
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Structural properties of sidewalk networks

Vojtěch Kopal

Ing. Šimon Schierreich

Informatics

Computer Science 2021

Department of Theoretical Computer Science

until the end of summer semester 2025/2026

Instructions

1. Získejte data o chodníkových sítí pro různá města.

2. Převeďte data do vhodné grafové reprezentace.

3. Nastudujte alespoň 5 různých strukturálních parametrů, u kterých se dá očekávat, že

hodnota těchto parametrů bude pro získané sítě malá (např. tree-width, feedback-vertex

set number, feedback-edge set number, vertex cover number, distance to disjoint stars, a

jiné [1]).

4. Pomocí existujících či vlastních solverů zjistěte hodnotu těchto parametrů na

zpracovaných datech o chodníkových sítích a diskutujte získané výsledky.

[1] https://vaclavblazej.github.io/parameters/html/

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 7 March 2024 in Prague.

Bachelor’s thesis

STRUCTURAL
PROPERTIES OF
SIDEWALK NETWORKS

Vojtěch Kopal

Faculty of Information Technology
Department of Theoretical Computer Science
Supervisor: Ing. Šimon Schierreich
May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Vojtěch Kopal. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Kopal Vojtěch. Structural properties of sidewalk networks. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments vi

Declaration vii

Abstract viii

List of Abbreviations ix

Introduction 1

1 Graph Theory 2
1.1 Graph . 2
1.2 Subgraph and Induced Subgraph . 3
1.3 Graph Families and Named Graphs . 3

1.3.1 Path . 4
1.3.2 Connected Graph . 4
1.3.3 Cycle . 4
1.3.4 Trees and Forests . 5
1.3.5 Petersen Graph . 6

1.4 Graph Properties . 7
1.4.1 Resemblance of a Tree/Forest . 7
1.4.2 Graph Covering Numbers . 10

2 Computational Complexity 13
2.1 Input Encoding . 13
2.2 Decision Problem . 13
2.3 Computation . 14
2.4 Turing Machines . 14

2.4.1 k-tape Turing Machine . 14
2.4.2 Deterministic k-tape Turing Machine . 14
2.4.3 Non-deterministic k-tape Turing Machine 14
2.4.4 Computation of Turing Machines . 15

2.5 Complexity Classes . 15
2.5.1 P Complexity Class . 16
2.5.2 NP Complexity Class . 16
2.5.3 NP-hardness and NP-completeness . 17
2.5.4 Relation of P and NP Complexity Classes 17

2.6 Notable NP-hard Problems . 17

3 Linear Programming 19
3.1 Linear Program . 19
3.2 Algorithms . 19
3.3 Example . 20

3.3.1 Graphical Representation . 20

ii

Contents iii

3.3.2 Simplex Algorithm . 21
3.4 Integer Linear Programming . 21
3.5 Gurobi Optimization . 21

4 Previous Research of Sidewalk and Pedestrian Networks 22

5 Obtaining the Data 24
5.1 Data Formats . 24

5.1.1 XML . 24
5.1.2 JSON . 24
5.1.3 GR . 26

5.2 OpenStreetMap . 26
5.2.1 History . 27
5.2.2 Format . 27
5.2.3 APIs . 29
5.2.4 OSMnx . 31

5.3 Collecting and Serializing the Data . 31
5.3.1 Analysed Locations of the World . 31
5.3.2 Usage of OSMnx Package . 32

6 Graph Properties Measurement and Evaluation 35
6.1 Feedback Edge Set Number . 35

6.1.1 Motivation . 35
6.1.2 Measurement . 35
6.1.3 Results . 36

6.2 Feedback Vertex Set Number . 36
6.2.1 Motivation . 37
6.2.2 Measurment . 37
6.2.3 Results . 38

6.3 Treewidth . 38
6.3.1 Motivation . 38
6.3.2 Measurment . 39
6.3.3 Results . 39

6.4 Vertex Cover Number . 39
6.4.1 Motivation . 39
6.4.2 Measurment . 40
6.4.3 Results . 40

6.5 Edge Cover Number . 40
6.5.1 Motivation . 40
6.5.2 Measurement . 41
6.5.3 Results . 41

7 Conclusion 42

List of Figures

1.1 An example of graph visualization . 3
1.2 An example of a path subgraph and a path . 4
1.3 An example of a cycle as a subgraph of a graph 5
1.4 An example of a tree . 6
1.5 Petersen graph . 6
1.6 Petersen graph with the spanning tree and the feedback edge set marked 8
1.7 Petersen graph with the feedback vertex set marked and removed 9
1.8 A tree decomposition of Petersen graph . 10
1.9 Petersen graph with the optimal vertex cover . 11
1.10 Petersen graph with the optimal edge cover . 12

3.1 A graphical representation of a linear program 20
3.2 A visualization of the objective function . 21

5.1 A map from OpenStreetMap project . 27
5.2 A visualization of the data obtained from OSM for Dejvice, Prague, Czech Republic. 34

List of Tables

6.1 Measured values of feedback edge set number . 36
6.2 Measured values of feedback vertex set number 38
6.3 Measured values of treewidth . 39
6.4 Measured values of vertex cover number . 40
6.5 Measured values of edge cover number . 41

7.1 Concluding table . 42

List of code listings

5.1 An example of XML document. 25
5.2 An example of JSON representation. 25
5.3 GR representation of Petersen graph . 26

iv

List of code listings v

5.4 An example of a single tag from OSM . 28
5.5 An example of a single node feature from OpenStreetMap 28
5.6 An example of a way feature from OpenStreetMap 29
5.7 An example of a relation from OpenStreetMap 30
5.8 Python script exporting and visualizing the sidewalk data from OSM. 33

First of all, I want to thank my supervisor Ing. Šimon Schierreich,
for helping me curating this thesis into its final appearance and pa-
tiently helping me understand crucial concepts of computer science.

I want to thank Jürgen Klopp, for teaching me, through the art
of his football, the importance of hard work and resilience in life.
I wish him all the best on his well-earned retirement.

I want to thank my boss Vlád’a, for having faith in me in the last
two years, being the greatest boss I could have ever wished for, and
a great human being.

I want to thank my classmates and friends: Aleš, my sister Alice,
Ferfa, Patrik and Setni, for helping me throughout my studies.

I also want to thank Pavel, his girlfriend Terka, and their friends,
for helping me discover great people, fun activities and most
importantly my own personality.

And finally, I want to thank my parents, for their never-ending care
of my well-being.

vi

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact
that the Czech Technical University in Prague has the right to conclude a licence agreement on
the utilization of this thesis as a school work pursuant of Section 60 (1) of the Act

In Prague on May 16, 2024

vii

Abstract

This work analyses real world sidewalk networks from the perspective of graph theory. We
start by obtaining the sidewalk data from OpenStreetMap project, serializing them into multiple
data formats. We measure various complex structural graph properties of sidewalk networks
from diverse places on the planet Earth, using modern solvers for integer linear programming
and other NP-hard problems. Based on the results, we are providing estimations of relationships
between graph properties that are computationally complex to measure. We are also giving
numerous points towards designing an algorithm that would be able to create a realistic artificial
sidewalk network for a given road network and building outlines.

Keywords sidewalk networks, graph theory, structural properties, feedback edge set, feedback
vertex set, treewidth, vertex cover, edge cover

Abstrakt

V této práci analyzujeme reálné chodńıkové śıtě z pohledu grafové teorie. Zač́ınáme źıskáńım dat
chodńıkových śıt́ı z OpenStreetMap a jejich serializaćı do r̊uzných datových formát̊u. Za pomoćı
řešič̊u celoč́ıselného lineárńıho programováńı a řešič̊u jiných NP-těžkých problémů, měř́ıme ro-
zličné netriviálńı grafové vlastnosti chodńıkových śıt́ı z r̊uzných mı́st na planetě Zemi. Na základě
našich výsledk̊u, přináš́ıme odhady vztah̊u mezi parametry graf̊u, jejichž měřeńı je výpočetně
náročné. Zároveň přináš́ıme několik pozorováńı pro tvorbu algoritmu, jež by byl schopen vygen-
erovat chodńıkovou śıt’ ze silničńı śıtě a p̊udorys̊u budov.

Kĺıčová slova chodńıkové śıtě, grafová teorie, strukturálńı vlastnosti, feedback edge set, feed-
back vertex set, treewidth, vertex cover, edge cover

viii

List of Abbreviations

3D Three-dimensional
API Application programming interface
CA California

CZE Czech Republic
DTIME Deterministic time

EC Edge cover
ECN Edge cover number
ESP Spain
FES Feedback edge set

FESN Feedback edge set number
FIN Finland

FRA France
FVS Feedback vertex set

FVSN Feedback vertex set number
GPS Global positioning system
GR Graph format

JSON JavaScript Object Notation
LAT Latvia
MD Maryland
NC North Carolina
NP Non-deterministic polynomial time

NTIME Non-deterministic time
OSM OpenStreetMap

P Deterministic polynomial time
PACE Parameterized Algorithms and Computational Experiments
PRG Prague
TW Treewidth
VBS Virtual Battlespaces

VC Vertex cover
VCN Vertex cover number
XML eXtensible Markup Language

ix

Introduction

At first glance, sidewalk networks and graph theory may seem as two very distant topics, which
may make one wonder, how does an idea of such thesis even originate?
This work started as analysis for the newest expansion of VBS1 Blue.
VBS Blue [1] is a large scale project developed by Bohemia Interactive Simulations k.s. creat-
ing a hyper-realistic 3D2 model of the planet Earth, used as an environment for other products
of the company. The project originates to year 2008. Since then, it has provided many interesting
challenges for engineers developing and maintaining the software.
The state of visual outlook of VBS Blue highly differs around the globe. Many parts of the Earth
could be surely described as well and realistically looking. We are mainly talking about vegeta-
tion and soil maps. However, the ever-lasting problem of the project are the residential zones.
Automatically generated cities are still not perfect and there is a lot of work to be done. One
of their limitations surely is the absence of sidewalks independent on roads. The expansion of vir-
tual twin of the planet Earth with a plugin for sidewalks 3D model generation from network data
is where the idea for this thesis originates.
One of the future goals for this plugin is to develop an algorithm that would be able to create
a realistic sidewalk network to use for 3D model generation from given road network and map
of building outlines. This algorithm could be used for places, where the sidewalk network data
are not available, but there are available data of road network and building outlines.
Now, when this algorithm would yield its results, we would like to have a comparison with the real
world data, to ensure that the generated artificial sidewalk network structurally resembles a real-
world sidewalk network. Therefore the real-world sidewalk networks have to be first thoroughly
analysed. Not only the algorithm may use the measured structural properties as the sample data
to come close to. These properties may be also used for designing such algorithm.
In this work, we are going to discuss the process of obtaining the data of sidewalk networks from
different parts of the world and measure many complex graph properties on them. Finishing
with the evaluation and analysis of the measured values.

1Virtual Battle Spaces
2Three dimensional

1

Chapter 1

Graph Theory

Graph theory is a field of discrete mathematics studying the mathematical structures called
graphs. Since these mathematical structures, mainly used for modeling of pair relationships be-
tween objects, have proven to be quintessential for various fields, including computer engineering
and computer science, the theory grew vast and expansive. In the following chapter, we will
go through a small selection of topics with direct connection to what we will discuss in our
work. For much more concise and in-depth study of this topic, please refer to the monograph
of Diestel [2].

1.1 Graph
▶ Definition 1.1 (Simple undirected graph). A simple undirected graph is an ordered pair
G = (V, E), where V is an arbitrary non-empty set and E is a set of unordered pairs of elements
contained in set V . More formally: E ⊆

(
V
2
)
, this notation represents all subsets of V of size 2:(

V
2
)

= {{x, y} | x, y ∈ V ∧ x ̸= y}.

The elements of the set V are called vertices, sometimes, they can be also referred to as nodes
or points. The elements of the set E are called edges, or more rarely lines.
As we have previously declared, graphs are used for modeling of pair relationships between given
entities. These given entities are objects contained in the set V . The set E contains the objects
that are together in the modeled relationship. Note that since the pairs in E are unordered,
the modeled relationships are taken as bilateral. If we are to introduce the concept of a non-
symmetrical relationship, we can use the alternative of a directed graph.

▶ Definition 1.2 (Simple directed graph). A simple directed graph is an ordered pair G = (V, E),
where V is an arbitrary non-empty set of vertices and E ⊆ V × V \ {(v, v) | v ∈ V } is a set
of edges.

