
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Microelectronics
Study major: Electronics and Communication

I3C Controller Design for RISC-V
Processor

MASTER’S THESIS

Author: Bc. Tomáš Bánok
Supervisor: prof. Ing. Jiří Jakovenko, Ph.D.
Year: 2024

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

491843 Personal ID number: Bánok Tomáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Microelectronics

Electronics and Communications Study program:

Electronics Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

I3C Controller Design for RISC-V Processor

Master’s thesis title in Czech:

Návrh řadiče I3C pro procesor RISC-V

Guidelines:

1. Get familiar with the concept of data transfer over a serial interface using I2C and I3C protocols.
2. Design an I3C bus controller IP block on a system level as a peripheral for a RISC-V processor; implement the protocol
according to a freely available interface specification.
3. Implement the block in VHDL on the RTL level; use the chosen FPGA platform for the physical implementation.
4. Verify the correct operation of the block using digital simulation.
5. Discuss the results and compare the complexity of implementing the controller for I2C and I3C interfaces.

Bibliography / sources:

[1] ŠŤASTNÝ Jakub. FPGA Prakticky, BEN Prague 2010
[2] MIPI I3C Basic v1.1.1 - bus specification
[3] NXP Semiconductors. I2C Bus specification and user manual, [online]. Rev. v.7 (1.10.2021) Available at:
https://www.nxp.com/docs/en/user-guide/UM10204.pdf

Name and workplace of master’s thesis supervisor:

prof. Ing. Jiří Jakovenko, Ph.D. Department of Microelectronics FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 24.05.2024 Date of master’s thesis assignment: 13.02.2024

Assignment valid until: 21.09.2025

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Pavel Hazdra, CSc.

Head of department’s signature
prof. Ing. Jiří Jakovenko, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Declaration

I hereby declare that I have written the submitted thesis independently and all used resources
have been cited in bibliography.

Prague,
Bc. Tomáš Bánok

Acknowledgement

I would like to thank my supervisor prof. Ing. Jiří Jakovenko, Ph.D. for valuable advice in the
development of this thesis. I also wish to thank my ASICentrum s.r.o. colleagues for their patience,
guidance and support, in particular Ing. Jakub Šťastný, Ph.D. Lastly, I would like to thank my
family for their support during my studies.

Bc. Tomáš Bánok

Title:
I3C Controller Design for RISC-V Processor

Author: Bc. Tomáš Bánok

Study major: Electronics and Communication
Type: Master’s thesis

Supervisor: prof. Ing. Jiří Jakovenko, Ph.D.

Abstract: This thesis deals with the RTL design and implementation of an I3C Controller
peripheral for a system with a RISC-V processor core. The thesis describes the
I3C protocol with its main features, including backward compatibility with
its predecessor, I2C, from a freely available specification. From the specifica-
tion, the supported features of the protocol have been selected and a system
peripheral design has been written. The individual blocks of the peripheral
were implemented in VHDL and tested with the RISC-V system. To verify the
communication, an I3C Target Agent was created, acting as a Target device
connected to the I3C bus. For timing verification, the Controller was synthe-
sized and implemented for the FPGA. The generated netlist was used for gate
level simulation of the peripheral.

Keywords: VHDL, I3C, Controller, SDR-only, RISC-V, AHB, FPGA

Contents

List of Acronyms xi

List of Figures xiii

List of Tables xiv

1 Introduction 1

2 I3C Protocol 3
2.1 Introduction . 3
2.2 Start, Stop, and other patterns . 4
2.3 Address header . 6
2.4 Private transactions . 7
2.5 SDA handoffs . 7
2.6 CCC bytes . 9

2.6.1 Dynamic Addressing . 9
2.6.2 In-band Interrupts, Hot-Joins, Resets . 11

2.7 Backwards Compatibility . 11
2.8 Power Efficiency . 12

3 System Level Design 15
3.1 System design . 15
3.2 SW/HW decomposition . 16
3.3 Resets . 17
3.4 Clocks . 17
3.5 I3C Controller interface . 18
3.6 Differentiating Addresses from Data . 18
3.7 Supported Command Codes . 19
3.8 Error recovery . 21

4 RTL Design 23
4.1 Clock gating, resets . 23
4.2 Counters . 24
4.3 Register map wrapper . 24
4.4 FIFO memories . 25
4.5 FIFO Address registers . 25
4.6 Interrupt controller . 26
4.7 I3C Controller registers . 27
4.8 Control block . 40
4.9 Shift register . 42
4.10 IBI shift register . 42
4.11 SCL clock generation . 43

4.11.1 Transmission Control . 43
4.11.2 Read Counter . 44
4.11.3 Elemental Use Cases . 44

5 Verification 47
5.1 Verification Plan . 47
5.2 I3C Target Agent . 48
5.3 Use cases . 53

5.3.1 Initial configuration . 53
5.3.2 Basic I3C SDR write . 54
5.3.3 Basic I3C SDR read . 54

viii

Contents ix

5.3.4 Legacy I2C write . 55
5.3.5 Delayed I3C SDR read/write transaction . 55
5.3.6 Broadcast CCC transfer . 56
5.3.7 Dynamic Address Assignment . 56

5.4 Tests . 57
5.5 Coverage . 58

6 Implementation 61
6.1 Physical design parameters . 61
6.2 Gate Level Simulation . 62

7 Conclusions, Next Steps 63

Bibliography 65

Used software 66

RTL codes 67

List of Acronyms

ACK Acknowledge

AHB Advanced High-Performance Bus

AMBA Advanced Microcontroller Bus Architecture

ASIC Application Specific Integrated Circuit

BCR Bus Characteristic Register

BT Bulk Transport

CCC Common Command Code

CEx Controller Error x

CPU Central Processing Unit

DAA Dynamic Address Assignment

DCR Device Characteristic Register

DDR Double Data Rate

DFF D Flip-Flop

FF Flip-Flop

FIFO First In First Out

FPGA Field Programmable Gate Aray

FSM Finite State Machine

Fm Fast Mode

GSL Gate Level Simulation

HDR High Data Rate

High-Z High impedance

I2C Inter Integrated Circuit

I3CC I3C Controller

I3C Improved Inter Integraded Circuit

IBI In-Band Interrupt

LSB Least Significant Bit

MIPI Mobile Industry Processor Interface

ML Multi-Lane

MSB Most Significant Bit

xi

xii List of Acronyms

NACK Not Acknowledge

PEx Peripheral Error x

PID Provisioned ID

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

RnW Read / non-Write

Rx Receive

SCL Serial Clock Line

SDA Serial Data Line

SDR Standard Data Rate

SPI Serial Peripheral Interface

T-bit Transition Bit

TB Test Bench

TEx Target Error x

LUT Look Up Table

TSL Ternary Symbol Legacy-inclusive-bus

TSP Ter nary Symbol Pure-bus

Tx Transmit

UART Universal Asynchronous Receiver-Transmitter

UVM Universal Verification Methodology

List of Figures

2.1 I3C mixed bus . 4
2.2 I3C Start, Stop conditions . 5
2.3 I3C Restart pattern . 5
2.4 I3C HDR Restart pattern . 6
2.5 I3C HDR Exit pattern . 6
2.6 Address arbitration, controller wins and receives ACK 6
2.7 Address arbitration, target wins and receives ACK 6
2.8 Address arbitration, target wins and receives NACK 7
2.9 SDA handoff during address ACK when writing . 8
2.10 CCC transfers . 9
2.11 Dynamic Address Assignment using ENTDAA . 10
2.12 RSTDAA CCC format . 10
2.13 SETAASA CCC format . 10
2.14 SETDASA CCC format . 11
2.15 SETNEWDA CCC format . 11
2.16 Typical transaction on the I3C bus. 12
2.17 Bitrates for 12.5 MHz clock . 12
2.18 Effective energy range per 1 kB (𝜇J) . 13

3.1 Diagram of the I3C Controller peripheral . 15

4.1 Diagram of the I3C Controller peripheral . 23
4.2 Clock gating cell . 23
4.3 Register map wrapper diagram . 24
4.4 FIFO memory diagram . 25
4.5 FIFO full and empty conditions . 26
4.6 I3CC CR1 register . 27
4.7 I3CC CR2 register . 28
4.8 I3CC stat1 register . 28
4.9 I3CC stat2 register . 30
4.10 I3CC DAA register . 31
4.11 I3CC IBI register . 31
4.12 I3CC TxFIFO data register . 32
4.13 I3CC TxFIFO ptr register . 33
4.14 I3CC RxFIFO data register . 34
4.15 I3CC RxFIFO ptr register . 34
4.16 I3CC Timing 0 register . 35
4.17 I3CC Timing 1 register . 36
4.18 I3CC Timing 2 register . 37
4.19 I3CC IRQ fl register . 37
4.20 I3CC IRQ en register . 38
4.21 START condition timings . 39
4.22 STOP condition timing . 39
4.23 SCL timings . 39
4.24 SDA setup timings . 39
4.25 Diagram of the Control block . 40
4.26 SCL high delay caused by the Control FSM . 40
4.27 State diagram of the Control FSM . 41

xiii

4.28 I3C shift register . 42
4.29 State diagram of the SCL Gen FSM . 43
4.30 SCL Generator delays . 43
4.31 State diagram of the Transmit FSM . 44

5.1 Test bench structure . 47
5.2 I3C Target Agent main loop . 48
5.3 I3C Target Agent Get Address fork . 49
5.4 I3C Target Agent Data Read fork . 50
5.5 I3C Target Agent Data Write fork . 51
5.6 I3C Target Agent Dynamic Address Assignment fork 52
5.7 Code coverage of the peripheral . 59
5.8 Code coverage by type of metric . 59
5.9 Code coverage of the peripheral with applied waiver 60
5.10 Code coverage by type of metric with applied waiver 60

6.1 Timing report of the generated FPGA netlist . 61
6.2 FPGA utilization by the peripheral . 61
6.3 Inputs of a LUT in a gate level simulation . 62
6.4 Delay inserted into the ahb_hwdata[31:0] signal for gate level simulations 62

List of Tables

2.1 Roles of I3C compatible devices (copied from MIPI [1]). 4

3.1 I3C Controller interface - generics . 18
3.2 I3C Controller interface - signals . 18
3.3 Supported CCC commands . 19
3.4 Unsupported CCC commands . 20
3.5 SDR Controller Error Types . 21

4.1 Interrupt sources . 26

5.1 Relevant delays of the Pad Model . 48

xiv

Chapter 1

Introduction

The goal of this master’s thesis is to design an I3C Controller peripheral for a RISC-V platform.
The peripheral is designed to implement the freely available I3C protocol specification [1] released
by the MIPI organization.

First, the I3C protocol specification was studied and a system level design was prepared,
which acted as a general guide for designing the peripheral. The system level design contains the
functionality the Controller was desired to fulfill. After this step, the Register Transfer Level (RTL)
design was written in VHDL. An I3C Target Agent was developed in System Verilog to simulate
a Target alongside the peripheral to verify its functioning in RTL simulations. The design was
gradually verified during its design phase, as each new feature needed to be debugged. The generic
use cases of the peripheral were also finalized at this time.

After all of the necessary features were implemented, the I3C Controller was imported into
Xilinx Vivado tool for synthesis and implementation on an FPGA to generate a netlist and an
accompanying simulation delay file for a Gate Level Simulation (GLS) of the peripheral to prove
that the design can be implemented and works as expected.

1

Chapter 2

I3C Protocol

2.1 Introduction
The Improved Inter Integrated Circuit (I3C) is a serial half-duplex communication protocol,

developed by the MIPI Alliance [1]. The I3C protocol is designed to supersede the widely used I2C
protocol developed by Philips Semiconductor in the early 1980s, which is abundant in the realm
of embedded systems.

The protocol defines a bus made of one Serial Clock Line (SCL) and up to four Serial DAta
lines (SDA) which are shared among all of the connected devices. Backward compatibility with I2C
is secured by having a common I3C address, which all I2C devices passively NACK and therefore
remain idle for the rest of the transmission as well as the ability to shorten the Serial Clock high
duration, which will, in turn, make the communication transparent to every I2C device equipped
with a spike filter. The I3C specification defines a mandatory Standard Data Rate (SDR) mode,
which follows an I2C-like communication by sending data in 9-bit frames and multiple optional
High Data Rate (HDR) modes, which transmit data in up to 256-bit long frames.

Main features

• Transmissions up to 12.9 MHz using push-pull outputs,

• interrupts, hot-joining and reset with no additional wires required,

• higher bandwidth while maintaining lower power consumption,

• dynamic addressing of target devices,

• backwards compatibility with I2C devices1,

• grouping of multiple targets with a common address,

• optional High Data Rate (HDR) messaging.

Devices on the bus fall into one of two categories – either the device is a Controller or a Target.
Controllers manage the SCL clock generation, are in control of addressing Targets, and generally
control the flow of data on the bus. Targets listen to the communication on the bus and act on the
addresses and instructions sent by Controllers. An example of an I3C bus can be seen in Figure
2.1, where multiple devices are connected to the same bus. The I3C devices can additionally be
separated into subcategories listed in Table 2.1 based on their role on the bus.

1I3C forbids the use of clock stretching and 10bit addresses.

3

4 Chapter 2. I3C Protocol

I2C
TARGET

SDA

SCL

I3C
PRIMARY

CONTROLLER

I3C
TARGET

I3C
VIRTUAL
TARGET

I3C TARGET

LEGEND

SHARED PERIPHERAL

I3C
VIRTUAL
TARGET

I3C SECONDARY CONTROLLER

I3C
TARGET
(active)

I3C
CONTROLLER

(not active)

I3C
TARGET

I3C CONTROLLER
(incl. Primary
Controller)

I3C
BRIDGING

or
ROUTING

I3C DEVICE
with multiple roles

I2C TARGET

Figure 2.1: Example of an I3C bus in a mixed state (with I2C devices present). (copied from MIPI [1]).

