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Instructions

Nginx is an advanced web server primarily employed as a reverse HTTP proxy. Widely 

adopted by numerous Content Delivery Networks (CDNs) for caching, Nginx frequently 

operates in multilayer setups within CDNs to enhance the cache hit ratio. In the real 

world, when a client requests cachable data, the request goes from the lower-level 

cache to the higher-level cache until the cachable data is requested from the origin.

The core objective of this thesis is to further enhance the cache hit ratio by implementing 

a mechanism for sharing cache summaries from upper-level caches to lower-level 

caches. This process will enable lower-level caches to prioritize accessing the higher-

level cache, which may already contain the desired file in its cache.

Additionally, this thesis seeks to examine diverse methodologies for creating cache 

summaries and transferring these summaries from upper cache layers to lower cache 

layers. The proposed solution must consider both used memory and network capacity.

Optionally, the thesis can explore the development of a viable solution tailored for 

scenarios involving cache eviction.

1. Get familiar with the current multilayer HTTP cache setup consisting of Nginx web 

servers (infrastructure provided by the supervisor).

2. Research various bloom filter types that could be used as cache summaries and find 

the most optimal one in terms of available memory and network bandwidth.

Electronically approved by Ing. Michal Valenta, Ph.D. on 23 December 2023 in Prague.



3. Implement suitable cache summary and exchange algorithms based on previous 

research. Optionally implement a solution tailored for scenarios involving cache eviction.

4. Evaluate and compare the following metrics before and after deyploying cache 

exchange summaries.

   - Cache HIT/MISS ratio

   - IN/OUT/interlayer traffic

   - Memory usage
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© 2024 Ondřej Polanecký. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).
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Abstract

Caching is one of the most effective methods for speeding up most applications. It is therefore
important that it is used effectively. In this paper, we will focus on improving the cache utilization
of the NGINX web server when deployed in multilayer setup. We will mention how NGINX works
when deployed in a multilayer setup and what are the advantages of this setup. We then present
a way to share the cache between multiple web servers in this deployment and thus improve
cache utilization. Currently, this solution is not widely used, and most widespread webservers
do not have this functionality. Therefore, this thesis will also focus on the implementation of
this functionality in the NGINX web server. The Bloom filter data structure is also part of this
implementation, so we will discuss it more in the research part. Also, we will then test and
deploy the solution into the production environment, to get its effectivity in real-world scenarios.

Keywords Bloom filter, NGINX, NGINX Lua module, CDN, HTTP cache, Lua, C, Summary
cache, Cache sharing

Abstrakt

Cachováńı je jedna z nejefektivněǰśıch metod na zrychleńı většiny aplikaćı. Je tedy d̊uležité,
aby byla cache co nejv́ıce využ́ıvána. V této práci se budeme věnovat zlepšeńı využit́ı cache
webového serveru NGINX ve v́ıcevrstvém prostřed́ı. Zmı́ńıme jak funguje NGINX při nasazeńı
ve v́ıce vrstvách a jaké má toto nasazeńı výhody. Poté představ́ıme zp̊usob jak v tomto nasazeńı
sd́ılet cache mezi v́ıce webovými servery a tud́ıž zlepšit jej́ı využit́ı. Momentálně toto řešeńı
neńı př́ılǐs rozš́ı̌rené a v NGINXu i jiných populárńıch serverech tato funkcionalita chyb́ı. Tato
bakalářská práce se tedy zaměř́ı i na implementaci této funcionality do webového serveru NGINX.
Součást́ı tohoto řešeńı je i datová struktura Bloom filter, takže se j́ı v rešeršńı části budeme v́ıce
věnovat. Následně tuto implementaci otestujeme a nasad́ıme do produkčńıho prostřed́ı, abychom
zjistili jej́ı efektivitu v reálných scénář́ıch.

Kĺıčová slova Bloom filter, NGINX, NGINX Lua module, CDN, HTTP cache, Lua, C, Sum-
mary cache, Sd́ıleńı cache
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Introduction

Caching is one of the most important techniques to improve the performance of almost any
application. Its primary objective is to store frequently accessed data, allowing faster retrieval
and consequently reduce the load on underlying systems. There are many types of caches, but
in this thesis, we will focus on content caching in the context of web servers.

The main aim of this bachelor’s thesis is to improve the cache efficiency of NGINX[1] webserver
in a multilayer setup. First, we will introduce the concept of multilayer HTTP cache, explain
why it is beneficial and propose further improvement by sharing the cache. Specifically, we need
to solve the problem of sharing cache between multiple caching reverse proxies. We will explore
the existing solutions and their shortcomings. To implement the solution, we will need to study
in detail the Bloom filter data structure, because it will be the core of our solution and it is
required in the assignment. With the acquired knowledge, we will implement Bloom filters into
NGINX. Lastly, we will dive into the internals of NGINX and its Lua module to implement the
mechanism for sharing cache between servers. Then we will test the solution test and evaluate
the solution in testing environment. At last we will test the solution in a real-world scenario and
evaluate important metrics.

1



Chapter 1

About this thesis

The first chapter of this thesis will introduce the thesis itself. It will explain what a multilayer
HTTP cache is, its use case, and the problem it aims to solve. Then we will propose a way to
further improve the cache efficiency of NGINX in a multilayer. Additionally, the structure of the
thesis and the topics covered in each chapter will be outlined. This serves as an extension of the
introduction chapter to ensure a clear understanding of the problem and what to expect from
the rest of the thesis.

First, I will explain some basic terms and concepts that are necessary to understand the
problem we are trying to solve.

1.1 Reverse proxy
Multilayer HTTP cache consists of multiple caching reverse proxies. The role of a reverse proxy
is to forward client requests to the relevant backend servers and then send the backend’s response
back to the client. From the client’s viewpoint, the reverse proxy operates as the origin server.
Origin server is the server the source of the content. It does not do any additional proxying.

Reverse proxy can also provide these additional features:

Load balancing - We can have multiple backend servers, and the reverse proxy can distribute
the load between them.

Security - Because backend servers are hidden behind the reverse proxy, they cannot be so
easily directly targeted by attacks like DDOS. Reverse proxy can also provide some security
features like rate limiting, WAF, etc.

Caching - Storing the response from the backend servers and returning it to the client. This
can greatly reduce the load on the backend servers and improve the response time. This
functionality is our main focus in this thesis.

Additional functionality - Reverse proxy can also provide additional functionality like SSL
encryption, compression, or even something like rewriting the response.

The flow of request when using a reverse proxy is as follows. First, the client sends a DNS
request for the domain name it wants to access. Then the DNS instead of returning the IP
address of the origin server, returns the IP address of some reverse proxy. The client then sends
a request to this reverse proxy. The reverse proxy checks if the requested content is in its cache
and if it is valid (content can be expired, accessible only to certain users, etc.). If it is, it returns
the content to the client right away. If not, it will forward the request to the origin server and

2



Scalability of reverse proxy with caching 3

return the response from the origin server. Depending on the Cache-Control header[2] or custom
proxy configuration, the reverse proxy may cache the response from the origin server. This means
that any subsequent requests for the same content can be served from the cache without having
to go to the origin server.

1.2 Scalability of reverse proxy with caching
Suppose we need to make our reverse proxy more fault-tolerant and scalable. For scaling, we can
at first just add more memory, CPU, storage, etc. But at some point, we could reach the limit
of what one server can handle. On top of that, if we have just one server, it is a single point of
failure.

So naturally, we want to be able to scale our reverse proxies horizontally. Scaling horizontally
means adding more instances of the reverse proxy. As opposed to vertical scaling, which means
adding more resources to the existing server.

Now if we only added more reverse proxies without any additional configuration and let
clients randomly choose which reverse proxy to use. We will have to face some problems. A lot
of requests for the same content will be sent to different reverse proxies, so the content will not be
cached effectively. The same files would be stored in multiple caches, so we would waste memory.
We would also be forced to forward the request to the origin more than necessary because we
could be requesting some file that is already in the cache of another reverse proxy.

One way to solve the scalability and fault tolerance is to shard the cache. Before the caching
proxies, we add some number (depending on the desired fault-tolerance) of load balancers, that
will decide to which caching proxy the request will be forwarded. Load balancers can have a lot
of different strategies to decide which server to forward the request. To name a few:[3]

Round-robin - Forward the request every time to the next server in the list. (Cycle through
the list)

Least connections - Forward the request to the server with the least number of active con-
nections.

IP hash - Forward the request to the server based on the hash of the client’s IP address.
Useful for session persistence.

