
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Microelectronics

Design and Evaluation of
Algorithms for Fast Power Sensors
and Its FPGA Implementation

Master’s Thesis

Author: Bc. Martin Peka
Supervisor: Prof. Ing. Jǐŕı Jakovenko, Ph.D.
Year: 2024

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

492031 Personal ID number: Peka Martin Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Microelectronics

Electronics and Communications Study program:

Electronics Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Design and Evaluation of Algorithms for Fast Power Sensors and Its FPGA Implementation

Master’s thesis title in Czech:

Návrh a zhodnocení algoritmů pro rychlé digitální senzory výkonu a jejich FPGA implementace

Guidelines:

1) Familiarize yourself with algorithms suitable for evaluating mathematical operations on Field Programmable Gate Arrays
for power sensors (CORDIC, Newton Raphson interpolation). 2) Create models (in Matlab Simulink) and implement blocks
suitable for a power sensor, compare properties and simulation results. The sensor should contain blocks for power
computation. In addition, implement blocks for the effective and mean values of measured voltage and current, temperature
compensation, overcurrent protection and power factor. 3) Implement the power sensor in HDL (Verilog). If possible,
evaluate the designed sensor on a development kit and demonstrate the individual functions.

Bibliography / sources:

[1] Uwe Meyer-Base. Digital signal processing with field programmable gate arrays. 3rd ed. Berlin: Springer, 2007. isbn:
978-3-540-72612-8.
[2] Ray Andraka. “A survey of CORDIC algorithms for FPGA based computers”. In: Proceedings of the 1998 ACM/SIGDA
sixth international symposium on Field programmable gate arrays - FPGA ’98 (1998), pp. 191–200. doi: 10.1145/275107.
275139.
[3] DALLY, William J. and HARTING, R. Curtis, Digital Design A Systems Approach. Cambridge University Press, 2012.
isbn: 978-0-521-19950-6.

Name and workplace of master’s thesis supervisor:

prof. Ing. Jiří Jakovenko, Ph.D. Department of Microelectronics FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 02.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Pavel Hazdra, CSc.

Head of department’s signature
prof. Ing. Jiří Jakovenko, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Declaration

I declare that this thesis has been composed solely by myself and all sources used have
been cited appropriately.

In Prague, 20. 5. 2024
Bc. Martin Peka

Acknowledgements

I would like to thank my supervisor Prof. Ing. Jǐŕı Jakovenko, Ph.D. for valuable advice
during the development of this thesis. Also, I would like to express my gratitude to my
colleagues from Allegro MicroSystems, Inc., namely to Ing. Miloslav Trnka, Ph.D. who
patiently helped me explore the world of digital design engineering, provided guidance and
valuable advice throughout my work.

Abstract

This Master’s thesis covers the design of a digital power sensor. A brief overview about
electrical power affiliated equations is provided. Then several computation algorithms
suitable for implementation on FPGA or ASICs are evaluated, and their equations are
derived. For a digital power sensor which processes measured signals, especially the re-
ciprocal and square root functions are essential. However other basic functions may be
implemented using these computational methods as well. The computational architec-
tures are compared in matter of speed, accuracy, and used hardware resources. For each
of these algorithms a simulation is conducted and then the best is chosen for the final
implementation into the Zedboard FPGA Evaluation Board. A complete workflow and
implementation using the Model Based Design approach from Simulink to bitstream is
performed. Final computation on FPGA Evaluation Board of Average power, Apparent
power, and effective values from two sampled signals is demonstrated.

Keywords: Newton-Raphson interpolation, CORDIC, Chebyshev approximation, Power
sensor, Digital design, Matlab and Simulink, FPGA, Model Based Design

Abstrakt

Tato diplomová práce se zabývá návrhem digitálńıho sensoru výkonu. Je zde uveden
stručný přehled rovnic spojených s elektrickým výkonem. Poté je vyhodnoceno několik
výpočetńıch algoritmů vhodných pro implementaci na FPGA nebo ASIC a jsou odvozeny
rovnice, které je popisuj́ı. Pro digitálńı sńımač výkonu, který zpracovává naměřené signály,
jsou nejpodstatněǰśı zejména funkce děleńı a odmocniny. Pomoćı těchto výpočetńıch
metod však lze realizovat i daľśı základńı funkce. Výpočetńı architektury jsou porovnány z
hlediska rychlosti, přesnosti a množstv́ı použitých hardwarových prostředk̊u. Pro každý z
těchto algoritmů je provedena simulace a poté je vybrán nejlepš́ı algoritmus pro konečnou
implementaci do FPGA na desce Zedboard. Je ukázán kompletńı postup implementace po-
moćı př́ıstupu Model-Based Design od modelu v Simulinku až po vytvořeńı bistreamu. Na
vyhodnocovaćı desce s FPGA je demonstrován výpočet pr̊uměrného výkonu, zdánlivého
výkonu a efektivńıch hodnot ze dvou navzorkovaných signál̊u.

Kĺıčová slova: Metoda tečen, CORDIC, Chebyshevova aproximace, Sensor výkonu,
Digitálńı návrh, Matlab a Simulink, FPGA, Model-Based Design

Contents

Abstract 7

List of Figures 11

Abbreviations 13

1 Introduction 15
Motivation . 15
Assignment objectives . 15

2 Power theory 17

3 Model Based Design 19

4 Fixed vs Floating point arithmetic’s 21
Floating point representation . 21
Fixed point . 21

5 Elementary function computation methods 23
CORDIC . 23

Derivation of equations for the trigonometric functions 23
Extension into hyperbolic function . 25
Proposed CORDIC Core for Square Root 26

Newton Raphson Interpolation . 29
Newton Raphson theory and equations . 29
Proposed Newton Raphson inverse square root model 31

Chebyshev approximation . 33
Approximation theory . 33
Proposed Chebyshev structure for Square root 35

Horner’s Method . 37
Comparison of Algorithms . 38

6 Proposed Power sensor architecture 39
Design overview . 39
Top level . 39
Sample count block . 40
Window calculation block . 41

Precomputation for the reciprocal Newton Raphson method 41
Reciprocal Newton Raphson block . 42

Power Average block . 43
Effective value block . 43

Top level . 43
RMS Core submodule . 44
Shifter left submodule . 46

Apparent Power . 47
Simulation results . 47

7 Introduction to Zedboard 49
Zedboard Introduction . 49

9

. 50

8 Design Validation on FPGA 51

9 FPGA implementation 53
XADC introduction . 53
Zynq SoC Implementation Workflow . 53
Registering custom reference design . 54
XADC instantiating . 56
XADC interface . 56
Top level of Implemented design . 58

10 Measured results with implemented design 63

11 Further Improvements 67

12 Conclusion 69

Appendices 74

A Simulated values - Average and Apparent Power 74

B Simulated RMS values 75

C Measured results with window change 76

D FIL Simulation Compare subsystem 78

E HDL Coder Workflow Advisor example walktrough 78

F script hdlcoder board customization.m for registering custom reference
design 81

G script hdlcoder ref design customization.m for registering custom refer-
ence design 82

H script plugin baord.m for registering custom reference design 83

I script plugin rd for registering custom reference design 84

J Top level of generated model for Embedded Coder and measured data
transfer 86

K Submodule AXI4SlaveRead of generated model 87

10

List of Figures

1 Power triangle . 18
2 Float example . 21
3 Fixed point example . 22
4 CORDIC Core Top level . 26
5 CORDIC Core . 27
6 CORDIC Simulation . 28
7 Chebyshev precomputation for Newton Raphson Inverse Square Root Com-

parision between interval [0.5, 1) and [0.25, 1). 30
8 Newton Raphson inverse square root . 31
9 Newton Raphson pre estimation . 32
10 Newton Raphson interpolation result . 32
11 Chebyshev Implementation . 36
12 Chebyshev Simulation . 36
13 Power sensor - Top level . 40
14 sample count block scheme . 41
15 window calculation block . 41
16 chebyshev precomputation reciprocal block 42
17 reciprocal newton raphson horner block 42
18 Power Average top . 43
19 power accumulator block scheme . 43
20 RMS accumulator block scheme . 44
21 RMS Core submodule top level . 45
22 Shifter implementation . 47
23 Simulation model block scheme . 48
24 Zedboard evaluation board . 50
25 FPGA in the Loop Simulation . 52
26 Folder structure for Registering custom reference design 55
27 Vivado block design . 56
28 DRP timing diagram. 57
29 DRP submodule [31]. 57
30 Top level of Implemented design . 58
31 Modified reciprocal newton raphson horner block 17 59
32 Modified inverse sqrt newton raphson block from 8 59
33 Implemented Design in Vivado . 61
34 Automatically generated model for the Embedded Coder and measured

data transfer. 63
35 Zedboard connected to the signal generator and host pc. 64
36 Zedboard XADC header schematic. 64
37 Measured result with window change detail 65
38 Power Comparison . 74
39 RMS Comparison . 75
40 Measured result with window change . 76
41 Measured result with window change . 77
42 FIL Simulation Compare subsystem . 78
43 HDL Coder Workflow Advisor step 1.1 . 78
44 HDL Coder Workflow Advisor step 1.2 . 79
45 HDL Coder Workflow Advisor step 1.3 . 79

11

46 HDL Coder Workflow Advisor step 1.4 . 80
47 HDL Coder Workflow Advisor step 3.2 . 80
48 Top level of generated model for Embedded Coder and measured data transfer. 86
49 Submodule AXI4SlaveRead of generated model 87

12

Abbreviations

Abbreviations:

CORDIC Coordinate Rotation Digital Computer

FPGA Field-Programmable Gate Array

ASIC Application-Specific Integrated Circuit

DC Direct Current

AC Alternating Current

PF Power Factor

RMS Root Mean Square

HDL Hardware Description Language

IC Integrated Circuit

LSB Least Significant Bit

MSB Most Significant Bit

LUT Look-Up Table

FF Flip-Flop

DSP Digital Signal Processor

ADC Analog to Digital Converter

FIL FPGA-in-the-Loop

PL Programmable Logic

PS Processing System

SoC System-on-a-Chip

XADC Xilinx Analog-to-Digital Converter

DRP Dynamic Reconfiguration Port

JTAG Joint Test Action Group

AXI Advanced eXtensible Interface

IP Intellectual Property

RTL Register Transfer Level

STA Static Timing Analysis

13

1 Introduction

Motivation

Accurate measurement of electrical power and related quantities is important for a large
number of applications, from the automotive industry to energetics industry, up to con-
sumer electronics. Computational cores for digital power measurement processing need to
address calculation of a few elementary functions, such as the reciprocal, or square root.
Since there is increased demand on precision and speed, but every micrometer of silicon
is expensive, in this thesis, algorithms used in digital design of ASICs or FPGAs are eval-
uated to reduce cost, improve speed and accuracy of such algorithms. These algorithms,
when correctly designed, provide computational power with minimal hardware resources
and high-speed application accurate results. Model Based Design and the connection with
FPGA and Matlab in the loop speeds up the development time and minimizes errors with
the lower level implementation. This thesis was also developed under supervision from the
company Allegro MicroSystems, which is an industry leader in current sensors. Therefore,
algorithms used in the digital design as well as the FPGA in the Loop simulation were
studied for further design improvements.

Assignment objectives

� Research on the topic of fast computational algorithms for specific functions needed
for the signal processing core of a power sensor.

� Modeling of each method and comparison of accuracy, speed, and used hardware
resources.

� Implementation of designed core and validation on a FPGA using FPGA in the Loop
and Simulink.

� Implemented functions demonstration - measurement and testing with real signals.

15

2 Power theory

For measuring and monitoring power, several cases are distinguished. There can be DC
Power or AC periodic, nonperiodic signals and they also might have some harmonic dis-
tortions.

Instantaneous power [1] is voltage multiplied with current as described in equation:1

p(t) = v(t) · i(t) (1)

This power is equal to the Average Direct Current (DC). For Alternating Current (AC)
signals, even if there is no harmonic distortion present and also if the phase shift between
the voltage and current is equal to zero, meaning the connected load is purely active, the
output power is harmonical and is not constant over one period [2].

Average Electrical Power or Active Power is defined with equation 2

Pavg =
1

T

∫
T
v(t) · i(t) dt (2)

Where T is the time of signal observation for the measured signals, v is the measured volt-
age and i is the measured current together being Instantaneous power which is averaged.
The time of signal observation T should be n times the length of the period, otherwise
the measurement and computation will introduce methodical error. In discrete form it is
a sum of samples divided by N - the number of samples as described in equation 3, [1].

Pavg =
1

N

N−1∑
n=0

vn · in (3)

This equation gives accurate average results for Direct Cunrrent (DC) signals and for
Alternating Current (AC) signals with several conditions – Harmonical signals, Active
load and current in phase with voltage [1].

In a single phase system, when phase difference between voltage and current occurs, Ap-
parent power and Reactive power are introduced [1]. Here the Active Power can be defined
with equation 4

P = VRMS · IRMS · cos(ϕ) (4)

Where ϕ is the phase difference between the two signals. Apparent power is the product
of effective values of current and voltage, given with equation 5

S = VRMS · IRMS (5)

Where VRMS and IRMS are the root mean squared values defined by equation 6 respec-
tively.

xrms =

√√√√ 1

N

N∑
i=1

x2i (6)

17

2 Power theory

N is the number of accumulated samples of the corresponding window, xi is the input
signal i.e. voltage or current and xRMS is the calculated effective value.