Device Type Device Role Description

I3C
Controller

I3C Primary Controller Initially configures I3C Bus,
has HDR support

SDR-Only Primary Controller Initially configures I3C Bus,
no HDR support

I3C Secondary Controller Can control the Bus but currently
functioning as Target

SDR-Only Secondary Controller Can control the Bus but currently
functioning as Target, no HDR support

I3C
Target

I3C Target Ordinary I3C Target, no Controller
capability

SDR-Only Target Ordinary I3C Target, no Controller
capability, no HDR support

I2C Target No I3C Controller or I3C Target
capabilities

Table 2.1: Roles of I3C compatible devices (copied from MIPI [1]).

This paper uses the same address notation as the I3C specification, where addresses are spec-
ified as 7 bits in hexadecimal format followed by a Read or Write indication. Three examples are
listed below:

• 7’h7E/W – write to device(s) addressed as 7E (0’b1111110),

• 7’h7E/R – read from device(s) addressed as 7E (0’b1111110),

• 7’h5D/W – write to device(s) addressed as 5D (0b’1011101).
Data uses the usual notation either in binary (0’b1111 1111) or hexadecimal (0xFF) form to
differentiate from addresses.

2.2 Start, Stop, and other patterns
The I3C protocol specifies two conditions – Start and Stop. The Start condition signalizes the

beginning of communication and is required before any data is transmitted over the bus, while the

2.2. Start, Stop, and other patterns 5

Stop pattern indicates the end. Multiple Start patterns can follow after the first one, in which case
they are called Repeated Starts.

After the (repeated) Start pattern, an address is sent over the bus specifying which device the
following data is intended for. Unlike I2C, the Start pattern can be initiated by a Target device if
the bus is idle, generating an In-Band Interrupt.

SDA

SCL

START
condition

(S)

START
condition

(P)

Figure 2.2: The Start and Stop conditions in an I3C transmission.

Additionally, I3C defines three more patterns:

• restart (Figure 2.3),

• HDR Restart (Figure 2.4), and

• HDR Exit (Figure 2.5).

As seen below, all of these patterns are very alike and function similarly. The HDR Restart
is similar to a repeated START in SDR mode, as it marks the boundary between two messages in
HDR mode while the HDR Exit pattern is similar to a STOP in SDR, exiting the HDR mode and
returning to SDR followed by a STOP condition.

The Restart pattern, depending on a configuration of the target, shall either:

a) wake up the target,

b) reset the target’s I3C peripheral,

c) reset the whole chip, or

d) take an action configured by the controller2.

+

Set Up SDA
If Needed

SDA

SCL

Recognize 14 SDA Transitions
while SCL Remains Low

(SDA Ends High)

Take Reset
Action upon
Sr then STOP

STOPSr

Set Up
SCL

Set Up SCL
If Needed

Figure 2.3: I3C Restart pattern (copied from MIPI [1]).

2Depends on the RSTACT CCC sent beforehand to the target(s).

6 Chapter 2. I3C Protocol

SCL

Set Up SDA
If Needed

SDA

Possible
Restart

SCL
Edge
ValidatesSet Up SCL

If Needed

Figure 2.4: I3C HDR Restart pattern (copied from
MIPI [1]).

SDA

SCL

STOP

Fourth
falling
edge

Set Up SCL
for STOP

Set Up SDA
If Needed

Set Up SCL
If Needed

Figure 2.5: I3C HDR Exit pattern (copied from
MIPI [1]).

2.3 Address header
I3C address headers follow the same format as in I2C - either a START or a Repeated START,

followed by 7 bits of address, 1 bit of RnW, and a (N)ACK bit.
I3C expands on this by having the first address header arbitrated, where all devices connected

to the I3C bus can compete over which address is sent onto the bus. Collisions on this address are
prevented by using an open drain mode3, resulting in the lowest address winning.

Depending on which device won the arbitration, the controller can either continue in sending
its data (if it won), ACK/NACK an in-band interrupt, and/or send a repeated Start and repeat
its transmission.

SDA

SCL

START
pattern I3C Address + RnW bit ACK Data

Target
pulls
LOW

Controller sends
in push-pull mode

Figure 2.6: Controller sends a target’s address, target ACKs and controller starts sending data.

SDA

SCL

START
pattern I3C Address + RnW bit ACK Data

Controller
pulls
LOW

Target sends
in push-pull mode

Target driving SDA

Figure 2.7: Controller attempts to send an address, but a different Target wins the address arbitration.
Controller ACKs the In-Band Interrupt and starts receiving data.

3The I3C specification also defines the ability to send a part of the address in push-pull if certain conditions are
met.

2.4. Private transactions 7

SDA

SCL

START
pattern I3C Address + RnW bit NACK + Sr

Controller
NACKs,
sends Sr

Controller
resends
address

I3C Address
+ RnW bit

Target driving SDA

Figure 2.8: Controller attempts to send an address, but a different target wins the address arbitration.
Controller NACKs the In-Band Interrupt, sends a repeated START and transmits the address in push-pull
mode.

2.4 Private transactions

Once an I3C target device has been assigned its dynamic address, the controller can commu-
nicate with the target directly by specifying its address. When a target device has been addressed,
the controller can begin writing to or reading from the target depending on the value of the RnW
bit of the address header. Similarly to I2C, the data is transmitted in 9-bit frames, consisting of 8
data bits plus a 9th T-bit. The T-bit has different functionality depending on whether the target
is being read from (RnW=1) or written to (RnW=0). During writes to the target, the T-bit is
used as a parity bit to verify whether the received byte is valid, whereas during reads its function
is to make sure the target can still manage to send data, and if not, the target can terminate the
communication.

2.5 SDA handoffs

Switching between open drain and push-pull outputs creates a problem with handing off
control of the SDA line(s) to prevent a collision on the bus. The I3C specification defines where
and how a procedure has to be followed to prevent said collisions. Examples of this are:

• transition from address ACK to SDR Controller write data,

• T-bit during SDR read (end-of-data bit),

• preamble in HDR-DDR mode and more.

Generally speaking, these procedures follow one of two ways of ensuring collision free handoffs
of the bus, either:

a) two devices which activities are overlapping each other by both actively driving SDA low for a
short time (Figure 2.9), or

b) one device driving SDA high and switching to high-Z on the next clock edge, allowing the other
device to respond.

8 Chapter 2. I3C Protocol

SDA

SCL

0.3 X VDD

0.7 X VDD

0.3 X VDD

0.7 X VDD

A5A6 A0 RnW ACK D7 D6 D0 T

= Open-Drain Pull-Up class

= High Speed Active Push-Pull Drive

0.3 X VDD

0.7 X VDD

Transition from
Open-Drain to

Push-Pull

SDR Transfer

0.7 X VDD

0.7 X VDD

0.7 X VDD

0.3 X VDD

0.3 X VDD

0.3 X VDD

SDA

CR_SDA

TGT_SDA

SCL

= High-Z by Target

= Open-Drain Pull-Up class by Controller

NOTE:

Open-Drain: Controller releases SDA after a suitable delay from SCL edges

Push-Pull: Controller drives SDA after a suitable delay from SCL edges

*tSCO is depicted for informative purposes only

= Active Drive by Controller or Target

Timing
parameters used

Push-PullOpen-Drain
Open-Drain
or Push-Pull

Push-Pull

SCL clocks are shown identical for OD and PP
even though they differ substantially

C1 C2 C7 C8 C9 C1 C2 C8 C9

C8 C9 C1 C2

D7 D6ACKRnW

tSCO* tSCO* tSU_PPtSU_OD

Figure 2.9: SDA handoff during address ACK when writing (copied from MIPI [1]).

2.6. CCC bytes 9

2.6 CCC bytes

To manage devices connected to the bus, the I3C specification defines a set of Common
Command Codes (CCC), which are 8-bit words that follow the I3C broadcast address (7h’7E/W).
Additionally, these commands can be followed by optional data payload and they can be either
broadcasted to every target (broadcast CCC) or directed at specific ones (direct CCC) depending
on the value of the first bit of the command code.

Vendors can optionally implement their own command code bytes, for which they have dedi-
cated ranges of 0x61-0x7F for broadcast and 0xE0-0xEF for direct command codes.

I3C Broadcast CCC Write

I3C Directed CCC Write

I3C Directed CCC
(0x80 to 0xFE)

T Sr
I3C Target

Address (RnW=0)
ACK

Optional Write
Data

Sr
I3C Target

Address (RnW=0)
ACK

Optional Write
Data

NOTE:

ACK = Acknowledge (SDA Low)
NACK = Not Acknowledge (NACK)
S = START Condition
Sr = Repeated START Condition
P = STOP Condition
T = Transition Bit alternative to ACK/NACK

I3C Broadcast CCC
(0x00 to 0x7F)

T Optional Write Data T Sr or P

T

T
(Sr ..7'h7E)

or P

Previous
transfer

S
I3C Reserved Byte
(7'h7E) (RnW=0)

Sr
I3C Reserved Byte
(7'h7E) (RnW=0)

ACK

ACK

I3C Directed CCC Read

I3C Directed CCC
(0x80 to 0xFE)

T Sr
I3C Target

Address (RnW=1)
ACK

Sr
I3C Target

Address (RnW=1)
ACK

Read Data T

Read Data T
(Sr ..7'h7E)

or P

From Controller to Target

From Target to Controller

Transition Bit
(Parity Bit for CCC Write Data)

Transition Bit
(End-of-Data for CCC Read Data)

LEGEND

ACK

ACK ACK with Handoff

ACK without Handoff

1. Optional Write data can be 0/1/n bytes, based on the CCC
2. Read Data can be 1/n bytes, based on the CCC

Figure 2.10: CCC transfers (copied from MIPI [1]).

2.6.1 Dynamic Addressing

Instead of using a fixed address, I3C devices use dynamic addresses which are assigned by the
controller on the bus. There are multiple benefits to this – multiple devices of the same type can
be assigned their own address, the controller sets the in-band interrupt priority between targets,
and targets can be grouped together with a common address when supported. There are multiple
CCC bytes which can change the target’s address:

∙ ENTDAA

Enter Dynamic Address Assignment. A broadcast CCC indicating to all I3C devices that the
controller is entering the Dynamic Address Assignment procedure.

During the Dynamic Address Assignment (DAA) procedure (Figure 2.11, the bus switches to
an open-drain mode, and all devices compete in an arbitration similar to the address arbitration,
but using the values of their Provisioned ID (PID), Bus Characteristic Register (BCR) and Device
Characteristic Register (DCR) registers instead of an address. In total, these registers form a 64-bit
value which is likely to be unique, as the PID can be either set by the manufacturer or have a
random value.

10 Chapter 2. I3C Protocol

Previous
transfer

ACK = Acknowledge (SDA Low)
NACK = Not Acknowledge (NACK)
S = START Condition
Sr = Repeated START Condition
P = STOP Condition
T = Transition Bit alternative to ACK/NACK
PAR = Parity Bit

S

I3C Modal Broadcast
CCC (ENTDAA)

T

I3C Reserved Byte
(7'h7E) (RnW=0)

Sr
I3C Reserved Byte
(7'h7E) (RnW=1)

ACK
Read Data: 8 Bytes

(48-bit Unique ID, BCR, DCR)
Assign 7-bit Dynamic
Address to the Target

PAR
ACK/
NACK

Sr
I3C Reserved Byte
(7'h7E) (RnW=1)

ACK
Read Data: 8 Bytes

(48-bit Unique ID, BCR, DCR)
Assign 7-bit Dynamic
Address to the Target

PAR
ACK/
NACK

Sr
I3C Reserved Byte
(7'h7E) (RnW=1)

NACK P

Sr
I3C Reserved Byte
(7'h7E) (RnW=0)

Always Push-Pull after Repeated START

Begins in Open Drain; Push-Pull is optional, if

I3C Address Arbitration optimization is used

ACK

ACK

LEGEND

From Target to Controller
(Open-Drain)

Transition Bit
(Parity Bit for CCC)

From Controller to Target
(Push-Pull and/or Open Drain)

ACK
ACK/NACK
(with Handoff)
(Open-Drain)

ACK
ACK/NACK
(without Handoff)

From Controller to Target
(Open-Drain)

Figure 2.11: Dynamic Address Assignment Transaction using ENTDAA (copied from MIPI [1]).

∙ RSTDAA

Reset Dynamic Address Assignment. Broadcast CCC for clearing the dynamic addresses as-
signed to targets.

S

Sr

Broadcast
RSTDAA

CCC
/ T

P

7’h7E
/ W / ACK

Target Addr
/ RnW / ACK

Next CCC

End of this Broadcast CCC

Sr

7’h7E

/ W / ACK

Figure 2.12: RSTDAA CCC format (copied from MIPI [1]).

∙ SETAASA

Set All Addresses to Static Addresses. Broadcast CCC, sets the dynamic addresses of targets
to match their static I2C address if they have one.

S

Sr 7’h7E
/ W / ACK

Target Addr
/ RnW / ACK

Next CCC

End of this Broadcast CCC

7’h7E

/ W / ACK

Broadcast
SETAASA

CCC

/ T Sr

P

Figure 2.13: SETAASA CCC format (copied from MIPI [1]).

∙ SETDASA

Set Dynamic Address from Static Address. Directed CCC, sets a new dynamic address of a
target by first addressing it by its static I2C address.

2.7. Backwards Compatibility 11

Sr

7-bit
Dynamic
Address

/ 1'b0

/ T

Target Addr
(Static)

/ W / ACK

S
Direct

SETDASA
CCC

/ T

Sr

Sr

P

P

Sr
Target Addr
/ RnW / ACK

Next CCC

Repeat to address additional
Targets with this Direct CCC

Describes First Target
End of this Direct CCC

7’h7E
/ W / ACK

7’h7E

/ W / ACK

Figure 2.14: SETDASA CCC format (copied from MIPI [1]).

∙ SETNEWDA

Set New Dynamic Address. Directed CCC, sets a new dynamic address of a target by first
addressing it by its old dynamic address.