It is also possible for all of these methods to set weights for servers, so some servers will
get proportionally more requests. For sharding of the cache, we need to use load balancer with
consistent hashing. That will guarantee that for the same file, every load balancer will forward
the request to the same caching proxy.[4] And in case we add or remove another caching proxy,
only a fraction of the files will be remapped to a different caching proxy. More on consistent
hashing in the next subsection.

The final setup can look something like Fig. 1.1.
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Figure 1.1 Sharded cache setup.[5]

1.2.1 Consistent hashing
Consistent hashing is a technique used to map keys to servers in a way that minimizes the
number of keys that need to be remapped when a server is added or removed. It is widely
used in distributed systems.[6] Common use cases are distributed databases, load balancing, or
caching.

The abstract idea is that we have a hash function that maps keys to a circle. Each server
is then represented by a certain number of points on the circle. (We can prioritize servers by
adding more points for them.) To locate a server for a key, we use the hash function to map the
key to a point on the circle and then move clockwise to find the first server point. This is the
server that will be returned for the key.

This way, when we add (or remove) a server to the system, only a fraction of the keys will
be remapped to a different server. When we add a server, no key will be remapped between the
old servers. Every remapped key will be mapped to the new server. And because every server
should on average take up 1/n of the circle, where n is the number of servers. The portion of
keys that need to be remapped is also on average 1/n.[4]

If we used just some regular hash function with modulo to map keys to servers, Almost ev-
erything would have to be remapped when we add or remove a server. (Because the modulo
would change.) On the other hand, a regular hashing table would be faster. Consistent hashing
has time complexity O(log n) for lookup, and regular hashing with modulo has time complexity
O(1). Therefore, consistent hashing should only be used when the number of servers is ex-
pected to change, and reassigning keys could be expensive. For instance, in distributed storage,
reassigning keys after adding servers would require moving almost all the data between servers.

1.3 Multilayer cache
Now we can finally talk about the multilayer HTTP cache setup.

The idea is to have multiple layers of caching proxies. Each layer has a different threshold
for caching content. The threshold for caching is the number of requests for the same content
after which the content will be cached. The first layer has the highest threshold, so it caches
only the most popular content. The last layer has the lowest threshold (typically 1), so it caches
everything else that the lower layers did not cache. This setup can solve the problem if we have
a lot of content that is requested only a few times, but it adds up to a lot of traffic. If we had
just one layer with a constant threshold, we would have to choose between having the threshold
too low and caching things that may never be requested again or having the threshold too high,
and a lot of traffic would not be cached at all.
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Figure 1.2 Schema of multilayer setup.

With sufficiently large infrastructure we can set the layers thresholds so that the cache will
converge to storing a majority of the content. That is good because the origin server will not be
overloaded with requests and it also reduces potential egress costs1.

The first layer is the edge layer. This layer consists of caching proxies that are closest to the
clients. Also, this layer is the only layer communicating with the clients. It is geographically
distributed, and clients will always connect to the closest server.2

When each layer does not have the content in its cache, it will forward the request to the
next layer. Every server has specified the closest server in the next layer where it should forward
the request. Servers can have sharded cache so we have to use consistent hashing to determine
to which shard of the server we should forward the request.

With this setup, the more the content is popular the closer it will be to clients. Also depending
on how large the infrastructure is, you can set the thresholds so that the cache will converge to
storing a majority of the origin server content.

In Figure 1.2 we can see the schema of the multilayer cache setup.

1.4 Exact problem formulation
The problem we are trying to solve is that the cache/hit ratio could still be improved.

For example, when a request reaches the last layer and the content is not present in the cache,
it could potentially be present in the cache of a different server on the same layer (or any other
server that it did not go trough). Unfortunately, we do not have this information, so we end up

1Fees from cloud providers for transfering data from storage.
2This can be done using DNS servers that will return the IP address of the closest server.
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Figure 1.3 Checking that content is in the cache of neighboring servers.

forwarding the request to the origin server, causing an unnecessary load on it. This is where we
need to come up with a mechanism to check if the content is cached in any of the neighboring
servers on the same layer. If we can find the content in one of these servers, we can forward the
request to that server and return the content to the client.

Therefore, the exact problem we need to solve is to create a mechanism that can help us
identify which neighboring server contains the requested content. As demonstrated in Figure 1.3.

1.5 Thesis structure
We will briefly describe the structure of the thesis and what each chapter will cover. In the next
chapter 2, we will explore the existing solutions to the problem of sharing cache between multiple
caching reverse proxies. We will explain why these solutions are not ideal for our use case and
propose a new solution. In the third chapter 3, we will cover the research of Bloom filters. Some of
their variants and what problem each of them solves. In the chapter 4 we will focus on the design
and implementation of Bloom filters into NGINX. After that the chapter 5 will be focused on
implementing the mechanism for sharing cache between servers. In the chapter 6, we will look at
our implementation in a real-world scenario. We will evaluate metrics like cache hit ratio, memory
usage, and bandwidth usage. Then compare them to values before deploying the solution. Also,
we will talk about testing the solution and what went wrong during implementation. Finally in
the last chapter 7, we will summarize the thesis and our results and achievements. Also, we will
talk about possible future work and improvements.



Chapter 2

Existing solutions

In this chapter, we will explore the existing solutions and their shortcomings.

2.1 Per-request query
One solution is to query all the neighboring servers to check if the content is in their cache for
each request. This has som drawbacks:

Increased latency - We have to wait for the response of the query.

Increased load on the servers - By sending additional request to all the servers on every cache
miss.

It is not scalable - We can see that by increasing the number of servers, the number of queries
grows quadratically. If any server has the content, we need response only from this server.
But if none of the servers have the content, we need to wait for all the responses.

This solution is not widely used because of the increased latency and network overhead. [7]
There are few different protocols (ICP, HTCP etc.) for using this solution, but they differ only
in the way how optimized the queries are. None of them solves the fundamental drawbacks of
this approach.

2.2 Summary cache
A way more efficient solution is to use a summary cache protocol.[7]

Summaries in this context mean some kind of data structure that will allow us to quickly
check if a specified string (in most cases URL) is in it. Each server has a summary of the cached
content for all the servers it needs to forward the request to. When the server receives a request,
it first checks all the summaries of the neighboring servers. Typically, this is implemented using
Bloom filters (details in the chapter 3) because they are space-efficient and sufficiently fast. If the
content is in the summary, it forwards the request to that server. Every proxy has to produce
a summary of its cache and periodically send it to all the other proxies. This has the same
drawback of O(n2) sent messages, but in this case it is significantly less problematic, because we
do not send it on every request. The servers then periodically exchange the summaries. That
means that the summary are not always up to date, but that is a trade-off we have to make. This
way, we can avoid the main drawbacks of the per-request query solution. The latency is reduced
because we do not have to wait for the response of the query requests. Also, the inter-server

7



Squid 8

messages are greatly reduced. The paper that proposed this solution claims that the inter-server
messages are reduced by a factor of 25–60, the bandwidth usage is reduced by 50 % and maintains
almost the same HIT ratio as the per-request query solution.[7]

The bad thing about this solution is that there is not many usable implementations of it.
The only web server that I know of that has some kind of support for this is Squid.

2.3 Squid
Squid is a caching and forwarding HTTP web proxy that has implemented Cache Digests.[8] (a
variant of summary cache) However, we need to implement our solution into NGINX so let us
look at how does Squid do it.

Squid uses a standard Bloom filter for representing summaries. This means that it cannot
perform deletions from the summaries, so it does not support cache purges and cache eviction.
It has to periodically completely rebuild the whole filter, so it stays relevant (default is every 1
hour). The rebuild can be an expensive operation depending on the number of cache entries.
Every time the capacity of the cache is increased by more than 10 % it also increases the size of
the Bloom filter in the next rebuild. [9]

In the next chapter, we will cover the research of Bloom filters because it is necessary for the
correct and efficient implementation of the solution.



Chapter 3

Research of Bloom filters

Bloom filter is a probabilistic data structure used to test whether an element is a member of a
set. It is space-efficient and fast, but the tradeoff for small memory usage is that it can produce
false positives. False negatives are not possible. Bloom filter does not store the actual elements,
they are hashed into the filter. As a result, it is not possible to retrieve the elements that have
been inserted. The only function of a Bloom filter is to check whether an element might have
been inserted into it.

The standard Bloom filter has two parameters: m and k.

m is the size of the bit array.

k is the number of hash functions.
Each hash function should uniformly generate values in the range from 0 to m − 1 and

be independent of the other hash functions.

The time complexity for insertion and query is O(k). That means it is constant to the number
of inserted elements. Also, for most practical purposes, k is a small number.

The probability of false positives can be estimated based on these parameters and the number
of elements inserted into the filter. We will cover this in more detail in section 3.1.

