
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Web Application for Cost and Manufacturing Event

Management in Formula Student Competitions

Viktória Ritzková

Ing. Marek Suchánek, Ph.D. et Ph.D.

Informatics

Software Engineering 2021

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

Formula Student is the largest technology student competition in the world. The

competition is held every year across the world and part of it is a cost-related discipline

that requires a lot of precise documentation. The goal of this thesis is to prepare in

collaboration with eForce Prague Formula team (FEL & FME CTU) a web application that

efficiently supports collection of the relevant information and production of the required

documentation. The application shall be developed following the software engineering

methods:

- Describe the Formula Student competition and focus on the Cost & Manufacturing

event. Analyze what information is needed, what and how is calculated or inter-related.

- Analyze how the eForce team is currently dealing with the Cost & Manufacturing (what

tools are used, how information is collected and captured etc.) and identify potential

optimizations.

- Set functional and non-functional requirements on the new web application. Prepare

use cases related to the functional requirements.

- Design the web application fulfilling the requirements using .NET technologies. Take

into account maintainability, sustainability, and extensibility of the application.

- Implement a prototype of the application based on the design. Justify use of additional

technologies, document and test the prototype.

- Evaluate the results of your work and outline possible future development.

Electronically approved by Ing. Michal Valenta, Ph.D. on 31 October 2023 in Prague.

Bachelor’s thesis

Web Application for Cost and Manufacturing
Event Management in Formula Student
Competitions

Viktória Ritzková

Department of Software Engineering
Supervisor: Ing. Marek Suchánek, Ph.D. et Ph.D.

May 16, 2024

Acknowledgements

I would like to thank my supervisor, Marek Suchánek, Ph.D. et Ph.D., for
his professional guidance on my bachelor’s thesis and for the advice provided
during the course of the development of this thesis. I want to thank team eForce
Prague Formula for the opportunity to participate in the Formula Student
project and for their cooperation in the implementation of my bachelor’s thesis.
Last but not least, I want to thank my family and friends who supported me
throughout my studies and thanks to whom I was able to make it this far.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46 (6) of the Act, I hereby grant a nonexclusive autho-
rization (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any way
(including for-profit purposes) that does not detract from its value. This au-
thorization is not limited in terms of time, location and quantity. However, all
persons that makes use of the above license shall be obliged to grant a license
at least in the same scope as defined above with respect to each and every
work that is created (wholly or in part) based on the Work, by modifying the
Work, by combining the Work with another work, by including the Work in
a collection of works or by adapting the Work (including translation), and at
the same time make available the source code of such work at least in a way
and scope that are comparable to the way and scope in which the source code
of the Work is made available.

In Prague on May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Viktória Ritzková. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Ritzková, Viktória. Web Application for Cost and Manufacturing Event Man-
agement in Formula Student Competitions. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2024.

Abstrakt

Tato práce se zabývá vývojem webové aplikace ve spolupráci s týmem Force
Prague Formula, která slouží ke sběru dat v disciplíně Cost & Manufacturing
soutěže Formula Student. V souladu se standardními postupy softwarového
inženýrství začíná práce analýzou disciplíny s cílem definovat požadavky pro
vyvíjenou aplikaci. Následně je aplikace navržena, implementována a testo-
vána. V závěru práce jsou vyhodnoceny výsledky a nastíněny možnosti dalšího
vývoje. Výsledkem práce je funkční aplikace připravená k produkčnímu nasa-
zení.

Klíčová slova Webová aplikace, Formula Student, Cost & Manufacturing,
Blazor, .NET

vi

Abstract

This thesis is dedicated to the development of a web application, in collabo-
ration with the eForce Prague Formula team, used for data collection in the
Cost & Manufacturing discipline of the Formula Student competitions. Follow-
ing standard software engineering practices, the thesis begins with the event’s
analysis to define application’s requirements. Subsequently, the application is
designed, implemented, and tested. The thesis concludes with an evaluation
of results and outlines possibilities for future development. The result is a
functional application ready for production deployment.

Keywords Web Application, Formula Student, Cost & Manufacturing, Bla-
zor, .NET

vii

Contents

Introduction 1

1 Goals 2

2 Formula Student Competition 3
2.1 History of Formula Student . 3
2.2 Disciplines . 3

2.2.1 Statics . 4
2.2.1.1 Engineering Design 4
2.2.1.2 Cost & Manufacturing 4
2.2.1.3 Business Plan 5

2.2.2 Dynamics . 5
2.2.2.1 Acceleration 5
2.2.2.2 Skidpad . 5
2.2.2.3 Autocross . 5
2.2.2.4 Endurance . 5
2.2.2.5 Efficiency . 5

2.3 eForce Prague Formula . 6

3 Cost & Manufacturing event 7
3.1 Procedure . 7
3.2 Cost Report Documents . 7

3.2.1 Bill of Materials . 8
3.2.2 Detailed Bill of Materials 8
3.2.3 Costed Bill of Materials 9
3.2.4 Supporting Material File 9
3.2.5 Cost Explanation File 9

3.3 Scoring . 9
3.4 Current Approach Analysis . 10

3.4.1 FSG Portal . 10
3.4.2 Team’s Data Collection 11

4 Analysis 12
4.1 Requirements . 12

4.1.1 Functional Requirements 13

viii

4.1.2 Non-functional Requirements 14
4.2 Use Case Specification Models 14

4.2.1 Actors . 14
4.2.2 List of Use Cases . 15

4.3 Domain conceptual model . 20
4.3.1 System . 21
4.3.2 Assembly . 21
4.3.3 SubAssembly . 21
4.3.4 Part . 21
4.3.5 Detail . 21

5 Design 22
5.1 .NET Development . 22

5.1.1 Blazor . 23
5.1.2 Blazor Server . 23
5.1.3 Blazor WebAssembly . 23
5.1.4 Chosen Hosting Model 24

5.2 Database . 24
5.3 Architectural Principles . 25

5.3.1 Proposed architecture 25
5.4 Authentication . 25

5.4.1 Stateful Authentication 26
5.4.2 Stateless Authentication 26
5.4.3 LDAP Server . 26

5.5 File Handling . 27
5.5.1 File Storage approaches 27

5.5.1.1 Database . 27
5.5.1.2 Physical Storage 27
5.5.1.3 Cloud . 27
5.5.1.4 Chosen Variant 27

5.5.2 Security . 27
5.6 User Interface . 28

5.6.1 UI Libraries . 28
5.6.2 UI Design . 28

5.6.2.1 Authentication 28
5.6.2.2 Navigation Bar 29
5.6.2.3 Systems Overview 29
5.6.2.4 Assemblies Overview 30

5.6.3 Parts Overview . 30
5.6.3.1 Parts Detail Overview 30

5.6.4 Add & Edit form . 31

6 Implementation 33
6.1 Software Project Managment 33

6.1.1 Data Versioning . 33
6.1.2 Documentation . 33
6.1.3 Containerization . 34
6.1.4 CI/CD . 34

6.2 Design Patterns . 36
6.2.1 Repository Pattern . 37

ix

6.2.2 Service Pattern . 37
6.2.3 Dependency Injection 37

6.3 Database . 39
6.3.1 Database Connection . 41
6.3.2 Database Model . 41

6.4 Authentification . 41
6.4.1 LDAP Connection . 42
6.4.2 Authentification in UI 43

6.5 File Managment . 44
6.5.1 File Service . 45

6.6 Implemented Application . 47

7 Testing 48
7.1 Unit Testing . 48
7.2 User Acceptance Testing . 49

7.2.1 Testers . 49
7.2.2 Testing Scenerios . 49
7.2.3 Testing Evaulation . 50

8 Evaluation 52
8.0.1 Evaulation of Results 52
8.0.2 Future Development . 52

Conclusion 54

Bibliography 55

A Formula Student Specifications 60

B Implementation 67

C Testing Scenarios 73
C.1 Login . 73
C.2 Create Assembly . 73
C.3 Attach File to Assembly . 74
C.4 Create Part . 74
C.5 Edit Part . 74
C.6 Create Part Detail . 75
C.7 Generate BOM . 75
C.8 Generate Support File . 76
C.9 Delete Assembly . 76
C.10 Logout . 76

D Contents of attachments 78

x

List of Figures

2.1 Points distribution . 4

3.1 FSG Portal . 11

4.1 General use cases . 15
4.2 Manage assemblies use case diagram 17
4.3 Manage subassemblies use case diagram 19
4.4 Manage parts use case diagram . 20
4.5 Domain conceptual model . 21

5.1 Comparison of Blazor hosting models 24
5.2 Layered architecture of the application 26
5.3 Login form design . 29
5.4 Systems page design . 29
5.5 Assemblies table design . 30
5.6 Parts table design . 31
5.7 Parts detail page . 31
5.8 Add/edit form . 32

6.1 Implemented database model . 42

A.1 Partial CBOM submitted by team eForce in Formula Student Czech
Re- public 2023 . 64

A.2 FSG Portal . 65
A.3 Creating Part through FSG Portal. 65
A.4 CBOM on FSG Portal . 66
A.5 Changelog on FSG Portal . 66

B.1 Implemented Login page . 67
B.2 Implemented Systems page . 68
B.3 Implemented Assemblies and subAssemblies page page 68
B.4 Implemented dialog for creation of new assembly 69
B.5 Implemented file manager dialog window 69
B.6 Implemented page displaying parts of an assembly 70
B.7 Delete part confirmation dialog . 70

xi

B.8 A snippet of the Support material document generated using PFD-
Sharp library . 71

B.9 A snippet of the BOM document generated using PFDSharp library 72

xii

List of Tables

3.1 Cost and Manufacturing Scoring 10
3.2 Cost and Manufacturing score deductions 10

A.1 List of systems . 60
A.2 List of assemblies names predefined by the rules 63

xiii

Introduction

At the beginning of the 1980s, a few passionate students from Texas, USA
decided to build a custom racing single-seater, and thus Formula Student was
born. Since then, the competition spread across the globe and year by year
new aspiring engineers step into the world of motorsport and push the bound-
aries of technology and innovation forward. Through this opportunity, they
gain experience in technical design, hands-on manufacturing, and, nonetheless,
teamwork.

In today’s business world, effective cost management and innovative pro-
duction processes are more essential for success than ever. The Cost & Man-
ufacturing discipline of the competition therefore aims to evaluate the team’s
abilities to finance race car production, their strategies for said cost manage-
ment, as well as their comprehensive understanding of manufacturing processes.
These are all essential traits for successful business ownership. Financing For-
mula Student teams can be particularly challenging, as they often operate with
limited financial and/or personnel resources.

The main goal of this thesis is to prepare in collaboration with eForce Prague
Formula a web application that supports the collection of relevant information
necessary for the Cost & Manufacturing discipline as well as the production
of required documentation. The thesis further contains the analysis, design,
and implementation of the application, following the standard principles of any
software development.

The beginning of the thesis focuses on the Formula Student competition as
a whole, describes its history and concept, presents a brief overview of all the
disciplines in the competition, and introduces team eForce Prague Formula.
Subsequently focus shifts to the Cost & Manufacturing discipline covering its
rules and requirements and accesses the current approach of the team to the
discipline, followed by the analysis of software requirements, as well as creation
of use cases and the class diagram. The practical part of the tesis is dedicated to
the possibilities of .Net development and the software design of the application.
It records the factual implementation as well as testing, which is a crucial
part of any software development. The thesis is concluded by assessment of
the findings, the final implementation, and outlines the possibilities for future
development.

1

Chapter 1
Goals

The main goal of this thesis is to prepare, in collaboration with eForce Prague
Formula Team, a web application that efficiently supports the collection of
the relevant information for the Cost & Manufacturing discipline in Formula
Student Competition and the production of the required documentation.

To achieve the primary goal, several partial objectives must be fulfilled.
Firstly, it is necessary to describe the Formula Student competition and

focus on the Cost & Manufacturing event. Analyze what information needs to
be collected and how it should be categorized, as well as analyze the team’s
current approach to the discipline and identify potential optimizations.

The second objective is to design the web application fulfilling the require-
ments using .NET technologies, taking into account maintainability, sustain-
ability, and extensibility of the application.

The analysis should then be followed by implementation of a prototype
based on the design. The use of additional technologies should be justified.The
prototype should then be properly documented and tested.

Finally it is necessary to evaluate the results of this thesis and outline
possible future development.

2

Chapter 2
Formula Student Competition

Formula Student is an international engineering competition, in which groups
of passionate students create formula-like vehicles with which they compete on
various international circuits. Today, nearly 800 teams from around the world
compete in European competitions, as well as in the United States, Brazil,
Japan, India, and Australia. The aim of the competition is for students to
establish contacts in the automotive industry, gain practical experience and
project management skills, and, above all, design and manufacture safe, reli-
able, and efficient vehicles. In the races, not only the vehicle’s driving abilities
are tested, but also the overall development, budget, and sales potential. The
competition consists of two categories: the Electrical vehicle (EV) category
and the Driverless vehicle (DV) category. Historically, there was also a Com-
bustion engine vehicle (CV) category, but since the 2024 season, most races
have withdrawn from this division. [1]

2.1 History of Formula Student

In 1981, The Society of Automotive Engineers (SAE) in the USA started the
Formula SAE competition, in which almost 140 teams competed in building
one-seaters with combustion engines. Seventeen years later, SAE, together with
the Institution of Mechanical Engineers (IMechE), brought the competition to
Europe, and Formula Student was created. In 2006, the competition spread also
to Australia, and Formula SAE Australasia was created. All the divisions exist
to this day, with each having similar rules to one another, therefore enabling
the teams to compete across the divisions. In 2010, the competition introduced
the EV division, and in 2017, the DV division, in which the vehicles run fully
autonomously. [2]

2.2 Disciplines

The Formula Student races in Europe follow the rules of Formula Student
Germany. The teams compete in 3 static disciplines and up to 10 dynamic
disciplines. Each discipline is rewarded by a certain number of points, as
displayed in Figure 2.1. However, before the car is eligible to compete on
the racetrack, it must complete various technical inspections, ensuring that

3

2.2. Disciplines

the car is rules-compliant and, more importantly, safe to drive. A more in-
depth overview of the individual disciplines is presented below based on the
competition rules [3].

Figure 2.1: Points distribution. [4]

2.2.1 Statics
Formula Student tries to introduce students to all aspects of the automotive
industry. Therefore, static events test future engineers on their presentation
techniques and financial planning skills.