P

Sr

Next CCC

New 7-bit
Dynamic
Address

/ 1'b0

/ T

Target Addr
(Current)
/ W / ACK

S

Sr

7’h7E

/ W / ACK

Direct
SETNEWDA

CCC

/ T

Sr

Sr

P

7’h7E
/ W / ACK

Target Addr
/ RnW / ACK

Describes First Target
End of this Direct CCC

Repeat to address additional
Targets with this Direct CCC

Figure 2.15: SETNEWDA CCC format (copied from MIPI [1]).

2.6.2 In-band Interrupts, Hot-Joins, Resets
Instead of having to route additional lines for interrupts and resets for some or every target,

I3C defines a way of transmitting them over the bus. The major benefit of this approach is lower
costs associated with PCB manufacturing, as fewer traces need to be routed between chips.

Targets that support In-Band Interrupts (IBI) can compete to send their address onto the
bus during address arbitration. If a target wins, the controller knows which device has sent the
interrupt and can choose to service it and optionally receive data. Target devices can also pull
down the SDA line when the bus is idle, generating a START pattern instead of waiting until a
controller sends a START, cutting down the time between an interrupt event happening in a target
and the controller being notified.

2.7 Backwards Compatibility
Due to the significant similarity between I3C SDR Mode and the I2C protocol in terms of

procedures and conditions, many I3C devices and legacy I2C Target devices can coexist on the
same I3C bus. The I3C specification defines that any legacy I2C Target on the I3C bus is:

• required to not use clock stretching,

• required to support at least I2C Fm speed (400 kbit/s) and

• desired to have a 50 ns spike filter.

Clock stretching is a feature in the I3C protocol in which Target devices can pull down the
open drain SCL line to slow down communication. The use of this feature is strictly prohibited on
the I3C bus due to the SCL line being driven with push-pull outputs by the I3C Controller.

12 Chapter 2. I3C Protocol

Any communication over the I3C bus is made transparent to all legacy I2C Target by using
the 7’h7E I3C broadcast address, as every I2C Target will see it as an address of another device
and wait for the next START condition.

Additionally, if the connected legacy I2C Targets are equipped with a 50 ns SCL spike filter,
then the I3C Controller can take advantage of this by reducing its SCL tHIGH period to less than
50 ns. This approach will make all I3C transactions transparent to the legacy I2C Target, as it will
not see any clocking of the SCL line.

2.8 Power Efficiency
According to a white paper Achieving Power Efficiency in IoT Devices with MIPI I3C®

released by MIPI ([2]), the largest contributors to power consumption in the I3C bus are:
1. Shoot-through current of the push-pull pads, which happens during line transitions. De-

termined by technology used for the output pads.

2. Charging/discharging of bus capacitance, which is a sum of the bus wire capacitance
and input/output pads capacitance.

3. Current through the pull-up resistor, which is only present when the SDA line is driven
low when the pull-up is enabled.

Power-Efficient Push-Pull Mode

0.4µs 0.8µs 1.2µs 1.6µs 2.0µs 2.4µs 2.8µs 3.2µs 3.6µs

No Power Drain on SDA

SDA

RnW Repeated
START

7h E I3C Reserved Address

0.0µs 0.4µs 0.8µs 1.2µs 1.6µs 2.0µs 2.4µs 2.8µs 3.2µs 3.6µs 4.0µs

ACKACKSTART

SCL

Open Drain Push-Pull

Figure 2.16: Typical I3C data transfer (MIPI, [2])

This shift to push-pull is noticeable in both the throughput of data (Figure 2.17), as well as
the energy needed to transmit 1 kB of data on the bus (Figure 2.18).

0

5

10

15

20

25

30

35

40

45

HDR-BT HDR-TSP HDR-TSL HDR-DDR SDR I2C 1 MHz

RAW EFFECTIVE

Figure 2.17: Bitrates for 12.5 MHz clock in Mbps compared to I2C (MIPI [2])

2.8. Power Efficiency 13

0

1

2

3

4

5

6

7

8

9

10

HDR-TSP HDR-TSL DDR SDR I2C 1 MHz

MIN AVG MAX

Figure 2.18: Effective energy range per 1 kB (𝜇J) compared to I2C (MIPI [2])

When the controller sends the I3C Broadcast address, the SDA line must be kept in open
drain mode, because the address is arbitrable. This part of the transaction has to run at a slower
SCL clock due to the slow open drain rising edge of SDA. After a Target ACKs the I3C Broadcast
address, the Controller can then switch to the faster, more efficient push-pull mode. This transition
eliminates the current through the pull-up resistor, as it is not used on the bus, with the exception
of some SDA line handoffs and the Dynamic Address Assignment procedure. This drastically
lowers the power consumption of the bus (Figure 2.18) while also increasing the maximum data
throughput (Figure 2.17).

Chapter 3

System Level Design

This chapter outlines the general requirements and functionality of the designed I3C Con-
troller IP core. The core is to be implemented into and tested with a RISC-V platform utilizing
the CV32E40P core. The platform had an I2C Master block, whose functionality will be superseded
by the I3C Controller block.

I3C Controller peripheral

sys_rst_n
ck_sys_bus

ck_sys_bus_req
i3c_busy
i3c_irq

ahb_hclk
ahb_hsel

ahb_hwrite
ahb_haddr
ahb_htrans
ahb_hsize

ahb_hwdata
ahb_hready_in

ahb_hready_out
ahb_hresp
ahb_hrdata

system clocks,
resets, IRQ

AHB interface

I3C interface

scl_in
scl_out
scl_oe
sda_in

sda_out
sda_oe

Figure 3.1: Diagram of the I3C Controller peripheral.

3.1 System design
We lay the following requirements of the design:

• The peripheral shall be backwards compatible with I2C devices and support operating in a
mixed bus.

• The peripheral shall support I3C SDR transmissions up to 12.9 MHz.

• The peripheral shall support legacy I2C Fast mode+ transmissions up to 1 MHz.

• The designed I3C controller is to be a low-level block capable of handling basic tasks (data
Tx, Rx), but reliant on software for higher level functions, such as address assignment, group
addressing and responding to In-Band Interrupts.

• The In-Band Interrupts and Hot-Join requests will be handled by the CPU through polling
or an interrupt, after which the CPU will instruct the peripheral on which action to take.

15

16 Chapter 3. System Level Design

• The peripheral shall not support handling over the role of the active controller, as it is
intended to be used in a single controller design. This decision was made as implementation
would result with the need to incorporate an I3C Target into the peripheral as well.

• The generated Serial Clock signal high and low periods shall be independently configurable
to allow for a programmable duty cycle, allowing the I3C communication to be transparent
to I2C targets with a 50 ns spike filter.

• The outgoing and incoming data shall be be stored in generically sized FIFO memories,
whose contents are to be accessible by the CPU through the register map. These memories
shall indicate whether they are full, empty, or have reached a watermark value.

• The peripheral shall be synchronous with the system clock and all necessary timings are to
be configurable on the fly by the CPU as multiples of the system clock period.

• Most of the peripheral shall be held in reset while in idle state, such as any Finite State
Machines (FSM). The exception to this are parts of the register map, such as the timing
registers, FIFO memories or the enable register.

• The peripheral shall use clock gating to lower the power consumption while the peripheral
is not used. The peripheral will also gate clocks to its internal blocks that are not directly
accessed or used.

• The peripheral shall use the AMBA AHB-lite interface to communicate with the CPU, as it
is already present in the RISC-V platform.

• The SDA pad driver shall be weaker or configurable to be weaker than of the connected Target
devices to detect collisions on the bus when in push-pull mode. Alternatively, a different
method of detecting collisions shall be incorporated into the design.

3.2 SW/HW decomposition
The Controller shall be designed to be a low-level I3C Controller, i.e. handling only the most

elemental tasks. The Controller hardware shall be capable of:

• generating patterns and conditions (START, STOP, restart, etc.),

• sending and receiving 8 data bits + (N)ACK bit (addresses and legacy I2C transactions),

• sending and receiving 8 data bits + T-bit (I3C transactions),

• automatic repeated START insertion before addresses,

• enter Dynamic Address Assignment procedure, and

• receiving In-Band Interrupts through Address Arbitration and START condition.

To future-proof the design, it was decided that all higher-level behavior is to be implemented
in software. This means that the designed peripheral is capable of handling basic data transfers
independently on any higher-level protocol transfers happening on the bus.

This design direction makes the Controller easy to reconfigure or to extend its functions using
the embedded software that controls its operation, while also reducing the number of unused
dedicated logic when a function is not required.

An example of a higher-level feature is Group Addressing, where multiple Targets can be
accessed for data writes with a shared group address. This feature uses the SETGRPA and
RSTGRPA Command Codes for configuration. The Controller transfers these Command Codes
onto the bus without tracking which Target is in which group, as accessing these Targets is con-
ceptually the same as accessing any Target - by their address. In this case, their Group Address
instead of their individual Dynamic Addresses.

The advantages and disadvantages of a low-level peripheral can be summarized as:

+ smaller footprint of the peripheral,

+ higher level functions can be easily updated or extended,

3.3. Resets 17

+ quicker RTL development and verification,

- increased software complexity,

- in some cases the reaction time of the controller can be larger than if it were all implemented
in dedicated logic.

3.3 Resets
The peripheral has two asynchronous reset signals - rst_n and rst_n_soft. The rst_n is driven

from the sys_rst_n, which is the RISC-V platform’s reset signal and resets the whole peripheral.
The peripheral presumes that the sys_rst_n signal is synchronously released and therefore its
resynchronization does not take place in the peripheral.

The soft reset signal is driven by a combination of the rst_n signal and the peripheral en-
able signal stored in the register map. Most of the peripheral uses the soft reset to be held in a
known default state while unused with the exception of the register map and FIFO memories, as
losing the configuration of the peripheral and stored data upon disabling the peripheral would be
counterproductive.

3.4 Clocks
The peripheral is designed to be entirely synchronous to the system’s clock in order to prevent

difficulties that arise with clock domain crossing. In total, the peripheral contains 5 clock signals,
all of which are driven from the system ck_sys_bus clock:

• ck_i3c - the peripheral’s main clock signal, input for the clock gen block,

• ahb_hclk - clock used by the AHB interface,

• ck_i3c_regmap - clock required for parts of the register map accessed by the peripheral,

• ck_i3c_ctrl - clock used for the Control FSM, runs while the peripheral is busy,

• ck_i3c_resync - clock used by the SDA and SCL resynchronizers.

Bus mode Minimum cksys frequency
Legacy I2C 0 MHz
I3C Mixed 293 MHz
I3C Pure 180 kHz

The I3C Pure mode has its minimum frequency limited by the minimum SCL clock frequency
of 10 kHz and the lowest acceptable timings configuration of the peripheral. The I3C Mixed mode
has its minimum frequency limited by the maximum SCL high period of 41 ns. These frequencies
were calculated as:

𝑓ck_sys_min = 𝑡scl_pp_high_min + 3 + 6
𝑡high_max

= 3 + 3 + 6
41 · 10−9 = 293MHz

The +3 and +6 constants are caused by the SCL Gen FSM and Control FSM respectively
and are discussed in sections 4.11 SCL clock generation and 4.8 Control block.

The minimum required frequency of the system clock for a given SCL clock frequency can be
calculated as:

𝑓ck_sys_min = 𝑓SCL · (𝑡scl_pp_high + 3 + 6 + 𝑡scl_pp_low + 3)

18 Chapter 3. System Level Design

3.5 I3C Controller interface

Table 3.1: I3C Controller interface - generics

Generic name Description
G_FIFO_WIDTH_TX Width of the TxFIFO address,

sets the memory size to 2N bytes.
G_FIFO_WIDTH_RX Width of the RxFIFO address,

sets the memory size to 2N bytes.

Table 3.2: I3C Controller interface - signals

Signal name direction reset value Description
sys_rst_n IN System reset, active low
ck_sys_bus IN System clock
ck_sys_bus_req OUT 0 System clock request
i3c_busy OUT 0 Peripheral busy
i3c_irq OUT 0 Interrupt request by the peripheral
ahb_hclk IN AHB system clock
ahb_hsel IN AHB decoded peripheral select
ahb_hwrite IN AHB transfer direction indicator
ahb_haddr[:] IN AHB address
ahb_htrans[1:0] IN AHB transfer type
ahb_hsize[:] IN AHB transfer size
ahb_hwdata[31:0] IN AHB write data
ahb_hready_in IN AHB bus ready
ahb_hready_out OUT 1 Target AHB output ready
ahb_hresp OUT 0 Target AHB bus transfer response
ahb_hrdata[31:0] OUT 0x0000 0000 Target AHB read data
scl_in IN I3C Serial Clock in
scl_out OUT 1 I3C Serial Clock out
scl_oe OUT 0 I3C Serial Clock output enable
sda_in IN I3C Serial Data in
sda_out OUT 1 I3C Serial Data out
sda_oe OUT 0 I3C Serial Data output enable

3.6 Differentiating Addresses from Data
During the conception of the system design of the I3C Controller, it was decided that the

Controller shall not decide itself which byte in the FIFO memory is an address or data to send
onto the bus. This results in an increased software overhead, as it would have to either:

a) queue command regarding START and STOP conditions, or

b) mark addresses in the TxFIFO memory.

The latter approach was chosen, as adding an extra Flag bit to mark addresses is easier
than having to prepare the whole transaction sequence in software, especially in case many short
transactions are queued in the TxFIFO memory.

The TxFIFO memory was enlarged to 9 bits, allowing to store the Flag bit per every byte in
the FIFO memory. During operation, the designed I3C Controller reads the Flag bit and based on
it it either:

3.7. Supported Command Codes 19

• sends data if ’0’, or

• sends address if ’1’ and START condition was sent before this byte, or

• sends a START condition followed by the address.
The Flag bit is stored in the MSB position so as to not interfere with normal data when

writing into the TxFIFO memory.

