
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Parameterized Algorithms for the Truncated Metric Dimension

problem

Jiří Jirásek

RNDr. Ondřej Suchý, Ph.D.

Informatics

Computer Science

Department of Theoretical Computer Science

until the end of summer semester 2023/2024

Instructions

Get familiar with the Metric Dimension problem of graphs and its Truncated variant.

Get familiar with the basic notions and ideas of Parameterized Complexity.

Survey known results about parameterized complexity of Metric Dimension, especially

parameterized algorithms and get familiar with the most important of them.

Inspired by these algorithms, develop parameterized algorithms for Truncated Metric

Dimension or find major obstacles in developing such algorithms.

After consulting with the supervisor select one of the algorithms and implement it in a

suitable language.

Test the resulting program on a suitable data, evaluate its performance.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 2 February 2023 in Prague.

Bachelor’s thesis

PARAMETERIZED
ALGORITHMS FOR THE
TRUNCATED METRIC
DIMENSION PROBLEM

Jǐŕı Jirásek

Faculty of Information Technology
Department of Theoretical Computer Science
Supervisor: RNDr. Ondřej Suchý, Ph.D.
May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Jǐŕı Jirásek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Jirásek Jǐŕı. Parameterized Algorithms for the Truncated Metric Dimension
problem. Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology,
2024.

Contents

Acknowledgments v

Declaration vi

Abstract vii

List of Acronyms viii

Introduction 1

Preliminaries 3
1 Graph Theory . 3
2 Complexity Theory . 5
3 The Metric Dimension and Related Problems . 5

Known Results 7
4 Metric Dimension . 7
5 Truncated Metric Dimension . 8

Algorithms Parameterized by Modular-width 9
6 Metric Dimension . 9

6.1 The Algorithm . 9
6.2 An Example . 19

7 Truncated Metric Dimension . 22
7.1 The Algorithm . 22
7.2 An Example . 25

Algorithms Parameterized by Max Leaf Number 27
8 Metric Dimension . 27
9 Truncated Metric Dimension . 30

Implementation and Testing 31
10 Implementation . 31

10.1 Data Generator . 31
10.2 (Truncated) Metric Dimension Algorithms 32

11 Measured Results . 32
11.1 Metric Dimension . 32
11.2 Truncated Metric Dimension . 33

Conclusion 35
12 Possible Improvements . 35

Contents of the supplied medium 41

iii

List of Figures

4 The graph F ′ with the universal vertex -1, constructed from the graph seen in
Figure 3. 19

1 Example graph G. 20
2 Modular decomposition of the graph seen in Figure 1. 20
3 The prime graph F constructed from the subgraph of the graph seen in Figure 1,

that is induced by the set of vertices {7, 8, 9, 10}. 21
5 The prime graph F . 21
6 Example graph G. 25
7 The prime graph F . 25
8 Two branches A and B arranged by their distances from a locating point s (left),

and their indistinct set (of pairs not distinguished by s) plotted using the positions
in the branches as Cartesian coordinates (right). 28

9 An example of Definition 8.5 when computing Truncated Metric Dimension 30

List of Tables

1 Performance of the algorithm . 33
2 Performance of the algorithm . 34

iv

First, I would especially like to express my gratitude to my super-
visor RNDr. Ondřej Suchý, Ph.D. for his extraordinary amount of
patience, invaluable insights and for all the time and effort he put
towards helping me with the thesis. Second, I would like to thank
Arara∼, Chipex and Veronika for their help and for supporting me
throughout, not only writing this thesis, but all my studies.

v

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on May 16, 2024 .

vi

Abstract

This thesis is directed at FPT algorithms that solve the Truncated Metric Dimension problem.
Two already known algorithms solving the Metric Dimension problem are described. For the
algorithm bounded by modular-width we present a simple modification for it to solve the Trun-
cated Metric Dimension problem. As for the algorithm bounded by max leaf number, we describe
the reason that prevented us from modifying the algorithm. Following that, we explain how we
implemented the algorithms bounded by modular-width and show selected performance metrics.

Keywords Metric Dimension, Truncated Metric Dimension, Resolving set, Parameterized al-
gorithms, Complexity

Abstrakt

Tato práce se zabývá FPT algoritmy řeš́ıćı problém Zkrácené Metrické Dimenze. Představ́ıme
dva již známé algoritmy řeš́ıćı problém Metrické Dimenze. Pro algoritmus parametrizovaný
š́ı̌rkou modulu ukážeme jeho jednoduchou modifikaci tak, aby řešil problém Zkrácené Metrické
Dimenze. Pro algoritmus parametrizovaný maximálńım počtem list̊u vysvětĺıme d̊uvod, který
nám zabránil jeho úpravám. Poté nast́ıńıme implementaci algoritmů parametrizovaných š́ı̌rkou
modulu a ukážeme vybrané výkonnostńı metriky.

Kĺıčová slova Metrická Dimenze, Zkrácená Metrická Dimenze, Rozlǐsuj́ıćı množina, Parametri-
zované algoritmy, Složitost

vii

List of Acronyms

md metric dimension
mdk truncated metric dimension
FPT fixed-parameter tractable
SAT Boolean satisfiability
NP nondeterministic polynomial time

viii

Introduction

The Metric Dimension (md) problem, is an old problem, that asks, given a graph and a
number k, if there is a (resolving) set of k vertices, such that every vertex can be uniquely
identified by its distance from the vertices in the set. The Truncated Metric Dimension
(mdl) problem poses the same question with the simple modification that we only consider
vertices from the set, whose distance is at maximum l from the vertex we want to identify.

Identifying such vertices in a graph may be useful when we can consider robots which are
moving from a node to a node in a network. We assume that the robots can communicate with
a set of landmarks (subset of nodes) which provide them the distance to the landmarks in order
to facilitate the navigation. In this sense, the position of each robot is uniquely determined by
the distance to the landmarks [1]. We may want to only consider vertices that are no further
apart than some distance, because the communication between a robot and some landmark can
get more costly, or even impossible as the distance increases.

Our contributions The goal of this thesis is to make use of the existing parameterized algo-
rithms for Metric Dimension with respect to various structural parameters and, if possible
alter them in such a way that they then compute the solution of Truncated Metric Dimen-
sion. In this thesis we focus on an algorithm parameterized by modular-width that was proposed
in an article by Belmonte et al. [2]. We propose a modification to the algorithm and show that
the modified algorithms solves Truncated Metric Dimension. The modified algorithm was
implemented and tested on appropriate data set. We also explain the difficulties that occur when
trying to modify the algorithm parameterized by max leaf number by David Eppstein [3].

1

2 Introduction

Preliminaries

1 Graph Theory
First, we shall start by defining a graph and related concepts.

▶ Definition 1.1 (Graph, Inspired by [4]). All graphs considered for the purposes of this thesis
are undirected, unweighted and simple, i.e., without loops or multiple edges. A graph G = (V, E)
consists of sets V and E.

V is a set of vertices, sometimes referred to as V (G), when it is not obvious to which graph
we refer.

E is a set of edges, sometimes also denoted E(G).

Edge is a set that consists of exactly two vertices, which are called endpoints. An edge joins
its endpoints.

A vertex v is adjacent to a vertex u if {u, v} ∈ E.

Adjacent vertices may be called neighbours, the set of all neighbours of vertex v is the (open)
neighbourhood and denoted N(v).

The closed neighbourhood of vertex v is N [v] = N(v) ∪ {v}.

For a positive integer r let Nr
G[v] = {u ∈ V | distG(u, v) ≤ r} be the set of vertices at distance

at most r from v.

An edge is incident to vertex v, if v is one of its endpoints.

The degree of a vertex is the number of its neighbours.

The maximum degree of a graph is the maximum over the degrees of all the vertices.

By G − U we denote the graph obtained by removal of all the vertices of U . We denote graph
induced by the set U ⊆ V , as G[U]. In other words G[U] = G − (V (G) \ U).

We also use n and m to denote the number of vertices and edges respectively.

Following the definition of a graph, we define a path.

▶ Definition 1.2 (Path, Inspired by [4]). A path in a graph G is an alternating sequence of
vertices and edges P = v0, e1, v1, e2, ..., en, vn, where for each j ∈ 1, 2, ..., n, and vj−1 and vj are
endpoints of ej , and no vertex is repeated in the sequence.

The vertex v0 is the initial vertex.

3

4 Preliminaries

The vertex vn is the terminal vertex.

A u-v-path is a path with initial vertex u and terminal vertex v.

Since we reference trees in this thesis, we will define a tree structure. To do that we also need
to define a cycle and a connected graph.

▶ Definition 1.3 (Cycle [5]). A graph G = (V, E) is a cycle, if
G = ({1, ..., n} , {{i, i + 1} | i ∈ {1, ..., n − 1}} ∪ {{1, n}}), for n > 3.

▶ Definition 1.4 (Connected graph [6]). A graph G = (V, E) is connected if for each two
distinct vertices u, v ∈ V (G) there is a u-v-path in G.

▶ Definition 1.5 (Tree [6]). A graph G = (V, E) is a tree if the graph is connected and does
not have a cycle as a subgraph. We call a vertex v ∈ V (G) a leaf if degG (v) = 1.

Further we define the distance in a graph and the diameter of a graph.

▶ Definition 1.6 (Distance, l-truncated distance, Inspired by [7]). Distance between two ver-
tices u and v in the graph G, denoted by distG(u, v), is the number of edges in a shortest u-v-path
in the graph G.

Let distG,l(u, v) = min(distG(u, v), l + 1) denote l-truncated distance.

For a vertex v ∈ V and a set U ⊆ V , let distG(v, U) = min {distG(v, u) | u ∈ U} be a minimal
distance from a vertex v to any of the vertices from U .

When possible, we shorten distG,l(u, v) to distl(u, v).

▶ Definition 1.7 (Diameter, Inspired by [2]). For a set U ⊆ V of a graph G = (V, E), we
define its diameter as diamG(U) = max {distG(u, v) | u, v ∈ U}. Then specifically we denote the
diameter of a graph as diam(G) = diamG(V).

In one of the algorithms we need to make use of a universal vertex.

▶ Definition 1.8 (Universal vertex [2]). A vertex v ∈ V is called universal if NG(v) = V \ {v}.

▶ Definition 1.9 (Disjoint union and join of graphs [2]). For two graphs G1, G2, the disjoint
union of G1 and G2 is the graph G that has V (G1) ∪ V (G2) as its vertex set and E(G1) ∪ E(G2)
as its edge set.

The join of graphs G1 and G2 is the graph G that has V (G1) ∪ V (G2) as its vertices and
E(G1) ∪ E(G2) ∪ {uv | ∀u ∈ V1, ∀v ∈ V2} as its edges.

Since we new know what a modular decomposition is we can define a prime graph.
For the next definition we need the definition of a modular decomposition from the section

about complexity theory.

▶ Definition 1.10 (Prime graph [2]). Let G be a graph partitioned into s ≤ t non-empty
modules X1, ..., Xs, s ≥ 2. Let also F be a graph with the vertex set vi foreach i ∈ {1, ..., s}.
Any two distinct vertices vi, vj ∈ F are adjacent if and only if the vertices of the modules
XiandXj are also adjacent in G for all i, j ∈ {1, ..., s}.

A graph constructed as described above is called the prime graph F of the graph G.

Modular-width can be computed in linear time by the algorithm of Tedder et al. [8].

Complexity Theory 5

2 Complexity Theory
This thesis examines problems with regard to some structural properties. We call such problems
parameterized.

▶ Definition 2.1 (Parameterized problem, Cygan et al. [9]). Parameterized problem is a lan-
guage L ⊆ Σ × N , where Σ is a fixed finite alphabet. For an instance (x, k) ∈ Σ∗ ×N, k is called
the parameter.

▶ Definition 2.2 (FPT, Cygan et al. [9]). A parameterized problem L ⊆ Σ∗ × N is called
fixed-parameter tractable (FPT) if there exists an algorithm A, called fixed-parameter tractable
algorithm, a computable function f : N → N , and a constant c such that, given (x, k) ∈ Σ∗ × N ,
the algorithm A correctly decides whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c. The
complexity class containing all fixed-parameter tractable problems is called FPT.

In the following we specify two structural parameters modular-width and max leaf number ,
which we use as the parameter for the algorithms.

▶ Definition 2.3 (Modular-width [2]). A set X ⊆ V (G) is a module of a graph G if for any
v ∈ V (G) \ X, either X ⊆ NG(v) or X ∩ NG(v) = ∅. We shall define modular-width using
a recursive definition as it is more suitable for our purpose. The modular-width, mw(G), of a
graph G is at most t if one of the following holds:

1. G has one vertex;

2. G is disjoint union of two graphs of modular-width at most t;

3. G is a join of two graphs of modular-width at most t;

4. V (G) can be partitioned into s ≤ t modules X1, ..., Xs such that modular-width mw(G[Xi]) ≤
t for all i ∈ {1, ..., s}.

Sometimes we use the term trivial module. That is a module containing only one ver-
tex. We call the tree structure, where each node represents one of the above operations, a
modular decomposition.

▶ Definition 2.4 (Max leaf number [3]). The max leaf number of a connected graph G is the
maximum, over all spanning trees of G, of the number of leaves in the spanning tree.

3 The Metric Dimension and Related Problems
Now we shall define the Metric Dimension and the Truncated Metric Dimension prob-
lems. For simplicity we only define the decision version of the problems, however all the algo-
rithms described in this thesis can be converted to find the resolving sets at no further cost of
running time.

▶ Definition 3.1 ([2]). Let G = (V, E) be a graph. We say that the distinct vertices u, v ∈ V
are resolved by w ∈ V if dist(u, w) ̸= dist(v, w). Similarly, the vertices u, v ∈ V are k-resolved
by w ∈ V if distk(u, w) ̸= distk(v, w).

▶ Definition 3.2 ([2]). Let G = (V, E) be a graph. We say that the set of vertices X ⊆ V
is resolved by w ∈ V if for each two distinct vertices u, v ∈ X the vertex w resolves u and v.
Similarly, the vertices are k-resolved by w ∈ V if for each two distinct vertices u, v ∈ X the
vertex w k-resolves u and v.

6 Preliminaries

▶ Definition 3.3 (Resolving set [2]). Let G = (V, E) be a graph and W and X be sets of
vertices of G. We say that the set W is a resolving set for X if for all distinct u, v ∈ X there is
w ∈ W such that w resolves u and v. Similarly, we say that the set W is a k-resolving set for X
if for all distinct u, v ∈ X there is w ∈ W such that w k-resolves u and v.

