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Abstract

This thesis explores an implementation of the Warren Abstract Machine as an interpreter for
a subset of Prolog. It delves into the theoretical model of the Warren Abstract Machine and
its inner workings, offering detailed examples to serve as a reference. Additionally, the compiler
from Prolog to Warren Abstract Machine bytecode and an interactive Read-eval-print loop are
implemented to execute Prolog programs.

Keywords logic programming, Prolog, interpreter, abstract machine, C++

Abstrakt

Tato práce se zabývá implementaćı interpreteru pro podmnožinu jazyka Prolog pomoćı Warren
Abstract Machine. Podrobně popisuje teoretický model Warren Abstract Machine, jej́ı vnitřńı
fungováńı a nab́ıźı detailńı př́ıklady jako referenci. Dále je naimplementován překladač z Prologu
do bytecodu Warren Abstract Machine, společně s Read-eval-print prostřed́ım pro spouštěńı
Prolog programů.

Kĺıčová slova logické programováńı, Prolog, interpreter, abstract machine, C++
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Introduction

Although very different from standard procedural programming, the logic programming paradigm
has found many uses in various fields, such as database systems, proof assistants, and Artificial
Intelligence.

Logic programming is what is known as declarative programming, which, intuitively, means
that the programmer declares what is to be done, leaving the language interpreter to focus
on determining how to achieve the desired outcome. This allows for a more high-level expres-
sion of problem-solving logic, where the programmer describes the problem’s constraints and
relationships rather than prescribing explicit procedural steps [1]. Because of this abstraction,
understanding how these languages are implemented and function may not be immediately in-
tuitive.

The thesis is divided into the following chapters: Chapter 1 introduces logic programming and
the fundamentals of first-order predicate logic. Attention is also given to the Prolog programming
language and its theoretical concepts.

Chapter 2 describes the Warren Abstract Machine model, starting with a high-level overview
of the memory model and bytecode structure, continuing with a detailed analysis of individual
instructions and the WAM bytecode compilation process.

Chapter 3 is dedicated to the design of the implementation itself. It describes the structure of
individual classes and the implementation choices made, addressing the challenges encountered
and their solutions.

Finally, chapter 4 then delves into the implementation, describing interesting algorithms.

Goals of the thesis
The primary goal of this thesis is to serve as a practical reference for students or individuals
interested in comprehending and implementing a logic language. It aims to offer a comprehensive
understanding of the concepts of implementing a logic programming language, going beyond a
mere high-level overview.

It can serve as a reference, providing additional explanation when reading about the WAM
in other literature, such as The Architecture of Symbolic Computers [2].

1



Chapter 1

Logic programming

A logic program is a set of axioms, or rules, defining relations between objects. A computation
of a logic program is a deduction of the consequences of the program. A program defines a set
of consequences, which is its meaning. The basic constructs of logic programming are facts,
rules, and queries. There is a single data structure: the logical term. [3, pp. 9, 11]

1.0.1 Fact
Fact is the simplest kind of statement that can be made in a logic program. It represents a
relation that holds between objects.

An example of a fact is:
bigger(elephant,mouse).

Which states that the elephant is bigger than a mouse, or, in other words, that the bigger
relation holds between the elephant and the mouse.

Another name for a relation is predicate. The animals in the example are known as atoms.
It is a convention that the names of both predicates and atoms begin with a lowercase letter to
distinguish them from logical variables. [3, pp. 11, 12]

1.0.2 Query
Queries are a means of retrieving information from the logic program. A query asks whether a
certain relation holds between objects. Syntactically, queries and facts look the same; however,
context can distinguish them.

A query in the form of
?> bigger(mouse,bug)

asks whether the bigger relation holds between mouse and bug.
Answering a query with respect to a program is determining whether the query is a logical

consequence of the program. [3, p. 12]

1.0.3 Rule
Another important statement in logic programming is a rule. It enables us to define new relations
using already existing relationships.

A rule is a statement in the form of:

q:- A1,A2,...,An, n ≥ 0

2



First-order predicate logic 3

where q is called the head, and the conjunction of goals A1,...,An is known as the body of
the rule. Note that fact is a special case of a rule for n = 0.

The rules are means to express new or complex queries in terms of simple queries. For
example, say we have a query in the form of father(james,X),male(X). This query asks whether
X is James’s son. We can express this using the following rule: son(X,Y) :- father(Y,X),
male(X). [3, pp. 18, 19]

1.1 First-order predicate logic
Let’s describe the first-order predicate logic language as outlined in [4]. This language consists
of logical connectives: ¬, ∧, ∨, ⇒, ⇔, variables (e.g., x, y, z), quantifiers ∀ and ∃, parentheses,
constants, predicate symbols, and function symbols.

A sequence of symbols in the language of predicate logic is a term if it was created by
following rules in finitely many steps:

1. It is a variable or a constant.

2. If t1, ..., tn are terms and f is a n-ary function symbol, then f(t1, ..., tn) is a term.

A sequence of symbols in the language of predicate logic is a formula if it was created by
following rules in finitely many steps:

1. p is a n-ary predicate symbol and t1, ..., tn are terms, then p(t1, ..., tn) is a formula. Such a
formula is called the atomic formula or an atom.

2. Let A, B be formulas, then ¬A,(A ∧ B), (A ∨ B), (A ⇒ B), (A ⇔ B) are formulas.

3. Let x be a variable and let A be a formula. Then (∀x)A and (∃x)A are formulas.

1.2 Horn clause
A Horn clause is a clause C, such that, at most, one atom in the clause is not negated. With
this constraint, a clause can take exactly three forms:

Exactly one unnegated atom and one or more negated ones:

C = (¬q1 ∨ · · · ∨ ¬qn ∨ p) ≡ ((q1 ∧ · · · ∧ qn) ⇒ p)

Exactly one unnegated atom and no negated ones:

C = p

Since p = ⊤ ∨ p = ¬⊥ ∨ p = ⊤ ⇒ p, the whole formula holds if p holds when ⊤ holds. Since
⊤ is a tautology, it is always true, so the p must always hold. Hence, it represents a fact.

No unnegated atoms and one or more negated atoms:

C = (¬q1 ∨ · · · ∨ ¬qn)

This represents a query.

[2, p. 407]
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1.3 PROLOG
For our purposes, we consider a pure version of Prolog, where the source program is a set of Horn
clauses. The key aspects of a Prolog program interpretation are unification and backtracking.

1.3.1 Unification
The unification algorithm can be described as follows. Assume we have two terms, t1 and t2.

1. If t1 and t2 are both constant terms, they unify only if they have the same value.

2. If t1 is a logical variable, then t1 and t2 unify, and t1 is instantiated to t2 (if it hasn’t been
instantiated yet). If both t1 and t2 are variables, they are instantiated to each other and
share the value.

3. If t1 and t2 are both complex terms, they unify only if their functor and arity match and also
if all of their arguments unify.

It is worth noting that an uninstantiated variable unifies with any arbitrary term. If a variable
is instantiated, unification succeeds only if the value of the instantiated variable is the same as
the term it is unifying with.

This unification algorithm is a simplified version of the algorithm described in [5].

1.3.2 Backtracking
The basic idea of backtracking is that of Depth-First graph traversal. The Depth-First search
algorithm can be written in pseudocode as seen in the code listing 1.1.

Code listing 1.1 DFS pseudocode

procedure DFS(G,v):
set v as discovered
For all successors w of the vertex v:

If state(w) = undiscovered
call DFS(G,w)

set v as closed

Described verbally, whenever the algorithm finds yet unprocessed vertex, it marks it as dis-
covered and calls itself recursively on all of the vertex’s successors. After that, he closes the
vertex and returns from recursion. [6]

This corresponds to the act of backtracking. When a goal is reached where the unification
fails, the algorithm traverses back (returns from recursion) until another decision can be made
(successor, which the algorithm hasn’t called itself on yet) and attempts to find the answer using
a different path.

Since the backtrack traverses back the choices made, an instantiated variable can become
uninstantiated again.

1.3.3 Query satisfaction
To satisfy a query, the following algorithm is used:

Find the first clause that matches the query’s predicate name and arity. The clauses are
scanned in the order they are present in the source code.

If a corresponding clause is found, unify the formal arguments with the actual arguments
found in the query.
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If the clause is a fact and unification was successful, the query has been satisfied.

If the clause is a rule, try to satisfy goals, going left to right. If all goals have been satisfied,
the query has also been satisfied.

In case of any unification failure, initiate backtracking to try a different path.



Chapter 2

Warren Abstract Machine

An abstract machine is a semantic model of how a program carries on some computation.
The Warren Abstract Machine is an example of this for logic programming. [2, p. 486]

The following chapter describes the inner workings of the Warren Abstract Machine as described
in the book Architecture of Symbolic Computers in chapter 17. [2]

2.1 Program structure
Now, we’ll describe the structure of a compiled program. ”The general structure of a compiled
program closely mirrors the original PROLOG program. For each of the original PROLOG state-
ments, there is a corresponding section of WAM instructions that handles the head unification
for that clause and the sequencing through goals that appear on the statement’s right-hand side.
All such code sections for clauses with the same name are chained together in the order they
have been entered in the original PROLOG source code.” The chaining is done via a retry-me-else
instruction, discussed in 2.5.1.2 at the beginning of each such code section. ”This permits the
computer to rapidly find the next clause to try if the current clause fails.”

”Together, each linkage of sections acts as a single procedure, handling appropriate goals (goals
with the same predicate name as the clause for which the code has been generated). The internals
of the procedure step through the appropriate statements in the expected PROLOG order, with
calls to other such procedures as goals are processed.” This description can be found in section
17.1 in [2].

2.1.1 An Individual Code Section
This subsection will provide an overview of a code section for a single clause. The first few
instructions of the code section serve to set up the machine’s data structures to permit trying
the clause. This includes saving a pointer to the next clause with the same name to try next
in case of backtracking, creating a choice point (discussed in 2.4), and allocating space for local
variables.

After the initialization, some instructions check that the formal arguments of the clause
are unifiable with the actual arguments. These instructions fall under the Get instructions
category and are discussed in detail in 2.5.3.

The actual arguments can be found in the argument registers. The unification is performed
one argument at a time. ”A fail in unification causes this code sequence to be aborted, and control
is transferred to the next appropriate code section (as set up by the initialization code). This is

6



Data structures and state registers 7

called shallow backtracking, as only a small amount of information must be
reset.” [2, pp. 489, 490]

After all arguments have been successfully unified, the control is passed to a sequence of
instructions for the clause’s body. The body contains instructions for each goal, and the sections
appear in the order in which they are written in the source code.

Each goal found in the clause’s body is treated as a call. Say we have a rule:

q :- a(x,y).

The method, informally said, to try to find if the goal a(x,y) is satisfiable is to load the argument
registers with constant x and y, then branch to the code section created for the predicate a. The
put instructions handle the loading of the argument registers with the actual arguments, and
the control is transferred to the entry code for the goal’s predicate.

