
JAN

RYCHTERA

ČESKÉ VYSOKÉ
UČENÍ TECHNICKÉ
V PRAZE

FAKULTA
STROJNÍ

BAKALÁŘSKÁ
PRÁCE

2024

Acknowledgment

I would like to thank thesis

supervisor Ing. Jaroslav Bušek Ph.D. for

his leadership throughout this work, his

willingness to help and his human

approach.

I would also like to thank the

institution of České vysoké učení

technické for the privilege that is

education.

At last, I would like to thank my

family for their mental and material

support throughout my studies.

Declaration

I declare, that the submitted work

has been created independently and I

have stated all used literature.

In Česká Lípa 11.05.2024

Abstract
This thesis covers up a method of

implementation of zero vibration shaper

algorithm for a PX4 autopilot based

drone, with MATLAB/Simulink software,

both of them being chosen prior to this

work by the main supervisor, Ing. Bušek

Ph.D. The main result should be a

simulation testing and concept proofing

usage of Simulink software and PX4

based board.

The work covers up a brief

introduction to the used autopilot and

software as well as a brief introduction to

drones, to have a basic understanding of

what may be controlled using zero

vibration shaper, and an introduction to

mentioned zero vibration shaper.

An overview of possibilities of

code implementation of PX4 autopilot in

MATLAB Simulink is covered up next, with

the realization that used UAV Toolbox

offers many possibilities and an

introduction to some of them.

In the latest stage a successful

control that output voltage can be

obtained from the used Pixhawk board

controlled using Simulink, as well as a

model of implemented ZV shaper that is

ran on Pixhawk board and writing to and

reading from messaging process of PX4

in Simulink, that should carry out the

movements of the drone.

Tato bakalářská práce se zabývá

metodou implementace algoritmu zero

vibration shaperu pro dron na bázi

autopilota PX4 pomocí softwaru

MATLAB/Simulink, přičemž oba tyto

softwary byly vybrány před touto prací

vedoucím práce, Ing. Buškem Ph.D.

Hlavním výsledkem by mělo být

simulační testování a ověření konceptu

užití softwaru Simulink a řídicí desky

založené na PX4 autopilotu.

Práce zahrnuje stručné

seznámení s použitým autopilotem a

softwarem a také stručný úvod do dronů,

kvůli získání základní představy o tom, co

lze pomocí zero vibration shaperu řídit, a

úvod do zmíněného zero vibration

shaperu.

Dále je uveden stručný přehled

možností implementace kódu autopilota

PX4 v prostředí MATLAB Simulink s

pozorování, že použitý UAV Toolbox

nabízí mnoho možností, ze kterých jsou

některé představeny.

V poslední fázi bylo úspěšně

ověřeno, že lze získat výstupní napětí z

použité desky Pixhawk řízené pomocí

Simulinku, a poté je proveden model

implementovaného ZV tvarovače, který

je spuštěn a běží na desce Pixhawk a

zapisuje se do a čte z něj proces zpráv

PX4 v Simulinku, který by měl řídit

pohyby dronu.

Contents

Introduction ... 1

1 About drones.. 2

1.1 Flying UAVs categorizing 2

1.2 Basic drone movements 3

2 Introduction to used hardware 5

2.1 History of Pixhawk and PX4 5

2.2 Technical possibilities of

Pixhawk 6x mini 5

3 Communication with and within the

drone .. 7

3.1 Station – device communication

 ... 7

3.2 MAVLink .. 8

4 The signal shaper algorithm 9

4.1 Laplace transformation 9

4.2 Transfer function 10

4.3 Zero vibration shaper 11

4.4 Zero vibration shaper with time

distributed delay 12

5 Control process 14

6 Possibilities of code implementation

of UAV Toolbox .. 16

7 Installation of the UAV Toolbox 18

8 Selection of used utilities PX4 in

MATLAB Simulink 21

9 PWM output control 23

10 Zero vibration algorithm

implementation 26

10.1 Controller inputs 26

10.2 Shaper function 27

10.3 Data transformation 28

10.4 uORB message 29

11 Simulink model execution 30

11.1 Initial version 30

11.2 Final version 31

11.3 Function outputs in time 33

Conclusion ... 36

Bibliography .. 37

Pictures

Figure 1.2.1. – Movements illustration – created using Pixlr image generator, from:

https://pixlr.com/cz/image-generator/ .. 3

Figure 1.2.2. – Simplified forces on quadcopter - created using Pixlr image generator,

from: https://pixlr.com/cz/image-generator/ .. 4

Figure 2.2.1. – Pixhawk 6x mini board .. 6

Figure 5.0.1. – Simplified schematics of drone conrol task with shaper 14

Figure 9.0.1. – Model of direct PWM output ... 24

Figure 9.0.2. – Oscilloscope measurement with 1800 value inputted from model24

Figure 9.0.3. - Oscilloscope measurement with 1400 value inputted from model25

Figure 10.2.1. - Shaper function code.……………………………………………………………………………………27

Figure 10.3.1. – Triangle similarity for signal transformation ... 28

Figure 11.1.1. – Initial version of shaper implementation ... 30

Figure 11.2.1. – Final version of shaper implementation .. 32

Figure 11.3.1. – First test results visualization .. 34

Figure 11.3.2. – Second test result visualization .. 35

1

Introduction

This thesis is set around trying to implement a drone control using MATLAB

Simulink software with the goal of proving a concept, whether a chosen hardware, being

a Pixhawk board, and software are eligible for usage of a drone control with weight

suspended under its body. Both software and hardware used for the purposes of the

thesis had been chosen prior to authors involvement in this work. Later in the work the

main focus is placed on proving a concept of realization of control using the Simulink

software while the hardware is being used only to run the generated code from Simulink.

The software used may have been chosen since ČVUT already has license for using

Simulink and should be user-friendly. Within the confines of this work, only simulation

testing will be undertaken, with hopes of confirming that the chosen method is not a

dead-end and continuation of work using Simulink may bring results in the future

however no practical test with a drone will be undertaken.

2

1 About drones

In the first part of the theoretical portion small research of information about

drones will be covered, to get a very basic understanding of drones and how they operate

and function, as the goal of the work would be to control one. Therefore it is for the better

to have a basic overall picture about the whole problematics, rather than having none.

1.1 Flying UAVs categorizing
 To gain some basic understanding about drones and the movements that can be

regulated, a following section covers the basics about drones.

A drone is a common name often used for unmanned vehicles, which includes both

unmanned aerial vehicles (UAV) as well as unmanned ground vehicles (UGV). Both types

of the devices have the same idea of having devices capable of transporting payloads

and performing tasks utilizing remote human interventions.

These vehicles could find and do find their usage in areas, in which alleviate risks

of endangering human life, such as during space missions or military usage, as well as

they could reduce the need of people in areas such as delivering packages, therefore

reducing the overall cost. This concept is currently under the development of companies

such as amazon. For now, the most commercially used types of drones are for aerial

photography and filmmaking, since the drones significantly lower the cost of the whole

production, eliminating the need for usage of helicopters or planes.

During the remainder of this work, word drone will be used as a synonym for

unmanned aircraft vehicles, despite the UAV Toolbox having an option of designing path

followers.

(UAV) Drones are manufactured in many variants, mostly categorized by amount

and layout of rotors. Examples of drone categories differentiated by their bodies include

multi-rotor drones, fixed-wing drones, single-rotor drones and fixed-wing hybrids [1] [2]

[3]. Understanding that these drones vary in their build and their flight method, it is good

to have basic idea, that differently built drones vary in their flight mechanics, for

situations where is a need to control their movements from a custom created control

models (in sense of controlling directly their rotors) , which is trying to be avoided in this

work.