▶ Definition 3.4 (Metric Dimension [2]). Let G = (V, E) be a graph. The metric dimension
of G denoted by md(G) is the minimum cardinality over all resolving sets of G. Metric dimen-
sion asks if md(G) ≤ k, for a given positive integer k.

▶ Definition 3.5 (Truncated Metric Dimension [7]). Let G = (V, E) be a graph and
let l be a positive integer. The truncated metric dimension of G denoted by mdl(G) is the
minimum cardinality over all l-resolving sets of G. Truncated Metric Dimension asks,
given a graph G and integers l and k, whether mdl(G) ≤ k.

Known Results

4 Metric Dimension

The notion of resolving sets was first independently introduced by Slater [10] and Harary with
Melter [11] as a way of uniquely identifying all the vertices in a graph. In the year 1996
Khuller et al. [12] have in their paper on the topic shown that it is NP-hard to decide Metric
Dimension on general graphs and that it can be solved in linear time on trees. They have also
shown that the metric dimension can be approximated in a polynomial time within a factor of
O(log n).

As a result of this finding many other algorithms approximating the metric dimension have
been developed. Most notably a genetic algorithm that can approximate the metric dimension
relatively quickly [13]. Whilst some of these algorithms find very small resolving sets, there
is, as proven by Hauptmann et al. [14] in 2012, no algorithm that can guarantee (1 − ϵ) ln(n)-
approximation for any ϵ > 0 unless NP is a subset of DTIME(nlog log n). In the same article they
provide (1 + (1 + o(1) · ln(n)))-approximation, i.e. essentially the best possible approximation,
algorithm with running time complexity of O(|n|3).

In 2009 Daniel Lokshtanov posed a question whether the metric dimension would be a suit-
able topic in the area of parameterized complexity. Moreover he conjectured that the problem
would be W[1]-complete with respect to the solution size. Three years later it was shown, by
Hartung et al. [15], that the problem is actually W[2]-complete [15] with respect to the size of
the resolving set on graphs of maximum degree three. In the very same article the first parame-
terized algorithm (parameterized by vertex cover number) for the problem of metric dimension
was published. Since then numerous parameterized algorithms have been developed. In 2015
David Eppstein [3] presented a parameterized algorithm bounded by max leaf number. An al-
gorithm bounded by tree-length plus max-degree and an algorithm bounded by modular-width
were published by Belmonte et al. [2] in 2016. By the year 2017 Diaz et at. [16] has shown that
the problem is NP-complete for a planar graph that has maximum degree 6 and presented a
polynomial time algorithm to solve the problem on outerplanar graphs. Bonnet et al. [17] have
in the year 2021 shown that the metric dimension problem is W[1]-hard when parameterized
by tree-width. Li et al. [18] have later strenghtened this result and shown that the problem is
NP-hard for graphs of tree-width 24. Two years later, in 2023, Bousquet et al. [19] have shown
an FPT algorithm parameterized by tree-width in chordal graphs. In the same year it was shown
that problem is W[1]-hard when parameterized by the combined parameter feedback vertex set
number plus path-width and FPT when parameterized either by the distance to cluster of the
distance to co-cluster. Most recently, in 2024 Foucaud et al. [20] have published an algorithm
parameterized by tree-width, based on the algorithm by Bousquet et al. [19].

Various bounds, exact results, characterizations of graphs and other properties have also been
found over the last five decades, see, e.g., [12, 21, 22, 23, 24].

7

8 Known Results

5 Truncated Metric Dimension
The notion of Truncated Metric Dimension has been established by Geneson and Yi [25]
under the name broadcast dimension and was later expanded upon by Frongillo et al. [7]. The
motivation for such restriction on the distance was one, due to the cost of long distance com-
munication in a network and two, reducing dependency on random variables in identifying the
source of an infection in an epidemic [7, 26, 27].

In comparison to Metric Dimension, not as much is known about the Truncated Metric
Dimension.

Just like Metric Dimension, it has been shown that Truncated Metric Dimension is
NP-hard by reduction from 3-SAT [12]. This should be obvious since we can set the parameter l
to be strictly higher then the diameter of a given graph, for example as the number of vertices of
the graph, and we get the exact definition of the non-truncated metric dimension. In this sense
Truncated Metric Dimenion can be seen as a generalization of the Metric Dimension
problem.

In the article by Frongillo et al. [7] characterizations and bounds for various types of graphs
have been shown. It was also later claimed that computing Truncated Metric Dimension on
trees is NP-hard for general k, but it can be done in polynomial time on trees for constant k [28].

No other algorithms were published about the topic, at least to our knowledge.

Algorithms Parameterized By
Modular-width

6 Metric Dimension
In this section, we present an algorithm for the metric dimension problem that runs in
linear time with respect to the modular-width.

6.1 The Algorithm
Let X be a module of a graph G and v ∈ V (G) \ X. We can make the observation that the
distances in G between v and all vertices of X are the same. This is expressed by the next
lemma.

▶ Lemma 6.1 ([2]). Let X ⊆ V (G) be a module of a connected graph G and |X| ≥ 2. Let
also H be a graph obtained from G[X] by addition of a universal vertex. Then any v ∈ V (G)
resolving x, y ∈ X in G is a vertex of X, and if W ⊆ V (G) is a resolving set of G, then W ∩ X
resolves X in H.

The result is summarized in the following theorem.

▶ Theorem 6.2 ([2]). The metric dimension of a connected graph G of modular-width at most
t can be computed in time O(t34tn + m).

To compute md(G), auxiliary values w(H, p, q) for each of the sub-modules of the root module
of the graph H are used. First, we define this function and right after that we explain it in a
more intuitive manor.

▶ Definition 6.3. Let H be a graph of modular-width t with at least two vertices and boolean
variables p and q as follows. Let H ′ be a graph obtained from H by the addition of a universal
vertex u. Notice that diamH′(V (H)) ≤ 2. Then w(H, p, q) is, the minimum size of set W ⊆ V (H)
such that

1. W resolves V (H) in H ′,

2. p = true if and only if H has a vertex x such that distH′(x, v) = 1 for every v ∈ W , and

3. q = true if and only if H has a vertex x such that distH′(x, v) = 2 for every v ∈ W .

We assume that w(H, p, q) = +∞ if such a set does not exist.

9

10 Algorithms Parameterized By Modular-width

Let G be a graph, X its module, H = G[X] and let H1, ..., Hs be the partition of H into
modules, of which t, t ≤ s are trivial. Assume Z is a hypothetical optimal resolving set and
Z ′ = Z ∩ X. Every pair of vertices in H must be resolved by a vertex in Z ′, by Lemma 6.1.
This means that we need to compute a set that will, amongst others, satisfy the property that
the set will be a resolving set for the vertices in X. As we have stated above, those vertices are
either adjacent or at a distance 2 from each other in G. This is why it is in 1 required for W to
be resolving set of V (H) in H ′.

It could also happen that a vertex z ∈ Z is required to resolve a pair of vertices x ∈ X and
y ∈ G \ X. If x is part of Z, then x resolves x and y. If x is at distance 1 from some z ∈ Z ′ and
there is z′ ∈ Z ′ such that z′ is at distance 2 from x, then either z or z′ resolves x and y, because
distG(z, y) = distG(z′, y). Now let x be at distance 1 in G from every vertex in Z ′. If x′ ∈ X is
also at distance 1 from every vertex of Z ′, then z ∈ Z resolves x and y if and only if z resolves x′

in y. This is why its is sufficient to know why whether X has a vertex at distance 1 from every
vertex of W . This is captured by the boolean variable p and set W in 2. The same argument is
used for vertices at distance 2 from every vertex of Z ′ which is captured by 3.

Since H has modular-width at most t, it can be constructed from single vertex graphs by
the disjoint union and the join operations and decomposing H into at most t modules. In the
rest of the computation, w(H, p, q) is described given the modular decomposition of H and the
values computed for the child nodes. Since the base case corresponds to a graph of size at most t
we may compute the values for leaf nodes by brute force, followed by executing a bottom up
dynamic programming algorithm.

In the original article [2] the algorithm to compute w(H, p, q) is split into 3 cases.

Graph H is a disjoint union of a pair of graphs,

Graph H is a join of a pair of graphs,

Graph H can be partitioned into at most t graphs, each of modular-width at most t.

While the first two cases are subsumed by the third case, we keep them in the text just like the
original authors for clarity of the algorithm.

Disjoint union. Let H be a disjoint union of H1 and H2. We assume that |V (H1)| ≤
|V (H2)|. Then there are 3 cases that can occur.

First, if |V (H1)| = |V (H2)| = 1, then we can see that

w(H, false, true) = 1,
w(W, false, false) = 2,
w(H, true, true) = w(true, false) = +∞.

For the disjoint union we try to give an idea as to why are these equivalences true. We do
not do so in other cases as the reasoning is very analogous.
The first equivalence is true since we can choose either one of the vertices. Let us, without
loss of generality, choose the vertex x ∈ H1 and the vertex in H2 be y. Then x resolves V (H)
in H ′ satisfying 1, and the vertex x is at the distance 2 from y satisfying 2–3 and p = false,
q = true. Similarly, to fulfill all of the conditions in the second case, we have to choose both
of the vertices. It is easy to see that p cannot be true, since the only two vertices in H are
not adjacent.
Second, if |V (H1)| = 1, |V (H2)| > 1 and the values of w(H2, p, q) are already computed for
p, q ∈ {true, false}, then the single vertex of H1 is at distance 2 from any vertex of H2 in H ′.
Notice that the vertex of H1 can, but does not have to, be in the resolving set. By Lemma 6.1

Metric Dimension 11

w(H, true, true) = w(H2, true, false),
w(H, false, true) = min{w(H2, false, false), w(H2, true, true)+1, w(H2, false, true)+1},
w(H, false, false) = min{w(H2, true, false) + 1, w(H2, false, false) + 1},
w(H, true, false) = +∞.

The idea in the first case is that because q = true and q2 = false, the vertex x ∈ H1 has to be
the only one for which distH′(v, x) = 2 for all v ∈ W , and, thus V (H) will be resolved in H ′

and for every y ∈ V (H2) the distance between x and y will always be 2 in H ′, satisfying 3
when q = true for H. As for the second case, if p = false and q = true we have 3 sub-cases
that can occur. Either p2 = false, q2 = false and the same logic as in the previous case
applies. Or in the other two sub-cases p2 = true and we cannot identify the vertex in V (H1),
so we have to add it to the resolving set. The fact that the conditions 2 and 3 hold is easy
to verify. In the third case, where p = false and q = false, we need to add the vertex
from V (H1) to the resolving set since we have no way to distinguish it. The value q2 has to
be set to false, because if instead q2was true and we added V (H1) to the resolving set, it
would imply that q = true. That would be a contradiction. And no other cases satisfy the
conditions.
Third, if |V (H1)| > 1, |V (H2)| > 1 and the values of w(Hi, p, q) are already computed for
i ∈ {1, 2} and p, q ∈ {true, false}, then observe that for x ∈ V (H1) and y ∈ V (H2),
distH′(x, y) = 2 and that any resolving set has at least one vertex in both H1 and H2. By
Lemma 6.1

w(H, false, true) = min{w(H1, p1, q1) + w(H2, p2, q2) | pi, qi ∈ {true, false},
i ∈ {1, 2} and q1 ̸= q2},
w(H, false, false) = min{w(H1, p1, false) + w(H1, p2, false) | p1, p2 ∈ {true, false}},
w(H, true, true) = w(H, true, false) = +∞.

In this case we basically just try all the possible options. Only two things we need to be
careful about is first if q = false it cannot happen that q1 = q2, because that would be a
contradiction and second that again p cannot be true since there has to be at least one vertex
in W from both H1 and H2 and for every x ∈ H1 distH′(x, V (H2)) = 2.

Join. H is a join of H1 and H2. We can assume that |V (H1)| ≤ |V (H2)|. Again, there are
3 cases that can occur.

First, if |V (H1)| = |V (H2)| = 1, then we can easily verify that

w(H, true, false) = 1,
w(H, false, false) = 2, and
w(H, true, true) = w(H, false, true) = +∞.

Second, if |V (H1)| = 1, |V (H2)| > 1 and the values of w(H2, p, q) are already computed for
p, q ∈ {true, false}, then the single vertex of H1 is at distance 1 from any vertex of H2 in H ′.
Notice that the vertex of H1 can, but does not have to, be in the resolving set. By Lemma 6.1

w(H, true, true) = w(H2, false, true),
w(H, false, true) = +∞,
w(H, true, false) = min{w(H2, false, false), w(H2, true, true)+1, w(H2, true, false) + 1 },
w(H, false, false) = min{w(H2, false, true) + 1, w(H2, false, false) + 1}.

12 Algorithms Parameterized By Modular-width

Third, if |V (H1)| > 1, |V (H2)| > 1 and the values of w(Hi, p, q) are already computed for
i ∈ {1, 2} and p, q ∈ {true, false}, then observe that for x ∈ V (H1) and y ∈ V (H2),
distH′(x, y) = 1 and that any resolving set has at least one vertex in both H1 and H2. By
Lemma 6.1

w(H, true, true) = +∞,
w(H, false, true) = +∞,
w(H, true, false) = min{w(H1, p1, q1) + w(H2, p2, q2) | pi, qi ∈ {true, false},
i ∈ {1, 2} and p1 ̸= p2},
w(H, false, false) = min{w(H1, false, q1) + w(H1, false, q2) | q1, q2 ∈ {true, false}}.