Successfully executing the code for the current goal leads control back to the code that called
it. This process of constructing arguments and passing control is then repeated for the subsequent
goal. If no matching clauses are found at all, a backtrack is initiated into the caller’s code to
look for an alternative solution for the prior goal. This type of backtrack, where most of the
state information needs resetting, is called a deep backtrack.

2.2 Data structures and state registers
The memory of WAM is an array of individually addressed locations. The WAM CPU contains
registers for addressing the memory and executing instructions one by one out of this memory.
The memory is divided into several major areas that are used and manipulated by dedicated
registers and instructions. To give an example, the backtrack instruction (discussed in detail
in 2.5.1.3) uses a register labeled as B to retrieve older choice point to permit trying different
solution for a prior goal. [2, pp. 491, 492]

Figure 2.1 Major memory areas of WAM [2, p. 492]

2.2.1 Code Area
The code area is a memory area from which the instructions are fetched one at a time, specified
by the Program Counter (PC) register. These are the instructions found in the code section
for a clause within a specific procedure.
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Completing the code section for a clause means that a goal for some clause’s right-hand side
has succeeded, and the machine should return to and resume execution from that point. This
location is indicated by the Continuation Pointer (CP). [2, pp. 491, 492]

2.2.2 Heap
”The heap contains structures and lists built during the unification process. These objects are
typically too large to fit in either an argument register or a single cell. The Structure Pointer
(SP) steps through the components of such objects during unification. Storage here is allocated
dynamically. The H register points to the top of the allocated part of the heap.” [2, p. 493]

2.2.3 Stack
The stack stores call, return, and environment information for sequencing through the clause
code segments. This information for each attempt to solve a goal is called a choice point and
will be discussed more in detail in section 2.4. The registers associated with the stack are a
B register (B for backtrack), which points to the most recently created choice point, and a
E register (E for environment), pointing to the choice point created when the clause code
currently indicated by the program counter was entered. In practice, this means that if we have
the following clause:

p :- a,b,c

and the control has just been passed back from the b’s code, the E register points to the p’s
choice point, and the B register points to the b’s choice point. The S register points to the
current stack top from which new choice points will be built.

The relationship between PC, B, and E registers is as follows: ”At any point, PC points to
a code for some clause, and the E register gives access to the current values for variables in the
clause. The B register points to the most recently created choice point and may be equal to or
greater than E. It is equal to E just as the code for the right-hand side of some clause is entered
and is greater as goals in that clause’s body are solved successfully. All the choice points between
E and B reflect goals that have been solved while handling the right-hand side of E’s code.” [2,
p. 493]

2.2.4 Trail
”The trail is a stack containing references to variables that have received values during the exe-
cution, i.e., became bound/instantiated and may have to be unbound at some point in the back-
tracking process. The TR register points to the top of this stack, where new trails can
be pushed.” [2, p. 493]

The act of recording that a variable has been bound is called trailing, and it consists of
pushing the variable’s address to the trail stack.

If a backtrack occurs, the unbinding process, called trail ”unwinding,” checks for the difference
between the TR register and the BTR field at B’s choice point. This difference signals how
many new bindings were made during the attempt to satisfy the current goal and have to be
reset to attempt to try a different clause.

2.2.5 Push Down List
The Push Down List is a small stack utilized by unification instructions while unifying complex
objects. The PDL register points to the top of this stack [2, p. 493]. The contents of the PDL
are triples, consisting of the starting addresses of the actual and formal objects, and the number
of consecutive cells to compare, and its exact use will be shown in section 2.5.3.4.
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2.2.6 Mode flag
A one-bit flag register that signals whether WAM is in read mode or write mode. This register
is set and used by instructions during head-goal unification. Its purpose is shown in the later
section 2.5.5, describing the unify instructions. [2, p. 493]

2.3 Memory word format
As mentioned, the memory in the WAM model is an array of individually addressable locations.
Each location is divided into two parts, a tag and a value. The tag identifies how to interpret
the value stored there. The argument registers store the arguments in the same format. The
possible combinations are in table 2.1.

Table 2.1 Memory word combinations

Tag Value
constant constant value (number, character)
variable address of this cell
reference pointer to another cell
list pointer to list car element
structure function name and number of arguments
structure-pointer pointer to a structure

The choice of having the variable contain its own address simplifies the binding/unbinding
process. Whenever a variable is bound, the memory location is overwritten with the value it is
being bound to. Since the trail contains the memory address of the bound variables, the contents
of the memory location pointed to by that address can be just rewritten with a variable word
pointing to that address, making it unbound again.

The value of a word with the list tag points to a memory location containing the list’s car,
and the subsequent location always contains the list’s cdr. Both of these can be an arbitrary
object.

A structure in Prolog consists of a function symbol and its arguments. As this can not always
be encoded in a single memory word, a structure also takes up multiple consecutive words in
memory, similar to lists. The memory word tagged structure encodes the structure’s functor and
arity n. The next n subsequent memory cells contain memory words representing the structure’s
arguments. As with lists, these can be arbitrary objects.

A word with the reference tag is a pointer to another memory cell. This can be used to
bind objects together (e.g., by assigning variable X a reference to the location for variable Y,
binding them together). In some implementations, the tag used for reference is identical to that
for variables, and the distinction is made based on their value fields; the value field pointing to
itself signifies an unbound variable. Otherwise, it is a reference. This approach is taken in the
actual implementation, discussed in section 4.1. [2, pp. 494, 495]

2.4 Choice Point
The choice point is a major data structure controlling the program execution. It is a set of
contiguous locations on the main stack. It contains copies of various machine registers needed
to restart a clause’s code in case of a return or backtrack.

These objects are built by the mark instruction, described in section 2.5.1.1, which is the
first instruction in the code sequence for a predicate symbol, modified by an entry code for each
clause in that chain, and discarded during backtracking.
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To show this more clearly, assume we have the following source code, with its bytecode being
under it (listing 2.1).

Code listing 2.1 Sample source code/bytecode
a (...).
a(...) :- ...
b (...).
c(...) :- ...
c (...).

a: mark
retry -me -else a1
...

a1: retry -me -else quit
...

b: mark
retry -me -else quit
...

c: mark
retry -me -else c1
...

c1: retry -me -else quit
...

quit: backtrack

As can be seen in listing 2.1, the mark instructions are found as the first instructions for each
predicate’s code section. For a and c, the last clause’s code section for that predicate is labeled
a1 and c1, respectively. For b, the section labeled b is both the first and last clause. If the
last clause fails, the goal can’t be solved, and backtracking must occur, trying to find a different
solution for the previous goals.

”At any point in a program’s execution, each active goal has one choice point, piled up in
linear order on the stack. When a successful solution is found, the stack contains a complete
history of the individual resolutions used to derive it.” [2, p. 496]

2.4.1 Choice point structure
The information found in any choice point includes the following:

A copy of the argument registers A1,...,An as they were when the choice point was con-
structed. These are the arguments that the goal was called with, and storing them enables
us to reload the argument registers to their original values if backtracking back to this goal
occurs.

Where to return to if the goal is satisfiable, specifically:

The instruction to return to is called the Backtrack Continuation Pointer (BCP).
The value of the E register at the time the goal was called. This field is termed the
Backtrack Continuation Environment (BCE).
To give an example, assume the rule q(X):- a(X),b(X) and assume that the choice point
has been built for q. This choice point holds a local variable X, specific to this rule. When
the goal a is called, the CP points to the first instruction after it (in our case, instruction
to build the argument for the goal b). When the choice point for a is constructed, its
BCP and BCE fields are equal to the current values found in the CP and E registers,
respectively. Executing the code for a then modifies the E and CP registers. When the
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execution of the code for a succeeds, the execution is continued at the instruction found at
BCP (the first instruction for b goal, as expected), and the environment can be restored
by the BCE field. This allows us to build the arguments for b correctly, as it uses a q’s
local variable X, which can only be accessed in this environment.

The code address for the next clause with the same predicate name to try if the current clause
fails. This is called the Failure Address (FA).

”The state of the main memory data structures at the time of the choice point creation,
namely, the top of the trail and heap, and a prior choice point in effect before this one, stored
in Backtrack Trail (BTR), Backtrack Heap (BH) and Backtrack B (BB) respectively.
This is the primary information for the deep backtracking if no clause exists that satisfies
the current goal. It represents how to get back to the last goal solved before the current one.”
[2, p. 497]

The environment, which are memory locations for local variables, one such cell of each
variable. These are used to store and retrieve current values for the variables.

Figure 2.2 The choice point structure [2, p. 496]

2.5 Instruction set
The Architecture of Symbolic Computers [2, pp. 497, 498] divides instructions into five classes
based on their intended function:

Indexing instructions to control sequencing through the chain of code sections associated
with one procedure (one head predicate symbol)

Procedural instructions to control choice point and environment setup and transfer of
control from one chain to another

Get instructions to verify that the formal arguments in a clause unify with current actual
arguments (as recorded in the argument registers) and to record the appropriate unifying
substitutions

Put instructions to load the argument registers for the next goal on the right-hand side of
a clause

Unify instructions to handle get and put instructions of complex objects such as lists and
structures
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In general, the instructions treat the WAM machine registers in a certain formalized fashion,
namely:

The B register always points to the topmost choice point on the stack

Once inside the code for some particular clause, the E register points to the choice point,
which was created when the procedure containing that clause was entered. The only time
this may be the same as B is just as the code for a clause is entered and before any goals
on the right-hand side of that clause are tried. After that, E choice point is ”buried” under
choice points used to solve the right-hand-side goals.

At the entry to a code segment for a predicate symbol, the CP register contains the instruction
address to return to if a clause is found in the new procedure that unifies with the current
goal and has all of its right-hand-side goals fully satisfiable. The E register at this time points
to the environment needed to continue execution at CP.

Unless specified otherwise, each instruction increments the PC register to point to the next
sequential instruction.

To provide an example of how the individual instructions manipulate the state of WAM during
execution, assume we have the following Prolog program (code listing 2.2) and a query c(X):

Code listing 2.2 Example program

a(a).
a(b).
b(b).
c(X) :- a(X),b(X).

After compiling the source code, bytecode, as can be seen in listing 2.3, will be produced. The
query code can also be seen there. This approach is described more in detail in section 3.4.1.

Code listing 2.3 Example bytecode

0 a: mark
1 retry -me -else a1
2 allocate 0
3 get - constant a A1
4 return
5 a1: retry -me -else quit
6 allocate 0
7 get - constant b A1
8 return
9 b: mark
10 retry -me -else quit
11 allocate 0
12 get - constant b A1
13 return
14 c: mark
15 retry -me -else quit
16 allocate 1
17 getv X A1
18 putv X A1
19 call a
20 putv X A1
21 call b
22 return
23 quit: backtrack
24 query : mark
25 retry -me -else quit
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26 allocate 1
27 putv X A1
28 call c
29 return

The state of the machine before execution is as follows:

The mode flag is set to write mode. This choice is arbitrary, as it could be set to the read
mode by default.