Elements of the set V are typically called vertices, nodes or points, like in the case of undirected
graph. In a simple directed graph the elements of set E are also typically called edges, sometimes,
for better specification, they are called directed edges or arcs.
In this thesis, we will be referring to a simple undirected graph as a graph, as it will be the
main article of our research. To simple directed graphs, we will be referring as directed graphs
as they will be sporadically mentioned as well. Mainly when comparing some of their properties
with their undirected counterparts.

2

Subgraph and Induced Subgraph 3

For better understanding, we can visualize the vertices as points drawn on a plane and the edges
as lines (or curves) connecting them. An example of this visualization can be seen in Figure 1.1.
The positioning and shapes of drawn elements are irrelevant as it is not information usually
contained in the graph.

Figure 1.1 An example of graph visualization [2].

1.2 Subgraph and Induced Subgraph
When looking at Figure 1.1, we can notice that the sub-parts of the graph can be considered
graphs as well. This leads us to an idea of a subgraph.

▶ Definition 1.3 (Subgraph). Given two graphs G = (V, E) and H = (U, F). We say H is
a subgraph of G if U ⊆ V and F ⊆ E.

If H is a subgraph of G, we can, slightly more informally, say that G contains H. Furthermore,
if H is a subgraph of G, we symmetrically say that G is a supergraph of H.
Apart from the subgraph we also define an induced subgraph.

▶ Definition 1.4 (Induced subgraph). Given two graphs G = (V, E) and H = (U, F), we say
H is an induced subgraph of H if U ⊆ V and F = E ∩

(
U
2
)
.

The difference between the subgraph and the induced subgraph is that the subgraph can contain
any edges from its supergraph. On the other hand, the induced subgraph must include all edges
existing in its supergraph among the vertices it contains.

1.3 Graph Families and Named Graphs
In this section, we are going to look at some usual graphs and graph patterns. Typically, we
are talking about a graph with a stand-out structure, or a graph that may represent a shape
well-known and common in the real world. One of our main focuses will be to describe the rela-
tionships of graphs studied by us and these typical patterns.

Graph Families and Named Graphs 4

Figure 1.2 An example of a path subgraph (left) and a path (right) [2]

1.3.1 Path
▶ Definition 1.5 (Path). A path is a non-empty graph P = (V, E) such that:
V = {x1, x2, . . . , xn}, E = {{x1, x2}, {x2, x3}, . . . , {xn−1, xn}}.

A path is a graph resembling a route or a way between two points. The vertices contained
in only one edge (in definition named as x1 and xn) are typically referred to as the endpoints
of the path. An important concept for us is whether two points in any graph are connected
by a path. Meaning whether there exists a subgraph of such graph, which is a path with the two
mentioned vertices being its endpoints. More formally, we define an s,t-path.

▶ Definition 1.6 (s,t-path). Let G = (V, E) be a graph and s, t ∈ V be two vertices (source,
target). An s,t-path is a sequence P = (v1, v2, . . . , vl) such that v1 = s, vl = t; each vertex vi ∈ V
appears in P at most once, and {vi, vi+1} ∈ E for every 1 ≤ i ≤ (l − 1).

Both of these concepts can be seen visualized in Figure 1.2.

1.3.2 Connected Graph
A graph is called connected, if there exists a path between any pair of its vertices. More formally:

▶ Definition 1.7 (Connected graph). A graph G = (V, E) is called connected if there exists
an s,t-path for all s,t ∈ V .

A graph which is not connected, is called disconnected. Such graph consists of multiple connected
components.

▶ Definition 1.8 (Connected component). A connected component is a connected subgraph of
graph that is not a part of any larger connected subgraph.

All connected components of a graph are disjoint and together they add up to the whole graph.

1.3.3 Cycle
▶ Definition 1.9 (Cycle). A cycle is a graph C = (V, E) of pattern:
V = {x1, x2, . . . , xn}, E = {{x1, x2}, {x2, x3}, . . . , {xn−1, xn}, {xn, x1}} where n ≥ 3.

A cycle is a typical graph resembling a closed shape. We can notice that cycle is very similar to
path, just with an edge added between the endpoints. Visualization of a cycle and the existence
of a cycle as a subgraph in a graph can be seen in Figure 1.3.

Graph Families and Named Graphs 5

1.3.4 Trees and Forests
What is equally, if not more, important for us is the concept of a graph containing or not
containing a cycle as its subgraph.

▶ Definition 1.10 (Forest). A graph is called a forest if none of its subgraphs is a cycle.

We will often refer to forests as acyclic graphs, due to their characteristic of not containing
a cycle. Furthermore, we define a tree.

▶ Definition 1.11 (Tree). A graph is called a tree if none of its subgraphs is a cycle and it is
a connected graph.

As we can see, every tree is a forest with an additional property of existence of a path between any
pair of its vertices.

Figure 1.3 An example of a cycle (bold) as a subgraph of a graph [2].

The terminology of trees and forests becomes more clear and natural with a remark, that a for-
est consists of multiple connected components, in which the additional property holds. These
components inherit the property of not containing cycles, making them trees. Therefore a forest
consists of multiple trees and a tree is a forest of a single tree. Multiple definitions of a tree exist,
all of them describing the same set of graphs. One of these alternative definitions is:

▶ Definition 1.12 (Tree). A graph G = (V, E) is called a tree if it is a connected graph and
|V | = |E| − 1.

Both definitions and their equivalency are shown in the monograph of Diestel [2].
An example of visualization of a tree can be seen in Figure 1.4.

1.3.4.1 Spanning Trees and Forests
A spanning subgraph is a subgraph that contains all vertices of its supergraph. A spanning tree
is a subgraph which is a tree.

▶ Definition 1.13 (Spanning tree). A spanning tree of graph G = (V, E) is a subgraph
T = (V, E′), where E′ ⊆ E and T is a tree.

Existence of a spanning tree requires the existence of a path between any two vertices in the orig-
inal graph. We can notice that a graph for which this property holds, can have more than one
spanning tree.
Very similarly, we can define the spanning forest as a forest containing all vertices of its super-
graph. Spanning forests do not have any special requirements for the original graph. We can
find a spanning forest of any graph, and, once again, for a graph, multiple spanning forests may
exist.

▶ Definition 1.14 (Spanning forest). A spanning forest of graph G = (V, E) is defined as a sub-
graph F = (V, E′), where E′ ⊆ E, F is a forest and for any two vertices holds, that if they were
connected by a path in G, then they are also connected by a path in F .

Graph Families and Named Graphs 6

Figure 1.4 An example of a tree [2].

1.3.5 Petersen Graph
Petersen graph is an interesting example of a graph. It was constructed in [3] by Danish mathe-
matician Julius Petersen, after whom it is named. Over the years, it has proven to be a typical
counter-example for various propositions. In the next section, we are going to define many graph
properties. For better explanation, we are going to demonstrate their value and the calculation
procedure on this particular example.

▶ Definition 1.15. Petersen graph is a graph

G = (V = {u0, . . . , u4} ∪ {v0, . . . , v4}, E = {{ui, ui+1 mod 5} {vi, vi+2 mod 5}, {ui, vi} | 0 ≤ i ≤ 4}

The visualization of this graph can be seen in Figure 1.5.

Figure 1.5 Petersen graph [2].

Graph Properties 7

1.4 Graph Properties
We can define graph properties. Functions returning a value for any graph on which the property
is defined.

1.4.1 Resemblance of a Tree/Forest
As we have declared previously, one of the focuses of our interest will be measuring the distance
of a studied graphs to some of the particular graphs or members of graph families mentioned
earlier. In this section, we define a few graph properties, stating how closely a graph resembles
a tree or a forest.

1.4.1.1 Feedback Edge Set Number
Feedback edge set number is a property assigning any graph a numerical value equal to the min-
imum number of edges that have to be removed from a graph to create a forest (graph not
containing any cycles). More formally, we define the feedback edge set as follows.

▶ Definition 1.16 (Feedback edge set [4]). For a given graph G = (V, E), we define the feed-
back edge set, as F ⊆ E where G′ = (V, E \ F) is a forest.

Now, we can continue with defining the feedback edge set number.

▶ Definition 1.17 (Feedback edge set number). We define the feedback edge set number,
denoted FESN, of a graph G as the smallest possible cardinality of F across all possible feed-
back edge sets of a graph G.

For better explanation, let us take the famous Petersen graph and demonstrate the value of this
property on this example. The Petersen graph has the feedback edge set number equal to 6.
As there are 6 edges that can be removed in order to create an acyclic graph, and there are
no such 5 (or less) edges that would make the graph acyclic after their removal. To discover this
value, we first identify any spanning tree (or forest for a disconnected graph) of the graph, which
is the maximal acyclic subgraph, and then take the remaining edges as the feedback edge set.
The calculation procedure can be better seen in Figure 1.6. The black edges are the 6 edges
that have to be removed, the remaining red edges form a spanning tree. We can see that if we
would add any of the black edges to the graph, then the graph would contain a cycle. The black
edge connects two vertices between which s, t-path surely exists (because the spanning tree is
connected). This s, t-path, together with the added black edge would form a cycle. Therefore,
the feedback edge set number can not be 5 or lower, as removing 5 edges will surely leave a cycle
in the graph. For better description of the computation of feedback edge set number for Petersen
graph and other graphs, please refer to [4].

Graph Properties 8

1

2

34

5
1

2

34

5

1

2

34

5
1

2

34

5

Figure 1.6 Petersen graph with the spanning tree (red) and the feedback edge set (black) marked,
taken from [5], modified.

1.4.1.2 Feedback Vertex Set Number
Very similar in terms of definition, but, as we will discuss later, very different in terms of complex-
ity of computation, is the feedback vertex set number. Feedback vertex set number is a property
assigning any graph a numerical value equal to the minimum number of vertices that have to be
removed from a graph to create an acyclic graph (a forest).
First, we define the feedback vertex set.

▶ Definition 1.18 (Feedback vertex set [4]). For a given graph G = (V, E), we define the feed-
back vertex set, as F ⊆ V where G′ = (V \ F, E) is a forest.

Or equivalently:

▶ Definition 1.19 (Feedback vertex set). We can also define the feedback vertex set for a given
graph G = (V, E), as F ⊆ V , where vertices of every cycle contained in G have a non-empty
intersection with F .

These two definitions are equivalent. If we hold a set of vertices that includes at least one
vertex from every cycle, then removing these vertices will break all the cycles, as the cycles will
disconnect on the removed vertex.
If we would have a set of vertices that does not include any vertex from at least one of the cycles
in the graph, then such set will not make the graph acyclic after removal, as the cycle not hit
by the chosen vertices subset, will remain present after the removal of this subset.
Now, we proceed to defining the feedback vertex set number.

▶ Definition 1.20 (Feedback vertex set number). We define the feedback vertex set number,
denoted FVSN, of a graph G as the smallest possible cardinality of F across all possible feed-
back vertex sets of graph G.

Let us demonstrate the property once again at the notorious Petersen graph. First, we show that
Petersen graph has a feedback vertex set of size 3. That can be seen in Figure 1.7. In the second
picture, the red vertices are the ones marked for removal. In the third picture, we can see that
the graph is acyclic, after the marked vertices have been removed. Note that there are multiple
possibilities how to choose such 3 vertices. For example, choosing an outer 2, instead of outer 5,
would work as well.
Now, we show that there can not exist a feedback vertex set of size 2. We surely have to break
the inner and the outer cycle, so the 2 selected vertices must be from the different parts
of the graph. Let us consider without loss of generality that we select vertex number 1 from
the outer cycle (for any other vertex, the situation would be identical, the numbers would
only slightly shift). Removing vertex 1, 3, or 4 from the inner cycle, would leave us with cycle 5-
5-2-2-3-4 and removing vertex 2 or 5, would leave us with cycle 1-1-3-3-2 [4].

Graph Properties 9

1

2

34

5
1

2

34

5

1

2

34

5
1

2

34

5
5

34

1

2

34

5
1

2

34

5
5

34

Figure 1.7 Petersen graph (left) with the feedback vertex set marked in red (middle)
and removed (right), taken from [5], modified.

1.4.1.3 Treewidth
The treewidth is another numerical property describing how distant is the graph in question
to a tree. The distance in this case is not so straight-forward to see like in the case of feed-
back set numbers. The treewidth describes rather how close is the graph to being a tree when pro-
cessing the graph algorithmically. This makes the treewidth a very useful parameter for further
processing of the graph, as many computations can be simplified, when the treewidth of a graph
is known, especially, when the treewidth is low. [2]
Let us start with the definition of a tree decomposition, which is a crucial concept for the definition
of the treewidth.