2.2.1.1 Engineering Design

Prior to the start of this event, the team is required to submit an 8-page
technical description of the vehicle. The document should include the design
and the manufacturing process. Based on the document, the panel of judges will
evaluate the vehicle’s technical design, construction, and overall production.
The evaluation is then followed by a discussion between the judges and the
students to better evaluate the technical specification and the overall thinking
and reasoning behind the chosen design. The score then reflects not only the
quality of the design but also the decisions behind it.

2.2.1.2 Cost & Manufacturing

Cost is the deciding aspect of all products in today’s economy. The same applies
to the vehicles that are build by the teams. Therefore, students are required
to hand in an extensive written report documenting all parts present in the
vehicle and step-by-step manufacturing processes needed for their assembly.

4

2.2. Disciplines

2.2.1.3 Business Plan

Each team presents a fictional business plan for a product or service, which
references the team’s current vehicle. The aim is to create a lucrative business
opportunity with the highest overall profit. Each team has 10 minutes to pitch
their product to the judges posing as potential investors.

2.2.2 Dynamics
Even though the design and financial aspects of vehicle construction are cru-
cial, the most points in the competitions come from dynamic events in which
the car displays its performance, speed, and reliability, therefore putting the
team’s theoretical knowledge to the test. Each discipline focuses on and tests
a different aspect of the vehicle.

2.2.2.1 Acceleration

The vehicle’s acceleration is measured over a 75 m long track with a fixed start.
The best teams are able to complete it in under 3 seconds, reaching over 120
km/h.

2.2.2.2 Skidpad

The skidpad track, built in the shape of a figure 8, tests the maximal lateral
acceleration of the vehicle. Many aspects create the best run, such as good tires,
good aero packet, low central of mass, and last but not least, a concentrated
driver.

2.2.2.3 Autocross

Autocross is a 1km long track consisting of various straights, curves, slaloms,
and chicanes. As a result, every little design aspect shows and ultimately saves
or adds milliseconds to the resulting time. Additionally, the driver’s abilities are
crucial for achieving the best possible time: precise handling, on-time braking,
and acceleration are all aspects of a winning run. This event is often referred
to as qualifying because the final ranking determines the starting order for the
endurance race.

2.2.2.4 Endurance

Providing the most points, this event is the central discipline of the competition,
in which the cars prove their durability under long-term conditions. The track
is almost identical to the autocross track, but instead of one lap, the car is
driven for 22km with a driver change after 11th km.

2.2.2.5 Efficiency

During endurance, energy consumption is recorded. The final efficiency score is
then calculated as the difference in energy between the start of the race and the
end of the race relative to speed. This prevents the team from driving slowly
in order to save energy and, therefore, score more points. Additionally, as the

5

2.3. eForce Prague Formula

vehicles run on electrical accumulators the aspect of recuperation1 comes into
play, as the recuperated energy is subtracted from the total used energy.

2.3 eForce Prague Formula

Student race cars have been built under the Faculty of Mechanical Engineer-
ing at CTU since 2007 by the CTU Cartech team. Over the 15 years, they
successfully built 15 single-seater cars with combustion engines, the last two
generations being hybrid.

The student team eForce FEE Prague Formula was established in 2010 when
a few enthusiastic CarTech members decided to leave their previous team and
start developing the first electric formula-like vehicle in the Czech Republic. [4]

In 2019, eForce once again inscribed itself into the history of Czech motor-
sport when it released the first fully autonomous electric formula built in the
Czech Republic. The year 2022 was the team’s most successful season, with
eight victories, 6 second and 4 third places across various disciplines. That year,
the team ranked at an incredible 17th place in the Formula Student Electric
World Ranking [6].

The future of Formula Student lies in the autonomous electric vehicles;
therefore, in 2024, both teams, eForce FEE Prague Formula and CTU Cartech,
decided to join forces and establish a new team, eForce Prague Formula, based
at the Faculty of Electrical Engineering and Faculty of Mechanical Engineering
at CTU in Prague. Currently, the team has approximately 90 members from
various CTU faculties with few members from other universities. [4]

1Recuperation is a process of recovering some of the kinetic energy lost in slowing down
the car or braking. [5]

6

Chapter 3
Cost & Manufacturing event

The Cost & Manufacturing discipline aims to access the team’s understanding
of the manufacturing process and the financing associated with constructing a
prototype. In this chapter, we will focus on the discipline procedure described
in the rules [7] and the team’s current approach to this event.

3.1 Procedure

Prior to the competition, the team has to submit three Cost Report Documents
(CRD) to the competition’s website. At the competition, a discussion with the
judges will take place next to the team’s vehicle.

The discussion consists of three parts:

• Bill of Materials (BOM) discussion
The judges access the team’s ability to create accurate engineering and
manufacturing BOM for the vehicle. The BOM has to reflect the vehicle
brought to the competition accurately, all costs and calculations included
are accurate and realistic, and the BOM has to reflect the manufacturing
feasibility of the vehicle.

• Cost Understanding
Discussion about the team’s overall knowledge of finances and manufac-
turing processes.

• Real case
A few days prior to the competition, there will be a specific task about
cost and manufacturing in a particular field posted on the competition’s
website, the goal of which is to put the team’s knowledge to the test.

3.2 Cost Report Documents

The Cost Report Documents (CRD) consist of:

• the BOM including the Costed Bill of Materials (CBOM) and the De-
tailed Bill of Materials (DBOM),

7

3.2. Cost Report Documents

• the supporting material file,

• the cost explanation file.

The documents have to be submitted to the competition’s website by a specific
deadline, and the team is required to bring at least one hard copy to the
competition.

3.2.1 Bill of Materials
The Bill of Materials is a sorted list of all vehicle parts and must include all
parts of the vehicle brought to the competition. The BOM is structured as
follows:

• The BOM is divided into systems. The systems are predefined by the
competition and unchangeable. The list of all systems can be viewed
in Table A.1.

• Each system is divided into assemblies, which are also predefined by the
competition as shown in Table A.2, but unlike the systems, can be further
specified by the teams.

• Each assembly can be broken down into subassemblies which are specified
by the team.

• Each assembly or subassembly is broken down into parts that are specified
by the team.

Fasteners are additional items used to assemble a part and should not be in-
cluded, provided they are not self-manufactured. All self-manufactured fasten-
ers are considered part of the assembly.

All entries of the BOM should include:

• name, which must clearly describe the part,

• comment,

• and an optional custom ID. If left blank, the competition website will
generate the ID.

The BOM must use metric units only.

3.2.2 Detailed Bill of Materials
In addition to the information included in the BOM, the Detailed Bill of Mate-
rials also includes the manufacturing and assembly processes of all parts from
two or three systems included in the BOM. The additional information is as
follows:

• Each part is broken down into:

– Material – Meaning raw material of the part, e.g., aluminum.

8

3.3. Scoring

– Processes – Process is the operation necessary to produce the part
from the material. Furthermore, if necessary, processes can be bro-
ken down into fasteners and tooling. Tooling represents the neces-
sary tools used to change material into a specific shape. For example,
welding jigs, molds, and others.

• For each part in the assemblies, it has to be specified whether it was
bought or made. For each bought part, only the fasteners are included;
however, if the part was altered from its original state, all processes of
the change need to be included as well.

3.2.3 Costed Bill of Materials
The Costed Bill of Materials includes all information included in the BOM and
the DBOM, and additionally, it includes the accurate cost of all parts from
one or two DBOM systems. These systems are specified in the competition
handbook in advance.

Cost calculations should include the costs of material, manufacturing, and
purchased parts, as well as the cost of the assembly process. All these cal-
culations should aim to be as close to reality as possible. All costs must be
displayed in EUR and estimations of hourly work rates and machining should
be included.

On the other hand, the calculations should exclude development, research,
and capital expenses for real estate, such as the development hours of the team.
The costs of power tools should also be excluded.

An snippet of the team’s BOM submitted at the 2023 Formula Student
Czech Republic can be viewed in Figure A.1.

3.2.4 Supporting Material File
The Supporting Material File contains additional information to better the
comprehension of the BOM. It usually consists of drawings, exploded view
drawings, and pictures of the parts or assemblies included in the vehicle.

3.2.5 Cost Explanation File
The Cost Explanation file explains the team’s overall approach to the disci-
pline. It includes all the necessary calculations, such as hourly rates in the
Czech Republic, conversion between EUR and CZK used, and calculations of
all manufacturing prices.

3.3 Scoring

The Cost and Manufacturing event will be evaluated as shown in the table 3.1.
If items are missing in any of the documents, the points will be deducted from
the ”BOM and BOM Discussion” category, as shown in the table 3.2

9

3.4. Current Approach Analysis

Category Points
Format and Accuracy of Documents 5
Knowledge of Documents and Vehicle 5
BOM and BOM Discussion 35
Discussion Part 2 ”Cost Understanding” 35
Part 3 ”Real Case” 20
Total 100

Table 3.1: Cost and Manufacturing Scoring, based on [7]

Missing item Points
Assembly -5
Part -3
Process Material -1

Table 3.2: Cost and Manufacturing score deductions, based on [7]

3.4 Current Approach Analysis

This section comperes the tool presented by the competition and an approach
of team eForce Prague Formula to the discipline.

3.4.1 FSG Portal
The competition website provides the team with a tool for creating all BOMs
named FSG Portal as seen in Figure 3.1. It requires the BOM to be structured,
as per the rules, into systems and assemblies (possibly subassemblies), and also
requires the processes and costs in the DBOM and CBOM of systems, which
were specified by the competition handbook.

The portal has several useful features such as:

• ability to enter a custom ID,

• ability to export the data to a document,

• alerts the user if the costs are not present where they are required.

However, there are also several features that the system does not have,
which sparked the idea of creating a new independent tool. The missing fea-
tures from the team’s point of view are:

• There is no undo button or soft delete, meaning all deleted items will be
lost permanently.

• It does not support adding material, processes, and costs to the systems
that do not require it for the said season. Team eForce would like to
collect these data to improve their knowledge and understanding of the
car manufacturing process.

• It does not allow to attach support files directly to the collected data.

The further visualisation of FSG portal can be viewed in Figures A.2 to A.5

10

3.4. Current Approach Analysis

Figure 3.1: FSG Portal [8]

3.4.2 Team’s Data Collection
Team eForce used the FSG Portal for the data collection, as there was no other
viable option.

However, more often than not, the data collection was done just a few days
before the competitions, which is why it is not ideal for all members to use
the FSG Portal simultaneously. Simultaneous work could result in unsafe data
handling, and the risk of deleting some crucial information is imminent, as
there is no return button, and the deletion of entries can not be reversed.

The most common issue with the information collection was the inability
to modify the ”bought” or ”made” status for the parts. If the invalid option
was selected, the members were required to delete and re-enter the part once
more.

As the Portal does not support the creation of the support file material,
the team had to upload all related files to their server data storage and then
create the support material file by hand, altering the header and footer for each
inputted file.

That is why the team decided that creating a new system addressing all
these issues and tailoring it to their unique requirements is the best possible
course of action.

11

Chapter 4
Analysis

The goal of this chapter is to define the functional and non-functional re-
quirements for the application and characterize them based on the MoSCoW
method. These requirements are essential for developing use cases and use
case diagrams. The chapter concludes with the domain class diagram of the
application.

4.1 Requirements

Software requirements describe the services a software must provide and the
constraints under which it must operate. Their collection helps us define the
boundaries of the systems, enables a more accurate estimation of the workload,
and captures the constraints placed on the system. [9]

Requirements are commonly divided into two main categories [10]:

• Functional requirements are statements of services that the system
should provide, how the system should react to particular inputs, and
how the system should behave in particular situations.

• Non-functional requirements are constraints on the services or func-
tions offered by the system, such as timing constraints, constraints on
the development process, standards, and others.

The priority of the requirements is defined by the MoSCoW method [11].
It is a four-step approach to prioritizing which requirements have the best
return on investment. The four categories are:

1. Must Have – the requirement is necessary for the successful completion
of the project. Without it, the application will not function properly.

2. Should Have – the requirement should be included in the final project;
however, it is not necessary for the first release.

3. Could Have – the requirement is not fundamental for the application;
therefore, they are worked on only after completing all must-have and
should-have requirements.

4. Won’t Have – the requirement is optional and usually specifies future
development of the application.

12

4.1. Requirements

4.1.1 Functional Requirements
Functional requirements were defined based on the performed analysis. They
take into account the requirements of the competition and the needs of the
eForce Prague Formula team.

F1. Systems overview (Must Have): The application will display a list
of all systems defined by the rules.

F2. System detail (Must Have): The application will allow user to click
on a system and display additional information about said system.

F3. Search bar (Could Have): The application will allow user to search
for individual assemblies or parts based on their name or associated com-
ment.

F4. Assemblies overview (Must have): The application will allow user
to view an overview of the assemblies belonging to a selected system.

F5. Edit assembly (Must Have): The application will allow user to
change the attributes of a particular assembly.

F6. Delete assembly (Must Have): The application will allow user to
delete an assembly.

F7. Create new assembly (Must Have): The application will allow user
to create a new assembly.

F8. Create new subassembly (Must Have): The application will allow
user to create a new subassembly.

F9. View subassemblies (Must Have): The application will allow user
to view a list of subassemblies falling under a selected assembly.

F10. Edit subassembly (Must Have): The application will allow the user
to change the attributes of a selected subassembly.

F11. Delete subassembly (Must Have): The application will allow user
to delete selected subassembly.

F12. Parts overview (Must Have): The application will allow user to
display an overview of the parts belonging to the respective assembly.

F13. Create new part (Must Have): The application will allow user to cre-
ate a new part, select its name, quantity, comment, and other necessary
attributes.

F14. File upload (Should Have): The application will allow user to upload
a document for the selected part, assembly or sub-assembly.

F15. File download (Should Have): The application will allow user to
download a document for the selected part, assembly or sub-assembly.

F16. Generate a document (Should Have): The application will allow
user to download a document of the comrising the collected information.

13

4.2. Use Case Specification Models

F17. Drag and drop stamping (Could Have): The application will allow
user to manually change the sorting in tables by dragging and dropping
rows.

F18. Adding detail to part (Must Have): Ability to add processes, tool-
ing, fasteners, materials and their costs to a part.

F19. Predefined macros (Could Have): The application will allow user to
define processes, fasteners, materials and toolings macros including their
name, comment and price.

F20. The cost of material relative to time (Won’t Have): The appli-
cation will allow user user to view the change of cost of material relative
to time.

4.1.2 Non-functional Requirements
Non-functional requirements were defined based on the the performed analysis,
and takes into account the infrastructure of the eForce Prague Formula team.