The most notoriously known type of drones and most importantly the type of

drone this bachelor’s thesis is intended for is multi-rotor drones [1] [2]. These drones are

usually built upon a concept of multiple rotors placed vertically on the frame of the UAV

[1] [2]. From there comes another way to differentiate UAVs. The way multi-rotor drones

can be categorized is by the number of rotors connected to the frame of the drones, such

as tricopters (three rotors), quadcopters (with four rotors), hexacopter (six rotors),

octacopters etc.

For optimal efficiency of the flying devices, high requirements are placed on the

bodies of the drones, mainly the rigidness of the construction and low weight of the body,

3

therefore alleviating the amount of force needed to be produced by rotors of the drone

and sturdiness of the whole device.

1.2 Basic drone movements
In the following section a very simplified model of a drone will be described as

well as describing some basic movements of the whole vehicle. This model can be

described in more detail by more complicated mechanical equations, but as it is not the

main focus of this thesis, it’s not going to be covered more.

Objects in the 3-dimensional space do usually have 3 degrees of freedom, them

being translation in three directions perpendicular to each other in the directions of X, Y,

Z axes and rotations around these axes. The rotors of the UAV generate forces and

rotational moments. Adjusting the forces and moments produced, impacts the total

velocity of the vehicle, and leads to complex movement of drones, and gives the ability

to perform desired tasks and movements [1] [2].

Four rotor drone is underactuated with only four actuated degrees of freedom,

therefore at least two pairs of movement are bound together. To describe the movement

of a multi-rotor drone, four basic movements are being used, to be exact [2]:

• Vertical lift

• Pitch

• Yaw

• Roll

Figure 1.2.1. – Movements illustration

Vertical lift or a throttle is a type of movement that is parallel to axis Z of the

coordinate system placed located in the center of the gravity. Under the presumption

that the vehicle is balanced in the way, that every propulsor is in the same distance from

the center of the gravity, it’s caused by an equity of forces produced by the engines. There

is no rotation around any axis.

Pitch is created by inequity of force sum of two pairs of rotors. The result is an angular

rotation around the Y axis and is bound with the motion in the direction of the axis X. The

pitch is usually done by lowering of velocity of one pair of motors and increase in the

velocity of the other pair, which is in the mirror position by the axis of rotation.

Roll is created by inequity of force sum of two pairs of rotors [1]. The result is an

angular rotation around the X axis and is bound with the motion in the direction of the

axis Y. The roll is usually done by lowering of velocity of one pair of rotors and increase in

the velocity of the other pair, which is in the mirror position by the axis of rotation.

4

Yaw is a movement created by inequity of moments created by rotors [1]. Technically

is caused by lowering of moments crated by pair of rotors placed centrically

symmetrically to the origin of coordinate system and increasing of the moments of the

other pair of rotors [1].

All these described movements do work for the setup illustrated in the figure [1.2.1].

These models can be changed depending on the UAV design, but the idea behind all of

the motions remains the same for vehicles with different numbers of rotors, different

layouts and different directions of rotations of rotors.

Figure 1.2.2. – Simplified forces on quadcopter

Another thing to mention is flight modes in which the drone can operate. PX4

autopilots supports acro and stabilized mode. In acro mode sticks of yaw, pitch and roll

control angular rotation and after releasing them, the drone stays in its current

orientation [5]. In the stabilized mode, the yaw, pitch and roll stick behave the same,

however after centering them, the drone returns to into the position of just hovering in

the same place [6]. If tested later outside of this work, the drone would be intended to

work in stabilized mode.

After establishing some basic information about what can be controlled about drone

and a very simplified information about what causes the movements to be controlled,

following part will be introduction to the chosen hardware and then followed by

introduction of used software.

5

2 Introduction to used hardware

2.1 History of Pixhawk and PX4
This part starts with a little history background of utilities, as it is nice to have at least

a little knowledge about the story of what is worked with.

The origins of the Pixhawk project dates back to 2008 and a man called Lorenz Meier,

who tried to make drones fly autonomously. [4] For that task he recruited 14 other

students, and in 2009 the team called “Pixhawk” won the European Micro Air Vehicle

competition in the indoor autonomy category. This version using protocol MAVLink was

later released as open-source software [7]. After approximately two years later, user

interface QGroundcontrol was released [7]. The software we use currently is called PX4

and is a fourth from scratch rewrite of the original project [7].

Pixhawk is a hardware board for controlling drones and other flying devices. The first

one released under the name Pixhawk, followed by Pixhawk 2 (is referenced to under the

nickname “Cube”) [7]. Following the trend versions 2, 3, 4 have been released in

collaborations with companies mRo, Drotek and Holybro, including versions Pro (v. 3) and

Mini (v. 4). All of these types are discontinued [7]. The currently manufactured versions

are Pixhawk 5X, 6C, 6C Mini, 6X in collaborations with Holybro and CUAV Pixhawk V6X [7].

After a brief introduction to Pixhawk, next logical step is to get basic information

about hardware, that is going to be used.

2.2 Technical possibilities of Pixhawk 6x mini
For the realization of the work, a board Pixhawk 6x mini had been asset in the

assignment. This decision originates from the fact, that despite attempts of working with

older version, Pixhawk 1, author was unable to make the Pixhawk 1 board function

properly in Simulink. Then the choice of Pixhawk 6x mini was made by ing. Bušek

ordering a newer version, probably as it had been the newest board available at the time

of creation of this work.

In this section of the document, properties of the board we use, that is Pixhawk 6x

mini, will be described as the used board is vital part of the whole project as well as it

gives compacted info about some basic properties.

6

The whole board weights around 26,5 grams, with dimensions of 43,4 x 72,8 x 14,2

mm, with built in gyroscope, accelerometer types (ICM-42688-P, BMI055), compass

(BMM150) and a barometer (BMP388). The FMU processor powering the vehicle has 2 MB

flash and 1 MB RAM memory and is working on frequency of 480 MHz [8].

Figure 2.2.1. – Pixhawk 6x mini board

One power input for the source is to be found on the top of the board, two GPS inputs,

one with safety switch port, second one is basic, two telemetry receivers for

radiocommunication with ground stations or other modules, an ethernet port supporting

data transfer up to the speed of 100 MB/s, micro SD card slot, pulse width modulation

output and input (PWM I/O) ports with possibility to connect power distribution board,

FMU I/O port, a CAN slot for CAN supported devices, SBUS RC port for manual operating

using controller in this case with FrSKY 9D+ controller and FrSKy X4R receiver, I2C port

and FMU and I/O Debug ports [9] [8].

At last, there is a USB-C port for powering and data transfer while connected to the

ground station such as computer. This is a significant upgrade over the micro-USB used

on older models such as Pixhawk 1. This upgrade does significantly reduce the time of

setup and starting of models from computer, over the older models.

Current input ports are limited to 1,5 A, with various input voltages, depending on

the port used and the whole board is operational within the voltage range of 4,75 to 5,25

V [9] [8]. According to the documentation provided by the manufacturer Holybro, the

board should withstand and be operational within the temperatures of -40 to 85° C, but

there is no guarantee that other connected periphery do operate in the same range [9].

After getting to know the board, next step is going to cover, how is it going to be

operated with the board in confines of this work.