▶ Definition 1.21 (Tree decomposition). Given a graph G = (V, E), we define its tree de-
composition as a triple T = (VT , ET , β), where β : VT → 2V \ {∅}. For better clarity, we will
refer to elements of V as vertices and elements of VT as nodes. β is a map mapping nodes of VT

onto subsets of vertices of V . These subsets must satisfy three conditions.⋃
x∈VT

β(x) = V ;

for every edge {u, v} ∈ E there exists a node n ∈ VT , such that u ∈ β(n) ∧ v ∈ β(n);

for every vertex v ∈ V , a subgraph T ′ of T , such that
T ′ = ({x | x ∈ VT ∧ v ∈ β(x)}, {{x, y} | v ∈ β(x) ∧ v ∈ β(y) ∧ {x, y} ∈ ET }) is a tree.

The graph defined as (VT , ET) must form a tree.

To put this rather complicated definition into a natural language. We construct a tree with nodes
being the subsets of vertices of the original graph. There are three conditions on these subsets.
The first item of the three tells us that every vertex from V has to be included in at least one
subset from VT .
The second condition tells us, that if there are two vertices directly connected by an edge
in graph G, then there necessarily must exist a subset in VT containing both of them.
The last required property of the tree decomposition is the tree-ness of subgraphs of T induced
by vertices from V . If we take a vertex from V , and then look at subgraph of VT that includes
only nodes containing the selected vertex and edges between these nodes, we must get a tree.
This must hold for all vertices from V . Now, we can continue with the definition of width
of a tree decomposition and treewidth of a graph.

▶ Definition 1.22 (Treewidth). A width of a tree decomposition T = (VT , ET , β) is equal
to maxv∈VT

|β(v)| − 1.
A treewidth of a graph is equal to the smallest possible width across all possible tree decomposi-
tions of this graph.

Graph Properties 10

Let us demonstrate the treewidth on the Petersen graph. The minimal tree decomposition (in
terms of its treewidth) can be seen in.
This decomposition is a valid tree decomposition, as the graph is clearly a tree (does not contain
any cycle and is connected) and all three required conditions are met. The first property holds,
as every number is present in at least one node of the decomposition. The second condition
also holds. The vertex labeled by 0 in the original graph is connected by an edge with vertices
1, 4 and 5. Therefore in the tree decomposition, we can identify a node containing 0 and 1,
and another node (could be also the same node) containing 0 and 4, and another node containing
0 and 5. This holds for any vertex in the original graph. The last required property also holds.
If we take the subgraph of the tree decomposition induced by nodes containing vertex labeled
with 2 in the original graph, we get the two bottom-right vertices. These vertices are connected
and acyclic, thus they form a tree. This once again holds for all vertices from the original graph.
Therefore the shown graph is a valid tree decomposition. The proof that we can not find a tree
decomposition with smaller width is shown in [6]. Therefore the treewidth of Petersen graph is
equal to 4.

0

1

23

4
5

6

78

9

Figure 1.8 A tree decomposition of Petersen graph, [6].

1.4.2 Graph Covering Numbers
Coverings problems typically refer to taking a part of a graph, which, in a certain way, covers
the whole graph.
The graph properties of graph covering numbers typically refer to numerically expressing the min-
imal covering of the graph.

1.4.2.1 Vertex Cover Number
Vertex cover is a set of vertices, such that every edge contains at least one vertex of this subset.

▶ Definition 1.23 (Vertex cover [7]). Given a graph G = (V, E), we say that a subset of vertices
F ⊆ V is a vertex cover if ∀{u, v} ∈ E : u ∈ F ∨ v ∈ F

Then we define the vertex cover number as the smallest possible vertex cover for a graph.

▶ Definition 1.24 (Vertex Cover Number). We define vertex cover number of a graph G
as a smallest possible cardinality across all vertex covers of the graph G.

Graph Properties 11

1

2

34

5
1

2

34

5

1

2

4

34

5

Figure 1.9 Petersen graph with the optimal vertex cover highlighted in red, taken from [5], modified.

For better clarity, we are going to once again demonstrate this property on Petersen graph.
Petersen graph has the vertex cover number equal to 6. First, we show that there exists a set
of 6 vertices that covers all edges of the graph. Such cover can be seen in Figure 1.9. Next we
show that we can not identify a set of size 5 (or smaller) that would cover the whole graph.
We can see that every vertex in the Petersen graph is incident with exactly 3 edges. Therefore,
any vertex added to the cover, can add at most 3 covered edges. Since the graph has 15 edges,
there can not exist a vertex cover of size 4 or smaller, because 4 vertices could only cover at
most 12 edges. Should there exist a vertex cover of size 5, than necessarily, each vertex must
add all of its 3 incident edges to the set of covered edges. Meaning that each incident edge must
not have been added previously to the set by any other vertex in the cover. This implies that
the 5 selected vertices must not share a common edge1. Now we show that such 5 vertices can
not be found in this graph. The graph consists of two cycles of length 5. Once we select 2 vertices
from a cycle of length 5, we can not find any other vertex in the cycle that would be connected
to neither of selected. Once we select two vertices from the outer cycle and two vertices from
the inner cycle, we can not find any other vertex in the graph that would not be incident with
the selected vertices. Thus we can not find 5 vertices not sharing a common edge, which means
that there can not exist a vertex cover of size 5. The calculation of the vertex cover number
of Petersen graph is better explained in [8].

1.4.2.2 Edge Cover Number
Edge cover number also refers to minimal covering of a graph, but this time using its edges.
We once again start with defining the covering set. Edge cover is a subset of edges, such that
for every vertex, there is an edge in the subset, containing it.

▶ Definition 1.25 (Edge cover [7]). Given a graph G = (V, E) we say that a subset of edges F ⊆ E
is an edge cover if: ∀v ∈ V : ∃e ∈ E : e ∈ F ∧ v ∈ e

We then proceed to define the edge cover number very similarly as the vertex cover number.

▶ Definition 1.26 (Edge cover number). We define the edge cover number of a graph G
as the smallest possible cardinality across all edge covers of the graph G.

▶ Remark 1.27. Smallest possible edge cover number for a graph of n vertices is ⌈ n
2 ⌉, as every

edge selected into cover is incident with exactly 2 vertices. Therefore a single edge can add
at most 2 covered vertices. Assuming there exists an edge cover of size ⌈ n

2 ⌉ − 1 or smaller, would
necessarily mean that such edge cover covers at most n − 1 vertices, which is a contradiction
with the edge cover covering all n vertices in the graph.

1In other words, they must form an independent set.

Graph Properties 12

For better clarity, we are going to once again demonstrate this property on Petersen graph.
An optimal edge cover for Petersen graph is not hard to find. We can simply take the edges
connecting the outside cycle and the inner cycle. Such edge cover has cardinality 5. Since
the Petersen graph has 10 vertices, we can not find a smaller edge cover (according to the pre-
vious remark); therefore the edge cover number of Petersen graph is 5. The cover can be seen
in Figure 1.10

1

2

34

5
1

2

34

5

Figure 1.10 Petersen graph with the optimal edge cover highlighted in red, taken from [5], modified.

Chapter 2

Computational Complexity

In this chapter, we are going to discuss theory of computational complexity. Throughout this
thesis, we are going to stumble upon many NP-hard problems, this chapter gives an expla-
nation, why we have not tried to design an efficient algorithm for these problems, and rather
opted to use existing solvers. Although designing an efficient algorithm for these problems is
not deemed impossible the question whether such algorithm can exist, is the central undisclosed
topic of computer science unsolved for long years.
To keep this chapter brief, we are going to limit ourselves only on the P and NP complex-
ity classes and the related sets of problems. For more information about this topic please refer
to the monograph of Arora and Barak [9].

2.1 Input Encoding
In this section, we briefly mention unification of input formats by encoding inputs into a string.
First we start by defining few basic concepts of language theory.

▶ Definition 2.1 (Alphabet). An alphabet is a finite non-empty set of characters.

▶ Definition 2.2 (String). A string over an alphabet is a finite sequence of characters of the al-
phabet.

▶ Definition 2.3 (Language). Language L over the given alphabet A is a subset of all possible
strings of A.

Our typical alphabet will be binary {0, 1}, as all the assumed inputs can be encoded as binary
strings. When we say that a certain problem has two numbers on the input, we actually mean
that on input it has a binary string with these numbers encoded. We are not going to let distract
ourselves with the low level details of encoding, as they are not the main object of our study,
and focus on the bigger picture.

2.2 Decision Problem
In a decision problem, our goal is to decide whether given input satisfies a certain condition.
More formally:

▶ Definition 2.4. A decision problem is a language L = {x | f(x) = 1}, where f is a function
mapping a string onto 0 or 1, depending on whether the string satisfies a specified condition.

13

Computation 14

2.3 Computation
Computation is the process of determining the value of the function for given input. The com-
putation process generally consists of following steps:

read a character from input;

read a character from inner memory;

write a character into inner memory;

either stop outputting a character, or pick a new rule that will be applied next in the com-
putation process.

2.4 Turing Machines
We are going to use the computation model of Turing machine as described by Alan Turing [10].

2.4.1 k-tape Turing Machine
The inner memory of a k-tape Turing machine consists of k tapes, with the tape being an infinite
line of memory cells, which can hold a symbol of working alphabet of the machine.
All tapes have their own head. In every step of the computation, the head can read symbol from its
current cell, write a symbol into the current cell, and/or change the current cell by moving left
or right.
The first tape is considered the input tape, containing the input of the problem. It is read-only,
meaning that its head is not capable of writing characters into memory cells.
The last tape is considered the output tape. The output of computation is present on the output
tape, when the Turing machine halts.
The remaining tapes are considered the working tapes.

2.4.2 Deterministic k-tape Turing Machine
Let us move to defining the computation model of a deterministic variant of the Turing machine.

▶ Definition 2.5 (Deterministic k-tape Turing machine). A deterministic k-tape Turing ma-
chine is a tuple TS = (A, Q, δ), where

A is the alphabet of the machine containing two special symbols. One of them being a blank
symbol □ ∈ A and the other being the start symbol ▷ ∈ A;

Q is the set of states of the machine, with one state q0 ∈ Q being the start state and one state
qhalt ∈ Q being the halting state;

δ is a function Q × Ak → Q × Ak−1 × {L, S, R}k called the transition function.

2.4.3 Non-deterministic k-tape Turing Machine
Now we will define the non-deterministic counterpart of this computation model.

▶ Definition 2.6 (Non-deterministic k-tape Turing machine). A non-deterministic k-tape Tur-
ing machine is a tuple TS = (A, Q, δ), where

A is the alphabet of the machine containing two special symbols. One of them being a blank
symbol □ ∈ A and the other being the start symbol ▷ ∈ A;

Complexity Classes 15

Q is the set of states of the machine, with two special states. One of them being again the start
state q0 ∈ Q, and the other being the accept state qaccept ∈ Q.

δ is a function Q × Ak → 2Q×Ak−1×{L,S,R}k called the transition function.

2.4.4 Computation of Turing Machines
The transition function has on its input a state the machine is currently in, and k characters,
read by all k heads. For such input, it returns a new state, in which the machine will be now;
k −1 characters to write by all heads (except for the input tape one), and a command Left, Stay,
or Right for all k heads to change their current cell.
At the beginning of the computation, all tapes are filled with the blank symbol □, except
for the input tape. Input tape contains a start symbol ▷ followed by the finite input string.
The rest of the input tape is initialized with the blank symbol, just like the other tapes.
The initial state of the machine is the start state q0. The machine then applies the transition
function as explained above, until it reaches the halting state. After the Turing machine reaches
its halting state, it halts and the contents of the tapes are not modified further. It is also possible
for a certain input that the Turing machine may never reach the halting state, in that case the
Turing machine never halts, therefore it does not accept the input.

2.4.4.1 Computation of Non-deterministic Turing Machines
In the non-deterministic variant of the Turing machine the transition function returns the same
instructions as the deterministic variant (new state, characters to write, commands for heads),
however the function returns a set of possibilities. In every step the non-deterministic Tur-
ing machine makes an additional decision which of these possibilities to use. If there exists
a sequence of these decisions that gets the Turing machine into the state of qaccept, then the re-
sult of the computation is 1. If none of the decision sequences gets the machine into the state
of qaccept, the result of the computation is 0.

2.5 Complexity Classes
Now, with the computational models defined, we can define the concept of complexity class
and few particular complexity classes.

▶ Definition 2.7 (Complexity class). Complexity class is a set of decision problems that can
be computed with a given complexity resource.

We are going to focus on complexity resource of running time. Let us firstly formalize and define
this complexity resource.