3.7 Supported Command Codes
The made I3C Controller is designed to handle Command Codes in a generic manner - after

all, it is just data sent to the I3C Broadcast address instead of a specific Target device. This
approach makes handling CCCs reliant on software [controlling] the Controller. Almost all CCCs
are expected to be supported, as long as they do not require hardware to behave in “special” ways.

Of the supported Command Codes listed in Table 3.3, only one requires special handling by
the hardware – ENTDAA (Enter Dynamic Address Assignment). This command is detailed in
Section 2.6.1 Dynamic Addressing. Its implementation requires the hardware to switch its SDA
driver to open drain, lower the SCL clock to open drain timings, and read 64 bits without any
(N)ACKs or T-bit, whereas other Command Codes consist of “normal” data transfer consisting of
8 data bits followed by a T-bit.

Table 3.3: Supported CCC commands

CCC Code CCC Type Command Name Description
0x00 Broadcast ENEC Enable Target event driven interrupts
0x01 Broadcast DISEC Disable Target event driven interrupts
0x02–0x05 Broadcast ENTAS0–5 Set activity state 0–5
0x06 Broadcast RSTDAA Forget current Dynamic Address and wait for

new assignment
0x07 Broadcast ENTDAA* Controller started the Dynamic Address As-

signment procedure
0x09 Broadcast SETMWL Maximum write length in a single command
0x0A Broadcast SETMRL Maximum read length in a single command
0x0B Broadcast ENTTM Controller has entered Test Mode
0x0C Broadcast SETBUSCON Controller specifies a higher-level protocol

and/or I3C specification version that the Bus
will use

0x29 Broadcast SETAASA Controller tells every Target with a Static Ad-
dress to use it as the Dynamic Address

0x2A Broadcast RSTACT Configure and query Target Reset action and
timing

0x2C Broadcast RSTGRPA Controller removes a Target from an indi-
cated Group Address by resetting the assigned
Group Address

0x61–7F Broadcast Vendor / Standards
Extension – Broad-
cast CCCs

For Vendors or Standards use

0x80 Direct ENEC Enable Target even driven interrupts
0x81 Direct DISEC Disable Target even driven interrupts
0x82–85 Direct ENTAS0–5 Set activity state 0–5
0x87 Direct Set SETDASA Controller assigns a Dynamic Address to a

Target with a known Static Address
0x88 Direct Set SETNEWDA Controller assigns a new Dynamic Address to

any I3C Target with an existing Dynamic Ad-
dress

20 Chapter 3. System Level Design

CCC Code CCC Type Command Name Description
0x89 Direct Set SETMWL Maximum write length in a single command
0x8A Direct Set SETMRL Maximum read length in a single command
0x8B Direct Get GETMWL Get Target’s maximum possible write length
0x8C Direct Get GETMRL Get Target’s maximum possible read length
0x8D Direct Get GETPID Get Target’s Provisioned ID
0x8E Direct Get GETBCR Get Target’s Bus Characteristic Register

(BCR)
0x8F Direct Get GETDCR Get a Device’s Device Characteristics Register

(DCR)
0x90 Direct Get GETSTATUS Get a Device’s operating status
0x93 Direct Set SETBRGTGT Controller tells Bridge (to/from I2C, SPI,

UART, etc.) what endpoints it is talking to
(by Dynamic Address and type/ID)

0x94 Direct Get GETMXDS Controller asks Target for its SDR Mode max-
imum. Read and Write data speeds (& option-
ally maximum Read Turnaround time)

0x95 Direct Get GETCAPS Controller asks Target what optional capabil-
ities it supports

0x96 Direct SETROUTE Controller tells Routing Device wha Route(s)
to enable

0x9A Direct RSTACT Configure and query Target Reset action and
timing

0x9B Direct SETGRPA Controller assigns Group Addresses
0x9C Direct RSTGRPA Controller removes a Target from an indi-

cated Group Address by resetting the assigned
Group Address

0xE0–FE Direct Vendor / Standards
Extension – Direct
CCCs

For Vendors or Standards use

The ENTDAA CCC relies on software to be properly used, as the Dynamic Address Assign-
ment procedure detailed in Section 2.6.1 Dynamic Addressing is entered after the transmission of
I3C Broadcast + Read address without any checks of previously sent data. This means that the
Controller can enter the DAA procedure without sending the ENTDAA CCC, which would result
in all I3C Targets returning a NACK.

Table 3.4: Unsupported CCC commands

CCC Code CCC Type Command Name Description
0x08 Broadcast DEFTGTS Controller defines Dynamic Address, DCR

Type, and Static Address (or 0) per Target
0x12 Broadcast ENDXFER Framework for controllers and Targets to ex-

change set-up parameters for ending data in
supported HDR Modes

0x20–0x27 Broadcast ENTHDR0–7 Controller has entered HDR (DDR / TSP /
TSL / BT / reserved) Mode

0x28 Broadcast SETXTIME Framework for exchanging event timing infor-
mation

0x2B Broadcast DEFGRPA Controller tells Secondary controllers details
about an indicated Group Address

0x2D Broadcast MLANE Control a Multi-Lane Data Transfer

3.8. Error recovery 21

CCC Code CCC Type Command Name Description
0x91 Direct Get GETACCCR Active Controller is passing the Bus Controller

Role to a Secondary Controller and confirming
its acceptance

0x92 Direct ENDXFER Framework for controllers and Targets to ex-
change set-up parameters for ending data in
supported HDR Modes

0x98 Direct SETXTIME Framework for exchanging event timing infor-
mation

0x99 Direct GETXTIME Framework for exchanging event timing infor-
mation

0x9D Direct MLANE Control a Multi-Lane Data Transfer

The software is able to transmit unsupported Command Codes listed in Table 3.4, but doing
so is discouraged, as it could result in erroneous behavior. The peripheral is not equipped to handle
the requirements to properly send or respond to these Command Codes.

An example of this is the GETACCCR – Get Accept Controller Role. The peripheral is not
designed to hand over the role of the Active Controller to another device, as it is incapable of
acting as an I3C Target device.

The listed Command Codes were not supported primarily due to time constraints, as the
development and testing required more time than anticipated. Additionally, some of the Command
Codes are not present in the freely available specification released by the MIPI organization, such
as the ENTHDR2 CCC (Enter HDR-TSL mode).

3.8 Error recovery

Table 3.5 summarizes the error types specified in the I3C Basic Specification (CE0–CE3) [1] as
well as additionally implemented error types (PE0 & PE1). The custom error types use the PEx
(Peripheral Error) descriptor so as to not confuse them with Controller Error (CEx) or Target
Error (TEx).

Table 3.5: SDR Controller Error Types

Error
Type

Description Error Detection Method Error Recovery Method

CE0 Transaction
after sending
CCC

HW/SW detects illegally
formatted CCC

HW/SW stops the transmission, SW sends
STOP and retries the transmission

CE1 Monitoring
Error

HW detects transmitted
data differ from what it in-
tended to transmit

HW stops the transmission, SW sends STOP
and retries the transmission

CE2 No response
to Broadcast
Address

HW detects NACK after
Broadcast Address

Stops the transmission, SW sends HDR Exit
followed by STOP

CE3 Failed Con-
troller Hand-
off

Not implemented Not implemented

PE0 No response
from Target

HW detects NACK after
Target address / I2C write
transfer

HW/SW stops the transmission, SW sends
STOP and retries the transmission

PE1 Target ended
read

HW detects End-Of-Data
during I3C private read

HW stops the transmission, SW sends STOP
and retries the transmission

22 Chapter 3. System Level Design

Error Type CE0

For Command Codes which include reading from a Target, the software specifies the number
of data bytes that are expected to be read by the Controller. If a Target terminates the read, then
the hardware stops the transmission. An example of this is if the Controller received only one byte
from a Target in a GETMWL CCC code since the Controller expects two bytes.

If the Controller receives the correct number of bytes but the received data is not valid in
some way, then it is up to the software to detect this error and instruct the Controller to retry
the transmission. An example of this is if the Controller received bits[3:0] of 0b’0000 in the second
byte of GETCAPS CCC, which would indicate a Target compliant with MIPI I3C Basic v1.0.
This would indicate that these bits were read incorrectly, as the second byte of GETCAPS CCC
is defined in later MIPI I3C Specifications.

Error Type CE1

Monitoring Error CE1 occurs when the Controller detects that the transmitted data differs
from what the Controller intended to transmit. This check is only done after Address Arbitration,
since differing transmitted data during Address Arbitration result in an In-Band Interrupt, which
is the desired behavior.

An example of this error occurring is if a Target misinterpreted the RnW bit in a private write
transfer. This would result in both the Target and Controller driving the SDA line in push-pull
mode. When the Controller detects such an error, it switches its SDA driver to open-drain and lets
go of the SDA line to prevent further contrary driving. The Controller then finishes the current
SDR byte transfer, stops all transmissions and notifies the software. The software is then required
to send a STOP and retry the transaction if desired.

Error Type CE2

If the Controller does not receive an ACK upon transmitting the I3C Broadcast Address
(7’h7E), then the hardware stops all transmissions and notifies the software. The software is then
required to send an HDR Exit Pattern followed by STOP in order to recover any Target after a
TE0, TE1, TE2, TE5, and TE6 errors specified in the MIPI I3C Basic Specification [1].

Error Type PE0

Similar to CE2, if the Controller does not receive an ACK upon transmitting an address or
does not receive an ACK upon legacy I2C data write, then the hardware stops all transmissions and
notifies the software. Further action is then up to the software, which either stops the transaction
or retries it.

Error Type PE1

The PE1 error type shares the working principle with CE0, as in it detects that the Target
sent End-Of-Data during a private read transaction (Target terminated read) before the expected
number of bytes were read. The hardware stops all transmissions and notifies the software, which
either stops the transaction or retries it.

Chapter 4

RTL Design

This chapter describes the designed RTL blocks used by the system. The block diagram of
the peripheral (Figure 4.1) shows the layout and general connections between the blocks, which
are described later on. The peripheral is fully synchronous to the system clock, therefore no resyn-
chronization is needed when communicating with the rest of the RISC-V system. The two resyn-
chronizers used by the design are used to read responses from Target devices and to accommodate
delays caused by pads and the physical connections of the I3C bus.

Control block Register map
wrapper

Configuration,
data and

other signalling

SDA
resync

SCL
resync

SCL

SDA

IBI
detection

reset
generation

clock
generation

ck_sys_bus

sys_rst_n

ahb_hclk

AHB
signals

clock enable
logic

SCL OE

SDA OE

Figure 4.1: Diagram of the I3C Controller peripheral.

4.1 Clock gating, resets
The clock signal used by the peripheral is split into multiple signals, which are gated according

to the usage of the Controller. Clock gating is only used in the ASIC design of the peripheral and
uses a LATCH+AND cell. The latch is used to prevent glitching on the gated clock, as it only
samples the enable signal while the clock signal is low.

Latch

EN

CLK_IN

CLK_OUTD

E

Q

Figure 4.2: Clock gating cell used in the peripheral.

The design of the peripheral assumes and requires the asynchronous rst_n signal to be syn-
chronously released by the system. This assumption was made as the I3C Controller is designed

23

24 Chapter 4. RTL Design

to be used alongside other peripherals that also require this functionality, therefore implementing
it in each peripheral would be ineffective.

The peripheral also creates its own soft reset signal, which is made from a logical AND between
the rst_n and the peripheral’s enable signal. The AND gate was instantiated by hand as to prevent
glitching if the peripheral was ever expanded with a need for more complex reset behavior.

4.2 Counters

The counter entity is set to count downwards but otherwise is designed to be as simple and as
generic as possible. The entity is mentioned as it is used in multiple parts of the peripheral, which
will be discussed later.

The entity uses synchronous load and tick signals and makes its counter value accessible for
reading as well as a done signal, which is set to ’1’ when a ’tick’ happens when the counter is at
zero.

4.3 Register map wrapper

To simplify the design, the AHB register map, the two FIFO memories and some additional
registers were wrapped into a single entity, the register map wrapper. The register map itself was
created using a generator script based on a configuration file.

Some registers needed to be implemented manually, as they either need to be written into by
the peripheral (eg. interrupt register) or the peripheral needs to be informed whether a read or a
write occurred (FIFO access registers). Accessing the FIFO memories is discussed in Section 4.4
FIFO memories.

AHB register map
AHB signals

ahb_hclk

TxFIFO
memory

FIFO
address
register
(AHB)

FIFO
address
register

(peripheral)

repeated for
RxFIFO

TxFIFO data (read),
RxFIFO data (written)

Timing configuration
and other signals

FIFO incrementation

Interrupt controller
and manually

implemented registers

Figure 4.3: Diagram of the register map wrapper.

4.4. FIFO memories 25

4.4 FIFO memories

ck

wr_en

reg_in

N bits

reg_out

ck

wr_en

reg_in

N bits

reg_out

reg 1

reg 2

ck

wr_en

reg_in

N bits

reg_out
reg M

A_data_in

A_addr

A_wr_en

Address
decoder
& write
selector

Address
decoder

A_addr

Address
decoder

B_addr

M×N bits

M×N bits

B_data_out

A_data_out

Figure 4.4: Diagram of the FIFO memory. Port A is read/write, port B is read only.

The FIFO memories are designed as synchronous with two interfaces - A and B. One of the
interfaces is accessed by the CPU and the other internally by the peripheral. Additionally, the
FIFO memory is designed with parametrization in mind, where the memory stores N data words
of M bits (where N and M are generic natural integers).

To simplify the design, only one interface is capable of read/write access to the FIFO memory
while the other can only read. This design choice was done to simplify the FIFO memories while still
allowing read/write access to the TxFIFO memory while only limiting the access to the RxFIFO
memory to read-only.

4.5 FIFO Address registers

Each of the two FIFO memories has two pointers stored in the register map wrapper - one for
access from the AHB (CPU) and one internal. Both of these pointers are accessible to the CPU
through the register map for reading and writing, but special care should be taken when writing
the value.

