
language in our application.

40

7.3. Future improvements

Business Application As noted during the analysis phase, the distinct needs
and features related to businesses necessitate a separate platform for
managing bookings and promoting their establishments. Therefore, a
logical progression for further development would be the implementa-
tion of a dedicated business application. This addition would serve to
complete the entire system, providing a comprehensive solution for all
users.

41

Conclusion

The primary objective of this thesis was to design and develop a client-server
application prototype that facilitates the process of searching for and book-
ing various types of beauty services. The resulting prototype is proficient in
listing services in proximity to user’s location, filtering based on specified cri-
teria, listing the services o�ered by the business, listing the reviews left by the
user for the application and creating bookings. At the start, an investigation
of existing applications for searching and booking beauty services was con-
ducted. The current market landscape, including prominent platforms, were
analyzed, and their strengths and weaknesses were identified. This research
enabled the discovery of potential opportunities for a location-based reserva-
tion system that addresses the limitations of existing solutions. A client-server
solution was designed and implemented, empowering users to find and book
beauty services near their current location. The application e�ectively lists
services close to a given location, filters results based on various criteria, and
enables users to create bookings with ease. By leveraging modern technolo-
gies Ktor for the backend and an Android app for the client-side, a prototype
system was created. The server part of the solution was deployed using an
online cloud provider, ensuring that the system is easily accessible, scale-able,
and maintainable. This deployment strategy simplifies future updates and
enhancements to the system. In the end, possible areas for improvement were
identified, which could be implemented to make this application market-ready
and release it to the general public. In conclusion, this thesis successfully
achieved its goal of designing and implementing a prototype client-server so-
lution for beauty services and deploying the server part using an online cloud
provider. The insights gained and the solution developed throughout this
thesis contribute to a better understanding of client-server application ar-
chitecture, Android applications, and principles of software engineering, and
demonstrate the potential of location-based application in the beauty services
market.

43

Bibliography

[1] Booksy. Booksy the appointment booking app. [cit. 2023-05-14]. Available
from: https://booksy.com/en-us/p/about

[2] Reporter, S. Booksy, the uber of beauty and wellnes. [cit. 2023-05-14].
Available from: https://www.uktech.news/news/booksy-the-polish-
uber-of-beauty-and-wellness-scoops-51m-plans-uk-expansion-
20210127

[3] Fresha. Fresha. [cit. 2023-05-14]. Available from: https:
//www.fresha.com

[4] Lunden, I. Fresha Raises 100M. [cit. 2023-05-14]. Available from:
https://techcrunch.com/2021/06/11/fresha-raises-100m-for-
its-beauty-and-wellness-booking-platform-and-marketplace

[5] Schmitt, J. Native vs CrossPlatform mobile dev. [cit. 2023-05-14]. Avail-
able from: https://circleci.com/blog/native-vs-cross-platform-
mobile-dev/

[6] Globalstats, S. Marketshare android vs ios. [cit. 2023-05-14]. Avail-
able from: https://gs.statcounter.com/os-market-share/mobile/
worldwide

[7] Foundation, K. Calling Java from Kotlin. [cit. 2023-05-14]. Available from:
https://kotlinlang.org/docs/java-interop.html

[8] Postman. What is API Design, Principals and best practices. [cit. 2023-
05-14]. Available from: https://www.postman.com/api-platform/api-
design/

[9] JetBrains. Authentication and authorization. [cit. 2023-05-14]. Available
from: https://ktor.io/docs/authentication.html

45

https://booksy.com/en-us/p/about
https://www.uktech.news/news/booksy-the-polish-uber-of-beauty-and-wellness-scoops-51m-plans-uk-expansion-20210127
https://www.uktech.news/news/booksy-the-polish-uber-of-beauty-and-wellness-scoops-51m-plans-uk-expansion-20210127
https://www.uktech.news/news/booksy-the-polish-uber-of-beauty-and-wellness-scoops-51m-plans-uk-expansion-20210127
https://www.fresha.com
https://www.fresha.com
https://techcrunch.com/2021/06/11/fresha-raises-100m-for-its-beauty-and-wellness-booking-platform-and-marketplace
https://techcrunch.com/2021/06/11/fresha-raises-100m-for-its-beauty-and-wellness-booking-platform-and-marketplace
https://circleci.com/blog/native-vs-cross-platform-mobile-dev/
https://circleci.com/blog/native-vs-cross-platform-mobile-dev/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://kotlinlang.org/docs/java-interop.html
https://www.postman.com/api-platform/api-design/
https://www.postman.com/api-platform/api-design/
https://ktor.io/docs/authentication.html

Bibliography

[10] JetBrains. JSON Web Tokens in Ktor. [cit. 2023-05-14]. Available from:
https://ktor.io/docs/jwt.html

[11] Google. Android Developers. [cit. 2023-05-14]. Available from: https:
//developer.android.com/