▶ Definition 2.8 (Running time). Let f be a decision problem, T be a function N → N, and M be
a Turing machine. We say that M computes f in T (n) time, if for every string x it halts with f(x)
on output tape after at most T (|x|) steps1.

1Applications of transition function.

Complexity Classes 16

2.5.1 P Complexity Class
Let us start with the definition of the complexity classes of DTIME2.
▶ Definition 2.9 (DTIME). For a function f : N → N, we define DTIME(f(n)) as a set of all
decision problems computable on a deterministic Turing machine in c · f(n) time, for some
constant c > 0.
Now, we can define the P3 complexity class.
▶ Definition 2.10 (P complexity class). P =

⋃
c≥1 DTIME(nc)

P class consists of all decision problems computable in polynomial time on a deterministic Tur-
ing machine. This can be vaguely translated as problems that are efficiently computable in our
world. We will often address problems contained in P as problems computable in polynomial
time.

2.5.2 NP Complexity Class
Very similarly, we are going to define the NP4 complexity class. We will start with the definition
of NTIME5, a non-deterministic variation of DTIME defined earlier.
▶ Definition 2.11 (NTIME). For a function f : N → N, we define NTIME(f(n)) as a set of all
decision problems computable on a non-deterministic Turing machine in c · f(n) time, for some
constant c > 0.
Now we can define the NP complexity class as follows:
▶ Definition 2.12 (NP complexity class). NP =

⋃
c≥1 NTIME(nc)

An equivalent definition of NP class is the following:
▶ Definition 2.13 (NP complexity class). A decision problem f is a member of NP class,
if there exists a polynomial p : N → N and a deterministic Turing machine TM , such that
for every binary string x: f(x) = 1 ⇐⇒ ∃ u ∈ {0, 1}p(|x|), such that TM(x, u) = 1, which can
be computed in polynomial time.
Proof of equivalency of these definitions can be seen in [9].
This alternative definition tells us that for every input string x exists a certificate u of polynomial
length that certifies the fact that x is an element of the language.
To see an example of such certificate, let us take the decision problem of whether a given graph
has a feedback vertex set (as defined in Subsubection 1.4.1.2) of size k. This problem is a member
of NP class. The certificate in this case is a list of k vertices that form a feedback vertex set.
Given such certificate, we could detect whether the graph contains any cycle after removing
the vertices included in the list. Such problem is known to be solvable in polynomial time using
depth-first search [2].
The NP class consists of decision problems that can be verified in polynomial time on a determin-
istic Turing machine. Given an instance of a problem and a solution (certificate), Turing machine
can verify that the solution solves the problem.
The non-deterministic Turing machine can try all possible solutions in its computational branches
and if one of them is a solution that certifies the presence of input in language, then the Tur-
ing machine will reach qaccept in that computational branch, yielding the output of 1.
If we let a non-deterministic Turing machine compute a problem from NP class, then the non-
deterministic decisions used for transition into qaccept, made by such Turing machine, are also
a valid certificate for the input.

2DTIME stands for deterministic time.
3P stands for polynomial
4NP stands for non-deterministic polynomial
5NTIME stands for non-deterministic time

Notable NP-hard Problems 17

2.5.3 NP-hardness and NP-completeness
In this subsection, we are going to define the concepts of NP-hardness and NP-completeness. We
start by defining the polynomial reducibility among decision problems. [11, 12]

▶ Definition 2.14 (Polynomial-time reudcibility). We say that a language A ⊆ L is polynomial-
time reducible to a language B ⊆ L, where L is set of all binary strings; if there exists
a polynomial-time computable function f : L → L, such that ∀x ∈ L : x ∈ A ⇐⇒ f(x) ∈ B.

We can see that if the problem A is polynomial reducible to B, and we would be able to compute B
in polynomial time, then we would be able to compute A in polynomial time.
Now we can move onto definition of an NP-hard problem.

▶ Definition 2.15 (NP-hardness). A decision problem K is said to be NP-hard when for every
problem L in NP there exists a polynomial time reduction from L to K

Subsequently, we define the NP-complete problems.

▶ Definition 2.16 (NP-completeness). A decision problem is said to be NP-complete, if it is
NP-hard and it is a member of NP class.

2.5.4 Relation of P and NP Complexity Classes
Trivially, we can see that: P ⊂ NP. However, probably the biggest undisclosed question of com-
puter science is whether P equals NP. Finding an answer to this question might be one of the biggest
advances in the modern science. Thanks to its importance, P versus NP problem has been placed
on the list of Millenium Prize Problems [13].
If P would equal NP, then all NP problems would most probably be efficiently solvable in our
world. This equality could be proved by finding a polynomial algorithm for any of the NP-hard
problems. As it would mean that all NP problems can be converted in polynomial time to a prob-
lem, solvable in polynomial time. Therefore, solving NP-hard problems in polynomial time is
a very ambitious task. In this thesis we rather used existing solvers, which are able to solve some
NP-hard problems in bearable time for smaller inputs using heuristics or other techniques.
Solving NP-hard problems using heuristics is an interesting discipline of computer science. For
example PACE6 holds every year an annual competition, where a particular NP-hard problem is
selected and the competitors are trying to design the fastest program for computation of the prob-
lem [14]. In this thesis, we are going to use for practical usage some of the algorithms submitted
into this competition.

2.6 Notable NP-hard Problems
In this section we mention few NP-hard problems that we will discuss further in our work.
Definitions of these problems and a proof of NP-hardness, can be seen in [2, 9, 11]. Following
problems are included in the set of NP-hard problems:

the problem of whether graph contains a feedback vertex set of size k,

the problem of whether there exists a tree decomposition of the given graph of width k,

the problem of whether the given graph can be covered using k vertices,

the problem of finding the hitting set of size k,

the problem of 0-1 integer programming.
6Parameterized Algorithms and Computational Experiments

Notable NP-hard Problems 18

The first three problems were introduced in the first chapter. Let us introduce the other two.

▶ Definition 2.17 (The problem of finding the hitting set of size k). Given a family of sets
F = {S1, S2, . . . , Sn}, find a subset of size k of the universum A ⊆

⋃
S∈F S, such that ∀S ∈ F :

A ∩ S ̸= ∅.

▶ Definition 2.18 (The problem of 0-1 integer programming). Given a matrix A ∈ Zm,n

and a vector b ∈ Zm, determine, whether there exists a vector x ∈ {0, 1}n, such that Ax ≤ b7.

7Using elementwise comparison.

Chapter 3

Linear Programming

Linear programming revolves around solving optimization problems in a given mathematical
model. Its origins date to the times of Fourier and it has been described long before invention
of the modern computers; therefore it has been well studied by mathematicians, economists,
and other scientists, and grew to giant dimensions. We will only go quickly through few topics
related to our work. For a better overview of the whole topic, please refer to [15].

3.1 Linear Program
The linear programming is focused around optimizing a linear objective function while respecting
given linear equalities or inequalities.
Linear program consists of

variables, typically denoted x1, . . . , xn ∈ R;

an objective function c1x1 + · · · + cnxn, where c1, . . . , cn ∈ R, to be maximized or minimized;

a set of constraints in form a1x1 + · · · + anxn (≥ | = | ≤) b.

A vector x ∈ Rn satisfying all constraints, is called a feasible point or a feasible solution. The set
of all feasible points is called the feasible region of the model. If the model has an empty feasible
region, then the model is called infeasible. An optimal solution is the element of the feasible
region that has the maximal or minimal value of objective function out of all points in the feasible
region.

3.2 Algorithms
Many algorithms for solving a general linear program have been introduced over the last decades.
First described algorithm for solving linear problems was the Simplex algorithm, invented by
George B. Dantzig in 1947 [16]. We are going to better introduce and demonstrate the run
of Simplex algorithm on an example later in this chapter in Subsection 3.3.2.
In the late 1970’s Leonid Khachiyan discovered a polynomial algorithm for solving linear pro-
grams. This algorithm is nowadays referred to as ellipsoid method [17].

19

Example 20

3.3 Example
Let us consider a following linear program with two variables and six constraints:

maximize 3x1 + 2x2
such that:

x1 + x2 ≤ 9
3x1 + x2 ≤ 18

x1 ≤ 7
x2 ≤ 6

x1, x2 ≥ 0

3.3.1 Graphical Representation
We have chosen only two variables to simplify the visualization of the problem. With two
variables we can visualize the value of variables using Cartesian coordinate system with x1 using
the x axis and x2 using the y axis.
We can easily see that a single inequality represents a line that splits the plane to two sub-planes.
One of these sub-planes contains points that satisfy the inequality. Therefore, if we take all lines
and mark the intersection of all sub-planes satisfying the constraints, we will get the feasible
region.
In case of our example, we get the feasible region as in Figure 3.1:

Figure 3.1 A graphical representation of a linear program [15].

Although for more than two variables it would get harder to visualize. The property of any
constraint splitting a general hyperspace to two sub-hyperspaces still holds. Therefore, a feasible
region, if it exists, always has a shape of convex polytope.
To visualize the value of objective function over the feasible region, we would need a third
dimension. We can either project three dimensional graph onto two dimensions, or we can draw
level lines over the two dimensional graph as contours, connecting points in which the objective
function has identical value. Both of these approaches can be seen in Figure 3.2
As we can see from these visualizations, the maximal value of the objective function is achieved
in point marked in the previous figures as v2, which is the intersection of lines
3x1 + x2 = 18 and x1 + x2 = 9. This intersection can be evaluated as [4.5, 4.5], meaning that
the optimal solution of this linear problem is x1 = 4.5, x2 = 4.5, with value of 22.5.

Integer Linear Programming 21

Figure 3.2 A visualization of the objective function [15].

3.3.2 Simplex Algorithm
Description of the simplex algorithm can be simplified as follows: Start in one of the vertices
(points, in which the constraints intersect, marked as vi in previous figures) and then travel
by edges to a neighbouring vertex, in which the value of objective function increases (or de-
creases). More detailed description is available in the cited monography [15]. It is good to note
that over the years the algorithm itself had many modifications, with this being the general idea
that stood the same.
In this example, we might for example start in vertex marked as v1, which has a neighbouring
vertex v2, in which the value of objective function is higher. Therefore we travel to vertex v2.
With all neighbours of v2 having a lower value, we finish the run of algorithm. Since the object
is convex, we can safely say that we have found the global maximum.

3.4 Integer Linear Programming
A special case of linear programming is the integer linear programming. In this special case,
we require some (or all) of the decision variables to be integers, instead of real numbers. As
we have discussed, the linear programming is solvable in polynomial time. On the other hand,
the integer linear programming is known to be NP-hard already for instances where the domain
is {0, 1} as shown in [11]. On a positive note, integer linear programming is one of the most
efficiently solvable NP-hard problems with existing software. In our work, we are going to reduce
many problems onto problem of integer linear programming and use the help of existing solver
introduced in the next section.

3.5 Gurobi Optimization
Gurobi optimization engine [18] is one of the best available solvers for linear programming,
integer linear programming and other mathematical optimization problems. Gurobi is internally
switching used algorithm, based on the input, and it is also able to run the computation in parallel
on multiple threads.
It offers an interface for many programming languages, including Python, C++, and many more.
We have used this solver for solving the problem of integer linear programming, as the solver is
greatly optimized and provides a good way of solving NP-hard problems.

Chapter 4

Previous Research of Sidewalk
and Pedestrian Networks

The sidewalk networks have not been studied as exhaustively as the other types of real-world net-
works (like road networks or infrastructural networks). Mainly since they do not suffer from con-
gestion and overcrowding so much, compared to the other types of networks. However, in the last
years, the attention given to sidewalks and generally pedestrians has risen. This is a reflection
of promoting walking as a mean of transport. With the growing attention to sustainability
and protection of the planet Earth, walking is (and the trend is most likely going to continue)
becoming a promoted mean of transport worldwide. Therefore, modern science pays closer at-
tention, whether cities are designed so that walking is a sufficient alternative for other, more
pollution-heavy, means of transport, especially personal cars.
However, typical main article of research, of most works concerned by this topic, are not side-
walks, but rather generally pedestrian networks. To simplify the difference between these two
terms, pedestrian networks include sidewalks, but apart from that, they also include pedestrian
crossings, residential roads or patches of green, which pedestrians typically use for walking. Ad-
ditionally, some sidewalks might also not be a suitable part of pedestrian network, if the sidewalk
is damaged or inaccessible.
The main research topics of sidewalk networks or pedestrian networks vary, however there has
been no such work, measuring graph properties of sidewalk networks purely for theoretical re-
search. On the other hand, there have been few studies concerned with the similar topic, we will
mention a few of them in this chapter.
In [19], Rhodas et al. are measuring betweenness centrality and general efficiency of pedestrian
networks. These parameters are typically measured for other types of networks (as discussed ear-
lier, road networks or infrastructure networks), as it is an important parameter for identifying
bottlenecks in networks, preventing congestion. Apart from that, the authors are giving an at-
tention to sidewalk coverage and availability. Studying, whether a pedestrian can use walking
as a mean of transport, to fulfill their needs, with a special attention to the length of tour they
have to take to do so. As it is mentioned in this work, a pedestrian walking on a sidewalk is
in constant danger of getting involved in an accident. The danger walking brings is another topic
of this work, with a final takeaway that future cities should minimize the distance a pedestrian
needs to travel.
The dangers that pedestrians face while walking are also analysed in [20]. In this work, Osama
and Sayed are evaluating the impacts of pedestrian network structure on safety of its users. Au-
thors are studying the probability of a pedestrian being involved in a crash, subject to factors,
such as continuity, linearity, coverage and slope of the pedestrian network.