The pointers are 1 bit larger than required for access of the FIFO memories to distinguish
between FIFO full and FIFO empty, as when both pointers are 0, there is no meaningful way of
distinguishing between these two states. When the FIFO pointers match and their most significant
bits are the same, then the FIFO memory is empty as neither of the pointers has wrapped around
yet. The behavior of this extra bit is discussed in Clifford E. Cummings’ work on asynchronous
FIFO design [3].

The incrementation of the AHB pointers can be either done manually by software or auto-
matically during reading and/or writing to the FIFO memories, which is toggleable by setting the
*xFIFO_ptr_incr_read / *xFIFO_ptr_incr_write bits to ’1’. This incrementation is blocked for
the appropriate pointer upon TxFIFO full and RxFIFO empty, so as to not cause either TxFIFO
overflow or RxFIFO underflow.

26 Chapter 4. RTL Design

Figure 4.5: FIFO full and empty conditions. (Copied from Simulation and Synthesis Techniques for
Asynchronous FIFO Design [3])

4.6 Interrupt controller
The register map wrapper also contains the interrupt controller, used for notifying the system

that an interrupt event has occurred in the I3C Controller. The design supports 10 interrupt
sources, listed in Table 4.1. Each interrupt source sets its bit in the IRQfl register, which is then
masked by the IRQen register. All of the masked bits then undergo an OR operation and are
sampled by a D Flip-Flop (DFF), which then drives the i3c_irq signal of the peripheral.

Table 4.1: Interrupt sources

Interrupt name Description
Transmission finished The START, STOP, Transmit, etc. bits cleared by

the peripheral.
Broadcast NACK The I3C broadcast address (7’h7E) returned a

NACK.
Target NACK I3C/I2C address or I2C write returned a NACK.
Read terminated I3C Target terminated read earlier than the con-

troller expected.
Monitoring Error Collision on the SDA line detected.
IBI In-Band Interrupt detected. Either a START condi-

tion or Controller lost Address Arbitration.
RxFIFO full RxFIFO memory full.
TxFIFO empty TxFIFO memory empty.
RxFIFO watermark RxFIFO memory reached its watermark level.
TxFIFO watermark TxFIFO memory reached its watermark level.

4.7. I3C Controller registers 27

4.7 I3C Controller registers
This section lists all of the registers of the I3C Controller peripheral, their reset values, and

what is stored at each of the bits. The figures are separated into two 16-bit slices and each grouping
of bits has its access type listed below, with reserved being unused. The used access types are:

• R/W – Read and Write,

• R – Read only, and

• W1 – Write ’1’ only.

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R/W

transmit

W1

emit_
start

W1

emit_
stop

W1

emit_
restart

W1

emit_
HDR-
exit

W1W1

assert_
ctrl

W1reserved

reserved legacy_
mode

reserved

reserved

emit_
HDR-
restart

Figure 4.6: I3CC Control Register 1

Reset value: 0x0000 0000

[0] legacy_mode
1 - I2C transmission
0 - I3C transmission

[1] transmit
W1 - controller starts transmitting data from TxFIFO memory

[2] emit_start
W1 - Controller sends (repeated) START pattern

[3] emit_stop
W1 - Controller sends STOP pattern

[4] emit_restart
W1 - Controller sends Restart pattern

[5] emit_HDRexit
W1 - Controller sends HDR-Exit pattern

[6] emit_HDRrestart
W1 - Controller sends HDR-Restart pattern

[7] assert_ctrl
W1 - Controller attempts to assert control over the SDA line (bus recovery)

28 Chapter 4. RTL Design

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

reserved

transmit_
stop_
empty

R/W

IBI_
enable

R/W

enable

R/W

reserved

reserved

Figure 4.7: I3CC Control Register 2

Reset value: 0x0000 0004

[0] enable
1 - the peripheral is enabled and capable of sending and receiving data.
0 - the peripheral is held in a soft reset. Contents of the FIFO memories and registers
are still accessible by the system and retain their values.

[1] ibi_enable
1 - peripheral monitors the SDA line for a START condition initiated by other I3C
devices on the bus.
0 - peripheral does not monitor the SDA line. In-Band Interrupts are still possible,
but are only detected upon the loss of the Address Arbitration.

[2] transmit_stop_empty
1 - peripheral stops transmitting data once TxFIFO memory is empty. The trans-
mit_sts bit of I3CC stat1 register is cleared upon TxFIFO empty.
0 - peripheral waits for additional data once TxFIFO memory is empty and does not
clear the transmit_sts bit. This results in the controller resuming a data transfer once
the TxFIFO memory has data written into it.

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R

emit_
start_
sts

R

emit_
stop_
sts

R

emit_
restart_
sts

R

emit_
hdrexit_

sts

R

emit_
hdrrestart_

sts

R

assert_
ctrl_
sts

R

txfifo_
empty_
sts

R

txfifo_
watermark_

sts

R

txfifo_
full_
sts

R

rxfifo_
empty_
sts

R

rxfifo_
watermark_

sts

R

rxfifo_
full_
sts

R

nack_
broadcast

R

nack_
target

R

transmit_
sts

R

reserved

reserved

read_
terminated

reserved

reserved

Figure 4.8: I3CC Status 1 register

4.7. I3C Controller registers 29

Reset value: 0x0000 0000

[1] transmit_sts
1 - peripheral is transmitting data from TxFIFO memory.

[2] emit_start_sts
1 - peripheral is sending a (repeated) START condition.

[3] emit_stop_sts
1 - peripheral is sending a STOP condition.

[4] emit_restart_sts
1 - peripheral is sending a Restart pattern.

[5] emit_hdrexit_sts
1 - peripheral is sending an HDR-Exit pattern.

[6] emit_hdrrestart_sts
1 - peripheral is sending an HDR-Restart pattern.

[7] assert_ctrl_sts
1 - peripheral is asserting control over the SDA line (bus recovery).

[8] txfifo_empty_sts
1 - TxFIFO memory is empty.

[9] txfifo_watermark_sts
1 - TxFIFO memory has reached its watermark level.

[10] txfifo_full_sts
1 - TxFIFO memory is full.

[11] rxfifo_empty_sts
1 - RxFIFO memory is empty.

[12] rxfifo_watermark_sts
1 - RxFIFO memory has reached its watermark level.

[13] rxfifo_full_sts
1 - RxFIFO memory is full.

[14] nack_broadcast
1 - the I3C Broadcast address (7’h7E) returned a NACK.
Cleared upon writing ’1’ into the emit_start bit of the I3CC CR1 register.

[15] nack_target
1 - an I3C/I2C address or a legacy I2C write returned a NACK.
Cleared upon writing ’1’ into the emit_start bit of the I3CC CR1 register.

[16] read_terminated
1 - an I3C read terminated by a Target earlier than expected (number of received
bytes doesn’t match the expected amount specified in TxFIFO memory).
Cleared upon writing ’1’ into the emit_start bit of the I3CC CR1 register.

30 Chapter 4. RTL Design

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TxFIFO_peript_ptr

R/W

read_cnt

R

reserved

reserved

RxFIFO_periph_ptr

R/W

monitoring_
error

R

RxFIFO_
periph_ptr

R/W

Figure 4.9: I3CC Status 2 register

Reset value: 0x0000 0000

[7:0] read_cnt
Current value of the read counter. If a read is terminated early by a Target, this
register contains the amount of additional bytes that were expected to be received.

[14:8] txfifo_periph_ptr
The inner TxFIFO address pointer of the peripheral. Bits [13:8] contain the current
address, whereas bit [14] is used to differentiate between TxFIFO full and TxFIFO
empty cases.

[21:15] rxrfifo_periph_ptr
The inner RxFIFO address pointer of the peripheral. Bits [13:8] contain the current
address, whereas bit [14] is used to differentiate between RxFIFO full and RxFIFO
empty cases.

[22] monitoring_error
1 - the SDA line state differs from the expected. Signifies error type CE1 - sda_in
differs from sda_out outside of Address Arbitration.
Cleared upon writing ’1’ into the emit_start bit of the I3CC CR1 register.

4.7. I3C Controller registers 31

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

reserved

daa_
addr_
req

R

reserved

reserved

Figure 4.10: I3CC DAA register

Reset value: 0x0000 0000

[0] daa_addr_req
1 - the peripheral finished receiving the PID, BCR and DCR registers from a Target
which won the arbitration and is requesting a valid address with an accompanying
parity bit to be written into the TxFIFO memory.

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

reserved

ibi_nack

W

ibi_ack

W

ibi_
inbound

R/W

ibi_req

R

ibi_target

R

reserved

reserved

Figure 4.11: I3CC IBI register

Reset value: 0x0000 0000

[7:0] ibi_target
bits [7:1] - Address of a device which won the Address Arbitration round,
bit [0] - the received RnW bit.

[8] ibi_req
1 - Target generated an In-Band Interrupt request by pulling SDA low, generating a
START condition.

32 Chapter 4. RTL Design

[9] ibi_inbound
1 - Target won address arbitration.

[10] ibi_ack
W1 - ACK the In-Band Interrupt.
If the RnW bit is ’1’ (READ), then the next TxFIFO word contains the number of
bytes to be read from the Target unless the next TxFIFO word is an address.

[11] ibi_nack
W1 - NACK the In-Band Interrupt.

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

reserved

TxFIFO_data

R/W

reserved

reserved

Figure 4.12: I3CC TxFIFO data register

Reset value: 0x0000 0000

[8:0] txfifo_data
bit [8] contains a flag bit, which marks that the current TxFIFO word contains an
I2C/I3C address.
During an I2C/I3C WRITE operation, bits [7:0] contain data which will be trans-
mitted onto the I3C bus.
During an I2C/I3C READ operation, bits [7:0] contain the number of bytes which
is to be read from an addressed device. Value of “0” results in 1 byte being read.

4.7. I3C Controller registers 33

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

TxFIFO_watermark

R/W

reserved

reserved

TxFIFO_ptr

R/W

reserved

reserved

TxFIFO_
ptr_incr_
write

TxFIFO_
ptr_incr_
read

R/W R/W

reserved

Figure 4.13: I3CC TxFIFO ptr register

Reset value: 0x0003 0000

[6:0] txfifo_ptr
The TxFIFO address pointer used for access by the system (CPU). Bits [13:8] contain
the current address, whereas bit [14] is used to differentiate between TxFIFO full and
TxFIFO empty cases.

[13:8] txfifo_watermark
The TxFIFO watermark level. When the number of remaining unread words in the
TxFIFO match this value, the system is notified of the TxFIFO reaching its watermark
level.

[16] txfifo_ptr_incr_read
1 - the txfifo_ptr is automatically incremented upon a read from the I3CC TxFIFO
data register.

[17] txfifo_ptr_incr_write
1 - the txfifo_ptr is automatically incremented upon a write into the I3CC TxFIFO
data register.

34 Chapter 4. RTL Design

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

reserved

RxFIFO_data

R/W

reserved

reserved

Figure 4.14: I3CC RxFIFO data register

Reset value: 0x0000 0000

[7:0] rxfifo_data
data read by the I3C Controller.

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RxFIFO_watermark

R/W

reserved

reserved

RxFIFO_ptr

R/W

reserved

reserved

reserved

reserved

RxFIFO_
ptr_incr_
read

R/W

Figure 4.15: I3CC RxFIFO ptr register

Reset value: 0x0001 0000

[6:0] rxfifo_ptr
The RxFIFO address pointer used for access by the system (CPU). Bits [13:8] contain
the current address, whereas bit [14] is used to differentiate between RxFIFO full and
RxFIFO empty cases.

[13:8] rxfifo_watermark
The RxFIFO watermark level. When the number of remaining unread bytes in the
RxFIFO match this value, the system is notified of the RxFIFO reaching its watermark
level.

4.7. I3C Controller registers 35

[16] rxfifo_ptr_incr_read
1 - the rxfifo_ptr is automatically incremented upon a read from the I3CC RxFIFO
data register.

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

timing_scl_od_low

R/W

timing_scl_od_high

R/W

timing_scl_pp_low

R/W

timing_scl_pp_high

R/W

Figure 4.16: I3CC Timing 0 register

Reset value: 0x0000 0000

[7:0] timing_scl_od_high
The SCL HIGH period in Open Drain mode, shown on Figure 4.23.
Sets the tHIGH time to (𝑁 + 3) × 𝑡SCL.

[15:8] timing_scl_od_low
The SCL LOW period in Open Drain mode, shown on Figure 4.23.
Sets the tLOW time to (𝑁 + 3) × 𝑡SCL.

[23:16] timing_scl_pp_high
The SCL HIGH period in Push-Pull mode, shown on Figure 4.23.
Sets the tHIGH time to (𝑁 + 3) × 𝑡SCL.

[31:24] timing_scl_pp_low
The SCL LOW period in Push-Pull mode, shown on Figure 4.23.
Sets the tLOW time to (𝑁 + 3) × 𝑡SCL.

36 Chapter 4. RTL Design

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

timing_sda_pp_setup_falling

R/W

timing_sda_pp_setup_rising

R/W

timing_sda_od_setup_falling

R/W

timing_sda_od_setup_rising

R/W

Figure 4.17: I3CC Timing 1 register

Reset value: 0x0000 0000

[7:0] timing_sda_pp_setup_rising
The SDA setup time before SCL rising edge in Push-Pull mode, shown on Figure
4.24.
This value shall be larger than 0, but at maximum timing_scl_pp_low−2.

[15:8] timing_sda_pp_setup_falling
The SDA setup time before SCL falling edge in Push-Pull mode, shown on Figure
4.24.
This value shall be larger than 0, but at maximum timing_scl_pp_high−2.

[23:16] timing_sda_od_setup_rising
The SDA setup time before SCL rising edge in Open Drain mode, shown on Figure
4.24.
This value shall be larger than 0, but at maximum timing_scl_od_low−2.

[31:24] timing_sda_od_setup_falling
The SDA setup time before SCL falling edge in Open Drain mode, shown on Figure
4.24.
This value shall be larger than 0, but at maximum timing_scl_od_high−2.