The environment and backtrack registers, along with the continuation pointer, are not yet
set, which will be signaled by their value equaling xxx.

The stack, trail, heap, and push-down list are all empty, which is signaled by the S, TR,
H, and PDL register equaling 0, as they are pointing to the beginning of their designated
memory arrays. The SP pointer is also set to 0. This indexing is tied to the representation
used in the actual implementation, described in 3.5.

The program counter is set to 24, as that is the address of the first instruction of the query.

2.5.1 Indexing instructions
”Indexing instructions chain together and control the code sections for different clauses with the
same predicate symbol in their head.” [2, p. 500]

2.5.1.1 Mark instruction
The mark instruction is the first instruction encountered right after the call; it builds a choice
point from the current contents of the machine’s register. After execution, the B register points
to the new choice point. [2, pp. 500, 501]

To demonstrate its functionality, assume the WAM is in the state before any instructions
are executed, as described above. The building process of a choice point consists of pushing the
contents of the machine’s registers to stack, which means that the current contents of argument
registers, E register, CP, B register, TR register, H register, and PC + 1 are all pushed to the
stack.

In our example, that would mean that after executing the first mark instruction found in the
query code section, the stack would look like this (the corresponding choice point fields can be
found on the right):

0 xxx BCE
xxx BCP
xxx BB
0 BTR
0 BH
25 FA

The instruction also sets the B register value to 0, making it point to the just created choice
point. The S pointer now equals 1, indicating that the next choice point can be constructed on
position 1 in its respective memory array.

As this first mark instruction was in the query code section, its choice point differs from
the choice points constructed by the actual code sections by containing some unset registers
and lacking the contents of the argument registers (as they are empty in the initial state). To
demonstrate the more common case, let’s assume the query’s code section has been carried out
and the call c has been carried out. The WAM state differs from the initial state in the following:
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The environment and backtrack registers are both equal to 0. The continuation pointer is set
to 29. The program counter is set to 14. Also, the A1 argument register has been filled with
the address of variable X.

The stack has been modified by the query code instructions and now looks like this:

0 xxx BCE
xxx BCP
xxx BB
0 BTR
0 BH
23 FA

var X Environment variable at index 0

Now, let’s execute the mark instruction found in the code section for clause c.

0 xxx BCE
...

1 reference to variable X Contents of A1
0 BCE
29 BCP
0 BB
0 BTR
0 BH
15 FA

The B register’s value is now 1 and the S pointer is now set to 2.

2.5.1.2 Retry-me-else instruction
The retry-me-else instruction modifies the FA entry in B’s choice point to point to the start
of the code section for the next possible clause with the same predicate name. The address is
provided as an argument to the instruction.

The address set by the retry-me-else instruction in a choice point is used if a unification
failure occurs in the code for the current clause, or if its goals are not satisfiable. [2, p. 501]

For example, assume that the machine just executed the mark instruction as shown in the
previous section. After executing the retry-me-else quit instruction in the c’s code section
(line 15), the FA field of the second choice point will change from 15 to 23, and the stack will
look like this:

0
...

1
...

23 FA

Now, if a fail sequence is executed while in the code section for clause c, the program execution
will continue at the address found in the FA field, 23 in this case.
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2.5.1.3 Backtrack instruction and the fail sequence.
The backtrack instruction is the target of the retry-me-else for the last clause of a chain. If
the program reaches the backtrack instruction, none of the clauses satisfy the current goal, and
deep backtracking to the predecessor of the current choice point is necessary.

In practice, this is done by backing up one choice point (i.e., reloading B from the current
choice point) and then initiating the fail sequence:

1. Reload the argument registers from B’s choice point.

2. Reset the heap top to what it was when B’s choice point was built (indicated by the BH
entry)

3. Use B to recompute the top of the main stack, i.e., S = B + 1

4. Unwind the trail stack by popping entries (addresses of clause variables) until the TR
register equals the BTR entry in B’s choice point.
For each such entry popped off, the memory location corresponding to that variable is reset
to a variable entry, indicating that it has been unbound.

5. Branch to the code specified by the FA field in B’s choice point. This is the next possible
clause that might satisfy the goal signified by the choice point.

”After executing the backtrack instruction, all storage associated with the failing goal has
been deleted, namely the choice point, values stored on the heap during the execution of the failed
goal’s code, and any variable assignments made by that code to variables in other choice points.
The machine has now been reset to the next deeper choice point on the stack, from which it can
try a different clause for the prior goal.” [2, pp. 501, 502]

In our example, the backtracking occurs in rule c(X) :- a(X),b(X) when calling the b(X)
predicate for the first time. The X is now bound to the constant a from the first fact, a(a), so
the get-constant b A1 instruction on line 12 will initiate a fail sequence. The code will branch
to the quit label, where the backtrack instruction can be found. Currently, the values of the
relevant machine registers are S = 4, E = 3, TR = 3, PC = 23, and finally, argument register
A1 holds the constant a. The stack contains the following choice points:

0
... query’s choice point

1
... c’s choice point

2 1 BCE
31 BCP
1 BB
2 BTR
0 BH
5 FA

3 constant a A1 argument register
1 BCE
33 BCP
2 BB
3 BTR
0 BH
23 FA

The last choice point on index 3 is the b’s choice point, and the one on index 2 is the a’s
choice point.

Let’s now execute the backtrack instruction:
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The previous choice point is reloaded by setting the B register to the BB entry of the current
choice point, i.e., B = 2. Then, the fail sequence is initiated again.

The argument registers are reloaded from the B’s choice point. In this case, the A1 register
stored on B’s choice point contains a reference to the X variable, currently bound to constant
a.

The stack top is recomputed, meaning S = B + 1 = 3.

TR register and BTR differ by 1, so variable unbinding will occur. The trail contains the
following values:

0 address of the X in the 0th choice point environment, bound to constant a
1 address of the X in the 1st choice point environment bound to the

previous variable
3 address of the X from the 0th choice point, bound to constant a

The last entry is popped off, and its address is filled with the variable word containing the
same address, making the X variable from the 0th choice point unbound again :

0 address of the X in the 0th choice point environment, which is unbound
1 address of the X in the 1st choice point environment, bound to the

previous variable

PC register is set to the FA field, i.e., 5.

After this process, the second clause for predicate a can be tried, this time, binding the X variable
to constant b.

2.5.2 Procedural instructions
”Procedural instructions handle the management of environments and the transfer of control
between clauses.” [2, p. 502]

2.5.2.1 Allocate instruction
The allocate instruction is the first instruction of the code section for a clause after the mark
and retry-me-else instructions. It allocates space for all the clause’s variables, the size of which
is indicated by its argument.

This allocation happens on the stack for the current choice point (designated by B register).
All locations in the environment are initialized to entries with tag variable and value equaling
their own memory address, making them unbound variables. These are the variables used in the
execution of the following clause. The instruction also sets the E register to point to this choice
point. [2, p. 502]

2.5.2.2 Call instruction
”The call instruction is used right after loading the argument registers with argument values for
a goal in the body of the current clause. It saves the address of the next instruction in the CP
register and branches off to the clause’s entry point corresponding to the predicate symbol in that
goal.” [2, p. 502]
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2.5.2.3 Return instruction
The return instruction is the last instruction in a clause segment. Its execution indicates a
successful satisfaction of all goals in the body of the clause. The control is then passed back
to the continuation address in the caller, found in the BCP field of E’s choice point. The E
register is then set to the BCE field of the E’s choice point.

”Unlike a return in many conventional computers, the return instruction in WAM does not
pop anything off the stack. The choice points built by the procedure being returned from are left
intact, pending a possible backtrack that might restart one of them.” [2, p. 502]

To demonstrate how the WAM state changes when a return instruction is executed, consider
that we just successfully executed the get-constant a A1 instruction, as can be found on line
7 in listing 2.3. The E register is set to 2, and the BCP in E’s choice point has the value of
20. This will pass the control back to the code section for clause c. The E is then set to BCE,
which is 1. That corresponds to the choice point created for c.

2.5.3 Get instructions
”Get Instructions carry out the unification check between the actual arguments for the current
goal and the formal arguments in the head of a clause. At this point, both B and E point to the
same location in the same choice point.”

”There is one get instruction per formal argument in the clause’s head literal, with the code
for the k-th formal argument referencing the actual argument in register Ak. The form of the get
depends on the formal argument type.” [2, p. 503]

2.5.3.1 Get-constant instruction
Get-constant instruction dereferences the argument register indicated by its argument. If the
result of dereference has a tag of constant, their values are compared. In case of a match, the
unification succeeds. In the opposite case, the actual and formal arguments are not unifiable,
and the clause cannot be used to satisfy the current goal. The fail sequence is initiated to try
another potential clause.

If the dereference result has a tag of variable, then the constant’s value gets bound to
the variable. This is done by trailing the variable and storing a copy of the constant into the
variable’s memory cell (overwriting the variable tag in the process). In our example, this can
be seen during the execution of the instruction get-constant a A1 in the a’s code section for
example. Right before execution, the A1 register contains the address of the X variable from the
1st environment, which is bound to the X variable from the 0th environment. When executed,
the variable is trailed, and a constant word with the value a overwrites the variable word at the
address found in A1.

If the result of dereference has any other tag than constant or variable, the fail sequence
is initiated. [2, p. 507]

2.5.3.2 Get-list instruction
The get-list instruction dereferences the argument register indicated by its argument and checks
whether the result has the tag of list or variable. If it has any other tag, the fail sequence is
executed.

If the result of the dereference has a tag of list, then the main part of the instruction has been
carried out; the instruction only checks whether the argument is of the correct type. Whether
the car and cdr of the list actually unify with the formal arguments is checked by a pair of
unify instructions, described in a later section. To set up WAM for this check, the instruction
sets up the mode flag to read mode and sets the SP register to point to the memory location
containing the car of the list.



Instruction set 18

If the tag of the result is a variable word, its memory cell is overwritten with a list word
pointing to the value found in the H register. This points the cell to the next available location
on the heap, where the subsequent unify instructions will build the actual list. In this case, the
mode flag is set to write mode, signaling the unify instructions to build such a list. [2, p. 507]

2.5.3.3 Get-structure instruction
The get-structure instruction is similar to the get-list instruction. After the argument
register dereference, a tag of structure-pointer or variable is expected. Otherwise, a fail
sequence is initiated.

If the tag encountered is that of a structure-pointer, it is dereferenced to access the struc-
ture word it is pointing to. Then, the functor name and arity of this structure word are
compared to that stored in the instruction. In case of a mismatch, a fail sequence is initiated.

As with get-list instruction, the main part of the instruction is done in the case of a
match. The actual and formal arguments have the same function symbol and the same number
of arguments, and the following unify instructions will check whether the components match.
This is signaled by setting the mode flag to read mode and setting the SP to point to one
memory cell beyond the actual argument’s structure cell.