There are many types of Bloom filters, such as counting Bloom filter, scalable Bloom filter,
blocked Bloom filter, etc. For now, we will focus on the standard Bloom filter and touch on other
types later.

3.1 Algorithm description
We start with an empty bit array (all bits are set to 0). To insert an element into the filter, we
need to compute k hash values for the element. Each hash value should be modulo m, so it is
in the range from 0 to m − 1. Practically, we use one hash function that generates a hash of at
least m ∗ k bits and then split it into k parts. Then we set the bits at the computed indices to 1.

The hash functions should generate random uniformly distributed values. They should also
be independent of each other. It is important to note that removing an element from the filter
is not possible. For this purpose, we would need a counting Bloom filter (more on that in
subsection 3.3.1).1

To check if an element is in the filter, we compute hash values the same way as when inserted.
If all the bits at the computed indices are 1, the element may be in the filter. If not, the element

1There are also more advanced types of Bloom filters that allow removing elements, such as the d-left counting
Bloom filter.[10] We will not cover them in this thesis.

9
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is not in the filter. The probability of an element not being in the filter if all its bits are 1 is
called the false positive probability.

The probability of a false positive query in an arbitrary Bloom filter can be estimated by this
formula:[11]

(1 − (1 − 1
m

)kn)k

, where n is the number of elements inserted into the filter.

1 − 1
m is the probability that a random bit is 0.

(1 − 1
m )k if hash functions are independent, this is the probability that a random bit is set

to 0.

((1 − 1
m )k)n this is the probability that bit is set to zero after inserting n elements.

1 − (1 − 1
m )kn if we reverse the previous probability, we get the probability that a random bit

is set to 1.

(1 − (1 − 1
m )kn)k finally, we compute the probability that all k hash functions return indexes

of bits that are set to 1.

This is equivalent to the probability that the query is a false positive.
We computed the probability of false positives in an arbitrary Bloom filter.
We can also compute the probability of a false positive query in a specific Bloom filter.

Inserting n elements into the filter can result each time in a different number of bits set to 1.
(In the extreme case, a bad hash function could map everything to one index) So there is some
variance.

So to calculate the probability of a false positive query in a specific Bloom filter, we can use
this formula: ( s

m

)k

Where s is the number of bits set to 1.
That is because we have an array of m bits and s of them are 1. Query is a false positive if

all hash functions return indexes of a bit that is set to one. The Probability that random index
is set to 1 is s

m . To get a probability that all k hash functions return indexes of bits that are
set to 1, we can multiply them together k times. This is possible because of the independence of
the hash functions.

3.1.1 Deciding the parameters
We need to put some thought into choosing the parameters m and k, because it cannot be
changed after the filter is created. Rebuilds are not easily possible because the filter does not
store the actual elements. We would need to have a separate list of elements that were inserted
into the filter.

So we have to balance our available memory, performance cost of more hash functions and
desired probability of false positives.

So typically, we know approximately how many elements will be inserted into the filter and
how much memory we can afford to use. To determine the ideal number of hash functions k, we
need to minimize the false positive probability function with respect to k.

For simplicity, we can use the approximation of the false positive probability function:[11](
1 −

(
1 − 1

m

)kn
)k

≈ (1 − ekn/m)k
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And use derivations to find the minimum of this function.
Which is approximately at k = m

n ln 2. We can use a similar approach to find the optimal
values of other parameters. It is important to note that the false positive rises exponentially with
the number of elements inserted into the filter, so generally we want to rather overestimate the
number of inserted elements. In Fig. 3.1 a simple plot of the false positive probability function
if we choose m = 1 MB and k = 4 The red line is false positive rate of 1 in 100 and the green
line is false positive rate of 1 in 1000.

Figure 3.1 False positive probability function

The bits per element for a Bloom filter that has the optimal k can be estimated by the desired
probability of false positives:[12]

c = −1.44 ∗ log2(p)

Where c is the bits per element and p is the probability of false positives. For a given p it is not
possible construct a Bloom filter with fewer bits per element than this estimate.

3.2 Use cases
Bloom filters are used in many different areas, where we need to quickly perform a membership
test with allowed false positives.

Some of the usual use cases are:

Database - check if key is in the database before querying the database.

Browser - Bloom filter containing malicious URLs to check if the URL is safe. Positive result
triggers a more expensive check.

Monitoring network traffic - Bloom filters can be used in deep packet inspection. For example
detecting if the packet contains a specific string in the payload. On hardware devices (routers),
they could also be implemented as FPGA.

Bloom filters are not used in cases where false positives are not acceptable, or in low-
throughput applications in which the accuracy is more important than speed and memory usage.
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3.3 Types of Bloom filters
The standard Bloom filter has some limitations.

To name a few:

Not possible to remove elements.

Not possible to count the number of occurrences of an element. (We can insert the same
element multiple times, but we cannot count it.)

Bad cache locality. For large Bloom filters, almost all lookups will result in a cache miss.

And for these limitations, there are some alternatives to the standard Bloom filter. I will
mention some of them. This, however, is not an exhaustive list. There are a lot of Bloom filter
variations. The research on Bloom filters is still ongoing, and new types are being developed.[13]
These filters were selected because they solve a specific problem of the standard Bloom filter in
a simple way.

3.3.1 Counting Bloom filter
The counting Bloom filter is a simple variation of the standard Bloom filter that allows us to
remove elements from the filter. The idea is that if we want to do removal in the standard
Bloom filter, it is possible that we would remove a bit that is shared with another element. So
for counting Bloom filter, we replace the bit array with an array of counters to know if the bit is
shared with another element. Every bit is now represented by a counter. Instead of setting the
bit to 1, we increment the counter. And when we want to remove an element, we decrement the
counter.

Then, when we want to check for the presence of an element, we check if all the counters are
greater than 0. The counting filter is also trivially convertible to the standard Bloom filter.

One of the drawbacks of the counting Bloom filter is that it is not as space-efficient as the
standard Bloom filter. It will take n times more memory, where n is the size of the counter in
bits.

3.3.1.1 Counter overflow
For most practical purposes, the counter of size 4 bits is more than enough. But there is always
a possibility that the counter will overflow. In case of counter overflow, because it will set a
non-zero index to zero, it will cause false negatives (query for existing elements can be negative).
So we will lose one of the main advantages of the Bloom filter.

The probability that any counter in the Bloom filter is greater or equal to i can be estimated
as:

P (max(c) >= i) <= m

(
nk

i

)
1

mi
<= m

(
enk

im

)i

In 3.1.1 we estimated that the optimal value of k is m
n ln 2. So we will assume that k = m

n ln 2.

P (max(c) >= i) <= m

(
e ln 2

i

)i

Now we can simply plug in the values of m, n, and i to get the probability of counter overflow.
The four bit counter will overflow on count 16 and higher so i = 16.

P (max(c) >= 16) <= 1.37 × 10−15 ∗ m

[7]
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Figure 3.2 Filter evolution when adding elements and shifting. Each letter (A,B,. . . ) represents a
generation of g elements. With k = 3 and l = 2 [14]

The probability of any overflow will reach 1 percent at m ≈ 912GB. This is not a typical
size of Bloom filters, we do not have to worry about counter overflow in most cases.

We would probably have to extremely overfill the filter to reach any significant probability of
overflow. And by then, the filter would probably be useless anyway.

The Only realistic scenario where we could reach the overflow is that if we used the filter also
for counting the number of occurrences of elements. And inserting the same element multiple
times.

3.3.2 Sliding Bloom filter
Sliding Bloom filter is a very simple method to automatically expire old elements from the Bloom
filter. The use case of this filter could be stream processing or when there is a data retention
policy. For example, we could use a sliding Bloom filter in monitoring, to always have a filter
with at least the last 24 hours of seen IP addresses.

The basic idea is that we have n >= 2 Bloom filters. We have them organized in a sort of
sliding window. The newest filter is the master filter. Every insertion operation is done on the
master filter. After a specified time or number of insertions, the oldest filter is discarded and a
new empty master filter is created. (We will reuse the discarded filter)

When we want to check if an element is in the filter, we check all the filters. This is one of the
main drawbacks of this method. Apart from the fact that we have to query more Bloom filters.
The probability of false positives is exponentially rising with the number of filters. When we
have n filters, the probability of false positives is pn where p is the probability of false positives
in one filter. For some use cases, this could be acceptable if we have a low number of filters.

3.3.2.1 Improved sliding Bloom filter
Because of the drawbacks of the sliding Bloom filter, there is an improved version of it. It is
called age partitioned Bloom filter.

The idea is that we have k Bloom filters that are being used for insertion and l Bloom filters
that are stored only for querying. When we want to insert an element, we insert it into all
k filters.[14] This is the downside of this method, that we will have more duplicated data and
slower insertion speed.