Partitioning into modules. Let V (H) be partitioned into s ≤ t non-empty modules
X1, ..., Xs, s ≥ 2. We assume that X1, ..., Xh are trivial, this means that |Xi| = 1 for
i ∈ {1, ..., h} where 0 ≤ h ≤ s. For distinct i, j ∈ {1, ..., s}, either vertex of Xi is adjacent to
every vertex of Xj or the vertices of Xi and Xj are not adjacent. Let F be the prime graph
with a vertex set {v1, ..., vs} such that vi is adjacent to vj if and only if the vertices of Xi

are adjacent to the vertices of Xj . Let F ′ be obtained by addition of a universal vertex to
the graph F . We use the graph F ′ instead of F , when asking in whether Z resolves V (F)
or when calculating the distances, to emulate the fact that the distance between any two
vertices can be at most 2. Observe that if x ∈ Xi and y ∈ Xj for distinct i, j ∈ {1, ..., s},
then distH′(x, y) = distF ′(vi, vj).
For boolean variables p, q, a set of indices I ⊆ {1, ..., h}, and boolean variables pi, qi where
i ∈ {h + 1, ..., s} we define

ω(p, q, I, ph+1, qh+1, ..., ps, qs) = |I| +
s∑

i=h+1
w(H[Xi], pi, qi)

if the following holds:

1. the set Z = {vi | i ∈ I ∪ {h + 1, ..., s}} resolves V (F) in F ′,
2. if pi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF ′(vi, vj) = 2 or

there is vr ∈ Z such that r ̸= i, j and distF ′(vr, vi) ̸= distF ′(vr, vj),
3. if qi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF ′(vi, vj) = 1 or

there is vr ∈ Z such that r ̸= i, j and distF ′(vr, vi) ̸= distF ′(vr, vj),
4. if pi = pj = true for some distinct i, j ∈ {h + 1, ..., s}, then distF ′(vi, vj) = 2 or there is

vr ∈ Z such that r ̸= i, j and distF ′(vr, vi) ̸= distF ′(vr, vj),
5. if qi = qj = true for some distinct i, j ∈ {h + 1, ..., s}, then distF ′(vi, vj) = 1 or there is

vr ∈ Z such that r ̸= i, j and distF ′(vr, vi) ̸= distF ′(vr, vj),
6. p = true if and only if there is i ∈ {1, ..., h} \ I such that distF ′(vi, vj) = 1 for all vj ∈ Z

or there is i ∈ {h + 1, ..., s} such that pi = true and distF ′(vi, vj) = 1 for all vj ∈ Z \ {vi},
7. q = true if and only if there is i ∈ {1, ..., h} \ I such that distF ′(vi, vj) = 2 for all vj ∈ Z

or there is i ∈ {h + 1, ..., s} such that qi = true and distF ′(vi, vj) = 2 for all vj ∈ Z \ {vi},

and ω(p, q, I, ph+1, qh+1, ..., ps, qs) = +∞ in other cases.
The idea behind the conditions is that if, while computing the function ω for a module Xi,
there might be a vertex x, which we track by the conditions 6 and 7, in Xi (or a whole another
module) that we currently can uniquely identify, but in the next step of the computation
(when computing ω for the parent of Xi), we might introduce another a module, say Xj ,
after which we would not be able to distinguish between some of the vertices of Xi and Xj .
That is why we initially track these vertices and modules and later (during the computation
of ω for the parent of Xi) check in the conditions 2 and 3 (4 and 5) if we are still able to
uniquely identify each of these vertices (modules).

Metric Dimension 13

▶ Claim 6.4 ([2]). The function w can be computed as

w(H, p, q) = min ω(p, q, I, ph+1, qh+1, ..., ps, qs),

where the minimum is taken over all possible sets I ⊆ {1, ..., h} and booleans pi, qi ∈ {true, false}
for i ∈ {h + 1, ..., s}.

Proof. First, we show that w(H, p, q) ≥ min ω(p, q, I, ph+1, qh+2, . . . , ps, qs):
If w(H, p, q) = +∞, then the inequality trivially holds. Let w(H, p, q) < +∞. Then there is

a set W ⊆ V (H) of minimum size such that

W resolves V (H) in H ′,

H has a vertex x such that distH′(x, v) = 1 for every v ∈ W if and only if p = true, and

H has a vertex x such that distH′(x, v) = 2 for every v ∈ W if and only if q = true.

By the definition, w(H, p, q) = |W |. Let Wi = W ∩ Xi for i ∈ {1, . . . , s}. Let
I = {i | i ∈ {1, . . . , h}, Wi ̸= ∅}. Notice that Wi ̸= ∅ for i ∈ {h + 1, . . . , s} by Lemma 6.1. For
i ∈ {h + 1, . . . , s}, let pi = true if there is a vertex x ∈ Xi such that distH′(x, u) = 1 for u ∈ Wi,
and let qi = true if there is a vertex x ∈ Xi such that distH′(x, u) = 2 every for u ∈ Wi.

By Lemma 6.1, Wi resolves Xi in the graph obtained from H[Xi] by the addition of a universal
vertex for i ∈ {h + 1, . . . , s}. Hence, |Wi| ≥ w(H[Xi], pi, qi) for i ∈ {h + 1, . . . , s} and, therefore,
|W | ≥ |I| +

∑s
i=h+1 w(H[Xi], pi, qi).

We show that all the conditions are fulfilled for I and the defined values of pi, qi.

1. Consider distinct vertices vi, vj of F . If vi ∈ Z or vj ∈ Z, then it is straightforward to see
that Z resolves vi and vj . Suppose that i, j ∈ {1, . . . , h} \ I. Then Xi, Xj are trivial modules
with the unique vertices x and y, respectively. Because W resolves V (H), there is u ∈ W such
that distH′(u, x) ̸= distH′(u, y). Consider the set Wr containing u. It remains to observe that
vr resolves vi and vj , because distF ′(vr, vi) = distH′(u, x) ̸= distH′(u, y) = distF ′(vr, vj).

2. Assume that pi = true for some i ∈ {h + 1, . . . , s} and consider j ∈ {1, . . . , h} \ I. Suppose
that distF ′(vi, vj) = 1. Then Xi has a vertex x adjacent to all the vertices of Wi. Let y be
the unique vertex of Xj . The set W resolves x, y and, therefore, there is u ∈ W such that
distH′(u, x) ̸= distH′(u, y). If u ∈ Xi, then we have that distH′(u, x) = 1 = distF ′(vi, vj) =
distH′(u, y) which is a contradiction. Hence, u /∈ Xi. Let Xr be the module containing u.
Then we have that distF ′(vr, vi) = distH′(u, x) ̸= distH′(u, y) = distF ′(vr, vi).

3. Assume that qi = true for some i ∈ {h + 1, . . . , s} and consider j ∈ {1, . . . , h} \ I. Suppose
that distF ′(vi, vj) = 2. Then Xi has a vertex x at distance 2 from all the vertices of Wi. Let y
be the unique vertex of Xj . The set W resolves x, y and, therefore, there is u ∈ W such that
distH′(u, x) ̸= distH′(u, y). If u ∈ Xi, then we have that distH′(u, x) = 2 = distF ′(vi, vj) =
distH′(u, y) which is a contradiction. Hence, u /∈ Xi. Let Xr be the module containing u.
Then we have that distF ′(vr, vi) = distH′(u, x) ̸= distH′(u, y) = distF ′(vr, vi).

4. Suppose that pi = pj = true for some distinct i, j ∈ {h + 1, . . . , s} and assume that
distF ′(vi, vj) = 1. Then Xi has a vertex x adjacent to all the vertices of Wi and Xj

has a vertex y adjacent to all the vertices of Wj . The set W resolves x, y and, there-
fore, there is u ∈ W such that distH′(u, x) ̸= distH′(u, y). If u ∈ Xi, then we have that
distH′(u, x) = distF ′(vi, vj) = distH′(u, y) which is a contradiction. Hence, u /∈ Xi. By
the same arguments, u /∈ Xj . Let Xr be the module containing u. Then we have that
distF ′(vr, vi) = distH′(u, x) ̸= distH′(u, y) = distF ′(vr, vi).

14 Algorithms Parameterized By Modular-width

5. Suppose that qi = qj = true for some distinct i, j ∈ {h + 1, . . . , s} and assume that
distF ′(vi, vj) = 2. Then Xi has a vertex x at distance 2 to all the vertices of Wi and
Xj has a vertex y at distance 2 to all the vertices of Wj . The set W resolves x, y and,
therefore, there is u ∈ W such that distH′(u, x) ̸= distH′(u, y). If u ∈ Xi, then we have
that distH′(u, x) = distF ′(vi, vj) = distH′(u, y) which is a contradiction. Hence, u /∈ Xi.
By the same arguments, u /∈ Xj . Let Xr be the module containing u. Then we have that
distF ′(vr, vi) = distH′(u, x) ̸= distH′(u, y) = distF ′(vr, vi).

6. Recall that p = true if and only if V (H) has a vertex x that is adjacent to all the vertices
of W . Suppose that V (H) has a vertex x that is adjacent to all the vertices of W . If x ∈ Xi

for some i ∈ {1, . . . , h} \ I, then distF ′(vi, vj) = 1 for all vj ∈ Z. If x ∈ Xi for some
i ∈ {h + 1, . . . , s}, then pi = true and distF ′(vi, vj) = 1 for every vj ∈ Z \ {vi}. Suppose
that there is i ∈ {1, . . . , h} \ I such that distF ′(vi, vj) = 1 for every vj ∈ Z or there is
i ∈ {h + 1, . . . , s} such that pi = true and distF ′(vi, vj) = 1 for every vj ∈ Z \ {vi}. If there is
i ∈ {1, . . . , h} \ I such that distF ′(vi, vj) = 1 for every vj ∈ Z, then the unique vertex x of Xi

is at distance 1 from all the vertices of W and p = true. If there is i ∈ {h + 1, . . . , s} such
that pi = true, then there is x ∈ Xi at distance 1 from each vertex of Wi. If distF ′(vi, vj) = 1
for every vj ∈ Z \ {vi}, then x is at distance 1 from all the vertices W \ Wi and, therefore,
p = true.

7. Recall that q = true if and only if V (H) has a vertex x that is at distance 2 from every vertex
of W . Suppose that V (H) has a vertex x that is at distance 2 from all the vertices of W . If
x ∈ Xi for some i ∈ {1, . . . , h}\ I, then distF ′(vi, vj) = 2 for every vj ∈ Z. If x ∈ Xi for some
i ∈ {h + 1, . . . , s}, then qi = true and distF ′(vi, vj) = 2 for every vj ∈ Z \ {vi}. Suppose that
there is i ∈ {1, . . . , h} \ I such that distF ′(vi, vj) = 2 for vj ∈ Z or there is i ∈ {h + 1, . . . , s}
such that qi = true and distF ′(vi, vj) = 2 for vj ∈ Z \ {vi}. If there is i ∈ {1, . . . , h} \ I
such that distF ′(vi, vj) = 2 for every vj ∈ Z, then the unique vertex x of Xi is at distance 2
from all the vertices of W and q = true. If there is i ∈ {h + 1, . . . , s} such that qi = true,
then there is x ∈ Xi at distance 2 from each vertex of Wi. If distF ′(vi, vj) = 2 for every
vj ∈ Z \ {vi}, then x is at distance 2 from the vertices W \ Wi and, therefore, q = true.

Because all of the seven conditions are fulfilled

w(H, p, q) = |W | ≥ |I| +
s∑

i=h+1
w(H[Xi], pi, qi) = ω(p, q, I, ph+1, qh+2, . . . , ps, qs).

Now we show that w(H, p, q) ≤ min ω(p, q, I, ph+1, qh+2, . . . , ps, qs). Assume that I and the
values of ph+1, qh+1, . . . , ps, qs are chosen in such a way that ω(p, q, I, ph+1, qh+2, . . . , ps, qs) has
the minimum possible value. If ω(p, q, I, ph+1, qh+1, . . . , ps, qs) = +∞, then, trivially, we have
that w(H, p, q) ≤ ω(p, q, I, ph+1, qh+1, . . . , ps, qs). Suppose that ω(p, q, I, ph+1, qh+1, . . . , ps, qs) is
finite. Then ω(p, q, I, ph+1, qh+1, . . . , ps, qs) = |I|+

∑s
i=h+1 w(H[Xi], pi, qi) and all the conditions

are fulfilled for p, q, I and the values of ph+1, qh+1, . . . , ps, qs.
Notice that w(H[Xi], pi, qi) < +∞ for i ∈ {h + 1, . . . , s}. For i ∈ {h + 1, . . . , s}, let Wi ⊆ Xi

be a set of minimum size such that

Wi resolves Xi in the graph H ′
i obtained from H[Xi] by the addition of a universal vertex,

Xi has a vertex x such that distH′
i
(x, v) = 1 for every v ∈ Wi if and only if pi = true, and

Xi has a vertex x such that distH′
i
(x, v) = 2 for every v ∈ Wi if and only if qi = true.

By the definition, w(H[Xi], pi, qi) = |Wi| for i ∈ {h + 1, . . . , s}. Let

W = (∪i∈IXi) ∪ (∪s
i=h+1Wi).

We have that |W | = ω(p, q, I, ph+1, qh+2, . . . , ps, qs).

Metric Dimension 15

▶ Claim 6.5. W is a resolving set for V (H) in H ′.

Proof. Let x, y be distinct vertices of H. We show that there is a vertex u in W that resolves
x and y in H ′. Clearly, it is sufficient to prove it for x, y ∈ V (H) \ W . Let Xi and Xj be the
modules that contain x and y respectively. If i = j, then a vertex u ∈ Wi resolves x and y in H ′

i

and, therefore, u resolves x and y in H ′. Suppose that i ̸= j.
Assume first that i, j ∈ {1, . . . , h}. Then i, j ∈ {1, . . . , h} \ I, because X1, . . . , Xh are trivial.

By 1, Z resolves V (F) in F ′. Hence, there is vr ∈ Z such that distF ′(vr, vi) ̸= distF ′(vr, vj).
Notice that Wr ̸= ∅ by the definition of Wr and Z. Let u ∈ Wr. We have that distH′(u, x) =
distF ′(vr, vi) ̸= distF ′(vr, vj) = distH′(u, y).