If the actual argument is an unbound variable, the variable is trailed, and its contents are
overwritten by the tag of structure-pointer, with the value equaling the current H register
value. The memory cell with the structure tag, with its value being the functor and arity from
the get-structure instruction, is pushed to the heap, and the mode flag is set to write
mode. [2, p. 507]

2.5.3.4 Getv instruction
The getv instruction handles the case where the formal argument is a variable. This is a bit
more complex than the already mentioned get instructions, as it is often impossible to know
whether the variable might have a value at a certain point or what kind of value that might be.
This instruction is designed to handle all such cases. The possible combinations are in table 2.2.

Table 2.2 Getv cases

X tag
Y tag reference variable constant list structure-pointer

reference 1 1 1 1 1
variable 2 3 5 5 5
constant 2 4 6 F F
list 2 4 F 7 F
structure-pointer 2 4 F F 8

To demonstrate this instruction’s functionality, let’s look at how it looks in the bytecode:

getv Yj Ai

where Yj is an index of the variable in the current environment.
The operation is labeled Clear PDL. First, the PDL is emptied. The Ai register is derefer-

enced, and the result is saved to X. The memory contents of the variable at index Yj are saved
into Y. Then, a loop is started, and a case is selected from the table 2.2 using the tags of X and
Y. If the PDL is empty afterward, the instruction is complete. Else do the following:

Get the first element of the triplet found on the top of PDL and save it into XA. Do the same
for the second element of the triplet, but save it into YA.
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Save the memory contents found at addresses stored XA and XY into X and Y, respectively.

Save the third element of the triplet found on the top of PDL minus 1 into N
(i.e., N = PDL.top[3] - 1).

Pop the PDL.

If N > 0, push {XA + 1, YA + 1, N} to PDL.

Repeat the loop.

The individual cases are as follows:

1. Dereference X and save it to X, then repeat the loop

2. Dereference Y and save it to Y, then repeat the loop

3. Trail both X and Y

4. Trail Y and bind a copy of X to Y

5. Trail X and bind a copy of Y to X

6. If values don’t match, initiate a fail sequence.

7. Push {value of X, value of Y, 2} to PDL.

8. If the memory contents at X don’t match those at Y, fail.
Else push {value of X + 1, value of Y + 1, arity(mem(X))} to PDL, where arity(mem(X))
refers to the arity of a structure found in memory at the address stored in X.

If the case is F, initiate a fail sequence. [2, p. 506]
To showcase how the PDL works, assume we have a query in the following form:

s(g(x,y)) = s(g(x,y)).

Assume the arguments have been already built (discussed in detail in section 2.6.2.2) and the
unification is about to be carried out (implemented as id(A,A), discussed in 3.7). The argument
registers A1 and A2 are loaded with a structure-pointer to heap address 3 and structure-
pointer to heap address 8, respectively. The heap at this moment looks like this:

0 structure g/2
1 constant x
2 constant y
3 structure s/1
4 structure-pointer pointing to heap address 0
5 structure g/2
6 constant x
7 constant y
8 structure s/1
9 structure-pointer pointing to heap address 5

The instructions carrying out the unification can be seen in listing 2.4
Code listing 2.4 Instructions for the unification operator

getv A A1
getv A A2
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The first getv will bind the A variable to a structure-pointer, pointing to the heap address 3.
When executing the second getv, the A is already bound, so the 8. case in the Clear PDL
operation is chosen. First, the functor and arity found at the structure-pointer’s address are
checked for equality. In this case, there is a s/1 on both addresses 3 and 8, so the following
triplet is pushed to the PDL: {3 + 1, 8 + 1, 1}.

Since the PDL is not empty now, the first two elements, 4 and 9 of the triplet are stored in
XA and YA, respectively, and the heap contents found at these addresses are stored into X and
Y. In our case, X is a structure-pointer pointing to the heap address 5, and Y is a structure-
pointer pointing to the heap address 8. The calculated N is 0, so nothing else is being pushed
to the PDL. Then, the loop repeats.

As both X and Y are structure-pointers again, case 8 is chosen again, and a triple {6, 1,
2} is pushed to the PDL. This triplet checks the first argument, in our case, a constant x. As the
N calculated for this triple is non-zero, another triple, {7, 2, 1}, will be pushed to the PDL,
this time, checking the second argument, constant y.

2.5.4 Put instructions
Put instructions are used to load the argument registers with the actual arguments for the
goals in the clauses’s body. There is a sequence of put instructions before the call instruction
for each goal, one put instruction per top-level argument. Their operation consists solely of
copying something and involves no possibility of a failure or backtrack. To give an example,
bytecode for the query a(x,y),b(X,Y) can be seen in listing 2.5.

Code listing 2.5 Put instructions bytecode

put - constant x A1
put - constant y A2
call a
putv X A1
putv Y A2
call b

Put instructions for complex argument objects such as lists and structures handle only the
start of the object and set the mode flag to write mode, so the subsequent unify instructions
build the object on the heap. In this case, the argument register is loaded with a pointer to the
first component on the heap. [2, p. 510]

2.5.4.1 Put-constant instruction
Put-constant instruction loads the argument register indicated by its argument with a word
consisting of the tag constant and its value, which is also passed as an argument, for example,
put-constant elephant. [2, p. 510]

2.5.4.2 Putv instruction
The putv instruction has the following form in the bytecode

putv Y Aj

Firstly, the Y is dereferenced from the current environment. If the Y has a tag of variable, the
register is loaded with a reference to Y. If any other tag is encountered, the register is loaded
with the dereferenced result. [2, p. 510]
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2.5.4.3 Put-list and put-structure instruction
The put-list and put-structure instructions handle loading the argument register with a start
of the respective object, i.e., a memory cell with the tag of list or structure-pointer, with the
value of the cell equaling the current value found in the H register. The mode flag is set to write
mode, so the following unify instructions build the object on the heap.

In the case of the put-structure, the cell with the tag of structure and the value containing
the functor and arity encoded in the instruction is pushed to the heap just after loading the
argument register. [2, p. 510]

2.5.5 Unify instructions
Unify instructions are used after a get instruction for either a list or a structure to handle
their components. They operate in one of two modes as set by the mode register, either read
or write, which was set by the prior get/put instructions.

”In read mode, they attempt to unify the next component of the objects (as pointed to by the
SP register) with the variable or constant specified in the instruction. A successful match may
cause variables to be trailed and bound as in get instructions, increasing SP to point to the next
component. Any mismatch causes a fail sequence. Only get instructions can set the machine
to read mode.”

”In write mode, these instructions copy the specified constant or variable to the object being
built up on the heap. The initial get or put instructions have earlier given either a register or
a variable reference to the start of this object. The SP register is not needed in this case.”
[2, p. 510]

2.5.5.1 Unify-constant instruction
The unify-constant instruction is in the form of

unify-constant C

If the WAM is in write mode, the instruction only pushes the cell with the tag constant and
value C to the heap.

If the machine is in read mode, the memory where the SP is pointing is dereferenced, and
the SP is incremented. If the result of the dereference is a variable, the variable is trailed, and
its contents are overwritten with a cell of the tag constant and the value C.

If the result of the dereference has the tag of constant, the values are compared. A fail
sequence is initiated in case of a mismatch or if the tag has any other value. [2, p. 511]

2.5.5.2 Unifyv instruction
This instruction can be found in the following form in the bytecode

unifyv Y

Firstly, the Y is dereferenced from the current environment. In case the machine is in the write
mode, a copy of the Y is pushed to the heap

If the WAM is currently in the read mode, a memory where the SP is pointing to is
dereferenced, the Y is unified with the dereferenced result, and the SP is incremented. The
unification process is the same as the one described for the getv instruction in the section
2.5.3.4, only this time, the second value is not taken from an argument register but from the
heap address pointed to by the SP register. [2, p. 511]
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2.5.5.3 Procedure for unifying lists and structures
In the WAM model, there are no unify-list or unify-structure instructions to handle the
cases where a formal argument is either a list or a structure and where one or more components
are themselves complex terms. The procedure for handling such situations [2, p. 511] is as follows:

1. For each list or structure used as a component of a complex formal argument in the head of
a clause, allocate an extra local clause variable not to be used anywhere else

2. When the place in the code is reached where either unify-list or unify-structure is
needed, it is replaced by a unifyv instruction with an argument that specifies the new
allocated variable.

3. After completion of the top-level code for that formal argument, a putv instruction is gener-
ated to load some currently unused argument register with the contents of this variable.

4. This is followed by either a get-list or get-structure instruction against the aforemen-
tioned argument register.

5. The components of the structure are handled either with unifyv or unify-constant instruc-
tions or with the procedures described above.

As this process might seem a little unintuitive, let’s provide an example. Assume we have a fact
in the form of

p(s(g(f(x),h(x)), [1,2,s(x)])).

The bytecode generated for this fact can be seen in listing 2.6. The Tx marks the x-th extra local
clause variable. Note that the allocate instruction accounts for all of them.

Code listing 2.6 Bytecode for a fact with complex arguments

p: mark
retry -me -else quit
allocate 7
get - structure s/2 A1
unifyv T0
unifyv T1
putv T0 A1
get - structure g/2 A1
unifyv T2
unifyv T3
putv T2 A1
get - structure f/1 A1
unify - constant x
putv T3 A1
get - structure h/1 A1
unify - constant x
putv T1 A1
get -list A1
unify - constant 1
unifyv T4
putv T4 A1
get -list A1
unify - constant 2
unifyv T5
putv T5 A1
get -list A1
unifyv T6
unify - constant []
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putv T6 A1
get - structure s/1 A1
unify - constant x
return

First, the get-structure instruction for s is encountered. It has two arguments, a structure
g(f(x),h(x)) and a list [1,2,s(x)]. If the arguments were constants or variables, the standard
unify-constant and unifyv instructions would be generated. However, as they are complex
terms, the steps above are taken. For both arguments, the unifyv specifying the extra variables is
generated. This corresponds to step 2. After that, the T0 variable is put into the A1 register (step
3), and get-structure for g is generated (step 4). Then, the structure components are handled
(step 5); in this case, they are both complex objects, and the same steps are repeated. When
the code is being generated for the two inner complex objects, f(x) and h(x), the components
of those are both constants, so they are handled by unify-constant x instruction.

Now assume that we have received a query in the form of

?> p(s(g(f(x),h(x)), [1,2,s(x)])).

and that the A1 register is filled with a structure-pointer, pointing to the address 15 on
the heap. The exact process of building this heap will be described in the section 2.6.2.2. For
now, let’s assume the heap looks like this:

0 structure s/1
1 constant x
2 structure-pointer to heap address 0
3 constant []
4 structure h/1
5 constant x
6 constant 2
7 list word pointing to heap address 2
8 structure f/1
9 constant x
10 structure g/2
11 structure-pointer to heap address 8
12 structure-pointer to heap address 4
13 constant 1
14 list pointing to heap address 6
15 structure s/2
16 structure-pointer to heap address 10
17 list pointing to heap address 13

Let’s now step through the generated bytecode (listing 2.6) and see how it behaves.
After the mark, retry-me-else, and allocate instructions, the get-structure s/2 A1

is encountered. This instruction expects to find either a variable or a structure-pointer for a
structure whose functor and arity match s/2. The structure pointer found in A1 satisfies this, so
the WAM mode flag is set to read mode, and the SP register is set to its address + 1, i.e., 16.
Since the read mode is set, the next instruction, unifyv T0, will dereference the heap at SP,
unify the T0 with the contents of the dereference and increment the SP. As T0 is a variable and
the dereferenced cell contains a structure-pointer, the case 5 of the Clear PDL operation
(2.5.3.4) is executed. The result of this is that the T0 is now bound to a structure-pointer,
pointing to heap address 10. The next instruction, unifyv T1, will do the same, this time for a
list word pointing to heap address 13. The T0 is then put into A1, and the process is repeated,
this time for the more nested components.
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2.5.6 Cut instruction
The instructions described so far support pure Prolog, i.e., Prolog without predicates that have
side effects, such as cuts.