Reactive power is defined with equation 7

Q = VRMS · IRMS · sin(ϕ) =
√
S2 − P 2 (7)

Reactive power is the imaginary part of the measured power.

These powers create a power triangle which can for interpretation be seen on figure 1,
diagram taken from [3].

Figure 1: Power triangle

Here from the triangle, cos(ϕ) is the Power factor which is defined with equation 8

PF =
P

S
(8)

In these conditions, Power Factor PF is equal to the phase shift cos(ϕ). It is the ratio
between amplitudes of Active and Reactive power [4].

In Single phase nonsinusoidal situation there is also Distortion and new Deformation
power is present. Now the Apparent power consists of three parts. Deformation power or
distortion power according to [4] is defined with equation 9

Pd =
√
S2 − P 2 −Q2 (9)

These powers now create a power cuboid instead of a triangle.

Signals in a real situation one phase system consist of a fundamental frequency and dif-
ferent harmonic components which add up to the distortion [1, 2, 3, 4]. Because of this
and to have the most universal device, it is reasonable to measure Active Average power
which is equal to active power flowing into the device, thus containing the power also
with distortions or phase difference. Also, RMS – effective values of measured compo-
nents give reasonable result. Also, Apparent power might be computed, since it is only a
multiplication of RMS values which are already obtained.

18

3 Model Based Design

This thesis was designed, implemented and executed using the Model based design ap-
proach with tools from Mathworks and Xilinx. Model based design allows engineers to
increase the development speed and rapid prototyping using higher abstraction level for
simulation of prototyped models [5]. These models are defined for example with equations
which describe a complex system [6]. Several levels of complexity can describe the model
depending on the purpose of each simulation objective. For an overall system function-
ality simulation in the beginning of development process, the model might consist of less
complex equations or approximations in contrast to a model which simulates a transitional
behavior in the later development stage. This way it progresses until the detailed final
version model is produced [7].

For IC - Integrated Circuit development one approach is to use Matlab and Simulink with
HDL Coder [8]. The designer develops a model of a digital circuit in Simulink, simulates
and validates the design and then Matlab generates the lower abstraction level HDL code
which can be further implemented in a synthesis tool for a FPGA. Other tools also exist,
such as from the company Synopsys [7]. The advantage of such an approach is reduced
time to debug the design and reduces further verification. The model is systematically
re - used through the whole development process. It can also reduce expensive hardware
iterations of ASIC devices and reduce time to market for new products. [7, 9]

Workflow and models used in this thesis usually contain a stimulation block, the simulated
model and have been compared with an ideal model. The stimuli are first generated from
Matlab for debug and development purposes, later real signals are measured but the model
persists almost the same and has only slight adjustments for the final implementation.

19

4 Fixed vs Floating point arithmetic’s

There are many numerical representations used in computer science, well know is the
floating-point representation providing good dynamic range and easy usage in high level
programming languages, or a 2’s complement representation of integer which is the most
basic interpretation of a number.

Typical integer is not suited for use in calculations where the decimal point is needed and
especially when it needs large dynamic range [10].

Floating point representation

The floating-point representation as stated above yields a high dynamic range, meaning it
can represent large values as well as very small values. It is composed of two components
the significant part of the number and the exponent [11]. The value is represented as
equation 10:

v = m · 2e−x (10)

Where m is the mantissa, e is the exponent and x is the offset of the number which adjusts
the dynamic range.

The figure 2 overtaken from [12] explains visually the interpretation:

Figure 2: Float example

The MSB bit is the sign, exponent starts from 31st to the 24th bit with the additional
feature of the 31st bit which works as a 1 or negative offset of -126 for 32-bit float. The
last part is the mantissa, going from MSB as 2−1 until the LSB 2−23.

In chip implementation it is common to use a different numerical representation than in
high level programming languages such as fixed point arithmetic. Many desired algorithms
on FPGA work properly in small intervals typically in range of [0.5, 1) or [0.25, 2).

The main difference between fixed point and floating point representation is its tradeoff
between speed and dynamic range and precision. Double is also easier to use for complex
algorithms [10], [13].

Fixed point

In this number representation the decimal separator has its fixed position. The first bit
of the number is the sign and then there are several bits before the decimal separator and

21

4 Fixed vs Floating point arithmetic’s Fixed point

several bits after. Fixed point can be expressed as following range:

[−2n−1; 2n−1 − 1]

2p
(11)

Where n is the n-bit number with p bits after decimal separator.

Figure 3: Fixed point example

Which best illustrates the figure 3 above overtaken and modified from [14].

The fixed point data type in Matlab and Simulink has the following notation - fixdt(s, w, f)
in short notation Sw.f , where S is the singedness, w is the total word length and f is the
numeric of fractional bits behind the decimal separator.

A big advantage of this representation is that processors work with this numeric format
the same way they work with normal integers, so the amount of operations is reduced,
they are simplified and much more faster. The disadvantage is in the lost range. If a larger
number needs to be interpreted, it is at the expense of lost precision in the fractional part
and vice versa [15]. When adding two fixed point numbers, they must be represented in
the same format and the result is represented by the same format + 1 bit in the word
length. A similar situation occurs when multiplying two fixed point numbers, where the
new format is the combination of the two multiplied numbers i. e. for the integral part it
is the sum of the left bits before the decimal separator and similarly for the fractional part.
With fixed point arithmetic’s overflow of number may occur, especially if the number of
bits in front of the decimal separator is reduced for additional resolution of the fractional
part. Therefore, it appears advantageous to use special formats such as S12.10 or S12.11
where in the second format the first bit is used as the sign bit, it has integral bits and 11
fractional bits creating interval between [−1, 1−µLSB). The resolution is equal to 2−LSB,
in this case 1

2048 . When multiplying using these number formats, the overflow cannot
occur, because the result of product of numbers at the interval [−1, 1) stays at the interval
(−1, 1].

22

5 Elementary function computation methods

For all algorithms presented in this section, theoretical background with derivation of
necessary equations is shown. For the simulation and implementation in Matlab Simulink
of the described technique and comparison to the ideal value, the function Square Root
is chosen. At the end of this section, a comparison of studied algorithms in terms of
precision, speed, and used hardware resources is conducted.

CORDIC

Derivation of equations for the trigonometric functions

CORDIC stands for Coordinate Rotation Digital Computer, it is a hardware efficient and
fast iterative algorithm for calculating a wide variety of functions. It’s principle is in the
usage of transformation between Polar and Cartesian coordinates and only using shifts
and adders ([16]).

The algorithm was first invented for the use in the B-58 aircraft for precise high accuracy
navigation system as a replacement for the old analog [17].

After this research it was further evolved into computation of other functions. In sev-
eral modes one can compute hyperbolic functions as well as square root, division, and
reciprocal.

To obtain the sin or cos value of the desired angle ϕ. In each step, addition or subtraction
of a predetermined angle value is performed depending on the sign where if the new rotated
angle is larger or smaller than the given angle. These predetermined angle values have
known x and y values which are the cosine or sine values. Using this iteration process if
the angle values are half the previous angle value it converges to the solution. It is similar
to the Bisection method. A number can be interpreted as a point in Cartesian coordinates.
It can be expressed as its magnitude and angle. So, for the derivation of the CORDIC
algorithm for calculation of trigonometric functions, the initial equations are the rotation
transformation from cartesian to polar coordinates [16], [18].:

x0 = |A| · cos(ϕ) (12)

y0 = |A| · sin(ϕ) (13)

When adding an angle, it changes into

x1 = |A| · cos(ϕ+ δ) (14)

y1 = |A| · sin(ϕ+ δ) (15)

Now using the angle sum identity

sin(ϕ+ δ) = sin(ϕ)cos(δ) + cos(ϕ)sin(δ) (16)

cos(ϕ+ δ) = cos(ϕ)cos(δ)− sin(ϕ)sin(δ) (17)

23

5 Elementary function computation methods CORDIC

We get for x

x1 = |A| · cos(ϕ+ δ)

x1 = |A| · [cos(ϕ)cos(δ)− sin(ϕ)sin(δ)]

x1 = |A| · cos(ϕ)cos(δ)− |A| · sin(ϕ)sin(δ) (18)

Plugging in x0 = |A| · cos(ϕ) we get

x1 = x0 · cos(δ)− y0 · sin(δ) (19)

And similarly for y
y1 = y0 · cos(δ) + x0 · sin(δ) (20)

Now for the first simplification, using the trigonometric identities

cos(δ) =
1√

1 + tan2(δ)
(21)

sin(δ) =
tan(δ)√

1 + tan2(δ)
(22)

the equations 19 and 20 can be rewritten to

x1 = x0 ·
1√

1 + tan2(δ)
− y0 ·

tan(δ)√
1 + tan2(δ)

y1 = y0 ·
1√

1 + tan2(δ)
+ x0 ·

tan(δ)√
1 + tan2(δ)

For x1:

x1 =
1√

1 + tan2(δ)
· (x0 − y0 · tan(δ))

x1 =
1√

1 + tan2(δ)
· (x0 − y0 · tan(δ))

x1 = cos(δ) · (x0 − y0 · tan(δ)) (23)

And y1:
y1 = cos(δ) · (x0 + y0 · tan(δ)) (24)

If the rotation is limited only to one (first) quadrant and also if it limits the rotations
so that tan(δ) = ±2−i, the tangent part can be implemented only using shifting. This
is for i = 0..N = 45◦, 26.5◦, 7.125◦. cos(ϕ) is identical within the first quadrant, it can
be considered as a constant expression which will cos(−ϕ) times scale the value in the
last step. If a fixed amount of iterations is used for given required precision, the value
of the constant expression can be precomputed and hardwired in the chip or FPGA thus
reducing the area and adding more simplification. We get:

xi+1 = Ki[xi − yi · di · 2−i] (25)

yi+1 = Ki[yi + xi · di · 2−i] (26)

24

5 Elementary function computation methods CORDIC

Where

Ki = cos(arctan(2−i)) =
1√

1 + 2−2i
(27)

di = ±1 (28)

di is the direction which decides if the angle is added or subtracted. The algorithm scales
the result by An each step:

Πi

√
1 + 2−2i (29)

The sum of rotated composite angles can be stored in a similar accumulator equation,
which is also defined by arctangent. Result from this equation is the total rotation after
i iterations.

zi+1 = zi − di · arctan(2−i) (30)

In conclusion from the derivation above the full set of equations is as follows:

xi+1 = Ki[xi − yi · di · 2−i] (31)

yi+1 = Ki[yi + xi · di · 2−i] (32)

zi+1 = zi − di · arctan(2−i) (33)

Where
di = −1 if zi < 0 or di = +1 if zi > 0 (34)

[17] describes Cordic in two modes, the first is called Rotation which rotates the input
vector by a specified angle.

The second mode of operation is called Vectoring, where the input vector is rotated in
such direction so that the vector is aligned with the x axis, y is equal to zero. The sign
is calculated from the y value which the algorithm tries to minimize. The result is then
the angle value rotated by the algorithm. In the third differential equation for the angle
accumulator if the initial value is zero, then at the end it contains the angle. For the
Vectoring mode, only equation 34 adjusts while everything else stays the same [19].

To fulfill the initial condition of the first quadrant, correction rotation of ±π
2 needs to be

performed.

Extension into hyperbolic function

For this thesis, extension into hyperbolic functions is important, because the computation
of square root is needed in the proposed sensor architecture, and it has a complex (split
complex) relation to hyperbolic functions. Because of the similarities between hyperbolic
and trigonometric functions, the hyperbolic functions can be derived with the similar
identities and simplifications resulting into similar equation differentiating in one sign:

25

5 Elementary function computation methods CORDIC

xi+1 = Ki[xi + yi · di · 2−i] (35)

yi+1 = Ki[yi + xi · di · 2−i] (36)

zi+1 = zi − di · arctan(2−i) (37)

Where
di = −1 if zi < 0 or di = +1 if zi > 0 (38)

However according to [20] Hyperbolic functions need certain iterations repeated to con-
verge to the appropriate result [16]. For K → inf : Iterations = (4, 13, 40 . . . 3K + 1).

Proposed CORDIC Core for Square Root

For the purpose of square root computation, a fixed point Model has been created in
Simulink, which simulates a digital core with CORDIC algorithm derived above. It can
be seen in figure 4.

Figure 4: CORDIC Core Top level

To find the square root of a number s, the initial condition must be properly set. The
input number must be scaled to the interval [0.5, 1). Then the signal is decomposed into
two signals, x = s+0.25 and y = s− 0.25 which in this model is represented as signal in.
The Matlab function block input data control controls the input data and decomposes

26

5 Elementary function computation methods CORDIC

the signal. These signals are stored in the Unit Delay Resettable Synchronous 1 and 2,
which serve as input registers for the CORDIC core. This block is responsible for shifting
and adding operations and is in figure 5. After the computitation in the CORDIC core,
the result value is scaled with the precomputed constant 1.2075 if the boolean output
Out ready is true. Also this resets the the input registers and the control subsystem,
which is prepared for new input signals.

The main subsystem which computes the square root is in figure 5.

A finite state machine counter shifting logic fixed controls the process of iterations and
proper number shifting. In the first state, x and y values are introduced into the differential
equation constructed using the sum block and the feedback path. On each iteration the
shift block shifts the input data and assigns the proper sign. In the add block the operation
is completed, and the signal is saved in the feedback unit delay block. If the number of
iterations exceeds 14, flag bit Out ready is set high, which allows the top level to scale
the output and allows new data into the CORDIC evaluation subsystem. The finite state
machine also performs the additional iterations. This occurs on the 4th and 13th iteration,
where it needs to perform the shift and add operation again but without increasing the
number of bits to shift, to ensure the convergence to the result. In total with 16 cycle, it
achieves 14 bit precision.

