

Ústav letadlové techniky

Konstrukční návrh mobilního testovacího standu pro malé raketové motory do 10 kN

Structural design of a mobile test stand for small rocket engines up to 10 kN

DIPLOMOVÁ PRÁCE

2024

Bc. Viktor HAIS

Studijní program:NLAK LETECTVÍ A KOSMONAUTIKAStudijní specializace:N071KOTE KOSMICKÁ TECHNIKAVedoucí práce:Ing. Jaromír KUČERA

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Hais	Jméno: Viktor	Osobní číslo: 478012
Fakulta/ústav:	Fakulta strojní		
Zadávající kate	dra/ústav: Ústav le	atadlové techniky	
Studijní progran	n: Letectví a kosmo	onautika	
Specializace:	Kosmická techni	ika	
ÚDAJE K DIPL	.OMOVÉ PRÁCI		
Název diplomové j	oráce:		
Konstrukční náv	rh mobilního testo	vacího standu pro malé raketové	motory do 10 kN
Název diplomové j	práce anglicky:		
Structural desig	n of a mobile test s	tand for small rocket engines up	to 10 kN
Pokyny pro vyprac	ování:		
Proveďte konstrukč Proveďte návrh mě Vypracujte stručné	ní návrh mobilního tes řícího řetězce pokyny k obsluze	tovacího standu	
Seznam doporuče	né literatury:		
Dle pokynů vedouc	ího		
Jméno a pracovišt Ing. Jaromír Kuč	ě vedoucí(ho) diplon era ústav letadlo	nové práce: ové techniky FS	
Jméno a pracovišt	ě druhé(ho) vedoucí	(ho) nebo konzultanta(ky) diplomove	é práce:
Datum zadání dip Platnost zadání d	lomové práce: 26.0 iplomové práce:	14.2024 Termín odevzdání	diplomové práce: 24.05.2024
Ing. Jaromír k podpis vedoucí(h	(učera o) práce	Ing. Milan Dvořák, Ph.D. podpis vedoucí(ho) ústavu/katedry	doc. Ing. Miroslav Španiel, CSc. podpis děkana(ky)
podpis vedouci(h . PŘEVZETÍ ZA Diplomant here na vědo	o) práce DÁNÍ mí že je povinen woracova	podpis vedoucí(ho) ústavu/katedry	podpis děkana(ky)

Datum převzetí zadání

Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

Podpis studenta

Prohlášení

Prohlašuji, že jsem diplomovou práci vypracoval samostatně pod dohledem svého vedoucího práce a že jsem uvedl veškeré použité informační zdroje.

V Praze 23. 5. 2024

.....

HAIS Viktor

Poděkování

Tímto děkuji Ing. Kučerovi za přínosné konzultace, klidné vedení práce a povzbuzování v další práci jak radami, tak návrhy na zlepšení.

Taktéž děkuji všem členům týmu CTU Space Research za skvělou práci a nasazení. Speciální poděkování směruje ke členům, se kterými jsem v rámci jejich závěrečných prací spolupracoval.

Chtěl bych poděkovat i svému (současnému i minulému) blízkému okolí za trpělivost, kterou prokázalo při mých studiích.

Název práce:

Konstrukční návrh mobilního testovacího standu $\,$ pro malé raketové motory do 10 kN $\,$

Autor:	Bc. Viktor Hais
Studijní program:	Letectví a kosmonautika
Obor:	Kosmická technika
Druh práce:	Diplomová práce
Vedoucí práce:	Ing. Jaromír Kučera
	Ústav letadlové techniky, Fakulta strojní,
	České vysoké učení technické v Praze
Bibliografické údaje:	počet stran: 53
	počet kapitol: 9
	počet obrázků: 41
	počet tabulek: 8
Abstrakt:	Tato práce se zabývá konstrukčním návrhem mo-
	bilní testovací platformy pro účely testování rake-
	tových motorů vyvíjených v rámci studentského
	týmu CTU Space Research. V rámci práce byl
	navržen i měřící řetězec.
Klíčová slova:	Testovací stand, raketový motor, CTU Space Re-
	search, konstrukční návrh

Title:

Structural design of a mobile test stand for small rocket engines up to 10 $\rm kN$

Author:	Bc. Viktor Hais
Abstract:	This thesis deals with the structural design of a
	mobile test platform for the purpose of testing
	rocket engines developed within the CTU Space
	Research student team. A measurement chain was
	also designed as part of the work.
Key words:	Test stand, rocket engine, CTU Space Re-
	search, structural design

4

Seznam symbolů použitých v textu

Řecké symboly

- α součinitel úměrnosti napětí [-]
- σ_{DL} početní napětí [*MPa*]
- σ_U mez pevnosti [*MPa*]
- $\sigma_Y \mod MPa$]
- au smykové napětí [*MPa*]

Latinka

- A plocha $[mm^2]$
- E modul pružnosti v tahu [GPa]
- F_{DL} početní zatížení [N]
- F_{kr} kritická síla [N]
- F_{max} maximální tah motoru [N]
- H_1 nosná hloubka závitu [mm]
- J_{min} moment setrvačnosti průřezu $[mm^4]$
- K_p početní koeficient [-]
- l_{red} redukovaná délka [mm]
- M_o ohybový moment $[N \cdot mm]$

- n počet závitů [-]
- s stoupání závitu [mm]
- W_o průřezový modul v ohybu $[mm^3]$

Zkratky

- CTU SR CTU Space Research
- DAQ sběr dat
- FDM Fused Deposition Modeling
- FOSY yield design factor of safety
- GSE Ground Support Equipment
- MTS Mobile Test Stand
- N_2O oxid dusný
- NASA National Aeronautics and Space Administration
- NI National Instruments
- RM raketové motory

Obsah

1	Úvod 9					
2	Požadavky na testovací stanoviště 10					
3	3 Rešerše testovacích platforem					
	3.1	Problematika uspořádání testování RM	11			
	3.2	Současný stav CTU SR	12			
	3.3	Týmy účastnící se EuRoC	13			
	3.4	Vhodná řešení	14			
		3.4.1 TU Space Team	14			
		3.4.2 Rice Eclipse	15			
4	Kor	ncepční návrh	16			
	4.1	Testovací platforma	16			
	4.2	Experimentální aparatura	18			
		4.2.1 Motorizace ventilů	19			
		4.2.2 Tlakové nádoby	20			
5	Měi	řící řetězec	24			
	5.1	Senzory	24			
	5.2	National Instruments	24			
	5.3	Vlastní návrh - DAQ shield	26			
	5.4	Porovnání měřících řetězců	28			
6	Kor	nstrukční návrh	29			
	6.1	Předběžný návrh	29			

	6.2	Výsled	lná konstr	rukce	30
		6.2.1	Subsysté	my	30
			6.2.1.1	Platforma	30
			6.2.1.2	Rozvody plynů	32
			6.2.1.3	Rozvaděč	32
			6.2.1.4	Akustická ochrana	33
			6.2.1.5	Deflektor	33
			6.2.1.6	Měřící věž	35
		6.2.2	Třípohle	dové schéma	37
		6.2.3	Pevnostr	ní výpočty	38
			6.2.3.1	Vzpěr lože	39
			6.2.3.2	Šroubový spoj	40
			6.2.3.3	Průhyb nosníku	41
			6.2.3.4	Šroubový spoj	41
			6.2.3.5	Prostý tah	42
			6.2.3.6	$\check{\mathrm{S}}\mathrm{roubov}\check{\mathrm{y}}$ spoj	43
			6.2.3.7	Ohyb nosníku	44
			6.2.3.8	Rotační spoj	45
			6.2.3.9	Prostý tah	46
			6.2.3.10	Šroubový spoj	46
			6.2.3.11	${\rm \check{S}roubov}\acute{y}$ spoj	47
			6.2.3.12	Vzpěr	48
7	Pok	yny k	obsluze		49
8	Fina	anční r	ozbor		52
9	Záv	ěr			53

1 Úvod

Vývoj malých raketových motorů s tahem do 10 kN umožňuje studentům získat zkušenosti nejen s návrhovou, ale i jejich výrobní a testovací fází. Na základě navržených pohonných jednotek je možné koncipovat rakety na studentské soutěže, jakou je například European Rocketry Challenge.

Správné testování raketových motorů v konfiguraci co nejblíže napodobující letové uspořádání je důležité pro kvalitní návrh nejen pohonné jednotky, ale ve výsledku i celé rakety. V rámci týmu CTU Space Research již vznikly hybridní raketové motory i raketové motory na tuhá paliva s tím, že vývoj motoru na kapalná paliva je v pokročilé fázi s očekávaným počátkem testování na podzim roku 2024. Pro funkci testovacího standu je tedy klíčová univerzálnost navrhovaného řešení.

Práce si klade za cíl vypracování konstrukčního návrhu mobilního testovacího standu využitelného pro současné i budoucí testování motorů navržených studenty a studentkami z týmu CTU Space Research. V rámci práce bude vzhledem k povaze studentského týmu zohledňována finanční náročnost navrhovaných řešení.

2 Požadavky na testovací stanoviště

Požadavky byly sepsány s ohledem na možnosti studentského týmu. V ideálním případě by nebyla potřeba požadavku na mobilitu testovacího stanoviště a celá platforma by byla umístěna do lodního kontejneru. Takové řešení ale vyžaduje pevné prostory optimálně v majetku ČVUT a stavební povolení. Vzhledem k umístění testovací lokace v bývalé raketové základně Bratronice je toto řešení nemožné.