The cut in Prolog is a predicate that always succeeds on its initial execution but prohibits
backtracking back through it. It is denoted by the ! symbol.

Say we have a clause in the form of:

p(...):=q1(...),...,qn,!,r1(...),...,rm(...)

When the program execution reaches the cut code, the B register points to the most recent
choice point built (qn’s choice point), and the E register points to the one created for p.

If backtracking occurs through the cut, it should be as if the q1 through qn choice points
never existed and that this clause is the last one possible for the p predicate.

This can be achieved by reloading the B register from the E’s choice point’s BB register,
which is exactly what happens when the cut predicate is first encountered. This choice point is
found directly beneath that for p. A failure in r1 will cause a backtrack directly to the desired
choice point. [2, pp. 517, 518]

2.6 Prolog-to-WAM compiler
The compiler from Prolog to WAM code comprises two major sections. First, an outer loop that
cycles through the clauses and chains them into procedures. The second is compiling a single
clause into a code section for the procedure chains.

In addition, we use a symbol table containing an entry for each symbol used as the predicate
symbol of the head of some clause. Such entry contains:

The name of the symbol.

The memory address of the mark instruction.

The memory address of the last retry-me-else instruction compiled for that symbol.

A list of places where this predicate symbol has been referenced as a goal.

[2, p. 512]

2.6.1 Procedure-Level Compilation
The program clauses are processed in the order they appear in the source code. For each clause,
the following steps are carried out:

1. The next unprocessed clause is selected, and its predicate symbol from the head is obtained.

2. If the head has no code generated for it yet:

a. The symbol is marked in the symbol table as having code generated for it.
b. The initial address is recorded as the next available memory location.
c. mark instruction is generated, followed by a retry-me-else instruction with no label yet.
d. The address of the retry-me-else instruction is recorded in the symbol table.

3. If the head already has code generated for it:

a. The next available memory location is stored in the last recorded retry-me-else instruc-
tion address.
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b. retry-me-else instruction is generated with no label.
c. The address of the retry-me-else instruction is recorded in the symbol table.

4. Code is generated for the clause as described in the following section 2.6.2

5. If there are more clauses, go back to step 1.

6. After all clauses have been compiled:

a. backtrack instruction is generated to the next available location, and its address is stored.
b. For each symbol table entry, the last retry-me-else instruction is pointed to this address.

7. The query is compiled.

8. The first instruction of the query’s code is the program’s starting point.

[2, pp. 512, 513]

2.6.2 Clause-Level Compilation
The first step in compiling a clause is to calculate the number of local variables needed, including
the allowances for temporary variables used for complex objects nested in other complex objects.
Then, an allocate instruction is generated.

After generating the code for the clause’s head and RHS, which are described in detail in
sections 2.6.2.1 and 2.6.2.2, a return instruction is generated. [2, p. 515]

2.6.2.1 Head compilation
During the clause’s head compilation, the arguments are processed in the order in which they
appear. Assume the k-th argument is being processed:

1. If it is a constant, a get-constant instruction is generated, encoding the value of the constant
and k-th argument register.

2. If it is a variable, a getv instruction is generated, encoding the variable offset and the k-th
argument register.

3. If it is a list, a get-list instruction is generated, encoding in the k-th variable. Then, for
the car and cdr of this list, either a unify-constant or unifyv is generated as appropriate.
If either car or cdr is a complex object, a unifyv instruction is generated, encoding in a
temporary variable, as described in the 2.5.5.3 section.

4. If it is a structure, a get-structure instruction is generated, encoding in the functor and
structure’s arity. Then, the exact same process is carried out for each argument for the list’s
car and cdr.

[2, p. 515]

2.6.2.2 Right-Hand Side compilation
As with the head compilation, the goal literals and their arguments are processed in the order in
which they appear in the body. Assume the i-th argument of the current goal is being processed:

1. If the argument is a constant, a put-constant instruction is generated, encoding in the
constant’s value and i-th argument register.
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2. If it is a variable, a putv instruction is generated, encoding the i-th argument register and
the variable offset.

3. If it is a list or structure whose components are either variables or constants, a put-list
or a put-structure instructions are generated as appropriate. Then, for each argument,
unify-constant or unifyv is generated, as required.

4. If it is a list or structure that includes a nested list or structure, the code generation is as
follows:

a. The most deeply nested component is selected.
b. Currently, unneeded argument register Au is marked
c. Instructions are generated as described in the previous step for the lists/structures with

no complex objects, but results are targeted to the Au register.
d. A getv instruction is generated to place Au into a temporary variable.
e. Process is then repeated for the next most nested component. When a complex object is

encountered, it must already have been processed, so a unifyv instruction can be gener-
ated, encoding in the temporary variable into which the complex objects have been stored
earlier.

f. Au register is marked as free again.

Then, a call is generated as the final instruction. [2, pp. 515, 516]
It is worth highlighting that the processing order for the complex objects for the head is the

opposite of the one for the clause’s right-hand side, more specifically, outside in and inside out.
The reason for this is outlined in the step 4e of the previous algorithm. As all of the nested
complex objects have been processed and the complex object with them as its argument is being
put into the argument register, it is already completely built.

To provide an example of this inside-out process, assume we have a query
p(s(g(f(x),h(x)), [1,2,s(x)])), the same query used in the example in section 2.5.5.3, and
let’s rewrite the second argument, a list, to a following form [1|[2|[s(x)|[]]]], to demonstrate
the nesting more clearly.

The most nested components in the first argument are f(x) and h(x), both have depth 3. In
the second argument, it is the list [s(x)|[]]. The list has a depth of 3, and the nested s(x) has
a depth of 4, making it the first complex object to be processed. As its argument is a variable,
step 3 is taken, and the following bytecode is generated:

Code listing 2.7 Bytecode generated for s(x)

put - structure s/1 A1
unify - constant x
getv __T0 A1

Where the T0 is a temporary variable mentioned in step 4c. After these instructions, the
variable T0 is bound to a structure-pointer pointing to heap address 0, and the heap looks
like this:

0 structure s/1
1 constant x

As the s(x) has now been processed, the following instructions for loading the list [s(x)|[]]
can be generated:

Code listing 2.8 Bytecode generated for list
put -list A1
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unifyv __T0
unify - constant []
getv __T1 A1

Step 3 is taken again, this time starting with a put-list instruction. As mentioned in step
4e, since the variable T0 corresponds to the processed nested structure, a unifyv instruction
referencing the temporary variable can be generated, followed by the unify-constant for an
empty list. After executing these instructions, the heap contains the following:

0 structure s/1
1 constant x
2 structure-pointer to heap address 0
3 constant []

The steps taken are the same for the rest of the nested complex objects. The final bytecode
can be seen in listing 2.9.

Code listing 2.9 Bytecode generated the whole query
put - structure s/1 A1
unify - constant x
getv __T0 A1
put -list A1
unifyv __T0
unify - constant []
getv __T1 A1
put - structure h/1 A1
unify - constant x
getv __T2 A1
put - structure f/1 A1
unify - constant x
getv __T3 A1
put -list A1
unify - constant 2
unifyv __T1
getv __T4 A1
put -list A1
unify - constant 1
unifyv __T4
getv __T5 A1
put - structure g/1 A1
unifyv __T3 A1
unifyv __T2 A1
getv __T6 A1
put - structure s/1 A1
unifyv __T6 A1
unifyv __T5 A1
getv __T7 A1
call p

After executing all instructions up to the call instruction, the heap will look like in the table
2.3.

The A1 register now contains a structure-pointer to heap address 15, which corresponds
to the s/2 structure found as its argument. By going after the addresses in the heap, you can
verify that they correspond to the actual arguments. For example, the first argument of s/2 at
address 15 is a structure-pointer to address 10. At address 10, you can find a structure g/2,
and in the two following cells, two structure-pointers pointing to h/1 and f/1.
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Table 2.3 Heap state prior to call

0 structure s/1
1 constant x
2 structure-pointer to heap address 0
3 constant []
4 structure h/1
5 constant x
6 structure f/1
7 constant x
8 constant 2
9 list word pointing to heap address 2
10 structure g/2
11 structure-pointer to heap address 6
12 structure-pointer to heap address 4
13 constant 1
14 list word pointing to heap address 8
15 structure s/2
16 structure-pointer to heap address 10
17 list word pointing to heap address 13

The above-mentioned procedure mentions Au as an unneeded argument register. As you can
notice, the bytecode generated here only contains the register A1. This is because once the value
is stored in the temporary variable, the register A1 no longer needs to store the value. If the p
predicate had more arguments, each argument’s bytecode uses a different register.



Chapter 3

Implementation strategy

In this chapter, we will outline the implementation and discuss the design decisions taken in
the individual modules in the order they are being used when executing a program. First, we
describe the source code’s parsing and AST representation and how the code generation process
turns it into bytecode. Attention is also given to the design of the machine’s data structures and
the interpretation process. Finally, we discuss the arithmetic capabilities of our implementation.

3.1 Lexer
The lexical analyzer splits the source code into a stream of tokens. The individual tokens are
represented by a C++ enum Token.

The lexer provides an interface to get the next token ”on demand” with the get() method.
A peek() method is also available, which returns the current token but does not lex the next
token. For some tokens, information about the numeric value or identifier of the token is needed.
Methods identifier() and numericValue() are implemented to provide such functionality.

To offer the functionality of checking whether the currently lexed token matches the expected
token during the parsing process, a match(Token tok) method is implemented, testing whether
the two tokens are equal and lexing the next token.

3.2 Parser
The syntactic analyzer used for parsing the tokenized input is implemented as a predictive parser,
which is a type of recursive-descent parsing. Recursive-descent parsing is a top-down approach
to syntax analysis where a set of recursive procedures is utilized to process the input. Each
nonterminal symbol of the grammar is associated with one procedure. In its basic form, this
method may involve trial and error, potentially leading to unsuitable production rule attempts
and backtracking.