22

23

Our work varies in two main points. First of all, we are interested solely in the sidewalk networks,
rather than the pedestrian networks, as our motivation is to create a realistic sidewalk network
generator for 3D model generation1. Secondly, we are studying the sidewealk networks in a much
more theoretical way, as we want to give an insight to this topic purely from the perspective
of discrete mathematics and graph theory.
Many works studying sidewalk or pedestrian networks remark that obtaining datasets for study-
ing these networks is a considerably harder task, compared to obtaining similar data for other
types of real-world networks. Stating that this is once again due to the fact that sidewalk net-
work analysis has not been deemed as important as analysis of the other types of networks.
We certainly can concur with this notion. In fact, availability of road networks being signifi-
cantly higher than the availability of sidewalk networks, is the main motivation for designing
an algorithm that could generate a realistic sidewalk network from road network and building
outlines.

1Therefore, for example pedestrian crossings can not be generated together with the sidewalks, as they are
visually completely different.

Chapter 5

Obtaining the Data

In this chapter, we discuss the process of obtaining the data of sidewalk networks. We start
by describing data formats. Then we introduce the source of our data. And we finish this
chapter with the description of the process of collecting and serializing the data.

5.1 Data Formats
With growing number of applications operating with data, the need for unification of data for-
mats used has risen. In this section we are going to introduce few modern data formats used
by computational programs, web services, desktop applications and other software.

5.1.1 XML
XML1 is a markup language defining a structure of documents for storing generally any type
of data.
XML document consists of elements. Start of an element is marked with the opening tag
and the end is marked with the closing tag. The opening tag consists of the opening angu-
lar bracket, name of the element, additional non-mandatory attributes and the closing angular
bracket. The closing tag contains the opening angular bracket, backslash, the name of the ele-
ment and the closing angular bracket. The names in the opening and closing tags must match.
An element can contain other elements in its body (space between the opening and closing
tags), thus creating the structure of the document. An XML document starts with the ver-
sion and encoding specification, followed by root element, which contains all other elements
in the document. An example of XML document can be seen in Code listing 5.1. XML aims
to be a human-readable, self-descriptive format to be used for data exchange, configuration files
and other use cases. [21]

5.1.2 JSON
JSON 2 is another data format for representing data of any kind. It was designed to be more
light-weight, more human-readable and easier for parsing and generating by computers than
other data formats.
The JSON format consists of objects. An object is enclosed by curly brackets. The object

1eXtensible Markup Language
2JavaScript Object Notation

24

Data Formats 25

<?xml version="1.0" encoding ="UTF-8" ?>
<bookstore>

<book category="fiction">
<title>Harry Potter and the Sorcerer's Stone</title>
<author>J.K. Rowling</author>
<year>1997</year>
<price>20.00</price>

</book>
<book category="non-fiction">

<title>On the Origin of Species</title>
<author>Charles Darwin</author>
<year>1859</year>
<price>15.00</price>

</book>
</bookstore>

Listing 5.1 An example of XML document.

contains key-value pairs, with key being the name of an attribute, enclosed by quotation marks.
The value may be in a string format (enclosed by quotation marks), array format (enclosed by
sharp brackets, containing any number of objects or primitive values), number format or boolean
format. The individual key-value pairs are separated by a comma and between the key and the
value in a pair, there is a colon. An example of JSON representing the same entities as the XML
document from the previous section can be seen in Code listing 5.2 [22]

{
"bookstore": {

"books": [
{

"category": "fiction",
"title": "Harry Potter and the Sorcerer's Stone",
"author": "J.K. Rowling",
"year": 1997,
"price": 20.00

},
{

"category": "non-fiction",
"title": "On the Origin of Species",
"author": "Charles Darwin",
"year": 1859,
"price": 15.00

}
]

}
}

Listing 5.2 An example of JSON representation.

OpenStreetMap 26

p tw 10 15
1 2
1 5
1 6
2 3
2 7
3 4
3 8
4 5
4 9
5 10
6 8
6 9
7 9
7 10
8 10

Listing 5.3 GR representation of Petersen graph

5.1.3 GR
GR3 is a format used by PACE [14] for encoding of undirected graphs, as defined in Section 1.1.
This format is used for annual competitions focused on implementing the most efficient algorithms
for computationally complex problems. This format is designed mainly with efficiency in mind
and it is supposed to be very quickly and easily readable by a computer.
The description of the graph starts with a p-line. This line starts with a letter p followed
by an abbreviation of the problem, for which the dataset was defined4. Additionally p-line
includes two numbers. The first number represents the number of vertices, and the second one
represents the number of edges. p-line is followed by a list of edges, each line represents one edge
given by a pair of vertices split by a single space. The vertices are being implicitly represented
as natural numbers from 1 to number of vertices. An example of this graph encoding can be seen
in Code listing 5.3, where we can see Petersen graph (as defined in Subsection 1.3.5) encoded
into GR.

5.2 OpenStreetMap

OpenStreetMap5 is a free, collaborative and open map of planet Earth built by volunteers. Apart
from the map, OSM makes publicly available data it uses for creation of the map. An example
of the map can be seen in Figure 5.1.
The publicly available data from OpenStreetMap are widely used for building other projects6,
since the OSM provides a rich API7 for retrieving of this data. [23, 24]

3Graph format
4For example tw as treewidth.
5Abbreviated as OSM, also incorrectly called Open Street Map or Open Street Maps.
6One of them being the VBS Blue.
7Application Programming Interface

OpenStreetMap 27

Figure 5.1 A map from OpenStreetMap project [25].

5.2.1 History
The OpenStreetMap project was founded in 2004 by Steve Coast, initially focusing on mapping
of the United Kingdom. In 2006, OpenStreetMap Foundation was established to promote, support
and protect the project. However OpenStreetMap Foundation does not own the data, as nobody
owning the data is the main idea behind this project. In the same year, Yahoo let its aerial
photography to be a base for OpenStreetMap, which enabled more contributors to get involved,
benefiting the project massively.
The ways for importing and exporting the data only continued to grow. For example, in year 2008,
the data became exportable to portable GPS8 devices. Nowadays, OSM is a very unique project,
which distributes quality geographical data for free and various usage. However, it is good to note
that the amount of detail varies significantly depending on the region.

5.2.2 Format
OpenStreetMap defines its own data format for data available via its API. This format is called
OSM XML and it is based on XML.
An OSM XML file begins with the version of OSM API, followed by bounding box (described in
the geographic coordinate system). The main part of the document consists of list of nodes, list
of ways and list of relations. These terms are defined in following subsections.

5.2.2.1 Tag
A tag is a singular property of a real-world object represented by a key word pair. An example
of a tag can be seen in Code listing 5.4.

8Global Positioning System

OpenStreetMap 28

<tag k="colour" v="brown"/>

Listing 5.4 An example of a single tag from OSM, response from OSM API
to GET /api/0.6/node/2905214181, modified.

5.2.2.2 Node
A node is a representation of a single point feature, or more commonly it is a part of a way,
another OSM entity, defined in the next section.
Every node contains its ID9, latitude and longitude. Additionally, a node can include any number
of tags (with no tags also being a possibility), describing better what kind of a real-world feature
the node represents.
An example of a node from OSM representing a bench can be seen in Code listing 5.5.

<osm
version="0.6"
generator="CGImap 0.9.2 (1123753 spike-07.openstreetmap.org)"
copyright="OpenStreetMap and contributors"
attribution="http://www.openstreetmap.org/copyright"
license="http://opendatacommons.org/licenses/odbl/1-0/">

<node
id="2905214181"
visible="true"
version="3"
changeset="95334039"
timestamp="2020-12-05T13:28:55Z"
user="koldas"
uid="6383771"
lat="50.1034230"
lon="14.3903959">

<tag k="amenity" v="bench"/>
<tag k="backrest" v="no"/>
<tag k="colour" v="brown"/>
<tag k="material" v="wood"/>
</node>
</osm>

Listing 5.5 An example of a single node feature from OpenStreetMap, a response from OSM API
to GET /api/0.6/node/2905214181, reformatted.

5.2.2.3 Way
A way is an ordered sequence of nodes. A way is used for representation of linear features (like
roads or sidewalks) or outlines of areal features (like building outlines or state borders). Apart
from nodes, it can contain any number of tags better describing the real-world feature. An ex-
ample of a way from OSM representing a residential road can be seen in Code listing 5.6

9ID stands for identificator

OpenStreetMap 29

<osm
version="0.6"
generator="CGImap 0.9.2 (1214374 spike-07.openstreetmap.org)"
copyright="OpenStreetMap and contributors"
attribution="http://www.openstreetmap.org/copyright"
license="http://opendatacommons.org/licenses/odbl/1-0/">

<way
id="8588965"
visible="true"
version="21"
changeset="143633267"
timestamp="2023-11-04T23:21:02Z"
user="Martin2035"
uid="6588887">
<nd ref="683826"/>
<nd ref="1244162315"/>
<nd ref="60953383"/>
<nd ref="60953384"/>
<nd ref="331441551"/>
<nd ref="683828"/>
<tag k="bicycle" v="yes"/>
<tag k="covered" v="no"/>
<tag k="highway" v="residential"/>
<tag k="lanes" v="1"/>
<tag k="lit" v="yes"/>

</way>
</osm>

Listing 5.6 An example of a way feature from OpenStreetMap, a response from OSM API
to GET /api/0.6/way/8588965, reformatted, modified.

5.2.2.4 Relation
A relation is an ordered sequence of nodes and ways which are connected together, typically
in a more abstract way. Relations are typically used for modeling of cities, states and other re-
gions. Relations can optionally include tags, just like the other entities. An example of a relation
from OSM can be seen in Code listing 5.7

5.2.3 APIs
OpenStreetMap specifies two different APIs, both with different use-cases. The first one is
the classical modern API enabling both reading and writing of raw OSM data. Apart from that,
OSM also provides a read-only API called Overpass API. Overpass API does not enable mod-
ification of data, its purpose is only to fetch the data. Overpass API is ready for handling big
chunks of data and defines its own querying language. This language more resembles a scripting
language, rather than a classical query language. It provides concepts better known from pro-
gramming and scripting languages, like cycles or conditional jumps. The main purpose of this
language is to give user a simple way for obtaining and filtering the data, as the amount of OSM
data in certain parts of the world is humongous. Therefore, if user is interested in specific data
for their application, they can easily filter unwanted data on OSM server side.

OpenStreetMap 30

<osm
version="0.6"
generator="CGImap 0.9.2 (3191307 spike-07.openstreetmap.org)"
copyright="OpenStreetMap and contributors"
attribution="http://www.openstreetmap.org/copyright"
license="http://opendatacommons.org/licenses/odbl/1-0/">

<relation
id="428868"
visible="true"
version="16"
changeset="143023364"
timestamp="2023-10-23T15:16:14Z"
user="StenSoft" uid="255936">

<member type="node" ref="297896636" role="admin_centre"/>
<member type="way" ref="181639516" role="outer"/>
<member type="way" ref="181639512" role="outer"/>
<member type="way" ref="181639509" role="outer"/>
<member type="way" ref="181639506" role="outer"/>
<member type="way" ref="512311736" role="outer"/>
<member type="way" ref="181639502" role="outer"/>
<member type="way" ref="181639496" role="outer"/>
<member type="way" ref="180740868" role="outer"/>
<member type="way" ref="577535890" role="outer"/>
<tag k="admin_level" v="10"/>
<tag k="boundary" v="administrative"/>
<tag k="name" v="Dejvice"/>
</relation>
</osm>

Listing 5.7 An example of a relation from OpenStreetMap, response from OSM API
to GET /api/0.6/relation/428868, reformatted,

Collecting and Serializing the Data 31

5.2.4 OSMnx
Most modern programming languages have multiple dedicated libraries or packages for communi-
cation with OSM Overpass API. One of them being the OSMnx [26], which is a Python package
specialized for obtaining network data from OSM. OSMnx uses data representations compatible
with another Python package NetworkX [27] (Python package for studying of networks, mostly
from the perspective of graph theory).

