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Abstract

Symbolic execution is a technique that enables one to test programs and prove
nontrivial properties about a program.

Making a new symbolic execution engine is challenging. Instead, a tech-
nique is used where an interpreter of the target language is symbolically exe-
cuted itself, simplifying the symbolic execution of its programs.

In this work, I show how to apply this to the R language. The resulting
symbolic execution engine can be used to, for example, test library correctness
or generate type annotations.

Keywords Testing, Symbolic execution, R language, S?E, Chef

Abstrakt

Symbolic execution je technika, kterd umoznuje testovat programy a dokazovat
jejich netrividlni vlastnosti.

Vytvoreni nového systému pro symbolic execution je ndrocné. Misto toho
je pouzita technika, kdy je symbolicky spoustén samotny interpret cilového
jazyka, diky ¢emuz je jednodussi symbolicky spustit i programy v daném jazyce.

V této praci aplikuji tuto techniku na jazyk R. Vysledny program je mozné
pouzit napiiklad na otestovani korektnosti knihoven nebo na generovani typo-
vych anotaci.

Klicova slova Testovani, Symbolické spousténi, jazyk R, S?E, Chef
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Introduction

R is an interpreted language used for statistics and data analysis [I] and has a
significant number of third-party libraries. In order to keep things performant,
many* of those libraries are written in compiled languages, primarily C, C++
and Fortran [2].

If we consider automated analysis of R programs, these characteristics make
the language rather hard to reason about. Its dynamic nature makes static
analysis complicated, while the inclusion of libraries written in compiled lan-
guages means that one needs to analyze both the user source code and the
behaviour of compiled libraries and combine that information together. This
requires one to reason about the C API of the R interpreter as well. These rea-
sons underpin the decision to explore the symbolic execution approach, which
can be implemented in such a way that high coupling among multiple compo-
nents is not an issue.

Symbolic execution is a technique that allows one to test large projects
without having to spend long hours writing tests manually or collecting test
cases from real-life usage. Instead, the symbolic execution engine reasons about
the program itself based on its source code or its compiled representation. It
can generate test cases that might cause problematic behaviour in the program,
and because it is guided by the program itself, it tends to be able to find edge
cases better than techniques that do not take that into account, such as random
fuzzing.

For example, given the following code, a symbolic execution engine would
typically generate two test cases, one with ¢ = 42 and one with i being set to
some other number. It would find an input such that the code fails without
the need to find test cases manually and without using completely unguided,
random inputs, which could completely miss the edge case presented below.

int i = symbolic_input();
if (i == 42) {

fail(Q);
}

Symbolic execution is viable even for very large systems. One fascinating
example is a work done by Yang et al. [3], where they checked the Linux kernel

L About one-fourth of all packages released in 2020 [2].



INTRODUCTION

using symbolic execution. The symbolic execution engine managed to gener-
ate concrete examples of ext2, ext3 and JFS filesystems that, when mounted,
caused a kernel panic or buffer overflow. This furthermore shows that even in
the context of heavily used and well-tested programs, symbolic execution can
uncover bugs and vulnerabilities that were not found before.

Most symbolic execution engines currently widely used, such as S?E, Klee
or SAGE, process either machine code or LLVM IR. Therefore, those engines
are suitable for languages that can be compiled into machine code or LLVM
IR, such as C or C++, but not so much for interpreted languages, such as R.

Writing my own symbolic execution engine would be a lengthy endeavour.
It would require implementing all the instructions, modelling how environ-
ments are handled in R, and implementing complex optimizations, to reach an
acceptable level of performance.

But what if I used an existing symbolic execution engine on an executable
representation of the semantics of the language? That is exactly what Chef
does. Chef is an S2E plugin and essentially works by symbolically executing
the interpreter — in R case, conveniently written in C — using S2E, which is
fed the actual R program as input. This practically guarantees bug-for-bug
compatibility and is much easier to implement. The Chef authors claim that
writing a new symbolic execution engine this way should be possible in a rather
short time frame [4] while reusing the optimization techniques already made
by others.

Goals

The goal of this thesis is to implement a symbolic execution engine for R
using the technique presented by Chef authors, leveraging an already existing
symbolic execution engine without the need to reimplement it from scratch.

I will describe_the key principles of symbolic execution engines Klee and
S2EE in chapter P and focus on the way Chef works. After that, in chap-
ters B and Y, I will provide an overview of the inner workings of the R inter-
preter and modify it to enable symbolic execution. Finally, in chapter f, I will
verify the functionality and show an example of using the symbolic execution
engine to test real-life R libraries and generate type annotations.

Thanks to this tool, one will, for example, be able to test specific software
and libraries by writing symbolic tests, do a large-scale analysis of the R ecosys-
tem or generate test cases to further enhance manual testing already present
in many R libraries.

2Which itself is a platform built upon Klee, extending it and adding more capabilities.
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CHAPTER ].

Background

In the first part of this chapter, I explain the basics of symbolic execution, em-
phasise how it differs from other testing techniques and show a few interesting
examples where symbolic execution was used with great success.

In the next section, I present the R language and focus more on what makes
it an interesting choice for some kind of analysis. I also highlight some relevant
parts of the inner design of the interpreter that will be important later on.

1.1 Symbolic Execution

Symbolic execution is a technique used to analyze programs in a way that
may uncover bugs that might otherwise remain unseen. Some commonly-used
techniques, such as unit tests and fuzzing, tend to be rather time-consuming
or may not uncover all edge cases. For example, unit tests heavily depend on
the ability of a programmer to exhaust all interesting cases. At the same time,
fuzzing is often more or less randomized and might not hit rare edge cases at
all. Symbolic execution, on the other hand, is actively guided by the code of
the program [5] and will enumerate all inputs, thus testing every single edge
case, assuming it is given enough time and computing resources.

Symbolic execution works by representing the values of program variables
as symbolic values. Let us denote a symbolic store of variables as o0 : [ — V,
where [ is the set of identifiers of program variables and V is the set of symbolic
values, denoted aq,...,a,.

For example, consider the following program written in C:

int i, j;
i+= 4,
i x= 2;
i+=3j;

An initial symbolic value «; is assigned to every given variable. Later, when
the variable is modified, the symbolic value is modified equivalently.

The symbolic store will have the following values as the program is executed:

3



1. BACKGROUND

‘ Statement ‘ o ‘
1 {’L"—)Ckh j»—>a2}
2 {imra1+4, j— as}
3 {i=2 (a1 +4), j— as}
4 {il—>2'((){1+4)—|—042, j'—)OéQ}

Suppose a conditional statement is encountered later in the program.

int i, j;
i += 4;
i *x= 2;
i+=j;
if (1 <0) {
// Branch 1
} else {
// Branch 2
}

In this case, branch 1 is reachable if and only if there exists some assignment
of concrete values to a1,as, such as the value of variable i is negative, so
o(i) = (a1 +4) - 2+ ag < 0. Branch 2 is reachable if the variable’s value is
not negative. Whether some a1, o exist, satisfving either of the conditions (or
both) can be solved by a patisfiability modulo theories (SMT)| solver. Using
that, the symbolic execution engine can determine whether a branch can be
taken and ignore it if it cannot be executed given the current variable mapping
.

When a symbolic execution engine is executing the code and comes across
a conditional jump,® it has to decide what to do next. Take the true branch
or the false branch? The symbolic execution engine will do both. Until now,
there was exactly one state containing, for example, the mapping o. When a
situation like this happens, the engine forks the current state into two: one that
represents the program taking a true branch and the second one representing
the contrary. From then on, the states will be processed independently of each
other, even when the two branches merge.

However, there is one important distinction between Branch 1 and Branch 2.
In the first branch, we know that i is negative, while in the second branch, the
opposite is true. This knowledge should be encoded into the symbolic states
as well in order to properly resolve any further queries.

This is where path constraints come into play. It is a set of conditions that
has to be true since the branch has been taken. This set limits the values
of symbolic variables. In this case, for branch 1, the path constraints are
represented by a set of equations: m = {2- (a1 +4) + a2 < 0}. When additional
code is executed in the branch, these conditions limit the values of symbolic
variables.

The biggest advantage of storing 7 is the ability to reason which values vari-
ables can or cannot have. For example, there could be an assertion somewhere
in our code. Should a symbolic execution engine come across it, it can simply
run an solver and determine whether, given current path constraints m, is
there some initial assignment of values to variables a1, - , ay,, such that the

3For example, an if.
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condition in assert evaluates to be false. Similar conditions can be checked, for
example, during array access, to verify that the program will never access ele-
ments out of bounds. Thanks to this, we can prove many interesting properties
about the program.

While useful, the extensive use of solvers makes symbolic execution
quite slow [6], especially when non-linear operations are encountered. Those
generally cannot be solved quickly by current solvers. One example of
non-linear operations is hashing [4], typically used in set and map implemen-
tations in modern programming languages.

Another large problem is state space ewplosiorﬂ [b] — common language
constructs, such as loops, increase the number of states exponentially, making
it very costly to analyze any programs heavily utilizing them. There is not a
single silver bullet for addressing these issues; some sacrifices on soundness or
completeness may be necessary in order to be able to analyze larger programs.

As an example, suppose there is a loop in the code:

int i;

int sum = O;

while((i = input()) != 4) {
sum += i;

}

// end

In every iteration, the current state is branched into two. One where i = 4
and one where 7 # 4. This results in an infinite number of states generated —
every time the loop is executed, two states are generated: one that falls out of
the loop and another one that returns to the beginning of the loop. See Figure

for a visualization that might help build up some intuition regarding the
symbolic execution of that loop.