N1. Availability as a web application (Must Have): The application
is available as a desktop web application.

N2. Authentication (Should Have): The application will enable to log
in only to the authenticated user.

N3. ASP.NET core (Must Have): The application is developed using
ASP.NET core based framework.

N4. MySQL Database(Must Have): The application needs to commu-
nicate with an instance of MySQL database.

N5. Containerization(Must Have): The application has to be built using
a Docker container as a preparation for the application’s deployment

4.2 Use Case Specification Models

Use-case specification models visually represent the actions between actors and
the system and, therefore, represent the system’s functional requirements in the
context of the user’s goals. The use cases and actors in the diagrams describe
what the system does and how the actors use it, but not how the system
operates internally. [12]

4.2.1 Actors
Before we can describe the use cases related to our system, we first need to
predefined the actors. An actor represents a role of a user that interacts with
the system. The user can be a human user, an organisation, a machine, or
another external system. [13]

The implemented application will have one user, the user being a member
of a Formula Student team who will use the application for collection of cost
and manufacturing data.

14

4.2. Use Case Specification Models

4.2.2 List of Use Cases
UC1. Log in – The web application presents the user with log in form. The

user fills in the fields for username and password and then clicks on
the button to proceed with login. If the username and password are
correct, the user is logged in into the application. Otherwise the user is
advised to inform the admin from the team to resolve the issue (a.k.a.
proceed with registration or update their forgotten password).

UC2. View systems – The application presents user with a list of systems
in a form of a table. Each system represents one row of the table.

UC3. Manage assemblies – Specified in the Figure 4.2.

UC4. Manage subassemblies – Specified in the Figure 4.3.

UC5. Manage parts – Specified in the Figure 4.4.

UC6. Generate document – The user clicks the ”generate cost report”
button in the top left corner of the screen after which the application
generates a document containing all the systems, its assemblies, sub-
assemblies, parts and all its related meta data and creates a document
which then the user can download using the ”download” button with
which he is presented.

UC7. Log out – The option to log out is presented only to a logged in user.
The button for log out is located in the bottom left corner of the screen.
After the user clicks the button, he is logged out and redirected to the
log-in screen.

Figure 4.1: General use cases, created using [14]

15

4.2. Use Case Specification Models

UC8. Find assembly – The application presents the user with a table con-
taining all the assemblies from certain system. The user can then
locate the assembly in the table manually, or he can use the search
bar in the top of the screen to look up the assembly either by name or
by its comment.

UC9. View assemblies – The user chooses a system, whose assemblies he
would like to display, then locates the system in the systems table
and clicks on the button ”assemblies”. The application redirects the
user to a new page with all the assemblies from the chosen system.
The user can also search among the assemblies based on its ”name” or
”comment” by clicking on the search bar at the top of the screen.

UC10. Create new assembly – The user clicks on the button ”create new
assembly” located in the top of the screen. He is then presented with
a pop up form in which he has to fill out the ”name” of the assembly.
If he decides to not proceed with creation of new assembly he can click
the ”cancel button”. The system then asks the user if he doesnt want
to proceed and if so the pop up form is then closed. Otherwise the
user choses the button ”create” and the pop up form closes and the
new assembly is created.

UC11. Delete assembly – The user locates the assembly he would like to
delete in the assemblies table and clicks on the ”delete” button in
the table row. The user is then presented with a confirmation dialog
which asks him if he truly wants to delete the assembly. The user
then can proceed with the deletion by clicking the ”yes” button, which
triggers the deactivation of the assembly and all the subassemblies
and parts which are included in the subassembly and the confirmation
dialog closes. If the user does not wish to proceed with the deletion he
can click the ”no” button and the confirmation dialog closes and the
assembly remains unchanged.

UC12. Edit assembly – The users locates the assembly he wishes to edit
in the assemblies table and clicks on the ”edit” button in the corre-
sponding row. The application then shows the user an edit form in
which the user can change the assembly’s ”name” and/or ”comment”.
Afterwards he can click on the ”submit” button and the changes will
be applied and the edit form closes. Otherwise the user can click on
the ”cancel” button, the edit form closes and the assembly remains
unchanged.

UC13. Upload document – The user locates the assembly to which he
wishes to upload the document and finds it in the assemblies table.
Then on the corresponding row he clicks on the ”upload a document”
button. Application then shows him the upload form in which he will
upload the document. He can then proceed to click the ”save” button
which will save the file and the upload form closes. Otherwise the user
can click the ”cancel” button which will trigger the confirmation dialog
in which it asks the user wheater he wishes to cancel the upload. If
the user than clicks on the ”yes” button, both the confirmation form
and the confirmation dialog closes and no changes are made to the

16

4.2. Use Case Specification Models

application. Otherwise the confirmation dialog closes and the user can
proceed with the upload.

UC14. Download document – The user locates the assembly whose files he
wishes to download and finds it in the assemblies table. Then on the
corresponding row he clicks on the ”download a document” button.
The application then proceeds to download the attached documents.

Figure 4.2: Manage assemblies use case diagram, created using [14]

UC15. Find subassembly – The application presents the user with a table
containing all the subassemblies from certain system/assembly. The
user can then locate the subassembly in the table manually, or he can
use the search bar in the top of the screen to look up the subassembly
either by name or by its comment.

UC16. Create subassembly – The user clicks on the button ”create sub-
assemly” located in the top of the screen. He is then presented with a
pop up form in which he has to fill out the ”name” of the subassembly.
If he decides to not proceed with creation of new subassembly he can
click the ”cancel” button. The system then asks the user if he doesn’t
want to proceed and if so the pop up form is then closed. Otherwise
the user chooses the button ”create” and the pop up form closes and
the new sub-assembly is created.

UC17. Edit subassembly – The users locates the subassembly he wishes
to edit in the subassemblies table and clicks on the ”edit” button in
the corresponding row. The application then shows the user an edit
form in which the user can change the subassembly’s ”name” and/or
”comment”. Afterwards he can click on the ”submit” button and the
changes will be applied and the edit form closes. Otherwise the user
can click on the ”cancel” button, the edit form closes and the sub-
assembly remains unchanged.

17

4.2. Use Case Specification Models

UC18. View subassemblies – The user chooses an assembly , whose sub-
assemblies he would like to display, then locates the assembly in the
assemblies table and clicks on the button ”sub-assemblies”. The ap-
plication redirects the user to a new page with all the parts from the
chosen assembly . The user can also search among the sub-assemblies
based on its ”name” or ”comment” by clicking on the search bar at
the top of the screen.

UC19. Delete subassembly – The user locates the subassembly he would
like to delete in the subassemblies table and clicks on the ”delete”
button in the table row. The user is then presented with a confirmation
dialog which asks him if he truly wants to delete the subassembly. The
user then can proceed with the deletion by clicking the ”yes” button,
which triggers the deactivation of the subassembly and all the parts
included in it and the confirmation dialog closes. If the user does not
wish to proceed with the deletion he can click the ”no” button and the
confirmation dialog closes and the subassembly remains unchanged.

UC20. Upload document – The user locates the subassembly to which he
wishes to upload the document and finds it in the subassemblies table.
Then on the corresponding row he clicks on the ”upload a document”
button. Application then shows him the upload form in which he will
upload the document. He can then proceed to click the ”save” button
which will save the file and the upload form closes. Otherwise the user
can click the ”cancel” button which will trigger the confirmation dialog
in which it asks the user weather he wishes to cancel the upload. If
the user than clicks on the ”yes” button, both the confirmation form
and the confirmation dialog closes and no changes are made to the
application. Otherwise the confirmation dialog closes and the user can
proceed with the upload.

UC21. Download document – The user locates the subassembly whose files
he wishes to download and finds it in the subassemblies table. Then on
the corresponding row he clicks on the ”download a document” button.
The application then proceeds to download the attached documents.

UC22. Find part – The application presents the user with a table containing
all the parts from certain system /assembly/subassembly. The user
can then locate the part in the parts table manually, or he can use the
search bar in the top of the screen to look up the parts either by name
or by its comment.

UC23. Create part – The user clicks on the button ”create part” located in
the top of the screen. He is then presented with a pop up form in which
he has to fill out the ”name” of the part, its “comment”, “quantity”
and checks wheater it is custom made or bought. If he decides to not
proceed with creation of new part he can click the ”cancel” button.
The system then asks the user if he doesn’t want to proceed and if so
the pop up form is then closed. Otherwise the user chooses the button
”create” and the pop up form closes and the new part is created.

18

4.2. Use Case Specification Models

Figure 4.3: Manage subassemblies use case diagram, created using [14]

UC24. Edit part – The users locates the part he wishes to edit in the parts
table and clicks on the ”edit” button in the corresponding row. The ap-
plication then shows the user an edit form in which the user can change
the assembly’s ”name” and/or “quantity”, “custum made/ bought”.
Afterwards he can click on the ”save changes” button and the changes
will be applied and the edit form closes. Otherwise the user can click
on the ”cancel” button, the edit form closes and the assembly remains
unchanged.

UC25. Delete part – The user locates the part he would like to delete in the
parts table and clicks on the ”delete” button in the table row. The
user is then presented with a confirmation dialog whis asks him if he
truly wants to delete the part. The user then can proceed with the
deletion by clicking the ”yes” button, which triggers the deactivation
of the part and the confirmation dialog closes. If the user does not
wish to proceed with the deletion he can click the ”no” button and the
corfirmation dialog closes and the part remains unchanged.

UC26. View parts – The user chooses a system or an assembly or an sub-
assembly, whose parts he would like to display, then locates the system
or assembly or subassembly in the systems or assemblies or subassem-
blies table and clicks on the button ”parts”. The application redirects
the user to a new page with all the parts from the chosen system or
assembly or subassembly. The user can also search among the parts
based on its ”name” or ”comment” by clicking on the search bar at
the top of the screen.

UC27. Upload document – The user locates the part to which he wishes
to upload the document and finds it in the parts table. Then on
the corresponding row he clicks on the ”upload a document” button.
Application then shows him the upload form in which he will upload
the document. He can then proceed to click the ”save” button which

19

4.3. Domain conceptual model

will save the file and the upload form closes. Otherwise the user can
click the ”cancel” button which will trigger the confirmation dialog
in which it asks the user wheater he wishes to cancel the upload. If
the user than clicks on the ”yes” button, both the confirmation form
and the confirmation dialog closes and no changes are made to the
application. Otherwise the confirmation dialog closes and the user can
proceed with the upload.

UC28. Download document – The user locates the part whose files he
wishes to download and finds it in the parts table. Then on the cor-
responding row he clicks on the ”download a document” button. The
application then proceeds to download the attached documents.

UC29. Add details – The user locates the part to which he wishes to add
additional details. Then clicks on the button “DBOM”. This will open
up a form in which the user chooses : the “type” of detail (it can
be material / fastener/ process / tooling), its “quantity”, “costs (per
piece)”, “comments”, “cost comments”. If he decides to not proceed
with creation of new detail he can click the ”cancel button”. The
system then asks the user if he doesn’t want to proceed and if so the
pop up form is then closed. Otherwise the user chooses the button
”create” and the pop up form closes and the new detail is created.

Figure 4.4: Manage parts use case diagram, created using [14]

4.3 Domain conceptual model

The domain conceptual model provides a visual representation of the static
structure of the system. It describes the elements of the system and the re-
lationships between them. These elements are represented by classes and can

20

4.3. Domain conceptual model

characterise, for example, persons, things, events, or abstract concepts such as
groups.[15]

Entities and their relationships as well as the final diagram shown in Fig-
ure 4.5 was constructed based on the rules of the completion as well as the
analysis conducted in this chapter.

Figure 4.5: Domain conceptual model, created using [14]

4.3.1 System
Entity system represents a system defined by the rules, that has its name,
two letter abbreviation used for generating of custom IDs and non-required
comment describing the system further.

4.3.2 Assembly
Entity assembly represents an assembly as described by the rules. It has its
name, non-required comment, three letter abbreviation used for generating of
custom ID. The name can be chosen from a predefined Table A.2 or created,
however all created names have to start with a prefix ”Other:”.

4.3.3 SubAssembly
Entity subassembly represents a smaller subgroup of parts included into an
assembly. It has its name, three letter abbreviation and a non-required com-
ment.

4.3.4 Part
Entity Part represents any part which is used for the manufacturing of a mono-
post. It has its name, comment, indication whether it was custom made or
bought, quantity, and also a generated custom ID based on the system, assem-
bly and subassembly it belongs in.

4.3.5 Detail
Entity detail further specifies the part. It has its name, comment, quantity,
cost, which specifies the Price per piece , cost related comments and detail type
which has to be one of the predefined types.

21

Chapter 5
Design

In this chapter i will present all the technologies used in implementation of
my application as well as brief overview of the used dabase and user interface
libraries.

5.1 .NET Development

During the mid-1990s, in response to ever so growing popularity of Java, Mi-
crosoft decided to develop the .NET Framework. The first version, released
in 2002, enabled to build and execute applications in almost 22 different pro-
gramming languages. However, it did have a significant drawback in that it
was limited to only Windows environment. [16]

In pursuit of a genuinely cross-platform version of the .NET Framework,
Miguel de Icaza and Nat Friedman established the Mono Project in 2004,
which aimed to develop a Linux-compatible version of .NET Framework. De-
spite the emergence of other third-party implementations, Microsoft remained
focused on its Windows-based version [16]

That changed in 2016 when Microsoft presented .NET Core, a cross-
platform runtime available on Windows, macOS, and Linux, which became
faster and more modular than its predecessor. The Last significant change
came in 2020, when a new implementation of .NET was released, dropping the
Core naming scheme. Modern .NET supports all types of development, the
three most common being web, desktop, and mobile applications.

Alongside the .NET Core release, Microsoft also introduced ASP.NET
core framework for the development of interactive web applications. ASP.NET
Core provides a variety of programming models, such as Web API, MVC,
Radzen, or Blazor. [17]

The decision to select .NET for the application development was motivated
by the collective expertise in C# and .NET within the team’s IT department.
As a result, it enhances the team’s ability to address issues and implement
future enhancements swiftly, improving the application’s scalability and main-
tainability.

22

5.1. .NET Development

5.1.1 Blazor
Blazor is an open-source web-development framework based on ASP.NET core
that enables to develop web applications using C#, CSS and HTML instead
of JavaScript, the industry’s more common alternative. As of .NET6 which
is used in the developed application, Blazor provides two hosting models for
purely web applications. [18]

5.1.2 Blazor Server
Blazor server application runs entirely on the server using SignalR, an open-
source library providing real-time web functionalities [19], to connect to the
user interface, as shown in Figure 5.1a. All changes on the client side are then
communicated back to the application using SignalR, where they are processed
by the server.