4.7. I3C Controller registers 37

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

timing_pattern_stop

R/W

timing_pattern_start

R/W

reserved

reserved

Figure 4.18: I3CC Timing 2 register

Reset value: 0x0000 0000

[7:0] timing_pattern_start
Specifies the tSETUP and tHOLD timings for a START condition, shown on Figure
4.21.
tSETUP = timing_pattern_start + 6
tHOLD = timing_pattern_start + 2

[15:8] timing_pattern_stop
Specifies the tHOLD timing for a STOP condition, shown on Figure 4.22.
tHOLD = timing_pattern_stop - 1

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

reserved

TxFIFO_
water-
mark_fl

R/W

RxFIFO_
water-
mark_fl

R/W

TxFIFO_
empty_fl

R/W

RxFIFO_
full_fl

R/W

daa_
addr_fl

R/W

ibi_fl

R/W

moni-
toring_
error_

fl

R/W

read_
termina
ted_fl

R/W

target_
nack_fl

R/W

broadcast_
nack_fl

R/W

finished_
fl

R/W

reserved

reserved

Figure 4.19: I3CC IRQ fl register

Reset value: 0x0000 0000

38 Chapter 4. RTL Design

[0] finished_fl
Peripheral finished sending patterns / conditions / transmitting data.

[1] broadcast_nack_fl
The I3C Broadcast address (7’h7E) returned a NACK.

[2] target_nack_fl
An I3C/I2C address or a legacy I2C write returned a NACK.

[3] read_terminated_fl
an I3C read terminated by a Target earlier than expected (number of received bytes
doesn’t match the expected amount specified in TxFIFO memory).

[4] monitoring_error_fl
The SDA line state differs from the expected. Signifies error type CE1 - sda_in differs
from sda_out outside of Address Arbitration.

[5] ibi_fl
Target generated an In-Band Interrupt request by pulling SDA low, generating a
START condition or Target won Address Arbitration.

[6] daa_addr_fl
The peripheral finished receiving the PID, BCR and DCR registers from a Target
which won the arbitration and is requesting a valid address with an accompanying
parity bit to be written into the TxFIFO memory.

[7] rxfifo_full_fl
RxFIFO memory is full.

[8] txfifo_empty_fl
TxFIFO memory is empty.

[9] rxfifo_watermark_fl
RxFIFO memory has reached its watermark level.

[10] txfifo_watermark_fl
TxFIFO memory has reached its watermark level.

31 30 29 28 27 26 25 24 23 22 21 20 19 28 17 16

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved

reserved

TxFIFO_
water-

mark_en

R/W

RxFIFO_
water-

mark_en

R/W

TxFIFO_
empty_enl

R/W

RxFIFO_
full_en

R/W

daa_
addr_en

R/W

ibi_en

R/W

moni-
toring_
error_
en

R/W

read_
termina
ted_en

R/W

target_
nack_en

R/W

broadcast_
nack_en

R/W

finished_
en

R/W

reserved

reserved

Figure 4.20: I3CC IRQ en register.

Reset value: 0x0000 0000. Uses same bit positions as the I3CC IRQ fl register.

4.7. I3C Controller registers 39

SDA

TSETUP = timing_pattern_start+6 THOLD = timing_pattern_start+2

SCL

Figure 4.21: START condition timings.

SDA

THOLD = timing_pattern_stop-1

SCL

Figure 4.22: STOP condition timing.

t_high

SCL

t_low

t_high = timing_scl_od_high+3 OR timing_scl_pp_high+3

t_low = timing_scl_od_low+3 OR timing_scl_pp_low+3

Figure 4.23: SCL timings. Push-Pull or Open Drain timings are selected automatically by the Controller.

SCL

SDA

t_setup_rt_setup_f

t_setup_f = timing_sda_od_setup_falling+2 OR timing_sda_pp_setup_falling+2

t_setup_f = timing_sda_od_setup_rising+2 OR timing_sda_pp_setup_rising+2

Figure 4.24: SDA setup timings. Push-Pull or Open Drain timings are selected automatically by the
Controller.

40 Chapter 4. RTL Design

4.8 Control block
The control block consists of the (main) Control FSM, three additional supportive FSM, and

a read counter. The Control FSM oversees all functions of the peripheral and controls other state
machines of the peripheral (Figure 4.25).

Control FSM

shift register

IBI shift register

en
en

sda_out
sda_in SCL Gen FSM

Transmit FSM

Read Counter
preload

enable, finished

shift signal

enable, finished

timing selection

Timing
configuration

from the
register map

enable,
start,

finished

TxFIFO
data

RxFIFO
data

Figure 4.25: Diagram of the Control block

During the creation of the peripheral, a design decision needed to be made – the complexity
of the Control FSM. Due to a lack of experience with creating complex designs and a gradual
feature creep, the number of states in the FSM has overgrown, as the balance between the number
of states, state machines, and the complexity of their transitions was not worked out (Figure 4.27).
Fortunately, the transitions can be followed, as the state machine generally follows three phases
per step - setup, execution, and termination.

Another drawback of the Control FSM is the time it retrieves the next TxFIFO word and stores
read data bytes into the RxFIFO memory, which happens during SCL HIGH. This drastically
increases the minimum ck_sys_bus frequency required for mixed I3C bus while running at SCL
clocks higher than 1 MHz (I2C Fm+ speeds). The Control FSM transitions through 6 states,
including its idle state, which causes the +6 constant in the minimum ck_sys_bus calculation in
section 3.4 Clocks.

Figure 4.26: SCL high delay caused by the Control FSM (the problematic FSM states marked in red).

4.8. Control block 41

ST
O

P
co

nd
iti

on
SD

A
re

co
ve

ry
 a

fte
r c

ra
sh

/re
se

t

ST
A

R
T

co
nd

iti
on

In
-B

an
d

In
te

rr
up

ts
, C

E1
 e

rr
or

en
d

of
 d

at
a

R
x

Tx
/R

x
pr

ep
ar

at
io

n

SD
A

pa
tte

rn
s

(r
es

ta
rt

, .
..)

D
yn

am
ic

 A
dd

re
ss

 A
ss

ig
nm

en
t m

od
e

en
d

of
 d

at
a

Tx

Id
le

 &
 a

fte
r

re
se

t s
ta

te

Figure 4.27: State diagram of the Control FSM.

42 Chapter 4. RTL Design

4.9 Shift register
The shift register drives the sda_out and samples the sda_in signals. Resynchronization was

not needed, as the controller actively drives the SCL line, therefore the rest of the I3C bus shall
be synchronous to the SCL clock generated by peripheral1. During normal operation, the contents
of the register are shifted before the rising SCL edge on writes and before the falling SCL edge on
reads from the I3C bus.

The length of the shift register was originally intended to be 20 bits to allow sending a whole
HDR-DDR word but was later shortened to 15 bits as the support for HDR-DDR transactions was
dropped. The 15-bit length was chosen to allow the Controller to load the whole Restart pattern
into the shift register. An alternative approach would be to rely on the CPU to load this pattern
into the TxFIFO memory.

The register contains an additional D Flip-Flop (DFF) memory between its MSB bit and the
serial output to prevent unwanted transitions of the SDA line while SCL is held high, which would
result in unwanted repeated START or STOP conditions. Additionally, the output value of the
inserted flip-flop can be changed independently of the shift register stored value using one of these
control signals:

• set_out - sets the MSB to ’1’, therefore driving sda_out high,

• clr_out - clears the MSB to ’1’, therefore driving sda_out low,

• cpy_out - sets the MSB to sda_in state, copying the state of the bus.

These control signals are used by the main FSM for quick bus handoffs required during some
I3C transmissions. An example of this is the SDA handoff during an ACK when writing to a target
device, discussed in Section 2.5 SDA Handoffs.

D

C

Q D

C

Q D

C

Q

D

C

QComb
logic

sd_out

sd_in

set_out
clr_out

cpy_out
q_out

d_in d_load

ck

rst_n

Figure 4.28: Conceptual diagram of the I3C shift register.

4.10 IBI shift register
Due to a limitation of the design, a secondary 8-bit shift register was necessary to read the

arbitrated address on the I3C bus. This is caused by the design setting the sda_out bit before the
SCL rising edge, but reading the sda_in value before the falling edge. Switching between reading
and writing data using the main shift register caused the bit which resulted in the controller losing
the address arbitration to be read twice. The loss of the address arbitration can occur on any bit
and therefore no simple change to the main shift register would fix this, so a second shift register
was incorporated into the design, which only reads the sda_in line.

1An exception to this would be a misbehaving device on the bus.

4.11. SCL clock generation 43

4.11 SCL clock generation
The SCL clock generation is controlled by the SCLGEN_FSM block to allow for easier clock

stalling and overall supervision by the (main) Control FSM. The SCL generator creates the SCL
clock as well as shift pulses for the SDA shift register.

The SCL clock is generated with a variable duty cycle dependent on the tim_high and tim_low
input signals. These signals are managed by the Control FSM, which handles switching between
open-drain and push-pull timings. These signals are also used for the START and STOP condition
lengths.

The SDA shift pulses are generated in advance of the changing SCL edge to either:

a) allow the SDA line to stabilize when writing or

b) read the SDA line when the SCL was held high.

The clock generator can also be forced to hold the SCL at a constant value while still generating
the SDA shift pulses. This behavior is used for generating (repeated) START and STOP conditions
or for parking the SCL line when necessary, such as clock stalling during the DAA procedure.

Figure 4.29: State diagram of the SCL Gen FSM

The designed SCL clock generator adds a delay of three ck_i3c clock cycles into every gen-
erated SCL timing, as the FSM transitions through the IDLE_ST state for every transition of
the SCL clock and the internal counter sets its done signal one clock cycle after reaching zero
(Figure 4.30, turquoise color).

Figure 4.30: The delays caused by the SCL Generator FSM. The counter stays at 0 for three cycles before
the scl_out signal changes.

4.11.1 Transmission Control
The Transmit FSM controls the flow of data between the I3C bus and the shift register, as

its function is to make the peripheral transmit and receive a certain number of bits. The entity
consists of a small FSM, an accompanying bit counter, and some additional logic for signaling
when the bit counter reaches the second to last and the last value, which is used by the Control
FSM.

44 Chapter 4. RTL Design

Figure 4.31: State diagram of the Transmit FSM

4.11.2 Read Counter
Whereas the Transmit FSM manages the transmission of bits, the read counter manages the

receiving of bytes by the peripheral. When an address is sent onto the I3C bus with the RnW bit
set to read which is not the broadcast address (7’h7E), then the counter is loaded with a value
stored in the next TxFIFO word unless it is an address. This loaded word contains how many bytes
are expected to be read by the Controller. The peripheral then attempts to read the number of
bytes specified in the TxFIFO memory, with the exception of “0”, which reads 1 byte.

4.11.3 Elemental Use Cases
This section shows two short examples of transmitting and receiving 3 bytes of data to/from a

Target device. The listed codes utilize the included i3cc.h file, which defines the register addresses
and the means of accessing them.

1 # include "i3cc.h"
2 # define addrFlag (0 b1 << 7)
3 # define RnW_R 0b1
4 # define RnW_W 0b0
5 # define c_broadcastAddr 0x7E
6 # define c_targetAddr 0x4F
7 // Filling the TxFIFO memory
8 // setting MSB to ’1’ makes the peripheral treat the TxFIFO word as an address
9 I3CC -> RegI3CCTxFIFOdata .r32 = (0 b1 << 7) | (c_broadcastAddr << 1) | RnW_W ;

10 I3CC -> RegI3CCTxFIFOdata .r32 = (0 b1 << 7) | (c_targetAddr << 1) | RnW_W ;
11 for(int i=0; i <3; i++) {
12 I3CC -> RegI3CCTxFIFOdata .r32 = data_to_transmit [i];
13 }
14

15 // send START , transmit data from TxFIFO memory and send STOP
16 I3CC -> RegI3CCCR1 .r32 |= EMIT_START (1) | TRANSMIT_DATA (1) | EMIT_STOP (1);
17

18 // wait until the STOP has been sent
19 // (also covers waiting for START and data transmitted)
20 while (GET_EMIT_STOP_STS (I3CC -> RegI3CCCR1 .r32));

Listing 4.1: C code example of transmitting 3 bytes of data to a Target device.

1 # include "i3cc.h"
2 # define addrFlag (0 b1 << 7)
3 # define RnW_R 0b1
4 # define RnW_W 0b0
5 # define c_broadcastAddr 0x7E
6 # define c_targetAddr 0x4F
7 // Filling the TxFIFO memory
8 // setting MSB to ’1’ makes the peripheral treat the TxFIFO word as an address
9 I3CC -> RegI3CCTxFIFOdata .r32 = (0 b1 << 7) | (c_broadcastAddr << 1) | RnW_W ;

10 I3CC -> RegI3CCTxFIFOdata .r32 = (0 b1 << 7) | (c_targetAddr << 1) | RnW_R ;
11 I3CC -> RegI3CCTxFIFOdata .r32 = 3; // the "3" sets the number of bytes to be

received
12

13 // send START , transmit data from TxFIFO memory and send STOP
14 I3CC -> RegI3CCCR1 .r32 |= EMIT_START (1) | TRANSMIT_DATA (1) | EMIT_STOP (1);
15

16 // wait until the STOP has been sent
17 // (also covers waiting for START and data transmitted)

4.11. SCL clock generation 45

18 while (GET_EMIT_STOP_STS (I3CC -> RegI3CCCR1 .r32));
19

20 // read the received data
21 for(int i=0; i <3; i++) {
22 received_data [i] = I3CC -> RegI3CCRxFIFOdata .r32;
23 }

Listing 4.2: C code example of receiving 3 bytes of data from a Target device.

Chapter 5

Verification

5.1 Verification Plan
Verification of a design is the second most important task in a design, given that no designer

can create the perfect system on his/her first try nor think of every edge case. The phrase “What
is not verified does not work” is often true during verification (or its lack of).