This brings another interesting problem to the table. Suppose there are
multiple states that the symbolic execution engine needs to explore. How to
decide which one to explore first? There are many strategies that tackle this
problem. One particularly interesting strategy in this case is flass-uniform
bath analysis (CUPA), as it is used by the Chef itself [6].
ICUPéI works by grouping the states by a heuristic and randomly selecting a
group to be executed rather than a state [4]. As an example, suppose states are
grouped by the function they belong to. If was not in place, functions
with a higher number of states would be more likely to be explored. However,
with , all functions have an equal probability of being chosen.

Writing a custom symbolic execution engine itself is not hard. When one
does not care about optimization, interaction with the environment.H a sym-
bolic execution engine can be written in a short amount of time. However, once
one begins to tackle real-life issues, such as speed, path explosion, or the fact
that many programs interact with the environment, even if it is just writing
and reading files, the amount of work required begins to grow tremendously.

4 Also called path explosion

5As an example, some symbolic execution engines have their own version of standard
library functions or attempt to model, for example, writing and reading to a file. This is
further discussed in sections @ and E, which describe the way this is handled by two
symbolic execution engines.
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int i;

(T:{Z'}—)Cll}

=0

|

int sum = 0;

o ={i— aq,sum— 0}

=0

|

while(...)

o ={i— ag,sum 0}

m=0
sum += i; // end
o= {i ag,sum— as} o ={i— ag,sum 0}
7 ={as # 4} 7 ={az =4}
while(...)

o={i— ag,sum— as}

7 ={as # 4}
sum += i; // end
o={i— az,sum v as +as} o={i— ag,sum— as}
7 ={as #4, a3 # 4} 7 ={as #4,a5 =4}

!

Figure 1.1: Symbolic execution tree showcasing a loop

Each box is a symbolic execution state at some point in time. The first line is
the relevant line of code, followed by a set of symbolic variables o and a set of
path conditions 7 on the next lines.

6



1.2. R

Because of this, there are many symbolic execution engines available that
can be used and extended, for example, Klee and S?E,! which are the founda-
tion that Chef builds upon, and I focus more on them in sections and

It is also important to note that symbolic execution can be used not only
to test software but also to extract its behaviour in general. A great example
of that is work done by N. Hasabnis and R. Sekar [8], who managed to extract
assembly instruction semantics from the code generation implementation in
various compilers.

The key thought was that the instruction semantics are already present in
a well-defined form: in the source code of various compilers. The code genera-
tors of compilers in question perform the task of translating IRM to assembly.
All that is needed is inverting the code generator to generate IR out of as-
sembly instead, thus retrieving precise semantics of instructions that the code
generator is able to emit. The authors indeed managed to accomplish this and
extracted semantics of all instructions supported by the GCC code generator
for both 86 and AVR architectures.

1.2 R

R is a language used widely in the field of statistics and data analysis; the
Introduction to R lists good support for data manipulation and analysis as
one of its core features [l]. However, the language itself contains some quirks
and behaviours that might be surprising to a novel programmer and may often
cause issues [9].

One of the features that might be surprising to a programmer is the various
ways of indexing collections in R. There are three subsetting operators ([, [[
and $) [10] that may be used. Each of them behaves in a slightly different way,
even depending on which collection is being used [11, Chapter 4].

In R, there are multiple data collections, as described in [[]:

e Vectors are collections of basic data types — booleans, numbers and
strings. There are ways to store more complicated types, such as dates,
in vectors as well.

o Matrices (or, more generally, arrays) are multidimensional vectors that
can be indexed by two or more indices.

e Factors are vectors that only contain predefined values. One can think
about it as a collection of enum values.

e Data Frames are essentially matrices, but the columns may have different
types.

e Lists are collections that allow any type of value, even different ones, in
the same collection.

SWhich itself is built upon Klee and enhances its abilities. S2E authors put a large
amount of work into the symbolic execution engine to handle programs interacting with the
environment. As a result, it is able to even symbolically execute large programs such as MS
Office [[q].

"LLVM intermediate representation, a language similar to assembly used by LLVM-based
tools due to it being relatively easy to process.
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e Environments are essentially hashmaps, used primarily for the purpose
of scoping. Each scope has an associated environment with a link to an
environment of a parent scope. When the programmer tries to access a
variable, its name is searched for in the environments.

For example, consider the behaviour of the [ operator when the item does
not exist in a collection:

> 1list(1,2,3) [4]
[[1]1]
NULL

> ¢(1,2,3)[4]
[1] NA

Elements can be accessed not only by indices but also by names (strings).
For example, the last item in the list can be accessed both by index 4 and name
cd:

> x <= 1list(1,2,3,cd=4)

> x[4]
[1] 4

> X[”Cd"]
[1] 4

The main difference between [ and [[ is that the former returns possibly
more than one element; the latter can only return one. The latter also drops
the names of the values if there are any; the former does not. Furthermore, the
result of [ will be of the type of the original object (in the example below, a
list), while the result of [[ will be an atomic vector. See the following example:

> x <- list(1,2,3,cd=4)

> x[4] # returns wvalue 4 named "cd" (in a list)
$cd
[1] 4

> x[[4]1] # returns wvalue 4, not named (in an atomic vector)
[1] 4

Both [[ and $ can be used to get a single value from a collection. The
difference is that $ does not work on vectors, allows only indexing by names
and performs partial matching — it selects an item if the prefix of the name
matches, as long as there is precisely one match. [[, on the other hand, selects
a value only if the name matches exactly. For example, consider the following:
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> x <- 1list(1,2,3,cd=4)

> X[["Cd"]]
[1] 4

> x$cd
[1] 4

> x$c
[1] 4

> x[["c"]]
NULL

Note that operator [[ returns NULL if the value was not found. However,
lists can contain valid NULL values. It is not enough to check if a name exists
in a list by checking whether [[ returned NULL. The programmer has to use,
for example, "c" %inj, names(x).

Another feature that might cause problems is the C API of the R Inter-
preter. As I mentioned earlier, about one-fourth of all packages ever released
(and a great number of the most popular ones) are written in some other lan-
guage, most often C/C++ or Fortran [2]. Writing those libraries means that
the developer has to interact with the C API. Even when one ignores all the
potential issues that might occur as a consequence of writing lower-level code,
the internals of the R Interpreter are sometimes hard to understand, even with
the help of official documentation.

Due to the interpreter being written in C, there is little actual compile-time
type-checking going on. For example, every value in R is composed of one or
more SEXPs, which is similar to labstract syntax tree (AST) nodes found in
other languages. There are many types of nodes — be it a logical value, vector
or an S4 class. There are functions and macros that are designed to work with a
specific type of SEXP. However, because R is written in C, the type checker does
not guard against passing incorrect SEXPs to a function. This has the potential
to create obscure bugs that might be quite challenging to find. Furthermore,
some of the macros can be challenging to understand due to the hard-to-find
documentation, and their usage might have to be inferred from the usage in
the source code of the R interpreter, which may cause the programmer to use
them incorrectly. This can have far-reaching consequences regarding the safety
and correctness of the code.

Another feature that might be tricky to tackle is the R garbage collector.
Essentially, the R interpreter has a list of objects that are not to be removed.
Any objects found in that list (or objects that are transitively referenced by
those ones) are not removed when the garbage collector is called, which may
happen any time an R interpreter internal function is called.

This means that the user is required to call the PROTECT and UNPROTECT
macros whenever they are working with temporary values that have not been
assigned anywhere yet — those macros place or remove the objects from the

81t should be noted that there exist projects such as Rcpp that offer their own interface,
so the developer might not need to interact with the C API of the interpreter in all cases.
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aforementioned structure, protecting them from the garbage collector. If one
were to forget to call PROTECT, a value might be garbage-collected, and the
user might attempt to use freed memory. I present the overall design of the
R interpreter and offer a more detailed explanation of the garbage collector in
section@

All those minor differences and edge cases can make for surprising behaviour
when a programmer is coming to R from a different language and has not read
the language reference properly. This makes R quite an attractive target for
code analysis tools that could find mistakes and hidden bugs, especially if the
tools could operate on a large scale.

Furthermore, it is challenging to try to explore R with a purely static anal-
ysis approach. It is a dynamic language, offering ways to manipulate the AST
programmatically and having an eval, which is used in many libraries® and
makes static analysis very challenging. As R lacks macros, eval is often used
for various purposes that could be handled by macros in other languages due
to the ability to construct AST and later execute it at runtime.

Code containing an eval can be especially hard to analyze statically due
to the fact that eval can not only perform side effects, but it can even access
environments across the entire call stack — in other words, it can modify vari-
ables even in scopes of functions that called the current one [[12]. x All these
reasons underpin the motivation to explore the symbolic execution approach
on R. Since it essentially executes the code, it can handle quite well even highly
dynamic features such as eval or modification of various scopes throughout the
program.

9As of 2021, 22.6% of R packages use eval [12].

10



CHAPTER 2

Related work

Symbolic execution is conceptually similar to property-based testingE — it
executes a program with many computer-generated inputs and tries to find
one that will cause the program to fail or violate a human-written property the
code should uphold.

Thus, in this chapter, I will focus not only on symbolic execution tools but
also outline the basics of property-based testing, a technique that is used in a
very similar way to the way symbolic execution can be used. In section R.1l,
I will highlight Hypothesis, a Python testing tool that recently introduced
support for using symbolic execution during property-based testing itself. Due
to all of these, I believe this tool deserves mention in this chapter.