The Bloom filters move in time like this Fig. 3.2. In (d) when the first Bloom filter that
contained element A is discarded, it is no longer considered to be present in the filter. (There
are not 3 consecutive Bloom filters that contain element A.)

When we want to check if an element is in the filter, we have to check if there are at least k
consecutive filters that contain the element. This solves the problem of exponentially rising false
positives with the number of filters. Because to have a false positive, it would need to be a false
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positive in all of the k filters as opposed to the basic version where only one filter needs to be a
false positive.

Expiration works similarly to the basic sliding Bloom filter. We have some heuristic that
decides when to discard the oldest filter. When we discard the oldest filter (the one on the left)

3.3.3 Scalable Bloom filter
This type of Bloom filter eliminates the need to know the approximate maximum number of
elements inserted into the filter. It will dynamically scale the Bloom filter size to infinity without
rebuilding. If implemented correctly, the false positive probability will converge to some wanted
value. However, for optimal performance and space efficiency, it is still good to have a rough
estimate of the number of elements.

This method of scaling Bloom filters is kind of similar to resizeable arrays. We start with
some with a small Bloom filter.

When it reaches some threshold, we create a new Bloom filter with s times more bits. s is the
scaling factor. After creating a new filter, all insertions are done on the new filter. This process
can be repeated indefinitely. However, depending on the desired false positive probability and
scaling factor, the number of filters and memory usage can grow very quickly.

To check if an element is in the filter, we have to check all of the filters. This is the same
problem as with the sliding Bloom filter. The probability of checking multiple filters would be
exponentially rising with the number of filters. But here it is solved by using different maximum
false positive probabilities for each filter. To easily guarantee that the probability of false positives
will converge to some wanted value, we have to satisfy this recursive formula:

pi+1 = pi ∗ r

Where pi is the probability of false positives in the i-th filter. And 0 < r < 1 is the tightening
ratio. [15]

The main advantage of this method is that we could stress-free use way smaller Bloom filters
with the option to scale them up if needed. With using statically sized Bloom filters, you most
of the time have to grossly overestimate the number of elements. That is because there is not
the option to resize the filter apart from rebuilding it and the false positive probability would
rise exponentially with the number of elements.

3.3.4 Blocked and register Bloom filter
Bloom filters are generally fast enough for most use cases. However, there are some use cases
where we need even faster lookups. Mostly in big data processing. One example where Bloom
filters were not fast enough is this Cloudflare usecase2. They tried to remove duplicates from a
very large file with IP addresses. But when benchmarking, they found out that the classic hash
table with linear probing was approximately 5 times faster than a Bloom filter.

They did profile the program and the Bloom filter code spent the majority of time waiting for
the memory to be read. The reason for this is that large Bloom filters have bad cache locality.
When we have a Bloom filter that is way larger than any cache in the CPU, almost every lookup
will result in a cache miss. Because in one query, we have to perform k lookups in the bit array
and every lookup should be in a random place in the array if the hash function is sufficiently
random. So any cache prefetching is useless. Also, as we know, optimal k increases with the size
of the filter, so the problem is even worse for larger filters. This would not be such a problem
when using very small Bloom filters, because they would fit at least into the L3 cache of processor.

This problem can be solved by using blocked Bloom filters. The obvious way to solve cache
misses is to increase the locality of the data. We do this by dividing the bit array into blocks.

2https://blog.cloudflare.com/when-bloom-filters-dont-bloom
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Figure 3.3 Checking of blocked Bloom filter using bitmask

And when inserting an element, insert it only inside one block. The block should be the size of
the cache line to guarantee that will fetch the whole block into the cache.[12]

To get the block we want to insert the element into, we hash the element and then take the
modulo of the number of blocks. Then we can pretend that the block is a small separate Bloom
filter and insert or check the element in the block. The false positive probability of one block can
be calculated the same way as in the section 3.1. The problem is that we do not know how many
elements are in each block. What we know however is that the load of the blocks is binomially
distributed, which we can closely approximate with Poisson distribution. This is the formula:[11]

∞∑
i=0

Poisson B
c

(i) × f(B, ik)

Where B is the number of bits in the block, c is the number of bits per element m
n , k is the number

of hash functions and f(B, ik) is the false positive probability of the block with i elements.

3.3.4.1 Register Bloom filter
Another possible improvement to the blocked filter is something called a register Bloom filter. It
works by setting block size B to the size of computer register. So for most computers, the block
size would be 64 bits. This allows us to use a lot of optimizations. By having a Bloom filter in
one register, we can use bitmasks to check/insert multiple bits at once. (3rd bit set to 1 means
that the 3rd index in the block should be checked) To leverage this, we want to precompute
some bitmasks and store them in a lookup table. Then we use only one hash to get the bitmask
from the lookup table for the insertion/query of an element. However, this can increase the false
negative probability, because of more collisions in the lookup table. To combat this, we can
reserve 6 bits (for a 64-bit register) in the hash that is used for the lookup table. And use these
6 bits to shift the bitmask from the table to achieve greater variety.[12] With this approach, we
only need to perform one hash function instead of k.

Compared to the blocked Bloom filter with a block size of the cache line, this method is faster
but wastes memory bandwidth because a significant portion of the cache line will not be used.
Also, it has a higher false positive probability rate.

In Fig. 3.3 we can see how to check the blocked Bloom filter using bitmasks.
These Bloom filters are only useful for applications with extremely high throughput. For

more general use cases, the standard Bloom filter is more space-efficient at the same false positive
probability.



Chapter 4

Implementation of Bloom filters
in NGINX

Now that we researched Bloom filters, we can finally use this knowledge to design and implement
cache summaries in NGINX. First let me introduce NGINX and some of its internals, so we can
understand how to extend it.

4.1 NGINX
NGINX is an open-source, high-performance HTTP server and reverse proxy. In this thesis, we
use it as a caching reverse proxy. It is widely used because of its performance, stability, and
simple configuration. Also, it is highly extensible thanks to its modular architecture, so we can
easily add new functionality through 3rd party modules. Furthermore, NGINX comes equipped
with built-in modules for most regular use cases.[1]

Our focus will be on the NGINX proxy module. This module is responsible for proxying the
request to the specified location. It can be used as a reverse proxy, load balancer, caching proxy,
etc. Let us look at the configuration of a minimal caching reverse proxy in NGINX (Listing 4.1).

Directives that start with “proxy ” are from the proxy module.[16]

proxy cache path - Creates a new shared memory (Subsec. 4.1.1) for cache entries and
specifies the directory where the cache files will be stored.

proxy pass - Specifies where to forward the request. In this case to the backend server.

proxy cache - Enables caching and specifies what cache key zone to use. The cache zone
can also be specified dynamically for each request using variables.
NGINX uses event-driven, non-blocking architecture, which leads to good and predictable
performance. It always has only one worker per process. Ideally, you want to have as many
worker processes as you have CPU cores. Because of this architecture, it is crucial that all
operations in workers are non-blocking. For example, if we perform some blocking I/O in a
worker when processing a request, we will block the whole worker until the I/O operation is
finished. No other requests can be processed in the meantime on this worker.
As each worker is in a different process (so different memory space), we need a way to share
data between them.

16



NGINX 17

Code listing 4.1 Minimal caching reverse proxy configuration.

1 proxy_cache_path /path/to/cache keys_zone=cache_zone:10m;
2 http {
3 server {
4 listen 80;
5 server_name example.com;
6

7 location / {
8 proxy_pass http://backend_server;
9 proxy_cache my_cache;

10 }
11 }
12 }

Code listing 4.2 Definition of NGINX struct for shared memory.[17]

1 typedef struct {
2 u_char *addr;
3 size_t size;
4 ngx_str_t name;
5 ngx_log_t *log;
6 ngx_uint_t exists; /* unsigned exists:1; */
7 } ngx_shm_t;

4.1.1 Shared memory
NGINX provides a way to share data between workers using shared memory. It is used in a
lot of places in the NGINX source code. For example, proxy cache path directive creates a
shared memory that will hold the content of the cache. This is the shared memory zone that
we are most interested in because we need to track the contents of the cache in the Bloom
filter. So we need to find all the places in the source code where the cache inserts, updates
or deletes the content and add our logic for updating the Bloom filter.
In the source code, shared memory for Linux is represented by this structure Listing 4.2.

addr - Pointer to the start of the actual shared memory. On Linux it is an anonymous
mmap1

size - Size of the shared memory.
name - Name of the shared memory.
log - Shared memory log.
exists - Flag that indicates if the shared memory exists.

This structure is platform-dependent because processes are implemented differently on dif-
ferent operating systems. For Windows, this struct has some extra fields, but we are not
focused on Windows.