[12] Guth, O. Java Technology. [cit. 2023-05-14]. Available from: https://
courses.fit.cvut.cz/BIE-TJV/index.html

[13] Google. Jetpack Compose UI App Development Tookit. [cit. 2023-05-14].
Available from: https://developer.android.com/jetpack/compose

[14] Costa, R. Compose Destinations simple and safe navigation in compose.
[cit. 2023-05-14]. Available from: https://proandroiddev.com/
compose-destinations-simpler-and-safer-navigation-in-
compose-with-no-compromises-74a59c6b727d

[15] JetBrains. Create asynchronous client and server applications. Anything
from microservices to multiplatform HTTP client apps in a simple way.
Open Source, free, and fun. [cit. 2023-05-14]. Available from: https:
//ktor.io

[16] JetBrains. Ktor Locations for creating routes. [cit. 2023-05-14]. Available
from: https://ktor.io/docs/locations.html

[17] JetBrains. Creating Http APIs. [cit. 2023-05-14]. Available from: https:
//ktor.io/docs/creating-http-apis.html

[18] JetBrains. Exposed. [cit. 2023-05-14]. Available from: https://
github.com/JetBrains/Exposed/wiki

[19] Microsoft. Azure SQL Database. [cit. 2023-05-14]. Available from: https:
//azure.microsoft.com/en-us/products/azure-sql/database

[20] JetBrains. Deployment— Ktor. [cit. 2023-05-14]. Available from: https:
//ktor.io/docs/heroku.html

46

https://ktor.io/docs/jwt.html
https://developer.android.com/
https://developer.android.com/
https://courses.fit.cvut.cz/BIE-TJV/index.html
https://courses.fit.cvut.cz/BIE-TJV/index.html
https://developer.android.com/jetpack/compose
https://proandroiddev.com/compose-destinations-simpler-and-safer-navigation-in-compose-with-no-compromises-74a59c6b727d
https://proandroiddev.com/compose-destinations-simpler-and-safer-navigation-in-compose-with-no-compromises-74a59c6b727d
https://proandroiddev.com/compose-destinations-simpler-and-safer-navigation-in-compose-with-no-compromises-74a59c6b727d
https://ktor.io
https://ktor.io
https://ktor.io/docs/locations.html
https://ktor.io/docs/creating-http-apis.html
https://ktor.io/docs/creating-http-apis.html
https://github.com/JetBrains/Exposed/wiki
https://github.com/JetBrains/Exposed/wiki
https://azure.microsoft.com/en-us/products/azure-sql/database
https://azure.microsoft.com/en-us/products/azure-sql/database
https://ktor.io/docs/heroku.html
https://ktor.io/docs/heroku.html

Appendix A

Acronyms

API Application Programming Interface

APK Android Package

AWS Amazon Web Services

DI Dependency Injection

DSL Domain-specific Language

GCP Google Cloud Platform

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDE Integrated Development Environment

JDBC Java Database Connectivity

JPA Jakarta Persistence

JSON JavaScript Object Notation

JWT JSON Web Token

MVVM Model–view–viewmodel

OS Operating System

RDS Relational Database Service

REST Representational State Transfer

SDK Software Development Kit

SQL Structured Query Language

47

A. Acronyms

UI User Interface

UX User Experience

48

Appendix B

Contents of enclosed CD

exe......................................the directory with executables
FreshCut-Server-v1.0.jar.................executable of the server
FreshCut-Client-v1.0.apk...installation package of the application

implementation........................source codes of implementation
freshcut-client source code of Android application
freshcut-server..........................source code of the server

thesis..the thesis text directory
thesis-sources source code of the thesis
thesis.pdf...........................the thesis text in PDF format

49

	Introduction
	Aims and Objectives
	Specific Objectives
	Conclusion

	Market Research
	Review of existing solutions
	Booksy
	Fresha

	Possible Improvements.
	Conclusion

	Analysis
	User Roles
	Requirements
	Functional Requirement
	Non-Functional Requirement

	Use cases
	Domain model

	Assessing the Tech Stack Choices
	Development of Client
	Native vs Cross-Platform Development
	Mobile Platform Selection for Prototype Development
	Choice of Programming Language

	Selection of Server Framework
	Spring Framework
	Ktor
	Final Decision

	Design
	Wireframes
	Client Server Architecture
	API design
	System Architecture
	User Authentication

	Final Architecture
	Android Design
	Application architecture
	UI layer

	Server design

	Implementation
	Android Implementation
	Libraries
	Jetpack Compose
	Hilt
	Compose Destinations
	Retrofit

	Server Implementation
	Libraries
	Ktor
	Exposed

	Image Storage
	Database

	Deployment
	Cloud infrastructure
	Android deployment

	User Testing, Feedback and Future Improvements
	User testing
	Feedback
	Summary

	Future improvements

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