Figure 5: CORDIC Core

In figure 6 can be see that the fixed point simulation has an error between −3 · 10−5 and
3 · 10−5 which is a span of 6 · 10−5. The precision rounded to 15 bit is calculated from

27

5 Elementary function computation methods CORDIC

equation 39.
precision = log2 |3 · 10−5| = −15.0247 (39)

Figure 6: CORDIC Simulation

28

5 Elementary function computation methods Newton Raphson Interpolation

Newton Raphson Interpolation

Newton Raphson theory and equations

The Newton Raphson interpolation method is a fast root finding iterative algorithm that
can quickly converge to a solution in a small number of steps with high accuracy. This
means, that with each iteration the bit precision is doubled. In this thesis it is used to
calculate the square root or to calculate the reciprocal, which can then be used to calculate
division.

The general equation for the discrete Newton Raphson interpolation is

xi+1 = xi −
f(xi)

f ′(xi)
(40)

Square root is usually calculated from the inverse square root, because it eliminates divison,
which would require a lot of computational power for the division operator[21].

For the inverse square root, the initial value a will be

xi =
1√
a
⇐⇒

√
a =

1

xi
⇐⇒ a =

1

x2i
(41)

Then the function is

f(xi) =
1

x2i
− a (42)

And the derivative

f ′(xi) = − 2

x3i
(43)

When equations 42 and 43 are plugged into the initial equation 40 we obtain

xi+1 = xi −
1
x2
i
− a

− 2
x3
i

(44)

xi+1 = xi +
x3i · (1

x2
i
− a)

2
(45)

Which looks simplified as

xi+1 = xi +
xi
2
(1− a · x2i) (46)

This equation 46 is suitable for hardware implementation as it uses only a multiplier and
bit shift [22].

After few iterations when solution with required precision is found, the final value xi is
multiplied by the initial searched value because the inverse square root value 1√

xi
was

found but the searched value was the square root
√
xi

x · 1√
x
=

√
x2√
x

=
√
x (47)

Initial estimation highly increases the convergence speed thus reducing the number of
iterations. Several approaches may be used for initial estimation for example look up table

29

5 Elementary function computation methods Newton Raphson Interpolation

or function approximation. The closer the initial approximation is, the higher precision is
obtained and less iterations are required [21].

The method is suitable for fixed point implementation. The input interval is restricted to
[0.5, 2) or to [0.25, 1) and prescaling needs to be performed. These intervals are convenient,

because prescaling can be done only by dividing 2k and than rescaling back using 2
k
2 .

However, interval in range [0.5, 1) is better for the Chebyshev precomputation for the
Initial estimation, which can be seen in figure 7. Precision of the precomputation on the
[0.25, 1) interval is 5 bits, and on [0.5, 1) 8 bits. Theoreticaly after two iterations of the
NR equation, the precision for the first interval is 20 bits, but for the second 32 bits.

Figure 7: Chebyshev precomputation for Newton Raphson Inverse Square Root Compar-
ision between interval [0.5, 1) and [0.25, 1).

However, if the fixed number interval in range [0.5, 1) is used, additional steps in prescaling
need to be performed. It is usually done by dividing 2k and again, the output number
must also be rescaled to return appropriate result. The correction is then performed by a

factor of
√
2k. For odd numbers this is equal to 2

k
2 and for even

√
2 · 2

k−1
2 , where k is the

number of bits shifted in the initial prescaling section.

Similarly for reciprocal numbers the Newton Raphson method is used. Here the function
is

f(xi) = a · xi − 1 (48)

And the derivative

f ′(xi) =
1

a
(49)

Then plugging these two equations 48 and 49 into the initial equation 40 it results in

xi+1 = xi −
1

a
(a · xi − 1) (50)

30

5 Elementary function computation methods Newton Raphson Interpolation

The term 1
a is equal in the current iteration to xi, so the equation is simplified to

xi+1 = xi − xi(a · xi − 1) (51)

Which can be further simplified to the final equation 52 for computation of the reciprocal
value:

xi+1 = xi · (2− a · xi) (52)

The reciprocal value also needs to be prescaled, but the resulting interval is not rescaled,
so the final value needs to be rescaled by the same amount of bits as it was prescaled [23].

Proposed Newton Raphson inverse square root model

The proposed structure in figure 8 uses 2 iterations and a precomputation block in figure
9. The precomputation is performed using function approximation with found chebyshev
coefficients 5. The initial estimation is the inverse function of square root with a minimal
precision of 7 bits. For example, for a input value = 0.5 the Newton Raphson method
finds the solution with a precision around 30 bits for ideal model and 28 bit when limited
by the fixed point implementation which in this case is 4 bits for word part and 28 bits
for fractional part, so in total 32bits. The first iteration has a precision of 16 bits. The
second then has 28 bit precision.

Figure 8: Newton Raphson inverse square root

In figure 8 the state machine control block controls the whole iteration process. The reset
input resets the whole submodule and both input and initial value are propagated to the
delay blocks. Then the equation 46 is performed and the solution is stored in the Unit
Delay Resettable Synchronous1 block. Then the process is repeated with the previously
computed value. After the second iteration, the value is multiplied by the input value and
result is produced.

31

5 Elementary function computation methods Newton Raphson Interpolation

Figure 9: Newton Raphson pre estimation

The preestimating submodule approximates the inverse square root value with two mul-
tiplication and three addition blocks reordered according to the Horner’s method 5. The
output value is then passed as the initial estimation to the Newton Raphson block. The
output value x is described using equation 53.

x = 2.2255 + xi · ((0.82 · xi)− 2.0428) (53)

Because of the preestimation uses values outside the interval [−1, 1), additional bits in the
word length must be added.

In figure 10 is the fixed point Newton Raphson simulation with error between −5.5 · 10−9

and 4 ·10−9. The precision is around 27 - 28 bits and is calculated from the same equation
39 as in CORDIC. Precision vareis also because of the fixed point implementation.

Figure 10: Newton Raphson interpolation result

32

5 Elementary function computation methods Chebyshev approximation

Chebyshev aproximation of functions

Approximation theory

Using the Chebyshev polynomials, it is possible to approximate functions [24]. With this
process the constants are precomputed, and the function approximation is much faster
than using iterative algorithms stated above. The area implementation should be larger,
since multiplication is used instead of adding and shifting as for the CORDIC algorithm.

Chebyshev polynomials of the first kind are defined as:

Tk(x) = cos(k · arccos(x)) (54)

On the interval
−1 ≤ x ≤ 1

Using the trigonometric identities, it can be shown that we can interpret Chebyshev poly-
nomials as normal not trigonometric[24].

The calculation is possible to obtain using the Moivre’s theorem or it can be computed
directly from definition.

T0(x) = cos(0 · arccos(x)) = 1

and

T1(x) = cos(1 · arccos(x)) = x

For higher order polynomials, a recursive formula has been found, given by the equation:

Tn+1 = 2xTn(x)− Tn−1(x), for n ≥ 1 (55)

The first 6 polynomials of the first kind computed from the recursive equation:

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x,

T4(x) = 8x4 − 8x2 + 1,

T5(x) = 16x5 − 20x3 + 5x,

T6(x) = 32x6 − 48x4 + 18x2 − 1

Using these polynomials, it is possible to approximate a large variety of functions including
square root, reciprocal, trigonometric functions and so on. Chebyshev polynomials have
the advantage against the Taylor series, that they need less coefficients and thus polynomial
order for the same approximation accuracy [24]. Because of the definition interval [−1, 1]
a transformation of the approximation interval needs to be performed using the equation:

x̄ =
1

2
[(b− a)x+ (a+ b)] (56)

33

5 Elementary function computation methods Chebyshev approximation

Functions are approximated in the Chebyshev nodes giving the minimax criterium [25]
from this equation:

xi = cos

(
2i− 1

2n
π

)
, i = 1, . . . n (57)

Searching for the minimax criterium is the task of finding the best dc approximation of a
function in a given interval. Minimizing the maximum absolute value of the difference from
the desired function on the given interval gives the nodal points from the recommended
cosine distribution.

After that the functional value at the nodal points of the approximated function are
obtained. These then represent the solution vector. The polynomials are inserted into
the Vandermonde matrix [26] in such a way that they are calculated at the function point
corresponding to the approximated value. The equation is solved by multiplying by an
inverse matrix, and the solution is the individual weights of the partial polynomials.

The resulting polynomial is then defined by the equation:

N−1∑
j=1

cjTj(x) (58)

The square root or other functions such as reciprocal used in the effective value definition
may be approximated using polynomials. According to [27] Chebyshev polynomial ap-
proximation has few advantages in contrast to Taylor polynomial approximation. Mainly
the approximated function may be computed using much fewer coefficient thus achiev-
ing higher precision with fewer coefficient which means fewer multiplication blocks in the
design. According to [27] only 4 coefficient are required with the Chebyshev approxima-
tion for 16 bit precision, however using the Taylor series with 4 coefficients only 4 bits of
precision is achieved.

In the listing 1, a script which computes insverse square root function approximation with
the third order polynomial can be seen. Also symbolic reordered into the Horner Method
is shown. Other functions may be aproximated as well with this script, only by changing
the line 13 in the code to other reference functions.

34

5 Elementary function computation methods Chebyshev approximation

1 clear;

2 N = 3;

3 a = 0.5;

4 b = 1;

5
6 for i = 1:N

7 xi(i) = cos(pi()*(2*i-1) /(2*N));

8 end

9
10 xi = 0.5 * (a + b) + xi * 0.5 * (b - a);

11 xi = xi '

12
13 y = 1./ sqrt(xi)

14
15 vect1 = [1, xi(1), 2*xi(1)^2 -1];

16 vect2 = [1, xi(2), 2*xi(2)^2 -1];

17 vect3 = [1, xi(3), 2*xi(3)^2 -1];

18
19 D = [vect1; vect2; vect3]

20
21 coef = D \ y

22
23 %% Symbolic

24 syms x

25 format long

26 polynom = sum([coef (1)*1, coef (2)*x, coef (3) *(2*x^2-1)])

27 c = sym2poly(polynom)

28
29 %% Horners Method

30 polynom_horner = horner(polynom)

31 c = sym2poly(polynom_horner);

32 fprintf ("C2: %f , C1: %f , C0: %f\n", c(1), c(2), c(3));

Listing 1: Example script of Chebyshev Approximation of 1√
x

Proposed Chebyshev structure for Square root

The Chebyshev approximation of the square root is implemented is in figure 11. The input
value is evaluated with the approximated coefficients of the Chebyshev polynomial series.
The series has been rewritten with the Horner’s Method 5 to a more compact and signal
reusing form.

Using the calculations stated above written into a Matlab script for finding the optimal
Chebyshev coefficient, resulted in finding the same coefficients as from [27].

In comparison with the CORDIC or Inverse square root using Newton Raphson method,
this approximation is more compact and elegant only using two multipliers and two sums,
which both may already be implemented in the FPGA DSP slices.

The found coefficients on interval [0.5, 1) are C0 = 0.2183, C1 = 0.8801 and C2 = −0.0988.
The approximated value may then be calculated as:

35

5 Elementary function computation methods Chebyshev approximation

x = 0.2183 + 0.8801 · x0 − 0.0988 · (2x20 − 1) (59)

Rewritten with the Horner’s Method:

x = 0.3171 + x0 · ((−0.1976 · x0) + 0.8801). (60)

Figure 11: Chebyshev Implementation

In figure 11 The input signal is driven into two multiplication blocks and two additions
thus exactly copying the equation 60.

According to the simulation in figure 12 the error is between 6 · 10−4 and −6 · 10−4. The
precision calculated from equation 39 from maximum absolute error is 10 bits. In the error
simulation 4 extremes can be seen, which corresponds to the minmax criterium, where the
principle of finding the best approximation should result into n + 1 maximal deviations
from the ideal value, where n is the order of the polynomial.

Figure 12: Chebyshev Simulation

36

5 Elementary function computation methods Horner’s Method

Horner’s Method

Every polynomial is possible to rewrite using the Horner’s Method including the Chebyshev
series [28]. The Horner’s method was invented as an optimalization for polynomial division.

For every polynomial given by

p(x) =

n∑
i=0

aix
i = a0 + a1x+ a2x

2 + · · ·+ anx
n (61)

the polynomial can be rewritten into the form as follows [28]:

p(x) = a0 + x (a1 + x (a2 + x (a3 + · · ·+ x(an−1 + xan)))) (62)

These coefficients can be precomputed and hardwired with the multiplying blocks into
the FPGA thus leading to low computational requirements and low component require-
ments. This method can also be used with iterative formulas such as the Newton Raphson
interpolation method [27].

The difference between monomial polynomial evaluation is in the amount of computational

blocks which is (n2+n)
2 if powers are calculated individually and n additions or 2n− 1 and

n additions, if the powers are reused. In contrast the Horner’s method uses only n
2 + 2

multiplications and n additions.

37

5 Elementary function computation methods Comparison of Algorithms

Comparison of researched Algorithms

In table 1 comparison between different algorithms of used hardware resources, achieved
precision, and speed requirement is presented for the above implemented square root
evaluation. Implementation results are obtained from the Vivado Design Suite, further
explained in section 8, where brief introduction to the software tool and synthesis, imple-
mentation is described.