The advantages of Blazor server are: [20]

+ High speed thanks to the pre-rendering of HTML component.

+ Accessibility through various web browsers, even older versions.

+ Security as a result of the whole business logic running on the server,
therefore not exposing its inner workings to the client.

The disadvantages of Blazor Server are: [20]

− No offline support caused by the need for a live SignalR connection.

− High latency as a result of too many calls made to the server.

5.1.3 Blazor WebAssembly
Blazor Web Assembly also refered to as Blazor WASM downloads all necessary
components and dependencies to the browser and runs them from there, as
shown in Figure 5.1b. That eliminates the need for live connection to the
server and in return provides faster and more responsive user interface with
offline support. [21]

The advantages of Blazor Web Assembly are: [20]

+ Offline support.

+ Faster user interface as a result of minimal interactions with the server.

The disadvantages of Blazor Web Assembly are: [21]

− The performance of the application is limited only to the capatibilities of
the browser.

− It cannot connect to database directly due to security restrictions and
sandboxing limitations of web browser and therefore requires an API or
other form of serverver connection.

− The initial download to the browser can be slow if the application is larger
in size.

23

5.2. Database

(a) Blazor Server (b) Blazor WebAssembly

Figure 5.1: Comparison of Blazor Server and Blazor Web Assembly hosting
models. [22]

5.1.4 Chosen Hosting Model
After reviewing the advantages of both hosting models, it was decided to im-
plement a Blazor Server application. Offline support for the application is not
a priority at this moment; hence, it was not a deciding factor. It is also de-
sirable to interact with the database and file storage directly. Blazor Server
meets these requirements and provides us with the opportunity to develop a
genuinely full-stack solution without the need for any API implementation.

5.2 Database

As the primary goal of this application is to collect and categorize data, it
is natural and almost vital to use appropriate data storage, in this case, in a
Relational Database Management System (RDBMS).

Entity Framework is an object-to-data mapping techology for .NET ap-
plications. It enables programmers to read, alter, and query the database
without using almost any SQL, only using the entities of the program and
LINQ queries. [23]

There are three approaches when using EF Core: [24]

• Database First: When using this approach, the database already exists,
and EF is used to create a .NET Model depicting the database schema.

• Model First: The database does not yet exist. Therefore, the model is
built first, and then the EF generates entities and a database script.

• Code First: The dabase also does not exist. The application entities
are built first, and from them a database is created using migrations.

The wForce Prague Formula team currently uses a MySQL database to
store its data; therefore, the implementation will stick to this provider. The
production database will, however, not be used for the development because
it currently does not include any schema related to the Cost & Manufacturing
event, and therefore, a code-first approach using Entity Framework will be
implemented. It was also opted against using the production database directly
to avoid corrupting other data stored in the database.

24

5.3. Architectural Principles

5.3 Architectural Principles

Each application requires a well tought out architecture to make the application
cleaner and more mantainable in the future. [25]

A guiding principle in architecture development is the separation of con-
cerns. Each part of the application should have its predefined purpose, and
no two parts should share the same processes, therefore following the Do not
Repeat Yourself architectural principle. Duplication of code not only worsens
the maintainability of the application but also adds to its technical debt. [26]

Encapsulation is essential for all parts of the application to define the inter-
faces through which they communicate with other components. This practice
enables adjustments to the internal workings of a component without affecting
the syntactical correctness of dependent components [27].

Based on the Explicit dependencies principle, the classes should explicitly
require any object they need for proper functionality rather than relying on a
declaration of global dependancies. [25]

The application should adhere to the Dependency Inversion principle in
which rather than classes being dependent on other concrete functions and
objects, a dependence on abstract interfaces is implemented. If the classes are
dependent on concrete implementation, it results in a highly coupled system,
with each module directly reliant on the lower modules and therefore limiting
the future scalability of the application. [28]

5.3.1 Proposed architecture
Based on the defined architecture principles, the application will implement
a layered architecure pattern. Layered architecture is an software application
design which divides the application resources into horizontal layers. Each
layer is responsible for certain type of operation and only communicates with
layers directly above or directly below itself. [29] This approach achieves high
modularity and test-ability of the application. To follow the Dependncy inver-
sion principle both buisness layer and data acess layer will implement abstract
interfaces and their concrete implementations.

The application will contain following layers as shown in the diagram 5.2:

1. Presentation layer, represents the user interface of the application.

2. Business layer, represents services which contain buisness logic of the
application and handles exceptions.

3. Data Access layer, represents data models and repository, that will
interact with the database layer.

4. Database layer, represents the database.

5.4 Authentication

Authentication is the process of confirming the identity of a user, device, or
system. Authentication is commonly used in various contexts, such as accessing
computer systems, online accounts, networks, or physical locations. [30] We can
distinguish two types of authentification: stateful and stateless.

25

5.4. Authentication

Figure 5.2: Layered architecture of the application. Created using [14]

5.4.1 Stateful Authentication
Stateful authentication involves the server retaining the session state for each
authenticated user by generating a unique session identifier. This allows sub-
sequent requests from the same user to be associated with their session data
stored on the server. While it provides features such as session management,
server-side security, and user tracking, it may lead to increased server overhead,
scalability challenges, and added complexity in session management. [31]

5.4.2 Stateless Authentication
Stateless authentication uses tokens to contain all necessary authentication
information, eliminating the need for the server to maintain a session state. It
simplifies server architecture and scales more quickly but requires careful token
management and lacks specific session management capabilities, potentially
introducing security vulnerabilities if not implemented correctly. [31]

5.4.3 LDAP Server
The team eForce Prague Formula operates a custom LDAP server for their
authentication needs. LDAP, or Lightweight Directory Access Protocol, is a
data access and maintenance protocol primarily used for user authentication
and authorization.

For the purpose of the developed application, LDAP authentication will be
combined with cookie-based session management for a seamless user experi-
ence. This approach ensures secure user access while taking advantage of the
efficiency of cookie-based sessions. The integration also provides scalability and

26

5.5. File Handling

flexibility in managing user sessions, enabling tailored features such as session
expiration and access controls to suit the application’s requirements.

5.5 File Handling

To ensure that the implemented application can support upload, download,
and overall management of files, it is necessary to implement a form of file
management.

5.5.1 File Storage approaches
The three most common file management approaches are described in the fol-
lowing subsections based on [32].

5.5.1.1 Database

In this strategy, files are transformed into a binary stream and are subsequently
stored directly within the database. This method proves favourable for man-
aging small-scale file uploads, as it maintains efficient file handling speed and
potentially saves costs by not needing to invest in third-party cloud solutions.
However, it is unsuitable for any larger files as it can increase the database’s
size significantly.

5.5.1.2 Physical Storage

This approach stores data in a predefined storage such as a hard drive. It is
ideal for larger file quantities as it poses fewer size limitations as opposed to the
database approach. It is, however, necessary to ensure that correct directory
permissions are in place. This option is also strained by the need for physical
storage, which is only available in some situations.

5.5.1.3 Cloud

Cloud services propose all the advantages of physical storage solutions but have
one significant advantage: they require no physical hardware. That is why it is
ideal for companies with fewer on-premisses resources. The only disadvantage
is that the majority of these services are not free of charge and, therefore, can
impact the project’s financial budget.

5.5.1.4 Chosen Variant

The team operates two servers, one running on Debian GNU/Linux 7 and
the other on Fedora Linux; therefore, it is equipped with satisfactory physical
storage, and the cloud variant is unnecessary. Physical storage will, therefore,
be implemented, resulting in zero-cost implementation.

5.5.2 Security
Few security measures will be implemented to ensure higher security while
handling files. Nominally:

27

5.6. User Interface

• Only files of type .pdf, .jpg, .png and .svg can be uploaded.

• The number of files and file size will be restricted to prevent insecure file
upload attacks.

• The uploaded files will be renamed to prevent overwrite and path traver-
sal attacks.

5.6 User Interface

The last phase of application design involves drafting the user interface, a
crucial element that significantly impacts user workflow. UI design contains
strategic decisions regarding layout, fonts, colors, and overall styling to ensure
intuitive usability. The most effective UI designs are consistent and simple,
providing a seamless user experience. [33]

5.6.1 UI Libraries
There are many possible user interface libraries on today’s market which help
enhance the appearance of Blazor Applications. To determine the best possible
solution for the to be implemented application, the analysis of all possible
solutions was made. The main requirement for any chosen solution was to have
open-source access, as the open-source solutions are more then satisfactory.
Other requirements where, expandable data grid with supported grouping of
the data, form fields component with drop down, auto complete and their
validation, file inputs and alert dialog windows.

As a result 3 open-source libraries where chosen – Radzen Blazor [34], Bla-
zorize [35] and Mud Blazor [36], all of which fulfil the above mentioned criteria.
In the end it was decided to implement Radzen Blazor library, purely based
on its design and appearance.

5.6.2 UI Design
The design includes a distinctive red colour, one of the two official colours of
the eForce Prague Formula team. Central Information System is the official
name of the application, chosen by the team members, and is officially referred
to by its acronym CIS.

5.6.2.1 Authentication

Upon launching the application, the user is presented with a login form for
authentication. The login form features the previously mentioned red colour
scheme and includes the team’s logo and the application name on the left-hand
side. After the user’s identity has been verified, he is then redirected into the
application. Notably, the screen does not include a registration button, as the
system is internal to the team, and registration is only facilitated directly by
the IT department.

28

5.6. User Interface

Figure 5.3: Login form design, created using [37]

5.6.2.2 Navigation Bar

All screens within the application, except for the login screen, incorporate a
navigation sidebar positioned on the left-hand side. This sidebar comprises
the application name displayed at the top, followed by buttons that enable
navigation throughout the application. Additionally, at the bottom of the
sidebar, users can find a logout button along with the team’s logo.

Figure 5.4: Systems page design, created using [37].

5.6.2.3 Systems Overview

The initial home screen showcases a table listing various systems per com-
petition specifications. Each entry in the table includes the system’s name,

29

5.6. User Interface

abbreviation, and a button to reveal further details about its assemblies and
parts. Positioned above the table are two buttons: the ”Generate BOM” but-
ton, which generates and downloads a file containing the entire data structure
from systems to parts’ details, containing all database entries, and the ”Gen-
erate Support File” button, which combines all uploaded files and downloads
it automatically.

5.6.2.4 Assemblies Overview

Upon selecting a system, the user is redirected to a page that displays the
corresponding assemblies of the system. These assemblies include also sub-
assemblies, if they have any. Each entry in the table includes the assemblies’s
name, comment, custom ID, and four buttons for downloading of files, editing,
deletion and routing to the corresponding parts. In the top right corner of the
screen is located an ”add assembly” button which enables the user to create
new assembly.

Figure 5.5: Assemblies table design, created using [37].

5.6.3 Parts Overview
Upon selecting an assembly (or subassembly), the user is redirected to a page
that displays the corresponding parts of the assembly (or subassembly). Each
entry in the table includes the part’s name, comment, custom ID, quantity,
and four buttons for downloading of files, managing the part’s details, editing,
and deletion. In the top right corner of the table, there is a button labeled
”Add Part” to create used to create new part.

5.6.3.1 Parts Detail Overview

When the user clicks on the ”Part Details” button, a dialog box will appear,
presenting a table of all the details of the parts. Each entry in the table includes
the part’s name, comment, cost per piece, cost-related comment, and quantity.

30

5.6. User Interface

Figure 5.6: Parts table design, created using [37].

Additionally, two buttons are provided for editing and deleting the entry. A
button to create a new part is at the top right corner of the table. Users can
close the dialog by clicking the ”X” in the top right corner or the close button
in the bottom right corner.

Figure 5.7: Parts detail page, created using [37].

5.6.4 Add & Edit form
Both the add and edit forms follow the same design pattern, differing only in
the input or edited fields. Upon selecting the ”Add” or ”Edit” button, a dialog
window opens, displaying all relevant fields. At the bottom right corner of the
dialog, two buttons are provided: one for submitting the entry and the other

31

5.6. User Interface

to close the dialog. Users can also close the dialog by clicking the ”X” in the
top right corner.

Figure 5.8: Add/edit form, created using [37].

32

Chapter 6
Implementation

This chapter provides a closer look into the factual implementation of the
application, based on the findings from the previous chapters on analysis and
design . The development and operation of the process will be presented in
detail, along with noteworthy design choices and functionalities.

6.1 Software Project Managment

Every software project requires effective management to ensure high-quality
work output and efficient use of time. The size of the development team deter-
mines the scale of management needed. [38] Although a single person developed
the application, it is essential to implement tools such as version control, as
the application will be maintained by a development team from eForce Prague
Formula in the future. Having these tools in place ensures a smooth collabora-
tion, efficient code management, and an easy onboarding process for new team
members.

6.1.1 Data Versioning
Data versioning is one of the most critical aspects of project management. It
enables the development team to monitor and manage code changes. [39] One
of the most commonly used tools for data versioning is GitLab.

GitLab is an open-source platform used to integrate developed software.
It functions as a centralized hub for incorporating various DevOps tools into
the codebase, including CI, CD, and issue management, consolidating these
functionalities within a single platform. [40]

6.1.2 Documentation
The application was documented using XML comments throughout its data-
handling functions. This embedded documentation provides insights into each
function’s purpose and behavior, aiding in troubleshooting and future devel-
opment. A README file was also included, containing snippets of implemen-
tation decisions described in this thesis. This additional information offers
further context without the need to review the entire thesis.

33

6.1. Software Project Managment

6.1.3 Containerization
Containerization is a process of virtualizing operating systems. It involves en-
capsulating an application and all its dependencies into a container that is
isolated from other applications and creates a version of a virtual environ-
ment. [41]

Docker is a platform that helps developers quickly create, deploy, and run
containers. [42] Team eForce also uses Docker containerization for effective
application deployment into production. The container is set up based on its
Dockerfile, which specifies the configuration of the container. An illustration
of the Dockerfile used can be viewed in Listing 1.