5.3 Collecting and Serializing the Data
As a source of the data we have used the OpenStreetMap. Choosing OpenStreetMap was one
of the most straight-forward decisions we have made, as the whole existing project of VBS Blue
uses OSM as its source data for various features (including road networks or building outlines,
which would be the input data of the future potential algorithm).
It should be noted that there are not many better alternatives. As we have discussed in previous
chapter, obtaining sidewalk data is a fairly more challenging task than obtaining, for example,
road network data.

5.3.1 Analysed Locations of the World
As we have mentioned in the previous section covering the OpenStreetMap project, the level
of detail in OpenStreetMap highly depends on the location we choose to study. Non-surprisingly,
the level of detail is at its highest in the most developed or the most culturally significant parts
of the world.
We have used the assistance of a community managed website [28], which summarizes the most
well-mapped placed in the OSM project. Although, we had to ensure ourselves that the desti-
nations include the sidewalk data, as they are often not present, even in places, marked by this
site as the ”Best of OSM”.
We have tried to make the datasets more diverse, as the city design naturally varies over different
nations and cultures. Unfortunately, there is only a very few data available outside of Europe
and the United States. On the other hand, the city design in Europe is very different compared
to the American one.
In the end, we have settled for the following destinations of the world:

Černý Most, Prague, Czech Republic;

Cēsis, Latvia;

College Park, Maryland, United States of America;

Dejvice, Prague, Czech Republic;

Grenoble, France;

Helsinki, Finland;

Raleigh, North Carolina, United States of America;

Donostia-San Sebastián, Spain10;

Santa Cruz, California, United States of America.
10Official name of Donostia-San Sebastián is a bilingual combination of Basque and Spanish name of the city

(both meaning Saint Sebastian), in this work we will refer to this city as San Sebastián, as it is a name more
commonly used outside of the Basque area.

Collecting and Serializing the Data 32

5.3.2 Usage of OSMnx Package
When we selected the locations, obtaining their sidewalk data from OSM was not a difficult
task. We have taken all features having a value of tag highway set to footway, path or steps;
or a value of tag foot set to designated or yes.
With the help of Python package OSMnx [26], we have been able to acquire the data using just
a few lines of code, which can be seen listed in Code listing 5.8.
This code snippet generates an outcome as in Figure 5.2. It can be seen,that the data obtained
from OSM include more information than we need, such as the location of the vertices or shapes
of the edges. Since we were interested solely in vertices and edges connecting them, we have
simplified the data before serializing, forgetting the unnecessary information.
We have serialized the obtained data into JSON and GR formats.
The JSON format is a good general representation of any data. Therefore exporting the data
to a JSON was the first thing we have done. We have decided to use the following JSON
representation. The object of graph includes two lists, called ”vertices” and ”edges”. The list
of vertices is an unordered list of unique numbers. These numbers are OSM IDs of OSM nodes
represented by these vertices. The list of edges is a list of lists of length two (for simplicity,
we will call these lists pairs). Each pair represents an edge in the graph. Naturally, such pair
represents an edge between the two vertices it contains.
For exporting data into JSON, Python is already providing a library without any additional
package, therefore the export was a simple task.
Additionally, we have decided to export the data into the GR format, as many solvers used
for identifying the structural properties of the networks accept input in this format. We have
done the conversion to GR format ourselves. The main difference between the chosen JSON
representation and the GR format is that GR format implicitly represents the vertices as natural
numbers between 1 and the number of vertices, whereas our JSON format uses the OSM IDs
for vertex representation.

Collecting and Serializing the Data 33

#!/bin/env python3

from osmnx import graph_from_place, plot_graph as ox_plot_graph, project_graph
import networkx as nx
import matplotlib.pyplot as plt

def get_osm_graph(place_name : str) -> nx.MultiDiGraph:
"""

Fetches data of sidewalks from place given by place_name
"""
custom_filters = ['["highway"˜"footway|path|steps"]','["foot"˜"yes|designated"]']
graph_parts = [graph_from_place(place_name, network_type='all', retain_all=True, simplify=True, custom_filter=custom_filter)

for custom_filter in custom_filters]

return nx.compose_all(graph_parts)

def visualize_osm_data(graph : nx.MultiDiGraph):
"""

Visualization of OSM data
"""
ox_plot_graph(project_graph(graph))
plt.show()

def main():
place_name = "Dejvice, Prague, Czechia"
osm_graph : nx.MultiDiGraph = get_osm_graph(place_name)
visualize_osm_data(osm_graph)

if __name__ == "__main__":
main()

Listing 5.8 Python script exporting and visualizing the sidewalk data from OSM.

Collecting and Serializing the Data 34

Figure 5.2 A visualization of the data obtained from OSM for Dejvice, Prague, Czech Republic.

Chapter 6

Graph Properties Measurement
and Evaluation

The main part of our research was the analysis of graph properties of the real-world sidewalk
networks. In this chapter, we will go through the process of measuring properties, describing
challenges it brought, and how we coped with them. We will also describe the reason, why
we selected these particular properties for measuring, and discuss our results, stating the main
takeaways for the development of the sidewalk network generating algorithm.

6.1 Feedback Edge Set Number
The first property we measured was the feedback edge set number of the graphs, as defined
in Subsubection 1.4.1.1.

6.1.1 Motivation
The feedback edge set number is a property that could help us massively in creation of the al-
gorithm for sidewalk generation. Our first idea for designing such algorithm is to identify ver-
tices (how should the vertices be identified is yet undisclosed) and continue by finding a minimal
spanning tree1. At that point we would start adding edges to make the network look more
realistic. How many edges we should add can be answered by this parameter.

6.1.2 Measurement
Measuring value of this property was a surmountable task. Finding feedback edge set number
is a problem known to be solvable in polynomial time. The idea of the polynomial algorithm
is fairly simple. Spanning trees (or forests) are maximal acyclic subgraphs. Therefore to find
the feedback edge set number of a given graph, we take the difference between the number of its
edges and the number of edges in any of its spanning trees (or forests). [4]
For any connected graph G = (V, E) and its spanning tree GT = (V, ET), the feedback edge set num-
ber is equal to |E|−|ET |. The problem can be simplified further, when we realize that the number
of edges in a spanning tree, can be identified just from the number of vertices of the graph. Using
one of the alternative definitions of a tree: Graph G = (V, E) is a tree ⇐⇒ it is connected
and |E| = |V | − 1, we can conclude that we can replace |ET | in the expression and get a simple

1Minimal in its length.

35

Feedback Vertex Set Number 36

way to calculate feedback edge set number for a connected graph as |E| − |V | + 1.
Furthermore, we can handle disconnected graphs in a similar way, using this expression for all
of its connected components. For any graph G and its maximal connected components:
G1 = (V1, E1), G2 = (V2, E2), . . . , Gk = (Vk, Ek) such

⋃k
i=1 Gi = G, we can calculate the feed-

back edge set number as
∑k

i=1 |Ei|− |Vi|+1. We can split this sum into separate sums as follows∑k
i=1 |Ei| −

∑k
i=1 |Vi| +

∑k
i=1 1. And since all connected components are disjoint and add up

to the whole graph G, we can rewrite this as follows: |E| − |V | + k, where k is the number
of connected components of G. Since a connected graph will have k equal to 1, this expression
can be actually applied on all graphs, regardless of whether they are connected or not. This is
the expression we used to identify the feedback edge set number of the sidewalk networks.

6.1.3 Results
First, we show our results for all datasets in Table 6.1. In this table, we abbreviate feed-
back edge set number as FESN and feedback edge set as FES.

Table 6.1 Measured values of feedback edge set number.

Dataset ∥V∥ ∥E∥ FESN Relative size of FES
Černý Most, PRG, CZE 1 553 1 893 377 24.87 %
Cēsis, LAT 1 122 1 244 245 24.52 %
College Park, MD, USA 5 110 6 392 1 534 31.58 %
Dejvice, PRG, CZE 1 675 1 907 372 24.23 %
Grenoble, FRA 9 647 11 688 2 711 30.20 %
Helsinki, FIN 115 318 123 291 18 483 17.64 %
Karĺın, PRG, CZE 1 070 1 364 345 33.86 %
Raleigh, NC, USA 36 385 39 930 5 667 16.54 %
San Sebastián, ESP 4 782 4 961 813 19.60 %
Santa Cruz, CA, USA 13 060 14 494 2 710 23.00 %

We can see that the feedback edge set number differs across all datasets considerably. It came
as no surprise; rather, it aligned with our anticipatory projections, that with the increasing num-
ber of edges, the size of minimal feedback edge set will also grow.
Therefore, apart from feedback edge set number, we have also measured the relative size of the min-
imal feedback edge set. The relative size of feedback edge set expresses, how big is the feed-
back edge set compared to the rest of edges. To be more specific, the exact formula used for
calculation is f

∥E∥−f , where f is the value of the feedback edge set number. We can see that this
number does not differ too dramatically.
We are interested in this ratio, as it gives us a relative number of edges we should add, after
we have constructed the spanning tree for vertices, in the generation algorithm. We can see
that this number typically stays around 20 % and for bigger datasets (which are generally more
trustworthy, as they do not contain that many false endpoints, where the network is ended by
the end of the dataset, rather than the actual end of the sidewalk), it gets even lower.

6.2 Feedback Vertex Set Number
After we have successfully measured the feedback edge set number, we continued with the feed-
back vertex set number, a property, which we have defined in Subsubection 1.4.1.2.

Feedback Vertex Set Number 37

6.2.1 Motivation
We were interested in the feedback vertex set number, as it is a parameter that could tell us
whether the selection of vertices in the algorithm is structurally correct. Additionally, since
deciding the feedback vertex set number is definitely a non-trivial task, with the problem being
NP-hard, our results can provide a rough estimation for any sidewalk network, without the need
of the computationally intense calculation of the parameter.

6.2.2 Measurment
As we have mentioned, deciding the value of the feedback vertex set number is a problem be-
longing to the NP-hard class. Therefore, for calculation of this property, we have used existing
solvers. Despite that, for the biggest datasets, we can still only provide boundaries of the value,
rather than the exact value, which proved to be too difficult to measure in some cases.

6.2.2.1 Exact Value and Upper Bound
For calculation of this property, we have used a solver developed by Iwata and Imanishi [29, 30],
as a part of PACE challenge 2016.
This solver gives an upper bound and incrementally improves it, until it reaches an optimum,
at which point it stops.
We were able to obtain the exact value of the feedback vertex set number for few datasets. We
were also able to get an upper bound for almost all the datasets, apart from the biggest ones.
The specification of the challenge mentions that the solvers were tested against graphs with
the number of vertices ranging from 30 to 20 000, therefore it does not come as a surprise
that the dataset of Helsinki (with more than 100 000 vertices), does not get any upper bound
calculated.
What was more surprising, was definitely the solver achieving the best performance on the dataset
representing the city of San Sebastián. This dataset belongs among our datasets to the ones with
the medium size2, so it was rather an unexpected outcome. At this point, we were not able to tell
the reason, why the solver computed the feedback vertex set number of this dataset so swiftly.
An answer for this question we got, after we have measured the treewidth of the datasets. We
will discuss this topic in-detail in the following section.

6.2.2.2 Lower Bound
We have also measured the lower bound, although it does not carry as much value as the upper
bound. On the other hand, we were able to measure the lower bound for all of the datasets,
including the biggest ones.
For the calculation of the lower bound, we have used the integer linear programming. First, we
used the NetworkX library [27] to identify all cycles in a graph, and then we used the Gurobi
solver [18] to find a minimal hitting set of the cycles. Formal description of the mathematical
model used for the calculation of this property is:
Let F be a set of cycles contained in G = (V, E), let there be a variable xv for every vertex
v ∈ V , set to 1 if the vertex v is present in the feedback vertex set; else set to 0. Minimize∑

v∈V xv subject to ∀ C ∈ F :
∑

v∈C xv ≥ 1.
This description corresponds to the second definition given in Subsubection 1.4.1.2.
However, finding all cycles in a graph, is also a computationally very complex task (with all
cycles found we would be easily able to decide, whether one of them is a Hamiltonian cycle3, this
decision problem is known to be NP-hard [11]). However we would only need that for the exact

2In terms of number of vertices and edges.
3Hamiltonian cycle is a cycle containing all vertices of a graph.