7

3 Communication with and within the drone

For the correct control of an UAV a way of data transmission between user and

system needs to be set. In the following part it is going to be covered basics of how the

connection is made as well as how this communication could be done if this project is

worth further exploring. A protocol on which the drone operates will be mentioned too.

3.1 Station – device communication
An important part of the whole system is setting the communication between the

system and a control station. Explicitly in this case the station being a notebook with

Simulink and a drone powered by PX4 autopilot software. This section will cover a bit of

vision for the future work with Pixhawk board and explains decisions made within this

work.

The main protocol on, witch all devices using the PX4 autopilot communicate

remotely with control stations, is MAVLink protocol (explained further in the thesis). The

MAVLink protocol, used for data transmission in Pixhawk powered devices, supports

transmissions of data through WiFi and Ethernet as well as serial telemetry or can be

bypassed via cable [9]. For the future usage, it makes more sense to use serial telemetry,

because of the hope of being able to fly the device outside specifically a telemetry radio

would be likely to be used, however whilst working on this thesis, a cable had been used

for the communication with control station. [8].

The radio most likely to be used is SiK Telemetry radio V3 by Holybro [8], that can

be bought in combinations of power 100 or 500 mW and working on Frequencies 433

MHz or 915 MHz (their usage being depending on the region of usage, as operating on

some frequencies is forbidden by the law) and has a plug and play feature, which should

make the usage easier. For operating in the EU 433 MHz is to be used, as the other

frequency is forbidden [10].

But whilst working on this thesis, the communication between station, being a

notebook, and the Pixhawk board is being realized by USB and USB-C cable, as it is

completely suitable and easiest mean of data transfer and as of now, there aren’t other

requirements apart from testing the functionality and proving a concept. Other bonus of

usage of a cable is unnecessity of need for battery powering the board, as the board is

powered via the cable.

In addition to communication with the control station, other control is to be

connected to the Pixhawk board, that being an RC controller. This controller should be

used for manual flight control and obtained RC signal is to be shaped by a shaper. As for

hardware, the used controller is FrSky Taranis X9D+ with FrSky RX6R receiver, because it

was already in possession of České vysoké učení technické .

This section explained, how the hardware communication is carried out, next a

software part will be touched upon.

8

3.2 MAVLink
A very crucial part of automatic control of the drone is a protocol used for

communication. The Pixhawk boards use MAVLink, software first released in 2009 by

Lorenz Meier [11].

MAVLink is a messaging protocol, that may and does find its usage in

communicating with drones or other independent vehicles and as onboard

communication protocol [11] [12]. The protocol is a publish-subscribe and point-to-point

hybrid, where the publish-subscribe function is used for data streams, while the point-

to-point part is used for retransmitting subprotocols, such as parameter protocols and

mission protocols [11] [12]. The sent messages are in XML files which are later used by

code generators to create software libraries in specific programming languages for latter

usage in ground control stations or other MAVLink – based devices [11] [12].

According to MAVLink organization [11], the protocols (versions MAVLink and

MAVLink 2) are very efficient due the usage of small packets (8 and 14 bytes), with the

latter being more secure and therefore can be used in applications with limited

bandwidth of communication. The protocol also provides for detecting of packet drops,

corruptions and for packet authentications. It supports up to 255 concurrent vehicles and

control stations on the network and does work on major operating systems such as

Windows, Linux, MacOS, Android and iOS [11].

The majority languages are generated by a tool called mavgen, which support

common programming languages such as C, C#, C++, Python, Java, Javascript and others.

But there are other tools by independent projects that can be used too [11] [12]. This work

will not cover them, as it is not this works main content.

In this work, there has not been a specific need to work with MAVLink, by itself,

however an introduction to MAVLink was requested by the supervisor of this thesis, as

well as if continued working further with drones and MAVLink based products, a need of

working with it might be required.

9

4 The signal shaper algorithm

 This work, as it has been set in the assignment, is set around trying to eliminate

oscillation of a weight placed under a flying drone, specifically using a method with

signal shaper. Following section covers the basics of control as well as describes the

theoretical part of the shaper.

 This technique of vibration reductions has been in the research and development

from around the year 1957, presented by Otto J.M. Smith of University of California,

Berkley [13] [14], and later followed by other works, that will not be covered in this brief

introduction to this problematic as the goal is to try to implement this technique to the

quadcopter control using MATLAB Simulink.

4.1 Laplace transformation
 Physical systems are described by differential equations, that for the sake of

solving are being linearized into linear differential equations [13]. This part is important,

as the vibration damper, that is later to be implemented uses the coefficients counted

from linearized model from an equation given from [13], that describes a system of

physical oscillator, that would be created by a weight suspended under the body of a

drone, which would be regulated by models from Simulink and therefore it is an

information that should be mentioned how to count them, despite having no need to

count them yet, as it is information closely related to the ZV shaper.

 Laplace transformation is a transformation of a differential equation to algebraic

equation [15], that should be simpler to find a solution to. The Laplace transformation can

be used only under the assumption of the system defined by differential equation being

convergent [15].Upon usage of Laplace transformation, the linear differential equation

can be transformed from time dependent function to an algebraic equation.

 The calculation formula is [15]:

ℒ{𝑓(𝑡)} = 𝐹(𝑠) = ∫ 𝑓(𝑡) ∙ 𝑒−𝑠𝑡𝑑𝑡

∞

0

(1)

 And in the case of constant coefficients of the linearized system, the differential

equation could be simplified to [15]:

 𝑎𝑛𝑦𝑛(𝑡) + 𝑎𝑛−1𝑦𝑛−1(𝑡) + ⋯ + 𝑎1𝑦 (𝑡) + 𝑎0 =
= 𝑏0 + 𝑏1𝑣(𝑡) + ⋯ + 𝑏𝑚−1𝑣𝑚−1(𝑡) + 𝑏𝑚𝑣𝑚(𝑡)

(2)

10

Where:

n, m … are orders of derivations within the system

a, b … constant coefficients of the derivations

y, v … time dependent variables

The result of Laplace transformation used on equation (2) would be:

 𝑎𝑛𝑠𝑛𝑌(𝑠) + 𝑎𝑛−1𝑠𝑛−1𝑌(𝑠) + ⋯ + 𝑎1𝑠 𝑌(𝑠) + 𝑎0 =
= 𝑏0 + 𝑏1𝑠 𝑉(𝑠) + ⋯ + 𝑏𝑚−1𝑠𝑚−1𝑉(𝑠) + 𝑏𝑚𝑠𝑚𝑉(𝑠)

(3)

4.2 Transfer function
 In the example of compensating a single oscillatory mode system, as will be done

in this work, there will be considered transfer function of the system [13] [16] [14]:

 𝐺(𝑠) =
𝑦(𝑠)

𝑣(𝑠)

(4)

where 𝑣(𝑠) is the systems input and 𝑦(𝑠) is the system output in form of system after

Laplace transformation (covered in section 4.1) and the transfer function is being defined

as their division. The transfer function within the question of this thesis is function of

physical oscillator under a fixed object, that may look as following expression that had

been taken from [13]:

𝐺(𝑠) =

𝜔0
2

𝑠2 + 2𝜉𝜔0
 𝑠 + 𝜔0

2

(5)

Where 𝜔0
 represents the natural oscillatory frequency of the oscillatory system and ξ

represents the damping ratio of the system [13] [16] [14]. This equation is according to a

weight hanged under a fixed body. Solving the quadratic equation from the denominator

of equation (5) of the oscillating system in this form, results in a solution, with complex

roots of the equation, that are being substituted by real coefficients β and Ω, in a form of:

 𝑟1,2 = −𝛽 ± 𝑗Ω

(6)

Where:

 𝛽 = 𝜉𝜔0

(7)

11

is the real part of the coefficients, and where:

 Ω = 𝜔0
 √1 − 𝜉2

(8)

is the imaginary part of the solution of the denominator of the equation (5).