1More info about info about mmap and MAP ANONYMOUS option on: https://man7.org/linux/man-
pages/man2/mmap.2.html
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Code listing 4.3 Definition of file cache struct in shared memory.[17]

1 typedef struct {
2 ngx_rbtree_t rbtree;
3 ngx_rbtree_node_t sentinel;
4 ngx_queue_t queue;
5 ngx_atomic_t cold;
6 ngx_atomic_t loading;
7 off_t size;
8 ngx_uint_t count;
9 ngx_uint_t watermark;

10 } ngx_http_file_cache_sh_t;

We also need to know about shared memory zones, because our Bloom filter also needs to
be shared between workers for updates and reads. So later, when we decide on the specific
Bloom filter, we will create a shared zone for it.

4.1.2 HTTP file cache
Most of the code that is responsible for caching in the proxy module is delegated to the
http file cache.c file. Let us look at the most important structures and functions in this
file that we need to know about for our implementation.
In Listing 4.3 is the main structure of the proxy module that is shared between workers. I
will explain the most important fields of this structure.

rbtree - Red-black tree that holds the cache entries. On every request, we search the tree
for the cache entry.
sentinel - Sentinel node of the red-black tree. When iterating over the tree, we stop when
we reach a node that is equal to the sentinel.
queue - LRU Queue of cache entries. Is used for cache eviction of old entries when the
cache is full. Every time a cache entry is accessed, it is moved to the front of the queue.
cold - Flag that indicates if all cache entries from disk are loaded into memory.
loading - Flag that indicates if the cache is currently loading cache entries from disk.
size - Size of the cache in bytes.

Apart from worker processes, there is also a cache loader and cache manager process. The
cache loader is run only on startup and is responsible for loading all cache entries from disk
to memory. The cache manager is responsible for cache eviction in the background and other
maintenance tasks.
So what we are interested in is the rbtree and queue. Because it holds the cache entries we
want to store in the cache summary.
Let us look what does elements of these containers look like. (I have added comments for
every field. Information about these fields was acquired by reading NGINX source code[17])
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The Listing 4.4 holds the structure that represents a cache entry. On every cache entry we
have a reference to the rbtree node and queue node. The rbtree node contains a key (used
for searching), parent, left and right child node and color (used for balancing purposes, not
important for us). The queue is a doubly linked list, so we can easily remove and insert
elements from arbitrary positions. This means that from any given cache entry, we can see
the element immediately behind us and the element immediately in front of us in the LRU
queue.
The best place to update the Bloom filter would be every time after flag exists is updated.
This means that when exists is set to 1, cache entry is now cached and ready on the disk,
so we will add it to the Bloom filter. When exists is set to 0, the cache entry is removed
from the cache, so we will remove it from the Bloom filter.

4.2 Bloom filter implementation

The First idea as a proof of concept was to use the standard Bloom filter3 and periodically
rebuild it. It would not be ideal, but it would suffice as a proof of concept. Squid also uses
this approach. But it turned out that in our case, this approach is not feasible. Because only
two structures that hold the cache entries (which we need to rebuild the Bloom filter) are the
red-black tree and the LRU queue. Both of these structures are not suitable for iterating over
all elements. The problem is that they are shared between workers, so we need to lock them
for the whole time of the iteration. This could have a huge impact on performance given
that there could be millions of cache entries, and we are not iterating over them efficiently in
terms of cache locality. (jumping between nodes in the tree)
If we did not lock these structures during the iteration, we could get into a situation where
our current node is deleted or moved to another position in the tree. Squid can afford this
approach because it stores cache entries in a hash table with linear probing. So it can iterate
over all elements without locking the whole structure.
This left us to use counting Bloom filter so we can remove elements from summaries. We
created a new file ngx bloom filter.h that will be included in the core NGINX module. In
Listing 4.5 we can see the definition of the structures for Bloom filter.
For the counting Bloom filter, we have chosen to use a byte-sized counter. Not because of
potential counter overflow, but for simplicity of first implementation and because of better
atomicity of updating the counter. To increment a byte counter, we use atomic increment
operation ( sync fetch and add on gcc). If we used 4-bit counters, we would have to first
fetch the byte, mask out only the 4 bits that we want, increment them and then store it
back. This is not atomic, so we would need to either lock the whole byte or use something
like compare and swap operation. We prioritized performance over memory usage.
Updating Bloom filter can look something like this Listing 4.6. We receive k already computed
hash values for the element. Then atomically increment the counters at the computed indices.
It is important to check for counter overflow/underflow. Especially in this proof of concept,
we can catch bugs like deleting non-existing elements, inserting the same element multiple
times, or having a bad hash function.
For our choice of k we decided to set it statically to 4. This is pragmatic choice, because we
already have 16bytes of cache entry key. This key is md5 hash of the requested URL and
possibly some other things like headers. It is used to identify the cache entry. We will just
divide those 16 bytes into 4 parts and modulo them by the size of the Bloom filter. Because
of this we do not have use any extra hash functions.
In Listing 4.7 we can see the function that gets the hash values for the Bloom filter.
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Code listing 4.4 Definition of NGINX struct representing cache entry.

1 typedef struct {
2 ngx_rbtree_node_t node; // red black tree node
3 ngx_queue_t queue; // queue node
4

5 // part of the cache key - second part is hidden in node->key
6 u_char key[NGX_HTTP_CACHE_KEY_LEN
7 - sizeof(ngx_rbtree_key_t)];
8

9 // refferece counter - do not free this object if its not zero
10 unsigned count:20;
11 // number of uses of this cache entry - we can
12 // have rules to cache the file only ifit was used more than X times
13 unsigned uses:10;
14

15 unsigned valid_msec:10;
16 // error code
17 unsigned error:10;
18 // if the file is valid and physicaly exists on disk
19 unsigned exists:1;
20 // if the file is being updated
21 unsigned updating:1;
22 // if the file is being deleted
23 unsigned deleting:1;
24 // if the file was purged - that means someone specifically
25 // requested to remove this file from cache
26 unsigned purged:1;
27

28 /* 10 unused bits */
29

30 // unique file id
31 ngx_file_uniq_t uniq;
32 // when this cache entry expires
33 time_t expire;
34 // max-age in the cache-control header
35 time_t valid_sec;
36 // size of the body of cached request
37 size_t body_start;
38 // size of the file on the filesystem
39 off_t fs_size;
40 // how long this cache entry is locked - cache entries
41 // are shared betwen workers, so we need to lock them before using
42 ngx_msec_t lock_time;
43 } ngx_http_file_cache_node_t;
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Code listing 4.5 Definition of Bloom filter structs.

1 /* statistics for the counting Bloom filter */
2 typedef struct {
3 ngx_atomic_t nelts; /* number of elements */
4 ngx_atomic_t bits; /* number of bits set to 1 */
5 ngx_atomic_t overflows; /* number of counter overflows */
6 ngx_atomic_t underflows; /* number of counter underflows */
7 } ngx_bloom_filter_stats_t;
8

9

10 /* main counting Bloom filter structure */
11 typedef struct {
12 ngx_bloom_filter_stats_t stats;
13 ngx_uint_t size; /* size of the Bloom filter */
14

15 /* byte array representing counting Bloom filter */
16 u_char arr[];
17 } ngx_bloom_filter_t;
18

19 /* structure for easier manipulation with Bloom filter keys */
20 typedef struct {
21 ngx_uint_t *keys;
22 size_t len;
23 } ngx_bloom_filter_keys_t

Code listing 4.6 Updating the counting Bloom filter.

1 ngx_int_t
2 ngx_bloom_filter_update(ngx_bloom_filter_t *bf,
3 ngx_bloom_filter_keys_t *keys, ngx_int_t add)
4 {
5 ngx_uint_t i, initial, *key;
6

7 key = keys->keys;
8

9 ngx_atomic_fetch_add(&bf->stats.nelts, add);
10

11 for (i = 0; i < keys->len; i++) {
12 initial = ngx_atomic_fetch_add(&bf->arr[key[i] % bf->size], add);
13

14 if (initial + add > 255) {
15 ngx_atomic_fetch_add(&bf->stats.overflows, 1);
16 } else if ((ngx_int_t) initial + add < 0) {
17 ngx_atomic_fetch_add(&bf->stats.underflows, 1);
18 }
19 }
20

21 return NGX_OK;
22 }
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Code listing 4.7 Function to get hash values from cache entry key.