FROM mcr.microsoft.com/dotnet/aspnet:6.0-alpine AS base
WORKDIR /app
EXPOSE 80
EXPOSE 443

FROM mcr.microsoft.com/dotnet/sdk:6.0-alpine AS build
ARG BUILD_CONFIGURATION=Release
WORKDIR /src
COPY ["CIS_app/CIS_app.csproj", "CIS_app/"]
RUN dotnet restore "CIS_app/CIS_app.csproj"
COPY . .
WORKDIR "/src/CIS_app"
RUN dotnet build "CIS_app.csproj" -c $BUILD_CONFIGURATION -o

/app/build↪→

FROM build AS publish
ARG BUILD_CONFIGURATION=Release
RUN dotnet publish "CIS_app.csproj" -c $BUILD_CONFIGURATION -o

/app/publish /p:UseAppHost=false↪→

FROM base AS final
WORKDIR /app
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "CIS_app.dll"]

Listing 1: Multistage Dockerfile used in the implementation

6.1.4 CI/CD
Continuous Integration (CI) and Continuous Delivery (CD) are important
steps of DevOps methodology that help simplify and automatize the software
development process by seamlessly integrating code changes and ensuring their
delivery to production environments. [43]

CI a development technique centered on the periodic and automated inte-
gration of code changes into a remote repository or main branch. The primary
objective is to minimise disparities between changes made in developers’ local
environments. CI can also facilitate building and testing the application for
each integration. It offers prompt feedback in case of build failures or test
errors, promptly notifying the development team. [43]

34

6.1. Software Project Managment

CD is a subsequent step following the CI. The role of CD is to deploy the
application into production without any manual interference. [43]

Gitlab CI is executed through so-called pipelines, which represent a series
of tasks known as jobs, which can be additionally grouped into stages. These
stages are then executed sequentially. The pipeline can be executed with each
change made in the codebase or triggered in periodic intervals. The pipeline is
written in YALM format and is located in the .gitlab-ci.yml file within the
gitlab repository. [44]

The pipeline used in the implementation can be seen in Listings 2 to 5.

image: docker:20.10.16

variables:
DOCKER_HOST: tcp://docker:2375
DOCKER_TLS_CERTDIR: ""

stages:
- build
- test
- publish

...

Listing 2: CI/CD pipeline initialization and stages declaration

Listing 2 represents the begining of CI pipeline. This section specifies
the Docker image used, in this case, version 20.10.16. It outlines the required
variables, including the remote connection to the Docker daemon accessible
via TCP port 2375. Another variable indicates that transport layer security is
disabled. The pipeline consists of three stages that will be executed one after
the other. The following paragraphs provide more details on each stage.

In Listing 3, the job named docker-build is showcased as part of the build
phase. It begins by specifying the Docker 20.10.16-dind service, which rep-
resents a version of Docker in Docker. This service enables the execution of
Docker commands in a CI/CD environment. Subsequently, the job defines
several variables, including the Docker registry where images will be pushed,
IMAGE_TAG (a tag for an image using the registry URL and a unique iden-
tifier based on the commit SHA), and LATEST_TAG (a tag for the latest ver-
sion of the Docker image). Before executing the main script, the job initiates
authentication for the provided Docker registry using CI_REGISTRY_USER and
CI_REGISTRY_PASSWORD, which are GitLab variables storing factual credentials
to prevent direct exposure in the pipeline. Upon successful authentication, the
latest Docker image is pulled from the registry, followed by the build of a
Docker image using the Dockerfile located in the Cis_app directory. The im-
age is then tagged with both IMAGE_TAG and LATEST_TAG. The final command
in this stage involves pushing the newly built image into the Docker registry.

In Listing 4, the test stage of the CI/CD pipeline is showcased. The stage
first specifies the Docker image used for this stage, enabling the execution of
the C# application written in the .NET environment. The job then redirects

35

6.2. Design Patterns

docker-build:
stage: build
services:

- docker:20.10.16-dind
variables:

REGISTRY_URL: eforce1.feld.cvut.cz:4567
IMAGE_TAG: $REGISTRY_URL/ritzkvik/cis_app:$CI_COMMIT_SHORT_SHA
LATEST_TAG: $REGISTRY_URL/ritzkvik/cis_app:latest

before_script:
- echo "$CI_REGISTRY_PASSWORD" | docker login -u

"$CI_REGISTRY_USER" --password-stdin $REGISTRY_URL↪→

script:
- docker pull $LATEST_TAG || true
- docker build --cache-from $LATEST_TAG -t $IMAGE_TAG -t

$LATEST_TAG -f CIS_app/Dockerfile .↪→

- docker push $IMAGE_TAG

Listing 3: Build stage in CI/CD pipeline

test:
stage: test
image: mcr.microsoft.com/dotnet/sdk:6.0
before_script:

- cd CIS_app_testing
script:

- dotnet test

Listing 4: Test stage in CI/CD pipeline

into the CIS_app_testing project, which includes unit tests, further described
in Chapter 7.1. The tests are executed using the dotnet test command.

In the Listing 5, the publish stage of the CI/CD pipeline is showcased.
The prerequisite for the stage execution is the successful completion of the
docker-build job. The docker-published job is marked as manual and, therefore,
requires the job to be triggered manually, which is the favored variant, as this
step is necessary only prior to application deployment. The script first pulls
the Docker image specified by the IMAGE_TAG variable. It tags the image with
the LATEST_TAG and pushes the image back into the docker registry.

With the completion of the docker-publish stage, the application is now
fully prepared for the future deployment to the server.

6.2 Design Patterns

Design patterns are standard practice in software design used to combat reoc-
curring problems and improve the application’s modularity and cohesion.

In the implemented application, there are three recognizable design pat-
terns.

36

6.2. Design Patterns

docker-publish:
stage: publish
extends: docker-build
needs:

- docker-build
rules:

- when: manual
dependencies:

- docker-build

script:
- docker pull $IMAGE_TAG
- docker tag $IMAGE_TAG $LATEST_TAG
- docker push $LATEST_TAG

Listing 5: Publish stage in the CI/CD pipeline

6.2.1 Repository Pattern
As indicated by the analysis, the repositories pattern aligns with the princi-
ples of layered architecture.The repositories facilitate communication with the
database to extract information, effectively comprising a data access layer. No-
tably, repositories refrain from enforcing business logic or handling exceptions.

The layer is divided into interfaces and implementations to improve the ab-
straction and testability of the application. This segmentation enables efficient
mocking of interfaces, as demonstrated in Chapter 7.

In C#, the repository pattern is implemented by defining interfaces,
which are then implemented by concrete classes. The pattern implementa-
tion is shown in Listing 6. All repositories exclusively contain CRUD operations
(Create, Read, Update, Delete) for database queries.

6.2.2 Service Pattern
Similarly to the application’s repositories, the application also implements a
service design pattern. Services are part of the application’s business layer and
contain all necessary business logic, including handling exceptions for invalid
outputs.

The services exclusively comply with repository interfaces, adhering to the
modular structure of the application.This ensures a clear separation of concerns
and promotes the maintainability and scalability of the application.

The pattern is demonstrated in listing 7 which clearly shows the encap-
sulation of various operations related to parts management within the ap-
plication. It interacts with repository interfaces such as IPartRepository,
IAssemblyRepository, and ISystemRepository to perform CRUD (Create,
Read, Update, Delete) operations on parts data.

6.2.3 Dependency Injection
Dependency injection is a software development pattern which enables to share
dependencies for other components without the need for their infile inicializa-

37

6.2. Design Patterns

public interface IAssemblyRepository
{

Task <IEnumerable<CostAssembly?>> GetAssemblies();
Task <IEnumerable<CostAssembly?>> GetAssembliesBySystemId(int

systemId);↪→

Task <CostAssembly?> GetAssemblyById(int id);
Task CreateAssembly(CostAssembly assembly);
Task UpdateAssembly(CostAssembly assembly);
Task DeleteAssembly(CostAssembly assembly);

}

public class AssemblyRepositoryImpl : IAssemblyRepository
{

private readonly IDbContextFactory<DataContext>
_dbContextFactory;↪→

public AssembliesRepositoryImpl(IDbContextFactory<DataContext>
dbContextFactory)↪→

{ ... }

public async Task<IEnumerable<CostAssembly?>>
GetAssembliesBySystemId()↪→

{ ... }

public async Task<IEnumerable<CostAssembly?>>
GetAssembliesBySystemId(int systemId)↪→

{ ... }

public async Task<CostAssembly?> GetAssemblyById(int id)
{ ... }

public async Task CreateAssembly(CostAssembly assembly)
{ ... }

public async Task UpdateAssembly(CostAssembly assembly)
{ ... }

public async Task DeleteAssembly(CostAssembly assembly)
{ ... }

}

Listing 6: Demonstration of repository pattern usage over the assembly entity

tion. For example to support the implemented layered architecture, rather then
instancing ISystemRepository in the Assemblies Service, the dependancy in-
jection using @Inject directive is used. It is used similarly throughout the
whole implementation, not limited to the implemented components. Great ex-
ample is the Radzen’s Dialog Service which is part of Radzen Component
library. All shown in the listing Listing 8, depiquting the assemblies table
component.

38

6.3. Database

public class PartsService : IPartsService
{

private readonly IPartRepository _partsRepository;
private readonly IAssemblyRepository _assemblyRepository;
private readonly ISystemRepository _systemRepository;

public PartsService(IPartRepository partsRepository,
IAssemblyRepository assemblyRepository, ISystemRepository
systemRepository)

↪→

↪→

{ ... }

public async Task<IEnumerable<CostPart>> GetAllParts()
{ ... }

public async Task<IEnumerable<CostPart?>>
GetPartsByAssemblyId(int assemblyId)↪→

{ ... }

public async Task<CostPart?> GetPartById(int id)
{ ... }

public async Task CreatePart(CostPart part)
{ ... }

public async Task UpdatePart(CostPart part)
{ ... }

public async Task DeactivatePart(int id)
{ ... }

public async Task DeletePart(int id)
{

var partToDelete = await _partsRepository .GetPartById(id);
if (partToDelete is null)

throw new
KeyNotFoundException("Part ID does not exist");↪→

await _partsRepository .DeletePart(partToDelete);
}

}

Listing 7: Demonstration of service pattern usage over the parts entity

6.3 Database

A MySQL database was required for the application implementation. A local
database was established using a Docker container to prevent corruption of the
production database. The container setup is described in the listing Listing 9
representing the docker-compose.yml file.

39

6.3. Database

@page "/assemblies/{SystemId:int}"
@using { ... }
@inject IAssembliesService AssembliesService
@inject DialogService DialogService

<PageTitle> Assemblies </PageTitle>

@if (_assemblies == null)
{ ... }
else
{

<RadzenDataGrid ... > ... </RadzenDataGrid>
}

@code {
[Parameter]
public int SystemId { get; set; }

private CostSystem? _system;
IEnumerable<CostAssembly> _assemblies;
RadzenDataGrid<CostAssembly> grid;

async Task LoadAssemblies()
{

_assemblies = await
AssembliesService .GetAssembliesOfSystem(SystemId);↪→

}

...

async Task EditAssembly(int id)
{

await DialogService .OpenAsync<EditAssemblyDialog>(...);
}

}

Listing 8: Demonstration of he dependency injection usage

version: '3.8'

services:
cost_db:

image: mysql
container_name: cm_db
environment:

MYSQL_ROOT_PASSWORD: root
MYSQL_DATABASE: cost

ports:
- "3307:3306"

Listing 9: Docker-compose.yml file containing the mock database setup 40

6.4. Authentification

6.3.1 Database Connection
After successfully running the database container, the application connects
to the database via a connection string saved in the appsettings.json file,
as shown in Listing 10 . In the event of production deployment, the current
database connection will be exchanged for the primary database of team eForce.

{
...,
"ConnectionStrings":
{

"DefaultConnection":
"Server=localhost;
Database=cost;
User=root;
Password=root;
Port=3307;
Convert Zero Datetime=True;"

},
...

}

Listing 10: Database connection string located in appsetings.json file

The connection string is loaded with other dependencies in the Program.cs
file, which is the application’s entry point, and subsequently establishes the
database connection prior to the start of the application, as shown in Listing 11.

builder.Services.AddDbContextFactory<DataContext>(options =>
options.UseMySql(builder.Configuration
.GetConnectionString("DefaultConnection"), new

MySqlServerVersion(new Version(8, 0, 28))));↪→

Listing 11: Databse dependecies injected into the project

6.3.2 Database Model
As described in Chapter 5, the database was created using the code first ap-
proach using the Entity Framework. The resulting database schema is shown
in Figure 6.1.

6.4 Authentification

The application utilizes an LDAP connection with a cookie authentication
scheme. To facilitate implementation and testing, a test LDAP connection was
used, similar to the approach taken with the mock database, to prevent any
potential corruption to the active production service.

Despite initial attempts to develop a custom LDAP server for testing pur-
poses, this proved to be inefficient and time-consuming, yielding minimal ben-

41

6.4. Authentification

Figure 6.1: Implemented database model

efits for the implementation. Consequently, a test server provided by Forum-
systems [45] was utilized instead. This, however, poses no problems for the
application as the main goal is to allow only authenticated users to access the
application’s data.

The test server comprises two distinct user groups: mathematicians and
scientists. Each user within these groups is named after renowned scientific
figures like Euler or Newton. Uniformly, all users share the password ’password’
to access the system.

6.4.1 LDAP Connection
The LDAP server configuration attributes are stored in the appsettings.json
file, showcased in Listing 12. Authentication is managed by a dedicated login
controller responsible for handling HTTP communication within the HTTP

42

6.4. Authentification

context. Using controllers is the standardized approach for handling HTTP
requests in the Blazor Server application, even though it is technically possible
to handle them through services. The Login controller facilitates two HTTP
requests: one for login and another for logout.

{
...
"LDAP": {

"Host": "ldap.forumsys.com",
"BindDN": "cn=read-only-admin,dc=example,dc=com",
"BindPassword": "password",
"BaseDC": "dc=example,dc=com"

},
...

}

Listing 12: LDAP connection attributes stored in appsettings.json

The login request displayed in Listing 13 establishes a connection to the
LDAP server host on a predefined port. Subsequently, it binds the server
domain name and authorization password, initializing the LDAP connection.
Once established, the system searches for the username. If the credentials
are invalid, an error is triggered. Otherwise a new identity claim is created.
The user is then signed in using Cookie authentication and redirected to the
application.

The logout function displayed in Listing 14, on the other hand, utilizes
the HTTP context to access the current request. It clears the authentication
cookies to ensure a successful logout.

[HttpGet("/account/logout")]
public async Task<IActionResult> Logout()
{

await HttpContext.SignOutAsync(CookieAuthenticationDefaults
.AuthenticationScheme);
return LocalRedirect("/");

}

Listing 14: Logout function

6.4.2 Authentification in UI
To ensure that the authentication process is adequately reflected in the user
interface, a CascadingAuthenticationState component is added to wrap the
Routing component. This ensures the authentication state is available to all
descendant components of the Router and is shown in Listing 15.