After that, the reader will be presented two symbolic execution engines —
Klee and S%E in sections and R.3, which are crucial for Chef itself, as Chef
is an S?E plugin, and S?E itself builds upon Klee and enhances its abilities.
When the reader has enough context about those symbolic execution engines,
I will finish this chapter with an overview of Chef in section P.4.

2.1 Property-based testing

Property-based testing is a technique simmilar to fuzzing. It runs the target
program with random input. Still, unlike plain random fuzzing, the user is
expected to write down properties of the system being tested, and the property-
based testing software attempts to find an input that breaks those properties.
The key feature is that after finding a bug, it further attempts to refine the
input found in order to reduce its complexity and find the smallest breaking
example possible [[13], which allows the user to efficiently understand the bug.

One of the well-known tools used is Hypothesis [14], a Python tool, which I
decided to use here as an example to show the usage of property-based testing.
First of all, let me outline the usage of Hypothesis on an example.

Since Hypothesis essentially ”fuzzes” functions, one needs tests that do not
check specific input/output pairs but rather general properties.t2 For example,
one can test a pair of encoding and decoding functions and verify the property

10And fuzzing in general.
1'While fuzzers might typically verify general properties such as correct memory usage,
Hypothesis uses user-defined properties describing expected behaviour of the program.

11
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that the decoding function is the inverse of the encoding function, that is
Va € Dencode : decode(encode(x)) = x.

Quoting the Hypothesis docs [15] on this example, one can write the fol-
lowing to test the property highlighted above:

from hypothesis import given
from hypothesis.strategies import text

Ogiven(text())
def test_decode_inverts_encode(s):
assert decode(encode(s)) == s

Hypothesis fuzzes the test function with random strings. If it finds an issue,
it starts to simplify the found counterexample. It does so by following a number
of reduction rules, essentially deleting various parts of the input until it can no
longer find a smaller input that serves as a counterexample for the test. This
way, Hypothesistd can be used to easily fuzz code and find counterexamples
that are as small as possible.

This way of testing is simultaneously very similar to the way symbolic
execution can be used to test programs since it essentially inputs random values
into a program as well. The difference is that symbolic execution uses the
program source code to guide its exploration, while property-based testing is
randomized.

Furthermore, Hypothesis recently introduced an experimental feature that
allows one to use custom backends, such as one that utilizes symbolic execu-
tion [15, Projects extending Hypothesis — Alternative backends for Hypoth-
esis]. This has the potential to bring symbolic execution of an interpreted
language to a widespread audience and definitely deserves a mention in this
section.

It is still in a very early stage of development as of now, but it is still quite
interesting to look at. It would essentially mean that Hypothesis would no
longer pick inputs entirely at random, but those could be chosen according to
the program that is being tested itself.

2.2 Klee

Klee is a symbolic execution engine designed for symbolic execution compiled
programs. It comes with support for modelling the Linux environment, allowing
it to be easily used even for programs that interact with the environment. It has
been successfully used to test GNU coreutils and uncover 56 bugs [16]. Klee
has a good track record with its proven capability and all its achievements,
while being rather easy to read and understand, which makes it perfect for
building upon and learning more about real-world symbolic execution engines.

Klee works by modelling the whole program and acting as an interpreter
of the compiled code. For each state, Klee models registers, stack, heap, PC
and a set of path conditions.®4 An interesting problem is modelling memory.

120r pretty much any other property-based testing library
13The reader can refer to section for a quick overview regarding states and path
conditions. Klee works in a very similar way to the simple example described there.
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One of the straightforward implementations would simply be a single array
of bytes, which closely mimics the semantics of real programs. However, as
Klee authors discovered, the solver of their choice was not able to solve
resulting queries.®3 So Klee works by simply having an array of objects — so,
in principle, whenever a symbolic code works with some object, the solver only
handles the memory space of the given object and does not need to worry about
the rest of the memory. This was found to drastically improve performance [[16].

During interpretation, Klee automatically checks for the validity of insecure
operations. For instance, in the case of load or store instructions, it checks
whether the address is within a valid object. During division, it verifies whether
the divisor is always non-zero. If any of these checks were to fail, Klee would
generate a test case that triggers the error. Thanks to this, Klee can validate
certain properties of a program without the need for the user to do anything.

As described in sectio%7 one of the biggest challenges of symbolic execu-
tion is the need to solve formulas, often complex ones or a large number
of them, which tends to be quite slow. Klee authors discovered a few tech-
niques that can drastically reduce the runtime of the solver they used. They
do so by simplifying the queries according to those heuristics: They simplify
simple equations, such as 2-x —x = x, or remove obviously truthful conditions
(or conditions that are not relevant for the current query) from the set of path
conditions.®= Similarly, over time, some variables will have known concrete
values; there is no need to represent them as symbolic, and all equations con-
taining those variables can be simplified. Furthermore, the fastest solver is the
one that doesn’t run, so Klee authors keep track of known-unsatisfiable queries
and do not attempt to run the solver when the result is already known.

Readers are encouraged to read the Klee paper [IL§] to learn more about the
optimization techniques employed. It is worth noting that despite their appar-
ent simplicity, these techniques significantly enhanced performance. Notably,
solver runtime decreased from 92% to just 41% of the total runtime.

Another recurring challenge encountered is the state selection process. This
is a topic that will persist through the discussion about Klee, S2E and even Chef
itself later. As I mentioned earlier, there are often many states active at one
time, even when symbolically executing relatively simple and small programs,
let alone large ones like the entire R interpreter. State selection is thus an
important topic that can heavily affect the results of the experiments.

Klee handles this by implementing strategies for choosing which states to
execute [[16].

Random Path Selection stores states in the form of a binary tree. When
some state is to be selected for execution, Klee traverses the binary tree
randomly, selecting a state to execute. This has the property that the
sizes of a subtree of each state have no effect on whether a state is selected
or not during the traversal of the tree. For example, if there were two
states, one containing a loop that generates a large number of states, the
first state would be selected just as often as the loop, which makes the
execution less likely to get stuck in a heavily forking code.

14 At least not efficiently enough so it is usable. And neither was any other solver
they were aware of [16].

15For instance, in the context of x = 5, the condition = < 10 becomes redundant and can
be safely removed.
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Coverage-Optimized Search chooses a state that is likely to cover new code
soon. The likeliness to cover new code itself is a heuristic that Klee
computer based on the distance to an uncovered instruction, the call
stack and whether the state recently uncovered a new code. Based on
this, Klee assigns each state a weight representing the likelihood. After
that, a state to execute next is selected randomly based on that.

The last thing I would like to cover in Klee is environment modelling. Based
on the text written so far, the reader should know how pure functions are
symbolically executed. However, the sad state of affairs is that real-life code
rarely consists of pure functions only, and some modelling of the outside world
is required for symbolic execution to be truly practical.

Klee authors have chosen to model system calls required to run coreutils.
They could have modelled a subset of the C library itself, but that would
be a nontrivial endeavour that might introduce more bugs. Simply modelling
syscalls, which is much simpler, has the advantage of less code being written
and, thus, being easier to do. The result is that the authors only had to
implement about 40 syscallsE to test the GNU coreutils [16].

Despite Klee’s relative simplicity, the authors found ten bugs in coreutils,
all while keeping the codebase clean and easy to read, which is a great accom-
plishment.

2.3 S°’E

S2E [7] is a symbolic execution tool built upon Klee. However, unlike Klee,
S2E has quite a different way of working and, thanks to that, enables much
more interesting analysis than Klee did. Most importantly, it is able to work
with huge codebases. People even managed to analyze large programs such as
Microsoft Office with it.

S2E no longer executes just the program it is supposed to test — it executes
the whole operating system. Thanks to this, worrying about the environment
modelling I covered in the previous section is no longer necessary. The op-
erating system itself is the model. This has the advantage of being able to
test software with its real dependencies — be it other programs, libraries or
drivers. Even proprietary programs with no source code available can be easily
tested this way. This works by executing the whole operating system within a
customized QEMU.

However, as the reader might have already thought, this seems utterly un-
reasonable performance-wise. It is very costly to symbolically execute even
simple programs, let alone the whole operating system. The reader is correct
with this thought — S?E solves this problem by symbolically executing only
some parts of the system, those that are interesting enough to reason about.

Essentially, S?E switches between concrete and symbolic execution as it
traverses the code. The key observation is that the program launched by the
user is interesting, and we want to explore it thoroughly. Still, the OS kernel
or libraries that it uses are of no particular interest to us. So when S?E runs
the program of interest, it begins executing it symbolically. When calling into
a library or the kernel, it stops executing the program symbolically and begins

16Which took only about 2,500 lines of code.

14



2.3. S2E

executing it concretely. After the execution returns to the program, it starts
executing symbolically again. S2E authors call this technique selective symbolic
execution [[.

In S?E, there are multiple modules (and more can be easily written) that
affect which code is to be executed symbolically. However, the default one
defines the binary that the user requested to be analyzed as viable for symbolic
execution and everything else as non-viable.

There is one problem here, though, that the reader might think about.
What about losing precision when switching from symbolic execution to con-
crete and back? It is necessary to understand how S?E implements switching
between symbolic and concrete execution first.