Let now i ∈ {h+1, . . . , s} and j ∈ {1, . . . , h}. If there are u1, u2 ∈ Wi such that distH′
i
(u1, x) ̸=

distH′
i
(u2, x), then u1 or u2 resolves x and y, because distH′(u1, y) = distH′(u2, y). Assume that

all the vertices of Wi are at the same distance from x in H ′
i. Let u ∈ Wi. If distH′

i
(u, x) = 1, then

pi = true and, by 2, distF ′(vi, vj) = 2 or there is vr ∈ Z such that r ̸= i, j and distF ′(vr, vi) ̸=
distF ′(vr, vj). If distF ′(vi, vj) = 2, then u resolves x and y, as distH′(u, y) = 2. Otherwise,
any vertex u′ ∈ Wr resolves x and y. Similarly, if distH′

i
(u, x) = 2, then qi = true and, by 3,

distF ′(vi, vj) = 1 or there is vr ∈ Z such that r ̸= i, j and distF ′(vr, vi) ̸= distF ′(vr, vj). If
distF ′(vi, vj) = 1, then u resolves x and y, as distH′(u, y) = 1. Otherwise, any vertex u′ ∈ Wr

resolves x and y.
Finally, let i, j ∈ {h + 1, . . . , s}. If there are u1, u2 ∈ Wi such that distH′

i
(u1, x) ̸=

distH′
i
(u2, x), then u1 or u2 resolves x and y, because distH′(u1, y) = distH′(u2, y). By

the same arguments, if there are u1, u2 ∈ Xj such that distH′
j
(u1, y) ̸= distH′

i
(u2, y), then

u1 or u2 resolves x and y. Assume that all the vertices of Wi are at the same distance
from x in H ′

i and all the vertices of Wj are at the same distance from y in H ′
j . Let

u1 ∈ Wi and u2 ∈ Wj . If distH′
i
(u1, x) ̸= distH′

j
(u2, y), then u1 or u2 resolves x and y,

because distH′(u1, y) = distH′(u2, x). Suppose that distH′
i
(u1, x) = distH′

j
(u2, y) = 1. Then

pi = pj = true and, by 4, distF ′(vi, vj) = 2 or there is vr ∈ Z such that r ̸= i, j and
distF ′(vr, vi) ̸= distF ′(vr, vj). If distF ′(vi, vj) = 2, then u1 resolves x and y. Otherwise, any
vertex u′ ∈ Wr resolves x and y. If distH′

i
(u1, x) = distH′

j
(u2, y) = 2, then qi = qj = true and,

by 5, distF ′(vi, vj) = 1 or there is vr ∈ Z such that r ̸= i, j and distF ′(vr, vi) ̸= distF ′(vr, vj). If
distF ′(vi, vj) = 1, then u1 resolves x and y. Otherwise, any vertex u′ ∈ Wr resolves x and y. ◀

By 6, p = true if and only if there is i ∈ {1, . . . , h} \ I such that distF ′(vi, vj) = 1 for
every vj ∈ Z or there is i ∈ {h + 1, . . . , s} such that pi = true and distF ′(vi, vj) = 1 for every
vj ∈ Z \ {vi}. If there is i ∈ {1, . . . , h} \ I such that distF ′(vi, vj) = 1, then the unique vertex
x ∈ Xi is at distance 1 from any vertex of W . If there is i ∈ {h + 1, . . . , s} such that pi = true
and distF ′(vi, vj) = 1 for every vj ∈ Z \ {vi}, then there is a vertex x ∈ Xi at distance 1 from
each vertex of Wi, because pi = true, and as distF ′(vi, vj) = 1 for vj ∈ Z \ {vi}, x is at distance
1 from any vertex of W \ Wi. Suppose that there is a vertex x ∈ V (H) at distance 1 from each
vertex of W . Let Xi be the module containing x. If i ∈ {1, . . . , h}, then i ∈ {1, . . . , h} \ I and
distF ′(vi, vj) = 1 for every vj ∈ Z. Hence, p = true. If i ∈ {h + 1, . . . , s}, then pi = true,
because x is at distance 1 from all the vertices of Wi. Because x is at distance 1 from all the
vertices of W \ Wi, distF ′(vi, vj) = 1 for every vj ∈ Z \ {vi}. Therefore, p = true.

Similarly, by 7, q = true if and only if there is i ∈ {1, . . . , h} \ I such that distF ′(vi, vj) = 2
for vj ∈ Z or there is i ∈ {h + 1, . . . , s} such that qi = true and distF ′(vi, vj) = 2 for every
vj ∈ Z \ {vi}. If there is i ∈ {1, . . . , h} \ I such that distF ′(vi, vj) = 2 for every vj ∈ Z, then the
unique vertex x ∈ Xi is at distance 2 from any vertex of W . If there is i ∈ {h + 1, . . . , s} such
that qi = true and distF ′(vi, vj) = 2 for vj ∈ Z \ {vi}, then there is a vertex x ∈ Xi at distance
2 from each vertex of Wi, because qi = true, and, as distF ′(vi, vj) = 2 for every vj ∈ Z \ {vi},
x is at distance 2 from any vertex of W \ Wi. Suppose that there is a vertex x ∈ V (H) at
distance 2 from each vertex of W . Let Xi be the module containing x. If i ∈ {1, . . . , h}, then
i ∈ {1, . . . , h} \ I and distF ′(vi, vj) = 2 for vj ∈ Z. Hence, q = true. If i ∈ {h + 1, . . . , s}, then

16 Algorithms Parameterized By Modular-width

qi = true, because x is at distance 2 from the vertices of Wi. Because x is at distance 2 from
the vertices of W \ Wi, distF ′(vi, vj) = 2 fo everyr vj ∈ Z \ {vi}. Therefore, q = true.

We conclude that

W resolves V (H) in H ′,

H has a vertex x such that distH′(x, v) = 1 for every v ∈ W if and only if p = true, and

H has a vertex x such that distH′(x, v) = 2 for every v ∈ W if and only if q = true.

Therefore, w(H, p, q) ≤ |W | = ω(p, q, I, ph+1, qh+2, . . . , ps, qs).

This finishes the proof of claim 6.4. ◀

Now we explain how to compute the metric dimension of G using the function w(H, p, q).
Since G is a connected graph of modular-width at most t, it is either a single vertex graph,
or it is a join of two graph or it can be partitioned into s ≤ t modules X1, ..., Xs such that
mw(G[Xi]) ≤ t for i ∈ {1, ..., s}.

Single vertex. If |V (G)| = 1 it should be obvious, that md(G) = 1.

Join. If G is a join of H1 and H2, we can assume that |V (H1)| ≤ |V (H2)|. Three cases can
occur.
We again explain why the following equivalences hold. We do so only for the join of the
graphs as the reasoning is analogous in other cases.
First, if |V (H1)| = |V (H2)| = 1, then since the partitions are joined and there are only two
vertices in the graph we only need any one of the vertices to resolve both of them, and, thus
md(G) = 1.
Second, if |V (H1)| = 1 and |V (H2)| > 1 and the values of w(Hi, p, q) have already been
computed for p, q ∈ {true, false}, then by the definition of join of a graph, the vertex from
H1 is at distance 1 from all of the vertices of H2 in G. This vertex can, but does not have to
be in the resolving set. By Lemma 6.1

md(G) = min{w(H2, false, true), w(H2, false, false), w(H2, true, true)+1, w(H2, true, false)+1}.

Third, |V (H1)|, |V (H2)| > 1 and the values of w(H2, p, q) have already been computed for
p, q ∈ {true, false}. By the definition of the join of graph, a vertex from H1 is at distance 1
from all of the vertices of H2 in G, and every resolving set has at least one vertex in H1 and
one vertex in H2. By Lemma 6.1

md(G) = min{w(H1, p1, q1) + w(H2, p2, q2) | pi, qi ∈ {true, false}, i ∈ {1, 2} and p1 ̸= p2}.

When computing w(H, p, q) we construct a graph H ′ by adding a universal vertex to H.
Doing so emulates the property that for each of the modules except for the root module
in the modular decomposition of G, the distance between any two vertices inside a single
module is at most 2. This is the case only for the proper modules of G, as for the set of
vertices of G it can happen that diam(G) > 2. Therefore we have to modify some of the
conditions in the third case.

Partitioning into modules. Let V (H) be partitioned into s ≤ t non-empty modules
X1, ..., Xs, s ≥ 2. We again assume that X1, ..., Xh are trivial, this means that |Xi| = 1
for i ∈ {1, ..., h} where 0 ≤ h ≤ s. Let F again be the prime graph with a vertex set

Metric Dimension 17

{v1, ..., vs} such that vi is adjacent to vj if and only if the vertices of Xi are adjacent to the
vertices of Xj . Observe again that if x ∈ Xi and y ∈ Xj for distinct i, j ∈ {1, ..., s}, then
distG(x, y) = distF (vi, vj). Note that we do not consider F ′ and the distances within F can
be more that 2.
For a set of indices I ⊆ {1, ..., h} and boolean variables pi, qi where i ∈ {h + 1, ..., s}, we
define

ω(I, ph+1, qh+1, ..., ps, qs) = |I| +
s∑

i=h+1
w(G[Xi], pi, qi)

if the following holds:

1. the set Z = {vi | i ∈ I ∪ {h + 1, ..., s}} is a resolving set for F ,
2. if pi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF (vi, vj) ≥ 2 or

there is vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF (vr, vj),
3. if qi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF (vi, vj) ̸= 2 or

there is vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF (vr, vj),
4. pi = pj = true for some distinct i, j ∈ {h+1, ..., s} , then distF (vi, vj) ≥ 2 or there is some

vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF (vr, vj),
5. qi = qj = true for some distinct i, j ∈ {h + 1, ..., s} , then distF (vi, vj) ̸= 2 or there is some

vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF (vr, vj).,

and ω(I, ph+1, qh+1, ..., ps, qs) = +∞ in all other cases.

All of the conditions 1–5 are analogous to the conditions in computation of w(H, p, q) with
the exception that now, the distances can be larger than 2.

The claim about the metric dimension is expressed by the following theorem.

▶ Theorem 6.6 ([2]). The function md, that expresses the metric dimension of a graph can
be expressed as md(G) = min ω(I, ph+1, qh+1, ..., ps, qs), where the minimum is taken over all
possible values of I ⊆ {1, ..., h} and pi, qi ∈ {true, false} for i ∈ {h + 1, ..., s}.

Proof. We first prove that md(G) ≥ min ω(I, ph+1, qh+1, ..., ps, qs):
Let W ⊆ V (G) be a resolving set of minimum size. By definition, md(G) = |W |. Let

Wi = W ∩ Xi. Let I = {i | i ∈ {1, ..., h}, Wi ̸= ∅}. By Lemma 6.1, Wi ̸= ∅ for i ∈ {h + 1, ..., s}.
For i ∈ {h + 1, ..., s}, let pi = true if there is a vertex x ∈ Xi such that distG(x, u) = 1 for all
u ∈ Wi, and let qi = true if there is a vertex y ∈ Xi such that distG(y, u) = 2 for all u ∈ Wi.

By Lemma 6.1, Wi resolves Xi in G′[V (Xi]) for i ∈ {h + 1, ..., s}, where G′ is the graph
obtained by the addition of a universal vertex to the graph G. This implies that |Wi| ≥
w(G[Xi], pi, qi) for i ∈ {h + 1, ..., s} and therefore |W | ≥ |i| +

∑s
i=h+1 w(G[Xi], pi, qi).

Now we prove that each of the conditions 1–5 is met for the chosen values of I, pi and qi.

1. Let vi, vj be distinct vertices in F . If vi ∈ Z or vj ∈ Z, Z obviously resolves vi and vj . Let
i, j ∈ {1, ..., h}\I. Then Xi, Xj are trivial modules with vertices x, y respectively. Since W is
a resolving set of G, there has to be u ∈ W such that distG(u, x) ̸= distG(u, y). Consider the
set Wr containing u. Vertices vi, vj are resolved by vr, because distF (vr, vi) = distG(u, x) ̸=
distG(u, y) = distF (vr, vj).

2. Assume that pi = true for some i ∈ {h + 1, ..., s} and consider some j ∈ {1, ..., h} \ I.
Let us also assume that distF (vi, vj) = 1. Then Xi has to have a vertex x adjacent to
all the vertices of Wi. Let y be the unique vertex of Xj . The set W resolves x, y, which
means there is u ∈ W such that distG(u, x) ̸= distG(u, y). If u ∈ Xi then we have that
distG(u, x) = 1 = distF (vi, vj) = distG(u, y). That is a contradiction. Thus u cannot
belong to Xi. Let then Xr be the module containing u. Then we have that distF (vr, vi) =
distG(u, x) ̸= distG(u, y) = distF (vr, vj).

18 Algorithms Parameterized By Modular-width

3. Assume that qi = true for some i ∈ {h + 1, ..., s} and consider some j ∈ {1, ..., h} \ I.
Let us also assume that distF (vi, vj) = 2. Then Xi has to have a vertex x at distance 2
from all the vertices of Wi. Let y be the unique vertex of Xj . The set W resolves x, y,
which means there is u ∈ W such that distG(u, x) ̸= distG(u, y). If u ∈ Xi then we have
that distG(u, x) = 2 = distF (vi, vj) = distG(u, y). That is a contradiction. This means
that u cannot belong to Xi. Let then Xr be the module containing u. Then we have that
distF (vr, vi) = distG(u, x) ̸= distG(u, y) = distF (vr, vj).

4. Suppose that pi = pj = true for some i ∈ {h + 1, ..., s} and assume that distF (vi, vj) = 1.
Then Xi has a vertex x adjacent to all the vertices of Wi and Xj has a vertex y that is adjacent
to all the vertices of Wj . The set W resolves x, y and therefore there has to be u ∈ W such
that distG(u, x) ̸= distG(u, y). If u ∈ Xi then we get that distG(u, x) = distF (vi, vj) =
distG(u, y). That is a contradiction. This means that u cannot belong to Xi. We get that
u /∈ Xj by the same argument. Let then Xr be the module containing u. Then we have that
distF (vr, vi) = distG(u, x) ̸= distG(u, y) = distF (vr, vj).

5. Suppose that qi = qj = true for some i ∈ {h + 1, ..., s} and assume that distF (vi, vj) = 2.
Then Xi has a vertex x at distance 2 to all the vertices of Wi and Xj has a vertex y that
is at distance 2 to all the vertices of Wj . The set W resolves x, y and therefore there has
to be u ∈ W such that distG(u, x) ̸= distG(u, y). If u ∈ Xi then we get that distG(u, x) =
distF (vi, vj) = distG(u, y). That is a contradiction. This means that u cannot belong to Xi.
We get that u /∈ Xj by the same argument. Let then Xr be the module containing u. Then
we have that distF (vr, vi) = distG(u, x) ̸= distG(u, y) = distF (vr, vj).

All five of the conditions are fulfilled. By that the inequality
md(G) ≥ min ω(I, ph+1, qh+1, ..., ps, qs) has been proven.

Now we prove that md(G) ≤ min ω(I, ph+1, qh+1, ..., ps, qs):
Assume that I ⊆ {1, ..., h} and the values of pi, qi for i ∈ {h+1, ..., s} are chosen in such a way,

that ω(I, ph+1, qh+1, ..., ps, qs) has the minimum possible value. If ω(I, ph+1, qh+1, ..., ps, qs) =
+∞, the inequality holds trivially. Suppose that ω(I, ph+1, qh+1, ..., ps, qs) is finite. Then
ω(I, ph+1, qh+1, ..., ps, qs) = |I| +

∑s
i=h+1 w(H[Xi], pi, qi) and 1–5 hold.