4.3 Zero vibration shaper
 As the goal of this thesis is to proof a concept of control using Simulink, a simple

enough method had been chosen, as the need for more complicated algorithms with

more complicated usages could be contra productive, therefore for the purpose of

dampening the oscillatory mode in this case, the zero vibration (ZV) shaper will be used.

Such shaper is described by the equation [13] [16] [14]:

 𝑣 (𝑡) = 𝐴𝑤(𝑡) + (1 − 𝐴)𝑤(𝑡 − 𝜏)

(9)

Where A is gain, a constant coefficient, that ranges within the interval of [0.5; 1], w(t) is

the input signal and v(t) is the output signal of the shaper, both of them being time

variable [13] [16] [14]. As seen in the equation, one of input signal is being delayed by

time constant 𝜏. The time delay and gain are both dependent on the properties of the

oscillatory system and are derived from the oscillatory frequency and the dampening of

the system [13] [16] [14]. Where gain is calculated as following expression:

𝐴 =
𝑒

𝛽
𝛺

𝜋

1 + 𝑒
𝛽
𝛺

𝜋

(10)

and the time delay is calculated as [13] [16] [14]:

 𝜏 =
𝜋

𝛺

(11)

12

4.4 Zero vibration shaper with time distributed delay
There are also other ways of dampening the oscillation of a system, such as using

a time distributed zero vibration shaper (DZV) [13] [16] [14], that may result in better

functionality and more desired results, but their implementation can bring other

difficulties [13] [16] [14].

The DZV implements an idea of distributing the time delay equally within the

timeframe of a delay, therefore the changes to the system may result in not as drastic

interventions to the regulated system but its application should be considered

accordingly to the subject of study (for example might not be suitable for initial testing).

The DZV can be described with usage of following equation [13]:

𝑢(𝑡) = ∫ 𝑤(𝑡 − 𝜂)𝑑ℎ(𝜂)

𝑇

0

(11)

where w and u are system input and output respectively, and where h is a function of

time determining the delay distribution over the internal of the integral [0, T] [13] [16] [14].

The distribution can be described using a trapezoidal function as seen in the

equation (11) [13] [16] [14]. The trapezoidal function can be described in the time interval

of [0, ϑ]. On this interval the function can be prescribed as [13] [16] [14]:

 ℎ(𝜂) = 0, 𝜂 < 0 (12)

ℎ(𝜂) =

1

𝜗
𝜂, 𝜂 ∈ [0, 𝜗]

(13)

 ℎ(𝜂) = 1, 𝜂 > 𝑇 (14)

Using this expression, the equally distributed time delay can be than expressed

by the equation [13] [16] [14]:

𝑢(𝑡) =

1

𝜗
∫ 𝑤(𝑡 − 𝜂)𝑑𝜂

𝜗

0

(15)

And the shaper function can be described using the following equation [13] [16]

[14]:

𝑣(𝑡) = 𝐵𝑤(𝑡) +

1 − 𝐵

𝜗
∫ 𝑤(𝑡 − 𝜂)𝑑𝜂

𝜗

0

(16)

13

Where v is the output signal, w is the input signal, and B is a numerically obtained

parameter corresponding to the solution of equation as proven in the paper [13].

For the implementation part of DZV, the main obstacle can be seen as the need for

discretization of the algorithm. The discretized version of the DZV shaper can be

described as a middle ground between ZV and continuous DZV, with various results

depending on the used discretization algorithm and time parameters such as time step

[13] [16] [14]. However, within the confines of this work, the further theoretical substance

of the zero-vibration shaper with time distributed delay won’t be covered further, as the

main goal was to show other existing way that might result in different, maybe more

desirable results.

After establishing the utilities used for control, next part goes over where the

signal shaper will be established within the regulation process.

14

5 Control process

Drone control, due to its high demands on the quality of control of the system, is

a problematic and can be categorized into the section of analog control, as there is a

need for other, than two state logical control (despite the fact, that some properties of

the system may be regulated by logical control).

In the confines of analog regulation, the control may be conducted with or without

regulation feedback. In the case of drone, there is a need for feedback, however, as will

be further specified, the work within this thesis does not involve need for work with

feedback of the system, as the main goal is to shape input signal through given method

(ZV shaper).

In analog control the lived customs are, representing the system using control

loops. Using such method a simplified model is being used, constituting of regulator

(that can be represented by an automatic control unit in this case Pixhawk), and a

regulated system (also referred to as system or regulated object, e.g. a drone with

weight). Example of schematics of the drone control is shown in fig. [5.0.1]. With regards

to the complexity of models, they are vastly dependent on the complexity of regulation

of a system and number of controlled values. As seen in fig. [5.0.1] information between

elements of regulation is transitioned using unified signal.

The idea of ZV dampening is that of placing function shaper block executing the

signal shaping in between of the remote control, and the actuators control of the

quadcopter. In the case of devices used during this thesis, the controller used is FrSKY

Taranis X9D+ and the Pixhawk 6x mini board. There shouldn’t be a need to work directly

with MAVLink, as the RC sent signal is not in MAVLink form. Simultaneously to direct RC

signals, a control model of the shaper is being loaded from control station (notebook via

USB) to Pixhawk. The usage of USB bypasses usage of MAVLink connection. There

shouldn’t be a need for making changes to the sole control of a drone flight mechanics

because there is a hope of using the premade modes of the drone (stability and acro

modes, [5] [6]) and messages controlling the movement. The scheme can be visualized

as fig. [5.0.1].

Figure 5.0.1. – Simplified schematics of drone control task with shaper

15

In older experiments, that had been realized by (Daniel Bukovský and Jaroslav

Bušek [17]), employees of the Czech Technical University, the signal shaper had been

realized by a device outside of the Pixhawk board. In this case, the importance is placed

onto executing the shaper function within the software of a board, as it should be simpler,

and more versatile way and may lead towards other, more advanced usages. The

movement should in this work be carried out by uORB messages, a part of PX4 software.

After establishing what is going to be done in this work, the practical part follows.

The process will be taken from installation of necessary software, as problems did occur

in this process, until the implementation of ZV shaper and testing it using simulation in

Simulink.

16

6 Possibilities of code implementation of UAV

Toolbox

This part is on the verge between the theoretical and practical part of this thesis,

as it describes the motivation of using MATLAB and Simulink’s UAV Toolbox (that being its

possibilities), while being already written from the practical experiences of working with

mentioned software. However next section 7 is to be described as solely practical.

 Within this thesis, a MATLAB Simulink and its add-on UAV Toolbox was chosen in

the assignment. For getting a basic orientation in UAV Toolbox in Simulink, this part will

touch the surface of software possibilities of mentioned add-on.

The main strength of this method of working with PX4 is the unnecessity of

programming the code itself, which means, that there is a little to no need for the

knowledge of the syntax of the used language, as Simulink does create a code C++

automatically. Therefore, the user experience should be easier and more enjoyable and

should be made simpler for users.

In Simulink the model creation is based on the method of placing function blocks

from libraries and connecting them throughout the graphic interface. Then the created

sequence of blocks with functions is being carried out in the order of the connections

between blocks.