Symbolic to concrete transition happens when, for example, a library is
called from within an application that one wants to observe. Let x be
a symbolic variable. Calling a function foo(x), which should not be ex-
ecuted symbolically, requires = to be concretized.!8 S2E chooses some
value according to current path conditions, for example, x = 4. The path
constraints are updated to reflect that x = 4. When the function fin-
ishes, the return value is saved. Since the path constraints now contain
the condition x = 4, both the output of the function and any side effects
that might have happened are perfectly valid.

The obvious problem is that this just limited the possible range of values
that & might have to just a single one. This is solved by dividing path
conditions into two categories. Path conditions that were added into
path constraints based on_the process described above are called soft
constraints, the other onestd are called hard constraints. The difference
is that whenever S?E would not enter a path because of a soft constraint,
it knows that it could have gone there if it had chosen a different concrete
value during some concretization process in the past. So, in this case, S?E
does just that: it backtracks to the execution state where concretization
happened and chooses a different valuegt [[7].

Concrete to symbolic transition is quite intuitive. Consider a call bar(y)
from a concrete context into a symbolic one. The function itself is exe-
cuted symbolically, with y being considered a symbolic value. In parallel
to this, the function is executed with the original concrete argument as
well in order for S?E to be able to continue the concrete execution later
when the function returns.22 The result of this is that concrete execu-

171t is called ModuleExecutionDetector. It is present and turned on in the configuration
file that is generated automatically when a new S2E project is created. It defines modules
that are to be executed symbolically. By default, it is set to only one that matches the binary
to be analyzed.

18Note that S2E uses lazy concretization. If the function does not touch the symbolic
variable at all, and it only, for example, forwards it somewhere else, there is no need for
concretization and S2E does not do that.

19 As described in section [L.1].

20To be perfectly clear, let me reiterate that the previous one was x = 4, as described in
the previous paragraph. The next one can be chosen, for example, given the path conditions
of the new path, in order for S?E to be able to enter it.

210nly the result of execution of the function with concrete parameter is considered for
subsequent execution of the rest of the caller of bar.

15



2. RELATED WORK

tion behaves as expected, while S2E simultaneously explores the function
symbolically as well, as was intended [[7].

Furthermore, S?E has a complex but very well-working plugin system, which
allows developers to easily write new plugins that can significantly alter S?2E
capabilities. Together, we will dive deeper into the plugin system in the fol-
lowing section, where I talk about one of S2E plugins that is crucial for this
thesis, and then later in section B.1l.

2.4 Chef

Chef is the main focus of this thesis. Before I begin explaining what it is
and how it works, it is important to note that this thesis is based on Chef as
described in the original paper from 2014 [4]. This section is about the paper
itself and the tool described there and is not necessarily completely accurate in
all cases with respect to the tool as implemented in this thesis. Details about
the implementation and the differences compared to the original version can
be found later in section @.1. This is mainly because Chef, as described in the
original paper, is based on S2E from the year 2014. The current version, which
the tool developed as part of this thesis uses, is different in some parts. For
example, the feature, implemented previously in Chef itself, is now part
of S?E. I will focus on the reasoning later in chapter {.

To begin this section, first consider the motivation for building Chef. There
are already some symbolic execution engines designed for the execution of stat-
ically compiled code. The previously mentioned Klee and S?E are two good
examples of those. There are many languages that compile into some form
of assembly, be it actual instructions or LLVM IR. Some symbolic execution
engines, such as S?E or Klee, target these instructions and so are able to work
with many compiled languages by default.

This is, unfortunately, not the case for interpreted languages. They are
not compiled, so S2E or Klee cannot be used directly. Furthermore, writing
a custom symoblic execution engine would be challenging. The interpreter is
generally being developed rather quickly. New language features are added
constantly, existing bugs and quirks are getting fixed or changed, and present
behaviour gets deprecated or removed. Furthermore, the specification, as writ-
ten in the docs, often does not fully represent the language, especially with
respect to implementation-defined behaviour, which cannot be ignored by sym-
bolic execution engines as long as one wishes to model the language perfectly.

If one were to write a symbolic execution engine for an interpreted language
from scratch, not only would one have to reinvent all the optimizations already
done by others, but it would require sacrificing utility by supporting only one
version of the language or constant modifications in order to keep it up to date
with the official interpreter.

Chef, an S?E plugin, works by symbolically executing the interpreter itself,
with the source code of the program to test as an input. This requires some
slight modifications of the interpreter and writing some reusable code on the
S2E side, but that is just about it [4]! The whole endeavour is much simpler
and faster and reuses existing optimization techniques of S?E. Another benefit
is that the semantics of the language are essentially taken from the interpreter
being executed, which is, by its nature, the most accurate description of the
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language. The Chef authors showcased this on Python and Lua — they managed
to develop a symbolic execution engine for them in just three and five person-
days [4].

First of all, it is important to note the difference between low-level and high-
level paths. The former are paths in the interpreter,24 as seen by S?E. However,
because of the nature of the problem Chef is trying to solve, it might be useful
to have some information about the latter as well. High-level paths are paths
made from high-level instructions, which correspond to individual program
statements in the language that is fed to the interpreter. As an example,
consider the following Python program:

x = [i**2 for i in range(5)]
x.append (x)

Each line of the program corresponds to multiple high-level instructions.
For example, the list comprehension contains many high-level instructions that
will be executed. Furthermore, for each high-level instruction, there are many
low-level instructions that will be executed in the interpreter. If one were to
write even a simple addition (such as i += 4), the interpreter would have to
search for a variable named i, get the object that the name is bound to, and
increment it, maybe even calling user code, depending on the object. All this
would be implemented in C or C++, and a compiled version of the interpreter
would be the low-level instructions that S2E sees.

The low-level instructions are the level S?E operates on but are close to
meaningless to the end user. When one is interested in when a program fails
and what input is needed to crash it, the user is interested in the line of code in
the high-level source code and the actual variables as they input it, not bytes
in the memory of the interpreter.

Because of this, Chef requires the developer to alter the interpreter of the
language as well. This is because an easy way to propagate information about
the high-level instructions to S?E is simply to send a notification about each
high-level instruction encountered by the interpreter.

There is another benefit to having information about high-level instructions
that are currently being executed, and that is performance, as CUPA| can be
based on them [4].

State selection

As mentioned before, one important thing is choosing which states to exe-
cute, highlighted particularly in section R.4. Default S2E state choosing tech-
niques and heuristics don’t work that well in Chef’s case. For example, a single
high-level instruction can translate into hundreds of low-level instructions with
plenty of different paths. Using, for instance, a coverage-seeking heuristic might
cause a thorough exploration of the single high-level instruction. However, that
is not the goal here. A better heuristic would guide the execution into exploring
as many high-level instructions as possible [4].

These heuristics can be made and used precisely because the information

about the high-level instruction currently being executed is passed into S?E.
Chef uses to choose these states [4]. can even have multiple

22Tn the compiled representation of the interpreter, to be precise.
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layers, allowing one to use more than one heuristic. This works by executing
the first heuristic first. This groups states into one or more groups. One group
is selected randomly, and a second heuristic is called, which groups those states
into their own groups. This process continues for each heuristic function or until
a single state remains.

Interpreter optimization

Another important thing is handling some patterns in interpreters that tend to
slow down their symbolic execution. While S?E can handle very large projects,
a few techniques can still speed up the execution by a significant margin.

One of the most significant ones, and often the easiest one to implement, is
neutralizing hash functions. Interpreters often use hash-based data structures
for performance reasons. However, this is not ideal for symbolic execution,
particularly as these tend to generate constraints that essentially require SM
solvers to reverse the hash functions. Even if they do not, they often cause a
path explosion, forking into each possible hash bucket a value could fall into [4].

Both of these are not ideal, and one simple way to fix this is to rewrite
the hash functions to return a constant number, for instance. This works very
well, for example, with a hash table implementation that handles collisions by
creating a linked list (or a similar structure), as all properties of hash functions
are still kept intact, and the only difference is that hash lookup is turned into
list traversal, which is manageable to execute symbolically.

Another feature encountered by Chef authors that is used to speed up
execution but often has the opposite effect for symbolic execution is when a
function, for example, a string compare, contains multiple different paths based
on the input. For example, a function might return false when it is asked to
compare two strings for equality with known different lengths. However, this
causes path explosion with symbolic execution. Chef authors found out that
better performance can be achieved if those fast paths are removed [4].
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CHAPTER 3

Analysis

In this chapter, I introduce the way S?E and S?E plugins are designed in
section B.l|, and the R Interpreter in section B.9.

3.1 S2E plugin design

S?E is designed with extendability in mind. It is heavily plugin-oriented, and
most of its features are implemented via plugins. This gives developers of new
plugins great power. Thanks to this design, the plugin interface was designed
in such a way that provides a lot of flexibility to the developer, allowing mod-
ification of the behaviour of S2E.

When the symbolic execution of a program starts, that is exactly one sym-
bolic state. A state has its own memory, PC, values of CPU registers, and
other information necessary to operate.

When the symbolic execution encounters a branching instruction, a second
state may be created. Both states will proceed with the execution in parallel,
while their PC values of registers and memory will diverge. This effect can be
thought of as similar to forking a process, which might be easier to imagine
and understand.

Now that the reader has a solid understanding of S?E states, it is crucial
to explain how plugins store data.

Each plugin is defined by a C++ class. S?E spawns one instance of said
class when the plugin is to be created and initialized. Note that there is only
one plugin instance at all times, regardless of the number of symbolic states.
All the data stored are shared, with no regard to the symbolic state.