1 void
2 ngx_http_bloom_filter_bf_fill_keys(ngx_http_file_cache_node_t *fcn,
3 ngx_bloom_filter_keys_t *keys)
4 {
5 ngx_uint_t i;
6 ngx_uint_t *k;
7

8 memset(keys->keys, 0, sizeof(ngx_uint_t) * 4);
9

10 k = keys->keys;
11

12 // convert 8 byte array into 2 32bit integers
13 for (i = 0; i < 4; i++) {
14 k[0] |= (ngx_uint_t) fcn->key[i] << (i * 8);
15 k[1] |= (ngx_uint_t) fcn->key[i+4] << (i * 8);
16 }
17

18 // convert 64-bit integer into 2 32bit integers
19 k[2] = (uint32_t) fcn->node.key; // lower 32bits of key
20 k[3] = fcn->node.key >> 32; // upper 32bits of key
21 }

We receive the cache entry node we talk about in subsection 4.1.2 and get half of the key
from key and the second half from node→key. If we found out in future that k = 4 is not
enough, we would have to compute some more hash data from the 16-byte cache key.

4.3 Bloom filter module

Our Bloom filter implementation is done, now we just need to integrate it into NGINX. We
will create a new module for NGINX that will be responsible for creating and managing
Bloom filters.

4.3.1 Allocations in shared memory
First, we need to create a shared memory zone for our Bloom filter. Adding the shared zone
is simple, we just need to call ngx shared memory add function in one of our functions in
the module that is called at startup. Creation of shared memory zone is demonstrated in
Listing 4.8.
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Code listing 4.8 Adding shared memory zone for Bloom filter.[18]

1 ngx_str_t name;
2 ngx_foo_ctx_t *ctx;
3 ngx_shm_zone_t *shm_zone;
4

5 ngx_str_set(&name, "foo");
6

7 /* allocate shared zone context */
8 ctx = ngx_pcalloc(cf->pool, sizeof(ngx_foo_ctx_t));
9 if (ctx == NULL) {

10 /* error */
11 }
12

13 /* add an entry for 64k shared zone */
14 shm_zone = ngx_shared_memory_add(cf, &name, 65536, &ngx_foo_module);
15 if (shm_zone == NULL) {
16 /* error */
17 }
18 /* shared zone is not allocated yet, it will be done by
19 NGINX at the end of configuration setup */
20

21 /* register init callback and context */
22 /* when the callback is called, the shared zone is already allocated, so we can use it */
23 /* in ctx we will save necessary information for Bloom filter creation */
24 shm_zone->init = ngx_foo_init_zone;
25 shm_zone->data = ctx;

To allocate from the shared memory we have to use ngx slab alloc function. This function
performs slab allocation on the already mmaped shared memory. Slab allocation is also used
in the Linux kernel[19], but this is a simpler version. When we want to allocate a 1 MB Bloom
filter from shared memory we call ngx slab alloc(shm→shpool, 1MB), but there is a catch. If
we created a shared memory zone with size of 1 MB, we cannot allocate 1 MB of our structs
from it. This is because there are already some structures for managing the shared memory
allocated in it, and also the allocation is done from pages. As we can see in Fig. 4.1 at the
beginning of the shared memory, there are these pre-allocated structures. Most notably slots
that are responsible for allocating data of size 2slot index bytes. (Every allocation needs to be
power of two) If we want to allocate, for example, 17 bytes, slot 5(25 = 32) will be used and
32bytes will be allocated. The 15 bytes will be wasted. Each slot manages it is own un-filled
pages. Pages can only contain allocations from one slot. (So every allocation in one page has
to be the size) If we want to allocate more than half of page, we will allocate whole pages
from linked list of free pages directly, without using slots. Given that the page size is 4 KiB
(can be changed), to allocate 1 MiB of memory, we would need to allocate 256 pages plus
some extra space for the 256 ngx slab page t structures.[20]
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Figure 4.1 NGINX shared memory overview[20]

To know how much memory we need for structures in our shared memory, we reverse engi-
neered the NGINX source code[17] for allocation and came up with this formula:

#define ngx_http_bloom_filter_bf_pages_needed(size) \
((size) >> ngx_pagesize_shift) + (((size) % ngx_pagesize) ? 1 : 0)

It accounts for half-empty pages. This is the upper estimate of pages needed for the allocation
of struct with size because if the allocation is from available slots, it possibly will not need
any extra pages. Now, to compute the size of the shared memory, we compute the pages
needed for our structures and add one more page for the shared memory structures (slots,
etc.). Then we multiply the number of pages by the page size and the size of structure for
managing the page.

shm_pages * (ngx_pagesize + sizeof(ngx_slab_page_t));

We have the shared memory allocated and can use it for our Bloom filter.

4.4 New directives

We need to create NGINX directives that would allow us to configure and download the
Bloom filter.
For this, we have created two new directives:
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Code listing 4.9 Nginx config with Bloom filters.

1 proxy_cache_path /path/to/cache keys_zone=cache_zone:10m bloom_filter_zone=bf;
2 bloom_filter bf 1m;
3 http {
4 server {
5 listen 80;
6 server_name example.com;
7

8 location / {
9 proxy_pass http://backend_server;

10 proxy_cache my_cache;
11 }
12

13 }
14 server {
15 listen 8080;
16 server_name bf.example.com;
17

18 # to download Bloom filter use:
19 # curl http://bf.example.com:8080/bloom_filters/<bloom_filter_name>
20 location = /bloom_filters {
21 bloom_filter_download;
22 }
23 }
24 }

bloom filter - Specifies the name of shared memory (also the Bloom filter) and size of
the Bloom filter.

Used like this: Bloom filter foo 1m;
bloom filter download - Needs to be in a context of some location block. Will return
the standard Bloom filter computed from our counting Bloom filter.

Also, we need to add an option to the proxy cache path directive to specify what Bloom
filter to use. In Listing 4.9 is the minimal configuration to set up Bloom filters.
Because downloading counting Bloom filter would waste a lot of bandwidth, we will period-
ically also build the standard Bloom filter and make it available for download. We do not
need to know about counters on other servers, because we are downloading only a read-only
version of the filter. This is quite fast and efficient, because we only iterate over the counting
filter and set the bits in the corresponding places in the standard filter. We are iterating
sequentially over the counting Bloom filter so we have good cache locality. It would also be
possible to compress the filter, but for simplicity of implementation we will just build the
standard filter. Compressing the standard filter would not be very efficient, because if the
filter is optimally filled it would not provide much compression.[21] Optimally filled means
that approximately 50 % of bits are set to 1.2 By using hash function the bits should be
set sufficiently randomly. This would be like compressing random noise, which is not very
compressible.

2By optimally filled we mean that we chose optimal k for a combination of m and n.
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Design and implementation of
summary sharing

The Bloom filter is now implemented and integrated into the NGINX server. What we need
to do is to periodically download the Bloom filter from specified neighbors and use these
filters when choosing the upstream server. Doing something like this could be hard if we
did it directly in the C NGINX module. But fortunately, we use a lua-nginx-module that
allows us to write Lua scripts that can be executed in the NGINX worker. We already have
a codebase of Lua scripts that is responsible for dynamic selection of upstreams and more
high-level logic. So we will be integrating the Bloom filter sharing logic into these scripts.

5.1 lua-nginx-module

The lua-nginx-module is being developed by a distribution of NGINX called OpenResty. The
motivation for this module was to transform NGINX into a fully-fledged web application
server for more flexibility. Lua was chosen as the scripting language because it is simple,
lightweight, allows compilation at runtime, and most importantly, is easily embeddable into
existing applications. Lua code is also more suitable for writing high-level logic than C code.
It has dynamic typing, automatic memory management and higher-level abstractions.
The module takes advantage of NGINX event-driven, non-blocking architecture, and runs
code in worker processes. This also means that we should not use any blocking I/O operations
as it would block the whole worker process. We can also take advantage of existing NGINX
modules and just extend them with Lua scripts. The running of Lua code is performed by a
custom enhanced version of LuaJIT, which is a Just-In-Time compiler for Lua. Just-In-Time
compiler means that the Lua code is compiled to machine code at runtime. It also has a lot
of optimizations based on the code that is executed.[22]

5.1.1 Directives
Lua NGINX module provides a lot of directives for running Lua code. They differ in when
the code is executed and in what context.

26
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Figure 5.1 OpenResty directives and their phases.[23]

As we can see in Fig. 5.1, the code can be executed in these phases:[23]

Initialization phase - This phase is executed only once when the NGINX worker is
started.

init by lua is executed in the master process on startup and init worker by lua is
executed in every worker process on startup.
Rewrite/Access phase - This phase is executed for every request before the request
is fully processed and proxied to upstream. It is executed only by the worker who is
processing the request.

for example rewrite by lua could be used for URL rewriting or validation. In case
of an invalid URL, it could return 404.
Content phase - This phase is executed when it is time to generate and return the
response to the client.