Všechny požadavky na testovací stand byly sepsány podle ECSS-E-ST-10C Rev.1. Číslování požadavků se vztahuje k nastavenému internímu číslování týmu CTU Space Research (dále jen CTU SR). Pro přehlednost jsou čísla požadavků uvedených v tabulce 2.1 pouze posledním dvojčíslím z celého čísla RQ-04-00-00-00-XX kde "XX" je číslo požadavku v tabulce. [1]

Číslo	Požadavek	Hodnota	Zadavatel	
01	Test stand musí být schopen testovat raketové motory s ma-	E 10 LN	Duranti	
01	ximálním tahem 10 kN	F = 10 km	Propulsion	
02	Test standu musí být schopen testování všech typů che-	Solid Hybrid Liquid	Dropulsion	
02	mických raketových motorů	Solid, Hybrid, Liquid	riopuision	
02	K převážení test standu musí stačit řidičské oprávnění kate-	řidičelké oprávnění P	Conoral	
	gorie B	Huicske opravilelli B	General	
04	Testovací stanoviště musí být vybaveno krytem na elektrické $% \mathcal{T}_{\mathrm{e}}$	IDE 4	Avionica	
04	subsystémy se stupněm krytí minimálně IP54	11 94	AVIOLICS	
05	Testovací stanoviště musí být vybaveno vizuálním identi-	viguólní indiltótor		
05	fikátorem bezpečnostního stupně testování	vizuann markator	DOT	

Tabulka 2.1: Přehled požadavků na testovací stand

3 Rešerše testovacích platforem

3.1 Problematika uspořádání testování RM

Cílem validačních testů je získání dat o bezpečnosti, spolehlivosti a zejména výkonnosti pohonné jednotky pro predikci letových charakteristik raketového nosiče. Vzhledem k obecné problematice a komplikovanosti raketových nosičů je proto žádoucí získat nutná data v konfiguraci pohonné jednotky co nejblíže připomínající letovou konfiguraci. Vertikální testování raketových motorů s sebou však přináší značné množství komplikací, z nichž nejvýznamnější jsou odvody tepelné energie plamene a akustické energie, které mohou při nevhodném odrazu od dopadové plochy poničit pohonnou jednotku teplem či akustickými vibracemi. Pro vhodné testování je tedy nutné navrhnout celou infrastrukturu testovacího místa tak, aby zajišťovala bezpečný průběh testů - například vybavit ji deflektorem a kanálem na spaliny či akustickou ochranou v podobě vodní mlhy. Ignorování těchto opatření může vést ke katastrofickému selhání nosiče, jako tomu bylo na příkladu testovacího letu IFT-1 rakety Starship společnosti SpaceX. Při zážehu motorů Raptor došlo k destrukci betonové základny startovací rampy, jejíž úlomky ihned po startu zničily 5 z 33 motorů nosiče Superheavy. [2] [3] [4]

Obrázek 3.1: Vlevo porovnání záběrů na motorovou sekci Superheavy s infografikou [3], vpravo poškození startovací rampy [4]

Alternativou k vertikálnímu testování je tak testování v horizontální konfiguraci, kdy je spalovací komora umístěna tak, že je osa plamene v ose či s malým náklonem od horizontály. Při takovýchto testech se předpokládá disipace tepelné a akustické energie do okolního prostředí. Nevýhodou je odlišnost přívodního potrubí pro okysličovadlo (a případně palivo) od letového uspořádání. To může mít za následek jiné výkony raketových motorů (dále jen RM) například vinou tlakových ztrát v potrubí způsobených jinou délkou či jeho zakřivením. Vybudování takového testovacího stanoviště je ale výrazně méně nákladné, než vybudování stanoviště vertikálního, a proto se hojně využívá zejména v počátečních fázích validace RM. Před samotným letem je nicméně stále nutné přistoupit k letu ve finální konfiguraci. [2]

Problematika změny uspořádání nabírá na významu při řešení této diplomové práce. Vzhledem k maximálnímu tahu RM omezeným v požadavcích na projekt se nedá předpokládat využití čerpadel pro dopravu okysličovadla (a případně paliva) do spalovací komory, nýbrž využití přetlakového systému. Oproti velkým RM, které mívají před spalovací komorou čerpadla zajišťující požadovaný tlak a jsou tak lépe schopné kompenzovat tlakové ztráty ve vedení, jsou tyto malé RM více náchylné na tlakové ztráty ve vedení.

3.2 Současný stav CTU SR

Současná testovací aparatura sestává z horizontálního motorového lože, na kterém je motor flexibilní hadicí propojen s vertikální palivovou věží, na které jsou zároveň umístěné všechny ventily. Umístění nádrže na okysličovadlo ve vertikální poloze je kritické pro čerpání tekutého oxidu dusného do spalovací komory. Toto řešení bylo dostačující pro počáteční validační kampaň vývoje hybridního raketového motoru, není však vhodné pro poslední předletové testy. Zejména dlouhá flexibilní hadice je problematická svou vnitřní drsností a délkou, díky kterým v sobě akumuluje vysoké tlakové ztráty. Naměřený tah RM tak neodráží skutečný potenciál motoru.

Obrázek 3.2: Současná testovací aparatura CTU SR [archiv CTU SR]

3.3 Týmy účastnící se EuRoC

V rámci soutěže European Rocketry Challenge (dále jen EuRoC) soupeří každý rok 25 týmů z evropských univerzit. Tým CTU Space Research se kvalifikoval do posledních dvou ročníků, během kterých došlo k přínosném sdílení zkušeností. Podle informací od týmů vyvíjejících vlastní motory došlo k sestavení přehledu stávajících řešení testovacích platforem do tabulky 3.1.

Z průzkumu mezi týmy vyplývá, že vertikální testování motorů využívají pouze týmy testující raketové motory na pevná paliva, u kterých orientace motoru neovlivňuje tlakové ztráty na vedení pohonných látek. Ostatní týmy tedy motory netestují v reprezentativní pozici a před účastí na soutěži EuRoC musí improvizovaně testovat pohonnou jednotku v letové konfiguraci pro splnění požadavků soutěže.

Tým	Země	Typ motoru	Uspořádání motoru	Platforma
Skyward	Itálie	Hybrid	Horizontální	Volně stojící
ICLR	VB	Liquid	Horizontální	Volně stojící
ASTG	Rakousko	Hybrid	Horizontální	Volně stojící
Propulse NTNU	Norsko	Liquid	Horizontální	Lodní kontejner
Aris	Švýcarsko	Liquid	Horizontální	Přívěsný vozík
Gruyere Space Programe	Švýcarsko	Liquid	Horizontální	Lodní kontejner
EPFL	Švýcarsko	Liquid	Horizontální	Podzemní bunkr
Fenix	Portugalsko	Solid	Vertikální	Volně stojící
Danstar	Dánsko	Liquid	Horizontální	Lodní kontejner
TU Space Team	Rakousko	Liquid	Nakloněné/vertikální	Přívěsný vozík
Aerotec RED	Portugalsko	Solid	Vertikální	Volně stojící
PUT Rocketlab	Polsko	Hybrid	Horizontální	Volně stojící
PWr in Space	Polsko	Hybrid	Horizontální	Volně stojící

Tabulka 3.1: Přehled testovacích kapacit týmů EuRoC

Z 10 týmů využívajících tohoto uspořádání 8 uvedlo, že výsledný tah RM testovaného v letové konfiguraci nedosahoval napočítaných hodnot.

3.4 Vhodná řešení

Pro průzkum vhodných existujících řešení bylo hledání rozšířeno mimo týmy soutěžící na EuRoC i na studentské týmy mimo Evropský kontinent a na amatérské raketové spolky.

3.4.1 TU Space Team

Z evropských týmů se požadovanému řešení nejvíce blíží testovací stand Franz od TU Space Team z Vídeňské technické univerzity. Ten byl navržen na nominální tah 24 kN speciálně pro týmem vyvíjený motor na kapalné pohonné látky. Pro zachování letové konfigurace sestavy motor - nádrž na pohonné látky a rozměrové obálky vozíku byla zvolena naklopená orientace motoru, jedná se tak o jakési kompromisní řešení. [5]

Obrázek 3.3: 24 kN Franz $\left[5\right]$

3.4.2 Rice Eclipse

Nejblíže možnostem a očekávaným rozměrům testovací aparatury v rámci CTU SR je Mobile Test Stand (dále MTS) od studentské iniciativy Rice Eclipse. Testovací věž je transportována v horizontální poloze a až před zahájením testovací kampaně dojde k jejímu vztyčení. Na přívěsném vozíku se však nenachází žádné další podpůrné systémy pro měření či bezpečnost. Princip měření tahu není přesně známý, nicméně z dostupných záznamů je zřejmé, že se motor vůči rámu nemůže pohybovat například pomocí lineárního vedení. [6]

Obrázek 3.4: MTS [6]

4 Koncepční návrh

4.1 Testovací platforma

Celé testovací stanoviště bylo ideově rozděleno na subsystémy dle schématu 4.1. Subsystémy vyznačené šedivou barvou (akustická ochrana a rozvody plynů) nebudou v této práci řešeny.

Obrázek 4.1: Subsystémy testovacího stanoviště

V uvažovaném řešení je sestava měřící věže složena z měřícího rámu a motorového lože. Motorové lože je uchyceno vůči rámu na lineárním vedení. Vysoká kvalita tohoto kluzného uložení je podstatná pro správné měření tahu motoru. Jako pevný spoj mezi motorovým ložem a měřícím rámem je uložen siloměr, který bude při plnění nádrží sloužit k měření jejich naplnění a při zážehu motoru sloužit k měření tahu. Měřící věž je vůči vozíku ukotvena pomocí rotačního uložení na hraně vozíku a vzpěry. Motorové lože je tak v přímé blízkosti uložení věže a tím jsou minimalizována ramena působících sil. Zároveň je v převozovém (složeném) stavu věž blízko dna vozíku, což usnadňuje její kotvení. Přenos sil probíhá po ose motor - motorové lože - siloměr - měřící rám - rám vozíku. Vozík samotný by měl být vybavený stabilizačními prvky vůči zemi a ideálně kotvícím mechanismem, který bude jednoduché při stavění standu rychle nainstalovat.

Obrázek 4.2: Schéma měření

Pro komfort převozu a minimalizaci rizika silničních kontrol je doporučeno volit přívěsný vozík s možností zakrytování plachtou. Pro maximálně efektivní rozložení subsystémů na platformu vozíku je uvažované umístění testovací věže ve sklopeném stavu v podélné ose ložné plochy vozíku. Ostatní subsystémy jsou rozložené u krajů ložné plochy. Rozvaděč s měřící a ovládací elektronikou je umístěn v nejvzdálenějším rohu vozíku od motorového lože pro zvýšení ochrany elektroniky před poškozením.