An AuthorizedView is used in the descendant components as shown in List-
ing 16, dividing the content into Authorized and NotAuthorized directives.
This enables the presentation of different content based on the user’s authenti-
cation state. If the application requires access to information about the signed

43

6.5. File Managment

[HttpPost("/account/login")]
public async Task<IActionResult> Login(UserCredentials credentials)
{

...
try
{

using (var connection = new LdapConnection())
{

connection.Connect(_ldapSettings.Host,
LdapConnection.DefaultPort);↪→

connection.Bind(_ldapSettings.BindDN,
_ldapSettings.BindPassword);↪→

var searchFilter = $"(uid={User.username})";
var entities = connection.Search(_ldapSettings.BaseDC,

LdapConnection.ScopeSub, searchFilter, null, false);↪→

...

connection.Bind(userDn, User.password);
var claims = new[]
{

new Claim(ClaimTypes.Name, User.username),
};

var claimsIdentity = new ClaimsIdentity(claims,
CookieAuthenticationDefaults.AuthenticationScheme);↪→

var claimsPrincipal = new ClaimsPrincipal(claimsIdentity);

await HttpContext.SignInAsync(CookieAuthenticationDefaults
.AuthenticationScheme, claimsPrincipal);
return LocalRedirect("/systems");

}
}
catch (LdapException e)
{

...
}

}

Listing 13: Login function responsible for user authentification

in user, it can retrieve them through @context.User.Identity command, as
demonstrated in the navigation manager.

6.5 File Managment

A local storage directory was created for the implemented application. The
directory path is specified in the appsettings.json file. Although the files
are stored in the data storage, it is necessary to link the data information to
corresponding entities such as assemblies or parts. Therefore, an entity for
files was created, storing the original file name, all corresponding foreign keys,
and, most importantly, the file path. The file path combines of the storage
directory path and a randomly generated file name under which the file is
stored. The original name is retained for download purposes, allowing the user
to retrieve the file under its original file name.

44

6.5. File Managment

<CascadingAuthenticationState>
<Router AppAssembly="@typeof(App).Assembly">

...
</Router>

</CascadingAuthenticationState>

Listing 15: Cascading authentification in App.razor file

<AuthorizeView>
<Authorized>

<div class="nav-item px-3">
<h3>Hello @context.User.Identity.Name</h3>

</div>
<div class="nav-item px-3">

Logout
</div>

</Authorized>
<NotAuthorized>

...
</NotAuthorized>

</AuthorizeView>

Listing 16: Illustration of showcased content based on the user’s authentifica-
tion state

6.5.1 File Service
File management within the application utilizes a combination of repository
and service, consistent with other entities in the application architecture. The
FileService encompasses various functions, primarily for loading and down-
loading of files.

The UploadFileAsync function showcased in Listing 17 is responsible for
saving the file into the storage under a generated file name as well as in the
database. The Download function locates the file in the database, retrieves its
file path, and generates a memory stream of the file.

Other functions within the FileService handle the generation of docu-
ments, such as the BOM and the Support Material file. These functions
leverage the PDFSharp library [46] to transform data into PDFs. Both the
GenerateSupportFile and GenerateBOM functions follow a similar structure.
A custom header and footer are generated for each page, followed by the main
content—either a PDF/image for the Support file or a data table for the BOM.

In order to generate a file, appropriate preparations are required, as shown
in the Listing 18. Initially, the custom font is loaded from storage and then
initialized. Afterward, a new PDF document is created, along with a new page.
An XGraphics object, which acts as a drawing surface, is then associated with
the page to facilitate the drawing of graphics onto the PDF page.

45

6.5. File Managment

public async Task<bool> UploadFileAsync(IBrowserFile file, int
maxFileSize, string[] allowedExtensions, CustomFile file_model)↪→

{
...
string newFileName =

Path.ChangeExtension(Path.GetRandomFileName(),
Path.GetExtension(file.Name));

↪→

↪→

string path =
Path.Combine(_configuration.GetValue<string>("FileStorage"),
newFileName);

↪→

↪→

string relativePath = Path.Combine(newFileName);

await using FileStream fs = new(path, FileMode.Create);
await file.OpenReadStream(maxFileSize).CopyToAsync(fs);

file_model.PathToFile = relativePath;
await _fileRepository.CreateFile(file_model);
return true;

}

Listing 17: The file loading function

public async Task<Stream> GenerateSupportFile()
{

if (PdfSharp.Fonts.GlobalFontSettings.FontResolver is null)
{

GlobalFontSettings.FontResolver = new
CustomFontResolver();↪→

}
XFont font = new XFont("Monserrat", 24);

PdfDocument document = new PdfDocument();
PdfPage page = document.AddPage();

XGraphics gtx = XGraphics.FromPdfPage(page);

...
}

Listing 18: PDFSharp setup for file generation process

The GenerateBOMHeader function, presented in Listing 19, serves as a
comprehensive demonstration of all PDFSharp functions employed throughout
the document generation process. Each function within GenerateBOMHeader
contributes to the construction of various document elements such as drawing
lines, displaying images, rendering rectangles, and presenting strings.

46

6.6. Implemented Application

public async Task GenerateBOMHeader(XGraphics gfx, string
jpegSamplePath, string systemAbrr, PdfPage page, XFont font)↪→

{
gfx.DrawLine(XPens.Black, 20, 55, page.Width - 20, 55);

XImage image = XImage.FromFile(jpegSamplePath);
gfx.DrawImage(image, 10, 15, 90, 30);

font = new XFont("Monserrat", 10);

XBrush brush = await GetSystemColor(systemAbrr);
gfx.DrawRectangle(brush, page.Width - 30, 15, 30, 25);

gfx.DrawString(systemAbrr, font, XBrushes.Black, new XRect(-10,
20, page.Width, page.Height), XStringFormats.TopRight);↪→

}

Listing 19: GenerateBomHeader function

The snippets of the generated documents can be viewed in Figures B.8
and B.9.

6.6 Implemented Application

The screens of the implemented application are available to be viewed in
the Appendix B

47

Chapter 7
Testing

Testing is considered an integral part of software development. It serves to
measure the quality of software, uncover potential errors or bugs in the imple-
mentation, and determine the expected behavior of the software.

Tests can be categorized based on various aspects, such as classification
based on inner structure [47]:

• Black box tests assess the functionalities of the application without prior
knowledge of its implementation. Tests are provided only with inputs
and expected outputs, thus typically focusing on fulfilling business logic
requirements.

• White box tests have full access to the application’s internal code and
logic. They verify that the application’s functions are operating correctly
as intended. Additionally, they can facilitate testing beyond the main
functionalities of the application.

Two categories of tests will be implemented in the application. The first
category is unit tests, which are categorized as white box tests, as the devel-
oper has complete knowledge of the application’s inner workings. The second
type will be User acceptance tests, categorized as black box tests, and will be
performed by members of the Eforce Formula Prague Team.

7.1 Unit Testing

Unit testing accesses the application’s smallest parts, often individual methods
or functions. It is conducted on code isolated from its dependencies and fre-
quently involves mocking said dependencies. Unit tests should adhere to the
FIRST principle [48], meaning they should be:

• Fast,

• Independent,

• Repeatable,

• Self-Validating,

48

7.2. User Acceptance Testing

• and Timely.

In ASP.NET Core applications, unit tests can be conducted using various
tools, including XUnit. XUnit is a free, open-source tool for unit testing of
C#, F#, VB.NET, and other .NET languages. [49]. It can be installed using
the NuGet package manager directly from the IDE.

The test project is then set up in the same directory as the original appli-
cation, and the tests are categorized into classes. It is best practice for the test
project structure to mirror that of the original application, facilitating better
navigation through the files.

As mentioned earlier, unit tests should be independent; thus, it is essential
to mock all necessary dependencies. For this purpose, the Moq library is used.
The following Listing 20 showcases the Moq library being utilized to simulate
a repository dependency.

Each unit test is divided into three steps, commonly referred to as the three
A’s of unit testing [48]:

• Arrange – Prepare all necessary data for the tested method, including
mocking dependencies.

• Act – Invoke the actual tested method.

• Assert – Assess if the method produced the anticipated result.

7.2 User Acceptance Testing

User acceptance testing represents the final phase of the application testing
process before deployment to production. During this stage, the completed
application is presented to the end users for whom it is designed. The users
then perform a series of tests to validate the application’s business logic im-
plementation and provide valuable feedback and suggestions for potential im-
provements. [50]

7.2.1 Testers
To conduct the user acceptance testing, five members of Team eForce Prague
Formula were invited to participate. These participants are university students
without any IT background but have comprehensive knowledge in the Cost &
Manufacturing discipline. The testers’ ages range from 22 to 25 years old.
None of the testers have prior experience in user acceptance testing.

7.2.2 Testing Scenerios
A testing scenario comprises a set of predetermined steps or actions executed
to complete a specific functional process.

Each testing scenario provided to the testers includes a name describing
the process, a starting point indicating the prerequisites completed before the
scenario, and a series of steps to be followed. In total, 10 testing scenarios were
executed, and their specifications can be found in Appendix C.

49

7.2. User Acceptance Testing

public class SystemsServiceTest
{

[Fact]
public async void GetAllSystemsAsync_ReturnsValidSystems()
{

// Arrange
var validSystem1 = new CostSystem { Id = 1, Name =

"Valid System 1", Valid = true };↪→

var invalidSystem = new CostSystem { Id = 2, Name =
"Invalid System", Valid = false };↪→

var validSystem2 = new CostSystem { Id = 3, Name =
"Valid System 2", Valid = true };↪→

var mockRepository = new Mock<ISystemRepository>();
mockRepository.Setup(r => r.GetSystemsAsync())

.ReturnsAsync(new List<CostSystem?> { validSystem1,
invalidSystem, validSystem2 });↪→

var service = new SystemsService(mockRepository.Object);

// Act
var result = await service.GetAllSystemsAsync();

// Assert
Assert.NotNull(result);
Assert.Equal(2, result.Count());
Assert.Contains(validSystem1, result);
Assert.Contains(validSystem2, result);
Assert.DoesNotContain(invalidSystem, result);

} ...
}

Listing 20: Example of unit test for SystemService

Printed copies of the testing scenarios were provided to the testers for execu-
tion. The tests were performed on the developer’s computer, with the developer
present to offer any necessary assistance.

7.2.3 Testing Evaulation
All testers completed the testing scenarios without encountering any system
malfunctions. They expressed overall satisfaction with the application design
and found the testing scenarios straightforward to follow. Additionally, they
appreciated the option to edit the Make/Buy attribute in the part entity, as
it is not supported in the FSG Portal and it was very common to acidentally
chcek the wrong box and without the ability for correction, the part had to be
deleted and repeatably created. The implemented application solves said issue
and therefore improves the overall usability of the application.

The testers, however, proposed various improvements to be made. Three
out of the five testers noted an issue during testing scenarios 8 and 9, where
the file generation process took a few minutes between clicking the button and

50

7.2. User Acceptance Testing

the automated download of the file. This delay led to multiple clicks on the
button and subsequent file downloads, which was not the desired behavior. To
address this issue, an alert was implemented after testing to inform users that
the documents were being generated and prompted them to wait patiently.

Another suggestion from the testers was to allow multiple file uploads. One
tester accidentally selected multiple files in the testing scenerio 3, triggering
an error message indicating that only one file can be uploaded. Although this
was not the intended scenario, the tester suggested that allowing multiple file
uploads could be beneficial. Therefore, the file upload function was updated
after testing to support this functionality.

Lastly, one tester proposed supporting the reordering of table contents, as
the resulting BOM document displays data in the order it was inputted into the
system. Although this was identified as a Could requirement in the Chapter 3,
it was not implemented in the application due to insufficient time availability.
Consequently, the request was acknowledged and marked as a high priority for
future development.

51

Chapter 8
Evaluation

The concluding chapter of this thesis evaluates the achieved results and outlines
possibilities for future development.

8.0.1 Evaulation of Results
The analysis focused on the Formula Student competition, specifically looking
at the Cost & Manufacturing discipline and the approach taken by team eForce
Prague Formula. This analysis led to the definition of both functional and non-
functional requirements, along with a set of use cases outlining the expected
application functionalities.

The following chapter researched the essential technologies for the applica-
tion, including hosting models, relational database creation, and authentication
processes, along with the reasonings behind the implementation decisions. Ad-
ditionally, the chapter presented the UI design, which served as a blueprint for
the implemented application.

In the practical phase, a functional prototype of the application was devel-
oped, following the standard sowtfare engineering practices. Comprehensive
unit testing and user acceptance testing by eForce Prague Formula team mem-
bers confirmed the alignment of business logic and identified opportunities for
future development.

In the last step of the implementation, the application was containerized
and prepared for future deployment. However, it is not currently deployed to
production, as the eForce Prague Formula team is undergoing restructuring of
their IT infrastructure to enhance server security.

While the application successfully meets all non-functional requirements as
a containerized web application built on the ASP.NET Core framework with
functioning authentication and MySQL database, only Must have and Should
Have functional requirements were fully implemented due to time constraints.

8.0.2 Future Development
The top priority for future development is the implementation of the remain-
ing functional requirements, with drag and drop stamping being particularly
critical, as was highlighted during user acceptance testing.

52

Another possible area for future development is the implementation of an
admin portal. This portal would differentiate users into administrators and
regular users, granting administrators higher authority. Administrators would
be able to create new systems, which would prove valuable in adapting to
any changes in competition rules. Additionally, they could verify inputted
information, marking it as verified and correct. This feature would not only
provide the team with a clearer overview of their data collection status but
also enhance the overall quality of resulting documents.

53

Conclusion

The main goal of this thesis was to develop a web application in collaboration
with the eForce Prague Formula Team that supports efficient data collection
and required documentation production for the Cost & Manufacturing disci-
pline in the Formula Student Competition. Several partial objectives have been
fulfilled to achieve the primary goal.

Firstly, a comprehensive analysis of the Formula Student competition and
the specific requirements of the Cost & Manufacturing event was conducted.
This analysis enabled the identification and categorization of necessary in-
formation, as well as the identification of potential optimizations to enhance
the team’s approach to the discipline. These findings were used to define the
functional and non-functional requirements with corresponding use cases and
domain conceptual diagram.