For i ∈ {h + 1, .., s}, let Wi ⊆ Xi be a set of minimum size such that:

1. Wi resolves Xi in the graph H ′
i,

2. Xi has a vertex x such that distH′
i
(x, v) = 1 for every v ∈ Wi if and only if pi = true,

3. Xi has a vertex x such that distH′
i
(x, v) = 2 for every v ∈ Wi if and only if qi = true.

By the definition, w(G[Xi], pi, qi) = |Wi| for i ∈ {h + 1, ..., s}. Let

W = (∪i∈IXi) ∪ (∪s
i=h+1Wi).

◀

We have that |W | = ω(p, q, I, ph+1, qh+1, ..., ps, qs).

▶ Claim 6.7 ([2]). W is a resolving set for G.

Proof. Let x, y be distinct vertices of G. Let us show that a vertex u ∈ W , that resolves x and
y in G, exists. It is obvious, that is suffices to prove this for x, y ∈ G \ W . Let Xi, Xj be the
modules that contain x, y, respectively. If i = j, then a vertex u ∈ Wi resolves x and y in H ′

i

and, therefore, u resolves x and y in G. Assume that i ̸= j.
First, assume i, j ∈ {1, ..., h}. Then i, j /∈ I, because X1, ..., Xh are trivial. By 1, since Z is a

resolving set for F , there is vr ∈ Z such that distF (vr, vi) ̸= distF (vr, vj). Set Wr is not empty,
by the definition. Let u ∈ Wr. Then distG(u, x) = distF (vr, vi) ̸= distF (vr, vi) = distG(u, y).

Metric Dimension 19

Now assume that i ∈ {h + 1, ..., s} and j ∈ {1, ..., h}. If there are u1, u2 ∈ Wi such
that distH′

i
(u1, x) ̸= distH′

i
(u2, x), then either u1 or u2 resolves x, y, because distG(u1, y) =

distG(u2, y). Assume that all the vertices of Wi are at the same distance from x in H ′
i. Let

u ∈ Wi. Let u ∈ Wi. If distH′
i
(u, x) = 1, then pi = true and by the second condition,

distF (vi, vj) ≥ 2 or there is vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF (vr, vj). If
distF (vi, vj) ≥ 2, x and y must be resolved by u, because distG(u, y) ≥ 2. Otherwise x and y are
resolved by any vertex u′ ∈ Wr.

In the same way if distG(u, x) = 2, then qi = true and by the third condition distF (vr, vj) ̸=
distF (vr, vj). If distG(u, x) ̸= 2, then u resolves x and y.

Now let i, j ∈ {h + 1, ...s}. If u1, u2 ∈ Wi such that distH′
i
(u1, x) ̸= distH′

i
(u2, x) exist, then x

and y are resolved by either u1 or u2, since distG(u1, x) = distG(u2, x). The same argument can
be used if there are u1, u2 ∈ Xj such that distH′

i
(u1, y) ̸= distH′

i
(u2, y), then u1 or u2 resolves x, y.

Assume all the vertices of Wi are at the same distance from y in H ′
j . Let u1 ∈ Wi and u2 ∈ Wj .

If distH′
i
(u1, x) ̸= distH′

i
(u2, x), then u1 or u2 resolves x and y, since distG(u1, y) = distG(u2, x).

Suppose that distH′
i
(u1, x) = distH′

j
(u2, y) = 1. Then pi = pj = true and by the fourth condition,

distF (vi, vj) ≥ 2, or there is vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF (vr, vj). If
distF (vi, vj) ̸= 1, then u1 resolves x and y. Otherwise any vertex u′ ∈ Wr resolves x and
y. If distH′

i
(u1, x) = distH′

j
(u2, y) = 2, then qi = qj = true and by the fourth condition

distF (vi, vj) ̸= 2 or there is vr ∈ Z such that r ̸= i, j and distF (vr, vi) ̸= distF (vr, vj). If
distF (vi, vj) ̸= 2, then u1 resolves x and y. Otherwise any vertex of Wr resolves x and y. ◀

We have shown that W is a resolving set for G and, therefore, md(G) ≤ |W | and
|W | = ω(I, ph+1, qh+1, ..., ps, qs).

For evaluation of the running time of w(H, p, q) we only need to consider the case when V (H)
can be partitioned into s ≤ t modules. We consider at most 4t possibilities to choose I and pi, qi

for i ∈ {h + 1, ...s}. Then all the conditions can be verified in O(t3) time. Hence, the total
time complexity is O(4t · t3). In the same way the computation of the function of md(G) can be
performed in O(4t · t3). The conclusion is that, since the algorithm by Tedder et al. [8] is linear,
we can solve the metric dimension problem in O(4t · t3 · n + m) time.

6.2 An Example
We proceed to show the working of the algorithm on a simple example. The computation will
be shown only for the branch that is going to give us the optimal result as going through the
whole computation would be too lenghty. To do this we need to already know what nodes is the
resolving set composed of and make some assumptions along the way. However the idea of the
algorithm should still be very clear from the example.

Let us have the graph G as shown in Figure 1. We state that for this graph the optimal
resolving set W = {7, 10}. This graph has the modular decomposition depicted in Figure 2,
where a PRIME module means the fourth operation of a modular decomposition as described in
preliminaries.

Figure 4 The graph F ′ with the universal vertex -1, constructed from the graph seen in Figure 3.

7 8 9 10

-1

Computing from bottom-up, we first need to compute the value of ω(p, q, I, ph+1, qh+1, ..., ps, qs)
for the prime node B. We can see that B has no non-trivial children nodes and four trivial nodes.
Let us then choose I = {7, 10}, because we know that those are in the optimal resolving set.

20 Algorithms Parameterized By Modular-width

Figure 1 Example graph G.

1 2 3 4 5 6

7

8

9

10

Note: Nodes in the resolving set for G are marked in yellow.

Figure 2 Modular decomposition of the graph seen in Figure 1.

A (PRIME)

1 2 3 4 5 6 B (PRIME)

7 8 9 10
Note: ”A (PRIME)” means the name of the node is A and it is a PRIME node.

Now it is also the time to construct the graphs F and F ′, shown in Figure 3 and Figure 4, as
described in the algorithm. We proceed by verifying the conditions.

1. The set Z = {7, 10} does resolve V (F) in F ′, since it also resolves G.

2. There is no other non-trivial sub-module of the currently computed module, so the condition
is implicitly satisfied.

3. There is no other non-trivial sub-module of the currently computed module, so the condition
is implicitly satisfied.

4. There is no other non-trivial sub-module of the currently computed module, so the condition
is implicitly satisfied.

5. There is no other non-trivial sub-module of the currently computed module, so the condition
is implicitly satisfied.

6. For i ∈ {8, 9} it is not true that ∀vj ∈ Z : distF ′(vi, vj) = 1. Which means that p = false.

7. For i ∈ {8, 9} it is not true that ∀vj ∈ Z : distF ′(vi, vj) = 2. Which means that q = false.

We get ω(false, false, {7, 10}) = |I| = 2.
Finally, to calculate md(G), we need to compute the value of ω(I, ph+1, qh+1, ..., ps, qs) for

the prime node A. Since we know that no other vertices need to be added to the resolving set
we set I = ∅. We also know the we have exactly one non-trivial node for which we set p = false
and q = false. This means we need to compute the function ω(I, pB , qB) = ω(∅, false, false).
We again construct the graph F as described in the algorithm. Those can be seen in Figure 5.
Next step is the verification of the five conditions.

Metric Dimension 21

Figure 3 The prime graph F constructed from the subgraph of the graph seen in Figure 1, that is
induced by the set of vertices {7, 8, 9, 10}.

7 8 9 10

Figure 5 The prime graph F .

1 2 3 4 5 6 B

1. We have that Z = {B}, and, thus the condition is satisfied, as the vertex in F representing
the sub-module is a vertex on the end of path. This means that all the distance vectors are
unique.

2. Since pB = false the condition is satisfied.

3. Similar observation as in 2 can be made.

4. There is only one element to choose i, j from, so the condition is satisfied.

5. Same as above.

The conditions are satisfied and from the algorithm we get ω(∅, false, false) = |I| +
w(G[V (B)], false, false) = 0 + 2 = 2. And since we stated that this would be the optimal
computational branch we also get md(G) = ω(∅, false, false) = 2.

We will return to this example in the next section.

22 Algorithms Parameterized By Modular-width

7 Truncated Metric Dimension
In the first part of this section, we present a simple modification to the algorithm bounded by
modular-width to compute Truncated Metric Dimension. In the latter part we show an
example of computation using the algorithm and compare it to the example shown above.

7.1 The Algorithm
Because, as stated before, the case where the graph is composed of a disjoint union of a pair of
graphs or a join of a pair of graphs are subsumed by case where the graph is partitioned into
at most t graphs, each of module-width at most t, we are only going to show how to alter the
last case in this section. We start by explaining how to compute the ω(I, ph+1, qh+1, ..., ps, qs)
function and later show an example of the computation. The w(H, p, q) function is defined and
computed in the same way as in the previous section, because of the fact that the distance
between any two vertices of a single module (except for the root module) of a modular decompo-
sition of a graph can be at most 2. This is also the reason why we only need to change the latter
part of the computation. We feel the need to be point out that the only change in the computa-
tion is the usage of the truncated distance function instead of the non-truncated one. In practice,
that means iterating through the elements of the distance matrix and clamping each of the values.

Partitioning into modules. Let V (H) be partitioned into s ≤ t non-empty modules
X1, ..., Xs, s ≥ 2. We again assume that X1, ..., Xh are trivial. And let again F be the
prime graph with a vertex set {v1, ..., vs} such that vi is adjacent to vj if and only if the vertices
of Xi are adjacent to the vertices of Xj . Observe again that if x ∈ Xi and y ∈ Xj for distinct
i, j ∈ {1, ..., s}, then distG,k(x, y) = distF,k(vi, vj) for any k.

For a set of indices I ⊆ {1, ..., h} and boolean variables pi, qi where i ∈ {h + 1, ..., s}, we
define

ωk(I, ph+1, qh+1, ..., ps, qs) = |I| +
s∑

i=h+1
w(G[Xi], pi, qi)

if the following holds:

1. the set Z = {vi | i ∈ I ∪ {h + 1, ..., s}} is a resolving set for F ,

2. if pi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF,k(vi, vj) ≥ 2 or
there is vr ∈ Z such that r ̸= i, j and distF,k(vr, vi) ̸= distF,k(vr, vj),

3. if qi = true for some i ∈ {h + 1, ..., s}, then for each j ∈ {1, ..., h} \ I, distF,k(vi, vj) ̸= 2 or
there is vr ∈ Z such that r ̸= i, j and distF,k(vr, vi) ̸= distF,k(vr, vj),

4. pi = pj = true for some distinct i, j ∈ {h + 1, ..., s} , then distF,k(vi, vj) ≥ 2 or there is some
vr ∈ Z such that r ̸= i, j and distF,k(vr, vi) = distF,k(vr, vj),

5. qi = qj = true for some distinct i, j ∈ {h + 1, ..., s} , then distF,k(vi, vj) ̸= 2 or there is some
vr ∈ Z such that r ̸= i, j and distF,k(vr, vi) = distF,k(vr, vj).,

and ωk(I, ph+1, qh+1, ..., ps, qs) = +∞ in all other cases.
The claim about the metric dimension is expressed by the following theorem.

▶ Theorem 7.1 ([2]). The function mdk, that expresses the truncated metric dimension of
a graph can be computed as mdk(G) = min ωk(I, ph+1, qh+1, ..., ps, qs), where the minimum is
taken over all possible values of I ⊆ {1, ..., h} and pi, qi ∈ {true, false} for i ∈ {h + 1, ..., s}.

Proof. We first prove that mdk(G) ≥ min ωk(I, ph+1, qh+1, ..., ps, qs):

Truncated Metric Dimension 23

Let W ⊆ V (G) be a resolving set of minimum size. By definition, md(G) = |W |. Let
Wi = W ∩ Xi. Let I = {i | i ∈ {1, ..., h}, Wi ̸= ∅}. By Lemma 6.1, Wi ̸= ∅ for i ∈ {h + 1, ..., s}.
For i ∈ {h + 1, ..., s}, let pi = true if there is a vertex x ∈ Xi such that distG,k(x, u) = 1 for all
u ∈ Wi, and let qi = true if there is a vertex y ∈ Xi such that distG,k(y, u) = 2 for all u ∈ Wi.

By Lemma 6.1, Wi resolves Xi in G′[Xi] for i ∈ {h + 1, ..., s}. This implies that |Wi| ≥
w(G[Xi], pi, qi) for i ∈ {h + 1, ..., s} and therefore |W | ≥ |i| +

∑s
i=h+1 w(G[Xi], pi, qi).

Now we prove that each of the conditions 1–5 is met for the chosen values of I, pi and qi.

1. Let vi, vj be distinct vertices in F . If vi ∈ Z or vj ∈ Z, Z obviously resolves vi and vj . Let
i, j ∈ {1, ..., h} \ I. Then Xi, Xj are trivial modules with vertices x, y respectively. Since
W is a resolving set of G, there has to be u ∈ W such that distG,k(u, x) ̸= distG,k(u, y).
Consider the set Wr containing u. Vertices vi, vj are resolved by vr, because distF,k(vr, vi) =
distG,k(u, x) ̸= distG,k(u, y) = distF,k(vr, vj).

2. Assume that pi = true for some i ∈ {h + 1, ..., s} and consider some j ∈ {1, ..., h} \ I.
Let us also assume that distF,k(vi, vj) = 1. Then Xi has to have a vertex x adjacent to
all the vertices of Wi. Let y be the unique vertex of Xj . The set W resolves x, y, which
means there is u ∈ W such that distG,k(u, x) ̸= distG,k(u, y). If u ∈ Xi then we have that
distG,k(u, x) = 1 = distF,k(vi, vj) = distG,k(u, y). That is a contradiction. Thus u cannot
belong to Xi. Let then Xr be the module containing u. Then we have that distF,k(vr, vi) =
distG,k(u, x) ̸= distG,k(u, y) = distF,k(vr, vj).