Obrázek 4.3: Konceptuální rozložení subsekcí na vozíku

4.2 Experimentální aparatura

Jedním z možných osazení motorového lože bude experimentální aparatura pro testování hybridních raketových motorů i raketových motorů na kapalná paliva. Zásadním požadavkem na tuto aparaturu je schopnost testovat raketový motor Daedalus, jehož návrh je předmětem diplomové práce Bc. Daniela Hořejšího (viz příloha 7 - PID Daedalaus).

Obrázek 4.4: PID schéma testovací aparatury

Pro úpravy v průběhu testovací kampaně je nutné vybavit experimentální aparaturu tlakovými nádržemi pro okysličovadlo a palivo dimenzovanými pro operační tlak 10 MPa. Tomu musí být uzpůsobené i rozsahy senzorů. Tato aparatura také obsahuje maximální množství senzorů, se kterými se v rámci měření počítá - ze schématu 4.4 bylo tedy vycházeno i při návrhu měřícího řetězce.

Detailní realizace testovací aparatury nebyla předmětem této diplomové práce a výběr finálních komponent byl výsledkem práce skupiny Propulsion týmu CTU Space Research. Autor této práce se podílel pouze na motorizaci ventilů a návrhu tlakových nádob pro palivo a okysličovadlo.

4.2.1 Motorizace ventilů

Pro automatický chod aparatury byla zkonstruována planetová převodovka s převodovým poměrem 3:1 pro získání dostatečného momentu pro otevření ventilů Schwer A-BVM6L-4. Servo má dle technického listu krouticí moment 30 $kg \cdot cm$ při 12V, pro otevření ventilu je výrobcem uváděný moment minimálně 50 $kg \cdot cm$. K ovládání ventilů byla použita serva Waveshare ST3215 se zpětnovazebním řízením polohy. V každém momentě užívání serva je tak přes řídící elektroniku možné odečíst polohu serva (a tím i otevření ventilu). Tato data mohou posloužit při případném řešení problémů při neúspěšném testování.

Obrázek 4.5: Model sestavy převodovky + řez převodovkou

Planetová převodovka je vyrobena technologií MultiJet Fusion z materiálu HP PA12. Vrchní pouzdro, které zároveň slouží jako vnější ozubení, je upevněné vůči servu šrouby do plastu. Ozubené kolo "slunce" je připevněno k talíři serva. Spodní pouzdro je upevněno vůči tělu ventilu. Unašeč planet je připevněn na osu ventilu. Celá sestava je tak velmi snadno rozdělitelná na dvě poloviny pro potřeby oprav či údržby.

Parametr	hodnota
převodový poměr	3:1
modul	0,75
počet planet	4
počet zubů "slunce"	37
počet zubů "planeta"	18
počet zubů rámu	74

Tabulka 4.1: Parametry planetové převodovky

4.2.2 Tlakové nádoby

Pro testovací účely byly navrženy nádrže na oxid dusný a ethanol schopné vydržet tlak 100 bar navržené v souladu s požadavky soutěže EuRoC. Splněním podmínek návrhu dle požadavků soutěže EuRoC zároveň splnily standardy návrhu tlakových nádob dle ECSS-E-ST-32-02C Rev.1 a ECSS-E-ST-32-10C Rev.2. Jelikož se jedná o neletové nádrže, nebylo odlehčování komponent kritickým parametrem. Požadavkem na minimální objemy nádrží je 18,2 litrů pro N₂O a 10,7 litrů pro ethanol. S ohledem na bezpečnostní rezervu 20 % u kapalného N₂O byly nádrže navrženy s objemem 24, respektive 18 litrů. Pro zlevnění výroby mají nádrže shodný design a liší se pouze délkou trubky a materiálem těsnění. [7] [8] [9]

Tělo nádrže je vyrobeno z materiálu EN AW-6068 T6, víčka jsou z EN AW-6060 T6 a jako spojovací materiál jsou použity šrouby ISO 7380 M8x25 třídy 8.8. Pro těsnění nádrže na N₂O byly použity opláštěné FEP o-kroužky, pro utěsnění nádrže na ethanol byly použity o-kroužky z NBR70.

Pevnostní výpočty byly provedeny dle rovnic a postupů uvedených v [10], [11] a [12]. Stěna nádrže byla pevnostně kontrolována dle rovnice 4.1 pro tlustostěnnou trubku s vnitřním přetlakem.

Obrázek 4.6: Řez modelem tlakové nádoby

$$(p_1 - p_2) \le \frac{\sigma_D}{2} \left[1 - \left(\frac{r_1}{r_2}\right)^2 \right]$$
 (4.1)

Z čehož plyne:

$$\frac{Rp}{k} \ge (p_1 - p_2) \left[1 - \left(\frac{r_1}{r_2}\right)^2 \right]^{-1}$$
(4.2)

$$\frac{255}{2} \ge (10-0) \left[1 - \left(\frac{100}{110}\right)^2 \right]^{-1}$$
(4.3)

$$127, 5 \ge 57, 61 \qquad [MPa] \tag{4.4}$$

Pevnostní kontrolní výpočty šroubů byly provedeny na střih a na otlačení dle rovnic 4.5, 4.9 a 4.13.

Pevnostní výpočty šroubů na střih:

$$\tau = \frac{F}{\frac{\pi \cdot d_3^2}{2}} \le \tau_{d_{\text{šroub}}} \tag{4.5}$$

kdeF... síla na jeden šroub (42 šroubů ve dvou řadách)
 α ... pevnostní koeficient zvolen dle teorie HMH

Obrázek 4.7: Výpočtové schéma šroubového spoje

$$\frac{R_e}{k \cdot \alpha} \ge \frac{F}{\frac{\pi \cdot d_3^2}{2}} \tag{4.6}$$

$$\frac{640}{2\cdot\sqrt{3}} \ge \frac{7\,480}{\frac{\pi\cdot6,4^2}{2}}\tag{4.7}$$

$$184,97 \ge 116,26 \qquad [MPa] \tag{4.8}$$

Pevnostní výpočty víčka a stěny nádrže na otlačení:

$$p_{\rm víčko} = \frac{F}{(l-b) \cdot d_3} \le \sigma_{d_{\rm víčko}} \tag{4.9}$$

$$\frac{R_e}{k} \ge \frac{F}{(l-b) \cdot d_3} \tag{4.10}$$

$$\frac{160}{2} \ge \frac{7\,480}{(25-10)\cdot 6,4} \tag{4.11}$$

$$80 \ge 77,92 \quad [MPa] \tag{4.12}$$

$$p_{\text{stěna}} = \frac{F}{b \cdot d_3} \le \sigma_{d_{\text{stěna}}} \tag{4.13}$$

$$\frac{R_e}{k} \ge \frac{F}{b \cdot d_3} \tag{4.14}$$

$$\frac{255}{2} \ge \frac{7\,480}{10\cdot 6,4} \tag{4.15}$$

$$127, 5 \ge 116, 84 \qquad [MPa] \tag{4.16}$$

Jak je zřejmé z rovnic 4.4, 4.8, 4.12 a 4.16, navržené komponenty splnily pevnostní kontroly.

Návrh víček tlakové nádoby se odvíjel od konstrukčních zástavbových rozměrů potřebných pro šroubové spoje a těsnící prvky. Při tloušťce nejtenčí části víčka 50 mm byla provedena simulace metodou konečných prvků, ze které plyne minimální koeficient bezpečnosti 3,725, který splňuje požadavky soutěže. K simulaci byl použit řešič Autodesk Nastran za použití sítě s 150 215 tetrahedral elementy. [13]

Obrázek 4.8: Pevnostní simulace víčka tlakové nádoby

5 Měřící řetězec

5.1 Senzory

Byly vybrány senzory pro měření veličin dle PID diagramu 4.4. Vybrané senzory musí být kompatibilní ke všem látkám používaným v raketových motorech týmu dusík, oxid dusný a ethanol. Jako vhodný materiál senzorů či jejich pouzder byla vybrána nerezová ocel.

Přehled vybraných senzorů a jejich rozsahů a výstupů je pro přehlednost uveden v tabulce 5.1. Teplota bude primárně měřena pomocí snímačů teploty PT1000, které se vyznačují lineární převodní charakteristikou. Do této chvíle probíhalo měření teploty při testech týmu pomocí termočlánků, jedním z požadavků na testovací aparaturu tedy byla možnost akvizice teploty pomocí termočlánků. To bylo promítnuto i do návrhu měřícího řetězce.

Senzor	Výrobce	Veličina	Rozsah	Umístění	Výstup
EMS41	EMSYST	síla	0 - 10 kN	LC-1	0,5 - 4,5 V
PT1000	Steca	teplota	-30 - 500 °C	TC-OX-01, TC-FU-01	882 - 2809,8 Ohm
AP027	Autosen	tlak	0 - 10 MPa	PT-OX-02, PT-FU-02, PT-OX-03,	4 20 m
AI 027	Autosen	uak	0 - 10 MI a	PT-FU-03, PT-CHAMBER	420 IIIA
AP029	Autosen	tlak	0 - 40 MPa	PT-N2-02	420 mA

Tabulka 5.1: Přehled vybraných senzorů

5.2 National Instruments

Pro vysokou kvalitu měřených dat byl vypracován návrh měřícího řetězce z komponent od společnosti National Instruments (dále NI). Přístroje této společnosti jsou v souvislosti s testováním raketové techniky široce používané, a tak má společnost dostupnou brožuru asistující s vhodným návrhem měřícího řetězce. [14]

Obrázek 5.1: Schéma měřícího řetězce NI

Obrázek 5.2: Přehled zvolených modulů NI $\left[15,$ úprava autor\right]

Měřící centrály společnosti National Instruments mají skvělé napojení na program LabVIEW umožňující okamžitou vizualizaci dat přesně dle přání uživatele. ČVUT v Praze disponuje licencí na tento program. [15] Velikou nevýhodou tohoto řešení je však jeho cena (převyšující 130 000 Kč). Pro potřeby studentského týmu je v současné situaci pořízení daného systému nerealizovatelné. [15]

5.3 Vlastní návrh - DAQ shield

Pro překonání problematiky vysoké ceny měřícího řetězce od společnosti National Instruments bylo přistoupeno k návrhu vlastního řešení měřícího řetězce. Výsledkem této snahy byl vývoj jakéhosi "shield" modulu pro Arduino Nano či Nucleo G431KB (oba mikrokontrolery mají stejné rozložení pinů a je tedy je možné používat záměnně). Dle volby mikrokontroleru je třeba přepájet tzv. jumper na desce (+5V pro Arduino Nano, +3,3V pro Nucleo G431KB) který zajistí, aby byly senzory napájeny nativním napětím mikrokontroléru. Toto opatření umožňuje mikrokontroleru komunikovat s převodníky bez rizika poškození.