However, there are situations where one would want to store information
per symbolic state. This is solved in S2E by not having just one class per
plugin, there is an option to declare a plugin state class, which is instantiated
per-state. S?E contains macros that will retrieve the correct plugin state in-
stance automatically, so it can be conveniently and easily used to store data per
symbolic state. This way, the developer can work with per-state data easily.

Furthermore, another important feature of S2E plugins is the ability to
communicate with each other. Such inter-plugin messaging is used not only by
various core plugins but also by Chef. A plugin may either declare dependent
plugins, which are required by the plugin in order to function well, or not
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do that at all and communicate with plugins opportunistically when they are
available. S2E provides functionality to retrieve instances of other plugins, if
available. Plugins can then work with each other in the same way as one would
use any other ordinary C++ object.

However, while this might be used, this is not how plugins in S?E work by
convention and it is rare for a plugin to expose some kind of public interface.
Instead, plugins in S?E often utilize callback-based message sending.

This uses the 1ibsigc++ library. It provides a way for one actor to define a
connection and send notifications to it. Any number of actors can subscribe to
any given connection to receive all notifications emitted. In the S?E world, this
is used, for example, with the LinuxMonitor plugin. It defines the onSegFault
connection, where the plugin sends a notification in case a segmentation fault
occurs in the program being executed. Other plugins can listen to the events
and take action when they happen.

The last thing that remains to be mentioned is the mode of communication
between S2E, respectively its plugins, and the program that is being executed.
Since S2E runs the target program inside QEMU, it has the option to implement
the communication in a rather unusual way. Instead of some standard method
of IPC communication, S?E and the tested program transfer data using custom
processor instructions emitted by the tested program. Those instructions are
captured by QEMU and passed to S2E, which executes some action based on
it.

The communication works both ways. Usually, when S?E is expected to act
on the target program, the program sends a pointer to its memory over to S?°E
using a custom instruction. For example, when the program asks for a symbolic
variable to be made, it sends a pointer to the memory that is to be marked as
symbolic. The system works the same way when communicating with plugins.
There is an instruction called s2e_invoke_plugin that is used to transmit a
pointer to a C-style string representing the name of the plugin, a pointer to
the date to send and an additional number representing the size of the data.
The data received will be passed to the corresponding plugin by S2E, allowing
communication in between plugins and the symbolically executed program.

3.2 R Interpreter

The R interpreter is a huge C codebase. To understand how it works, it is first
necessary to explain core internal structures.

SEXPs

The core of the interpreter is a data structure representing R values, which
was already briefly mentioned previously in section [L.2. The structure is called
SEXPREC.Ed In the codebase, SEXP is often used instead. This type is a pointer
to SEXPREC.

Since the codebase is in C, no compile-time type checking is present while
manipulating the values. There is a field in SEXPREC representing the type of
the value and plenty of macros that can be used for easy data manipulation,

23There is also VECTOR_SEXPREC used for vectors, although one does not come across it
most of the time
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but it is the responsibility of the developer not to confuse the types. The
types rather closely mimic R types the user is familiar with — there are integer
vectors, numeric vectors, environments and many others. There are, however,
a few types that one does not come across often in regular R code but are
important to the thesis, so they deserve a mention here.

LISTSXP is a pairlist, a list of values. It is often used for function arguments.
SYMSXP is a symbol — a name referring to a variable.

LANGSXP is a language object, typically calls. To be precise, they are pairlists,
where the first element refers to a function to be called, and the rest are
function arguments.

EXPRSXP are expressions. It is structured as a vector of LANGSXP.Q

There are more types, but they should be either well-known to an R de-
veloper, such as vectors and lists [17],E9 or are not interesting to our case and
occur only marginally in the parts of the codebase that will be modified later
for the sake of implementing Chef.

The SEXPRECs are connected in the form of a tree. Each SEXPREC contains
three pointers regardless of its type — a pointer to attributes, previous and next
node.

The next and previous nodes are most often used by the garbage collector.
For regular purposes, such as traversing a list, another structure in the SEXPREC
is often used. It contains®¥ three pointers that are used to represent compound
structures. The meaning is slightly different for each type, but for example,
for LISTSXP, the first two pointers are carvalue and cdrvalue,t! allowing list
traversal [[17].

Many types come with convenience macros that allow the developer to easily
work with this structure. For example, for lists, there are macros CARO, CDR,
CADR and many others, which can be used to access various elements of the list.

Another mention-worthy feature is attributes. Attributes can be set on
many objects, modifying their behaviour. For example, a matrix is a vector
with a dim attribute describing the number of dimensions of the matrix.

As mentioned earlier, every SEXPREC contains a pointer to attributes. It is
either a R_NilValue (meaning that the object has no attributes) or a pairlist.
Pairlist is special. Inside its data structure, it contains not only carvalue and
cdrvalue (as mentioned earlier) but also a tagval, which is again a pointer to
a SEXPREC. This is used to represent attributes. They are stored in a pairlist,
where each element of the pairlist contains a TAG (tagval), which stores the
name of the attribute. This is shown more intuitively by figure B.1l.

24 Almost always LANGSXP, although it is not guaranteed to be so.

25They were described in sectionh

26Usually. The data is a union of multiple structures, although all but one contain three
pointers to another SEXPREC.

27This is a convention that should not be too surprising to anyone that has worked with
a LISP-style language. CAR is an operation that returns the first element of a list, while CDR
returns the tail of a list. So, in order to retrieve the second element of a list, one would call
CAR(CDR(1list)), or a shorthand, CADR. This is explained in great detail in the BI-PPA course
at FIT, CTU, which I can strongly recommend to any reader without knowledge of LISP.
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REALSXP
attrib LISTSXP

carval —f INTSXP 2, 3
cdrval

tagval { NILSXP

N symsxe

pname  — CHARSXP "dim"

Figure 3.1: Attributes section of a matrix(c(1,2,3,4,5,6) ,nrow=2)

Environments

Variables in R are symbols. When a user attempts to access a value of a
variable, the interpreter has to retrieve a value bound to the name of the
corresponding symbol.

The place where variables are looked up is called environment in R. It is a
scope in which variables can be found, and those scopes are linked to previous
ones. Environments have their own type, ENVSXP. It contains a pointer to its
parent and a hashtable with the symbol-value pairs. The hashtable is imple-
mented as a VECSXP filled with either NILSXP or LISTSXP. A LISTSXP contains
the actual values, with each element of the pairlist having a tag containing the
variable name itself.

As environments contain a pointer to their parent, values from parent scopes
can be accessed in R. There is even an operator called super assignment that
allows one to modify an existing variable in a parent environment.

dice_roll <- 4

innocent_function <- function() {
# Notice the super assignment here
dice_roll <<- 42

b

innocent_function()

print(dice_roll) # 42

Built-ins: names

The R contains a number of built-in functions. Some of the ones that the
reader is surely familiar with are, for example, + or <-.

They are recorded in the file names.c. There is an array R_FunTab that
contains the name of the function, a pointer to the function implementation
and some flags, such as the arity of the function, associativity or whether the
arguments of the function should be evaluated before the function is called.

When a function is called in the eval loop, this array is searched for a
matching function to call.
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Garbage collection

R uses a garbage collector, so the user does not need to manage memory.
Every once in a while, k9 the garbage collector marks all objects that are cur-
rently reachable and removes everything else. This means that when writing C
code interfacing with the interpreter (or modifying the interpreter itself), extra
caution has to be given to handling R objects, such as SEXPs.

If one creates an R object in C, there is currently no reference point to
the object from anything! So, if the garbage collector is triggered, the object
might be collected immediately. In order to suppress garbage collection of
certain objects until they can be returned to the user or attached somewhere,
the R interpreter offers the PROTECT and UNPROTECT functions.

The PROTECT function takes a SEXP and places it onto a PPStack.E When
the garbage collector runs, it checks the stack and does not delete any SEXP
found, neither any SEXPs referenced by any protected one, recursively.

This means that while it is wise to use PROTECT for any SEXP created,
it has to be removed from the PPStack later or else a memory leak would
occur. Because of this, R has a convention where a caller is responsible for
protecting arguments to functions (so any arguments a function receives are
always protected) and that the PROTECTs and UNPROTECTs have to be balanced
— so every SEXP that has been protected has to be unprotected before the
function returns. The caller can PROTECT the returned SEXPs if they desire to,
but it is their responsibility to do so [[18, Section 5.9.1].

28This can generally happen whenever the R interpreter allocates. As there is no guarantee
whether a given interpreter function/macro allocates or not, one should assume that the use
of any function or macro can trigger the garbage collector.

29The pointer protection stack.

30There are tools that check whether PROTECT/UNPROTECT as used correctly, such as rchk
by Toméas Kalibera.
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CHAPTER 4

Design and Implementation

In this chapter, I will elaborate on the approach to making Chef. I will highlight
the requirements on the S?E plugin and the way it is implemented. After that,
I will focus on the R interpreter modifications, explain why they are needed,
and what requirements they fulfil. Finally, the set of tools used to analyse the
resulting output will be discussed.

However first and foremost, I would like to explain one obstacle I spent quite
a lot of time working around. It heavily changed the course of development
and affected the design of Chef.

The paper describing Chef is ten years old at the time of writing; thus,
the tool they developed is of considerable age as well. This caused numerous
problems that I spent weeks trying to resolve. From old S?E that had build
script, which downloaded dependencies from code forges that no longer exist
to issues building QEMU at all and having to manually edit the source code to
make it compile. Another problems I ran into was unavailability of images that
S?E used to run and having to search for old Debian images on the internet
archive, installing packages that are several years old®4 and the absence of
libraries with modern TLS. This proved to be hard to solve and was very
time-consuming.