To mitigate this issue, predictive parsing employs a parsing table. This table is utilized to
definitively determine the control flow through the procedure body for each nonterminal symbol.
Consequently, the source code can be parsed without the necessity for backtracking. [7, pp. 63,
64] Such a parser can be constructed for a class of grammars called LL(1), which scans the input
left to right, producing the leftmost derivation. The 1 means that it uses one input symbol of
lookahead at each step to make parsing action decisions. [7, pp. 218, 219]

For parsing our Prolog source code, we’ve constructed an LL(1) grammar, which can be seen
written in EBNF form in listing 3.1. The parsing table for our grammar has been built using an
online LL(1) Parsing Table generator tool [8].

29
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Code listing 3.1 LL(1) grammar in EBNF
Start = [ lower , Predicates , Start ] ;
Predicate = "." | ":-" , Body , "." ;
Predicates = Predicate | "(" , Terms , ")" , Predicate ;
Operator = "=" | "is" ;
Body = Expr2 , BodyOperator , BodyCont | "!" , BodyCont ;
BodyOperator = [ Operator , Expr2 ] ;
BodyCont = [ "," , Body ] ;
List = "[" , ListInner , "]" ;
ListInner = [ Terms , ListCons ] ;
ListCons = [ "|" , Expr2 ] ;
Terms = Expr2 , TermsCont ;
TermsCont = [ "," , Terms ];
TermLower = [ "(" , Terms , ")" ] ;
Expr2 = Expr1 , Expr2R
Expr2R = [ "+" , Expr1 , Expr2R ] | [ "-" , Expr1 , Expr2R ] ;
Expr1 = Expr , Expr1R ;
Expr1R = [ "*" , Expr , Expr1R ] | [ "/" , Expr , Expr1R ] ;
Expr = lower , TermLower | number

| List | variable | "(" , Expr2 , ")" ;

digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
number = digit , { digit } ;

uppercaseLetter = "A" | "B" | "C" | "D" | "E" | "F" | "G"
| "H" | "I" | "J" | "K" | "L" | "M" | "N"
| "O" | "P" | "Q" | "R" | "S" | "T" | "U"
| "V" | "W" | "X" | "Y" | "Z" ;

lowercaseLetter = "a" | "b" | "c" | "d" | "e" | "f" | "g"
| "h" | "i" | "j" | "k" | "l" | "m" | "n"
| "o" | "p" | "q" | "r" | "s" | "t" | "u"
| "v" | "w" | "x" | "y" | "z" ;

variable = uppercaseLetter ,
{ uppercaseLetter | lowercaseLetter | digit } ;

lower = { "_" } , lowercaseLetter ,
{ uppercaseLetter | lowercaseLetter | digit } ;

The parsing process comprises two parts: the initialization and subsequent parsing. The
method parse() first prompts the Lexer to get the first token and create the root of the abstract
syntax tree. Then, the parsing is started by running the Start() method, corresponding to the
first rule found in the grammar listing 3.1.

After the process, the abstract syntax tree is completely built and can be accessed through
the previously created root node.

3.2.1 Wildcard variables
In Prolog, programmers can utilize wildcard variables, typically denoted by the (underscore)
symbol. These variables indicate that the result is irrelevant.

During the parsing process, encountering such a symbol triggers the generation of a name
for it in the form of n, where n represents the number of encountered wildcards thus far (e.g.,

1). Subsequently, the parser treats the variable as a regular variable.
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3.2.2 Abstract Syntax Tree
Abstract Syntax Tree is a representation of the hierarchical syntactic structure of the source
program [7, p. 41]. This section will describe individual classes used to represent the nodes.

All classes used to represent the nodes of the AST are all derived from the abstract class
Node, which offers the codegen() method. As each type of node has its own codegen() method
implemented, the bytecode can be generated just by calling the codegen() method on the AST
root.

The AST root is always a ProgramNode. As the Prolog source code is just a set of clauses,
the ProgramNode represents that by having a vector of clauses represented by ClauseNode. The
ClauseNode class keeps track of the individual arguments and goals in the body by storing the
nodes in their respective vectors and the predicate name.

Arguments and all terms are represented by a TermNode class, serving as a base for classes
of individual term types. The first class is ConstNode, representing either a lowercase atom
(e.g., elephant), a natural number, or an empty list ([]). Next, VarNode represents a logical
variable. Lastly, there is the ComplexNode class, acting as a base class for StructNode and
ListNode, representing structures and lists, respectively. The TermNode class also contains the
codegen arithmetic method used by the is operator, described in 3.8.

Similarly, a GoalNode class serves the same purpose for the goals as the TermNode does for
terms. Four types of statements can be found on the right-hand side of a clause. Assume a
clause in the following form:

p :- s(X,b),!, X = c, Y is 1 + 2.

The s(X,b) is a predicate s call, and it is represented by the CallNode in the AST. The next
goal, !, is a cut predicate, represented by the CutNode class. Finally, the infix expressions X = c
and Y is 1 + 2 are a unification operator and is operator, respectively. They are represented
by the UnificationNode and IsNode classes.

To give an example of the AST representation, let us take a look at how this rule would be
represented. Note that the IsNode has a few s/1 StructNodes, even though numbers 1 and 2

ProgramNode
ClauseNode p

CallNode s/2
VarNode X
ConstNode b

CutNode
UnificationNode

VarNode X
ConstNode c

IsNode
VarNode Y
StructNode +/2

StructNode s/1
ConstNode 0

StructNode s/1
StructNode s/1

ConstNode 0

are present on its RHS. This is because we represent natural numbers with their Peano number
counterpart and will be discussed in 3.8.
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3.3 Bytecode representation
As the bytecode is a series of instructions, a single instruction is represented by the abstract
class Instruction. The derived classes serve to represent a specific instruction, e.g., Mark,
GetConstant, etc. There is a dedicated class for each instruction mentioned in section 2.5.
However, the classes Call and RetryMeElse differ from the rest. They are not directly subclasses
of Instruction but of a more specific class called BranchInstruction. This class provides an
address attribute and a setAddress() method.

Every instruction class has an execute method, which takes in a reference to the WAM state
object and manipulates it according to the type of instruction. This allows the interpreter to
execute the program just by cycling through the instructions and running the method.

Now that we have a representation for a single instruction, we describe a class WAMCode,
representing the code section of WAM’s memory. The main methods provided by this class
are addInstructions(), getInstruction(), popInstructions(), and merge(). The former
two are self-explanatory from their name; however, the latter two may deserve more explana-
tion. Both of those instructions are used when working with query code; more specifically, the
popInstructions removes the last n instructions, n given by its argument. This is used to re-
move the query code after the execution is done, and no more answers can be extracted (or the
user doesn’t ask for more answers). The merge() instruction adds the query’s bytecode to the
source code’s bytecode. The class also provides the following methods to work with labels (e.g.,
quit): addLabel(), removeLabel(), getLabelAddress().

Lastly, addVariable and getVariables methods are present. They store/retrieve all (non-
wildcard) variables found in the bytecode. This method only retrieves all user variables entered
in a query so their value can be printed out.

3.4 Bytecode generation
The bytecode itself is generated by traversing the AST, starting in its root, using the codegen()
method. Since some information needs to be shared between the AST nodes during compilation,
the codegen method expects a reference to a context object. This context is represented by the
CompilationContext class.

The first major part of the class is a symbol table. This is a data structure used to store infor-
mation about the identifiers. In our implementation, this entry is represented by a TableEntry
class and contains information about how many clauses have been already processed for a clause,
as it is needed for label numbering.

Context also stores all generated code so far, providing addInstruction and addInstructions
methods, and code() method to provide means of retrieving the generated code.

During compilation, there are several occasions where an extra local variable has to be gener-
ated, as can be seen in section 2.5.5.3, for example. This can be done by the generateTempVar()
method, which returns a string in the form Tn, where n is the number of variables encountered
so far during compilation. There are also two methods, addVariable() and noteVariable(),
which function as follows:

The addVariable adds information about a variable to the generated code. As mentioned
before, this is used to extract variables the user enters for their subsequent printing. The
wildcard variables or variables generated by the generateTempVar() method are not added,
as they should not be printed.

noteVariable notes every variable and is mainly used to calculate the N argument for the
allocate instruction and get the variable offsets for their respective environment.

When generating code, some instructions expect an argument register number to know where
to load or from where to retrieve a value tied to it. The register allocation process for each clause
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is as follows:

Initially, instructions for head unification are generated. Each instruction for individual
arguments utilizes a different argument register. Before any code generation occurs, the
available register is set to 1 and is incremented by 1 each time an instruction is generated.

For right-hand side unification, the available register is reset to 1 before bytecode generation
begins for each goal. This is necessary because when unifying the head, the argument registers
being dereferenced start from 1. Thus, the instructions for building and loading the registers
must also start from 1.
As the RHS code generation is not as straightforward as the head code generation, let us
provide an example:

Code listing 3.2 Code and bytecode example for RHS code generation
a(w,x).
b(y,z).
c:-a(w,x),b(y,z).

a: mark
retry -me -else quit
allocate 0
get - constant w A1
get - constant x A2
return

b: mark
retry -me -else quit
allocate 0
get - constant y A1
get - constant z A2
return

c: mark
retry -me -else quit
allocate 0
put - constant w A1
put - constant x A2
call a
put - constant y A1
put - constant z A2
call b
return

quit: backtrack

As can be seen, the a and b process the head arguments from argument registers 1 and 2, which
are the exact registers the predicate c loads prior to executing the call instruction.

As described above, the compilation process for a clause can be divided into two parts:
bytecode generation for the head of a clause and body generation. This is exactly what the
last part of the CompilationContext class handles. There is an enum CodeGenerationMode,
housing two values, HEAD and BODY. The class variable m CGMode keeps track of these two
modes, which can be set by setHeadGenerationMode and setBodyGenerationMode to HEAD
and BODY respectively. Method mode() then provides the information about the state of the
class variable. Its exact use will be shown in examples in Chapter 4.
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3.4.1 Query compilation
The compilation process described in section 2.6 does not have a special case for queries. Instead,
when a query is entered into the REPL in the form of q(a1,...,an), where ak, k ∈ {1...n}
are its arguments, it is transformed into a clause by prepending it with a special query identifier:

query :- q(a1,...,an)

and then compiled as if it were a standard clause. The address of the initial code segment for
this clause is then the starting point of the program execution.

3.4.2 Procedure name encoding
As described in the WAM theoretical model, the code for clauses with the same predicate name
is linked into a single chain, regardless of the number of arguments. This can cause a problem
with evaluating some query as true, even though it should fail. As an example, let’s assume we
only have one fact in the source code in the form of:

q(a,b).

The query
?> q(a,b),q(a).

should fail, as there is no q(a) fact in the knowledge base.
Bytecode, as can seen in 3.3, will be generated for the program and the query. As the first call

of the q loads, the argument registers A1 and A2 with a and b constants, respectively, and there
is no instruction that unloads the registers after the successful execution of the code section; the
second call, which should fail, succeeds, as the A2 register is still loaded with the b constant.