Most interesting for us is the balancer by lua directive that is executed when we need
to dynamically choose the upstream server of the proxy. There could be some complex
logic or even dynamic loading of upstream servers. We will use this directive to prioritize
upstreams based on the Bloom filter.
Log phase - This phase is executed after the response is sent to the client.

We could use this phase to log some information about the request.

5.1.2 FFI
Lot of libraries and functions in our Lua scripts are implemented in C and are called
through foreign function interface (FFI). FFI is a mechanism that allows us to call functions
from one language in another language. This is one of the main reasons why Lua was
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chosen, because it is very easy to call C functions from Lua. Apart from using existing
libraries, we can also easily write our own C code and call it from Lua.[24]

5.1.3 Worker synchronization
Because we are running Lua code in different worker processes, we face the same problem
as in C code. The problem is that we also cannot directly access shared memory structures
defined in C code. Only if we defined our own FFI functions for working with the shared
memory.
To solve this problem, there is already a library for this. Lua NGINX module provides a
shared dictionary that allows us to store and retrieve data between workers. This shared
dictionary is implemented in C, and in Lua, we just call it through FFI calls. Everything
done in C code to the shared dictionary is done under mutex, so this library is thread-safe.
It can also be used for synchronization between workers. Unfortunately, it was not made
for this because there is nothing like a mutex or semaphore. For synchronization, we have
to use the add function that saves a value to the dictionary only if it is not already there,
delete and increment function. We cannot do a classic lock, but we can, for example,
block other workers from doing something by setting some key in the dictionary using the
add function. Because only one of the workers will succeed in setting the key, the others
will fail.
While implementing the Bloom filter sharing mechanism, we encountered some complex
synchronization issues that could not be easily resolved with the available functions. Con-
sequently, we had to expand the shared dictionary with compare-and-swap functionality.
Listing 5.1.
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5.2 Bloom filter sharing

What we need to do is to periodically download the Bloom filter from specified neighbors
and use these Bloom filters to choose the right upstream server.

5.2.1 Downloading the Bloom filters
For periodic tasks, there is already ngx.timer.every function in lua-nginx-module. This
functions allows us to execute custom function every n milliseconds. However this function
has some caveats. Mainly that it cannot be used in every context (directive). We cannot
run this function in init by lua which runs only in the master process. What we have
to do is run this function in init worker by lua. This is not a big problem, we will
have a timer in every worker process and will have to do some synchronization between
workers. We can also leverage this and download the Bloom filter in parallel, in every
worker process.
First problem that we have to solve is where to store the downloaded Bloom filters. Share
dictionary may seem like a good choice, but unfortunately we cannot use it. Because Lua
shared dictionary does not return strings by reference, but by value. We could have very
large Bloom filters and allocating every request whole new string would be very inefficient.
We have decided to create a new shared memory zone for them in our C Bloom filter
module. This shared memory zone has a fixed amount of slots and every slot could hold
one Bloom filter. The management of which slot is used by which Bloom filter is done in
the Lua shared dictionary.
One more problem with the downloading we had to solve was how to store the downloaded
Bloom filter. We cannot perform the downloading only from Lua, because it would buffer
the whole response (potentially more than 100 MB) in memory. Solution to this problem is
to create another location block with proxy pass and our custom body filter (function for
processing streaming data) directive that we will implement in our Bloom filter module.
We will then request this endpoint from Lua and the body filter will download the response
with chunked encoding. As the chunks are read, we immediately write them to the shared
memory and then free the already read chunks.
The body filter is implemented in C and registered into the chain of already existing
NGINX body filters. Every NGINX module that performs some operation on the response
body must have registered a body filter. The body filter is called for every chunk of the
response body, it allows us to read/modify the response body in a streaming fashion.
The location would look something like this listing 5.2.
The tokens that start with “$arg ” are variables that are evaluated every request. They
will be replaced by query arguments in the request. In Lua to download the Bloom filter
into shared memory in slot 0, we would call this Listing 5.3.
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Code listing 5.1 Compare-and-swap function for shared dictionary.

1 --- @return success bolean, error string,
2 --- boolean that indicates if we had to expire
3 --- some keys to fit them in the shared dictionary
4 local function shdict_compare_and_swap(zone, key, new_value, exptime,
5 flags, old_value, old_flags)
6 -- checks if the zone exists and is valud, else throws error
7 zone = check_zone(zone)
8

9 if not old_value then
10 return nil, "nil old_value"
11 end
12 if not old_flags then
13 old_flags = 0
14 end
15 if not flags then
16 flags = 0
17 end
18 -- stop garbage collection,
19 -- so we can safely lock the shared dictionary
20

21 -- if we did not stop it, the garbage collector could potentially
22 -- try to access the shared memory and lock it again, which would
23 -- result in a deadlock
24 collectgarbage("stop")
25 shdict_lock(zone) -- we modified also the c code
26 -- to allow us to lock the shared dictionary directly
27

28 -- we need to call these functions with pcall, because they could
29 -- throw error, and that would leave the shared dictionary locked
30 local ok, val_or_err, flags = pcall(shdict_get_locked,zone, key)
31

32 if ok and val_or_err == old_value and flags == old_flags then
33 local ok, succ_or_err, err, forced = pcall(shdict_set_lockedzone,
34 key, new_value, exptime, flags)
35

36 shdict_unlock(zone)
37 if not ok then
38 error(succ_or_err)
39 end
40

41 return succ, err, forced
42 end
43

44 shdict_unlock(zone)
45

46 if not ok then
47 error(val_or_err)
48 end
49

50 return false, "not matched", false
51 end
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Code listing 5.2 Location block for downloading Bloom filter into shared memory.

location = /download_bloom_filter {
bloom_filter_body_filter on;
proxy_set_header Host $arg_bf_url:$arg_bf_port;
proxy_cache off;
proxy_pass http://$arg_bf_url:$arg_bf_port/bloom/$arg_bf_zone;

}

Code listing 5.3 Downloading the Bloom filter from Lua.

1 local res, err = ngx.location.capture("/download_bloom_filter", {
2 args = {
3 bf_url = upstream.addr,
4 bf_port = port,
5 bf_zone = upstream.conf.bf_zone or "b",
6 index = 0
7 },
8 })

We can now download the Bloom filters, now all that is left is to download them period-
ically. We set up a timer in init worker by lua that will trigger Bloom filter checking
every x seconds. In shared dictionary we store the time it will expire and new Bloom filter
should be downloaded. If our checking function finds out that the Bloom filter is expired,
it will trigger the download of Bloom filter into a free slot in shared memory. And after
successfully download and no reader of the old Bloom filter, we will free the old Bloom
filter slot. It is important to have at least twice as many slots as there are neighbors, so
we can download the Bloom filter from one neighbor while the other is still using the old
one.

5.2.1.1 Frequency of downloading

What has to be considered is how often we should download the Bloom filters from neigh-
bors. Choosing too short of a time could lead to unnecessary load on the servers and
network. Choosing too long of a time could lead to poor performance of the Bloom filter.
The Bloom filter data structure does not have false negatives, but using an older Bloom
filter that does not contain more recent data could lead to false negatives. The more files
are changed in the neighbor cache without updating our Bloom filter, the more false neg-
atives we will have. But because every server has a different rate of cache updates, we
cannot just set a fixed time of downloading. Ideally we would download the Bloom filter
every time the neighbor cache summary changed by a certain percentage. For simplicity
we chose to set the time of downloading manually based on the expected rate of cache
updates. In future we could implement some more advanced logic for downloading the
bloom filters or even send only diffs of the filters.

5.3 Selecting the upstream server

We finally have everything we need to prioritize the upstream server based on the Bloom
filter. Now we just need to slightly modify our upstream selection logic in balancer by lua
directive.
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We have a Bloom filter for every neighboring server, but some servers are just sharded
cache like in section 1.2. For these sharded servers we test only the Bloom filter of server
that we get from consistent hashing.
So the logic of upstream selection is like this:
1. If we have requested file in cache, return it from cache
2. If we do not have any neighbors, forward to default upstream server
3. If we have neighbors, find first 2 neighbors that contain the requested file in their Bloom

filter. Do not check the Bloom filter of all sharded servers. Then try to forward the
request to upstreams we got, if first upstream fails, try the second one.