The blocks by itself are categorized in libraries, with built-in Simulink functions

and can be extended by utilizing add-ons, such as already mentioned UAV Toolbox, but

should be able to work with other extensions too, therefore securing a wide specter of

possibilities. The coverage of the whole Simulink possibilities is very comprehensive,

therefore only the blocks used in the control are being covered and parts of the UAV

Toolbox add-ons.

Within the UAV toolbox add-on are other blocks with various purposes to be

found. They are categorized into two main folders:

• UAV Toolbox

• UAV Toolbox Support Package for PX4 Autopilots

In the first named are subcategories of:

• Algorithms

• MAVLink

• Simulation 3D

• UAV Scenario and Sensor Modeling

• Utilities

With all of them being quite convoluted functions and not being used in the framework

of this thesis, only few examples will be mentioned.

There are pre-defined functions of minimum jerk and minimum snap polynomial

trajectories, path managers, obstacle avoidance functions, sensor simulation blocks,

scenario functions and coordinate transformation blocks and other. Their description can

be found on MATLAB support on the internet or in the block description within the

17

Simulink after hovering mouse cursor over a to be used block, but will not be covered

further, as they will not be used and are named just for the example of functions that can

be found.

The UAV Toolbox Support Package for PX4 Autopilots folder is more useful for this

thesis, as there are blocks such as PWM outputs and inputs, as well as for example

sensors blocks, that can be used for real-time data gathering and subsequentially can be

used for the control of the whole system, depending on the need of data usage. There

are also blocks for writing and reading messages of the system, uORB blocks and other

utility blocks. The functions used in the sole algorithm will be expanded further in the

section of the algorithm implementation.

18

7 Installation of the UAV Toolbox

Finally getting to the main software part of this work, installation of used Simulink

add-ons will be described, as it is a begging of the whole process.

For purposes of this bachelor’s thesis, the desired software is MATLAB Simulink,

concrete version in usage being MATLAB 2023b.

The Installation is done through Add-ons icon, that is found on homepage after

opening MATLAB. Next desired step is clicking on Get Add-ons by pressing the arrow

button under Add-ons.

If the steps have been done correctly, Add-on explorer should open. To find the

required Add-Ons, use the search bar, looking for a software named UAV Toolbox support

Package for PX4 Autopilots, but searching solely for keyword “PX4” is enough to find

desired Add-Ons.

After opening UAV Toolbox support Package for PX4 Autopilots, there is a list of

requires, under the section of “Requires” (located on the right side of the screen). The

requires for proper functionality is having installed following programs and MATLAB

extensions:

• Simulink

• Embedded Coder

• MATLAB coder

• Simulink Coder

• UAV Toolbox.

All the parts requested must be installed, before installation and opening UAV Toolbox

support Package for PX4 Autopilots. If done successfully, an installation process is eligible

to be done.

During the Installation the first step is to assign installation folder, where the PX4

software will be located in computer’s database. The folder can be chosen by clicking the

button “Browse”. In this case I used the default settings of installation. After choosing

postulated folder, clicking on “Verify installation” is required before being able to

continue using “Next” button.

If the first step compiled successfully, the second step is to validate the PX4/Home

folder, which should be found automatically inside the PX4 folder, and the whole step

should be as simple as pressing the “Validate” button and then “Next” button.

The third step consists of selecting Simulink application. The chose is between:

• Design flight controller.

• Design path follower.

In our case we have chosen the first option and have continued.

Fourth step is choosing the device in usage, for purposes of this work, it’s been

tried with PX4 Pixhawk 1 (issues and hardships with Pixhawk 1 are described further in

this work) and PX4 Pixhawk 6x. There is also a need for choosing firmware to be installed.

In this work the px4_fmu-v6x_multicopter has been chosen. There is also a possibility

19

of installing Custom CMake file for developers or other versions of firmware, that can be

found on official PX4 GitHub.

Fifth step is selecting startup script. In this work the option of Use default startup

script (rcS) has been chosen.

Sixth step is to install QGroundcontrol, mission planner mentioned earlier. On the

screen there is a link to QGroundcontrol website, from where this program can be

installed, since I already have had this software, I only did the step of Verifying installation

and continued by pressing the “Next” button.

Seventh step consists of building firmware to the computer where it should be as

simple as pressing the button “Build Firmware”. The firmware should start building with

the process of installation can be monitored in MATLAB’s command window.

Cannot find source file:

monocypher/src/monocypher.c

The problems were resolved by manually creating folders monocypher and src

and manually inserting programs monocypher.c and monocypher.h. This software is cost

free obtainable from internet and the final folder tree of changes looks like:

C:\PX4\monocypher\src

The whole process of building the firmware is dependent hugely on the internet

connection of the PC and on the power of computer that is worked on. This process can

take well over 15 minutes on a laptop for casual usage (Acer Nitro 5 had been used).

If the building was successful and pressing the “Next” button, the eighth step

appears. In this step, connecting the Pixhawk board via cable is required. A COM port of

the PC into which the board is plugged in, needs to be filled into the “<Enter Upload

Port>” field, and then the “Upload Firmware” button must be filled in. If everything goes

well, a pop-up window appears where a need is to follow directions on screen.

There is also a required step of pressing the “Get Accelerator data” button, which

is located next to the “Upload Firmware” button. From where current data from boards

built in accelerometer can be accessed (one data set each click of the button). If the data

are accessed successfully, a “Next” button can be pressed.

The ninth step is just to click “Finish button” and the whole installation should be

completed.

Before the version Pixhawk 6x had been delivered to the facilities of ČVUT, there

was an attempt to try and make work the older version of the board, Pixhawk 1, which

was already in possession of České vysoké učení technické. This attempt had ultimately

failed, due to combination of reasons. During the time of creation of this work was

Pixhawk 1 already a discontinued product without technical support. The firmware

offered in the fourth step of installation was px4_fmu_v3_default was ultimately

unable to be built into the board. An attempt of building Custom CMake file has also been

made, with the px4_fmu_v3_default firmware downloaded from official PX4 GitHub.

20

This attempt had also been ultimately unsuccessful. During one try, amongst

reinstallation attempts, the firmware was able to build, but could not be uploaded to the

board. The only thing, that could have been done was try to overwrite silicon errata of the

Pixhawk 1 board, but in the interest of perseverance of the board, this option wasn’t

followed through, as the board, as the information has been obtained from

QGroundcontrol, only had 1 MB flash, instead of required 2 MB required for overwriting

the silicon errata safely. Despite the manual of Pixhawk 1 stating, that the board should

have 2 MB flash, the risk of damaging the board wasn’t deemed worth the try.

After the installation, mainframe of the work, that is implementation of ZV shaper will be

covered, from explaining blocks, that will be used, through first task to final models.

21

8 Selection of used utilities PX4 in MATLAB

Simulink

The following part of this bachelor thesis will cover some of the blocks and

functions that can be used within the model sequence and will later be used, therefore

they are described more thoroughly.

While opening the libraries, there are blocks that are the basic facilities of the

Simulink, while also the blocks that are added on by Simulink add-ons such as the UAV

Toolbox, the add-on PX4 works with. Obviously on every device the blocks found in the

libraries may vary, depending on installed add-ons.