Pro připojení termočlánků byl užit převodník MAX6675. Pro měření ostatních veličin byly použity převodníky ADS1115. Vzhledem k odlišným výstupům ostatních senzorů byla mezi výstupy ze senzorů a převodníky umístěna jiná struktura komponent - všechny vstupy byly vybaveny tzv. "lowpass filtrem" vytvořeným dle Shannonova Nyquistova teorému (rovnice 5.1). Vstup ze siloměru byl navíc opatřen dalším odporem pro vytvoření odporového děliče. Detailní schéma DAQ shieldu je k nahlédnutí v příloze 4.

$$f = \frac{1}{2\pi RC} \tag{5.1}$$

Vzhledem k návrhové vzorkovací frekvenci 200 Hz byl lowpass filtr počítaný na frekvenci 100 Hz. Byly zvoleny odpory o $R = 10 \text{ k}\Omega$ a kondenzátory o C = 10 nF.

Obrázek 5.3: Blokové schéma měřícího řetězce pomocí DAQ shield

Zřejmou nevýhodou oproti řešení od National Instruments je nedostatek softwarového zázemí. Data získaná z tohoto systému momentálně není možné jednoduše vizualizovat v reálném čase a je navržené pouze pro zaznamenávání dat přes prostředí Arduino IDE. Tuto nevýhodu vyvažuje nesrovnatelně nižší cena (cca 3000 Kč). Ve světle finančních možností studentského týmu je přesnost tohoto řešení hodnocena jako momentálně dostačující. V následujících letech je však doporučeno systém sběru dat nahradit výkonnějším systémem vlastního návrhu týmu či komerčním řešením.

Obrázek 5.4: DAQ shield - schéma + render

5.4 Porovnání měřících řetězců

Pro korektní volbu systému sběru dat byla vypracována multikriteriální analýza podle ECSS-E-ST-10C Rev.1. Z této analýzy vyplývá, že vhodným řešením bude za současných podmínek DAQ shield, a to zejména kvůli rozpočtovým důvodům. [1]

		NI DAQ		DAQ Shield	
Parametr	Váha	Hodnocení [1-5]	Skóre	Hodnocení [1-5]	Skóre
Cena	$0,\!5$	1	0,5	5	2,5
Uživatelská přívětivost	0,2	5	$1,\!0$	2	$0,\!4$
Robustnost	0,1	4	0,4	1	0,1
Software	0,1	4	0,4	2	0,2
Vzorkovací frekvence	0,1	4	0,4	1	0,1
	1		2,7		$3,\!3$

Tabulka 5.2: Multikriteriální analýza DAQ systému

6 Konstrukční návrh

6.1 Předběžný návrh

V první verzi návrhu bylo počítáno s výrobou měřícího rámu jako svařence z jeklů 40x40x3. Od tohoto návrhu bylo upuštěno s ohledem na výrobní možnosti týmu, zejména s ohledem na možnost zkroucení celého rámu vlivem tepelného namáhání při svařování. To by mohlo mít za následek vyšší odpor v lineárním vedením a ovlivnění přesnosti měření - bylo tedy rozhodnuto přejít na konstrukci z extrudovaných profilů z hliníkových slitin a to na úkor zvýšení rozpočtu projektu.

Osa rotace rámu byla plánována v souladu s koncepčním návrhem na hraně ložné plochy vozíku. Při tomto uspořádání nebylo možné zajistit bezpečnou vzdálenost mezi koncem trysky a dopadovou plochou deflektoru, bylo tedy nutné přistoupit k vyvýšení osy rotace věže. Tyto změny byly promítnuty do výsledné konstrukce vozíku.

isometrický pohled na koncepční model

pozice kraje motorového lože od země

Obrázek 6.1: Konceptuální model

6.2 Výsledná konstrukce

Jako spojovací materiál byly použity šrouby s válcovou hlavou s vnitřním šestihranem DIN912 pevnostní třídy 8.8, není-li uvedeno jinak. Všechny šrouby byly utaženy na doporučený utahovací moment dle DIN898/1. Ukotvení pevnostních prvků (připevnění základny a vzpěr testovací věže vůči vozíku) bylo vedeno skrz ocelové profily konstrukce vozíku a připevněné maticí samojistnou DIN985. Prvky, které nepřenáší zatížení motoru (rozvody plynů, deflektor, rozvaděč) jsou ukotvené přes dno vozíku (překližka 9mm) pomocí narážecích matic AN 9260/A2.

Pro potřeby rychlého upevňování testovacího standu byl navržen vlastní stavěcí šroub (obrázek 6.2) na základě šroubu se šestihrannou hlavou DIN933. Na ten byly vymodelovány příchytné součásti (úchyt a pojistné dno) optimalizované na výrobu aditivní technologií FDM, které usnadňují ruční utažení šroubu. Tento šroub je zakázané užívat pro osově namáhané šroubové spoje.

Obrázek 6.2: Stavěcí šroub

6.2.1 Subsystémy

6.2.1.1 Platforma

Jako platforma pro testovací stanoviště byl vybrán přívěsný vozík Unitrailer Garden Trailer 264/2 KIPP v sadě s opěrným kolečkem, rámem 80 cm a dedikovanou modrou plachtou. Vozík má maximální hmotnost 750 kg a disponuje dvěma nebržděnými nápravami - k jeho převozu je tak v kombinaci s vhodným osobním automobilem dostačující řidičské oprávnění skupiny B. Vzhledem k prázdné hmotnosti vozíku (300 kg) je tak nové omezení pro testovací aparaturu - její hmotnost nesmí přesáhnout 450 kg. [16]

Obrázek 6.3: Unitrailer Garden Trailer 264/2 KIPP [16]

Obrázek 6.4: Výkres Unitrailer Garden Trailer 264/2 KIPP [16]

Vozík byl v rozích vybaven opěrnými nohami z nabídky výrobce. Opěrné nohy slouží k stabilizaci samostatně a v případě potřeby je možné je zatížit závažím pro lepší ukotvení stanoviště.

6.2.1.2 Rozvody plynů

V rámci týmu byla vyvinuta stanice pro bezobslužné tankování nádrží pro raketové motory. V nomenklatuře týmu se zařízení nazývá "Ground Support Equipment" (dále jen GSE). Vývoj tohoto systému probíhá v rámci skupiny Propulsion a není v této práci detailně řešen. GSE se ve své současné podobě (obrázek 6.5) na platformu stanoviště vejde ve dvou osách, jeho užití se však neslučuje s použitím zakrytování vozíku plachtou. Bylo tedy vydáno doporučení o přepracování GSE s navrženou maximální obálkou 400x1200x900 [mm]. Ke zmenšení GSE je doporučeno změnit motorizaci ventilů na kombinaci serva a planetové převodovky zmíněné v sekci 4.2.1.

Obrázek 6.5: Současný stav GSE [archiv CTU SR]

6.2.1.3 Rozvaděč

Pro umístění elektroniky potřebné k ovládání testovací aparatury, bezobslužnému tankování a sběru dat z testování byl zvolen venkovní rozvaděč pro 19" od společnosti XtendLan. Využití standardizovaného uchycovacího systému usnadňuje modifikace elektronických systémů do budoucna i pro další členy týmu. Rozvaděč disponuje třídou krytí IP55, je tedy odolný proti ničivému objemu prachu i tryskající vodě. Při případných modifikacích rozvaděče do budoucna je nutno tento stupeň krytí zachovat, tedy užívat kabelové průchodky či konektory minimálně stupně krytí IP55 a vyšší. [17]

6.2.1.4 Akustická ochrana

Jedním z témat pro budoucí rozvoj raketových motorů je i tlumení akustických vibrací vzniklých při jejich testování. Ty působí negativně nejen na osoby účastnící se testování, ale i na techniku samotnou. Při současných výkonech týmem testovaných RM (maximální tah do 5 kN) není akustické zatížení kritické, proto není v současné chvíli nutné tento subsystém navrhovat. V rámci budoucích prací však bylo vypracováno doporučení pro vývoj této akustické ochrany a na testovací platformě pro ni bylo vyhrazené místo. Jako zdroj vody pro akustickou ochranu byla zvolena tlaková nádoba AQUA OLA 50l stojatá, která svými rozměry splňuje vyhrazenou obálku. [18]

6.2.1.5 Deflektor

Zážeh raketového motoru ve vertikální pozici blízko země může poškodit testovací aparaturu či motor samotný plamenem, teplem nebo akustickým zatížením. Pro minimalizaci možného poškození byl navržen deflektor dle standardu NASA KSC-STD-Z-0012B podle parametrů motoru Daedalus. Zakřivená plocha byla vzhledem k rozměrům deflektoru a dostupným technologiím výroby nahrazena šikmou plochou svírající úhel 30 ° s horizontálou. [2] [19]

Veličina	minimální hodnota	zvolená hodnota
Separační vzdálenost	273 mm	XXX mm
dopadový úhel	$30~^\circ$	$30~^\circ$
bod dopadu	$68{,}25~\mathrm{mm}$	$75 \mathrm{~mm}$
tečný bod	$45,5~\mathrm{mm}$	$50 \mathrm{mm}$
poloměr zakřivení	$154,7~\mathrm{mm}$	$170~\mathrm{mm}$
Šírka deflektoru	145,6 mm	400 mm

Tabulka 6.1: Přehled rozměrů deflektoru dle NASA KSC-STD-Z-0012B a zvoleného konstrukčního řešení

Deflektor je zkonstruován z jeklů 40x40x3 a na jeho funkční povrch je navařený

Obrázek 6.6: Výpočtové schéma deflektoru [19, úprava autor]

5 mm plech. Materiál obou konstrukčních prvků je ocel S235JR. Konstrukce deflektoru je přenosná, vybavená pozičními značkami vůči vozíku a na vozíku má vyhrazené místo na převážení. Kvůli umožnění převozu na vozíku je konstrukce skládací, přičemž boční pásnice slouží k zaaretování ve složené i funkční poloze. Pro aretaci pásnice jsou použity vlastní stavěcí šrouby zmíněné na začátku sekce 6.2, k jejichž uchycení jsou v konstrukci použity nýtovací matice se zápustnou hlavou.