It is also important to prevent possible loop in neighbors if they are connected in a circle.
It is possible that no server has the requested file, but due to false positives, they will all
think the other server has the file. To prevent this we disallow the server to forward the
request again if it was already forwarded to it. We signal that the request was forwarded
from the neighbor cache with a simple header in the request.
The checking of Bloom filter is done through FFI functions in our C module.
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Testing and evaluation

Testing is a crucial part of any project as it allows us to iterate faster and catch bugs early
on. It is best to write tests early in the development process and run them as often as
possible. The earlier we catch a bug, the easier it is to fix it.
Unit tests1 should be the main building block of most software projects.[25] Unfortunately,
NGINX does not have any unit tests. NGINX uses it is own testing framework called
test::NGINX. Lua module uses a version with more features called test::NGINX::Socket[26].
With these frameworks, you specify the configuration of NGINX, the requests you want to
send, and the expected responses or expected log outputs. The test framework then starts
NGINX with the specified configuration, sends the request, and checks if the response is
as expected. There is a lot of Domain Specific Language (DSL) for writing these tests, but
you can also write Perl code directly.
Generally, testing of distributed systems can be quite complex. We have to test not only
the individual components but also how they work together. It is important to first test
the individual components and then test the integration of these components.[27] In our
case we can split the testing into two parts:
∗ Testing of Bloom filter generation - We perform requests that will be cached and

check if the Bloom filter is updated correctly.
∗ Testing of summary sharing - We will create beforehand some Bloom filters and

then test if the corrected upstream server is chosen.
All of these tests can be run both locally and in the continuous integration pipeline.
Due to the complex nature of the system, it is also important to test the whole system
in an environment similar to production. We set up a testing environment consisting of a
few servers and tried to simulate some real-world traffic.
In this environment, we can manually monitor more complex things like CPU, memory, or
network usage. To name an example, one bug was caught thanks to an in-depth analysis
of the system was an incorrect calculation of Bloom filter indices. After downloading the
Bloom filter from one of the servers and performing a statistical analysis of it. Our analysis
revealed that the filter was not as random as we had expected. Figure 6.1 clearly shows
vertical lines in the Bloom filter that have been reshaped into a 2D array.

1Unit tests focus on testing only small piece of code in isolated enviroment.
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Figure 6.1 Regular pattern in our Bloom filter that indicates something is wrong.

After a deep inspection of the code, we found out that we were miscalculating the indices
of the Bloom filter, but it was not caught by our tests because it caused only increased
false positives. In Figure 6.2 we can see how the Bloom filter looks after fixing the bug.

Figure 6.2 Fixed Bloom filter without any irregularities.
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6.1 What went wrong

The development of the solution was filled with many challenges. A lot of time was spent
on debugging and sometimes even completely rewriting the solution after hitting a dead
end. In forthcoming subsections, we will describe some of the problems we encountered.

6.1.1 Downloading of Bloom filter
As mentioned in the subsection 5.2.1, we have a periodic timer that downloads the Bloom
filter from neighbors into our shared memory. But this problem was not as straightfor-
ward as it seemed. If we just performed a normal HTTP request in the timer to our
downloading location (listing 5.2) there could be a problem. When NGINX performs a
zero downtime binary upgrade, it starts a new NGINX binary next to the old one and
then one by one stops the old workers and starts new workers. In this process, it is pos-
sible that a request to download the Bloom filter from the old worker could reach the
new worker, thus possibly corrupting existing Bloom filters, because we could download
it into the already taken index. NGINX has a function to potentially solve this problem,
ngx.location.capture. Instead of performing a normal HTTP request, it performs a sub-
request. That is a lightweight request that is processed only in NGINX and does not go
through the network. However it has one limitation, it cannot be used in certain contexts.
It can be used only in the context of request processing. So it is not possible to use it in
the timer function.
To solve this problem we moved the timer function into an endpoint. Now this function
is called on every request to the endpoint. The periodicity of the downloading is solved
by creating another timer function that requests this endpoint every x seconds. Now if
the request to download the Bloom filter reaches the new worker, it will not corrupt the
existing Bloom filter because the request does not contain the index of the Bloom filter.

6.1.2 Shared dictionary
In the implementation of the management of Bloom filters, we had to use something to
share data between workers. 5.1.3 The shared dictionary is not very good for synchro-
nization between workers as it does not have any locking mechanism. We had to at least
implement the compare-and-swap function, but it is not very efficient because it uses locks
under the hood. Normally this is an atomic instruction without locks.
There are a lot of possible future improvements to the problem of synchronization between
workers and even the shared dictionary itself. We will look into this more in the future
because it could be helpful in the other projects too and even possibly to the general public.

6.2 Evaluation

To perform the final test of the solution, we tried to deploy it in the production environment
of a CDN provider. For testing purposes, we added Bloom filter generation on few last
layer servers in the multilayer cache setup. Also, on one server we added the Bloom filter
exchanging logic, so it downloads the filters from other servers. This way, if something
went wrong, load balancers could sent the traffic to the other servers.
Bloom filter size was statically set to 128 MB, because each server could have up to 100
millions of cache entries. This gave us worst case false positive probability of 1 %. We
deployed the solution for 5 hours and compared the monitored metrics with the previous
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Figure 6.3 Traffic that was served from cache on current server or from neighboring cache.

Figure 6.4 Percentage of requests, that were not served from any cache.

day. Metrics that interested us the most were memory usage, cache HIT/MISS ratio and
inter-layer traffic.
In Figure 6.3 we can see graph that compares the HIT traffic of our solution with the
previous setup. HIT traffic is the data that was served from cache on the current server
or from neighboring cache. We can see that for first third of the test the traffic was more
or less the same to previous day and then our solution started to outperform the previous
setup. These are absolute values, so it could be due to the increased traffic on the network.
More useful metric to evaluate is the cache HIT/MISS ratio as it accounts for the fluctua-
tion of the traffic and tells us how efficient our cache is. In Figure 6.4 we can see that our
solution outperformed the previous setup by a few percents. That means, that the close
neighboring servers with Bloom filter had only few percents of files that were not in the
cache of our testing server. With this information, we can estimate how much origin server
traffic would be reduced if we deployed it on all the servers that had Bloom filter. In this
case, the origin server traffic would be probably reduced by 2–5 %. It is possible that in
different setups of the cache, the improvement would be significantly higher. Also, we did
not use all of the servers in the last layer, so this could potentially improve the cache HIT
rate even more.
Memory usage on the servers with with bloom filters was negligible compared to the total
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memory of the server. Given that the binary Bloom filter is 128 MiB and the counting
Bloom filter is 1 GiB. Total additional memory usage is around 1,125 GiB. As the servers
have hundreds of GB of memory, this is not a problem.
The inter-layer traffic on last layer increased first of all by the Bloom filter exchange.
In this case, we had 4 servers with Bloom filters and one server that was downloading
the Bloom filters. The exchange of the filters happen every 60 seconds, so the traffic is
increased by 4 ∗ 128 MiB per minute (9 MiB/s). If we deployed the downloading on all of
the 5 servers, the traffic would be increased to (4 ∗ 128 MiB) ∗ 5 per minute (45 MiB/s).
This is also negligible compared to the multi-gigabit traffic that the servers have. Also, it
was increased by the rerouted traffic to the servers with Bloom filters. In this case about
2–5 % of the traffic was rerouted from our single server to the servers with Bloom filters.
This would be multiplied by the number of servers that would be downloading the Bloom
filters.
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Conclusion

This thesis aimed to improve the cache efficiency of NGINX when used in multilayer
deployment.
In the beginning, we got familiar with the multilayer HTTP cache setup. We explained
some basic concepts of the setup like what is a reverse caching proxy or consistent hashing.
And then we proposed a way to further improve the cache efficiency of this setup. We
explored the existing solutions to this problem and decided that none of them is suitable
for our use case.
Next, we conducted an in-depth study of Bloom filters, exploring their various applications
and tuning for optimal performance. This allowed us to understand what will be necessary
for the implementation of our solution.
In the next chapter, we focused on the research of NGINX and its internals. With this
knowledge we were able to to implement Bloom filter generation into NGINX.
After that, in the chapter 5, we designed and implemented the Bloom filter sharing mecha-
nism. To do this, we had to explore the options of the Lua NGINX module and implement
the sharing logic in Lua.
The final chapter was devoted to the testing and evaluation of the solution that was
implemented. We talked about what went wrong, how we fixed it, and what could be
improved in the future. We managed to improve the cache efficiency by about 2–5 % in
the production environment of a CDN provider.
To sum everything up, we have successfully fulfilled the goal of this thesis by explaining
the multilayer HTTP cache setup, studying Bloom filters, and implementing cache sharing
mechanism into NGINX. This mechanism also supports cache eviction and purging.
This is the first version of the Bloom filter module, so there is still room for improvement,
we made some shortcuts to make the implementation faster. In the future, we could make
the module more configurable, research alternatives to Bloom filters, or implement better
exchange strategies. Also, we could improve the Lua shared dictionary from which could
other projects benefit too.
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