Code listing 3.3 Bytecode for q

q: mark
retry -me -else quit
get - constant a A1
get - constant b A2
return

quit: backtrack
query: mark

retry -me -else quit
put - constant a A1
put - constant b A2
call q
put - constant a A1
call q
return

The solution to this problem is to encode the predicate’s arity into the name, as they essen-
tially are different predicates. After doing so, the bytecode will look like in the code listing 3.4,
and the call to q/1 will fail as expected, as no address is linked to such procedure.

Code listing 3.4 Bytecode for q with arity encoded

q/2: mark
retry -me -else quit
get - constant a A1
get - constant b A2
return

quit: backtrack
query: mark
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retry -me -else quit
put - constant a A1
put - constant b A2
call q/2
put - constant a A1
call q/1
return

3.5 Major data structures
The WAM memory is an array of individually addressed locations. As implementing a memory
model is not the main goal of this thesis, this model is partially abandoned in the actual imple-
mentation. The individual data structures (e.g. heap, stack) are still implemented as an array
of addresses, there is however, no singular continuous chunk as depicted in figure 2.1. Each ma-
jor data structure has a corresponding array in the WAMState class, with methods that perform
operations on it. Namely, these operations consist of Xpush, Xpop, Xtop, and Xat, where X is the
name of the data structure, e.g., heapPush(). There is also a method XReg() for each machine
register, where X is the name of the register, e.g. HReg().

A single memory word, similar to the instruction representation, is represented as an abstract
class Word, with classes derived from it serving as an instance of a specific memory word, e.g.,
ConstantWord. Every word class contains a tag and then its value as depicted in table 2.1. An
additional method common to all classes is a toString() method used when printing variables.

The VariableWord design deserves further discussion, as the approach taken in the imple-
mentation is that the reference and variable words are represented by the same class, and the
contents distinguish whether it’s the former or the latter. The exact process of making this
distinction will be shown in 4.1.

3.5.1 Argument registers
The ArgumentRegisters class encapsulates all of the individual argument registers and pro-
vides an interface for their handling. Each register only holds a memory word (or is empty), so
it can be represented by an array; a C++ vector is used in the actual implementation. As the
registers in WAM are conventionally labeled from 1 to n and the arrays in C++ are indexed from
0 to n − 1, the method for filling the registers takes this into account and handles the register
number adjustment.

The class also offers a method for dereferencing the argument registers. If a reference, or
even a chain of references, is encountered, the method repeatedly dereferences until something
other than a reference tag is found, as expected.

3.5.2 Heap, Trail, and Push-down list
The Heap, Trail, and Push-down list are the simplest in design. The only required functionality
is the ability to insert a new element, provide random access to the elements, and pop the
elements from the top so they are all represented as a C++ vector, which satisfies all of the
above requirements. The Push-down list differs from the former two by not holding memory
words but a triple of values, where the triple is represented as a C++ tuple.

3.5.3 Stack and Choice Point
The Stack performs similar operations to the earlier structures but differs because its contents
are more intricate. As the Choice Point in the Warren Abstract Machine comprises a set of
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contiguous locations, a ChoicePoint class is designed to store each choice point as a single
element on the stack.

The ChoicePoint class is represented as a C++ struct, encapsulating all of the needed
information, like a copy of the argument and machine registers and a vector of words, serving as
the space for local variables for a specific clause.

3.6 Interpretation
The Interpreter class is designed to shelter all moving parts of the WAM and provide a simple
interface for evaluating queries.

The class holds an instance of the WAMState class and an instance of the WAMCode class, where
the former represents the WAM’s major data structures and state registers, and the latter is
the WAM’s code area. There is also one more WAMCode instance, which holds the currently
evaluated query. This comes in handy when asking for multiple answers for a query, which will
be discussed more in detail in the following section.

To handle queries, the compileQuery(), evaluateQuery(), nextAnswer(), setQuery()
and clearQuery() are present. The compileQuery() compiles the query and adds it to the
instructions of the compiled source code. Queries can be evaluated by the evaluateQuery()
method, which runs a fetch-execute cycle on the instructions, returning a pair of boolean and
mapping of variables to the values (if there were any). The nextAnswer() method prompts the
WAM to look for another possible solution. The setQuery() and clearQuery() manipulate the
current query stored in the Interpreter class.

Finally, all of this is encapsulated by the run() method, which connects all the parts together
and provides a REPL environment for entering and evaluating queries.

3.6.1 Multiple answers
The user may often want all the possible proof sequences for the given query, not just the first
one.

In WAM, enabling multiple proof sequences for a given query can be implemented as follows:
Upon satisfying the query, the user is prompted whether they desire more answers. If the user
inputs the semi-colon ;, the system initiates a fail sequence, backtracking to the topmost choice
point, and execution resumes, attempting to find another suitable solution. If any input other
than ; is provided, the execution for this query concludes, expecting a new query.

3.7 Unification operator
The unification operator = can be interpreted as calling an identity predicate, i.e.

id(A,A).

In WAM bytecode, this can be expressed as seen in the code listing 3.5
Code listing 3.5 Bytecode for id

id: mark
retry -me -else quit
getv A A1
getv A A2
return

quit: backtrack
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As we want the unification operator to work in our programs, the identity predicate is always
inserted into the source code before compilation. Whenever the unification = operator is used in
the program, it is generated as a call to this predicate. If the backtracking occurs, it is treated
as any other predicate and does not require any special handling while providing the expected
functionality.

3.8 Is operator
The is operator in Prolog serves to evaluate arithmetic expressions; for example, X is 1 + 2
will yield the result X = 3. If the standard unification operator were used, the result would
be X = 1 + 2. The WAM model described doesn’t support arithmetic on its own. For this
purpose, the escape instruction can be used, which permits the machine to communicate with
some other processor that is capable of arithmetic functions.

To allow our implementation to have some arithmetic capabilities without using the escape
instruction, the is operator has also been implemented, using only the instructions described
so far. The main idea behind our implementation is to parse and translate the infix arithmetic
operations into a sequence of instructions, which will result in the desired outcome. For the
purposes of the is operator, we parse the infix expression with +, -, * and / like a structure,
for example, an expression 1 + 1 is parsed as +(1,1). It is also worth mentioning that the
expressions are parsed as being left associative. This means that an expression 1 + 1 - 1 would
yield the
result -1 (1 - (2)), and the result would be a fail, as -1 is not a natural number.

Whenever the is operator is parsed, during code generation, we attempt to generate these in-
structions for both sides of the operation by the codegen arithmetic method. For our purposes,
we encode each natural number present in the source code with its Peano number counterpart,
i.e., 1 is encoded as s(0), 2 as s( s(0)), etc.

Whenever the codegen arithmetic encounters a list, variable, constant, or a structure that
doesn’t represent a binary operation (e.g., +(1,1)), a call instruction to id is generated, cor-
responding to the unification operator. The unification target is a variable allocated specially
for this, labeled arithmeticn, where n depends on the number of variables allocated like this.
If a structure representing a binary operation is encountered, the codegen arithmetic method is
run on its LHS and RHS.

Let’s show this in an example and describe the steps taken. Say we have a query in the form
of X is 1 + 1 and its bytecode as in listing 3.6.

Code listing 3.6 Bytecode for is operator

0 putv __arithmetic0 A1
1 putv X(1) A2
2 call __id /2
3 putv __arithmetic1 A1
4 put - structure __s /1 A2
5 unify - constant 0
6 getv __T3 A2
7 call __id /2
8 putv __arithmetic2 A1
9 put - structure __s /1 A2
10 unify - constant 0
11 getv __T5 A2
12 call __id /2
13 putv __arithmetic1 A1
14 putv __arithmetic2 A2
15 putv __arithmetic3 A3
16 call __add /3
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17 putv __arithmetic0 A1
18 putv __arithmetic3 A2
19 call __id /2

First, the code for the LHS of the is operator is generated. In our case, there is only the variable
X, so the unification operation is generated for it, corresponding to the first three instructions in
the bytecode 3.6. On the RHS, there is an expression in the form of 1 + 1, which is represented
as +(1,1). As this structure represents a binary operation, the process is run again on its LHS
and RHS, corresponding to the lines 3 − 12 in the bytecode. As mentioned before, the Peano
number representation can be seen on lines 4 − 6 and 9 − 11, as instead of loading the register
with the constant 1, it is loaded with a structure s(0). After generating the code for both
sides, the add predicate is called, which carries out the + operation. Finally, the variable that
has the result of the operation is unified with the variable that holds the X variable, yielding the
result X = 2.

As currently implemented, the is operator can handle cases where the arithmetic expressions
are known during compile time, like the query X is 1 + 1 or X is Y + 1, Y = 2, or even a
more complex one, like the factorial program in listing 3.7.

Code listing 3.7 Factorial using is operator

fact (0, 1).
fact(N, Res) :-

N1 is N - 1,
fact(N1 , Tmp),
Res is Tmp * N.

However, assume we have a program with the rule addOne(X,Y):- Y is X + 1. and a query
addOne(1+1,Y). The variable X gets bound to the structure +(1,1) during runtime; however, at
this point, the code has already been generated. Since there was no arithmetic expression during
the compile time in the place of X, when the code reaches the Y is X + 1 goal, it attempts to
add +(1,1) and 1, resulting in a fail.

It is worth noting that since we replace each natural number with its Peano number counter-
part, the goal in the form of 1, for example, will get parsed as a valid goal since it is interpreted
as a call to a predicate with the name of s. However, since the names starting with two un-
derscores are reserved (discussed in 3.9.1) and such a predicate is not present in the standard
library, a query or a rule with this goal will always fail.

In addition, the structure representation of the binary operations like +(1,1) is used strictly
as the inner representation, and such structure cannot be parsed directly (+,-,*,/ are not valid
symbols outside the expressions).

3.9 Preprocessor
The process of inserting a predicate into the source code, as mentioned in the section 3.7, is done
by a Preprocessor class. The main idea of this class is to provide a way to include a standard
library of sorts for the programmer. In the current implementation, there is a predicate linked
for the unification operator, discussed in 3.7, and for the arithmetic operations +,-,*,/ used by
the is operator, discussed in 3.8.

3.9.1 Naming convention
To mitigate potential name collisions between predicates from the standard library and those
defined by the programmer, we adopt a naming convention wherein names starting with two
underscores ( ) are reserved for internal usage in the predicate and variable naming. This
convention mirrors a similar approach used in the C programming language.
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It is worth highlighting that we parse everything, starting with an underscore as a predicate
name. The aforementioned use case for variable naming is used in the code generation process
for the temporary variables, not in the parsing process.

To give an example, the aforementioned identity predicate is inserted into the source code as

id(A,A).

before the actual compilation.



Chapter 4

Implementation

This chapter delves into the implementation details of more complex algorithms and methods,
primarily focusing on bytecode generation for nested complex objects and handling infinite terms.
Additionally, attention is given to the implementation of the VariableWord and the preprocessing
and representation of lists. The details described here primarily address parts that may not be
immediately intuitive and warrant further explanation. The full implementation with comments
can be accessed at https://github.com/Skotuson/bp.