Obrázek 6.7: Pohled na model deflektoru + porovnání rozloženého a složeného stavu

6.2.1.6 Měřící věž

Rám měřící věže byl zkonstruován z profilů společnosti KANYA řady 50 s drážkou N8. To usnadňuje případné modifikace či montáž přídavných zařízení do budoucna. Profily jsou vůči spojené úhlovými spojkami s kolíky proti protočení. Profily spojené na tupo jsou navíc spojené průchozími šrouby. [20]

Jako motorové lože byl vybrán profil KANYA B03-3 30x300 v délce 2350 mm. K připojení jsou používány matice systému KANYA N8. Toto řešení umožňuje jednoduché připevnění motorů a celé testovací aparatury dle potřeb daného testování. [20]

Obrázek 6.8: Přípojné rozměry motorového lože

Lineární vedení bylo dimenzováno v souladu s doporučeními výrobce dle rovnice 6.1. [21]

Obrázek 6.9: Schéma pro dimenzování lineárního vedení $\left[21\right]$
$$P_1 = P_2 = P_3 = P_4 = -\frac{W \cdot h}{2d} + \frac{F \cdot l}{2d}$$
(6.1)

- kde P_i ... zatížení vozíku
 - W ... tíha aparatury
 - F $\hfill \ldots$ zatížení od tahu motoru

Pro návrhový výpočet byla odhadnuta tíha natankované soustavy W = 600 Na poloha těžiště soustavy přibližně v ose tahu, tedy h = l. Po dosazení docházíme k upravenému vztahu:

$$P_i = (F - W)\frac{h}{d} = (15\,000 - 600)\frac{120}{1\,500} = 1\,152\ N \tag{6.2}$$

Bylo zvoleno lineární vedení řady MGN-H s vozíky MGN12H s dynamickou únosností 3720 N a tedy s koeficientem bezpečnosti lineárního vedení k = 3,23.

Siloměr je vůči rámu upevněn dle instrukcí výrobce pomocí šroubového spoje. Motorové lože je k siloměru připevněno pomocí kloubového oka. Osa siloměru je v rovině osy motorového lože.

Obrázek 6.10: Uložení siloměru v testovací věži

Testovací věž byla vybavena opticko-akustickým výstražným systémem ve formě semaforu s bzučákem. Připojení semaforu vůči rámu je řešeno pomocí 3D tištěnce (doporučená výrobní metoda FDM). Ovládání semaforu probíhá přes univerzální odpalovací kufřík týmu CTU Space Research.

Obrázek 6.11: Umístění semaforu na testovací věži

6.2.2 Třípohledové schéma

Obrázek 6.12: Přehledové schéma předkládaného řešení s umístěným RM Phoenix

6.2.3 Pevnostní výpočty

Pevnostní výpočty byly provedeny dle standartu ECSS-E-ST-32-10C-Rev.2. Početní zatížení od tahu motoru bylo stanoveno pomocí příslušného bezpečnostního koeficientu a maximálního dovoleného tahu motoru dle rovnice 6.3.

$$F_{DL} = F_{MAX} \cdot K_p = 10\,000 \cdot 1,25 = 12\,500\,\,N \tag{6.3}$$

Dále se musí vyznačovat minimální rezervou maximálního napětí vůči mezi kluzu $FOSY \ge 1,25$ (yield design factor of safety). Přehled použitých materiálů a jejich relevantních vlastností, stejně jako profilů a relevantních průřezových charakteristik byl sestaven do příloh 1 a 2. Pevnostní výpočty byly provedeny za užití rovnic a postupů uvedených v [10], [11] a [12].

Obrázek 6.13: Body kontrolních výpočtů (a) a schéma určení zatížení (b)

1 - vzpěr lože	29,98	splněna
2 - šroubový spoj	1,58	splněna
3 - průhyb nosníku	5,38	splněna
4 - šroubový spoj	11,16	splněna
5 - prostý tah	27,36	splněna
6 - šroubový spoj	2,52	splněna
7 - ohyb nosníku	1,34	splněna
8 - rotační spoj	2,77	splněna
9 - prostý tah	16,69	splněna
10 - šroubový spoj	9,88	splněna
11 - šroubový spoj	2,29	splněna
12 - vzpěr	19,93	splněna

místo pevnostní kontroly FOSY pevnostní kontrola

Tabulka 6.2: Přehled výsledků pevnostních kontrol s vypočtenými FOSY

6.2.3.1 Vzpěr lože

CAD

Obrázek 6.14: Popis kontrolního místa 1

$$F_{kr} = \frac{\pi^2 \cdot E \cdot J_{min}}{l_{red}^2} = \frac{\pi^2 \cdot 70\,000 \cdot 260\,600}{1\,500^2} = 80\,018,36\ N \tag{6.4}$$

$$F_{kr} \le F_{DL} \tag{6.5}$$

$$\sigma_{DL} = \frac{F_{DL}}{A} = \frac{12\,500}{1\,874} = 6,67\ MPa \tag{6.6}$$

$$FOSY = \frac{\sigma_Y}{\sigma_{DL}} = \frac{200}{6,67} = 29,98 \tag{6.7}$$

6.2.3.2 Šroubový spoj

Obrázek 6.15: Popis kontrolního místa 2

Kontrola tohoto spoje byla provedena na ohyb, střih a otlačení. Jako výsledný FOSY byl vybraný nejnižší ze získaných FOSY.

$$\sigma_{ohyb} = \frac{5}{4} \cdot F_{DL} \cdot \frac{l}{d^3} = \frac{5}{4} \cdot 12\,500 \cdot \frac{26}{10^3} = 406, 25 \ MPa \tag{6.8}$$

$$FOSY_{ohyb} = \frac{\sigma_Y}{\sigma_{ohyb}} = \frac{640}{406,25} = 1,58$$
(6.9)

Pevnostní kontrola na střih:

$$\tau = \frac{F_{DL}}{\frac{\pi \cdot d^2}{2}} = \frac{12\,500}{\frac{\pi \cdot 10^2}{2}} = 79,58 \ MPa \tag{6.10}$$

$$FOSY_{\text{strih}} = \frac{\sigma_Y \cdot \alpha}{\tau} = \frac{640 \cdot \sqrt{3}}{79,58} = 4,65$$
 (6.11)

Pevnostní kontrola na otlačení:

$$p_{\rm oko} = \sigma_{\rm oko} = \frac{F}{(l-2\cdot b)\cdot d} = \frac{12\,500}{(26-2\cdot 6)\cdot 10} = 89,29 \ MPa \tag{6.12}$$

$$FOSY_{oko} = \frac{\sigma_Y}{\sigma_{oko}} = \frac{640}{406, 25} = 7,17$$
(6.13)

$$p_{\text{závěs}} = \sigma_{\text{závěs}} = \frac{F}{2 \cdot b \cdot d} = \frac{12\,500}{2 \cdot 6 \cdot 10} = 104,17 \ MPa$$
 (6.14)

$$FOSY_{závěs} = \frac{\sigma_Y}{\sigma_{závěs}} = \frac{235}{104, 17} = 2,26$$
 (6.15)

$$FOSY = min(FOSY_{ohyb}, FOSY_{střih}, FOSY_{oko}, FOSY_{závěs}) = 1,58$$
(6.16)

6.2.3.3 Průhyb nosníku

Obrázek 6.16: Popis kontrolního místa $\boldsymbol{3}$

$$\sigma_{ohyb} = \frac{M_o}{W_o} = \frac{\frac{F_{DL} \cdot l}{4}}{W_o} = \frac{\frac{12\,500\cdot350}{4}}{29\,420} = 31,18 \ MPa \tag{6.17}$$

$$FOSY = \frac{\sigma_Y}{\sigma_{ohub}} = \frac{200}{31,18} = 5,38 \tag{6.18}$$

6.2.3.4 Šroubový spoj

V rámci tohoto kontrolního místa byla kontrolována pouze únosnost šroubového spoje M16. Jelikož byl FOSY výrazně vyšší než požadovaná hodnota, nebylo nutné přistupovat k pevnostní kontrole šroubových spojení úhelníky, které přenášejí neza-nedbatelnou část zatížení a celkový FOSY tohoto spoje tak zvyšují.