As expected, the CORDIC algorithm occupies a fewer amount of DSP slices, since it has
fewer multiplications, but uses much more logic for its computation. Precision and speed
is fixed to the number of cycles within one function evaluation. For the Newton Raphson
algorithm, the precision depends on the preestimated input precision, thus 2 · x in the
table, but generally as mentioned in section Newton Raphson theory and equations 5 it
doubles the precision with each clock cycle and the solution is rapidly found within few
clock cycles. The Chebyshev approximation occupies the same amount of DSP slices as the
NR algorithm, but does not have any FFs, since it produces the output within one clock
cycle. Implementation issues with setup and hold time between input and output registers
might easily occur here, so additional pipelining - Flip Flops between the multipliers might
be added. Precision is fixed, depending on precomputed coefficients, and used multipliers.

Comparison of Algortihms LUT FF DSP Precision (bit) Clock cycle

CORDIC
Synthesis 641 135 4

14 14 + 2
Implementation 640 167 4

Newton

Raphson

Synthesis 204 131 8
2 · x 2 + 2

Implementation 204 163 8

Chebyshev

approximation

Synthesis 120 0 8
8 1

Implementation 120 0 8

Table 1: Comparison table of hardware resources, precision, and speed between different
algorithms. LUT stands for Look Up Tables, FF for Flip Flops and DSP for digital signal
processor.

However, the CORDIC core can be much more easily modified to support multiple func-
tions, whereas the Newton Raphson is fixed. The Chebyshev approximation could also
evaluate other functions if the polynomial coefficient would be stored in a look up table
and changed with added logic to compute the desired function approximation.

For the purpose of designing a fast power sensor, combination of Newton Raphson in-
terpolation with Chebyshev coefficients precomputation is chosen, because together they
achieve satisfactory precision within a few clock cycles.

38

6 Proposed Power sensor architecture

Design overview

The proposed sensor computes average power from the equation 3. The sensor would
receive data from an AD Converter which would sample voltage and sample for example
output from differential Hall plates or from a shunt resistor for current [3]. Also, it
computes the effective values of these two measured values given by the equation 5. From
these two signals it computes the Apparent power so the difference between the real active
power and the distortions and or phase shift difference can be observed. To achieve the
evaluation of above mentioned equations, the reciprocal and square root functions need
to be computed. Reciprocal is used for the term 1

N which is the number of accumulated
samples. This value is used in both the Average Power and also in both of the effective
values.

The signal is sampled over a window, which might be adaptively defined, and the sensor
recalculates and adjusts the number of stored samples. The window does not have an
overlap, because it would require more accumulation. An approach with recalculating the
results on each sample would require a multi - rate clock domain with a sufficiently higher
computational core speed in contrast with the sampling circuit. The effective values are
calculated over the same period and thus also the apparent power.

For both functions the Newton Raphson interpolation has been chosen but with an initial
estimate of the function using the Chebyshev approximation third order polynomial. Using
this combination, it is possible to achieve precision of 32 bits in two clock cycles, 8 bits
precision with the precomputation and with two iterations of Newton Raphson which each
time doubles the precision to 32 bits. Also, several shifters are used and an accumulative
sum.

Top level

The proposed top level design can be observed in figure 13. The input signals are in
format S17.16 and are labeled signal in i and signal in v in the Simulink schematic.
Other inputs are the window length and a flag value to recompute the window reciprocal
value labeled calculate.

39

6 Proposed Power sensor architecture Sample count block

Figure 13: Power sensor - Top level

Outputs are rms i out, s apparent power out, rms v out and P average out which cor-
respond to the outputs of each specific computation block. The output format of these
four outputs is S24.20.

In the top level seven block can be seen. The first block - new sample is responsible
for signal change detection. It counts the amount of samples which are stored in each
accumulator hidden in the rms and power blocks. The input signal is sampled into the
new sample block which holds and puts a flag that a new sample arrived. Then on each
new sample flag, sample count block counts upwards the number of samples stored in the
accumulators.

Sample count block

The sample count module is a simple counter, which counts on each count up signal until
the count number equals the window length value and then toggles the hit flag which
serves as a trigger for rms i, rms v and Power avg blocks for their calculation. It also
resets itself with a one clock cycle delay. The submodule can be seen in figure 14.

40

6 Proposed Power sensor architecture Window calculation block

Figure 14: sample count block scheme

Window calculation block

The window calculation block as mentioned above is responsible for finding the reciprocal
of the number of samples, which is then used in other block for computing the responsible
equations 3 and 6. For this task, the Newton Raphson algorithm has been chosen with
Chebyshev polynomial approximation for the initial estimate. First the input value of the
window length must be shifted to the appropriate interval. An initial fixed shift of 6 bits
is performed, because the default window of minimum 200 samples will be shifted at least
8 times. Then this number is put into the shifter block, which shifts the integer until it
is in the desired range. The scheme of this block can be observed in the section 6 in the
figure 22. The number of shifted bits is stored and later used for the correction of the
reciprocal value.

Figure 15: window calculation block

Precomputation for the reciprocal Newton Raphson method

The precomputation submodule is best described using a equation 63 as in section 5. The
coefficients have been found with the same script as for the square root approximation,
with the change to find the reciprocal value. The script might be seen in the Appendix.
The initial estimation is the reciprocal value with a precision of 8 bits.

41

6 Proposed Power sensor architecture Window calculation block

x = 4.242424 + x0 · ((2.5859 · x0)− 5.818181). (63)

Figure 16: chebyshev precomputation reciprocal block

Reciprocal Newton Raphson block

The main calculation is done in the submodule reciprocal newton raphson horner. In
this block the equation 52 is performed. In two iterations, the reciprocal value is found.
The control block is responsible for controlling the iteration process. First it stores input
value and the initial value into D type flip flops. Then it performs the first round of the
equation with the input value and stores the result into a third D type flip flop. Then
in the second round it performs the same calculation only this time using the previously
calculated value instead of the initial input. The initial value input remains the same.
On the fourth clock cycle, the result is stored in the output unit delay and a valid data
signal is asserted.

Figure 17: reciprocal newton raphson horner block

The output result is shifted with the appropriate amount of bits in the right direction and
is stored into an output unit delay enable block. If no window length is specified, then

42

6 Proposed Power sensor architecture Power Average block

there is a default value of 0.005 which corresponds to 200 samples. This precaution is also
implemented in the sample count block to fit the default reciprocal value.

Power Average block

In the top level of this module, the input signals are multiplied and stored in the accu-
mulator in its accumulative unit delay. The top level design of this block can be seen in
figure 18.

Figure 18: Power Average top

The input signals are implemented in S17.16, and the output signal of the cumulative
sum is of size S36.20. This gives a sufficient amount of precision in the fractional part
and also assures that no overflow occurs in the cumulative sum. When the accumulator
receives logical one on the reset and calculate signal, the stored sum is passed to the
sum avg power block, which computes the average power over the N specified samples by
multiplying the reciprocal value of the window length and the accumulator is restored to
zero. The sum avg power can be found in figure 19.

Figure 19: power accumulator block scheme

Effective value block

Top level

This block is responsible for the effective value computation. The top level is very similar
to the top level of the window calculation block. Again the accumulator stores the input
signal value in its accumulative unit delay. The accumulator can be seen in figure 20.

43

6 Proposed Power sensor architecture Effective value block

However, in comparison with the Power avg block, here only one signal is present and
the input signal value is squared inside the accumulator since effective value is computed.
The input signal is implemented in S17.16, and the output signal of the cumulative sum
is of size U32.20.

Again, this gives a sufficient amount of precision in the fractional part and also assures
that no overflow occurs in the cumulative sum. At the assertion of reset and calculate
signal, the accumulator passes the cumulated sum to the rms core block and resets to
zero.

Figure 20: RMS accumulator block scheme

RMS Core submodule

The RMS Core submodule is the main block, which computes the effective value. It’s top
level is in figure 21. The operation process in this block is controlled by the finite state
machine rms core control. If the calculate flag is set, the state machine starts. First it
stores the accumulated sum and the reciprocal value in the unit delay enabled blocks and
multiplies them.

44

6 Proposed Power sensor architecture Effective value block

Figure 21: RMS Core submodule top level

This result then proceeds to the shifter left submodule. This submodule is the same as
in the window calculate block and can be seen in figure 22 and is explained in section
6. Its purpose is to rescale the input data for the Inverse square root Newton Raphson
method as described in 5, because chosen interval is [0.5, 1).

This scaled data is passed to the submodule n r preestimation where the preestimation
for the initial value is found. Then the inverse sqrt newton raphson computes the square
root value. These are the same blocks as in figures 8 and 9.

Since the input signal into the sensor is in the interval [−1, 1), the total value in the
accumulated sum multiplied with the reciprocal number for the corresponding window
length will not overflow the interval [−1, 1). However, the opposite situation may occur,
when the input signal values are around zero, the sum multiplied with the window length
is less than 0.5 in which the Newton Raphson algorithm does not work properly with the
desired precision. Therefore, a left shift is introduced. Also since the square root changes
the output interval as described in the section 5, a correction by a factor of

√
2k which is

equal to 2
k
2 for odd numbers and

√
2 · 2

k−1
2 for even, where k is the number of bits shifted

in the initial prescaling section, needs to be performed. However, this time the number
will be shifted right by the correction amount, because initially the input number was in
the proper interval, or it was too small and therefore shifted left.

The logic for correction includes a right shift, which corresponds to k
2 . With this

value, the square root result is shifted right. Depending on if the initial shift was

45

6 Proposed Power sensor architecture Effective value block

odd or even, additional multiplication by a factor of 1√
2

is performed and the block

Extract 1 Bits Lower End decides whether this multiplication is needed or only the shift
is sufficient.

For a better explanation an example is provided. Sum is the accumulated sum of samples,
and N is the reciprocal value of the window length.

Sum = 40.9998

N = 0.0049999

=> result = Sum ·N = 0.204964

This result is shifted left two times i.e.

shift result = 0.204964 · 22 = 0.81985.

This value is then squared, which gives the result 0.90546. Then shift with the corrected
bit value is applied, here by one bit right which results into value 0.45273, which is the
correct result of

√
0.20496 with a precision of 17 bits.

Shifter left submodule

The shifting process is controlled by the shifter control state machine. Whenever
calculate flag is set, the input number is binary shifted on each clock cycle by one bit left
until the input number is equal or less than 1. Then it passes the new shifted number
to the output buffer and also information about the number of shifted bits. The shifter
block’s input is uint16 and the output is the standard fixed point value at which the
RMS Core block operates S32.28.

46

6 Proposed Power sensor architecture Apparent Power

Figure 22: Shifter implementation

Apparent Power

For the apparent power, only the RMS values of calculated current and voltage are mul-
tiplied as shown in equation 5. The Apparent Power is calculated over the same window
length as the Average power, because there is only one sample window length for the
whole design.

Simulation results

Comparison of Power values simulated with the model and computed with an ideal moving
average is in figure 38 in Appendix. Comparison of RMS values is in the next figure in
the Appendix 39. Input signal is a sine wave of frequency 1000 Hz mixed with noise and
sampled with sample frequency fs = 200 kHz. The mismatch of the signals at the state
transition is due to the method of calculation of the ideal moving average. It calculates
it sample by sample in contrast with this thesis design, which calculates it over an entire
window as mentioned several times above. The whole model with the simulation sources
can be seen in figure 23. The signals from adc block reads input signals generated
from Matlab. The Constant block defines the window length and the unitdelay block
labeled with calc enable generates one time stimulus for the block window calculation to
recalculate the window reciprocal value.

47

6 Proposed Power sensor architecture Simulation results

Result Table Difference (-) Precision (bits)

Power Avg 3.836872e-05 14.66

Power Apparent 4.436492e-05 14.46

RMS I 3.540049e-05 14.78

RMS V 5.214707e-05 14.22

Table 2: Comparison Table of simulated model and ideal values, Avg stands for Average,
RMS for Root Mean Square

Figure 23: Simulation model block scheme

48

7 Introduction to Zedboard

Brief overview of the Zedboard and its capabilities

Zedboard stands for Zynq Evaluation and Development board [29]. Zynq is a platform
with a SoC - System on a Chip which consists of a ARM Cortex - A9 processor and 28nm
programmable logic from the Xilinx 7-series FPGA architecture [29]. The main device on
the Zedboard is the XC7Z020 Xilinx chip with a Dual core ARM Cortex-A9 processor,
external memory DDR3 support, lots of peripherals and the AXI standard interconnect
[30]. The PL - programmable logic contains 85k Programmable Logic Cells, 53200 Look-
Up Tables (LUTs) and 106400 Flip Flops. It also contains 140 Block RAMs of 36Kb and
220 DSP Slices with a width of 18 bits. Because of the two independent parts, the PS -
processing system and the PL, custom logic and custom software may be implemented,
where either the processor would be too slow or the design of the programmable logic too
complicated. Usually, the PL is used for a high speed logic and signal processing, whereas
PS supports software routines and operating systems. These two systems are linked to-
gether via the industry standard Advanced eXtensible Interface (AXI). In the chip, there
is also an AD converter called XADC which is provided to the design environment in the
form of an IP - intellectual property package. The XADC is a dual 12-bit 1 Mega sample
per second analog to digital converter. It features access up to 17 external analog input
channels and also to several on chip sensors such as the die temperature and on chip power
supply monitoring sensors [31].