4.1 Variable and reference word
In our implementation, the variable and reference words are represented by a single tag and
are distinguished only by the value they store. If the address stored is the same as the address
of the word, its tag is a variable; otherwise, it is a reference.

Listing 4.1 VariableWord class

class VariableWord : public Word
{
public:

VariableWord(std::shared_ptr<Word> *ref, std::string name = "");
void print(std::ostream &os) const override;
std::shared_ptr<Word> clone(void) const override;
std::string toString(void);
TAG tag(void) override;

std::shared_ptr<Word> dereference(void) const override;
void bind(std::shared_ptr<Word> w);
std::shared_ptr<Word> *ref(void) const;

private:
bool bound(void) const;

std::shared_ptr<Word> *m_Ref;
std::string m_Name;

};
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The VariableWord class holds a double pointer to the Word, which points to the memory
location for some local variable of some clause. Skipping over the constructor and first four
methods seen in listing 4.1, let’s describe the four methods unique to this class. The first
three are self-explanatory. The ref() method returns a pointer to the memory location the
VariableWord is pointing to. The bind() method simply writes the argument word w into this
memory location. The dereference() method returns the word found at this memory location.

The fourth one, bound(), serves to check whether the VariableWord is actually an unbound
variable or a reference, and its implementation can be seen in listing 4.2.

Listing 4.2 bound() method implementation

bool VariableWord::bound(void) const
{

std::shared_ptr<VariableWord> vw
= std::static_pointer_cast<

VariableWord>(dereference());
return ref() != vw->ref();

}

Described verbally, the method compares the result of the ref() method with the result of
the dereference of the same address. If the addresses are equal, it means that there is a cycle,
and the word represents an unbound variable.

4.2 List representation
In Prolog, a list can be encountered either as an enumeration of its elements, e.g., [1,2,X], or a
special notation in the form of [H|T], where H unifies with the head and T unifies with the rest of
the list. Some Prolog implementations also offer a syntactic sugar in the form of [H1,..,Hn|T],
where the H1...,Hn are the first n elements of the lists, and the T is the rest of the list. This
expression, however, can also be expressed like this [H1|[H2|[...[Hn|T]...].

In our implementation, we support both types of notation. The building of the list happens
in a constructor of a list node (listing 4.3).

When parsing the list, it encounters the decomposition or the whole list at once. Let’s
describe the decomposition case, as the second case uses the same principle. This is represented
by the tail argument in the constructor not being a nullptr. If the decomposition is simple,
i.e., [H|T], the H and I are simply assigned to the list’s head and tail, respectively. If multiple
head elements are present in the decomposition, only the first one is assigned to the head, and
the tail is assigned a new ListNode, which recursively constructs the rest of the list.

4.3 Nested complex objects pre-calculation
In section 2.6.2.2, we mention selecting the most nested component when generating code for the
right-hand side of a clause. This process can be pre-calculated during the parsing process, as our
predictive parser first creates AST nodes for the most nested component. We represent both the
list and structure by the ListNode and StructNode, respectively, which are both derived from
a ComplexNode class. This node class contains a NestedPairing, which maps a ComplexNode
pointer to a number, which specifies its depth. We can see how the pre-calculation is done for
structures in the following listing 4.4. The pre-calculation process is the same for the list node.

The individual arguments of the complex term are iterated over, and a check for their type is
carried out. If the type of an argument is that of a structure or a list, the NestedPairing of that
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argument is fetched, and all its contents are inserted into the current node’s NestedPairing,
with the depth of each entry being increased by 1.

Finally, the node itself is inserted with depth 0. This is done so that the less nested node
(the one that has this node as an argument) can add it to its own NestedPairing with increased
depth and also that the least nested node (the one that houses all the already processed ones)
gets its code generated without any need for a special case (shown in the following section).

4.4 Right-hand side bytecode generation
In the previous section, we described the process of pre-calculating the depth of nested complex
objects within another complex object. With that knowledge, we can show the actual implemen-
tation of the generation process. The process itself is split into two methods, unifyRHS() and
unifyArguments(), and their implementation can be seen in listing 4.5 and 4.6, respectively.

Let’s describe the unifyRHS method. This method uses the pre-calculated NestedPairing
m Complex attribute and inserts its contents into a vector, sorting it by depth in descending
order. This now means that the most nested component can be found at index 0. Now, this
vector is iterated, and a unifyArguments method is executed, generating the put and unification
instructions for that nested component. After that, the getv instruction is generated, which
mirrors the approach described in section 2.6.2.2. Finally, the component is inserted into a
ProcessedComplex structure, which maps the component’s pointer to a variable name into which
the result was saved. This is important for all the less nested components since their arguments
are not only constants and variables but also complex structures. When a complex object is
encountered as an argument for the less nested components, it must have already been processed,
and a unifyv instruction referencing that variable can be used. This can be clearly seen in listing
4.6 in the else branch.

As mentioned in the previous section, the least nested node itself is present in the vector with
other nested objects (with depth 0), and its code is generated last when all its arguments are
already processed and are present in the ProcessedComplex structure.

4.5 Infinite terms
In Prolog, it’s possible to write a query or goal in the form X = f(X). Intuitively, a variable X
cannot be bound to a structure that contains X, as it creates a cyclic reference. This issue could be
addressed by employing an ”occurs check,” which would cause such unifications to fail. However,
this check has not been utilized in our implementation and will not be discussed further.

As we are not using an occurs check in our implementation, only printing the variable’s value
would lead to an infinite loop. For this reason, we use a flag in each VariableWord class to
determine whether it already has been visited during printing. If we stumble upon a variable
that has already been visited, only its name will be printed, preventing further cycling. For
example, printing the result of the aforementioned example will result in X = f(X), as expected.

Let’s assume a more intricate scenario: X = foo(Y), Y = X. This results in the following
variable assignments: X = foo(foo(Y)) and Y = foo(Y). The value of Y aligns with expecta-
tions. However, X presents a second instance of the foo structure. This occurs because during
the binding of Y to Y, X is already bound to the structure foo(Y), causing Y to be bound to the
value of X, not to the variable itself. Consequently, when displaying the value of X, Y needs to
be independently accessed for flagging it as visited since they are not directly linked.

Finally, let us show this behavior on an example with a rule a(Y):- X = foo(X), X = Y
and a query a(Y). The result of such a query is Y = foo(foo(__1)), where __1 marks a local
variable for the rule (Such naming is used for all non-user-entered variables to avoid potential
name collisions). The situation is essentially the same as described above. In the rule, The Y gets
bound to the value of X, not X itself, causing the doubled foo occurrence. The reason that the
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clause’s local variable gets printed is that when the query variable Y gets bound to the rule’s Y,
it is bound directly to a structure pointer, which points to a structure that has the local variable
as its argument. This local variable has no connection to the query variable from the point of
view of WAM, so this is the expected behavior.
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Listing 4.3 ListNode constructor

// tail is nullptr if no decomposition into [H|T] is happening
ListNode::ListNode(const std::vector<std::shared_ptr<TermNode>> &head,

std::shared_ptr<TermNode> tail)
: ComplexNode("[]")

{
// List is decomposed using pipe
if (tail)
{

// Simple decomposition in the form of [H|T]
if (head.size() == 1)
{

m_Head = head;
m_Tail = tail;

}
// Decomposition in the form of [X1...Xn|T]
else
{

m_Head = {head.front()};
std::vector<

std::shared_ptr<TermNode>> newHead
= {head.begin() + 1, head.end()};

m_Tail = std::make_shared<ListNode>(newHead, tail);
}

}

else
{

m_Head = {head.front()};
std::vector<

std::shared_ptr<TermNode>> tail = {head.begin() + 1, head.end()};
if (tail.empty())
{

m_Tail = std::make_shared<ConstNode>("[]");
}
else
{

m_Tail = std::make_shared<ListNode>(tail);
}

}
}
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Listing 4.4 Nested complex objects pre-calculation

for (const auto &arg : m_Args)
{

if (arg->type() == STRUCT || arg->type() == LIST)
{

ComplexNode *cn = static_cast<ComplexNode *>(arg.get());
NestedPairing p = cn->getNestedComplex();
for (const auto &[complexNode, depth] : p)
{

m_Complex.insert({complexNode, depth + 1});
}

}
}
m_Complex.insert({this, 0});

};

Listing 4.5 Bytecode generation for RHS

void StructNode::unifyRHS(CompilationContext &cctx)
{

std::vector<ComplexNode *> nested;
ProcessedComplex processedComplex;
for (const auto &c : m_Complex)
{

nested.push_back(c.first);
}

// Sort the nested structures from the most nested to the least nested
std::sort(nested.begin(), nested.end(), [&](ComplexNode *&a, ComplexNode *&b)

{ return m_Complex[a] > m_Complex[b]; });

for (const auto &n : nested)
{

n->unifyArguments(cctx, processedComplex);
std::string tempVariable = cctx.generateTempVar();
cctx.noteVariable(tempVariable);
cctx.addInstruction(

std::make_shared<GetVariable>(
tempVariable, cctx.availableReg(), cctx.getVarOffset(tempVariable)));

processedComplex.insert({n, tempVariable});
}

}
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Listing 4.6 unifyArguments method implementation

void StructNode::unifyArguments(CompilationContext &cctx,
ProcessedComplex &processedComplex)

{
cctx.addInstruction(

std::make_shared<PutStructure>(
name(), cctx.availableReg(), arity()));

for (const auto &arg : m_Args)
{

TermType type = arg->type();
if (type == TermNode::CONST)
{

cctx.addInstruction(std::make_shared<UnifyConstant>(arg->name()));
}

else if (type == TermNode::VAR)
{

cctx.noteVariable(arg->name());
cctx.addVariable(arg->name());
cctx.addInstruction(

std::make_shared<UnifyVariable>(
arg->name(), cctx.getVarOffset(arg->name())));

}

else
{

std::string var = processedComplex[arg.get()];
cctx.addInstruction(

std::make_shared<UnifyVariable>(
var, cctx.getVarOffset(var)));

}
}

}



Conclusion

This thesis describes the Warren Abstract Machine model, its inner structure, instructions, and
evaluation strategy. A documented implementation in C++ of a Prolog compiler and interpreter
is created to showcase how a logic language can be implemented using WAM.

The implementation can parse and compile a subset of Prolog language to the WAM bytecode
and evaluate it using the interpreter. A preprocessor is implemented to allow linking with a set
of standard predicates. It also enables arithmetic operations by replacing natural numbers with
their Peano number representations and transpiling mathematical expressions into a chain of
predicates.

The WAM model implemented in this thesis is relatively straightforward. Further optimiza-
tion techniques can be applied to enhance the efficiency of evaluating intricate programs, reducing
both runtime and memory requirements. There’s room for improving arithmetic capabilities be-
yond supporting only natural numbers, along with support for I/O operations. Moreover, a very
simple stepper has been implemented to view the machine’s state during program execution. The
stepper could be expanded upon by enhancing its graphical user interface. This improvement
could offer another valuable reference when implementing a logic programming language.
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thesis.pdf....................................................text of the thesis in PDF
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