Kontrola šroubu:

$$\sigma_{\text{šroub}} = \frac{\frac{F_{DL}}{2}}{\frac{\pi \cdot d_3^2}{4}} = \frac{\frac{12\,500}{2}}{\frac{\pi \cdot 12,8^2}{4}} = 48,57 \ MPa \tag{6.19}$$

$$FOSY_{\text{šroub}} = \frac{\sigma_Y}{\sigma_{\text{šroub}}} = \frac{640}{48,57} = 13,18$$
 (6.20)

Kontrola vnitřního závitu:

$$\sigma_{\text{závit}} = \frac{\frac{F_{DL}}{2}}{\frac{\pi}{2} \cdot d_2 \cdot H_1 \cdot n} = \frac{\frac{12500}{2}}{\frac{\pi}{2} \cdot 14, 8 \cdot 1 \cdot 15} = 17,92 \, MPa \tag{6.21}$$

kde H_1 ... nosná hloubka závitu n ... počet závitů s ... stoupání závitu

$$FOSY_{závit} = \frac{\sigma_Y}{\sigma_{závit}} = \frac{200}{17,92} = 11,16$$
 (6.22)

$$FOSY = min(FOSY_{\text{šroub}}, FOSY_{\text{závit}}) = 11,16$$
(6.23)

6.2.3.5 Prostý tah

Obrázek 6.18: Popis kontrolního místa5

$$\sigma_{\rm tah} = \frac{\frac{F_{DL}}{2}}{A} = \frac{\frac{12\,500}{2}}{855} = 7,31 \ MPa \tag{6.24}$$

$$FOSY_{\text{tah}} = \frac{\sigma_Y}{\sigma_{tah}} = \frac{200}{7,31} = 27,36 \tag{6.25}$$

6.2.3.6 Šroubový spoj

Obrázek 6.19: Popis kontrolního místa 6

Kontrola tohoto spoje byla provedena na ohyb, střih a otlačení. Jako výsledný FOSY byl vybraný nejnižší ze získaných FOSY. Jelikož byl FOSY vyšší než požadovaná hodnota, nebylo nutné přistupovat k pevnostní kontrole šroubových spojení úhelníky, které přenášejí nezanedbatelnou část zatížení a celkový FOSY tohoto spoje tak zvyšují.

$$\sigma_{ohyb} = \frac{5 \cdot F_{DL} \cdot l}{4 \cdot d_3^3} = \frac{5 \cdot 12\,500 \cdot 26}{4 \cdot 10^3} = 254,03 \ MPa \tag{6.26}$$

$$FOSY_{ohyb} = \frac{\sigma_Y}{\sigma_{ohyb}} = \frac{640}{254,03} = 2,52$$
(6.27)

Pevnostní kontrola na střih:

$$\tau = \frac{\frac{F_{DL}}{2}}{\frac{\pi \cdot d^2}{2}} = \frac{\frac{12\,500}{2}}{\frac{\pi \cdot 13,5^2}{2}} = 21,83 \ MPa \tag{6.28}$$

$$FOSY_{\text{střih}} = \frac{\sigma_Y \cdot \alpha}{\tau} = \frac{640 \cdot \sqrt{3}}{21,83} = 16,95$$
(6.29)

Pevnostní kontrola na otlačení:

$$p_1 = \sigma_1 = \frac{F}{(l-b) \cdot d_3} = \frac{12\,500}{(80-50) \cdot 13,5} = 15,43 \ MPa \tag{6.30}$$

$$FOSY_1 = \frac{\sigma_Y}{\sigma_1} = \frac{640}{15,43} = 15,43 \tag{6.31}$$

$$p_2 = \sigma_2 = \frac{F}{\frac{1}{2} \cdot b \cdot d_3} = \frac{12\,500}{\frac{1}{2} \cdot 50 \cdot 13, 5} = 18,52 \ MPa \tag{6.32}$$

$$FOSY_2 = \frac{\sigma_Y}{\sigma_2} = \frac{235}{18,52} = 12,69 \tag{6.33}$$

$$FOSY = min(FOSY_{ohub}, FOSY_{strih}, FOSY_1, FOSY_2) = 2,52$$
(6.34)

6.2.3.7 Ohyb nosníku

Obrázek 6.20: Popis kontrolního místa $7\,$

$$\sigma_{ohyb} = \frac{M_o}{W_o} = \frac{\frac{F_{DL}}{2} \cdot l}{W_o} = \frac{\frac{1250}{2} \cdot 200}{8\,350} = 149,7 \ MPa \tag{6.35}$$

$$FOSY = \frac{\sigma_Y}{\sigma_{ohyb}} = \frac{200}{149,7} = 1,34 \tag{6.36}$$

6.2.3.8 Rotační spoj

Obrázek 6.21: Popis kontrolního místa 8

Kontrola tohoto spoje byla provedena na ohyb, střih a otlačení. Jako výsledný FOSY byl vybraný nejnižší ze získaných FOSY.

$$\sigma_{ohyb} = \frac{5}{4} \cdot \frac{F_{DL}}{2} \cdot \frac{l}{d_3{}^3} = \frac{5}{4} \cdot \frac{12\,500}{2} \cdot \frac{62}{10^3} = 24,29 \ MPa \tag{6.37}$$

$$FOSY_{ohyb} = \frac{\sigma_Y}{\sigma_{ohyb}} = \frac{640}{24,29} = 2,77$$
(6.38)

Pevnostní kontrola na střih:

$$\tau = \frac{\frac{F_{DL}}{2}}{\frac{\pi \cdot d_3^2}{2}} = \frac{\frac{12\,500}{2}}{\frac{\pi \cdot 12,8^2}{2}} = 24,29 \ MPa \tag{6.39}$$

$$FOSY_{\text{střih}} = \frac{\sigma_Y \cdot \alpha}{\tau} = \frac{640 \cdot \sqrt{3}}{24, 29} = 15, 23 \tag{6.40}$$

Pevnostní kontrola na otlačení:

$$p_{\text{kotva}} = \sigma_{\text{kotva}} = \frac{\frac{F_{DL}}{2}}{(l-2\cdot b)\cdot d} = \frac{\frac{12\,500}{2}}{(62-2\cdot 6)\cdot 12,8} = 9,77 \ MPa \tag{6.41}$$

$$FOSY_{ohyb} = \frac{\sigma_Y}{\sigma_{kotva}} = \frac{235}{9,77} = 24,06$$
 (6.42)

$$p_{\text{závěs}} = \sigma_{\text{závěs}} = \frac{\frac{F_{DL}}{2}}{2 \cdot b \cdot d} = \frac{\frac{12\,500}{2}}{2 \cdot 6 \cdot 12, 8} = 40,69 \ MPa \tag{6.43}$$

$$FOSY_{závěs} = \frac{\sigma_Y}{\sigma_{závěs}} = \frac{235}{40,69} = 5,78$$
 (6.44)

$$FOSY = min(FOSY_{ohyb}, FOSY_{střih}, FOSY_{kotva}, FOSY_{závěs}) = 2,77$$
 (6.45)

6.2.3.9 Prostý tah

Obrázek 6.22: Popis kontrolního místa 9

$$\sigma_{\rm tah} = \frac{\frac{F_{DL}}{2}}{A} = \frac{\frac{12\,500}{2}}{444} = 14,08 \ MPa \tag{6.46}$$

$$FOSY_{\text{tah}} = \frac{\sigma_Y}{\sigma_{tah}} = \frac{235}{14,08} = 16,69 \tag{6.47}$$

6.2.3.10 Šroubový spoj

Obrázek 6.23: Popis kontrolního místa 10

$$\sigma_{\rm tah} = \frac{\frac{F_{DL}}{6}}{A} = \frac{\frac{F_{DL}}{6}}{\frac{\pi \cdot d_3^2}{4}} = \frac{\frac{12\,500}{6}}{\frac{\pi \cdot 6,4^2}{4}} = 64,76 \ MPa \tag{6.48}$$

$$FOSY_{\text{tah}} = \frac{\sigma_Y}{\sigma_{tah}} = \frac{640}{64,76} = 9,88 \tag{6.49}$$

6.2.3.11 Šroubový spoj

Obrázek 6.24: Popis kontrolního místa 11

Na základě prvního obrázku 6.13 bylo určené zatížení na jednu vzpěru

$$F_{DL_{\text{vzpěra}}} = \frac{\frac{\frac{F_{DL}}{2} \cdot l}{h}}{\cos(\varphi)} = \frac{\frac{\frac{12500}{2} \cdot 1000}{440}}{\cos(45^{\circ})} = 5\,234,9\ N \tag{6.50}$$

Pevnostní kontrola na střih:

$$\tau = \frac{F_{DL_{\text{vzpěra}}}}{\frac{\pi \cdot d_3^2}{2}} = \frac{5\,235}{\frac{\pi \cdot 6,4^2}{2}} = 81,86 \ MPa \tag{6.51}$$

$$FOSY_{\text{střih}} = \frac{\sigma_Y \cdot \alpha}{\tau} = \frac{640 \cdot \sqrt{3}}{81,86} = 4,55$$
(6.52)

Pevnostní kontrola na otlačení:

$$p_{\text{vzpěra}} = \sigma_{\text{vzpěra}} = \frac{F_{DL_{\text{vzpěra}}}}{(l-b) \cdot d_3} = \frac{5\,235}{(30-8) \cdot 6,4} = 37,18 \ MPa \tag{6.53}$$

$$FOSY_{\text{vzpěra}} = \frac{\sigma_Y}{\sigma_{\text{vzpěra}}} = \frac{235}{37,18} = 6,32$$
 (6.54)

$$p_{\text{kotva}} = \sigma_{\text{kotva}} = \frac{F_{DL_{\text{vzpěra}}}}{b \cdot d_3} = \frac{5\,235}{8 \cdot 6, 4} = 102,24 \ MPa \tag{6.55}$$

$$FOSY_{kotva} = \frac{\sigma_Y}{\sigma_{kotva}} = \frac{235}{102,24} = 2,29$$
 (6.56)

$$FOSY = min(FOSY_{\text{střih}}, FOSY_{\text{vzpěra}}, FOSY_{\text{kotva}}) = 2,29$$
(6.57)

6.2.3.12 Vzpěr

$$F_{kr} = \frac{\pi^2 \cdot E \cdot J_{min}}{l_{red}^2} = \frac{\pi^2 \cdot 210\,000 \cdot 101\,972}{1\,500^2} = 93\,933\,\,N\tag{6.58}$$

$$F_{kr} \le F_{DL_{\rm vzpěra}} \tag{6.59}$$

$$\sigma_{DL_{\rm vzpěra}} = \frac{F_{DL_{\rm vzpěra}}}{A} = \frac{5\,235}{444} = 11,79 \ MPa \tag{6.60}$$

$$FOSY = \frac{\sigma_Y}{\sigma_{DL_{\text{vzpěra}}}} = \frac{235}{11,79} = 19,93$$
(6.61)

7 Pokyny k obsluze

Byly vypracovány pokyny k obsluze vozíku. Pokyny byly sepsány ve formě odškrtávacího seznamu dle zvyklostí interní dokumentace týmu CTU Space Research do dokumentů CL-04-00-00-00-01 a CL-04-00-00-02 (přílohy 5 a 6). Pokyny obsažené v tomto dokumentu jsou k nahlédnutí níže. Povolení k obsluze testovacího standu má pouze osoba pověřená šéfinženýrem týmu či vedoucím skupiny Propulsion po zaškolení od dané zodpovědné osoby.