After this experience, I considered the pros and cons of this approach. Ul-
timately, I decided not to use Chef as it was provided, as further development
would be very slow, documentation scarce, and there was no longer any com-
munity that would be able to help neither me nor the user with any issues,
should they arise. Furthermore, any potential further development after this
thesis would be rather unlikely, and any development of new features would be
pretty hard.

I decided to alter Chef and port to modern S?E, running on a modern system
and using up-to-date dependencies. This allowed me to create a much more
pleasant experience for both the user and any potential further contributors to
this tool. It also enabled Chef to take advantage of new features in S?E, for
instance, , that was not implemented in early releases of S?E that the

31 Fortnuately, many of links to the source forges contained the name of the project together
with the hash of a specific commit, which allowed me to recover the exact version from a
different source forge.

320ne interesting problem, in particular, was expired PGP keys, so installation was not
as simple as simply changing the mirror to Debian package archive.
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original Chef used, and thus Chef authors had to implement it entirely from
scratch.

The new version of Chef consists of mostly copy-pasted code from the orig-
inal Chef, altered to work well with newer versions of C4++ and modern S2E.
However, thanks to the new capabilities of the ecosystem around Chef, I man-
aged to remove large chunks of the original code since it was not needed for
this purpose.Bd The resulting code is smaller, and much of the complexity has
been offloaded to S?E. It now works in a modern ecosystem, allowing one to
use familiar, up-to-date tools and benefit from the community around them.
All things considered, I believe it was a good call to alter Chef in this way, and
it now should be much more pleasant to both use and develop.

4.1 Chef

The S2E plugin, Chef, communicates with the R interpreter using custom CPU
instructions, as I mentioned in section B.1. It works by sending over a pointer
referencing the following structure:

enum S2E_CHEF_COMMANDS {
START_CHEF, // start chef session
END_CHEF, // end chef session
TRACE_UPDATE, // new high-level instruction was ezecuted
ABORT_STATE // this state should not be considered —>
// kill state without generating a testcase

};

struct S2E_CHEF_COMMAND {
S2E_CHEF_COMMANDS Command;
union {
struct {
} start_chef;
struct {
uint8_t error_happened;
} end_chef;
struct {
uint32_t op_code;
uint32_t pc;
} trace;
} data;
};

Chef is listening to these commands.

START_CHEF and END_CHEF start or stop an analysis. This means whether Chef
is listening to TRACE_UPDATE and managing a record of the instructions.

TRACE_UPDATE causes Chef to record the new high-level instruction that was
just executed. As of now, it is used for some nice-to-have information in
test cases and, more importantly, ‘.

33For example, I removed the support Chef had for in favour of S2E-powered
with HLPC/HLOP support added.
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ABORT_STATE is a signal that causes Chef to terminate a state without generat-
ing a test case. Under normal circumstances, a state that has terminated
will produce a test case documenting the input needed to reach that state
of execution. However, it is not needed at all times.

A good example might be a user who wants to generate a positive sym-
bolic integer. Chef does not have a special command to tackle this kind
of request. Instead, the user might create a symbolic integer and restrict
it to just positive values by calling this ABORT_STATE if the value does
not conform to the user’s request.

However, one may question the whole existence of this command. After
all, S?E has a similar command built in, called s2e.assume. One can
just call it from the guest code and thus enforce that only the valid
values will be considered. The issue with that is that it is an error to use
s2e.assume with a condition that cannot be satisfied, which can happen.
This ABORT_STATE solution does not have such a restriction. Furthermore,
it is guaranteed to never generate a test case in case the condition does
not hold, which is not true for s2e.assume, which kept generating new
test cases since the state ended and Chef reacted by generating a test
case.

A test case is generated by iterating through all symbolic variables and get-
ting some concrete value satisfying all conditions encountered. This test case
generation is run when a state exits. This can happen, for example, via an
END_CHEF command, which, as presented above, does provide an error_happened
parameter.

However, one might also be interested in test cases that cause the program
to segfault. In order to handle this, Chef will depend on a plugin LinuxMonitor.
It is not necessary for Chef to use it. It will function without it as well. But if
the plugin is enabled, Chef will hook on its onSegFault connection. When the
LinuxMonitor sends a notification that a segmentation fault happened, Chef
will output a test case, assuming the analysis is turned on.

Finally, the last feature that Chef provides is optimization. I already
talked about [CUPA| in previous chapters. It essentially prioritizes states based
on some heuristic. In this case, the target criterion for prioritizing state will
be PC and opcode. The way this is used in the R Interpreter means that S?E
will try to make each high-level instruction take about an equal amount of
processing time. So if there is a single high-level instruction that causes a path
explosion, S2E will keep exploring other instructions as well, about as often as
the problematic one. It will not hoard most of the processing time for itself.

In Chef, this is done by extending the S?E CUPASearcher plugin. It is im-
plemented by extending the CUPASearcherClass. The target is to have two
criteria — high-level PC and high-level opcode. So, two new classes are created:
CUPASearcherHlpcClass and CUPASearcherHlopClass. These classes imple-
ment an interface that S2E CUPASearcher plugin requires. An instance of each
of the classes will be added to the CUPASearcher, which will then take care of
calling the classes and actually scheduling the states.

The classes need to receive data from Chef in order to function properly.
Namely, they require to know the last execution that was executed for any
given state. This is implemented by utilizing connections. Chef exposes an
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on_interpreter_trace connection. Recipients registered will receive a high-
level instruction each time Chef receives one, which is every time the interpreter
sends a TRACE_UPDATE command. The implementations will store it in a
mapping from state ID to the latest high-level instruction, so they can answer
queries from the CUPASearcher plugin.

Memory Usage

During testing, it became apparent that memory usage might be a major prob-
lem with a larger analysis. The problem is the fact that as time goes on, new
states are forked constantly, typically at a much higher pace than they are fin-
ished. This causes a constant increase in the number of states and, thus, higher
memory usage. This can be visualised by an experiment that was left to run
overnight and generated a high number of states.B2 The correlation between a
number of states and memory consumption can be seen in figure §.1].

The solution to this is MemoryForkLimiter. An additional plugin that
tracks memory usage of both the process and the overall system memory usage
and disables forking and spawning of new states should some configured limit
be exceeded.

It is turned off by default because of its impact on the analysis and the speed
of completing it. Still, it can be enabled if the user is constrained by memory
usage or attempts to execute an experiment that causes a great number of
state forks. The effect of enabling this can be seen in figure 1.2. It can be seen
that memory usage started climbing much slower once was the limit on state
forking enforced. It still rose, due to the fact that many of the states were just
created, but not explored in any way, so it is not a way to limit memory usage
up to a limit. Rather it is a notification to Chef that it should try to limit
memory consumption as much as possible.

4.2 R Interpreter

A key part of getting Chef to work is altering the interpreter in order for it to
invoke S?E. There are a few necessary features.

First of all, it is sending information about executed high-level instruction.
This is needed for Chef to correctly guide execution via . This is achieved
by creating a structure in memory and sending a pointer to that structure over
to S2E, as explained earlier. Since S?E has the same structure defined as well,
it suffices to read the pointer sent over. It will be able to read the structure
and extract the data.

The solution to that is rather simple: it suffices to locate the eval loop@
and insert a single call that will send the high-level instruction notification over
to S?E, as seen in figure §.3.

Second, the interpreter has to send a few basic commands over to Chef. For
instance, the user might not want Chef to process everything but is interested
only in some parts of the program. Sending regular updates over to S2E might
be costly performance-wise, especially if there is more processing of high-level
instructions implemented on the S2E side. For this purpose, the R interpreter

34Intel Xeon Gold 6140 (72) @ 2.294GHz, 188GiB of RAM.
35Conveniently located in a file called eval.c, in a function called eval.
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SEXP eval (SEXP e, SEXP rho)
{
// If envvar R_SYMBEX is set to "1"
if (R_SymbexEnabled()) {
// Send update to Chef about currently ezecuting instruction.
// Note that multiple calls per one line of code
// may occur. While this does mnot affect Chef at all,
// it might be surprising if one does not anticipate it.
R_UpdateHighLevelInstruction(e->sxpinfo.type, (u_int32_t) (size_t)e);
}

/7 )

switch (TYPEOF(e)) {
case NILSXP:
case LISTSXP:
case LGLSXP:
/7 L)

(-

Figure 4.3: Modification of the R eval loop that sends high-level instruction
updates to Chef.

has to be able to not only send a high-level instruction update but also a
notification to start or end an analysis or simply terminate a state, as was
described in the previous section.

And finally, it has to offer some way for the user to control the communi-
cation with S?E in a program. For example, the user should be able to create
new symbolic variables and make assertions.