3. Assume that qi = true for some i ∈ {h + 1, ..., s} and consider some j ∈ {1, ..., h} \ I. Let
us also assume that distF,k(vi, vj) = 2. Then Xi has to have a vertex x at distance 2 from
all the vertices of Wi. Let y be the unique vertex of Xj . The set W resolves x, y, which
means there is u ∈ W such that distG,k(u, x) ̸= distG,k(u, y). If u ∈ Xi then we have that
distG,k(u, x) = 2 = distF,k(vi, vj) = distG,k(u, y). That is a contradiction. This means
that u cannot belong to Xi. Let then Xr be the module containing u. Then we have that
distF,k(vr, vi) = distG,k(u, x) ̸= distG,k(u, y) = distF,k(vr, vj).

4. Suppose that pi = pj = true for some i ∈ {h + 1, ..., s} and assume that distF (vi, vj) = 1.
Then Xi has a vertex x adjacent to all the vertices of Wi and Xj has a vertex y that is
adjacent to all the vertices of Wj . The set W resolves x, y and therefore there has to be
u ∈ W such that distG,k(u, x) ̸= distG,k(u, y). If u ∈ Xi then we get that distG,k(u, x) =
distF,k(vi, vj) = distG,k(u, y). That is a contradiction. This means that u cannot belong to
Xi. We get that u /∈ Xj by the same argument. Let then Xr be the module containing u.
Then we have that distF,k(vr, vi) = distG,k(u, x) ̸= distG,k(u, y) = distF,k(vr, vj).

5. Suppose that qi = qj = true for some i ∈ {h + 1, ..., s} and assume that distF,k(vi, vj) = 2.
Then Xi has a vertex x at distance 2 to all the vertices of Wi and Xj has a vertex y that
is at distance 2 to all the vertices of Wj . The set W resolves x, y and therefore there has to
be u ∈ W such that distG,k(u, x) ̸= distG,k(u, y). If u ∈ Xi then we get that distG,k(u, x) =
distF,k(vi, vj) = distG,k(u, y). That is a contradiction. This means that u cannot belong to
Xi. We get that u /∈ Xj by the same argument. Let then Xr be the module containing u.
Then we have that distF,k(vr, vi) = distG,k(u, x) ̸= distG,k(u, y) = distF,k(vr, vj).

All five of the conditions are fulfilled. By that the inequality
mdk(G) ≥ min ωk(I, ph+1, qh+1, ..., ps, qs) has been proven.

Now we prove that mdk(G) ≤ min ωk(I, ph+1, qh+1, ..., ps, qs):
Assume that the values of pi, qi for i ∈ {h + 1, ..., s} are chosen in such a way, that

ωk(I, ph+1, qh+1, ..., ps, qs) has the minimum possible value. If ωk(I, ph+1, qh+1, ..., ps, qs) =
+∞, the inequality holds trivially. Suppose that ωk(I, ph+1, qh+1, ..., ps, qs) is finite. Then
ωk(I, ph+1, qh+1, ..., ps, qs) = |I| +

∑s
i=h+1 w(H[Xi], pi, qi) and 1–5 hold.

For i ∈ {h + 1, .., s}, let Wi ⊆ Xi be a set of minimum size such that:

24 Algorithms Parameterized By Modular-width

1. Wi resolves Xi in the graph H ′
i,

2. Xi has a vertex x such that distH′
i
(x, v) = 1 for every v ∈ Wi if and only if pi = true,

3. Xi has a vertex x such that distH′
i
(x, v) = 2 for every v ∈ Wi if and only if qi = true.

By the definition, w(G[Xi], pi, qi) = |Wi| for i ∈ {h + 1, ..., s}. Let

W = (∪i∈IXi) ∪ (∪s
i=h+1Wi).

◀

We have that |W | = ωk(p, q, I, ph+1, qh+1, ..., ps, qs).

▶ Claim 7.2 ([2]). W is a resolving set for G.

Proof. Let x, y be distinct vertices of G. Let us show that a vertex u ∈ W , that resolves x and
y in G, exists. It is obvious, that is suffices to prove this for x, y ∈ G \ W . Let Xi, Xj be the
modules that contain x, y, respectively. If i = j, then a vertex u ∈ Wi resolves x and y in H ′

i

and, therefore, u resolves x and y in G. Assume that i ̸= j.
First, assume i, j ∈ {1, ..., h}. Then i, j /∈ I, because X1, ..., Xh are trivial. By 1, since Z

is a resolving set for F , there is vr ∈ Z such that distF,k(vr, vi) ̸= distF,k(vr, vj). Set Wr is
not empty, by the definition of Wr and Z. Let u ∈ Wr. Then distG,k(u, x) = distF,k(vr, vi) ̸=
distF,k(vr, vi) = distG,k(u, y).

Now assume that i ∈ {h + 1, ..., s} and j ∈ {1, ..., h}. If there are u1, u2 ∈ Wi such
that distH′

i
(u1, x) ̸= distH′

i
(u2, x), then either u1 or u2 resolves x, y, because distG,k(u1, y) =

distG,k(u2, y). Assume that all the vertices of Wi are at the same distance from x in H ′
i. Let

u ∈ Wi. If distH′
i
(u, x) = 1, then pi = true and by the second condition, distF,k(vi, vj) ≥ 2 or

there is vr ∈ Z such that r ̸= i, j and distF,k(vr, vi) ̸= distF,k(vr, vj). If distF,k(vi, vj) ≥ 2, x
and y must be resolved by u, because distG,k(u, y) ≥ 2. Otherwise x and y are resolved by any
vertex u′ ∈ Wr.

In the same way if distG(u, x) = 2, then qi = true and by the third condition distF (vr, vj) ̸=
distF (vr, vj). If distG(u, x) ̸= 2, then u resolves x and y.

Now let i, j ∈ {h + 1, ...s}. If u1, u2 ∈ Wi such that distH′
i
(u1, x) ̸= distH′

i
(u2, x) exist,

then x and y are resolved by either u1 or u2, since distG,k(u1, x) = distG,k(u2, x). The same
argument can be used if there are u1, u2 ∈ Xj such that distH′

i
(u1, y) ̸= distH′

i
(u2, y), then

u1 or u2 resolves x, y. Assume all the vertices of Wi are at the same distance from y in H ′
j .

Let u1 ∈ Wi and u2 ∈ Wj . If distH′
i
(u1, x) ̸= distH′

i
(u2, x), then u1 or u2 resolves x and y,

since distG,k(u1, y) = distG,k(u2, x). Suppose that distH′
i
(u1, x) = distH′

j
(u2, y) = 1. Then

pi = pj = true and by the fourth condition, distF,k(vi, vj) ≥ 2, or there is vr ∈ Z such that
r ̸= i, j and distF,k(vr, vi) ̸= distF,k(vr, vj). If distF,k(vi, vj) ̸= 1, then u1 resolves x and y.
Otherwise any vertex u′ ∈ Wr resolves x and y. If distH′

i
(u1, x) = distH′

j
(u2, y) = 2, then

qi = qj = true and by the fourth condition distF,k(vi, vj) ̸= 2 or there is vr ∈ Z such that r ̸= i, j
and distF,k(vr, vi) ̸= distF,k(vr, vj). If distF,k(vi, vj) ̸= 2, then u1 resolves x and y. Otherwise
any vertex of Wr resolves x and y. ◀

We have shown that W is a resolving set for G and, therefore, md(G) ≤ |W | and
|W | = ω(I, ph+1, qh+1, ..., ps, qs).

The evaluation of the running time of is very pretty much the same as for the previous
algorithm. We already know that we can compute w(H, p, q) in O(4t · t3) time. We only need
to consider the case when G can be partitioned into s ≤ t modules. We consider at most 4t

possibilities to choose I and pi, qi for i ∈ {h + 1, ...s}. Then all the conditions can be verified
in O(t3) time along with the clamping of the distance values which can be done in O(t2) time.
Hence, the total time complexity is O(4t · t3). The conclusion is that, since the algorithm by
Tedder et al. [8] is linear, we can solve the metric dimension problem in O(4t · t3 · n + m) time.

Truncated Metric Dimension 25

7.2 An Example
We are going to show an example computation on the graph we used in the section about Metric
Dimension to show the difference between the two algorithms. That is the graph depicted in
Figure 6 with the modular decomposition shown in Figure 2. As mentioned above, there is no
need to compute the function w(·) again, since we already did that in the previous section. Then
the only part left to compute is ω(I, pB , qB). Just like in the previous section we are only showing
the computation of the optimal computational branch. From the previous section we also know
that for this case pB = false and qB = false.

Figure 6 Example graph G.

1 2 3 4 5 6

7

8

9

10

Note: Nodes in the resolving set for G are marked in yellow.

Figure 7 The prime graph F .

1 2 3 4 5 6 B

Lets set the truncation parameter k = 3. We choose the paramter in this way so that the
first condition of the computation is not met. In other words Z = {B} is not resolving set for F
(constructed as in the description of the algorithm and depicted in Figure 7), since for example
distF,3(B, 1) = distF,3(B, 2). To solve this we choose I = {1}, which means Z = {1, B}. Now
can we verify the conditions again for the function ω({1}, false, false).

1. We have that Z = {1, B}, and, thus the condition is satisfied.

2. Since pB = false the condition is satisfied.

3. Similar observation as in 2 can be made.

4. There is only one element to chose i, j from, so the condition is satisfied.

5. Same as above.

All the conditions are satisfied and since we computed the function with the parameters that
gives us the minimum number mdk(G) = ω({1}, false, false) = 1 + 2 = 3, for k = 3.

26 Algorithms Parameterized By Modular-width

Algorithms Parameterized by
Max Leaf Number

In this chapter we first describe the algorithm parameterized by Max Leaf Number and later
describe the difficulties that prevented us from modifying the algorithm to solve Truncated
Metric Dimension.

8 Metric Dimension
The algorithm is not parameterized directly by max leaf number, but rather by a functionally
equivalent parameter, that is the number of branches in a graph. The fact that these parameters
are equivalent was proven by the author [3] of the article and is captured by the following lemmas.
▶ Definition 8.1 ([3]). A branch of a graph G is a maximal path or a cycle in which every
internal vertex of the path has degree 2 in G. A vertex v belongs to a branch if v is incident to
an edge of the branch and it is not incident to edges of any other branches.
▶ Lemma 8.2 ([3]). In any connected graph with max leaf number l, there can be at most
O(l2) branches.
▶ Lemma 8.3 ([3]). Every connected graph b > 0 branches has max leaf number at most 2b.
▶ Lemma 8.4 ([3]). Let G be a graph, B be a branch of G, and s be any vertex of G. Then
B may be partitioned into at most three contiguous paths within which the distance from s is
monotonic.

▶ Definition 8.5 ([3]). Let G be a graph, A, B two of its branches and let s be a vertex in a
resolving set for G. Then the indistinct set for s, A, and B is defined to be the set of pairs of
vertices (a, b) with a ∈ A and b ∈ B with dist(s, a) = dist(s, b).
See Figure 8 for an example.
▶ Lemma 8.6 ([3]). Let G be a graph, with A and B being two of its branches, and let
s be a vertex in a resolving set for G. Then the indistinct set for s, A and B has the size
O(min{||A|, |B|}).

Proof. By Lemma 8.4 the vertices in A and B may be divided into at most three paths per
branch, within which the distance from s is monotonic. Therefore, there are O(1) points in both
A and B that have a given distance d from s, and only O(1) pairs of one point from A and one
point from B that both have this distance. The total number of pairs that are not distinguished
is the sum of this O(1) bound over the at most min{|A|, |B|} different distances that need to be
distinguished. ◀

27

28 Algorithms Parameterized by Max Leaf Number

10 11 12 13 14 15 16

a1 a2 a3 a4

a7 a6

a5

b1 b2 b3 b4

b9 b8 b7 b6

b5

b1 b2 b3 b4 b9b8b7b6b5

a1

a2

a3

a4

a7

a6

a5

Figure 8 Two branches A and B arranged by their distances from a locating point s (left), and their
indistinct set (of pairs not distinguished by s) plotted using the positions in the branches as Cartesian
coordinates (right).

When plotted in two dimension, with the positions of a in A as one Cartesian coordinate and
the position of b in B as the other, an indistinct set has the structure of O(1) line segments whith
slopes ±1. By rotating this coordinate system by 45° we may use a more convenient coordinate
system in which these segments are all horizontal or vertical. However, we must be careful when
using this rotated system, as only the integer points with even sums of coordinates correspond
to the integer points in the un-rotated system, which are the only points that can be members
of an indistinct set.

Next, we consider how the indistinct set of s, A and B changes with the change of position
of s along a third branch C.

▶ Definition 8.7 ([3]). We say that two indistinct sets are combinatorially equivalent if there
is a one-to-one correspondence between the diagonal segments of the two sets with the following
properties:

If s is a diagonal of one indistinct set, the corresponding diagonal in the other set has the
same slope as s.

If s and t are two diagonals of one indistinct set that intersect each other, then the corre-
sponding diagonals in the other set also intersect each other.

If s, t and u are three diagonals of one indistinct set, with t and u both intersecting s, then the
corresponding two intersections of diagonals in the other intersecting set have the ordering.

Combinatorial equivalence is an equivalence relation and we define the combinatorial structure
of an indistinct set to be its equivalence class in this equivalence relation.

▶ Definition 8.8 ([3]). A stem is defined to be a maximal contiguous subset od a branch C
of a given graph G within which the indistinct set of all points s in C and all pairs (A, B) of
branches have the same combinatorial structure, as specified by Definition 8.7.

▶ Lemma 8.9 ([3]). For a given pair of branches (A, B) and a third branch C, there are O(1)
positions along C such that the indistinct set of a vertex s of a branch C and the pair (A, B)
changes structure at that position.

At all the points of C other than these, the indistinct set maintains the same combinatorial
structure for s, A, and B. The position of its segments either remain fixed as s varies along the
path, or they shift linearly with the position of s along C.

Metric Dimension 29

▶ Lemma 8.10 ([3]). Every graph G with b branches has O(b3) stems.

▶ Lemma 8.11 ([3]). The metric dimension of every graph with b branches is O(b).

▶ Theorem 8.12 ([3]). The metric dimension of any graph with n vertices and b branches may
be determined in the time O(n) + 2O(b3 log b) log n.