Pokyny pro obsluhu před zahájením testu:

1.	Stabilizujte vozík vytažením opěrného kola $\hfill \square$
2.	Vysuňte stabilizační nohy vozíku tak, aby byla ložná plocha vodorovná $\hfill \Box$
3.	Uvolněním gumového lana po obvodu vozíku uvolněte a z vozíku odendejte
	krycí plachtu \Box
4.	Uvolněním pojistných šroubů v rozích vozíku uvolněte a z vozíku odendejte konstrukci krycího rámu $\hfill \square$
5.	Odklopte zadní dvířka vozíku a pružnou západkou je zajistěte proti dalšímu
	pohybu
6.	Odšroubováním stavěcích šroubů uvolněte deflektor od ložné plochy vozíku. Deflektor umístěte vedle pravé zadní nápravy vozíku
7.	Povolením stavěcích šroubů uvolněte testovací věž $\hfill \square$
8.	Pomocí zadních vzpěr vztyčte testovací věž $\hfill\square$

9.	Pomocí stavěcích šroubů zajistěte zadní vzpěry testovací věže ve svislé pozici
	vůči pojistným kotvám na ložné ploše vozíku $\hfill \square$
10.	Pomocí bočních vzpěr a stavěcích šroubů zajistěte testovací věž proti bočnímu pohybu
11.	Pomocí bočních vzpěr a stavěcích šroubů zajistěte testovací věž proti bočnímu
	pohybu
12.	Sestavte deflektor do testovacího stavu $\hfill \square$
13.	Umístěte deflektor pod motorové lože a zarovnejte jej podle pozičních značek
	umístěných na testovací aparatuře $\hfill \square$
14.	Zapojte napájecí kabel elektroniky test standu do sítě 230 VAC $\hfill \Box$
15.	Připojte semafor k odpalovacímu kufříku $\hfill \square$
16.	Je-li to třeba, propojte testovanou aparaturu s GSE $\hfill \square$
17.	Propojte DAQ shield s počítačem pomocí USB kabelu $\hfill \square$
18.	V programu Arduino IDE spusťte skript "TS_measure.ino" $\hfill \Box$
19.	Postupujte podle pokynů vedoucího testu. Záznamu testu odstartujete
	napsáním "START" do sériového monitoru programu Arduino IDE. Pro
	ukončení záznamu tamtéž napište "STOP". Po ukončení testu se data
	automaticky uloží do pracovní složky skripu $\hfill \Box$

Pokyny pro obsluhu po ukončení testu:

1.	Vyčkejte minimálně 10 minut, než bude bezpečné manipulovat s technikou	
2.	Odpojte napájecí kabel elektroniky test standu od sítě 230 VAC	
3.	Odpojte USB kabel propojující DAQ shield s počítačem	_
4.	Je-li to třeba, odpojte testovanou aparaturu od GSE	

5.	Odpojte semafor od odpalovacího kufříku	
6.	Složte deflektor do převozového stavu	
7.	Umístěte deflektor za pravou zadní nápravu	
8.	Uvolněte boční vzpěry testovací věže	
9.	Odšroubováním stavěcích šroubů uvolněte zadní vzpěry testovací věže od kot	ev
	na ložné ploše vozíku	
10.	Pomocí zadních vzpěr složte testovací věž	
11.	Pomocí stavěcích šroubů zajistěte testovací věž v převozové pozici	
12.	Pomocí stavěcích šroubů připevněte deflektor k ložné ploše vozíku	
13.	Zavřete a zajistěte zadní dvířka vozíku	
14.	Na vozík umístěte konstrukci krycího rámu a zajistěte ji pojistnými šrouby	
15.	Na konstrukci rámu umístěte krycí plachtu a zajistěte ji vůči vozíku gumový	<u>m</u>
	lanem	
16.	Zasuňte stabilizační nohy vozíku	
17.	Uvolněte vozík zatažením opěrného kola	

8 Finanční rozbor

Byl vypracován finanční odhad fáze jedna - konstrukčního řešení předkládaného v této práci. K realizovatelnosti projektu pomáhá sponzoring od společností vůči studentskému týmu, díky kterému se podařilo snížit odhadované náklady na projekt o více než 35 %.

Položka	MJ	Jednotková cena	Celková cena	Sponzoring
Přívěsný vozík	1	33 999,00 Kč	33 999,00 Kč	
Lineární vedení	4	578,00 Kč	2 312,00 Kč	2 312,00 Kč
Spojovací materiál	1	685,00 Kč	685,00 Kč	
Profily KANYA	1	19 925,14 Kč	19 925,14 Kč	10 000,00 Kč
Siloměr	1	12 300,00 Kč	12 300,00 Kč	11 600,00 Kč
Tlakový senzor	5	1 751,74 Kč	8 758,70 Kč	
Teplotní článek	2	288,00 Kč	576,00 Kč	
Jekly	12	106,18 Kč	1 274,16 Kč	
Rozvaděč	1	3 769,00 Kč	3 769,00 Kč	
DAQ systém	1	2 659,00 Kč	2 659,00 Kč	
Lineární aktuátor	2	2 475,00 Kč	4 950,00 Kč	
		Suma	91 208,00 Kč	
		Suma po sponzoringu	67 296,00 Kč	

Tabulka 8.1: Finanční odhad realizace fáze jedna

9 Závěr

Předkládaná práce se zabývá problematikou návrhu testovacího standu pro raketové motory. Problematika nabývá v posledních letech na významu, neboť v průběhu uplynulých tří let vznikly mezi studenty jen v rámci týmu CTU Space Research tři raketové motory kompletně studentského návrhu s dalšími dvěma motory aktuálně ve vývojové fázi.

V rámci této práce byla provedena stručná rešerše stávajícího stavu testovacích standů relevantních velikostí mezi studentskými týmy. Na základě provedeného koncepčního návrhu byl vypracován konstrukční návrh mobilního testovacího standu. Tento návrh byl posléze pevnostně překontrolován výpočty dle ECSS standartů. K testování plánovaných raketových motorů týmu byl vypracován návrh měřícího řetězce. Pro korektní a efektivní využívání testovacího standu byly vypracovány pokyny k jeho obsluze.

Plánovaná realizace řešení vypracovaných v rámci této práce má potenciál významně zefektivnit testování raketových motorů týmu CTU Space Research.

Seznam tabulek

2.1	Přehled požadavků na testovací stand	10
3.1	Přehled testovacích kapacit týmů EuRoC	14
4.1	Parametry planetové převodovky	20
5.1	Přehled vybraných senzorů	24
5.2	Multikriteriální analýza DAQ systému	28
6.1	Přehled rozměrů deflektoru dle NASA KSC-STD-Z-0012B a zvoleného	
	konstrukčního řešení	33
6.2	Přehled výsledků pevnostních kontrol s vypočtenými FOSY	39
8.1	Finanční odhad realizace fáze jedna	52

Seznam obrázků

3.1	Vlevo porovnání záběrů na motorovou sekci Superheavy s infografikou	
	[3], vpravo poškození startovací rampy [4]	11
3.2	Současná testovací aparatura CTU SR [archiv CTU SR] $\ \ldots \ \ldots$	13
3.3	24 kN Franz [5]	15
3.4	MTS [6]	15
4.1	Subsystémy testovacího stanoviště	16
4.2	Schéma měření	17
4.3	Konceptuální rozložení subsekcí na vozíku	17
4.4	PID schéma testovací aparatury	18
4.5	Model sestavy převodovky + řez převodovkou	19
4.6	Řez modelem tlakové nádoby	21
4.7	Výpočtové schéma šroubového spoje	22
4.8	Pevnostní simulace víčka tlakové nádoby	23
5.1	Schéma měřícího řetězce NI	25
5.2	Přehled zvolených modulů NI [15, úprava autor]	25
5.3	Blokové schéma měřícího řetězce pomocí DAQ shield	27
5.4	DAQ shield - schéma + render	27
6.1	Konceptuální model	29
6.2	Stavěcí šroub	30
6.3	Unitrailer Garden Trailer 264/2 KIPP [16]	31
6.4	Výkres Unitrailer Garden Trailer 264/2 KIPP [16]	31
6.5	Současný stav GSE [archiv CTU SR]	32

6.6	Výpočtové schéma deflektoru [19, úprava autor] $\ \ldots \ \ldots \ \ldots \ \ldots$	34
6.7	Pohled na model deflektoru $+$ porovnání rozloženého a složeného stavu	34
6.8	Přípojné rozměry motorového lože	35
6.9	Schéma pro dimenzování lineárního vedení [21]	35
6.10	Uložení siloměru v testovací věži	36
6.11	Umístění semaforu na testovací věži	37
6.12	Přehledové schéma předkládaného řešení s umístěným RM Phoenix $% \mathcal{A}$.	37
6.13	Body kontrolních výpočtů (a) a schéma určení zatížení (b) $\ . \ . \ .$	38
6.14	Popis kontrolního místa 1	39
6.15	Popis kontrolního místa 2	40
6.16	Popis kontrolního místa 3	41
6.17	Popis kontrolního místa 4	41
6.18	Popis kontrolního místa 5	42
6.19	Popis kontrolního místa 6	43
6.20	Popis kontrolního místa 7	44
6.21	Popis kontrolního místa 8	45
6.22	Popis kontrolního místa 9	46
6.23	Popis kontrolního místa 10	46
6.24	Popis kontrolního místa 11	47
6.25	Popis kontrolního místa 12	48

Literatura

- EUROPEAN COOPERATION FOR SPACE STANDARDIZATION. ECSS-E-ST-10C Rev.1, System engineering general requirements. 2017.
- [2] SUTTON, George P. a BIBLARZ, Oscar. Rocket propulsion elements. Ninth edition. Hoboken, New Jersey: Wiley, 2017. ISBN 978-1-118-75365-1.
- [3] Figuring out which boosters failed to ignite. Online. In: Reddit. Dostupné z: https://www.reddit.com/r/spacex/comments/12t04pd/figuring_out_ which_boosters_failed_to_ignitee3/. [cit. 2024-05-22].
- [4] SpaceX Starship Blasted Hundreds of Tons of Dirt and Concrete. Online. In: Next Big Future. Dostupné z:https://www.nextbigfuture.com/2023/04/spacexstarship-blasted-hundreds-of-tons-of-dirt-and-concrete-space-spacexstarship.html.[cit. 2024-05-22].
- [5] 24 knFranz. TU Space Team [online]. [cit. 2024-01-23]. Dostupné z: https:// spaceteam.at/test-stands/ts03-24kn-franz/?lang=en
- [6] Mobile Test Stand. RICE ECLIPSE [online]. [cit. 2024-01-23]. Dostupné z: https: //eclipse.rice.edu/mobile-test-stand
- [7] Design, Test & Evaluation Guide. European Rocketry Challenge, 2024.
- [8] EUROPEAN COOPERATION FOR SPACE STANDARDIZATION. ECSS-E-ST-32-02C Rev. 1, Structural design and verification of pressurized hardware. 2008.