The RISC-V environment uses the Universal Verification Methodology (UVM), which is a
standardized methodology for verifying integrated circuit designs. The parts that had to be focused
on were implementing the I3C Target Agent, the I3C Interface itself, and their integration. For
running the simulations, the Cadence Xcelium simulator was used for compilation and simulation
of the design and its test environment.

CPU

AHB DECODER

I3CC GPIO

DUT

PAD
MODEL

TB_TOP

I3C TARGET
AGENT

TEST
SEQUENCE

C2T

UVM_TOP

VIRTUAL
INTERFACE

NEW MODIFIED

Figure 5.1: Simplified test bench structure with changes compared to the RISC-V system

The test environment consists of the DUT encapsulated in TB_TOP, virtual I3C interface,
and UVM_TOP.

The DUT is the RISC-V system with the I3C Controller peripheral inside it. The DUT contains
additional blocks and peripherals, but these were omitted in the Test bench structure (Figure 5.1),
as they are not relevant for the I3C Controller verification.

The I3C Interface is fairly straightforward, as it models the behavior on the shared SCL and
SDA lines, but it was also needed to model the difference between push-pull and open-drain modes
of the lines, as one results in a short circuit scenario while the other does not. This is done by
separating each device’s actions into driving LOW and driving HIGH and checking if two (or more)
devices create a conflict on the bus.

The pad model contains delays for the connections between the internal circuitry of a chip
and its external environment. The applied pad model is designed to be weaker than those of the
connected devices in order to detect collisions on the bus. It is capable of switching between open
drain and push-pull driving and switching its pull-up structure on or off. Its relevant delay values
are listed in Table 5.1, which were chosen from a previously used I2C Controller peripheral, but
with modifications to remove glitching when switching between open drain and push-pull outputs.

47

48 Chapter 5. Verification

Table 5.1: Relevant delays of the Pad Model

Delay name Value Description
OD_D2PAD 119 ns Open Drain delay for data out -> pad
D2PAD 10.2 ns Push-Pull delay for data out -> pad
PAD2Q 7 ns Delay for pad -> data in
PU_DLAY 10.2 ns Pull-Up enable/disable delay
OE2PAD 10.2 ns Delay for switching Open Drain <-> Push-Pull

5.2 I3C Target Agent
Given the relatively complicated nature of I3C transactions, a generic Target was designed,

for which the order of transactions and their type does not matter. The Target Agent runs in an
infinite loop, where it first checks whether it is active or not. If it is inactive, it then waits until a
START condition occurs and starts multiple forks (processes), each responsible for a different type
of transaction (Figure 5.2).

This division into multiple forks that run in parallel was done so as to not implicitly set the
flow and types of transactions after each other (i.e. addresses, private read/writes, and CCC byte
transfers can occur in any order). This approach is not optimal, as multiple processes are spawned
per I3C transaction per every Target Agent, but it is fast to develop and each process gets killed
after a STOP condition occurs.

The START and STOP forks are the simplest. START waits until a START condition occurs
and sets the Target Agent to read an address in the next iteration of the main loop. STOP is
similar, waiting until a STOP condition occurs, but setting the Target Agent to be inactive.

Each of the forks follows these three steps:

1. check if this fork is to be active. If not - enter an infinite loop,

2. execute,

3. prepare Target Agent for the next iteration of its main loop.

Beginning

is
inactive?

wait for START

state = GET_ADDR

YES

NO

Begin forks

GET_ADDR READ_DATA WRITE_DATA START STOP

join_any

kill all forks

Forks work as child processes,
where each fork executes in parallel

STOP

Figure 5.2: I3C Target Agent’s main loop.

5.2. I3C Target Agent 49

GET_ADDR

state =
GET_ADDR

infinite
wait loop

read 8 bits

addr =
broadcast

(7'h7E)

addr =
dyn. addr

state =
NOT_ADDRESSED

YES

NO

RnW =
WRITE

RnW =
WRITE

send ACK

send ACK

state = DAAstate = READstate = WRITE state = WRITE*

YES

NO

YES

NO

YES

NOYES

NO

join_any

* CCC bytes are read
the same way as

private data transfer

Has a
dynamic
address

NO

send ACK

YES

Figure 5.3: I3C Target Agent’s Get Address fork.

50 Chapter 5. Verification

DATA_READ

state =
DIRECT

infinite
wait loop

YES

NO

join_any

RnW =
READ*

infinite
wait loop

YES

NO

write 8 bits onto bus

I3C mode

prepare next byte state =
NOT_ADDRESSED

Controller
NACK'd

Terminate
early**

YES

NO

NO

YES

prepare next byte

End-Of-Data
(T-bit)

YES

NO

YES

NO
**set by the test

*RnW = READ
means Controller

reads from the Target

terminate read

Figure 5.4: I3C Target Agent’s Data Read fork (Controller reads from Target).

5.2. I3C Target Agent 51

DATA_WRITE

state =
DIRECT

infinite
wait loop

join_any

RnW =
WRITE*

infinite
wait loop

YES

NO

read 8 bits from bus

I3C mode

store data state =
NOT_ADDRESSED

T-bit
parity
OK

YES

NO

NO

YES

store data

YES

NO

*RnW = WRITE
means Controller

writes to the Target

send ACK

Figure 5.5: I3C Target Agent’s Data Write fork (Controller writes to Target).

52 Chapter 5. Verification

DAA

state =
DAA

infinite
wait loop

send 1 bit of
PID+BCR+DCR

sent 64
bits?

YES

NO

YES

NO

lost
arbitration

?

NO

Read new address
+ parity bit

parity
OK?

NO

YES

YES

addr = received addr

state =
NOT_ADDRESSED

join_any

Figure 5.6: I3C Target Agent Dynamic Address Assignment fork

5.3. Use cases 53

5.3 Use cases
This section outlines how the peripheral is anticipated to be accessed by the system in order

to successfully transfer data between the I3C Controller peripheral and Target located on the I3C
bus. Listed use cases outline their purpose and preconditions, followed by how the software is
expected to control the peripheral.

5.3.1 Initial configuration

Device mode First configuration & enable
Preconditions Peripheral was previously disabled
Trigger Software
Goal Enable the peripheral
Success end state I3C controller enabled and in control over the I3C bus
Failed end state I3C controller disabled and/or not in control over the I3C bus
Notes Configuration done in every test, SDA recovery tested in

test_i3c_errs

Step Hardware Software

1 Held in soft reset Configures the I3CC Timing 0, Timing 1 and Timing 2
registers

2 Held in soft reset Writes ’1’ into the enable bit of the I3CC CR2 register

3 SDA recovery
If the system was unexpectedly reset or the SDA line
might be controlled by an another device, then the as-
sert_ctrl bit of the I3CC CR1 register shall be set to ’1’

4 SDA recovery
Polls assert_ctrl_sts bit of I3CC stat1 register or waits
for an interrupt if finished_en bit of the I3CC IRQ en
register is ’1’

5a SDA recovered Writes ’1’ into the emit_stop bit of the I3CC CR1 reg-
ister

6 Sending STOP
Polls emit_stop_sts bit of I3CC stat1 register or waits
for an interrupt if finished_en bit of the I3CC IRQ en
register is ’1’

7 Idle Controller has control over the SDA line, recovery fin-
ished

5b Idle

Controller writes ’0’ into the enable bit of the I3CC CR2
register if the peripheral has not finished at least 20
times the configured tSCL_OD period, as the peripheral
was not able to regain control of the SDA line. Next
steps are out of the scope of this document, such as
resetting the devices connected to the bus in an another
way

54 Chapter 5. Verification

5.3.2 Basic I3C SDR write

Device mode I3C SDR
Preconditions Peripheral enabled and configured
Trigger Software
Goal Send N data bytes to a Target
Success end state N data bytes transmitted
Failed end state NACK from broadcast/Target address
Notes Verified in test_i3c_rw and test_i3c_rw_extra

Step Hardware Software

1 Idle Writes the I3C broadcast address with a flag bit of ’1’
into the TxFIFO data register

2 Idle Writes the Target address with a flag bit of ’1’ into the
TxFIFO data register

3 Idle Writes N data bytes into the TxFIFO data register

4 Idle Writes ’1’ into the emit_start, transmit and emit_stop
bits of the I3CC CR1 register

5
Sends START, ad-
dresses, data and
STOP

Polls emit_stop_sts bit of I3CC stat1 register or waits
for an interrupt if finished_en bit of the I3CC IRQ en
register is ’1’

6 Idle Data sent to the Target

5.3.3 Basic I3C SDR read

Device mode I3C SDR
Preconditions Peripheral enabled and configured
Trigger Software
Goal Receive N data bytes from a Target
Success end state N data bytes received
Failed end state NACK from broadcast/Target address or Target ends read earlier

than expected
Notes Verified in test_i3c_rw and test_i3c_rw_extra

Step Hardware Software

1 Idle Writes the I3C broadcast address with a flag bit of ’1’
into the TxFIFO data register

2 Idle Writes the Target address with a flag bit of ’1’ and into
the TxFIFO data register

3 Idle Writes how many bytes to receive from a Target (N)
into the TxFIFO data register

4 Idle Writes ’1’ into the emit_start, transmit and emit_stop
bits of the I3CC CR1 register

5
Sends START, ad-
dresses, data and
STOP

Polls emit_stop_sts bit of I3CC stat1 register or waits
for an interrupt if finished_en bit of the I3CC IRQ en
register is ’1’

6 Idle Reads received data from the RxFIFO data register

5.3. Use cases 55

5.3.4 Legacy I2C write

Device mode Legacy I2C
Preconditions Peripheral enabled and configured
Trigger Software
Goal Send N data bytes to a Target
Success end state N data bytes received
Failed end state NACK from Target address or Target returns NACK during data

write
Notes Verified in test_i3c_rw and test_i3c_rw_extra

Step Hardware Software

1 Idle Writes the Target address with a flag bit of ’1’ and into
the TxFIFO data register

2 Idle Writes N data bytes into the TxFIFO data register

3 Idle Writes ’1’ into the legacy_mode, emit_start, transmit
and emit_stop bits of the I3CC CR1 register

4
Sends START, ad-
dresses, data and
STOP

Polls emit_stop_sts bit of I3CC stat1 register or waits
for an interrupt if finished_en bit of the I3CC IRQ en
register is ’1’

6 Idle Data sent to the Target

5.3.5 Delayed I3C SDR read/write transaction

Device mode I3C SDR
Preconditions Peripheral enabled and configured
Trigger Software
Goal Send/receive N bytes to/from a Target
Success end state N data bytes transmitted
Failed end state NACK from broadcast/Target address or Target ends read earlier

than expected
Notes Necessary if one of the the ENTAS1 through ENTAS5 was pre-

viously sent to the addressed Target. Only steps 4, 5 and 6 differ
from normal data Tx/Rx.

Step Hardware Software

1 Idle Writes the I3C broadcast address with a flag bit of ’1’
into the TxFIFO data register

2 Idle Writes the Target address with a flag bit of ’1’ into the
TxFIFO data register

3a Idle Writes N data bytes into the TxFIFO data register

3b Idle Writes how many bytes to receive from a Target (N)
into the TxFIFO data register

56 Chapter 5. Verification

Step Hardware Software

4 Idle Writes ’1’ into the emit_start bit of the I3CC CR1 reg-
ister

5 Sends START
Polls emit_stop_sts bit of I3CC stat1 register or waits
for an interrupt if finished_en bit of the I3CC IRQ en
register is ’1’

6 Idle Waits until sufficient time elapses before the Target de-
vice can be accessed

7 Sends addresses,
data and STOP

Writes ’1’ into the transmit and emit_stop bits of the
I3CC CR1 register

8a Idle Data sent to the Target or reads received data from the
RxFIFO data register

5.3.6 Broadcast CCC transfer

Device mode I3C SDR
Preconditions Peripheral enabled and configured
Trigger Software
Goal Send a broadcast CCC
Success end state Broadcast CCC sent
Failed end state NACK from the broadcast address
Notes Verified in test_i3c_daa

Step Hardware Software

1 Idle Writes the I3C broadcast address with a flag bit of ’1’
into the TxFIFO data register

2 Idle
Writes the CCC byte into the TxFIFO data register,
optionally followed by additional data bytes if required
by the CCC

3 Idle Writes ’1’ into the emit_start, transmit and emit_stop
bits of the I3CC CR1 register

4
Sends START, ad-
dresses, data and
STOP

Polls emit_stop_sts bit of I3CC stat1 register or waits
for an interrupt if finished_en bit of the I3CC IRQ en
register is ’1’

5 Idle Broadcast CCC sent

5.3.7 Dynamic Address Assignment

Device mode I3C SDR
Preconditions Peripheral enabled and configured
Trigger Software
Goal Assign dynamic addresses to Targets using the ENTDAA CCC
Success end state Assigned addresses to all Targets
Failed end state Not all Targets have assigned addresses
Notes Verified in test_i3c_daa

5.4. Tests 57

Step Hardware Software

1 Idle Clears the transmit_stop_empty bit of the I3CC CR2
register

2 Idle Writes the I3C broadcast address with a flag bit of ’1’
into the TxFIFO data register

3 Idle Writes the ENTDAA CCC byte into the TxFIFO data
register

4 Idle Writes the I3C broadcast address with a flag bit of ’1’
and RnW=’1’ into the TxFIFO data register

5 Idle Writes ’1’ into the emit_start and transmit bits of the
I3CC CR1 register

6

Sends START,
stored FIFO bytes
and enters DAA
procedure

Polls daa_addr_req bit of I3CC DAA register or waits
for an interrupt if daa_addr_en bit of the I3CC IRQ en
register is ’1’

7
Reads
PID+BCR+DCR
registers

Polls daa_addr_req bit of I3CC DAA register or waits
for an interrupt if daa_addr_en bit of the I3CC IRQ en
register is ’1’

8 Awaiting address

Reads the PID+BCR+DCR register values from Rx-
FIFO memory and writes the to-be assigned address to
the TxFIFO data register with a valid parity bit on the
LSB position