Proof. We may assume without loss of generality that the graph is connected, for otherwise
we could partition it into connected components and process each component separately. Par-
titioning the graph into branches may be performed in time O(n). After this step all shortest
path computations in the given graph can be performed by instead using a weighted graph with
O(b) vertices and edges, in which each edge represents a branch of the original graph and is
weighted by that branch’s length. In particular, after partitioning the graph into branches, we
may partition the branches into stems in total time bO(1).

We search for locating sets of size O(b), according to Theorem 8.11, by nondeterministically
choosing the number of vertices in the locating set S, and the stem containing each vertex (but
not the location of the vertex within the stem). There are 2O(b log b) possible choices of this type.
This choice determines the combinatorial structure of each indistinct set.

Next, for each pair (A, B) of branches (allowing A = B) and each member s of the locat-
ing set (now associated with a specific stem but not placed at a particular vertex within that
stem), we consider the line segments forming the indistinct sets for s, A and B, in the rotated
coordinate system for which these line segments are horizontal and vertical. For a given pair
(A, B) there are O(b) line segments (O(1) for each member of the locating set) and each line
segment may be specified by the two Cartesian coordinate pairs for its endpoints. Rather than
choosing these coordinate values numerically, we nondeterministically choose the sorted order
of the x-coordinates and similarly the sorted order of the y-coordinates, allowing ties in our
nondeterministic choices. In other words, separately for the x and y coordinates, we select a
weak ordering of the segment endpoints, specifying for any two segment endpoints whether they
have equal coordinate values or, if not, which one has a smaller coordinate value than the other.
We also choose nondeterministically the parity of each Cartesian coordinate. Each of the O(b2)
pairs of branches has 2O(b log b) choices for these orderings and parities, so there are 2O(b3 log b)

possible nondeterministic choices overall. For each such choice and each pair (A, B) we verify
that, if we can find a placement of the vertices of the locating set that gives rise to the chosen
sorted orderings, then the intersection of the indistinct sets for A and B will not contain any
integer points (in the un-rotated coordinate system).

To test whether two indistinct sets have a non-empty intersection, we test each pair of a line
segment from one set and a line segment from the other set for an intersection. Two horizontal
line segments intersect each other if and only if they have the same y-coordinate and overlapping
intervals of x-coordinates; a symmetric calculation is valid for two vertical line segments. A
horizontal line segment intersects a vertical line segment if and only if the y-coordinate of the
horizontal segment is within the range of y-coordinates of the vertical segment, the x-coordinate
of the vertical segment is within the range of x-coordinates of the horizontal segment, and the
parities of the coordinates of the two segments cause their crossing point to land on an integer
point rather than on a half-integer point. In this way, the existence of an intersection point can
be determined in time polynomial in b, using only the information about the sorted order and
parities of coordinates that we have chosen nondeterministically.

When these nondeterministic choices find a collection of indistinct sets, and a sorted ordering
of the features of those sets, for which every pair of branches has an empty intersection of
indistinct sets, it remains to determine whether there exists a placement of each locating set
vertex within its stem, in order to cause the indistinct set features to have the sorted orders that
we have already chosen. Each ordering constraint between two features that are consecutive in
one of the sorted orders translates directly to a linear constraint between the positions of two
locating set vertices s and s′ within their stems; therefore, the problem of finding positions that

30 Algorithms Parameterized by Max Leaf Number

satisfy all of these constraints can be formulated and solved as an integer linear programming
feasibility problem, with O(b) variables (the positions of the locating vertices on their stems) and
O(b3) constraints (sorted orderings of O(b) items for each of O(b2) pairs of branches, specified with
numbers of O(log n) bits (the lengths of the stems). By standard algorithms for low-dimensional
integer linear programming problems, this problem can be solved in time 2O(b log b) log n. [29, 30,
31, 32].

The product of the numbers of nondeterministic choices made by the algorithm with the time
for integer linear programming for each choice gives the stated time bound. ◀

This concludes the algorithm parameterized by max leaf number for Metric Dimension.

9 Truncated Metric Dimension
There are several issues that do not allow us to modify the algorithm for the Truncated Metric
Dimension problem in a reasonable way.

The lemmas 8.2, 8.3 and 8.4 hold for Truncated Metric Dimension using the same
reasoning that was used in the original article, however in the Lemma 8.6 we can easily see,
that the lemma does not hold for Truncated Metric Dimension. That is because, unlike for
Metric Dimension, for the paths A and B and a point s there are O(|A| + |B|) points in both
A and B that have given distance d from s and O(|A| · |B|) pairs of one point from A and one
point from B that both have this distance.

10 11 12 13 14 15 16

a1 a2 a3 a4

a7 a6

a5

b1 b2 b3 b4

b9 b8 b7 b6

b5

b1 b2 b3 b4 b9b8b7b6b5

a1

a2

a3

a4

a7

a6

a5

Figure 9 An example of Definition 8.5 when computing Truncated Metric Dimension

We also give a visual example how the truncated distance function changes the behavior of
the Definition 8.5 in the Figure 9.

The main issue lies within the Lemma 8.11, where it is obvious to see, that the lemma does
not hold for Truncated Metric Dimension. A simple counterexample to the lemma is a path
of n vertices and the truncation parameter k < n. That is because the path is a single branch
and we need Θ(n

3k+2) [7] vertices in the resolving set for every vertex of the path to be resolved.
In the first step of the algorithm we partition the graph into branches and construct a weighted

graph of O(b) vertices and edges where each edge represents a branch of the original graph. Next
we partition the branches into stems in bO(1) time and after that we would search for the resolving
set of size O(b) by non-deterministically choosing a number of vertices in the resolving set, and
the stem containing each vertex. There would be 2O(b log b) such possible choices, but since,
as stated above, the Lemma 8.11 does not hold, we would be searching for the resolving set
of size O(n) making it 2O(n log n) choices. This then means that the algorithm would not be
parameterized by the max leaf number.

Implementation and Testing

10 Implementation
In this chapter we briefly describe the implementation of the algorithms for the generation of
the data set and the metric dimension parameterized by modular-width. In the last part of
this chapter we present results of the testing we did.

The language Python with the SageMath framework was chosen based on many factors. Primar-
ily it was the built-in algorithms for modular decomposition and other operations with graphs,
while being very easy to use. The fact that SageMath provides reasonable performance was also
a factor. Additionally Python and SageMath are popular tools among the scientific community,
which means the interpretation of our implementation should be less of a problem than with less
common languages.

10.1 Data Generator
The data generator can be found in the module_generator.py file. There are two ways by which
we can get a modular decomposition. One is by generating a random modular decomposition
with the method generate_md_tree of the modular_decomposition_generator class. The
function accepts two parameter. The modular-width t and the maximal depth of the modular
decomposition tree d. The second way to get a modular decomposition is to read it from a file
using the method read_from_file. This method only accepts one parameter and that is the
path to the file from which the modular decomposition is to be read. This function was created
mainly for repeated testing on the same data set. The data is expected to be formated from the
second line (the first line is ignored) in the same way as printed out by print_md_tree.

Built-in SageMath function is then used to generate a graph from the modular decomposition.
The reasoning behind generating a modular-width decomposition as opposed to generating

a graph and then calculating its modular decomposition is that we can better test the running
time of the algorithm as the dominating determining factor of the running time is the maximal
and average width of a module. It is important to mention that we chose the root module so
it can always be partitioned into exactly t modules, where the modular-width of each of the
sub-modules is less or equal to t. This decision was made to ensure that the modular-width is t
and the graph is connected. A leaf node always has to be Normal node. All the other nodes are
chosen randomly using uniform distribution of four choices

1. Normal node, meaning a single vertex,

2. Prime node, meaning a module that has at minimum four and at maximum t sub-modules,

31

32 Implementation and Testing

3. Parallel node, meaning a disjoint union of modules,

4. Series node, meaning a complete join of modules.

One might argue that generating multiple data sets with slightly different probabilities of
each of the nodes might be useful. For example with the probability of Prime node set higher
and compensate for it with making the probability of the Normal node smaller, however because
of the performance of the algorithm, we are generating graphs so small, that we do not find that
this change would yield any interesting results.

10.2 (Truncated) Metric Dimension Algorithms
There are two ways to compute the metric dimension. Either by using the function md_naive,
which is a naive algorithm that was mainly implemented for testing purposes, or by the function
md, which is an implementation of the algorithm by Belmonte et al. [2]. The function md_naive
accepts graph as the only parameter, whereas the function md accepts the graph along with a
modular decomposition of the graph.

Very similarly, there are two ways to compute the truncated metric dimension. Either by
using the function k_md_naive, which is an implementation of a naive algorithm, or by the
function k_md. The function k_md_naive accepts two parameters, a graph and an integer value
to which the distances are truncated to. The function k_md accepts three parameters, a graph, a
modular decomposition of the graph and an integer value to which the distances are truncated.

11 Measured Results

11.1 Metric Dimension
In this subsection we focus on performance of the md function.

The test was done on a computer with an Intel i7-8700 CPU, with 32 GB of RAM. All the
input data can be found in the data folder, where the data are sorted into folders. The first level
of folders divides the data by modular-width parameter and the second level divides the data by
the depth of the modular decomposition tree.

Since the complexity of the algorithm depends on the maximal size of any module in the
modular decomposition and number of vertices, we have generated data with relatively small
modular-width and maximal depth of modular decomposition tree, limiting the maximal number
of vertices, otherwise the computation would take unreasonable amount of time to finish. After
some experimentation we decided that, for this test, reasonable values for the modular-width are
4, 6 and 8 and modular decomposition tree depth 2 or 3.

While the worst case complexity has the upper bound of O(4t · t3 · n + m), where t is the
module size, n the number of vertices, and m the number of edges, that does not tell much about
the average time complexity of the algorithm. W present Table 1, where we have chosen three
important metrics from which we can approximate the running time much better. Those are the
modular-width, the number of non-trivial modules and the average size of non-trivial module of
the graph.

This is the case, because in the computation of each of the modules, there are three main
components that add to the running time:

1. all 4k possible permutations of values are generated and tested, where k is the number of
non-trivial modules (2 boolean values for each non-trivial module),

2. all the combinations of the trivial modules are tested,

3. a table of distances in the sub-graph for the module is computed.

Measured Results 33

Table 1 Performance of the algorithm

t modular-width
z average size of a non-trivial module
Note: Each graph was tested 3 times and the running times were averaged.
t # non-trivial modules z | V (G) | md(G) time [s]
4 2 4 7 2 0.0
4 4 3.7 11 7 0.2
4 4 3.7 11 5 0.2
4 4 4.2 13 8 0.3
4 5 4.0 15 10 0.8
4 8 1.3 17 7 8.9
4 11 3.6 29 19 59.3
4 13 3.0 27 16 113.2
4 13 3.3 30 18 128.6
4 14 3.7 39 22 116.5
6 5 5.4 22 13 15.9
6 6 3.7 21 11 14.0
6 6 4.1 20 10 27.3
6 7 5.0 31 20 65.5
6 7 5.1 30 15 80.9
6 10 4.3 33 18 2499.0
6 10 5.3 43 21 3550.6
6 15 4.5 53 31 17030.4
6 17 4.4 58 37 18019.1
6 24 4.7 89 61 13147.6
8 5 5.4 22 10 90.2
8 6 6.1 31 16 690.5
8 6 6.6 34 26 1293.5
8 7 5.2 30 14 1773.0
8 7 5.8 34 26 1292.2

From this simple observation one should be able to see why we chose these metrics. We can
also see that the number of edges is not very important, so we chose to omit it.

We emphasize that these are just approximations, as it can of course happen that for some
graphs more of the conditions can be satisfied, and, thus not yielding an early return and resulting
in more demanding calculation and vice versa. We can observe this for example for the very
bottom of the computations of modular-width 4 and 6.

We conclude that the algorithm performs within our expectations.

11.2 Truncated Metric Dimension
The performance of computing k_md function depends on the very same factors as the computa-
tion of the md function, that were described in the previous subsection. From the Table 2 we can
see that the time does not depend on the truncation parameter k in any significant way. Notice
that for the most part the times are very similar to the times of the md function. This should be
obvious from the description of the algorithm.

Note that in the Figure 2 the truncated metric dimension does not change for different k for
this particular data set as these graphs are highly connected.

We again conclude that the performance of the algorithm is within our expectation.

34 Implementation and Testing

Table 2 Performance of the algorithm

t modular-width
z average size of a non-trivial module
Note: Each graph was tested 3 times and the running times were averaged.
t # non-trivial modules z | V (G) | mdk(G) time [s] (k = 3) time [s] (k = 6)
4 2 4 7 2 0.0 0.0
4 4 3.7 11 7 0.2 0.2
4 4 3.7 11 5 0.2 0.2
4 4 4.2 13 8 0.8 0.4
4 5 4.0 15 10 0.9 0.8
4 8 1.3 17 7 9.0 9.1
4 11 3.6 29 19 56.7 55.9
4 13 3.0 27 16 108.3 105.5
4 13 3.3 30 18 121.0 117.6
4 14 3.7 39 22 116.6 110.8
6 5 5.4 22 13 14.6 14.0
6 6 3.7 21 11 10.7 10.4
6 6 4.1 20 10 23.2 22.7
6 7 5.0 31 20 57.9 55.7
6 7 5.1 30 15 70.0 67.7
6 10 4.3 33 18 1877.2 2020.7
6 10 5.3 43 21 2526.5 2678.6
6 15 4.5 53 31 17023.0 16592.6
6 17 4.4 58 37 18069.7 17415.2
6 24 4.7 89 61 13258.7 11178.1
8 5 5.4 22 10 167.2 136.5
8 6 6.1 31 16 479.6 452.4
8 6 6.6 34 26 866.9 875.5
8 7 5.2 30 14 1998.1 1515.3
8 7 5.8 34 26 1646.5 1437.8

Conclusion

The goals of this thesis were to research Metric Dimension and already known FPT algorithms
for the problem. Then find out whether it is possible for some of these algorithms to also solve
the truncated version of Metric Dimension with minimal modifications to the algorithm itself
and lastly to implement one of the chosen algorithms.

We got familiar with the concept of Metric Dimension and its truncated variant. We
also got familiar with concepts of parameterized complexity and various structural parame-
ters. We have shown that for the algorithm parameterized by modular-width, published by
Belmonte et al. [2], it is easy to convert it in a suitable way to solve Truncated Metric
Dimension. We have implemented the algorithm for both the truncated and non-truncated
versions of the problem and tested it on suitable dataset.