In the libraries are blocks to be found with various functions and variously convoluted

operation modus. Within the code implementation for zero vibration shaper, very basic

blocks are used, as the whole function is a trail of mathematical operations. The blocks

used are:

• Radio Control Transmitter – a block for connecting radio transmitter used for

drone control, that outputs numerical values depending on lever positions of the

controller. These outputs should be used as input data for the system and are to

be shaped by the shaper.

• Constant – a block that gives constant numerical output. The output can be

limited by value constraints, and the data type can be set to desired format, such

as double, uint16 or Boolean, depending on the usage needed later in the

Simulink model.

• Function – this block is a definable mathematical function, that upon double-click

opens a MATLAB function tab, where using MATLAB syntax a custom function can

be created. Outputs and inputs are customizable with multiple instances of both.

• Display – a block that upon connecting a numerical input displays its value. This

block can be used as real time control of the model.

• Delay – multiple types of delay can be found in Simulink libraries, some used for

analog simulations other for discrete operations. Within the later shown model

either “Integer Delay” or “Variable Integer Delay” can be used, with the latter being

chosen, as it has been deemed more user friendly to control time delay through a

constant block, rather than setting it via block settings. Thing to note is that the

delay is dependent on sampling time of Simulink. With different sample time,

different inputs need to be inputted, for desired functionality.

• Data type conversion – a block from default Simulink libraries, used for converting

data types of given value to a different data type i.e. transforming data type from

“double” to “single”.

• PX4 PWM Output - a block from UAV toolbox, that outputs values out of the

Pixhawk board. It has multiple input channels, according to the RC control of the

drone, reading the uint16 data type, as well as setfailsafe and arming of the

outputs, reading Boolean data type.

• uORB Read – a UAV toolbox block, used for reading Pixhawk board status. The

topic being read can be set within the block settings accessible after double-

clicking the block, for example for PWM outputs value, that read the width of

rectangle pulses sent to the actuators via “actuators output” topic.

22

• uORB Message – a block for selecting a topic to be modified in combination with

a “Bus Assignment” block and input signal. The topic, that can be selected in the

block settings can then be sent to subscribe via bus signal.

• Bus Assignment – a block from standard Simulink libraries, that can find its

utilization in combination with uORB messages, as using this block a selection of

one or more properties of selected topic can be chosen and transformed into bus

signal mandatory for correct functionality of “uORB Write” block.

• uORB Write – a subscriber block from UAV Toolbox library, for executing a bus

signal of modified uORB message. The topic setup in this block is necessary to be

the same selected as the uORB message inputting the signal to this block.

23

9 PWM output control

The first task of working with PX4 autopilot using the UAV Toolbox extension to

Simulink was to be able to establish connection within the board and successful usage

of Simulink for actuators control.

 Motors, that can be connected to the board are powered by voltage from ports,

that can be found on the board, marked as PWM output. PWM stands for “Pulse width

modulation” and is a way of creating analog output of discrete values obtained control.

This technology is to be found in most applications related to electromotors.

 The whole setup was prepared by following a tutorial created by Mathworks

group, that can be obtained cost-free on their official website.

 Following the step-by-step guide from internet, the whole setup was consisting of

three constant blocks, a block of PX4 PWM output, uORB read block, bus selector and a

display block.

 Two constant blocks are connected to the Arm and set failsafe as seen in schema

[9.0.1]. These constants are needed to be set as boolean type signal, that can be

performed after double-clicking the constant block and inside the “Signal attributes”

folder and under the “Output data type” section. The Boolean attribute of 1 is, following

the accustomed rules, used as an “ON” option, while the Boolean 0 is representing the

option “OFF”. This functionality is very intuitive, but deemed necessary to be mentioned,

to clear the fact of the program working as expected.

 The remaining constant is outputting the signal in the type of uint16, straight to

the channels input ports. These channels represent the PWM output ports, from which

the voltage to the actuators can be lead, while the value of the constant represents the

width of voltage pulses dependent on the sample time. These values should be found

within the range from 900 to 2000.

The uORB read block enables to read the protocol within the board works and

outputs the message, depending on carried information. In this case the information

“<output>” is selected in the bus selector and displayed. These values should equal to

the values input to the channel ports. The whole functionality process can be than

observed using an oscilloscope, after connecting cramps to pertinent outputs on the

board.

24

 For the desired functionality, this model was run in the external mode settings on

the board. The building, loading, and running of the model was done without an issue,

however even for the not as complicated, such as this, task, it took some time.

As the result of this model, the pulse width observed on the oscilloscope had

width according to the input constant. This constant could have been changed even in

the on-board running model, therefore it also proved the possibility of real time control

of a system created within the Simulink software. The values were set to 1800 ms and

1400 ms and accordingly read on the oscilloscope.

Figure 9.0.1. – Model of direct PWM output

Figure 9.0.2 - – Oscilloscope measurement with 1800 value inputted from model

25

 Following this control, a more complicated, completely custom, model for a drone

control can be created using Simulink and could be an opportunity for future projects.

Figure 9.0.3 - Oscilloscope measurement with 1400 value inputted from model

26

10 Zero vibration algorithm implementation

 As it already had been previously stated in the section 5, the explained shaper

algorithm is set to be implemented outside of the closed loop drone control, in between

the remote controller and the pre-designed control of the drone. Therefore this part of

this thesis will cover the whole created Simulink model from inputs to outputs.

10.1 Controller inputs
During the implementation, the first step is to set connection of used remote

controller, that is later to be shaped. Using the UAV Toolbox, there are at least two ways

of reading RC data, one of them being using premade “Radio Control Transmitter” block,

and second on is to read the uORB messages of the system using “uORB Read” function

block. Their usage may differ, with regards to preferences of person working with the

toolbox.

 To read uORB messages, the “uORB read” block can be selected in the “PX4 uORB

Read and Write Blocks” folder and set to read manual_control_setpoint message, that

is to be set after double-clicking the block and then selecting desired message. This way

the information of internal control messages are being read.

 In contrast, the “Radio Control Transmitter”, found in “PX4 Sensor Blocks”, is a block,

that is designed to read current values set on the connected controller. These values are

dependent on stick positions and outputted using “Channels” outputs. Upon double-

clicking on the block, the read channels can be chosen (the block supports up to 8 output

channels), as well as other settings.

For the purposes of this work, the “Radio Control Transmitter” block was chosen as

the main way to input information to the system, as it seemed to be less complicated to

set up and it is also more graphic, therefore readability of the model seemed easier.

27

10.2 Shaper function
The obtained signal can then be shaped by desired signal shaper. In the case of this

work, a ZV shaper is realized, using “MATLAB Function” block, that is standard MATLAB

utility. Inputs into the shaper are:

• w – which in this model is the output signal obtained from the “Radio

Control Transmitter” block

• w_delayed – is also the output signal from the “Radio Control Transmitter”

block, but delayed by a time constant 𝜏, using “Variable Integer Delay”. It is

according to 𝑤(𝑡 − 𝜏) from (9). Multiple delay functions can be found in

Simulink libraries, but for the model to function properly, only discrete

time delays can be used, as if tried for continuous delay, the model will not

build and shows errors. For user friendliness the “Variable Integer Delay” is

being used, as the length of the delay is being set using a constant, and

therefore there is close to no need for user to open the settings of the

delay block. (The only need for dealing with the block settings should

occur only in the case of time delay exceeding the upper limit of the time

delay input of 20 000).

• A – a constant of the shaper from a range between [0.5; 1]. This constant is

calculated as seen in (10), and in early versions of this work had been

calculated inside the model, from the oscillatory system properties,

however that proved to be ineffective while setting the constant value and

later changed to simple input realized directly by an input constant A.