Currently, the modified interpreter provides the following functions:

chef.start () starts Chef tracing.

chef.end (LOGICAL) ends Chef tracing. If the first parameter is set to T, it
means that an error has occurred, and a test case will be dumped into
an error test cases file. It will go to the successful test cases file if it is
set to F.

chef .debug (STRING) sends a debug log over to S?E. The message will ap-
pear in debug.txt. External tools may utilize this to receive additional
information about the execution.

chef.int (STRING), chef.numeric(STRING) create a symbolic variable with
a given name.

chef.raw(STRING, INTEGER), chef.string(STRING, INTEGER), chef.vec(STRING,
INTEGER), chef.any(STRING, INTEGER) all create a symbolic variable
with the given name and a length. Note that chef.vec creates a sym-
bolic type of a vector. Not all are supported, nested vectors for example,
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but many of them are. The chef .any creates either a NULL or any of the
other symbolic variables mentioned.

chef.list(STRING, INTEGER) and chef.matrix(STRING, INTEGER, INTEGER)
create either a list of given length or a matrix with given dimensions. The
list is filled with symbolic data of variosu type, while the matrix contains
either integers or floating point numbers.

chef .attach(EXPR) attaches a symbolic attribute with a symbolic value to
any given SEXP. This may be tricky to use, but could be useful for trying
to crash badly-written libraries that do not verify attributes properly.

chef .asserts(LOGICAL) checks whether a condition is truthful and generates
an erroneous test case if not. Note that there are other cases when an
erroneous test case is generated, namely when an uncaught error is thrown
or when a segmentation fault occurs. The first one is done by modifying
the error handling in the R interpreter, and the second one in the S?E
plugin itself.

chef .assume (LOGICAL) terminates all states that do not fulfil a certain con-
dition without generating a new test case. Since the state is deemed
invalid or out of scope by the user, it is not expected for Chef to generate
a test case describing how to reach it.

The functions are defined as builtins in names. c, as explained in section @
To showcase their usage, they could be used to mimic the example in sec-
tion like so:

chef.start() # Start Chef
i <= chef.int()
j <- chef.int()

i<-i+4
i<—di*2
i<-i+j

if 1<0){
chef.debug("Branch 1")
} else {

chef .debug("Branch 2")
}
chef.end(F) # No error happened

The symbolic execution engine manages to infer that in order to reach the
first branch, one can for example set i <- -64; j <- 0, and the second branch
can be reached with i <- 0; j <- 65793.

Symbolic variables

Internally, the functions that generate symbolic variables build an R SEXP and
send a pointer to data of that structure over to S?E to mark the buffer as
symbolic. The useful s2e.h library is used for that. It contains functions that
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send opcodes to S?E that support many actions, marking buffers as symbolic
among them.

// s2e.h

#define S2E_INSTRUCTION_ REGISTERS COMPLEX (vall, wvalZ2) \
"pushl %jebz\n" \
"movl %fedz, %febz\n" \
S2E INSTRUCTION COMPLEX (vall, val2) \
"popl JZebxz\n"

#define S2E_INSTRUCTION REGISTERS_SIMPLE(val) \
S2E_INSTRUCTION REGISTERS COMPLEX (val, 00)

/7 )
/** Fill buffer with unconstrained symbolic values. */

static inline void s2e_make_symbolic(void *buf, int size,
const char *name)

{
__s2e_touch_string(name) ;
__s2e_touch_buffer((char*)buf, size);
__asm__ __volatile__(
S2E_INSTRUCTION_REGISTERS_SIMPLE(03)
"a" (buf), "d" (size), "c" (name) : "memory"
);
}

Strings are, however, quite difficult to tackle. One cannot simply use the
mkChar family of functions that R provides, as R caches strings. This is not
desirable in this case, so one has to implement it in a way that avoids caching.

S?E also expects a name of symbolic variables — this is later used, for
example, in generated test cases. This is the reason why the functions that
provide symbolic variables take the name of the variable as a parameter. This
is later passed over to S?E. However, there is one more thing to consider.

It is often useful to know the types of variables. This powers tools that are
able to generate tests out of test cases — without types, it would be hard to
know how to parse bytes into some relevant value and output it as a literal.
Furthermore, tools that provide some form of type annotation of functions
based on symbolic execution could be made, which is later presented in the
following section.

In order to gather this information, one needs to pass the type of every
symbolic variable from the interpreter to S2E, which will later be included in
the generated test cases. Omne could send them via a special command and
store them in some mapping. However, this would require nontrivial support
in multiple places.

A more straightforward solution, and one that I chose to go with, is to
prepend the names of the symbolic variables with the type. So, for example, a
symbolic integer called foo would become int__foo, and similarly, the name
of a string could look like str__bar. This has the advantage of being easy to
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implement in both the R interpreter and the tools and simultaneously being
completely transparent to S?E. It allows the addition of new types easily and
is generally quite simple to work with.

Performance

In order to keep symbolic performance manageable, some changes had to be
made to the interpreter, mostly relatively small and easy to make. Taking
inspiration from the Chef authors, I removed any hashing present in the inter-
preter.

I did so by simply modifying the hashing functions to always return a
constant, zero, in my case. This removes the danger that the SMT solver would
be asked to solve constraints that would be essentially equivalent to reversing
a hashing function, a task that can be assumed to have a rather concerning
runtime cost. This works due to the fact that R hash-based data structures
are implemented as a linked list, so degenerating the hashing function does not
break the algorithm.

To showcase this change, a rather good example is environments. They
contain a hashmap of symbols and their values and can be easily visualized by
using the internal function inspect.

library(rlang)
.Internal (inspect (env(w=1,x=2)))
In stock R, it might print something like this:

@11eb52078 04 ENVSXP g0cO [] <0x11eb52078>
ENCLOS:
©134849£88 04 ENVSXP gOcO [MARK,REF(65535),GL,gp=0x8000] <R_GlobalEnv>
HASHTAB:
©13400ab30 19 VECSXP gOc7 [REF(1)] (len=29, t1=2)
©13480dae0 00 NILSXP gOcO [MARK,REF (65535)]
©13480dae0 00 NILSXP gOcO [MARK,REF (65535)]
@13480dae0 00 NILSXP gOcO [MARK,REF (65535)]
@11eb55c40 02 LISTSXP gOcO [REF(1)]
TAG: @124010818 01 SYMSXP gOcO [MARK,REF(625)] "w"
@12413b0cO 14 REALSXP gOc1 [REF(65535)] (len=1, t1=0) 1
@11eb55c08 02 LISTSXP gOcO [REF(1)]
TAG: ©123809ce0 01 SYMSXP gOcO [MARK,REF(58872)] "x"
©12413b088 14 REALSXP gOcl [REF(65535)] (len=1, t1=0) 2

While in the modified R, the output was the following;:
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0563eaB8dae7f8 04 ENVSXP g0cO [] <0x563eca8dae7f8>
ENCLOS:
©563ea635e8c0 04 ENVSXP gOcO [MARK,REF(65535),GL,gp=0x8000] <R_GlobalEnv>
HASHTAB:
0563ea6672170 19 VECSXP gOc7 [REF(1)] (len=29, tl=2)
0563ea8dae478 02 LISTSXP gOcO [REF(1)]
TAG: ©563ea638c188 01 SYMSXP gOcO [MARK,REF(14186)] "x"
@563ea92b6ac0 14 REALSXP gOcl [REF(65535)] (len=1, t1=0) 2
TAG: ©563ea643£340 01 SYMSXP gOcO [MARK,REF(411)] "w"
©@563e292b6b18 14 REALSXP gOcl [REF(65535)] (len=1, t1=0) 1
0563ea6325e50 00 NILSXP gOcO [MARK,REF(65535)]
0563ea6325e50 00 NILSXP gOcO [MARK,REF(65535)]
0563ea6325e50 00 NILSXP gOcO [MARK,REF(65535)]
©563ea6325e50 00 NILSXP gOcO [MARK,REF(65535)]

Notice that both variables have been hashed into a different bucket in the
original version of R; however, in the modified version, all ended up in the same
bucket.

While this obviously degrades performance in the case R is used in the usual
way, it can speed up SMT queries considerably [6].

Another thing that was done is disabling implicit printing of variables. This
caused complex SMT queries that took hours to resolve. Other optimizations
may be possible to discover and implement as well in the future.

User experience

While this setup works quite well, there was one major flaw in the realm of user
experience. The user had to specify the name of the variable when creating a
symbolic variable. However, this is completely unnecessary and is forcing the
user to do a meaningless action that might cause bugs and confusion should
the user provide an incorrect name.

There are cases when the name is rather easy for the interpreter to retrieve.
In a lot of cases, the user may write something like this:

firstNum <- chef.int("firstNum")
someRaw <- chef.raw("someRaw", 10)

In this specific case, the interpreter can infer the name. The goal is to
provide such implementation so that the user can simply write the following
code with the same effect:

firstNum <- chef.int()
secondNum <- chef.raw(10)

The question remains: how can that be done? The code that automatically
detects the name should not be in the chef function itself since it does not know
the AST, and while it could be retrieved, the resulting code that retrieves it
would be quite ugly and error-prone.

An approach that worked better for me is extracting the variable in the
place where the AST is straightforward to retrieve: the eval function.
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Figure 4.4: AST diagram of myName <- chef.vec("myName", 5L)

It can be seen that when a code follows this structure, it is not hard to extract
the variable name from the AST, allowing the user to omit the first argument
of chef.vec.

The solution is to monitor the usage of the <- function in the eval loop.
Once it is detected, it suffices to check for the left and right sides of the function
(to be more precise. _its first and second arguments). Visualization of this is
provided as figure Q

If the left side consists of a single SYMBOL, it is a variable that the user is
trying to assign to. It might be something else if the user did, for example,
vector [[6]] <- chef.int(); however, those examples are not trivial, and
name generation might be obscure. For these reasons, I decided to only proceed
with the simple case, where the user is assigning to a variable.

Next, if the right side consists of a call to a chef function, and that function
is missing exactly one argument, it is assumed that the function call is missing
the name of the variable. In this case, the name of the symbol on the left side
of the <- is extracted, and the AST is modified — the name is inserted as the
first argument of the chef function being called.