Several other functionalities are present on the Zedboard, such as 512MB DDR3 memory,
audio inputs with a audio codec, Ethernet and JTAG connectivity, HDMI and VGA output
for image and video processing, OLED display, switches and push buttons as well as LEDs.
There is also a SD card slot which allows booting of custom Linux image onto the PS or
serves as a non-volatile external memory [32]. On the PS usually runs an operating system,
which is responsible for data exchange between the platform and a host device over JTAG
or Ethernet interfaces [33].

49

7 Introduction to Zedboard

Figure 24: Zedboard evaluation board

Preparation of Zedboard and Matlab for FIL and External simulation

For establishing a connection between the Zedboard and Matlab Simulink, several ad on
packages are required, amongst the HDL Coder and Verifier also HDL Coder Support
Package for Xilinx Zynq Platform and an Embedded Coder Support package for Xilinx
Zynq Platform [34].

Next using these packages, a Linux Image must be loaded onto an SD card from which the
embedded platform will boot. Then using the proper jumper settings, the boot location
from SD card is chosen. Also, the host device (computer with Matlab) needs to be in
the same IP address space, here for example 192.168.1.11 for the host network card and
192.168.1.10 for the Zynq platform [35]. Connection over JTAG is also possible. Once
the Linux is running on the Arm, it is possible to connect to the board using a Serial
communication or over SSH via ethernet. When connecting over ethernet a username
and password must be first inserted. If the image and communication work properly, the
Zedboard should respond to basic Linux commands and for example a folder structure
can be observed. Then from Matlab an object is constructed calling zynq function [36]
which creates a connection to the development platform. Connection via a micro usb for
bitstream programming is also needed, as well as the power supply.

50

8 Design Validation on FPGA

Using FPGA in the Loop it is possible to validate the design directly from Matlab. Matlab
package HDL Coder and HDL Verifier can regenerate the designed Simulink model into
several Hardware Description Languages (HDL) files and pack it into an independent IP
core, which corresponds with the model implemented in Simulink. With HDL Workflow
Advisor [8], the model is generated for FPGA implementation. Several settings need to
be configured in the workflow, including proper board selection - Zedboard, synthesis tool
- Xilnix Vivado, setting target frequency - this design 10 MHz, how does the HDL Coder
translate the model to HDL code. After these settings, Matlab generates the Vivado
project, includes generated Verilog files, adds it’s JTAG controller and a clock wizard IP
from Xilnix and generates a Wrapper file which acts as the top level file.

Then the Vivado Design Suite is issued as an external tool which handles the required
steps for bitstream generation. These steps include RTL Analysis which translates the
algorithmically written HDL files and model into the register transfer level code of needed
hardware blocks. The next step is the logic synthesis, which generates from the RTL
the netlist and optimizes the used hardware resources and critical paths in the design.
Then the Implementation of the netlist is performed, where physically present hardware
blocks including Programmable logic cells, LUTs, DSP slices and Flip flops are chosen and
nearest paths are examined, found and optimized. Place and route then places the block
and routes the connections between them and performs a Static Timing Analysis (STA),
where it check for example if the signal in the critical paths arrived in proper manner, or
performs clock jitter analysis [37, 38].

A new model is also generated in Matlab Simulink, which can be seen in figure 25. The
power sensor fil block executes the hardware component on FPGA board. The FPGA
is programmed from this block with the generated bitstream, and signal representation
may be changed in this block as well. Simulation is run both in the model power sensor
in Simulink and in the generated IP implemented in the FPGA. Then the difference is
compared in the Compare block. The input signals are generated in Matlab similarly as
in section 6. In the Compare subsystem, each output signal is compared with the output
from the Simulink model and if a difference occurs, a flag is asserted by a AssertEq
submodule. This submodule can be seen in figure 42 in the Appendix. The proposed
design tested without any mismatch against the Simulink model. However, due to few
large critical paths, the design works only up to a frequency of 10 MHz. This issue is
addressed in later sections 9. The design runs in the PL - Programmable Logic part of
the board and communicates and sends data between the host and FPGA over JTAG
interface.

51

8 Design Validation on FPGA

Figure 25: FPGA in the Loop Simulation

52

9 FPGA implementation

To obtain analog signals for the power sensor, current would be measured for example
with hall plates or a shunt resistor [3] and converted to voltage. These analog signals
would then be transformed to digital signals using an AD converter. As stated above in
section 7, the Xilinx FPGA chip contains an AD converter module named XADC, which
can be instantiated and reconfigured using an Intellectual Property block in the Vivado
Design Suite [31]. Signals for the purpose of emulating current and voltage are generated
using a STM32F303RE Nucleo board and sampled with this ADC.

XADC introduction

Brief information about the XADC is provided in section 7. Inside the XADC, there are
two independent converters, ADC A and ADC B. They can operate in several modes, from
which Simultaneous Selection with Continuous Mode have been chosen. Simultaneous
Selection means that the sequencer of each ADC automatically switches between selected
input channels which were enabled when instantiating the IP, so ADC A between Auxiliary
channel 0 -7 and ADC B between channels 8 - 15. This setting helps to maintain the
appropriate phase difference between measured signals. Several sensors on chip can also
be accessed through this sequencer. In Continuous Mode both ADCs sample, hold and
convert the input signal values automatically without external triggering event [31].

Converted values from AD channels as well as sensor data are stored in dedicated registers.
In similar registers, configuration data for all settings configurable in the IP are also stored.
These data can be accessed in several ways. Besides using the AXI – Lite interface, there
is also a FPGA interconnect called dynamic reconfiguration port (DRP), or JTAG. The
DRP is a 16 bit synchronous read and write port. XADC might also output the data
as an AXI4Stream and using Direct Memory Access (DMA) store them directly in a
memory location such as the DDR3. ADCs can also be reconfigured while running using
an AXI-Lite interface or directly from the PL using a DRP interface [31].

External Analog inputs are differential to reduce common mode noise on the external
analog signal. Two connection pins are needed for one channel, Vpositive and Vnegative
input, and the ADC samples the signal with the common mode, whereas it removes it and
rejects noise. Unipolar or Bipolar mode can be chosen, with nominal input range form
0 V to 1 V . The LSB size is 244 µV producing zero code 0h when 0V signal is present and
FFFh when 1 V in Unipolar mode. In Bipolar mode, the LSB value is the same, however
the input voltage is in range −0.5 V to 0.5 V and ADC are producing output in Two’s
Complement Coding [31].

Zynq SoC Implementation Workflow

Workflow of implementing the power sensor on FPGA is explained in this section. It
is similar to the workflow explained in section 8. Difference is in targeting the whole
SoC platform, whereas in the Validation, only a block for JTAG communication with
Matlab was added to the generated files from Simulink model. Now the model designed
in Simulink is converted to Verilog and packed as an IP core. Matlab then takes the
created IP and creates a Vivado project from a pre-defined Block design which contains
the Zynq7 Processing System, AXI Interconnect IP, Processor System Reset and a
Clocking Wizard. Into this block design, the generated IP is inserted and defined port
connections are connected. Then a Verilog wrapper is created and Vivado runs the same

53

9 FPGA implementation Registering custom reference design

synthesis and implementation process as described previously. After that the bitstream
can be programmed into the FPGA either from Matlab HDL Coder or directly from
Vivado Design Suite. After that usually a project for the Arm CPU is created and the
processor is programmed with the created application. Matlab instead creates another
Simulink model, where it swaps AXI ports previously defined in the HDL Coder Workflow
Advisor with different subblocks, which drive the AXI communication. Then this newly
generated Simulink model is compiled with the Embedded coder, connection to Zedboard
is established as described in section 7 and the Arm is programmed with the created
code. The last step is to run the Simulink model in external mode simulation. If there
is communication between Matlab and the Zedboard set up, the results can be directly
observed in Matlab.

However this predefined block design, which is used as template creation for the Vivado
project needs to be adjusted to include the XADC IP block, to connect it with the overall
block design of the Zynq SoC, define correct interface connectivity and especially explain
Matlab to take into account these changes, so they are usable in the HDL Coder Workflow
Advisor and that the proper code generation may be executed.

Registering custom reference design

The process of creating a new project used by the HDL Coder Workflow Advisor is called
registering custom reference design. This includes the Vivado block design, as well as
several scripts used by Matlab. It needs to follow a certain folder structure, best ex-
plained in this work [33] or on the Mathworks webpage [39]. This folder structure itself,
explained with a diagram in figure 26, needs to be located between other support packages
and reference designs. First script called hdlcoder board customization.m is the board
plugin registration file, which registers the folder structure and its object plugin board.
In the similarly called script inside the folder structure, the board object of HDL Coder
is created, with the proper board name which appears in the Advisor, vendor, family,
device, and package. Several other settings are also defined such as JTAG chain posi-
tion and external Input Output interfaces. The folder structure may consist of several
reference designs of the same board with various Vivado block designs. Script called
hdl coder ref design customization.m takes this into account, the correct board name
needs to be set and all desired reference design definitions are registered here via corre-
sponding plugin rd located in corresponding subdirectories. These also contain the Vivado
block design in the form of a .tcl file, which stores the commands for the Vivado tcl console
and creates a Vivado project and executes the referenced block design upon selecting it in
the HDL Coder Workflow Advisor.

54

9 FPGA implementation Registering custom reference design

Figure 26: Folder structure for Registering custom reference design

The script plugin rd is responsible for defining interconnection inside the block design.
Reference project object is constructed with the correct board name and corresponding
custom block design. Then a clock interface is added which matches the exact block
already created in the Vivado block design, with adjustable clock frequency but fixed
wiring between other peripherals. Same name - property ClockModuleInstance as in the
block design must be set in the script, as well as other connections, like ResetConnection
which is connected to the FCLK RESET N on the Zynq7 Processing System block.
Frequency is set inside the Workflow Advisor and appears afterwards in the Vivado project.

An Axi Interconnect is added, which connects the generated IP package with the Zynq7
Processing System block through AXI4Lite interface. Connection between the processor
and this block is defined in the block design, however the connection between the generated
IP and the Master interface on the Axi Interconnect block are here defined. Also correct
Master address space corresponding to the address in Zynq7 Processing System is set.
The last interface connections with the instantiated XADC IP block are defined, which is
created in the Vivado block design using the IP Integrator. Output Bus of a 16 bit width
where data are transferred from the XADC registers. One output signal called drdy out
is also present, which signalizes if the data to be red are prepared. For the input, one
address bus of 7 bit width with a 1 bit signal is responsible for addressing registers to
be read. Input port di in can be used for reconfiguring setting of the XADC, however
for the power sensor XADC does not need to be reconfigured during execution. Identical
opposite connection ports need to be assigned via the Workflow Advisor to output or input
ports of designed model with matching communication protocol implemented. In figure
27 is the block design with already instantiated XADC and inserted and connected power
sensor IP. This is the result of the HDL Coder Workflow Advisor, which is synthesized
and implemented into bitstream. The block design exported for the Workflow excludes
the block power sen ip.

55

9 FPGA implementation XADC instantiating

Figure 27: Vivado block design

XADC instantiating

For the power sensor, two channels Auxiliary channel 0 - Aux0 and a corresponding op-
posite channel 8 – Aux8, were assigned to the ADC A module and to ADC B module
respectively in Unipolar mode. Channel sequencer with simultaneous Selection has been
configured, as well as Continuous Mode. Frequency of the main clock is set to 10 MHz,
which is similar to the main clock frequency as the rest of the design. ADC conversion
rate is set to 40 KSPS (kilo samples per second), so the acquisition time is equal to 4
clock cycles of the XADC. No averaging is selected, and no alarms measured with the
internal sensors. The used interface is the DRP.

XADC interface

According to the XADC user guide[31], the DRP interface is best suitable for implemen-
tation with a state machine. In figure 28, the timing diagram overtaken from [31]is shown
of a read and write operation.

56

9 FPGA implementation XADC interface

Figure 28: DRP timing diagram.

To read out converted data stored in the result registers, first the data enable DEN needs
to be asserted to logic 1 for a clock cycle. At the next clock cycle, the DRP address
DADDR is captured. If DWE signal is low, then a read operation is executed, and
corresponding data is put out on the data bus DO - Data Out. If the data are prepared,
signal drdy changes to logic 1 for a clock cycle [31]. Then the state machine reads the data
from the output port. Since two registers need to be red out, the state machine changes
its address index to the second address and performs another read. Then it changes the
address index back to the first one. This way it cycles and reads out continually these two
values.

In figure 29, the state machine with additional demux and two output flip flops can be
seen.

Figure 29: DRP submodule [31].

The submodule drp state machine works as described above. The inputs are do out and
drdy out. Both are connected to ground on the top level of the design in order to rightfully
assign them in the Workflow Advisor. Port drdy out serves as the data ready signal from
the DRP interface of the XADC, do out is the data bus of 16 bit width, however, only 12

57

9 FPGA implementation Top level of Implemented design

bits are valid and bottom bits are of value 0 at each data transfer [31]. Port address to drp
is the 7 bit wide address port and den in is the data enable signal. These are connected to
proper interconnections via the Workflow Advisor and thus through the plugin rd script.
The output values need to be sliced down to 12 bits and then are demuxed (separated
between each other) using the demux function either to voltage or current, depending on
the address index addr index. Otherwise, they are equal to 0. If the value is nonzero,
then the flip flop (Unit enabled synchronous) is turned on and a new value is put into the
output. Also, a new sample signal is generated for the other modules in the top level of
the design.