These inputs are defined via MATLAB’s syntax, as after double-clicking the “MATLAB

Function” block, the program opens a text interface strongly resembling common

MATLAB’s command window, where a function can be written. Neat part of this process is

the fact, that the basic syntax of defining the function is already prepared by the program.

 The changes made into the function then is defining input matrix, consisting of

the previously mentioned inputs, name of the function, in this case for clarity of the

system, the function was named “Shaper” and outputs, in this case only a variable v.

 Following the creation of the main frame of the function, the computing part is

written into the body of the function. The whole function looks like:

 function v = Shaper(A, w_delayed, w)

v = A * w + (1 – A) * w_delayed;

Figure 10.2.1. – Shaper function code

28

10.3 Data transformation
With regards to the desired usage in drone control, the output obtained for the

“Shaper” needs to be recalculated, as the uORB message, that is used later within the

model is operating in the range of input [-1, 1]. The message is called

manual_control_setpoint, however many of uORB messages do operate in the same

range of values, therefore this transformation can find other usages.

 The recalculation is based on triangle similarity as shown in fig [10.3.1]. This

similarity can be expressed by a general equation:

𝑦 =

𝑣 − min

max − min

(17)

Where v is the current value of input, min represents the minimal input value from the

RC controller (982) and is larger than 0 and max the maximal input value (1996). The

output y then is a value within the range of [0, 1].

Figure 10.3.1. – Triangle similarity for signal transformation

 For adjustment of this function to output values in the desired range of [-1, 1], the

function is modified to the following form:

𝑦 =

𝑣 − min

max − min
∙ 2 − 1

(18)

Where the whole expression is multiplied by two, to expand the range and then 1 is

subtracted to move the values to be set around 0.

29

10.4 uORB message
 Moving onto the final part of the algorithm implementation of signal shaper, the

last remaining thing to do is to convert the already transformed signal onto drone

movements.

 For that purpose, a whole drone control system should be allegeable for creation

in MATLAB Simulink, using PWM output control, and using channel controls straight from

the user created model. Example of such model can be found for instance within the

Mathworks PX4 examples on their website, where a model designed for altitude control

can be found.

 However, such systems do require extensive interventions if premade, or are

complicated to design, therefore it was decided, to try and use uORB messages, that

should work within the built-in drone flight modes.

 uORB is a publisher-subscriber protocol system and in Simulink is utilized by

“uORB Message” and “uORB Write”. The chosen topic of control is

manual_control_setpoint message, that should have the options of controlling the

movement of the drone dependent on directions of movement. However, ambiguities

occur in this part, as the uORB manual of the used topic, that is to be found on the

internet, states, that movements of the drone are roll, pitch, yaw, thrust, however the

outputs of the uORB message in Simulink are x, y z, r.

 Using logic, the movements are expected to be as:

• r – as rotation around the vertical axis.

• z – thrust as a movement in the direction of vertical axis.

• x – for pitch, the movement “forward”.

• y – for roll – the movement "sideways".

However, without practical experiment using this uORB message, only the assumption

can be used.

 Assuming the described description of movements, the ZV shaper is implemented

for a one-dimensional movement, since the main goal is to prove a concept, more

comprehensive usage could bring longer loading and if there would be a need to

implement the shaper for other movements, same build could be used, just multiple

times with different inputs. Chosen movements is either pitch (x) or roll (y) (in this case

pitch). For proper functionality of uORB messaging a system of “uORB message” “Bus

Assignment” and “uORB write” blocks are used. In both publisher and subscriber blocks

is selected “manual_control_setpoint” topic is selected.

 To input transformed data obtained from the shaper into the uORB messaging

system, the output signal is connected to the “Bus Assignment” block, in which the topic

of x or y is selected (in the example model parameter x was chosen). The selection is

being carried out by double-clicking the “Bus Assignment” block, removing all default or

to the chosen topic non-related signals and then selecting the x signal. This setup does

write the calculated data into the system and for the control they can be obtained by

using “uORB” read block.

30

11 Simulink model execution

 The whole model of zero vibration algorithm control described earlier had been

implemented to Simulink and then had been ran in external mode, on the Pixhawk 6x

mini board connected to the control station via USB-C cable on multiple instances and

versions, as the whole process had undergone bit of evolution in terms of expectations

of how the end result should look like, despite the original pitch being well in the

direction of the way of the end result.

For demonstration purposes, the control values from the RC controller are being

read from channel 3, despite the corresponding lever normally controlling vertical lift.

This had been chosen for the reason of this lever being the only one that after deflection

from its central position stays at the same position, therefore controller operator does

not bring additional errors to the system by unsteadiness of their hands.

11.1 Initial version
The first and the second iteration of the model was similar to the schema shown in fig

[11.1.1]. This model follows the direction described in section 5, however the first model

involved two more calculations of coefficients A and 𝜏 from the real and imaginary

coefficients of equation (6) of the system, using “MATLAB Function” blocks. These settings,

however, proved inefficient with regards to being user-friendly, as for the demonstrative

purposes the changes to the shaper coefficients were too complicated to find results of

the calculation according to the intervals they should occur in.

 Another difference between the first and the end product was in the system

output. In the initial version, the system output was to be executed via pre-prepared

uORB message block of “PX4 PWM Output”, that, as explained, was deemed as not the

way of desired output. In regard to the loading time of the initial model, proper

measurements were not undertaken, however this version didn’t have any noticeable

differences in loading time to the end version.

Figure 11.1.1. – Initial version of shaper implementation

31

11.2 Final version
The end version is shown in fig. [11.2.1.] This version is noticeably simplified, for

better user experience. The inputs of coefficients had been changed to constants, with

the need of them being calculated outside of the model. For better orientation, both units

of A and 𝜏 are closer specified under their constant block. In the case of the time delay 𝜏,

transfer of units is realized by “Gain” block, from seconds, inputted by user, to

milliseconds, the sample time in which is Simulink operating. If different sample time is

used, different gain must be set.

However, the most noticeable change is the output of the control algorithm is

being carried out via “uORB Message” and “uORB Write” blocks with connected input from

transformation into the range of [-1, 1]. Process of work with uORB messages is closer

described in section (10.4).

The whole process is also being monitored on multiple instances within the

system. The data, despite being slightly delayed by the program, are being observed by

“Display” blocks, that are not to be found in fig [11.2.1.], as they have been left out for

purposes of visibility of printed version.

Display block described in the system as “Shaper control” visualize numerical

value of signal obtained straight from the shaper. These values range within the

numerical output of the RC controller, specifically values of [982, 1996]. These values may

vary depending on the controller and are important, as their confine values need to be

set as minimal and maximum values in “Transform” function.

The output of “Transform” function is being displayed by “Transform control”

display. These values should occur in range of [-1, 1] if correctly set within the body of the

function. When set incorrectly, the uORB messaging system can handle the value,

however this situation should probably not appear, as the chance of correct function of

the system is not likely.

32

Last display block is set to read the data selected and then transformed to

different data format from “uORB Read” block. The data displayed in this block should be

equal to data displayed in “Transform control” display. (While testing, the numerical data

were indeed equal, however due to skipping of displays from the schematics it is not to

be seen in the fig [11.2.1.]).

Figure 11.2.1. – Final version of shaper implementation

33

11.3 Function outputs in time
 A desired output of the whole system can be considered, as the output signal

depicted in time. Simulink offers an option to monitor data in time of the simulation or

externally running model using “Data Inspector” option that can be found in the

“Hardware” section of Simulink.