Treewidth 38

computation. Since we wanted to provide a lower bound, we have used a length boundary
for cycles (namely 9), giving us an incomplete set of cycles in acceptable time. We have then
found a minimal subset of vertices that covers this subset of cycles. Such subset of vertices
will surely be smaller than the minimal feedback vertex set, therefore we got a lower bound for
the feedback vertex set number.

6.2.3 Results
Let us start once again with the outcome of our measurements, which can be seen in Table 6.2.
In this table, we abbreviate feedback vertex set number as FVSN and feedback vertex set as FVS.

Table 6.2 Measured values of feedback vertex set number.

Dataset ∥V∥ ∥E∥ FVSN Relative size of FVS
Černý Most, PRG, CZE 1 553 1 893 146–167 10.38–12.05 %
Cēsis, LAT 1 122 1 244 110–113 10.87–11.20 %
College Park, MD, USA 5 110 6 392 571–595 12.58–13.18 %
Dejvice, PRG, CZE 1 675 1 907 173 11.52 %
Grenoble, FRA 9 647 11 688 1 017– 11.78– %
Helsinki, FIN 115 318 123 291 7 842– 7.30– %
Karĺın, PRG, CZE 1 070 1 364 138–153 14.81–16.68 %
Raleigh, NC, USA 36 385 39 930 2 472– 7.29– %
San Sebastián, ESP 4 782 4 961 407 9.30 %
Santa Cruz, CA, USA 13 060 14 494 1 168– 9.82– %

Analogously to the feedback edge set number, the feedback vertex set number also grows with
the size of the graph. Therefore we have once again introduced a relative parameter expressing
the ratio of the feedback vertex set size and the number of vertices.
This calculation uses a slightly different formula as opposed to the feedback edge set. We
have used the formula: f

∥V ∥ , where f represent the feedback vertex set number. We have
switched to this formula, since at feedback edge set number, we were interested in how many
edges we should add to a constructed spanning tree (in the potential algorithm for a sidewalk
network generation). This time, however, we are rather trying to give out a way to estimate
feedback vertex set number for any sidewalk network, from the number of its vertices.
Judging from the exact measurements and boundaries, we can estimate this ratio to be somewhere
between 8 and 15 percent.

6.3 Treewidth
Our third measured parameter was the parameter of treewidth as defined in Subsubection 1.4.1.3.

6.3.1 Motivation
The treewidth is a very interesting graph property. Many graph problems are simpler for compu-
tation, when the input graph has a small treewidth [2]. However, deciding the treewidth itself is
an NP-hard problem. Our measurements can provide an interesting estimation of the treewidth
of sidewalk networks.
Subsequently, we can use this property for analysis of the outcomes of the future potential algo-
rithm, to see whether yielded outputs are correct.

Vertex Cover Number 39

6.3.2 Measurment
Measuring the treewidth of a graph is a very extensively studied topic, since it is a parameter
of a serious value. Therefore we have used for measurement an existing solver developed by
Tamaki [31, 32, 33], as a part of PACE challenge 2017.
This solver gives a lower bound and an upper bound, incrementally improving both, until they
meet, at which point it stops. For the smaller datasets, we were able to get the exact value
of the treewidth. For the more sizable data sets, we were able to obtain a lower bound and an up-
per bound. However, for the biggest datasets, we were able to measure neither of the boundaries.

6.3.3 Results
The measured values can be seen in Table 6.3. The table does not include the datasets of Helsinki
and Raleigh, as we have failed to measure any values for these datasets.

Table 6.3 Measured values of treewidth.

Dataset ∥V∥ ∥E∥ Treewidth ∥E∥
∥V ∥

Černý Most, PRG, CZE 1 553 1 893 10 1.22
Cēsis, LAT 1 122 1 244 10 1.11
College Park, MD, USA 5 110 6 392 15–22 1.25
Dejvice, PRG, CZE 1 675 1 907 9 1.14
Grenoble, FRA 9 647 11 688 14–25 1.21
Karĺın, PRG, CZE 1 070 1 364 8 1.27
San Sebastián, ESP 4 782 4 961 7 1.04
Santa Cruz, CA, USA 13 060 14 494 13–16 1.11

We can see that for the smaller datasets the value of the treewidth stays around 10. For the larger
datasets, representing more populous cities, the value rises to 20.
Very interesting is the case of San Sebastián. This dataset has considerably lower treewidth,
than we would expect from its size. To explain this occurrence, we can notice that this graph is
the most sparse among all the datasets. To enumerate the ”sparsity” of the datasets, we have
calculated a simple parameter of ratio of edges and vertices, expressed in the additional column.
Seemingly, apart from the size of the graph, the treewidth is considerably influenced by this
ratio.
The low treewidth of San Sebastián sidewalk network had a serious impact on its measurements.
Both feedback vertex set number computation and treewidth computation were significantly
faster for this dataset, compared to the other datasets.

6.4 Vertex Cover Number
Another parameter we have measured was the vertex cover number as defined in Subsubec-
tion 1.4.2.1.

6.4.1 Motivation
The vertex cover number is another non-trivial graph parameter we have measured, as it could
be used for confirmation of the results yielded by the algorithm. We believed that we would be
able to measure this property exactly for all datasets, since it is known to be easily represented
via the integer linear programming.

Edge Cover Number 40

6.4.2 Measurment
We have used the integer linear programming solver Gurobi [18], as the vertex cover number is
known to be solvable with the integer linear programming as described in [34].
Let there be a binary variable xv for each vertex v ∈ V , set to 1, if the vertex v is present
in the vertex cover; else set to 0. Minimize

∑
v∈V xv subject to: ∀ {u, v} ∈ E : xu + xv ≥ 1.

6.4.3 Results
The results of the measurements can be seen in Table 6.4. In this table, we abbreviate ver-
tex cover number as VCN and the vertex cover as VC. We have been able to exactly measure
the value of the vertex cover number for all datasets, as we expected and hoped.

Table 6.4 Measured values of vertex cover number.

Dataset ∥V∥ ∥E∥ VCN Relative size of VC
Černý Most, PRG, CZE 1 553 1 893 764 49.20 %
Cēsis, LAT 1 122 1 244 521 46.43 %
College Park, MD, USA 5 110 6 392 2 440 47.75 %
Dejvice, PRG, CZE 1 675 1 907 790 47.16 %
Grenoble, FRA 9 647 11 688 4 672 48.43 %
Helsinki, FIN 115 318 123 291 52 824 45.81 %
Karĺın, PRG, CZE 1 070 1 364 535 50.00 %
Raleigh, NC, USA 36 385 39 930 16 576 45.56 %
San Sebastián, ESP 4 782 4 961 2 173 45.44 %
Santa Cruz, CA, USA 13 060 14 494 6 059 46.39 %

The vertex cover number is another graph property heavily dependent on the graph size. How-
ever, if we once again take the relative size, defined as v

∥V ∥ , where v is the vertex cover number,
we get a property that is very stable among all the used datasets. The relative size of the ver-
tex cover stays between 45 and 50 percent at all studied graphs.

6.5 Edge Cover Number
The last studied property was the edge cover number as defined in Subsubection 1.4.2.2

6.5.1 Motivation
The edge cover number is another structural parameter known to be computable in polynomial
time [7]. We have decided to measure this parameter, so that we have another parameter
to test the results of the algorithm against. However, unlike the previous three parameters, this
parameter is efficiently computable. Therefore, the potential algorithm can calculate the value
of its currently constructed network, while it is running, and alter its result and flow accordingly.
That is not possible for the previous properties, as the designed algorithm has to be reasonably
efficient (therefore it can not solve NP-hard problems while running).

Edge Cover Number 41

6.5.2 Measurement
Even though this is by far not the optimal approach4. We have described this problem with inte-
ger linear programming and used the Gurobi solver [18]. Although we are technically converting
a simple problem solvable in polynomial time, to an NP-hard problem, which may seem like
an irrational move; it was the fastest way to create a solver in terms of the human time spent
developing it. Since the Gurobi solver is greatly optimized, we were able to get the results for
all datasets in few seconds nevertheless.
We have described the problem in integer linear programming as follows: Let there be a binary
variable xe for every edge e ∈ E, set to 1, if the edge e is present in the edge cover; else set to 0.
Minimize

∑
e∈E xe subject to: ∀v ∈ V :

∑
e∈E,v∈e xe ≥ 1.

6.5.3 Results
The results of our measurements can be seen in Table 6.5. In this table, ECN stands for
edge cover number, r. size of EC stands for relative size of edge cover and r. dist. to opt. stands
for relative distance to optimum.

Table 6.5 Measured values of edge cover number.

Dataset ∥V∥ ∥E∥ ECN R. Size of EC R. Dist. to Opt.
Černý Most, PRG, CZE 1 553 1 893 806 42.58 % 1.56 %
Cēsis, LAT 1 122 1 244 606 48.71 % 3.62 %
College Park, MD, USA 5 110 6 392 2 725 42.63 % 2.66 %
Dejvice, PRG, CZE 1 675 1 907 900 47.19 % 3.28 %
Grenoble, FRA 9 647 11 688 5 093 43.57 % 2.31 %
Helsinki, FIN 115 318 123 291 63 343 51.38 % 4.61 %
Karĺın, PRG, CZE 1 070 1 364 549 40.25 % 1.03 %
Raleigh, NC, USA 36 385 39 930 19 942 49.94 % 4.38 %
San Sebastián, ESP 4 782 4 961 2 639 53.19 % 5.00 %
Santa Cruz, CA, USA 13 060 14 494 7 135 49.23 % 4.17 %

We have introduced two additional columns in the table. First of them being the relative size
of the edge cover taken against the set of all edges. This column is calculated using formula e

∥E∥ ,
where e is the edge cover number. The second additional column is a relative distance to optimum.
The optimum we are referring to is the theoretical best edge cover of size ∥V ∥

2 . The relative dis-

tance to the optimum is calculated as e− ∥V ∥
2

∥E∥ , where e once again represents the edge cover num-
ber.
The relative size differs highly, depending on the density of graphs. We can notice that San Se-
bastián, which had low density and therefore a low treewidth, has one of the highest relative size
of the edge cover.
More interesting is the second parameter, we can see that this parameter does not exceed 5 per-
cent for any of the datasets. Therefore, we can assume that the edge cover number of a sidewalk
network should typically not exceed 50 % of its vertices + 5 % of its edges.

4In terms of computational complexity.

Chapter 7

Conclusion

We conclude this thesis with a final table containing all the measured data. In this table FESN
stands for feedback edge set number, FVSN stands for feedback vertex set number, TW stands
for treewidth, VCN stands for vertex cover number, ECN stands for edge cover number.

Table 7.1 Measured values of all parameters.

Dataset ∥V∥ ∥E∥ FESN FVSN TW VCN ECN
Černý Most, PRG, CZE 1 553 1 893 377 146–167 10 764 806
Cēsis, LAT 1 122 1 244 245 110–113 10 521 606
College Park, MD, USA 5 110 6 392 1 534 571–595 15–22 2 440 2 725
Dejvice, PRG, CZE 1 675 1 907 372 173 9 790 900
Grenoble, FRA 9 647 11 688 2 711 1 017– 14–25 4 672 5 093
Helsinki, FIN 115 318 123 291 18 483 7 842– 52 824 63 343
Karĺın, PRG, CZE 1 070 1 364 345 138–153 8 535 549
Raleigh, NC, USA 36 385 39 930 5 667 2 472– 16 576 19 942
San Sebastián, ESP 4 782 4 961 813 407 7 2 173 2 639
Santa Cruz, CA, USA 13 060 14 494 2 710 1 168– 13–16 6 059 7 135

The main takeaways of our research can be summarized as follows:

when holding a minimum spanning tree or a minimum spanning forest of a graph, we should
add 15–25 % of edges to create a realistic sidewalk network;

the edge cover number of a realistic sidewalk network should not exceed 50 % of its vertices
and 5 % of its edges;

the minimal vertex cover of a realistic sidewalk network should contain between 45 and 50 per-
cent of its vertices;

the treewidth of a realistic sidewalk network typically stays around 10 for smaller cities or
neighbourhoods of larger cities, and it stays around 20 for medium sized cities;

the minimal feedback vertex set of a realistic sidewalk network should contain between
8 and 15 percent of its vertices.