We have also presented the algorithm parameterized by max leaf number for Metric Di-
mension and shown that it is not suitable to be converted for Truncated Metric Dimension.

12 Possible Improvements
There are two ways that immediately come to mind when thinking about how to iterate on this
thesis. First way would be to consider other structural parameters, mainly the ones mentioned in
the beginning of this thesis. For example, an algorithm solving the Metric Dimension problem
with linear running time with respect to tree-width is known. Second, both of the algorithms
could then be re-implemented in a more performant language, for example C++, and added into
SageMath or packaged separately.

35

36 Conclusion

Bibliography

1. YERO, Ismael González; ESTRADA-MORENO, Alejandro; RODRÍGUEZ-VELÁZQUEZ,
Juan A. Computing the k-metric dimension of graphs. Appl. Math. Comput. 2017, vol. 300,
pp. 60–69. Available from doi: 10.1016/j.amc.2016.12.005.

2. BELMONTE, Rémy; FOMIN, Fedor V.; GOLOVACH, Petr A.; RAMANUJAN, M. S.
Metric Dimension of Bounded Tree-length Graphs. SIAM J. Discret. Math. 2017, vol. 31,
no. 2, pp. 1217–1243. Available from doi: 10.1137/16M1057383.

3. EPPSTEIN, David. Metric Dimension Parameterized by Max Leaf Number. Journal of
Graph Algorithms and Applications. 2015, vol. 19, no. 1, pp. 313–323. issn 1526-1719. Avail-
able from doi: 10.7155/jgaa.00360.

4. GROSS, Jonathan L.; YELLEN, Jay (eds.). Handbook of Graph Theory. Chapman & Hall /
Taylor & Francis, 2003. Discrete Mathematics and Its Applications. isbn 978-1-58488-090-5.
Available from doi: 10.1201/9780203490204.

5. KNOP, Dušan; MALÍK, Josef; SUCHÝ, Ondřej; TVRDÍK, Pavel; VALLA, Tomáš. Základy
graf̊u [online]. FIT CTU, 2022 [visited on 2023-05-08]. Available from: https://courses.f
it.cvut.cz/BI-AG1/lectures/media/bi-ag1-p1-handout.pdf.

6. KNOP, Dušan; MALÍK, Josef; SUCHÝ, Ondřej; TVRDÍK, Pavel; VALLA, Tomáš. Sou-
vislost, složitost, stromy [online]. FIT CTU, 2022 [visited on 2023-05-08]. Available from:
https://courses.fit.cvut.cz/BI-AG1/lectures/media/bi-ag1-p2-handout.pdf.

7. FRONGILLO, Rafael M.; GENESON, Jesse; LLADSER, Manuel E.; TILLQUIST, Richard
C.; YI, Eunjeong. Truncated metric dimension for finite graphs. Discret. Appl. Math. 2022,
vol. 320, pp. 150–169. Available from doi: 10.1016/j.dam.2022.04.021.

8. TEDDER, Marc; CORNEIL, Derek G.; HABIB, Michel; PAUL, Christophe. Simpler Linear-
Time Modular Decomposition Via Recursive Factorizing Permutations. In: ACETO, Luca;
DAMGÅRD, Ivan; GOLDBERG, Leslie Ann; HALLDÓRSSON, Magnús M.; INGÓLFSDÓTTIR,
Anna; WALUKIEWICZ, Igor (eds.). Automata, Languages and Programming, 35th Inter-
national Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part
I: Tack A: Algorithms, Automata, Complexity, and Games. Springer, 2008, vol. 5125,
pp. 634–645. Lecture Notes in Computer Science. Available from doi: 10.1007/978-3-54
0-70575-8_52.

9. CYGAN, Marek; FOMIN, Fedor V.; KOWALIK, Lukasz; LOKSHTANOV, Daniel; MARX,
Dániel; PILIPCZUK, Marcin; PILIPCZUK, Michal; SAURABH, Saket. Parameterized Al-
gorithms. Springer, 2015. isbn 978-3-319-21274-6. Available from doi: 10.1007/978-3-31
9-21275-3.

37

https://doi.org/10.1016/j.amc.2016.12.005
https://doi.org/10.1137/16M1057383
https://doi.org/10.7155/jgaa.00360
https://doi.org/10.1201/9780203490204
https://courses.fit.cvut.cz/BI-AG1/lectures/media/bi-ag1-p1-handout.pdf
https://courses.fit.cvut.cz/BI-AG1/lectures/media/bi-ag1-p1-handout.pdf
https://courses.fit.cvut.cz/BI-AG1/lectures/media/bi-ag1-p2-handout.pdf
https://doi.org/10.1016/j.dam.2022.04.021
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3

38 Bibliography

10. SLATER, Peter. Leaves of Trees. Utilitas Mathematica Pub, 1975. Proceedings of the South-
eastern Conference on Combinatorics, Graph Theory, and Computing, Congressus numer-
antium, no. 14.

11. HARARY, Frank; MELTER, Robert. On the Metric Dimension of a Graph. The Charles
Babbage Research Centre, 1976. Ars Combinatoria, no. 2.

12. KHULLER, Samir; RAGHAVACHARI, Balaji; ROSENFELD, Azriel. Landmarks in
Graphs. Discret. Appl. Math. 1996, vol. 70, no. 3, pp. 217–229. Available from doi: 10
.1016/0166-218X(95)00106-2.

13. KRATICA, Jozef; KOVACEVIC-VUJCIC, Vera; CANGALOVIC, Mirjana. Computing the
metric dimension of graphs by genetic algorithms. Comput. Optim. Appl. 2009, vol. 44, no.
2, pp. 343–361. Available from doi: 10.1007/s10589-007-9154-5.

14. HAUPTMANN, Mathias; SCHMIED, Richard; VIEHMANN, Claus. Approximation com-
plexity of Metric Dimension problem. J. Discrete Algorithms. 2012, vol. 14, pp. 214–222.
Available from doi: 10.1016/j.jda.2011.12.010.

15. HARTUNG, Sepp; NICHTERLEIN, André. On the Parameterized and Approximation
Hardness of Metric Dimension. In: Proceedings of the 28th Conference on Computational
Complexity, CCC 2013, K.lo Alto, California, USA, 5-7 June, 2013. IEEE Computer So-
ciety, 2013, pp. 266–276. Available from doi: 10.1109/CCC.2013.36.

16. DIAZ, Josep; POTTONEN, Olli; SERNA, Maria; VAN LEEUWEN, Erik Jan. Complexity
of metric dimension on planar graphs. Journal of Computer and System Sciences. 2017,
vol. 83, no. 1, pp. 132–158. issn 0022-0000. Available from doi: https://doi.org/10.101
6/j.jcss.2016.06.006.

17. BONNET, Édouard; PUROHIT, Nidhi. Metric Dimension Parameterized By Treewidth.
Algorithmica. 2021, vol. 83, no. 8, pp. 2606–2633. Available from doi: 10.1007/S00453-02
1-00808-9.

18. LI, Shaohua; PILIPCZUK, Marcin. Hardness of Metric Dimension in Graphs of Constant
Treewidth. Algorithmica. 2022, vol. 84, no. 11, pp. 3110–3155. Available from doi: 10.100
7/S00453-022-01005-Y.

19. BOUSQUET, Nicolas; DESCHAMPS, Quentin; PARREAU, Aline. Metric Dimension Pa-
rameterized by Treewidth in Chordal Graphs. In: PAULUSMA, Daniël; RIES, Bernard
(eds.). Graph-Theoretic Concepts in Computer Science - 49th International Workshop, WG
2023, Fribourg, Switzerland, June 28-30, 2023, Revised Selected Papers. Springer, 2023,
vol. 14093, pp. 130–142. Lecture Notes in Computer Science. Available from doi: 10.1007
/978-3-031-43380-1_10.

20. FOUCAUD, Florent; GALBY, Esther; KHAZALIYA, Liana; LI, Shaohua; INERNEY,
Fionn Mc; SHARMA, Roohani; TALE, Prafullkumar. Problems in NP can Admit Double-
Exponential Lower Bounds when Parameterized by Treewidth or Vertex Cover. 2024. Avail-
able from arXiv: 2307.08149 [cs.CC].

21. HERNANDO, Carmen; MORA, Mercè; PELAYO, Ignacio M.; SEARA, Carlos; WOOD,
David R. Extremal Graph Theory for Metric Dimension and Diameter. Electron. J. Comb.
2007, vol. 17. Available also from: https://doi.org/10.37236/302.

22. CHARTRAND, Gary; EROH, Linda; JOHNSON, Mark A.; OELLERMANN, Ortrud R.
Resolvability in graphs and the metric dimension of a graph. Discret. Appl. Math. 2000,
vol. 105, pp. 99–113. Available also from: https://doi.org/10.1016/S0166-218X(00)00
198-0.

23. MELTER, Robert A.; TOMESCU, Ioan. Metric bases in digital geometry. Comput. Vis.
Graph. Image Process. 1984, vol. 25, pp. 113–121. Available also from: https://doi.org
/10.1016/0734-189X(84)90051-3.

https://doi.org/10.1016/0166-218X(95)00106-2
https://doi.org/10.1016/0166-218X(95)00106-2
https://doi.org/10.1007/s10589-007-9154-5
https://doi.org/10.1016/j.jda.2011.12.010
https://doi.org/10.1109/CCC.2013.36
https://doi.org/https://doi.org/10.1016/j.jcss.2016.06.006
https://doi.org/https://doi.org/10.1016/j.jcss.2016.06.006
https://doi.org/10.1007/S00453-021-00808-9
https://doi.org/10.1007/S00453-021-00808-9
https://doi.org/10.1007/S00453-022-01005-Y
https://doi.org/10.1007/S00453-022-01005-Y
https://doi.org/10.1007/978-3-031-43380-1_10
https://doi.org/10.1007/978-3-031-43380-1_10
https://arxiv.org/abs/2307.08149
https://doi.org/10.37236/302
https://doi.org/10.1016/S0166-218X(00)00198-0
https://doi.org/10.1016/S0166-218X(00)00198-0
https://doi.org/10.1016/0734-189X(84)90051-3
https://doi.org/10.1016/0734-189X(84)90051-3

Bibliography 39

24. RAJAN, Bharati; RAJASINGH, Indra; CYNTHIA, Jude Annie; MANUEL, Paul D. Met-
ric dimension of directed graphs. International Journal of Computer Mathematics. 2014,
vol. 91, pp. 1397–1406. Available also from: https://doi.org/10.1080/00207160.2013.8
44335.

25. GENESON, Jesse; YI, Eunjeong. Broadcast Dimension of Graphs. AUSTRALASIAN
JOURNAL OF COMBINATORICS. 2022, vol. 83(2). Available also from: https://ajc.m
aths.uq.edu.au/pdf/83/ajc_v83_p243.pdf.

26. SPINELLI, Brunella; CELIS, L. Elisa; THIRAN, Patrick. The effect of transmission vari-
ance on observer placement for source-localization. Appl. Netw. Sci. 2017, vol. 2, p. 20.
Available from doi: 10.1007/s41109-017-0040-5.

27. PINTO, Pedro C.; THIRAN, Patrick; VETTERLI, Martin. Locating the Source of Diffusion
in Large-Scale Networks. CoRR. 2012, vol. abs/1208.2534. Available from arXiv: 1208.2534.

28. GUTKOVICH, Paul; YEOH, Zi Song. Computing Truncated Metric Dimension of Trees.
ArXiv. 2023, vol. abs/2302.05960. Available also from: https://api.semanticscholar.o
rg/CorpusID:254594288.

29. LENSTRA, H. W. Integer Programming with a Fixed Number of Variables. Mathematics
of Operations Research. 1983, vol. 8, no. 4, pp. 538–548. Available from doi: 10.1287/moo
r.8.4.538.

30. KANNAN, Ravi. Minkowski’s Convex Body Theorem and Integer Programming. Mathe-
matics of Operations Research. 1987, vol. 12, no. 3, pp. 415–440. Available from doi: 10.1
287/moor.12.3.415.

31. FRANK, András; TARDOS, Éva. An application of simultaneous diophantine approxima-
tion in combinatorial optimization. Combinatorica. 1987, vol. 7, pp. 49–65. Available also
from: https://doi.org/10.1007/BF02579200.

32. CLARKSON, Kenneth L. Las Vegas algorithms for linear and integer programming when
the dimension is small. J. ACM. 1995, vol. 42, no. 2, pp. 488–499. issn 0004-5411. Available
from doi: 10.1145/201019.201036.

https://doi.org/10.1080/00207160.2013.844335
https://doi.org/10.1080/00207160.2013.844335
https://ajc.maths.uq.edu.au/pdf/83/ajc_v83_p243.pdf
https://ajc.maths.uq.edu.au/pdf/83/ajc_v83_p243.pdf
https://doi.org/10.1007/s41109-017-0040-5
https://arxiv.org/abs/1208.2534
https://api.semanticscholar.org/CorpusID:254594288
https://api.semanticscholar.org/CorpusID:254594288
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1287/moor.8.4.538
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1287/moor.12.3.415
https://doi.org/10.1007/BF02579200
https://doi.org/10.1145/201019.201036

40 Bibliography

Contents of the supplied medium

readme.txt... tutorial for running the program
src

impl...source code of the implementation
main.py.. implementation of the algorithm

test data .. data set
t4...data set with module-width 4

d2..data set with max tree depth 2
d2..data set with max tree depth 3

t6...data set with module-width 6
d2..data set with max tree depth 2
d2..data set with max tree depth 3

t8...data set with module-width 8
d2..data set with max tree depth 2

thesis..source code of the thesis LATEX
text ... the thesis

thesis.pdf...the thesis in PDF format

41

	Acknowledgments
	Declaration
	Abstract
	List of Acronyms
	Introduction
	Preliminaries
	Graph Theory
	Complexity Theory
	The Metric Dimension and Related Problems

	Known Results
	Metric Dimension
	Truncated Metric Dimension

	Algorithms Parameterized by Modular-width
	Metric Dimension
	The Algorithm
	An Example

	Truncated Metric Dimension
	The Algorithm
	An Example

	Algorithms Parameterized by Max Leaf Number
	Metric Dimension
	Truncated Metric Dimension

	Implementation and Testing
	Implementation
	Data Generator
	(Truncated) Metric Dimension Algorithms

	Measured Results
	Metric Dimension
	Truncated Metric Dimension

	Conclusion
	Possible Improvements

	Contents of the supplied medium