9 Sends address Repeats steps 7,8,9 until the expected number of Targets
have their addresses assigned

10 Idle Writes ’1’ into the emit_stop bit of the I3CC CR1 reg-
ister

11 Sends STOP
Polls emit_stop_sts bit of I3CC stat1 register or waits
for an interrupt if finished_en bit of the I3CC IRQ en
register is ’1’

12 Idle All Targets have their dynamic addresses assigned

5.4 Tests
The goal of these tests is to (ideally) achieve full code coverage, i.e. every line of the RTL code

was exercised during a simulation. To achieve this, these tests were prepared:

test_i3c_rw

Basic read/write sequences. The test is divided into four parts:

1. Test sends configuration (Target’s address, RW data lengths) to the CPU,

2. test sends write data to the CPU, checks what Target Agent has read,

3. test configures Target Agent for data read,

4. CPU reads data from Target Agent, sends it to the test to validate received data.

test_i3c_rw_extra

The transaction byte length exceeds the lengths of the TxFIFO/RxFIFO memories during
read/write sequences. This is achieved by writing/reading into/from the memories while a trans-
action is ongoing. Additionally disables the peripheral between read/write to test the soft reset
and sends multiple I2C or I3C transactions after each other.

test_i3c_errs

Sets the Target Agent to:

58 Chapter 5. Verification

1. NACK the I3C Broadcast address,

2. NACK an unrelated address (not assigned to the Target Agent) and

3. end read by Controller in I3C mode using T-bit

while the CPU is attempting to communicate with the Target Agent. After this, the test drives
the SDA line while the I3C Controller attempts bus recovery in order to regain control of the SDA
line.

test_i3c_daa

The Controller sends ENTDAA CCC and enters the Dynamic Address Assignment procedure.
In total, the CPU attempts to assign an address three times:

1. with wrong parity bit (Target NACKs),

2. with correct parity bit (Target ACKs) and

3. with all Targets already having an address assigned (broadcast NACK’d).

test_i3c_patterns

Software manually executes each pattern/condition, such as START, STOP, restart, etc. Used
to fulfill code coverage and to check whether the patterns are generated correctly.

test_i3c_ibi

Tests the capability of the I3C Controller to detect an In-Band Interrupt and its ability to
send a response based on the instructions sent by the CPU.

5.5 Coverage
The code coverage was collected during the implementation of features, debugging, and final

verification of the peripheral in order to check for uncovered parts of the design as well as for
unnecessary expressions and signals. To help with managing the code coverage, a few scripts
were written to assist with launching multiple tests after one another and merging their collected
coverages together into a single coverage database, which was then inspected.

The collected code coverage metrics consist of these metrics, which are combined into a single
number:

1. block coverage, measuring which blocks of code, such as begin-end or if-else statements, have
been entered,

2. statement coverage, measuring the percentage of RTL code statements (lines) that have been
executed,

3. expression coverage, evaluating possible combinations of operands in a expression,

4. toggle coverage, tracking the transitions of signals and

5. FSM coverage, which tracks all FSM states and the transitions between them.

The toggle coverage was only measured on the interface of the I3C Controller peripheral, i.e. its
input and output signals. This was done to make sure all of the top interface signals were tested
during simulations.

The final code coverage reached a total coverage of 96.62 % (Figure 5.7), with the lowest
metrics being expression and toggle (Figure 5.8).

5.5. Coverage 59

Figure 5.7: Code coverage of the peripheral by its blocks.

Figure 5.8: Total code coverage of the peripheral by metric type.

The code coverage had waivers applied to it, which are predefined exceptions to ignore (waive)
some of the uncovered parts of the design. The created waivers apply exceptions to:

1. signals or ports that have a constant value assigned to them,

2. impossible to cover expressions,

3. signals or ports not used by the system,

4. by design unreachable expressions,

5. by design unreachable statements, and

6. assertions written in VHDL.

Examples of these exceptions are:

• The tick signal of the SCL Generator counter, which has a constant assigned to it (’1’) to
always run when the SCL Generator is enabled. This results in an expression and a block in
the counter not fully covered, as the logic does not encounter the tick signal being low.

• The peripheral clock request signal ck_sys_bus_req is set when any of the clock signals of the
peripheral are enabled. The problem with this expression metric is that the resynchronizer
clock signal is always enabled when the control block clock signal is requested, therefore the
control block can not set the clock request signal by itself. While this makes the expression
have a redundant check, it was left in place to improve readability and to ensure a bug would
not be added if the resynchronizer clock enable signal had its logic changed.

• The In-Band Interrupt shift register is only used for reading the first address after a (non-
repeated) START condition and does not have its serial data output connected. This results
in expressions, blocks and statements not covered due to the shift register having its control
signals tied to a constant value.

• The next_state statement when in the others state of an FSM when all of the states were
explicitly listed.

60 Chapter 5. Verification

Figure 5.9: Code coverage of the peripheral with applied waiver by its blocks.

Figure 5.10: Total code coverage of the peripheral with applied waiver by metric type.

The resulting code coverage with the applied waivers is 99.53 % with most of the uncovered
code being in the regmap_wrapper (Figure 5.9), specifically the generated AHB register map
itself. Additionally, the toggle coverage of the i3c_controller interface also does not achieve 100 %
coverage. Both of these are related to the AHB signaling, as the C code only accessed the peripheral
registers in words (32 bits). To cover this part of the design, the register map and its C header
file would have to be slightly modified to allow a half-word (16-bit) and byte (8-bit) access to the
registers.

Chapter 6

Implementation

To validate whether the design will work in an FPGA, the peripheral was imported into
Xilinx Vivado 2019.1 for synthesis and implementation. The top file of the peripheral needed to
be wrapped so as to assign values to the generics listed in Chapter 4 RTL Design.

From a design perspective, the implementation on an FPGA and ASIC differ in:
1. limited number of clocking resources,

2. combinatorial logic implemented in Look Up Tables (LUT),

3. timing problems with implementation of latches,

4. finite number of pre-existing structures (RAM blocks, hardware multipliers, PLL, etc), and

5. limited asynchronous set/reset functionality.
These result in the FPGA design being slightly different from the ASIC design.

To ease the implementation on an FPGA, the I3C Controller peripheral uses parametrization
to specify which design is to be elaborated and/or synthesized. The G_TARGET_TECH generic
on top of relevant RTL modules selects if the design is for an FPGA or an ASIC. This results in
a “single” change of the design – the clock gating, which was disabled. No further changes were
necessary, as the design doesn’t use clock multiplexing nor utilizes both asynchronous set and reset
for the same registers.

6.1 Physical design parameters
The Xilinx Vivado 2019.1 tool was used for synthesis and implementation on a Xilinx Atrix-7

family model xc7a100tcsg324-2 FPGA.
The FPGA design was constrained to have its clock signals (ck_sys_bus and ahb_hclk) run

at 100 MHz. A timing analysis was run after synthesis and implementation to check whether the
designed peripheral was capable of running at those frequencies and whether the design met all
timing requirements (Figure 6.1). In total, the implemented design utilized 1144 Look Up Tables
(LUT) and 1355 Flip-Flops (FF) of the FPGA.

Figure 6.1: Timing report of the generated FPGA netlist with clock frequency of 100 MHz.

Figure 6.2: FPGA utilization by the I3C Controller.

61

62 Chapter 6. Implementation

6.2 Gate Level Simulation
For running gate level simulations in the Xcelium simulator, the netlist and SDF files needed

to be exported from the Xilinx Vivado tool, which was used for synthesis and implementation.
The export of the SDF and verilog netlist from Vivado required the use of the tools TCL

console, as the graphical interface lacked the option to export the post-implementation netlist.
Additionally, the TCL command allows the designer to include the necessary simulation models
directly in the netlist instead of linking to a Xilinx library.

The exported files needed to be slightly modified in order to be used in the Cadence Xcelium
Simulator, as the simulator was not able to read a relative path to the annotated SDF file, and one
of the entities defined in the netlist shared its name with an entity used elsewhere in the RISC-V
system, which resulted in the simulation not launching due to missing connections unless one of
them was renamed.

These files were then used to replace the written RTL code for a mixed RTL / gate level
simulation (GLS) of the system in the Xcelium simulator, where the RISC-V system was simulated
on a behavioral level with the exception of the I3C Controller peripheral, which used the post-
implementation netlist with the accompanying delay file for a limited gate level simulation. This
simulation validated the overall function of the peripheral and whether the peripheral is capable
of meeting its timing requirements.

Whether the Xcelium simulator uses the generated SDF and netlist files correctly was checked
by observing the inputs of an arbitrarily chosen LUT in the design, which showed glitching in one
of its inputs after a clock edge and differing delays between changes on its inputs (Figure 6.3),
which indicated the gate level simulation of the peripheral ran successfully.

Figure 6.3: Inputs of a LUT in a gate level simulation, which show the Xcelium simulator properly using
the generated SDF and netlist files.

Given that the rest of the system uses RTL simulation for the rest of the RISC-V platform,
a small modification to the signals between the system and the peripheral needed to be done.
The ahb_hwdata[31:0] signal, which carries data from the RISC-V system to be written into the
peripheral register map needed to be delayed in order to fulfill the hold timing requirement after
a clock edge.

Figure 6.4: Delay inserted into the ahb_hwdata[31:0] signal for gate level simulations.

A 1 ns delay was added to the ahb_hwdata[31:0] signal when running gate level simulations
of the peripheral (Figure 6.4), which resulted in all of the RTL tests passing. The tests were then
repeated for over 40 runs distributed across all of the tests to ensure the generated netlist passed
verification and all tests passed.

Chapter 7

Conclusions, Next Steps

The goal of this thesis was to design an I3C Controller peripheral for the RISC-V system
platform. The I3C protocol specification was studied and a system level design was written as a
general guide for its implementation.

The RTL design of the peripheral was then written in VHDL while testing its basic function-
ality. To test the Controller, an I3C Target Agent was created to verify that the Controller accesses
the I3C bus correctly and is capable of writing and reading data to/from the bus.

The I3C Controller was designed to implement the vast majority of the features of the free
version of the I3C protocol specification. The designed I3C Controller supports common usage
scenarios, and by decomposing the functions between hardware and software, it can be easily
customized according to the requirement of the future application/system in which it will be used.
The expected requirement can be for example a modification of the CCC command, this can be
easily done by changing the software.

The design was then imported into the Xilinx Vivado 2019.1 tool for synthesis and implemen-
tation, which generated a netlist annotated by a simulation delay file necessary for a gate-level
simulation of the peripheral. These files were imported back into the RISC-V system and simula-
tions were run to verify that the design behaves as expected after implementation. The goals of
this thesis were fulfilled, as the created I3C Controller peripheral passed the listed test cases.

100% code coverage was not achieved during verification; there is room for improvement in
the future. Code coverage analysis showed that 16b and 8b wide read/write register map accesses
are missing in the verification. In the future, test cases should be extended to cover these use cases.

63

Bibliography

1. MIPI. I3C Basic v1.1.1 - bus specification [online]. 2022. [visited on 2024-05-21]. Available
from: https://www.mipi.org/mipi-i3c-basic-download.

2. MIPI. Achieving Power Efficiency in IoT Devices with MIPI I3C [online]. 2022. [visited
on 2024-05-21]. Available from: https : / / www . mipi . org / download - mipi - whitepaper -
achieving-power-efficiency-in-iot-devices-with-mipi-i3c.

3. CUMMINGS, Clifford E. Simulation and Synthesis Techniques for Asynchronous FIFO Design
[online]. 2002. [visited on 2024-05-21]. Available from: http://www.sunburst-design.com/
papers/CummingsSNUG2002SJ_FIFO1.pdf.

4. ŠŤASTNÝ, Jakub. FPGA Prakticky. Ben, 2010.
5. XILINX. Vivado Design Suite User Guide: Synthesis [online]. 2020. [visited on 2024-05-21].

Available from: https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_
2/ug901-vivado-synthesis.pdf.

65

https://www.mipi.org/mipi-i3c-basic-download
https://www.mipi.org/download-mipi-whitepaper-achieving-power-efficiency-in-iot-devices-with-mipi-i3c
https://www.mipi.org/download-mipi-whitepaper-achieving-power-efficiency-in-iot-devices-with-mipi-i3c
http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf
http://www.sunburst-design.com/papers/CummingsSNUG2002SJ_FIFO1.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug901-vivado-synthesis.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2019_2/ug901-vivado-synthesis.pdf

Used software:
Microsoft Office 365, Draw.io v24.1.0, MiKTeX v4.9, Xilinx Vivado 2019.1, Xcelium Logic Simu-
lator 21.09.007, IMC 23.03-s004, DVT v23.1.18, Overleaf, DeepL.

66

RTL codes

The RTL codes of the design were uploaded as an attachment and are available in the public/online
version of the thesis.

67

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	I3C Protocol
	Introduction
	Start, Stop, and other patterns
	Address header
	Private transactions
	SDA handoffs
	CCC bytes
	Dynamic Addressing
	In-band Interrupts, Hot-Joins, Resets

	Backwards Compatibility
	Power Efficiency

	System Level Design
	System design
	SW/HW decomposition
	Resets
	Clocks
	I3C Controller interface
	Differentiating Addresses from Data
	Supported Command Codes
	Error recovery

	RTL Design
	Clock gating, resets
	Counters
	Register map wrapper
	FIFO memories
	FIFO Address registers
	Interrupt controller
	I3C Controller registers
	Control block
	Shift register
	IBI shift register
	SCL clock generation
	Transmission Control
	Read Counter
	Elemental Use Cases

	Verification
	Verification Plan
	I3C Target Agent
	Use cases
	Initial configuration
	Basic I3C SDR write
	Basic I3C SDR read
	Legacy I2C write
	Delayed I3C SDR read/write transaction
	Broadcast CCC transfer
	Dynamic Address Assignment

	Tests
	Coverage

	Implementation
	Physical design parameters
	Gate Level Simulation

	Conclusions, Next Steps
	Bibliography
	Used software
	RTL codes