Top level of Implemented design

The top level is in figure 30. The computational core is the same as in the section Proposed
power sensor architecture6. However, the submodule new sample is removed and instead
for its function the submodule xadc communication is responsible. It produces the same
outputs for the core as the old submodel, but few additional outputs are present.

Figure 30: Top level of Implemented design

Difference also occurs in the reciprocal newton raphson horner block present in the
P power avg submodule, and the equivalent submodules which calculate using the New-
ton Raphson method located in the RMS submodules (inverse sqrt newton raphson).
These blocks which are responsible for the finding the reciprocal value or the square root
have long combinational paths which are poorly implemented by the synthesis process in
Vivado [38]. If the frequency is larger than 10 MHz, error in the worst slack occurs, which
means, the combinational path between two flip flops is too long and the signal does not
arrive in the proper manner within one clock cycle. To resolve this issue, additional pipeli-
nening might be introduced [40]. I resolved this by manually adding a unit delay block
inside the design between the two multiplexers and adjusting the control block, which

58

9 FPGA implementation Top level of Implemented design

controls the inner reusing of values for calculation, so it is delayed by the correct amount
of clock cycles. This increased twice the time it takes to calculate the result value, from
2 clock cycles to 4, however the speed of the design increased to 20 MHz, which is a large
improvement.

The changed design of the cores can be seen in figure 31 and in figure 32.

Figure 31: Modified reciprocal newton raphson horner block 17

Figure 32: Modified inverse sqrt newton raphson block from 8

The difference between the timing is in table 4. These values are obtained from Vivado
from the Implementation step. In table 3 is the difference between used hardware resources
of these two designs.

59

9 FPGA implementation Top level of Implemented design

Used Hardware resources 10 MHz Design 20 MHz Design Difference

LUT Synthesis 3355 3366 11

LUT Implementation 3059 3055 4

FF Synthesis 3409 3505 96

FF Implementation 3157 3253 96

DSP Slices 47 47 0

Table 3: Comparison of Used Hardware Resources, LUT stands for Look Up Tables, FF
for Flip Flops and DSP for digital signal processor.

Frequency of design 10 MHz Design 20 MHz Design

Setup - Worst Negative Slack (WNS) 3.764 ns 4.948 ns

Hold - Worst Hold Slack (WHS) 0.035 ns 0.036 ns

Worst Pulse Width Slack (WPWS) 3 ns 3 ns

Table 4: Comparison of Design Timing Summary

The higher speed design (20 MHz) has more resources used in the model than the 10 MHz
design. Difference can be seen in both Flip Flops and LUTs, Flip Flops differ exactly by
the number of added Flip Flops in the design, which is 4 · 24, where 4 is the number of
added unit delay blocks (FFs) and 24 is the bit width of the processed signal. Lower speed
design (10 MHz) uses slightly more LUTs. This is probably due to different solutions of
the synthesis and implementation optimalization algorithms. DSP Slices do not differ, as
these are large blocks and the same amount of multiplexers is used.

In figure 33 is for ilustration the implemented design in Vivado with colorfully highlighted
implemented parts. The designed IP module is in orange. XADC as green with the
interconnections as pink can be seen in the right upper corner.

60

9 FPGA implementation Top level of Implemented design

Figure 33: Implemented Design in Vivado

61

10 Measured results with implemented design

After the bitstream generation in Vivado, the generated Simulink model for programming
the processor is opened. The design is replaced with an automatically generated subsys-
tem, where previously assigned ports are exchanged for AXI4-Lite read or write interfaces,
depending on if input or output was assigned. Other ports which were assigned as external
ports are connected to ground, since they are not used by the Axi4-Lite communication
but by the data transfer between the IP and DRP of XADC. The generated model is in
figure 34. The generated top level of the model is in figure 48 in the Appendix. The
submodule AXI4SlaveRead is also in the Appendix, in figure 49, and contains Simulink
Embedded Coder library blocks with proper Register offset, Device name, and Data type
for the Zynq 7 Processing System to access correctly the result registers. The only change
required to perform is to set the sampling time to atleast 0.001 seconds. Then Simulation
in External Mode is run and the model starts to transfer data over JTAG via the processor
from the implemented IP model.

Figure 34: Automatically generated model for the Embedded Coder and measured data
transfer.

In figure 35 Zedboard conntected to host computer and signal generator can be seen.
For the signal generator, the STM32F303RE Nucleo board has been used. It features
two 12-bit Digital to Analog Converter (DAC) channels with simultaneous conversion
[41]. For demonstration purpose, two sine waves are periodicaly generated from the DAC
and connceted to the input pins of the XADC on Zedboard. These sine waves have a
different amplitude and phase shift, to demonstrate implemented functions. Four wires
are conntected from the Nucleo board to the XADC Header. Two which are ground on the
Nucleo board, are connected to the negative AUX 0 and AUX 8 input and two connections

63

10 Measured results with implemented design

are outputs from the two DAC channels, pins D13 and A2 on the Nucleo board, connected
to the positive AUX 0 and AUX 8 input. The Nucleo has been programmed with the
STM Cube IDE [42].

Figure 35: Zedboard connected to the signal generator and host pc.

In figure 36 the XADC header on the Zedboard can be seen, figure is overtaken from [43].
To this header, the Nucleo board is connected.

Figure 36: Zedboard XADC header schematic.

With the correctly set up Simulink model and bitstream programmed into the FPGA, the
data transfer of measured data is started. Measured results are in figure 40 or in figure 41
in the Appendix. In the figure 40 partial waveform diagram of measured signal with two
window length changes might be seen. At the first window length change, the window was
changed to 10000 samples. A larger gap between new values of output signals is observed.
Then a next window change to 600 samples was performed and results change more often,
also an initial gap to lower values appears. Output values have larger ripple. This can be

64

10 Measured results with implemented design

seen in the figure 37 which is a detailed diagram with window length of 600 samples. As
overall measurement waveform plot serves figure 41. Result equal to zero at the begining
might be seen, since the signal first needs to be stored before computation. Also, the
window changes and corresponding ripple is visible in the same figure.

Figure 37: Measured result with window change detail

In the detailed plot in figure 37 the input signal might be seen with harmonic distortion.
This is due to missing samples, which was poorly transferred over the JTAG interface,
however for function demonstration, the output values, which persist over a greater sample
size, transfer sufficiently

65

11 Further Improvements

Further improvements of the power sensor could be distinguished into several categories.
For algorithms, improvements could be made in precision, speed or used hardware re-
sources.

For the used hardware resources, the whole design could use only one computational core,
which would calculate the reciprocal and square root functions, as well as proper shifting
of all signals, and would store and pass these results to the output at the same time.

For the speed, for example when using the CORDIC algorithm, additional pipeline reg-
isters could be added, the core could be hardwired trough all stages, and input samples
would be processed simultaneously, so after an initial delay, after each clock cycle would
be a new value at the output.

Improvements with precision could be achieved with more precise signal sampling or more
computation runs of the algorithms.

For the FPGA implementation and demonstration of the power sensor, a better way to
transfer data between the evaluation board and Simulink could be found, for example using
ethernet connection which is far superior with data transfer than the JTAG interface. Or
perhaps to create a bus interface, that would send data stored in memory, however these
features are out of scope of this thesis.

67

12 Conclusion

All goals defined in the Assignment have been successfully fulfilled.

The purpose of this thesis was to conduct research about algorithms used in ASICs or
FPGAs for fast, accurate, and low hardware resource requirement elementary function
evaluation, ultimately resulting in designing a power sensor. Model based design aproach
has been used and FPGA in the loop for rapid development. For the first Assignment
objective - Research on the topic of fast computational algorithms for specific functions
needed for the signal processing core of a power sensor, a theoretical background about
power, Model Based Design approach used throughout the whole designing process as well
as fixed point numerical representation has been studied.

For the second thesis objective - Modeling of each method and comparison of accuracy,
speed, and used hardware resources, several algorithms have been studied.

Research and derivation of equations has been conducted. Then a test function – square
root has been chosen and researched knowledge has been applied to design a computational
model in Simulink. Results have been simulated, from which precision and speed have
been determined. Furthermore, these models have been generated to Verilog - a Hardware
Description Language, Synthesized and Implemented for a FPGA device, from which
hardware resource usage has been determined. All these algorithms have been compared
and the most fitting has been chosen for implementation in a power sensor.

Proposed power sensor architecture has been created in Simulink which included compu-
tation of average power, apparent power, and effective values of both measured current
and voltage. Behavior was simulated, and precision has been compared with ideal values
calculated with Matlab, where the computational core reached a precision of 14 bits, also
partly given by the chosen fixed point numerical implementation.

For the last two thesis objectives - Implementation of designed core and validation on a
FPGA using FPGA in the Loop and Simulink, and also - Implemented functions demon-
stration - measurement and testing with real signals, a brief introduction to the FPGA
evaluation board - Zedboard, connection to Matlab, and validation on the FPGA has been
shown.

Then the Zynq SoC Workflow has been explained, with registering a custom reference
design, instantiating the XADC IP module in Vivado and successfully generated bitstream.
Issues with critical paths in design have been resolved, which improved performance from
10 MHz to 20 MHz, with the possibility of further improvement.

Then functions of the power sensor have been demonstrated by sampling two signals with
an ADC and computing all desired values.

69

References

[1] IEEE. IEEE Standard Definitions for the Measurement of Electric Power Quantities
Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions. 2010, pp. 1–
50. doi: 10.1109/IEEESTD.2010.5439063.

[2] Svensson Stefan. “Power Measurement Techniques for Nonsinusoidal Conditions.
The Significance of Harmonics for the Measurement of Power and other AC quan-
tities”. Doctoral thesis. Chalmers University of Technology, Göteborg, Sweden:
CHALMERS UNIVERSITY OF TECHNOLOGY, 1999. url: https://core.ac.
uk/display/70557608?utm_source=pdf%5C&utm_medium=banner%5C&utm_

campaign=pdf-decoration-v1 (visited on 04/09/2024).

[3] Allegro Microsystems Inc. ACS37800. Datasheet. Mar. 2022. url: https://www.
allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-

amp-integrated-conductor-sensor-ics/acs37800.

[4] Shu-Chen Wang, Chi-Jui Wu, and Sheng-Wen Yang. “Applying FPGA-based chip
to apparent power and power factor measurement considering nonsinusoidal and
unbalanced conditions”. In: WSEAS Transactions on Circuits and Systems 8 (July
2009), pp. 559–568.

[5] Aarenstrup Roger.Managing Model-Based Design. 1st ed. Apple Hill Drive 3, Natick,
MA, United States: The MathWorks, Inc., 2015. isbn: 978-1512036138.

[6] Babić Josip, Marijan Sinǐsa, and Petrović Ivan. “Introducing Model-Based Tech-
niques into Development of Real-Time Embedded Applications”. In: Automatika
52.4 (Jan. 2017), pp. 329–338. issn: 0005-1144. doi: 10.1080/00051144.2011.
11828432. url: https://www.tandfonline.com/doi/full/10.1080/00051144.
2011.11828432 (visited on 04/08/2024).

[7] Synopsys Inc. What is Model-Based Design? 2024. url: https://www.synopsys.
com/glossary/what-is-model-based-design.html (visited on 04/08/2024).

[8] The MathWorks Inc. HDL Coder. url: https://www.mathworks.com/products/
hdl-coder.html (visited on 04/08/2024).

[9] Kyoji Marumoto and Hiroshi Nishide. Improving the Efficiency of IC Development
with Model-Based Design. 2022. url: https://www.mathworks.com/company/
technical-articles/improving-the-efficiency-of-ic-development-with-

model-based-design.html (visited on 04/08/2024).

[10] Analog Devices Inc. Fixed-Point vs. Floating-Point Digital Signal Processing.
url: https://www.analog.com/en/technical- articles/fixedpoint- vs-
floatingpoint-dsp.html.

[11] IEEE. “IEEE Standard for Floating-Point Arithmetic”. In: IEEE Std 754-2019 (Re-
vision of IEEE 754-2008) pp.1-84 (July 2020). doi: 10 . 1109 / ieeestd . 2019 .
8766229. url: https://ieeexplore.ieee.org/document/8766229.

[12] Wallace Evan. Float Toy. url: https://github.com/evanw/float-toy.