 Plotted data in fig [11.3.1.] and fig [11.3.2.] are represented values of transformed

signal (redrawn to a graph, not direct output), that is being written to uORB messages.

The output value found in fig [11.3.1.] and fig [11.3.2.] signalizes a signal that is supposed

to control the drone via uORB messages. The tests were undergone with coefficients

A=0,5 and with 𝜏 = 1 [𝑠] and with sample rate of t=0.001 [s]. The data had been smoothen

for better visualization and the coefficients, since there haven't been any particular given

system of drone with weight to calculate them from, were chosen to have clear visual

results in terms of step size and time duration of the visual part of the step. If they were

to be calculated it would be with for instance 𝛽 = 0 and 𝛺 = 𝜋:

𝐴 =
𝑒

𝛽
𝛺

𝜋

1 + 𝑒
𝛽
𝛺

𝜋
=

𝑒0

1 + 𝑒0
= 0,5 [−]

And:

(19)

 𝜏 =
𝜋

𝛺
=

𝜋

𝜋
= 1 [𝑠]

(20)

 In fig [11.3.1.], the starting value was a central point of the controller lever, upper

limit was position of lever completely up, and the finishing position was lever in the

starting position. Imperfections caused by human inputs can be found in this graph.

Within perfect system, the time of change of values would be 𝑡 = 0 [𝑠], however as seen

the time of changes are not zero. In fact, these values are dependent largely on user

controlling the system, and as seen, while returning to the starting point, an error caused

by user may be spotted, as the slope of change is more gradual than the first, steeper

input. Interestingly, the curve before the “step” is copied with the imperfection after the

“step”, therefore it may imply that the system can withstand even human caused errors

in controlling the drone.

34

Figure 11.3.1.– First test results visualization

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

O
u

tp
u

t
si

gn
al

 [
-]

time [s]

Shaped RC signal in time

Output

Input

35

The second test was done for additional assurance of the system outputting

correct data within the whole range of lever movements. The lever had been flicked from

central, to up, to down position and the result graph is shown in fig [11.3.2]. Notice, that

with A=0.5 the output from up to down position is lumped around the 0 value.

Figure 11.3.2. – Second test result visualization

-1,5

-1

-0,5

0

0,5

1

1,5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

O
u

tp
u

t
si

gn
al

 [
-]

time [s]

Shaped RC signal in time

Output

Input

36

Conclusion

This thesis covered a brief introduction to Pixhawk boards and PX4 autopilot in

combination with MATLAB Simulink environment in its theoretical part, as well as an

introduction to zero-vibration algorithm.

In practical part of this thesis the possibilities of applications in Simulink were

covered and a simulation model was made.

The simulation model was later tested in software running on the Pixhawk board.

The practical part indicates the possibility of functioning drone control using

MATLAB Simulink, as output voltage can be obtained from board’s outputs, therefore a

creation of whole control system may be possible, and system messages, that should

control drone in pre-defined modes, can be created and written into the system, however

the control via messages haven’t been tested on real drone yet, therefore an exact

conclusion shouldn’t be drawn yet.

While creating the control model, an emphasis was put on simplicity and user-

friendliness of the model, with the hopes of further continuation on this project, with

experiments undergone on complete drone device.

Author is unable to state, whether using Simulink for drone control is a good

method. The positives are being able to create control with little to none programming

skills, and the fact, that ČVUT already owns licenses for MATLAB Simulink. The biggest

negative may be the loading time of models to board, as they may take time (minutes),

sometimes not loading at all, however it is possible, that other options are not any faster.

37

Bibliography

[1] C. LEE, S. KIM and B. CHU, "A Survey: Flight Mechanism and Mechanical Structure

of the UAV," International Journal of Precision Engineering and Manufacturing, vol.

22, no. 4, pp. 719-743, 2021.

[2] H. YANG, Y. LEE, S.-Y. JEON and D. LEE, "Multi-rotor drone tutorial: systems,

mechanics, control and state estimation," Intel Serv Robotics, vol. 10, pp. 79-93,

2017.

[3] B. ZHANG, Z. SONG, F. ZHAO and C. LIU, "Overview of Propulsion Systems for

Unmanned Aerial Vehicles," Energies, vol. 15, p. 455, 2022.

[4] S. PANIGRAHI, Y. S. S. KRISHNA and A. THONDIYATH, "Design, Analysis, and Testing

of a Hybrid VTOL Tilt-Rotor UAV for Increased Endurance," Sensors, vol. 21, no. 18,

p. 5987, 2021.

[5] Dronecode Foundation, "PX4 Guide (Main) - Acro Mode," 2023. [Online]. Available:

https://docs.px4.io/main/en/flight_modes_mc/acro.html. [Accessed 10 5

2024].

[6] Dronecode Foundation, "PX4 Guide (Main) - Manual/Stabilized Mode," 2023.

[Online]. Available:

https://docs.px4.io/main/en/flight_modes_mc/manual_stabilized.html.

[Accessed 10 5 2024].

[7] Auterion, "The story of PX4 and Pixhawk," 2023. [Online]. Available:

https://auterion.com/company/the-history-of-pixhawk/. [Accessed 3 2 2024].

[8] Holybro, "Holybro store," 2024. [Online]. Available:

https://holybro.com/products/pixhawk-6x?variant=43008610402493.

[Accessed 6 2 2024].

[9] Holybro, "Holybro Docs," 2023. [Online]. Available:

https://docs.holybro.com/autopilot/pixhawk-6x/overview. [Accessed 6 2 2024].

[10] Český telekomunikační úřad, "všeobecné oprávnění č. VO-R/10/07.2021-8," 20 7

2021. [Online]. Available: https://ctu.gov.cz/sites/default/files/obsah/vo-r10-

072021-

8.pdf?_gl=1*nu6m9y*_ga*NTA5MjU0ODc2LjE3MTUzNTgzMzM.*_ga_0JN41LR

MT4*MTcxNTM1ODMzMi4xLjEuMTcxNTM2MDA0Ny4wLjAuMA... [Accessed 10 5

2024].

[11] Dronecode Foundation, "MAVLink Developer Guide," [Online]. Available:

https://mavlink.io/en/. [Accessed 4 2 2024].

[12] A. KOUBÂA, A. ALLOUCH, M. ALAJLAN, Y. JAVED, A. BELGHITH and M. KHALGUI, "Micro

Air Vehicle Link (MAVlink) in a Nutshell: A Survey," IEEE Access, vol. 7, pp. 87658-

87680, 2019.

38

[13] M. KUŘE, J. BUŠEK and T. VYHLÍDAL, "Swing compensation of a payload suspended

to a planar copter,," in 23rd International Conference on Process Control (PC),

Strbske Pleso, Slovakia, 2021.

[14] T. VYHLÍDAL, V. KUČERA and M. HROMČÍK, "Signal shaper with a distributed delay:

Spectral analysis and delay," Automatica, vol. 49, no. 11, pp. 3484-3489, 2013.

[15] M. Hofreiter, Základy Automatického Řízení, Praha: České vysoké učení technické,

2012.

[16] T. VYHLÍDAL and M. HROMČÍK, "Parameterization of input shapers with delays of

various distribution," Automatica, vol. 59, pp. 256-263, 2015.

[17] D. BUKOVSKÝ, "Tlumení výkyvu závaží zavěšeného na dronu", Praha: České vysoké

učení technické, 2019.