- [9] EUROPEAN COOPERATION FOR SPACE STANDARDIZATION. ECSS-E-ST-32-10C Rev.2 Corrigendum 1, Structural factors of safety for spaceflight hardware. 2019.
- [10] BOLEK, Alfred a KOCHMAN, Josef. Části strojů. 1. svazek. 5. přeprac. vyd. Česká matice technická, č. spisu 349. Praha: SNTL - Nakladatelství technické literatury, 1989. ISBN 80-03-00046-7.
- [11] TIMOŠENKO, Štěpán P. Pružnost a Pevnost, I. díl. 2. vydání. Praha: Technicko-vědecké vydavatelství, 1951.
- [12] TIMOSENKO, Stěpán P. Pružnost a Pevnost, II. díl. 2. vydání. Praha: Technicko-vědecké vydavatelství, 1951.
- [13] Katalog těsnění. HENNLICH, 2024.
- [14] Rocket Engine Test Systems: Modern architecture to meet rocket test challenges. National Instruments, 2022.
- [15] Aerospace, Defense, and Government Solutions. Online. National Instruments. Dostupné z: https://www.ni.com/en/solutions/aerospace-defense.html. [cit. 2024-05-22].
- [16] UNITRAILER PŘÍVĚS GARDEN TRAILER 264/2 KIPP S OPĚRNÝM KOLEČKEM, RÁMEM H-800 A MODROU PLACHTOU. Unitrailer [online]. [cit. 2024-01-23]. Dostupné z: https://unitrailer.cz/product-cze-4570-UNITRAILER-PRIVES-GARDEN-TRAILER-264-2-KIPP-S-OPERNYM-KOLECKEM-RAMEM-H-800-A-MODROU-PLACHTOU.html?query_id=1
- [17] Rozvaděč XtendLan WEH-11U-503060. Online. ASM. Dostupné z: https:// www.asm.cz/cs/197471-rozvadec-xtendlan-weh-11u-503060. [cit. 2024-05-23].
- [18] Tlaková nádoba AQUA OLA 50l, stojatá. Online. Prodoshop. Dostupné z: https://www.prodoshop.cz/tlakova-nadoba-aqua-ola-50l-stojata. [cit. 2024-05-23].

- [19] NATIONAL AERONAUTICS AND SPACE ADMINISTRATION. KSC-STD-Z0012B, Flame deflector design. 1990.
- [20] Katalog profilů a příslušenství. KANYA, 2021.
- [21] Lineární vedení. HIWIN, 2021.

Seznam příloh

- Příloha 1 Přehled použitých materiálů
- Příloha 2 Přehled použitých profilů
- Příloha 3 Přehledové schéma test standu
- Příloha 4 Schéma DAQ Shield
- Příloha 5 Předtestový checklist
- Příloha 6 Potestový checklist
- Příloha 7 PID Daedalus

Příloha 1 - Přehled použitých materiálů

Součást	Materiál	Zpracování	$\sigma_U \ [MPa]$	$\sigma_Y \ [MPa]$	$\tau_Y \ [MPa]$	$E \ [GPa]$
Spojovací prvky	ocel 8.8	třída 8.8	800	640	369,9	210
Spojovací prvky	ocel 10.9	třída 10.9	1000	900	520,2	210
Víko nádrže	EN AW-6060	T6	215	160	$92,\!5$	70
Stěna nádrže	EN AW-6082	Т6	300	255	147,4	70
Hliníkové profily KANYA	EN AW-6063	T66	245	200	$115,\! 6$	70
Hliníkové spojky KANYA	EN AW-6060	T66	215	160	92,5	70
Spojovací součásti	EN AW-6060	Т6	215	160	92,5	70
Jekly	S235JR		360	235	135,8	210

Příloha 2 - Přehled použitých profilů

Příloha 3 - Přehledové schéma test standu

Příloha 4 - Schéma DAQ Shield

Příloha 5 - Předtestový checklist

Test Trailer

Příprava stanoviště – Checklist CL-04-00-00-00-01

Date: _____

Responsible person: _____

#	Item	Check
1.	Stabilizujte vozík vytažením opěrného kola	
2.	Vysuňte stabilizační nohy vozíku tak, aby byla ložná plocha vodorovná	
3.	Uvolněním gumového lana po obvodu vozíku uvolněte a z vozíku odendejte kryd plachtu	<u>cí</u> □
4.	Uvolněním pojistných šroubů v rozích vozíku uvolněte a z vozíku odendejte konstrukci krycího rámu	
5.	Odklopte zadní dvířka vozíku a pružnou západkou je zajistěte proti dalšímu poh	ybu
6.	Odšroubováním stavěcích šroubů uvolněte deflektor od ložné plochy vozíku. Deflektor umístěte vedle pravé zadní nápravy vozíku	
7.	Povolením stavěcích šroubů uvolněte testovací věž	
8.	Pomocí zadních vzpěr vztyčte testovací věž	
9.	Pomocí stavěcích šroubů zajistěte zadní vzpěry testovací věže ve svislé pozici v pojistným kotvám na ložné ploše vozíku	<u>ůči</u> □
10.	Pomocí bočních vzpěr a stavěcích šroubů zajistěte testovací věž proti bočnímu pohybu	
11.	Pomocí bočních vzpěr a stavěcích šroubů zajistěte testovací věž proti bočnímu pohybu	
12.	Sestavte deflektor do testovacího stavu	

13.	Umístěte deflektor pod motorové lože a zarovnejte jej podle pozičních značek	
	umístěných na testovací aparatuře	
14.	Zapojte napájecí kabel elektroniky test standu do sítě 230 VAC	_
15.	Připojte semafor k odpalovacímu kufříku	
16.	Je-li to třeba, propojte testovanou aparaturu s GSE	
17.	Propojte DAQ shield s počítačem pomocí USB kabelu	
18.	V programu Arduino IDE spusťte skript "TS_measure.ino"	_
19.	Postupujte podle pokynů vedoucího testu. Záznamu testu odstartujete napsáním "START" do sériového monitoru programu Arduino IDE. Pro ukončení záznamu tamtéž napište "STOP". Po ukončení testu se data automaticky uloží do pracovní	
	složky skripu	

Signature: _____

Příloha 6 - Potestový checklist

Test Trailer

Úklid stanoviště - Checklist CL-04-00-00-00-02

Date: _____

Responsible person: _____

#	Item	Check
1.	Vyčkejte minimálně 10 minut, než bude bezpečné manipulovat s technikou	
2.	Odpojte napájecí kabel elektroniky test standu od sítě 230 VAC	
3.	Odpojte USB kabel propojující DAQ shield s počítačem	
4.	Je-li to třeba, odpojte testovanou aparaturu od GSE	
5.	Odpojte semafor od odpalovacího kufříku	
6.	Složte deflektor do převozového stavu	
7.	Umístěte deflektor za pravou zadní nápravu	
8.	Uvolněte boční vzpěry testovací věže	
9.	Odšroubováním stavěcích šroubů uvolněte zadní vzpěry testovací věže od kote	ev na
	ložné ploše vozíku	
10.	Pomocí zadních vzpěr složte testovací věž	
11.	Pomocí stavěcích šroubů zajistěte testovací věž v převozové pozici	
12.	Pomocí stavěcích šroubů připevněte deflektor k ložné ploše vozíku	
13.	Zavřete a zajistěte zadní dvířka vozíku	
14.	Na vozík umístěte konstrukci krycího rámu a zajistěte ji pojistnými šrouby	
15.	Na konstrukci rámu umístěte krycí plachtu a zajistěte ji vůči vozíku gumovým la	nem
16. 2	Zasuňte stabilizační nohy vozíku	
--------------	--	--
17. <u>I</u>	Uvolněte vozík zatažením opěrného kola	

Signature: _____

Příloha 7 - PID Daedalus

(Příloha je k nahlédnutí na samostatném listu)

	Legend				
©	Thermocouple				
P	Pressure Transducer				
ଜ	Pressure Gauge				
Ŵ	Manual Ball Valve (NO)				
M	Manual Ball Valve (N				
Ň	Servo actuated Ball Valve (NO)				
Ň	Servo actuated Ball Valve (NC)				
	Needle/Globe Valve				
Ĩ	Manual Regulator				
	Solenoid Valve				
Z	Check Valve				
-1	Pressure Relief Valve				
\diamondsuit	Quick Disconnect				
\blacksquare	Self Closing QD				
\Box	Filter				
\square	Venturi				
\rightarrow	N2O				
\rightarrow	Fuel				
\rightarrow	Inert Gas (N2)				
\rightarrow	Inert Gas (N2)				
\rightarrow	Inert Liquid (N2)				
*	Vent				

		Fluid Systems & Propulsion							
		Сс	ond	ept d	esign				
AUTHORS	SIZE	PARENT			DWG NO		REV		
Daniel Horejsi	A1	System CAD			-				
REVIEWER	SCAL	E ??	DATE	25.4.2022	SHEET	1 OF	1		