[13] The MathWorks Inc. Benefits of Using Fixed-Point Hardware - MATLAB &
Simulink. www.mathworks.com. url: https : / / www . mathworks . com / help /

70

https://doi.org/10.1109/IEEESTD.2010.5439063
https://core.ac.uk/display/70557608?utm_source=pdf%5C&utm_medium=banner%5C&utm_campaign=pdf-decoration-v1
https://core.ac.uk/display/70557608?utm_source=pdf%5C&utm_medium=banner%5C&utm_campaign=pdf-decoration-v1
https://core.ac.uk/display/70557608?utm_source=pdf%5C&utm_medium=banner%5C&utm_campaign=pdf-decoration-v1
https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs37800
https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs37800
https://www.allegromicro.com/en/products/sense/current-sensor-ics/zero-to-fifty-amp-integrated-conductor-sensor-ics/acs37800
https://doi.org/10.1080/00051144.2011.11828432
https://doi.org/10.1080/00051144.2011.11828432
https://www.tandfonline.com/doi/full/10.1080/00051144.2011.11828432
https://www.tandfonline.com/doi/full/10.1080/00051144.2011.11828432
https://www.synopsys.com/glossary/what-is-model-based-design.html
https://www.synopsys.com/glossary/what-is-model-based-design.html
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/products/hdl-coder.html
https://www.mathworks.com/company/technical-articles/improving-the-efficiency-of-ic-development-with-model-based-design.html
https://www.mathworks.com/company/technical-articles/improving-the-efficiency-of-ic-development-with-model-based-design.html
https://www.mathworks.com/company/technical-articles/improving-the-efficiency-of-ic-development-with-model-based-design.html
https://www.analog.com/en/technical-articles/fixedpoint-vs-floatingpoint-dsp.html
https://www.analog.com/en/technical-articles/fixedpoint-vs-floatingpoint-dsp.html
https://doi.org/10.1109/ieeestd.2019.8766229
https://doi.org/10.1109/ieeestd.2019.8766229
https://ieeexplore.ieee.org/document/8766229
https://github.com/evanw/float-toy
https://www.mathworks.com/help/simulink/ug/benefits-of-using-fixed-point-hardware.html
https://www.mathworks.com/help/simulink/ug/benefits-of-using-fixed-point-hardware.html
https://www.mathworks.com/help/simulink/ug/benefits-of-using-fixed-point-hardware.html

References

simulink/ug/benefits- of- using- fixed- point- hardware.html (visited on
01/17/2024).

[14] Pyeatt Larry D. and Ughetta William. ARM 64-Bit Assembly Language. Newnes,
2020. isbn: 978-0-12-819221-4. doi: 10.1016/C2018-0-03846-3.

[15] Beheshti Babak D. “Fixed point performance of interpolation/extrapolation algo-
rithms for resource constrained wireless sensors”. In: 2015 Long Island Systems,
Applications and Technology (2015), pp. 1–4. doi: 10.1109/LISAT.2015.7160175.
url: http://ieeexplore.ieee.org/document/7160175/.

[16] Andraka Ray. “A survey of CORDIC algorithms for FPGA based computers”. In:
Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field pro-
grammable gate arrays - FPGA ’98 (1998), pp. 191–200. doi: 10.1145/275107.
275139. url: http://portal.acm.org/citation.cfm?doid=275107.275139.

[17] Volder Jack E. “The Birth of Cordic”. In: The Journal of VLSI Signal Processing
25.2 (2000), pp. 101–105. issn: 09225773. doi: 10.1023/A:1008110704586. url:
http://link.springer.com/10.1023/A:1008110704586.

[18] uArt.cz. “Algoritmus CORDIC”. In: (2012). doi: https : / / uart . cz / 740 /

algoritmus-cordic/.

[19] Mopuri Suresh, Bhardwaj Swati, and Acharyya Amit. “Coordinate Rotation-Based
Design Methodology for Square Root and Division Computation”. In: IEEE Trans-
actions on Circuits and Systems II: Express Briefs 66.7 (2019), pp. 1227–1231. issn:
1549-7747. doi: 10.1109/TCSII.2018.2878599. url: https://ieeexplore.ieee.
org/document/8515067/.

[20] S. Walther. “A unified algorithm for elementary functions”. In: Managing Require-
ments Knowledge, International Workshop on. Vol. 1. Los Alamitos, CA, USA: IEEE
Computer Society, May 1971, p. 379. doi: 10.1109/AFIPS.1971.14. url: https:
//doi.ieeecomputersociety.org/10.1109/AFIPS.1971.14.

[21] Libessart Erwan et al. “A scaling-less Newton-Raphson pipelined implementation for
a fixed-point inverse square root operator”. In: 2017 15th IEEE International New
Circuits and Systems Conference (NEWCAS) (2017), pp. 157–160. doi: 10.1109/
NEWCAS.2017.8010129. url: http://ieeexplore.ieee.org/document/8010129/
(visited on 01/18/2024).

[22] Hertz Erik et al. “Algorithms for implementing roots, inverse and inverse roots
in hardware”. In: 2016. url: https://api.semanticscholar.org/CorpusID:
2183317.

[23] Shen-Fu Hsiao, Chia-Sheng Wen, and Ming-Yu Tsai. “Low-cost design of reciprocal
function units using shared multipliers and adders for polynomial approximation
and Newton Raphson interpolation”. In: 2010 International Symposium on Next
Generation Electronics (2010), pp. 40–43. doi: 10.1109/ISNE.2010.5669204. url:
http://ieeexplore.ieee.org/document/5669204/ (visited on 01/18/2024).

[24] Trefethen Lloyd N. Approximation Theory and Approximation Practice, Extended
Edition. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2019.
doi: 10.1137/1.9781611975949. eprint: https://epubs.siam.org/doi/pdf/10.
1137/1.9781611975949. url: https://epubs.siam.org/doi/abs/10.1137/1.
9781611975949.

71

https://www.mathworks.com/help/simulink/ug/benefits-of-using-fixed-point-hardware.html
https://www.mathworks.com/help/simulink/ug/benefits-of-using-fixed-point-hardware.html
https://www.mathworks.com/help/simulink/ug/benefits-of-using-fixed-point-hardware.html
https://doi.org/10.1016/C2018-0-03846-3
https://doi.org/10.1109/LISAT.2015.7160175
http://ieeexplore.ieee.org/document/7160175/
https://doi.org/10.1145/275107.275139
https://doi.org/10.1145/275107.275139
http://portal.acm.org/citation.cfm?doid=275107.275139
https://doi.org/10.1023/A:1008110704586
http://link.springer.com/10.1023/A:1008110704586
https://doi.org/https://uart.cz/740/algoritmus-cordic/
https://doi.org/https://uart.cz/740/algoritmus-cordic/
https://doi.org/10.1109/TCSII.2018.2878599
https://ieeexplore.ieee.org/document/8515067/
https://ieeexplore.ieee.org/document/8515067/
https://doi.org/10.1109/AFIPS.1971.14
https://doi.ieeecomputersociety.org/10.1109/AFIPS.1971.14
https://doi.ieeecomputersociety.org/10.1109/AFIPS.1971.14
https://doi.org/10.1109/NEWCAS.2017.8010129
https://doi.org/10.1109/NEWCAS.2017.8010129
http://ieeexplore.ieee.org/document/8010129/
https://api.semanticscholar.org/CorpusID:2183317
https://api.semanticscholar.org/CorpusID:2183317
https://doi.org/10.1109/ISNE.2010.5669204
http://ieeexplore.ieee.org/document/5669204/
https://doi.org/10.1137/1.9781611975949
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975949
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975949
https://epubs.siam.org/doi/abs/10.1137/1.9781611975949
https://epubs.siam.org/doi/abs/10.1137/1.9781611975949

References

[25] Navara Mirko and Němeček Aleš. Numerické metody. Praha: Vydavatelstv́ı ČVUT,
2003. isbn: 80-010-2689-2.

[26] Kitamoto Takuya. “On the Computation of the Determinant of a Generalized Van-
dermonde Matrix”. In: Computer Algebra in Scientific Computing (2014), pp. 242–
255. doi: 10.1007/978-3-319-10515-4_18. url: http://link.springer.com/
10.1007/978-3-319-10515-4_18 (visited on 01/18/2024).

[27] Meyer-Bäse Uwe. Digital signal processing with field programmable gate arrays. 3rd
ed. Berlin: Springer, 2007. isbn: 978-3-540-72612-8.

[28] Ewart Timothée et al. “Polynomial Evaluation on Superscalar Architecture, Applied
to the Elementary Function e x”. In: ACM Transactions on Mathematical Software
46.3 (2020), pp. 1–22. issn: 0098-3500. doi: 10.1145/3408893. url: https://dl.
acm.org/doi/10.1145/3408893 (visited on 01/18/2024).

[29] Louise H. Crockett et al. The Zynq Book: Embedded Processing with the Arm Cortex-
A9 on the Xilinx Zynq-7000 All Programmable Soc. Glasgow, GBR: Strathclyde
Academic Media, 2014. isbn: 099297870X.

[30] Xilinx Inc. Zynq-7000 SoC Data Sheet: Overview (DS190). Datasheet. July 2018.

[31] Xilinx Inc. Series FPGAs and Zynq-7000 SoC XADC Dual 12-Bit 1 MSPS Analog-
to-Digital Converter User Guide (UG480). User Guide. June 2022.

[32] Avnet Inc. ZedBoard Zynq�Evaluation and Development Hardware User’s Guide.
User Guide. Aug. 2012.

[33] Schmid Christian and Peterer Roland. “Evelopment Tools for the Xilinx Zynq-7000
SoC. Design of a Development Framework and System Interaction Method for Em-
bedded Systems on the Zynq-7000 SoC”. Master thesis. Trondheim: NTNU: Norwe-
gian University of Science and Technology, 2016. url: http://hdl.handle.net/
11250/2404384.

[34] The Mathworks Inc. Getting Started with Targeting Xilinx Zynq Platform. url:
https://www.mathworks.com/help/hdlcoder/ug/getting- started- with-

hardware-software-codesign-workflow-for-xilinx-zynq-platform.html%

5C#d122e108434. (visited on 04/22/2024).

[35] The Mathworks Inc. Guided Hardware Setup. url: https://www.mathworks.com/
help/hdlcoder/xilinxzynq7000/ug/guided-sd-card-setup.html (visited on
04/22/2024).

[36] The Mathworks Inc. Zynq. url: https://www.mathworks.com/help/ecoder/
xilinxzynq7000ec/ref/zynq.html (visited on 04/22/2024).

[37] Xilinx Inc. Vivado Design Suite User Guide: Design Flows Overview (UG892). User
Guide. Oct. 2022. url: https://docs.amd.com/r/en-US/ug892-vivado-design-
flows-overview.

[38] Xilinx Inc. Vivado Design Suite User Guide: Design Analysis and Closure Techniques
(UG906). User Guide. May 2021. url: https://docs.amd.com/v/u/2019.1-
English/ug906-vivado-design-analysis.

[39] The Mathworks Inc. Define Custom Board and Reference Design for Zynq Workflow.
url: https://www.mathworks.com/help/hdlcoder/ug/define-and-register-

72

https://doi.org/10.1007/978-3-319-10515-4_18
http://link.springer.com/10.1007/978-3-319-10515-4_18
http://link.springer.com/10.1007/978-3-319-10515-4_18
https://doi.org/10.1145/3408893
https://dl.acm.org/doi/10.1145/3408893
https://dl.acm.org/doi/10.1145/3408893
http://hdl.handle.net/11250/2404384
http://hdl.handle.net/11250/2404384
https://www.mathworks.com/help/hdlcoder/ug/getting-started-with-hardware-software-codesign-workflow-for-xilinx-zynq-platform.html%5C#d122e108434.
https://www.mathworks.com/help/hdlcoder/ug/getting-started-with-hardware-software-codesign-workflow-for-xilinx-zynq-platform.html%5C#d122e108434.
https://www.mathworks.com/help/hdlcoder/ug/getting-started-with-hardware-software-codesign-workflow-for-xilinx-zynq-platform.html%5C#d122e108434.
https://www.mathworks.com/help/hdlcoder/xilinxzynq7000/ug/guided-sd-card-setup.html
https://www.mathworks.com/help/hdlcoder/xilinxzynq7000/ug/guided-sd-card-setup.html
https://www.mathworks.com/help/ecoder/xilinxzynq7000ec/ref/zynq.html
https://www.mathworks.com/help/ecoder/xilinxzynq7000ec/ref/zynq.html
https://docs.amd.com/r/en-US/ug892-vivado-design-flows-overview
https://docs.amd.com/r/en-US/ug892-vivado-design-flows-overview
https://docs.amd.com/v/u/2019.1-English/ug906-vivado-design-analysis
https://docs.amd.com/v/u/2019.1-English/ug906-vivado-design-analysis
https://www.mathworks.com/help/hdlcoder/ug/define-and-register-custom-board-and-reference-design-for-zynq-workflow.html
https://www.mathworks.com/help/hdlcoder/ug/define-and-register-custom-board-and-reference-design-for-zynq-workflow.html
https://www.mathworks.com/help/hdlcoder/ug/define-and-register-custom-board-and-reference-design-for-zynq-workflow.html

References

custom-board-and-reference-design-for-zynq-workflow.html (visited on
04/26/2024).

[40] The Mathworks Inc. Distributed Pipelining: Speed Optimization. url: https://
www . mathworks . com/ help / hdlcoder / ug / distributed- pipelining - speed -

optimization.html (visited on 04/27/2024).

[41] STMicroelectronics. STM32F303xD STM32F303xE. Datasheet. Oct. 2016. url:
https://www.st.com/resource/en/datasheet/stm32f303re.pdf.

[42] STMicroelectronics. STM32CubeIDE. Integrated Development Environment for
STM32. url: https://www.st.com/en/development-tools/stm32cubeide.html
(visited on 05/17/2024).

[43] Digilent Inc. ZED. Zedboard Schematic. June 2020. url: https : / / digilent .

com/reference/_media/reference/programmable-logic/zedboard/zedboard-

schematic-rev-e1-public.pdf.