The subsequent design phase highlighted .NET development possibilities
and outlined chosen technologies and architecture, focusing on creating an in-
tuitive user interface. The implementation chapter details the integration of
third-party resources, including a relational database management system and
authentication provider, while discussing development patterns.

Testing played a crucial role, with unit testing utilizing XUnit and Moq to
assess services and user acceptance testing conducted by the Eforce Formula
Prague Team, validating usability and business logic alignment.

Finally, in the concluding chapter, the results of the thesis were evaluated,
and possibilities for future development were outlined. With that, all partial
objectives of this thesis were concluded, and therefore, the assignment was
successfully completed.

54

Bibliography

[1] Formula Student Germany GmbH. FSG: Concept. https:
//www.formulastudent.de/about/concept/, (Accessed on 04/01/2024).

[2] Institution of Mechanical Engineers. History of Formula Student.
https://www.imeche.org/events/formula-student/about-formula-
student/history-of-formula-student, (Accessed on 03/10/2024).

[3] Formula Student Germany GmbH. FSG: Disciplines. https:
//www.formulastudent.de/about/disciplines/, (Accessed on
03/10/2024).

[4] eForce Prague Formula. eForce_brozurka_2024_EN_.pdf -
Nextcloud. https://eforce1.feld.cvut.cz/cloud/apps/files/?dir=
/EFORCE_PRG/!2024%20-%20CTU.24/GRAFIKA/Velk%C3%A1%20bro%C5%
BEura&openfile=1069404, 2023, (Accessed on 03/11/2024).

[5] Banner GmbH. � Energy recuperation - What is it? https:
//www.bannerbatterien.com/en/Battery-knowledge/3-Banner-
Lexicon-Energy-Recuperation, (Accessed on 03/10/2024).

[6] Formula Student Germany GmbH. WRL - Formula Student Electric.
https://fs-world.org/E/261/, (Accessed on 03/15/2024).

[7] Formula Student Germany GmbH. Formula Student Rules 2024, Version:
1.1, Rev-aef3d92. https://www.formulastudent.de/fileadmin/user_
upload/all/2024/rules/FS-Rules_2024_v1.1.pdf, 2023, (Accessed on
03/11/2024).

[8] Formula Student Germany GmbH. FSG: Login. https://
www.formulastudent.de/login, (Accessed on 04/25/2024).

[9] Gilmore, S. CS2Ah0405-SoftwareRequirements.pdf. https:
//www.inf.ed.ac.uk/teaching/courses/ip/CS2Ah0405-
SoftwareRequirements.pdf, 2003, (Accessed on 03/28/2024).

[10] AltexSoft. Functional and Nonfunctional Requirements Specification.
https://www.altexsoft.com/blog/functional-and-non-functional-
requirements-specification-and-types/, (Accessed on 04/25/2024).

55

https://www.formulastudent.de/about/concept/
https://www.formulastudent.de/about/concept/
https://www.imeche.org/events/formula-student/about-formula-student/history-of-formula-student
https://www.imeche.org/events/formula-student/about-formula-student/history-of-formula-student
https://www.formulastudent.de/about/disciplines/
https://www.formulastudent.de/about/disciplines/
https://eforce1.feld.cvut.cz/cloud/apps/files/?dir=/EFORCE_PRG/!2024%20-%20CTU.24/GRAFIKA/Velk%C3%A1%20bro%C5%BEura&openfile=1069404
https://eforce1.feld.cvut.cz/cloud/apps/files/?dir=/EFORCE_PRG/!2024%20-%20CTU.24/GRAFIKA/Velk%C3%A1%20bro%C5%BEura&openfile=1069404
https://eforce1.feld.cvut.cz/cloud/apps/files/?dir=/EFORCE_PRG/!2024%20-%20CTU.24/GRAFIKA/Velk%C3%A1%20bro%C5%BEura&openfile=1069404
https://www.bannerbatterien.com/en/Battery-knowledge/3-Banner-Lexicon-Energy-Recuperation
https://www.bannerbatterien.com/en/Battery-knowledge/3-Banner-Lexicon-Energy-Recuperation
https://www.bannerbatterien.com/en/Battery-knowledge/3-Banner-Lexicon-Energy-Recuperation
https://fs-world.org/E/261/
https://www.formulastudent.de/fileadmin/user_upload/all/2024/rules/FS-Rules_2024_v1.1.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2024/rules/FS-Rules_2024_v1.1.pdf
https://www.formulastudent.de/login
https://www.formulastudent.de/login
https://www.inf.ed.ac.uk/teaching/courses/ip/CS2Ah0405-SoftwareRequirements.pdf
https://www.inf.ed.ac.uk/teaching/courses/ip/CS2Ah0405-SoftwareRequirements.pdf
https://www.inf.ed.ac.uk/teaching/courses/ip/CS2Ah0405-SoftwareRequirements.pdf
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/

Bibliography

[11] Brush, K. What is the MoSCoW Method? https://www.techtarget.com/
searchsoftwarequality/definition/MoSCoW-method, 2023, (Accessed
on 04/02/2024).

[12] IBM Corporation. Use-case diagrams. https://www.ibm.com/docs/
en/rational-soft-arch/9.6.1?topic=diagrams-use-case, 2021, (Ac-
cessed on 03/28/2024).

[13] Visual Paradigm. Types of Actor in a Use Case Model.
https://www.visual-paradigm.com/guide/uml-unified-modeling-
language/types-of-actor-in-use-case-model/, (Accessed on
04/25/2024).

[14] JGraph Ltd. draw.io. https://www.drawio.com/, (Accessed on
04/25/2024).

[15] Seidl, M.; Scholz, M.; et al. UML @ Classroom: An Introduction to
Object-Oriented Modeling. Undergraduate Topics in Computer Science,
Springer International Publishing, 2015, ISBN 9783319127415. Available
from: https://books.google.cz/books?id=ggLsoQEACAAJ

[16] Codes, C. A Brief History of .NET (dotnet). Whether you’re new to the
world of .NET. https://medium.com/calvin-codes/a-brief-history-
of-net-ec4c14adf441, 2023, (Accessed on 04/21/2024).

[17] Townsend, J. The History of .NET. https://omnitech-inc.com/blog/
the-history-of-net/, 2022, (Accessed on 04/21/2024).

[18] Prashant. What Is Blazor and How Does It Work? https:
//programmers.io/blog/what-is-blazor-and-how-does-it-work/,
2023, (Accessed on 04/21/2024).

[19] Microsoft Corporation. Overview of ASP.NET Core SignalR.
https://learn.microsoft.com/en-us/aspnet/core/signalr/
introduction?view=aspnetcore-8.0, 2023, (Accessed on 04/21/2024).

[20] Lucio, V. G. G. 3 Different Hosting Models in Blazor. https:
//www.syncfusion.com/blogs/post/3-blazor-hosting-models, 2023,
(Accessed on 04/21/2024).

[21] Mohanty, A. Blazor Server vs. Blazor WebAssembly: Pros and cons of each
approach. https://www.c-sharpcorner.com/article/blazor-server-
vs-blazor-webassembly-pros-and-cons-of-each-approach/, (Ac-
cessed on 04/23/2024).

[22] Microsoft Corporation. ASP.NET Core Blazor hosting models.
https://learn.microsoft.com/en-us/aspnet/core/blazor/hosting-
models?view=aspnetcore-8.0, (Accessed on 04/23/2024).

[23] Price, M. C# 10 and . NET 6 - Modern Cross-Platform Development -
Sixth Edition: Build Apps, Websites, and Services with ASP. NET Core 6,
Blazor, and EF Core 6 Using Visual Studio 2022 and Visual Studio Code.
Expert insight, Packt Publishing, 2021, ISBN 9781801077361. Available
from: https://books.google.cz/books?id=8lS5zgEACAAJ

56

https://www.techtarget.com/searchsoftwarequality/definition/MoSCoW-method
https://www.techtarget.com/searchsoftwarequality/definition/MoSCoW-method
https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case
https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/types-of-actor-in-use-case-model/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/types-of-actor-in-use-case-model/
https://www.drawio.com/
https://books.google.cz/books?id=ggLsoQEACAAJ
https://medium.com/calvin-codes/a-brief-history-of-net-ec4c14adf441
https://medium.com/calvin-codes/a-brief-history-of-net-ec4c14adf441
https://omnitech-inc.com/blog/the-history-of-net/
https://omnitech-inc.com/blog/the-history-of-net/
https://programmers.io/blog/what-is-blazor-and-how-does-it-work/
https://programmers.io/blog/what-is-blazor-and-how-does-it-work/
https://learn.microsoft.com/en-us/aspnet/core/signalr/introduction?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/signalr/introduction?view=aspnetcore-8.0
https://www.syncfusion.com/blogs/post/3-blazor-hosting-models
https://www.syncfusion.com/blogs/post/3-blazor-hosting-models
https://www.c-sharpcorner.com/article/blazor-server-vs-blazor-webassembly-pros-and-cons-of-each-approach/
https://www.c-sharpcorner.com/article/blazor-server-vs-blazor-webassembly-pros-and-cons-of-each-approach/
https://learn.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-8.0
https://learn.microsoft.com/en-us/aspnet/core/blazor/hosting-models?view=aspnetcore-8.0
https://books.google.cz/books?id=8lS5zgEACAAJ

Bibliography

[24] EntityFrameworkTutorial.net. Database First development with
Entity Framework. https://www.entityframeworktutorial.net/
entityframework6/choosing-development-approach-with-entity-
framework.aspx, (Accessed on 04/23/2024).

[25] Microsoft Corporation. Architectural principles - .NET. https:
//learn.microsoft.com/en-us/dotnet/architecture/modern-
web-apps-azure/architectural-principles, 2023, (Accessed on
05/16/2024).

[26] Plutora. What Is Compliance Management and How Do You Get
Started? https://www.plutora.com/blog/understanding-the-dry-
dont-repeat-yourself-principle, 2023, (Accessed on 05/16/2024).

[27] Sheldon, R. What is encapsulation (object-orientated program-
ming)? https://www.techtarget.com/searchnetworking/definition/
encapsulation, 2023, (Accessed on 05/16/2024).

[28] Cambi, L. System Design: Dependency Inversion Principle. https://
www.baeldung.com/cs/dip, 2024, (Accessed on 05/16/2024).

[29] John, G. Four Must-Know Software Architectural Patterns for Every
Developer: A brief overview. https://www.linkedin.com/pulse/four-
must-know-software-architectural-patterns-every-developer-
john-gvobf, (Accessed on 04/23/2024).

[30] miniOrange Security Software Pvt Ltd. What is Authentication? Dif-
ferent Types of Authentication. https://www.miniorange.com/blog/
different-types-of-authentication-methods-for-security/, (Ac-
cessed on 05/07/2024).

[31] Choi, K. Stateful and stateless authentication. https://medium.com/
@kennch/stateful-and-stateless-authentication-10aa3e3d4986,
(Accessed on 05/07/2024).

[32] Microsoft Corporation. Upload files in ASP.NET Core. https:
//learn.microsoft.com/en-us/aspnet/core/mvc/models/file-
uploads?view=aspnetcore-6.0, (Accessed on 05/02/2024).

[33] HubSpot, Inc. User Interface (UI) Design: What Is It? The Begin-
ner’s Guide. https://blog.hubspot.com/website/ui-design, (Accessed
on 04/30/2024).

[34] Radzen. Free Blazor Components. https://blazor.radzen.com/, (Ac-
cessed on 05/07/2024).

[35] Megabit. Blazorise - Blazor Component Library. https:
//blazorise.com/, (Accessed on 05/07/2024).

[36] MudBlazor. MudBlazor - Blazor Component Library. https://
mudblazor.com/, (Accessed on 05/07/2024).

[37] Figma, Inc. Figma: The Collaborative Interface Design Tool. https://
www.figma.com/, (Accessed on 04/23/2024).

57

https://www.entityframeworktutorial.net/entityframework6/choosing-development-approach-with-entity-framework.aspx
https://www.entityframeworktutorial.net/entityframework6/choosing-development-approach-with-entity-framework.aspx
https://www.entityframeworktutorial.net/entityframework6/choosing-development-approach-with-entity-framework.aspx
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles
https://learn.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/architectural-principles
https://www.plutora.com/blog/understanding-the-dry-dont-repeat-yourself-principle
https://www.plutora.com/blog/understanding-the-dry-dont-repeat-yourself-principle
https://www.techtarget.com/searchnetworking/definition/encapsulation
https://www.techtarget.com/searchnetworking/definition/encapsulation
https://www.baeldung.com/cs/dip
https://www.baeldung.com/cs/dip
https://www.linkedin.com/pulse/four-must-know-software-architectural-patterns-every-developer-john-gvobf
https://www.linkedin.com/pulse/four-must-know-software-architectural-patterns-every-developer-john-gvobf
https://www.linkedin.com/pulse/four-must-know-software-architectural-patterns-every-developer-john-gvobf
https://www.miniorange.com/blog/different-types-of-authentication-methods-for-security/
https://www.miniorange.com/blog/different-types-of-authentication-methods-for-security/
https://medium.com/@kennch/stateful-and-stateless-authentication-10aa3e3d4986
https://medium.com/@kennch/stateful-and-stateless-authentication-10aa3e3d4986
https://learn.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads?view=aspnetcore-6.0
https://learn.microsoft.com/en-us/aspnet/core/mvc/models/file-uploads?view=aspnetcore-6.0
https://blog.hubspot.com/website/ui-design
https://blazor.radzen.com/
https://blazorise.com/
https://blazorise.com/
https://mudblazor.com/
https://mudblazor.com/
https://www.figma.com/
https://www.figma.com/

Bibliography

[38] Wrike, Inc. What Is Software Project Management? https:
//www.wrike.com/project-management-guide/faq/what-is-
software-project-management/, (Accessed on 05/13/2024).

[39] Dremio. Data Versioning. https://www.dremio.com/wiki/data-
versioning/, (Accessed on 05/13/2024).

[40] TechTarget. What is GitLab? https://www.techtarget.com/whatis/
definition/GitLab, (Accessed on 05/13/2024).

[41] International Business Machines Corporation. What Is Containeriza-
tion? https://www.ibm.com/topics/containerization, (Accessed on
05/13/2024).

[42] Amazon Web Services, Inc. What is Docker? https://aws.amazon.com/
docker/, (Accessed on 05/13/2024).

[43] GitLab Inc. What is CI/CD? https://about.gitlab.com/topics/ci-
cd/, (Accessed on 05/13/2024).

[44] GitLab Inc. Get started with GitLab CI/CD. https://docs.gitlab.com/
ee/ci/, (Accessed on 05/13/2024).