The most natural continuation of this thesis should be the development of the algorithm for
sidewalk generation, towards which this thesis has made its research.
Additionally, it would be very interesting to obtain the sidewalk network data for other parts

42

43

of the world (Africa, Asia, . . .) and measure the values of the properties we have measured. We
unfortunately could not have included these parts of the world because of the lack of data avail-
able. It would be fascinating to discover, whether there exists a significant difference in the city
design, based on the cultural diversity of people around the world.
Should there be an improvement in computation speed of modern computers, or discoveries
in computer science of better algorithms for calculating graph properties, it would be tempting
to remeasure the values of feedback vertex set number or treewidth, we failed to measure ex-
actly.
Also there are many more alluring graph properties to analyse like distance to disjoint stars,
twinwidth, domination numbers or maximum independent set size; to name a few.

Bibliography

1. MANUKJAN, Marek. Effective terrain data transformation using GPU acceleration. Prague,
Czech Republic, 2016. Available at https://dspace.cvut.cz/handle/10467/62758.

2. DIESTEL, Reinhard. Graph Theory. Vol. 173. 5th ed. Heidelberg: Springer, 2018. Graduate
Texts in Mathematics. isbn 978-3-662-53622-3.

3. PETERSEN, Julius. Sur le théorème de Tait. L’Intermédiaire des Mathématiciens. 1898,
vol. 5, pp. 225–227.

4. BEINEKE, Lowell W.; VANDELL, Robert C. Decycling graphs. Journal of Graph Theory.
1997, vol. 25, no. 1, pp. 59–77. Available from doi: https://doi.org/10.1002/(SICI)10
97-0118(199705)25:1<59::AID-JGT4>3.0.CO;2-H.

5. USER30471 [online]. 2014. [visited on 2024-04-25]. Available from: https://tex.stackex
change.com/questions/207953/petersen-graph-with-new-tikz-graph-library.

6. HUSZÁR, Kristóf; SPREER, Jonathan; WAGNER, Uli. On the Treewidth of Triangulated
3-Manifolds. In: SPECKMANN, Bettina; TÓTH, Csaba D. (eds.). 34th International Sym-
posium on Computational Geometry (SoCG 2018). Dagstuhl, Germany: Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2018, vol. 99, 46:1–46:15. Leibniz International Proceed-
ings in Informatics (LIPIcs). isbn 978-3-95977-066-8. issn 1868-8969. Available from doi:
10.4230/LIPIcs.SoCG.2018.46.

7. GAREY, Michael R.; JOHNSON, David S. Computers and Intractability; A Guide to the
Theory of NP-Completeness. USA: W. H. Freeman & Co., 1990. isbn 0716710455.

8. BEHSAZ, Babak; HATAMI, Pooya; MAHMOODIAN, Ebadollah. On minimum vertex
cover of generalized Petersen graphs. Australasian Journal of Combinatorics. 2008, vol. 40,
pp. 253–264.

9. ARORA, Sanjeev; BARAK, Boaz. Computational Complexity: A Modern Approach. Cam-
bridge University Press, 2009. isbn 9781139477369.

10. TURING, Alan M. I.—COMPUTING MACHINERY AND INTELLIGENCE. Mind. 1950,
vol. LIX, no. 236, pp. 433–460. issn 0026-4423. Available from doi: 10.1093/mind/LIX.23
6.433.

11. KARP, Richard M. Reducibility among Combinatorial Problems. In: Proceedings of a sym-
posium on the Complexity of Computer Computations. Ed. by MILLER, Raymond E.;
THATCHER, James W.; BOHLINGER, Jean D. Boston, MA: Springer, US, 1972, pp. 85–
103. isbn 978-1-4684-2001-2. Available from doi: 10.1007/978-1-4684-2001-2_9.

44

https://dspace.cvut.cz/handle/10467/62758
https://doi.org/https://doi.org/10.1002/(SICI)1097-0118(199705)25:1<59::AID-JGT4>3.0.CO;2-H
https://doi.org/https://doi.org/10.1002/(SICI)1097-0118(199705)25:1<59::AID-JGT4>3.0.CO;2-H
https://tex.stackexchange.com/questions/207953/petersen-graph-with-new-tikz-graph-library
https://tex.stackexchange.com/questions/207953/petersen-graph-with-new-tikz-graph-library
https://doi.org/10.4230/LIPIcs.SoCG.2018.46
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1007/978-1-4684-2001-2_9

Bibliography 45

12. COOK, Stephen A. The complexity of theorem-proving procedures. In: Proceedings of the
Third Annual ACM Symposium on Theory of Computing. Shaker Heights, Ohio, USA: As-
sociation for Computing Machinery, 1971, pp. 151–158. STOC ’71. isbn 9781450374644.
Available from doi: 10.1145/800157.805047.

13. JAFFE, Arthur M. The Millennium Grand Challenge in Mathematics. Notices of the Amer-
ican Mathematical Society. 2006, vol. 53, no. 6, pp. 652–660.

14. PACE CHALLENGE. About PACE Challenge. 2024. Available also from: https://pacech
allenge.org/about/. Accessed on: 2024-05-05.

15. SIERKSMA, Gerard; ZWOLS, Yori. Linear and Integer Optimization: Theory and Practice.
3rd ed. CRC Press, 2015. isbn 978-1498710169.

16. DANTZIG, George B. Maximization of a Linear Function of Variables Subject to Linear
Inequalities. In: KOOPMANS, Tjalling C. (ed.). Activity Analysis of Production and Allo-
cation. Wiley, 1951, pp. 339–347.

17. KHACHIYAN, L.G. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics. 1980, vol. 20, no. 1, pp. 53–72. issn 0041-5553.
Available from doi: https://doi.org/10.1016/0041-5553(80)90061-0.

18. GUROBI OPTIMIZATION, LLC. Gurobi Optimizer Reference Manual. 2023. Available also
from: https://www.gurobi.com.

19. RHOADS, Daniel; RAMES, Clément; SOLÉ-RIBALTA, Albert; GONZÁLEZ, Marta C.;
SZELL, Michael; BORGE-HOLTHOEFER, Javier. Sidewalk networks: Review and outlook.
Computers, Environment and Urban Systems. 2023, vol. 106, p. 102031. issn 0198-9715.
Available from doi: https://doi.org/10.1016/j.compenvurbsys.2023.102031.

20. OSAMA, Ahmed; SAYED, Tarek. Evaluating the impact of connectivity, continuity, and
topography of sidewalk network on pedestrian safety. Accident Analysis & Prevention. 2017,
vol. 107, pp. 117–125. issn 0001-4575. Available from doi: https://doi.org/10.1016/j
.aap.2017.08.001.

21. POKORNÝ, Jaroslav. XML Technologie – Principy a aplikace v praxi. Praha: Grada Pub-
lishing, a.s., 2008. isbn 978-80-247-2725-7.

22. ECMA INTERNATIONAL. ECMA-404: The JSON Data Interchange Syntax [online]. 2nd ed.
2017-12. [visited on 2024-05-15]. Available from: https://ecma-international.org/pub
lications-and-standards/standards/ecma-404/.

23. OPENSTREETMAP FOUNDATION, OpenStreetMap contributors. About OpenStreetMap
- OpenStreetMap Wiki. 2024. Available also from: https://wiki.openstreetmap.org/wi
ki/About_OpenStreetMap. Accessed on: 2024-05-15.

24. RAMM, Frederik; TOPF, Jochen; CHILTON, Steve. OpenStreetMap: Using and Enhancing
the Free Map of the World. Cambridge, England: UIT Cambridge, 2010. isbn 978-1-906860-
11-0.

25. OPENSTREETMAP CONTRIBUTORS. Planet dump retrieved from https://planet.osm.org
[https://www.openstreetmap.org]. 2024.

26. BOEING, Geoff. Modeling and Analyzing Urban Networks and Amenities with OSMnx
[Working paper]. 2024. https://geoffboeing.com/publications/osmnx-paper/.

27. NetworkX. NetworkX Developers, 2024. Available also from: https://networkx.org/.
Accessed on: 2024-05-05.

28. GEOFABRIK GMBH, OPENSTREETMAP CONTRIBUTORS [online]. 2013. [visited on
2024-05-14]. Available from: https://bestofosm.org/about.html.

29. IWATA, Yoichi; WAHLSTRÖM, Magnus; YOSHIDA, Yuichi. Half-integrality, LP-branching,
and FPT Algorithms. SIAM Journal on Computing. 2016, vol. 45, no. 4, pp. 1377–1411.
Available from doi: 10.1137/140962838.

https://doi.org/10.1145/800157.805047
https://pacechallenge.org/about/
https://pacechallenge.org/about/
https://doi.org/https://doi.org/10.1016/0041-5553(80)90061-0
https://www.gurobi.com
https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2023.102031
https://doi.org/https://doi.org/10.1016/j.aap.2017.08.001
https://doi.org/https://doi.org/10.1016/j.aap.2017.08.001
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://ecma-international.org/publications-and-standards/standards/ecma-404/
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
https://wiki.openstreetmap.org/wiki/About_OpenStreetMap
 https://www.openstreetmap.org
https://geoffboeing.com/publications/osmnx-paper/
https://networkx.org/
https://bestofosm.org/about.html
https://doi.org/10.1137/140962838

Bibliography 46

30. IWATA, Yoichi. Linear-Time Kernelization for Feedback Vertex Set. In: CHATZIGIAN-
NAKIS, Ioannis; INDYK, Piotr; KUHN, Fabian; MUSCHOLL, Anca (eds.). 44th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2017). Dagstuhl,
Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017, vol. 80, 68:1–68:14.
Leibniz International Proceedings in Informatics (LIPIcs). isbn 978-3-95977-041-5. issn
1868-8969. Available from doi: 10.4230/LIPIcs.ICALP.2017.68.

31. TAMAKI, Hisao. A heuristic for listing almost-clique minimal separators of a graph. CoRR.
2021, vol. abs/2108.07551. Available from arXiv: 2108.07551.

32. TAMAKI, Hisao. Heuristic Computation of Exact Treewidth. In: SCHULZ, Christian;
UÇAR, Bora (eds.). 20th International Symposium on Experimental Algorithms (SEA 2022).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022, vol. 233,
17:1–17:16. Leibniz International Proceedings in Informatics (LIPIcs). isbn 978-3-95977-
251-8. issn 1868-8969. Available from doi: 10.4230/LIPIcs.SEA.2022.17.

33. TAMAKI, Hisao. Computing treewidth via exact and heuristic lists of minimal separators.
In: International Symposium on Experimental Algorithms. Springer, 2019, pp. 219–236.

34. VAZIRANI, Vijay V. Approximation Algorithms. Springer-Verlag, 2003. isbn 978-3-662-
04565-7.

https://doi.org/10.4230/LIPIcs.ICALP.2017.68
https://arxiv.org/abs/2108.07551
https://doi.org/10.4230/LIPIcs.SEA.2022.17

	Acknowledgments
	Declaration
	Abstract
	List of Abbreviations
	Introduction
	Graph Theory
	Graph
	Subgraph and Induced Subgraph
	Graph Families and Named Graphs
	Path
	Connected Graph
	Cycle
	Trees and Forests
	Petersen Graph

	Graph Properties
	Resemblance of a Tree/Forest
	Graph Covering Numbers

	Computational Complexity
	Input Encoding
	Decision Problem
	Computation
	Turing Machines
	k-tape Turing Machine
	Deterministic k-tape Turing Machine
	Non-deterministic k-tape Turing Machine
	Computation of Turing Machines

	Complexity Classes
	P Complexity Class
	NP Complexity Class
	NP-hardness and NP-completeness
	Relation of P and NP Complexity Classes

	Notable NP-hard Problems

	Linear Programming
	Linear Program
	Algorithms
	Example
	Graphical Representation
	Simplex Algorithm

	Integer Linear Programming
	Gurobi Optimization

	Previous Research of Sidewalk and Pedestrian Networks
	Obtaining the Data
	Data Formats
	XML
	JSON
	GR

	OpenStreetMap
	History
	Format
	APIs
	OSMnx

	Collecting and Serializing the Data
	Analysed Locations of the World
	Usage of OSMnx Package

	Graph Properties Measurement and Evaluation
	Feedback Edge Set Number
	Motivation
	Measurement
	Results

	Feedback Vertex Set Number
	Motivation
	Measurment
	Results

	Treewidth
	Motivation
	Measurment
	Results

	Vertex Cover Number
	Motivation
	Measurment
	Results

	Edge Cover Number
	Motivation
	Measurement
	Results

	Conclusion