73

https://www.mathworks.com/help/hdlcoder/ug/define-and-register-custom-board-and-reference-design-for-zynq-workflow.html
https://www.mathworks.com/help/hdlcoder/ug/define-and-register-custom-board-and-reference-design-for-zynq-workflow.html
https://www.mathworks.com/help/hdlcoder/ug/define-and-register-custom-board-and-reference-design-for-zynq-workflow.html
https://www.mathworks.com/help/hdlcoder/ug/distributed-pipelining-speed-optimization.html
https://www.mathworks.com/help/hdlcoder/ug/distributed-pipelining-speed-optimization.html
https://www.mathworks.com/help/hdlcoder/ug/distributed-pipelining-speed-optimization.html
https://www.st.com/resource/en/datasheet/stm32f303re.pdf
https://www.st.com/en/development-tools/stm32cubeide.html
https://digilent.com/reference/_media/reference/programmable-logic/zedboard/zedboard-schematic-rev-e1-public.pdf
https://digilent.com/reference/_media/reference/programmable-logic/zedboard/zedboard-schematic-rev-e1-public.pdf
https://digilent.com/reference/_media/reference/programmable-logic/zedboard/zedboard-schematic-rev-e1-public.pdf

Appendices

A Simulated values - Average and Apparent Power

Figure 38: Power Comparison

B Simulated RMS values

Figure 39: RMS Comparison

C Measured results with window change

Figure 40: Measured result with window change

Figure 41: Measured result with window change

D FIL Simulation Compare subsystem

Figure 42: FIL Simulation Compare subsystem

E HDL Coder Workflow Advisor example walktrough

Figure 43: HDL Coder Workflow Advisor step 1.1

Figure 44: HDL Coder Workflow Advisor step 1.2

Figure 45: HDL Coder Workflow Advisor step 1.3

Figure 46: HDL Coder Workflow Advisor step 1.4

Figure 47: HDL Coder Workflow Advisor step 3.2

F script hdlcoder board customization.m for registering
custom reference design

1 function r = hdlcoder_board_customization

2 % Board plugin registration file

3 % 1. Any registration file with this name on MATLAB path will

be picked up

4 % 2. Registration file returns a cell array pointing to the

location of

5 % the board plug -ins

6 % 3. Board plugin must be a package folder accessible from

MATLAB path ,

7 % and contains a board definition file

8
9 % Copyright 2012 -2018 The MathWorks , Inc.

10
11 r = { ...

12 'ZCU102.plugin_board ', ...

13 'ZynqZC702.plugin_board ', ...

14 'ZynqZC706.plugin_board ', ...

15 'ZedBoard.plugin_board ', ...

16 'my_zedboard.plugin_board ', ...

17 'my_zedboard_temp.plugin_board ',

18 'my_zedboard2.plugin_board ', ...

19 'XADCDemo.plugin_board ', ...

20 'ZedBoard_xadc.plugin_board ', ...

21 'ZedBoard_xadc_stream.plugin_board ', ...

22 'ZedBoardxadcstream.plugin_board ', ...

23 };

24
25 end

26 % LocalWords: Zynq ZC ZCU

G script hdlcoder ref design customization.m for register-
ing custom reference design

1 function [rd, boardName] = hdlcoder_ref_design_customization

2 % Reference design plugin registration file

3 % 1. The registration file with this name inside of a board

plugin folder

4 % will be picked up

5 % 2. Any registration file with this name on MATLAB path will

also be picked up

6 % 3. The registration file returns a cell array pointing to

the location of

7 % the reference design plugins

8 % 4. The registration file also returns its associated board

name

9 % 5. Reference design plugin must be a package folder

accessible from

10 % MATLAB path , and contains a reference design definition

file

11
12 % Copyright 2012 -2018 The MathWorks , Inc.

13
14 rd = {...

15 'ZedBoard_xadc.vivado_base_2018_2.plugin_rd ', ...

16 'ZedBoard_xadc.vivado_stream_2018_2.plugin_rd ', ...

17 };

18
19 boardName = 'ZedBoard xadc ';

20
21 end

22 % LocalWords: Zynq ZC edk vivado

H script plugin baord.m for registering custom reference
design

1 function hB = plugin_board ()

2 % Board definition

3
4 % Copyright 2012 -2014 The MathWorks , Inc.

5
6 % Construct board object

7 hB = hdlcoder.Board;

8
9 hB.BoardName = 'ZedBoard xadc ';

10
11 % FPGA device information

12 hB.FPGAVendor = 'Xilinx ';

13 hB.FPGAFamily = 'Zynq ';

14 hB.FPGADevice = 'xc7z020 ';

15 hB.FPGAPackage = 'clg484 ';

16 hB.FPGASpeed = '-1';

17
18 % Tool information

19 hB.SupportedTool = {'Xilinx Vivado '};

20
21 % FPGA JTAG chain position

22 hB.JTAGChainPosition = 2;

23
24 %% Add interfaces

25 % Standard "External Port" interface

26 hB.addExternalPortInterface(...

27 'IOPadConstraint ', {'IOSTANDARD = LVCMOS18 '});

28
29 % Custom board external I/O interface

30 hB.addExternalIOInterface(...

31 'InterfaceID ', 'LEDs General Purpose ', ...

32 'InterfaceType ', 'OUT', ...

33 'PortName ', 'GPLEDs ', ...

34 'PortWidth ', 8, ...

35 'FPGAPin ', {'T22', 'T21', 'U22', 'U21', 'V22', '

W22', 'U19', 'U14'}, ...

36 'IOPadConstraint ', {'IOSTANDARD = LVCMOS33 '});

37
38 hB.addExternalIOInterface(...

39 'InterfaceID ', 'DIP Switches ', ...

40 'InterfaceType ', 'IN', ...

41 'PortName ', 'DIPSwitches ', ...

42 'PortWidth ', 8, ...

43 'FPGAPin ', {'F22', 'G22', 'H22', 'F21', 'H19', '

H18', 'H17', 'M15'}, ...

44 'IOPadConstraint ', {'IOSTANDARD = LVCMOS25 '});

45
46 hB.addExternalIOInterface(...

47 'InterfaceID ', 'Push Buttons L-R-U-D-S', ...

48 'InterfaceType ', 'IN', ...

49 'PortName ', 'PushButtons ', ...

50 'PortWidth ', 5, ...

51 'FPGAPin ', {'N15', 'R18', 'T18', 'R16', 'P16'}, ...

52 'IOPadConstraint ', {'IOSTANDARD = LVCMOS25 '});

53
54 hB.addExternalIOInterface(...

55 'InterfaceID ', 'Pmod Connector JA1', ...

56 'InterfaceType ', 'INOUT ', ...

57 'PortName ', 'PmodJA1 ', ...

58 'PortWidth ', 8, ...

59 'FPGAPin ', {'Y11', 'AA11 ', 'Y10', 'AA9', 'AB11 ', '

AB10 ', 'AB9', 'AA8'}, ...

60 'IOPadConstraint ', {'IOSTANDARD = LVCMOS33 '});

61
62 hB.addExternalIOInterface(...

63 'InterfaceID ', 'Pmod Connector JB1', ...

64 'InterfaceType ', 'INOUT ', ...

65 'PortName ', 'PmodJB1 ', ...

66 'PortWidth ', 8, ...

67 'FPGAPin ', {'W12', 'W11', 'V10', 'W8', 'V12', 'W10

', 'V9', 'V8'}, ...

68 'IOPadConstraint ', {'IOSTANDARD = LVCMOS33 '});

69
70 hB.addExternalIOInterface(...

71 'InterfaceID ', 'Pmod Connector JC1', ...

72 'InterfaceType ', 'INOUT ', ...

73 'PortName ', 'PmodJC1 ', ...

74 'PortWidth ', 8, ...

75 'FPGAPin ', {'AB7', 'AB6', 'Y4', 'AA4', 'R6', 'T6',

'T4', 'U4'}, ...

76 'IOPadConstraint ', {'IOSTANDARD = LVCMOS33 '});

77
78 hB.addExternalIOInterface(...

79 'InterfaceID ', 'Pmod Connector JD1', ...

80 'InterfaceType ', 'INOUT ', ...

81 'PortName ', 'PmodJD1 ', ...

82 'PortWidth ', 8, ...

83 'FPGAPin ', {'V7', 'W7', 'V5', 'V4', 'W6', 'W5', '

U6', 'U5'}, ...

84 'IOPadConstraint ', {'IOSTANDARD = LVCMOS33 '});

I script plugin rd for registering custom reference design

1 function hRD = plugin_rd ()

2 % Reference design definition

3
4 % Copyright 2014 -2020 The MathWorks , Inc.

5
6 % Construct reference design object

7 hRD = hdlcoder.ReferenceDesign('SynthesisTool ', 'Xilinx

Vivado ');

8
9 hRD.ReferenceDesignName = 'Default system ';

10 hRD.BoardName = 'ZedBoard xadc ';

11
12 % Tool information

13 hRD.SupportedToolVersion = {'2018.2 ','2018.3 ','2019.1 ','

2019.2 ','2020.1 '};

14
15 %% Add custom design files

16 % add custom Vivado design

17 hRD.addCustomVivadoDesign(...

18 'CustomBlockDesignTcl ', 'system_top.tcl', ...

19 'VivadoBoardPart ', 'em.avnet.com:zed:part0 :1.0 ');

20
21 %% Add custom files and constraint files

22
23 %% Add interfaces

24 % add clock interface

25 hRD.addClockInterface(...

26 'ClockConnection ', 'core_clkwiz/clk_out1 ', ...

27 'ResetConnection ', 'sys_core_rstgen/

peripheral_aresetn ',...

28 'DefaultFrequencyMHz ', 50,...

29 'MinFrequencyMHz ', 5,...

30 'MaxFrequencyMHz ', 500,...

31 'ClockModuleInstance ', 'core_clkwiz ',...

32 'ClockNumber ', 1);

33
34 % add AXI4 and AXI4 -Lite slave interfaces

35 hRD.addAXI4SlaveInterface(...

36 'InterfaceConnection ', 'axi_cpu_interconnect/M00_AXI ', ...

37 'BaseAddress ', '0x400D0000 ', ...

38 'MasterAddressSpace ', 'sys_cpu/Data ');

39
40 hRD.DeviceTreeName = 'devicetree_axilite_iio.dtb';

41
42 % add interface to additional IP in the reference design

43 hRD.addInternalIOInterface(...

44 'InterfaceID ', 'Output data bus (XADC DRP)', ...

45 'InterfaceType ', 'IN', ...

46 'PortName ', 'XADC_DO_OUT ', ...

47 'PortWidth ', 16, ...

48 'InterfaceConnection ', 'xadc_wiz_0/do_out ');

49 hRD.addInternalIOInterface(...

50 'InterfaceID ', 'Data ready signal (XADC DRP)', ...

51 'InterfaceType ', 'IN', ...

52 'PortName ', 'XADC_DRDY_OUT ', ...

53 'PortWidth ', 1, ...

54 'InterfaceConnection ', 'xadc_wiz_0/drdy_out ');

55 hRD.addInternalIOInterface(...

56 'InterfaceID ', 'Address bus (XADC DRP)', ...

57 'InterfaceType ', 'OUT', ...

58 'PortName ', 'XADC_DADDR_IN ', ...

59 'PortWidth ', 7, ...

60 'InterfaceConnection ', 'xadc_wiz_0/daddr_in ');

61 hRD.addInternalIOInterface(...

62 'InterfaceID ', 'Enable signal (XADC DRP)', ...

63 'InterfaceType ', 'OUT', ...

64 'PortName ', 'XADC_DEN_IN ', ...

65 'PortWidth ', 1, ...

66 'InterfaceConnection ', 'xadc_wiz_0/den_in ');

67
68
69 % LocalWords: Zynq ZC vlnv xilinx zynq zc AXI axi Addr wiz

aresetn IPCORE

70 % LocalWords: avnet devicetree axilite dtb Vivado

J Top level of generated model for Embedded Coder and
measured data transfer

Figure 48: Top level of generated model for Embedded Coder and measured data transfer.

K Submodule AXI4SlaveRead of generated model

Figure 49: Submodule AXI4SlaveRead of generated model

	Abstract
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Assignment objectives

	Power theory
	Model Based Design
	Fixed vs Floating point arithmetic's
	Floating point representation
	Fixed point

	Elementary function computation methods
	CORDIC
	Derivation of equations for the trigonometric functions
	Extension into hyperbolic function
	Proposed CORDIC Core for Square Root

	Newton Raphson Interpolation
	Newton Raphson theory and equations
	Proposed Newton Raphson inverse square root model

	Chebyshev approximation
	Approximation theory
	Proposed Chebyshev structure for Square root

	Horner's Method
	Comparison of Algorithms

	Proposed Power sensor architecture
	Design overview
	Top level
	Sample count block
	Window calculation block
	Precomputation for the reciprocal Newton Raphson method
	Reciprocal Newton Raphson block

	Power Average block
	Effective value block
	Top level
	RMS Core submodule
	Shifter left submodule

	Apparent Power
	Simulation results

	Introduction to Zedboard
	Zedboard Introduction
	

	Design Validation on FPGA
	FPGA implementation
	XADC introduction
	Zynq SoC Implementation Workflow
	Registering custom reference design
	XADC instantiating
	XADC interface
	Top level of Implemented design

	Measured results with implemented design
	Further Improvements
	Conclusion
	Appendices
	Simulated values - Average and Apparent Power
	Simulated RMS values
	Measured results with window change
	FIL Simulation Compare subsystem
	HDL Coder Workflow Advisor example walktrough
	script hdlcoder_board_customization.m for registering custom reference design
	script hdlcoder_ref_design_customization.m for registering custom reference design
	script plugin_baord.m for registering custom reference design
	script plugin_rd for registering custom reference design
	Top level of generated model for Embedded Coder and measured data transfer
	Submodule AXI4SlaveRead of generated model