[45] Forum Systems. Online LDAP Test Server - Forum Systems. https://
www.forumsys.com/2022/05/10/online-ldap-test-server/, (Accessed
on 05/12/2024).

[46] empira Software GmbH. Home of PDFsharp and MigraDoc Foundation
- PDFsharp & MigraDoc. https://www.pdfsharp.net/, (Accessed on
05/13/2024).

[47] Thomas, A. Software Application Testing | What it is, Types & How to
do? https://testsigma.com/blog/software-application-testing/,
2023, (Accessed on 04/19/2024).

[48] Rahman, T. F.I.R.S.T principles of testing. First principles of testing stand
for. https://medium.com/@tasdikrahman/f-i-r-s-t-principles-of-
testing-1a497acda8d6, 2019, (Accessed on 04/19/2024).

[49] .NET Foundation. Home > xUnit.net. https://xunit.net/, (Accessed on
04/19/2024).

[50] Hamilton, T. What is User Acceptance Testing (UAT)? Exam-
ples. https://www.guru99.com/user-acceptance-testing.html, (Ac-
cessed on 05/14/2024).

58

https://www.wrike.com/project-management-guide/faq/what-is-software-project-management/
https://www.wrike.com/project-management-guide/faq/what-is-software-project-management/
https://www.wrike.com/project-management-guide/faq/what-is-software-project-management/
https://www.dremio.com/wiki/data-versioning/
https://www.dremio.com/wiki/data-versioning/
https://www.techtarget.com/whatis/definition/GitLab
https://www.techtarget.com/whatis/definition/GitLab
https://www.ibm.com/topics/containerization
https://aws.amazon.com/docker/
https://aws.amazon.com/docker/
https://about.gitlab.com/topics/ci-cd/
https://about.gitlab.com/topics/ci-cd/
https://docs.gitlab.com/ee/ci/
https://docs.gitlab.com/ee/ci/
https://www.forumsys.com/2022/05/10/online-ldap-test-server/
https://www.forumsys.com/2022/05/10/online-ldap-test-server/
https://www.pdfsharp.net/
https://testsigma.com/blog/software-application-testing/
https://medium.com/@tasdikrahman/f-i-r-s-t-principles-of-testing-1a497acda8d6
https://medium.com/@tasdikrahman/f-i-r-s-t-principles-of-testing-1a497acda8d6
https://xunit.net/
https://www.guru99.com/user-acceptance-testing.html

Acronyms

BOM Bill of Materials. 7–10, 45

CBOM Costed Bill of Materials. 7, 9, 10

CD Continuous Delivery. 33–35

CI Continuous Integration. 33–35

CRD Cost Report Documents. 7

CV Combustion engine vehicle. 3

DBOM Detailed Bill of Materials. 7–10

DV Driverless vehicle. 3

EV Electrical vehicle. 3

UI User Interface. 28

59

Appendix A
Formula Student Specifications

System
Brake System

Electrical
Engine & Drivetrain

Chassis & Body
Miscellaneous, Fit & Finish & Assembly

Steering System
Suspension System

Wheels, Wheel Bearings & Tires

Table A.1: List of systems

System Assembly Name

Brake system

Balance Bar
Brake Discs
Brake Fluid
Brake Lines
Brake Master Cylinder
Brake Pads
Brake System Front
Brake System Rear
Calipers
Fasteners
Proportioning Valve
Other

Electrical

Accumulator
Accumulator Container
Accumulator Cooling
Autonomous Acceleration System
Autonomous Box
Autonomous Brake System
Autonomous Camera System

Electrical

Autonomous EBS

60

System Assembly Name
Autonomous Lidar System
Autonomous Radar System
Autonomous Steering System
Autonomous System
BSPD
Brake Light
Bulbs
Control Unit
Dash Panel
ECM/Engine Electronics
Fuses
HV-Batery
Indicator Lights
Kill Switch
LV-Battery
Oil Pressure Gage/Light
Relays
Sensors
Solenoids
Starter Button
TSAL/ASSI
Tachometer
Telemetry
VCU
Water Temperature Gage
Wire Harness/Connectors

Engine & Drivetrain

Air Filter
Airbox
Axles
CV Joints / U Joints
Carburetor
Chain / Belt
Clutch
Coolant
Coolant Lines
Cooling System
Differential
Differential Bearings
Differential Mounts
Driveshaft Assembly
Drivetrain Assembly
Engine
Engine Mounts
Engine/Diff Oil
Exhaust Manifold
Exhaust System
Fuel Pressure Reg.
Fuel Pump
Fuel Tank - NOT THE HV-Battery

61

System Assembly Name
Fuel Vent/Check Valve
Gearbox
Hose Clamps
Intake Manifold
Intake System
Muffler
Oil Cooler
Overflow Bottles
Restrictor
Shields
Sprocket/Pulleys
Throttle Body
Transmission
Turbo/Super Charger
Other

Suspension System

A-Arms front lower
A-Arms front upper
A-Arms rear lower
A-Arms rear upper
Anti Roll Bar Front
Anti Roll Bar Rear
Bell Cranks
Bell Cranks Front
Bell Cranks Rear
Brackets
Front A/Arms or Equivalent
Front Uprights
Push/Pullrod Front
Push/Pullrod Rear
Pushrods/Pullrods
Rear A/Arms or Equivalent
Rear Uprights
Rod Ends
Shocks Front
Shocks Rear
Springs
Suspension Mechanism
Tie Rod - Front
Tie Rod - Rear
Other
Aerodynamic Wing (if used)
Aerodynamics DRS
Aerodynamics Front Wing
Aerodynamics Rear Wing
Aerodynamics Side Wings
Aerodynamics Underbody
Autonomous EBS
Body Attachments

62

System Assembly Name

Chassis & Body

Autonomous EBS
Body Attachments
Body Material
Body Processing
Brackets
Chassis Assembly
Clutch
Crash Box
Floor Pan
Frame / Frame Tubes
Front Hoop
Impact Attenuator
Main Hoop
Monocoque
Mounts Integral to Frame
Pedal (Accelerator)
Pedal (Brake)
Shifter
Shifter Cable/Linkage
Throttle Controls
Tube End Preps
Tubes Cuts/Bends
Other

Miscellaneous, Fit & Finish & Assembly

Driver’s Harness
Fire Wall
Headrest / Restraints
Mirrors
Paint - Body
Paint - Frame
Seats
Shields
Other

Steering System

Steering Rack
Steering Shaft
Steering Wheel
Steering Wheel Quick Release
Tie Rods
Other

Wheels, Wheel Bearings & Tires

Front Hubs
Lug Nuts
Rear Hubs
Tires
Valve Stems
Wheel Bearings
Wheel Studs
Wheels
Other

Table A.2: List of assemblies names predefined by the rules

63

Figure A.1: Partial CBOM submitted by team eForce in Formula Student
Czech Re- public 2023

64

Figure A.2: FSG Portal

Figure A.3: Creating Part through FSG Portal.

65

Figure A.4: CBOM on FSG Portal

Figure A.5: Changelog on FSG Portal

66

Appendix B
Implementation

Figure B.1: Implemented Login page

67

Figure B.2: Implemented Systems page

Figure B.3: Implemented Assemblies and subAssemblies page page

68

Figure B.4: Implemented dialog for creation of new assembly

Figure B.5: Implemented file manager dialog window

69

Figure B.6: Implemented page displaying parts of an assembly

Figure B.7: Delete part confirmation dialog

70

Figure B.8: A snippet of the Support material document generated using PFD-
Sharp library

71

Figure B.9: A snippet of the BOM document generated using PFDSharp li-
brary

72

Appendix C
Testing Scenarios

C.1 Login

Starting Point
The web application is open on the login page, displaying the application name
and a login form.

Steps
1. Input the string ’newton’ into the username input field.

2. Input the password ’password’ into the password input field.

3. Press the login button located under the login form fields.

4. Wait to be redirected into the application.

C.2 Create Assembly

Starting point
The user has logged into the application and is located on the systems page.

Steps
1. Locate the Test system in the systems table and click on the ”assemblies”

button.

2. Wait to be redirected to the assemblies page.

3. Locate the ”Add Assembly” button at the top right corner and click on
it. A popup form should appear.

4. Fill out ’Test assembly’ in the assembly name field.

5. Fill out ’TSA’ in the abbreviation field.

6. Click the submit button in the bottom right of the dialog window and
wait for the dialog window to close.

73

C.3. Attach File to Assembly

C.3 Attach File to Assembly

Starting point
The user is logged into the application and is located on the assemblies page of
the Test System. The assemblies table contains one entry with the name ’Test
Assembly’. The user was provided with a test image.

Steps
1. Locate the Test assembly in the assemblies table and click on the docu-

ment icon button in the corresponding row. A dialog window called File
Manager should open.

2. Click on the input file form field and wait for the system file manager to
open.

3. Select the test image from the disk.

4. Click on the ”Add File” button and wait for the file to be uploaded.

5. Confirm that the file was uploaded and the entry is showcased in the
dialog.

6. Close the File Manager dialog window.

C.4 Create Part

Starting point
The user is logged into the application and is located on the parts page of the
Test Assembly.

Steps
1. Click on the ”Add Part” button located in the top right corner. Wait for

the dialog window to open.

2. Fill out ’Part name1’ in the name field.

3. Leave the Comment field blank.

4. Check the part as made.

5. Click on the ”Submit” button in the bottom left corner and wait for the
dialog window to close.

6. Check that the data were correctly updated.

C.5 Edit Part

Starting point
The user is logged into the application and is located on the parts page of the
Test Assembly. In the parts table is one entry named ’Part name1’.

74

C.6. Create Part Detail

Steps
1. Locate the part with the name Part name1 in the parts table and click on

the ”Edit” button in the corresponding row. Wait for the dialog window
to be opened.

2. Change the part name to ’Part name’ in the name field.

3. Check the part as bought.

4. Click on the ”Submit” button in the bottom left corner and wait for the
dialog window to close.

5. Check that the data were correctly updated.

C.6 Create Part Detail

Starting point
The user is logged into the application and is located on the parts page of the
Test Assembly. In the parts table is one entry named ’Part name1’.

Steps
1. Locate the part with the name Part name1 in the parts table and click

on the ”Details” button in the corresponding row. Wait for the dialog
window to be opened.

2. Locate the ”Add new Detail” button and wait for a dialog window to be
opened.

3. Choose ’material’ in the type field dropdown.

4. Fill ’steel’ in the name field.

5. Fill 3 in the quantities field.

6. Fill 15.26 in the cost field.

7. Leave the comment and cost comment fields empty.

8. Click on the ”Submit” button in the bottom left corner and wait for the
dialog window to close.

9. Check that the data were correctly updated.

C.7 Generate BOM

Prerequisite
The user is logged into the application and is located on the systems page.

75

C.8. Generate Support File

Steps
1. Click on the ”Generate BOM” button located in the top right corner of

the screen.

2. Wait for the document to be generated and downloaded.

3. Open the downloaded document and verify that all of the previously
input information is present.

C.8 Generate Support File

Prerequisite
The user is logged into the application and is located on the systems page.

Steps
1. Click on the ”Generate Support File” button located in the top right

corner of the screen.

2. Wait for the document to be generated and downloaded.

3. Open the downloaded document and verify that the document contains
the inputted test image with the correct custom ID and system’s abbre-
viation.

C.9 Delete Assembly

Prerequisite
The user is logged into the application and is located on the systems page.

Steps
1. Locate the Test system in the systems table and click on the ”Assemblies”

button in the corresponding row. Wait to be redirected to the assemblies
page.

2. Locate the Test Assembly in the assemblies table and click on the ”delete”
button in the corresponding row. Wait for the confirmation dialog to be
opened.

3. Click on the ”delete” button and wait for the confirmation dialog to be
closed.

4. Confirm that the assemblies table is now empty.

C.10 Logout

Prerequisite
The user is logged into the application.

76

C.10. Logout

Steps
1. Click the ”logout” button at the bottom of the navigation bar on the

left-hand side of the application.

2. Wait to be redirected to the login page.

77

Appendix D
Contents of attachments

readme.txt..........................the file with CD contents description
exe..the directory with executables

screenshots................ illustraisions of the developed application
src..the directory of source codes

thesis................the directory of LATEX source codes of the thesis
text...the thesis text directory

thesis.pdf.............................the thesis text in PDF format

78

	Introduction
	Goals
	Formula Student Competition
	History of Formula Student
	Disciplines
	Statics
	Engineering Design
	Cost & Manufacturing
	Business Plan

	Dynamics
	Acceleration
	Skidpad
	Autocross
	Endurance
	Efficiency

	eForce Prague Formula

	Cost & Manufacturing event
	Procedure
	Cost Report Documents
	Bill of Materials
	Detailed Bill of Materials
	Costed Bill of Materials
	Supporting Material File
	Cost Explanation File

	Scoring
	Current Approach Analysis
	FSG Portal
	Team's Data Collection

	Analysis
	Requirements
	Functional Requirements
	Non-functional Requirements

	Use Case Specification Models
	Actors
	List of Use Cases

	Domain conceptual model
	System
	Assembly
	SubAssembly
	Part
	Detail

	Design
	.NET Development
	Blazor
	Blazor Server
	Blazor WebAssembly
	Chosen Hosting Model

	Database
	Architectural Principles
	Proposed architecture

	Authentication
	Stateful Authentication
	Stateless Authentication
	LDAP Server

	File Handling
	File Storage approaches
	Database
	Physical Storage
	Cloud
	Chosen Variant

	Security

	User Interface
	UI Libraries
	UI Design
	Authentication
	Navigation Bar
	Systems Overview
	Assemblies Overview

	Parts Overview
	Parts Detail Overview

	Add & Edit form

	Implementation
	Software Project Managment
	Data Versioning
	Documentation
	Containerization
	CI/CD

	Design Patterns
	Repository Pattern
	Service Pattern
	Dependency Injection

	Database
	Database Connection
	Database Model

	Authentification
	LDAP Connection
	Authentification in UI

	File Managment
	File Service

	Implemented Application

	Testing
	Unit Testing
	User Acceptance Testing
	Testers
	Testing Scenerios
	Testing Evaulation

	Evaluation
	Evaulation of Results
	Future Development

	Conclusion
	Bibliography
	Formula Student Specifications
	Implementation
	Testing Scenarios
	Login
	Create Assembly
	Attach File to Assembly
	Create Part
	Edit Part
	Create Part Detail
	Generate BOM
	Generate Support File
	Delete Assembly
	Logout

	Contents of attachments