This ensures that the chef functions receive all the arguments the usual way,
even if the user does not specify the name, in case the interpreter can easily
infer it. Ultimately, I find this to have significantly increased the user comfort
while writing scripts utilizing Chef.

4.3 Chef Tools

Chef tools is a collection of scripts that aim to aiding the user in processing
the output returned by Chef. A tool that will process the output files has
been deemed useful, despite efforts to make the output as clear and readable
as possible, because the files can be quite large.

The package is designed to be easily extendable — the user should have no
problems adding their own tools for their own use cases. This is important since
the Chef itself is a symbolic execution runner; it can be utilized for a number
of different actions, so the tooling should be as easy to make as possible.

This is one of the main reasons for writing the tools in Python. It is a
language I am quite familiar with, easy and quick to write, pretty popular, and
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most likely already available on your device. Furthermore, the performance
concerns are not too relevant here since the files that Chef produces tend to be
just a few tens of megabytes at most in the scenarios I tested. Python has no
issues with processing files of this size.

To support this use-case,Bd this tool is split into two separate packages.

e chef-testcase-parser, a Python library that can parse test cases gen-
erated by Chef.

e chef-tools is a Python command-line utility containing tools that pro-
cess the result. As of the time of writing, there are currently two tools
available.

1. testgen that can turn an R script used for testing and a list of (er-
roneous) test cases into a testthat-compatible file that can be run
outside Chef. This is designed to be easily integrated into existing
test suites.

2. typeinfer that analyzes which types can a tested function can
process. It also produces mapping in the form of inputtype* —
outputtype, as many R functions produce outputs with different
types in response to different inputs. An example of this is pre-
sented later in section p.9.

Testcase parser

I made the decission to separate the logic that parses test cases@ from the
tools. It contains some non-trivial logic and is likely to be updated in the
future, while the tools themselves are quite simple and will most likely receive
little to no updates once they are made. It is, therefore, beneficial for this
library to be updated separately.

Furthermore, not all users who will make their own tools will be willing to
participate in the development of chef tools, and there is no need to force them
to modify the code I have written. With the existence of this separate library,
they will be able to write their own code much more easily.

The problem itself is not something extraordinary. There is a json file as an
input, containing an array of test cases. Each test case, among some metadata,
contains variable assignments. The library cannot simply parse the JSON and
return the result for a simple reason — the assignments correspond to low-level
C calls to S?E, not to the R assignments that the user is interested in.

To make this clear, the generation of some variables has 1 : 1 correspon-
dence between C and R assignments. For example, if one created an integer
symbolic variable in R, it would generate one symbolic variable visible to S?E.
However, some symbolic variables in R — such as vectors — generate more sym-
bolic variables. The vector, for example, generates one symbolic variable that
defines the type of the vector and a second one that represents the data. An
example can be seen in figure 4.5

The resulting design is relatively simple. For each possible R assignment,
which might be, for example, an integer, NULL, or a vector, there will be a

36Particularly the extendability requirement.
37These are the files called successful_test_cases. json and err_test_cases. json.
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{

"timestamp" : 4759,
"pc" : 4110240480,
"stateId" : 14,
"inputs": [

"name" : "vO_any__lhs_0",
"bytes" : "0x3 0x0 0x0 0x0",
"i32" : 3,
"string" : "\\x3\\x0\\x0\\x0"}
,{ "name" : "vl_vec_type__lhs_1",
"bytes" : "Oxe 0x0 0x0 0x0",
"i32" : 14,
"string" : "\\xe\\x0\\x0\\x0"}
,{ "name" : "v2_vec_data__lhs_5",
"bytes" : "0x0 0x0 0x0 0x0",
"string" : "\\x0\\x0\\x0\\x0"}

Figure 4.5: Raw Chef test case consisting of three symbolic variables that map
to a single R value.

Python class that can parse a given C assignment (or assignments) into this R
assignment. It will consume the proper amount of C assignments and convert
the data into a proper format.

During the parsing, the library will go through all assignments in any given
test case and, for each of them, will find a class that can parse the assignment
and feed it the required number of them.

Chef-tools

chef-tools is a simple collection of Python tools, utilizing the c;lickE tool for
the command-line interface. The choice of click itself is due to its popularity
and ease of use. It fulfilled all the requirements: automated generation of help
texts and input validation, which click handles quite well.

Other than that, it is a rather standard Python command-line utility, cur-
rently containing two tools that perform data transformation utilizing the
aforementioned test case parser.

The key was keeping the source code of chef tools as simple as possible so as
not to hinder potential users from writing their own tools in tandem with the
existing ones. The only thing the user is required to add a new tool is to add a
new command, which, thanks to click, is a matter of defining a single function
and creating a new module that does the data transformation required.

38Fach assignment contains a name of the variable. In the R script, the user specifies the
name of the variable. However, as the R interpreter prefixes it with its type before sending
it to S2E, the type of any given variable is known, and a correct class to parse it can be
selected.

3%nttps://github.com/pallets/click
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Test Generator

The test generator is a utility that can produce testthat-compatible file that
runs tests generated. It works by parsing the source code used to run the
Chef experiments. It can not handle every possible way to run Chef, but as
long as the user conforms to the usual way of invoking Chef, the test case
generator should cover them without the need for modification. For example,
let us consider the following simple example:

chef.start ()

a <- chef.int()
chef.assume(a > 10)

b <- chef.int()
chef .assume(b > 10)

chef.assert(a + b > 22)
chef.end (F)

This obviously fails for a certain combination of a and b. Running Chef
generates test cases; some of them will be successful, and some of them will
not. After the run, the user can feed the data to the test generator script.

First of all, it takes the source code, cleans Chef-specific functions and
either removes them or replaces them with native or testthat equivalents.
After that, it wraps the rest of the code in a function accepting the arguments
that were previously symbolic variables.

Afterwards, the test cases provided by the user and generated by Chef are
parsed, and for each test case, the function containing the user source code will
be called.

In this example, it provides something similar to this:@

# chef-tools testgen err_test_cases.json source.R
library(testthat)

chef_fun_to_test <- function(a, b) {
expect_true(a + b > 22)
expect_false(F)

}

context("Tests generated by Chef")

test_that("Test case 0", {
chef _fun_to_test(2146435080L, 1048704L)
B
test_that("Test case 1", {
chef_fun_to_test(11L, 11L)
1))

40Tt took 899 seconds and 3.2 GB of RAM to run this on single core, Intel i5-8250U.
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As one can see by running this program, the symbolic execution run actually
found two errors: one that I deliberately put in; summing 11 + 11 does not
result in something higher than 22. However, it also found a second one that
I did not anticipate: summing 2146435080 and 1048704 results in NA due to
integer overflow.

Type inference

When the chef.any function is called in R, it generates a symbolic variable
with any type — it can be a string, a number, or perhaps a symbol. Whenever
a test case is recorded, it provides not only the value of the variable but the
type of it as well.

The type inference tool takes advantage of this to retrieve the set of types
that the function that is being tested managed to process without an error.
For example, consider the following:

chef.start()

tryCatch({
var <- chef.any(5)
functionThatIsBeingTested (var)

}, error = function(e) {
chef.end(T)

b

chef.end (F)

The function is deemed to accept any type that was successfully used to
invoke the function at least once. So, it would suffice for the tool to look at
successful test cases and extract a list of types of the variables.

$ chef-tools typeinfer successful_test_cases.json
integer

nil

logical

However, one might also want to get the whole mapping from input to
output types. The type inference tool was developed with this in mind. In
order to use it, the user has to specify the return type of the function in the
log of the execution.

chef.start ()
tryCatch({
argl <- chef.any(5)
arg2 <- chef.any(5)
result <- functionThatIsBeingTested(argl, arg2)
# The typeinfer tool will know that the type of the result produced
# was caused by lhs and Ths wvariables
chef .debug(paste ("TYPEINFER", typeof(result), "argl", "arg2"))
}, error = function(e) {

41R integers are 32 bits long, however, the lowest value (—2147483648) is used to represent
NA instead, a value that is created as a result of integer oveflow/underflow, for example.
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chef .end (TRUE)
19
chef .end (FALSE)

The tool will search for the execution log for names of the arguments and a
return type. Each log line contains state ID, which is also included in the test
case metadata. The tool will then pair test cases with specific state IDs to the
corresponding entry in the log and produce a mapping like so:

$ chef-tools typeinfer successful_test_cases.json debug.txt
integer integer -> integer
nil logical -> logical

Furthermore, it should be noted that in R, even scalars are vectors.

> typeof (1L)

[1] "integer"

> typeof (c(1L))

[1] "integer"

> identical (1L, c(1L))
[1] TRUE

So even when the user creates a symbolic vector and passes it as an input to
the tested function, or when the function returns a vector of multiple scalars,
the type inference tool will report it as an integer (or another type). It does
not explicitly distinguish between vectors of length one (scalars) and vectors
that are longer.

If the user encountered a use case where the length of a vector is vital
knowledge, for example, if one wanted to explore how functions behave when
given inputs of a specific size, they should be assured that S?E and Chef already
capture this information, and the test case parsing library already does handle
that. It should be relatively easy to patch the type inference tool to print the
length of the vectors alongside their type.
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CHAPTER 5

Evaluation

The symbolic execution engine is implemented and ready to use. However,
there are two questions remaining: how can it be used, and how fast is it?
I attempt to answer these questions in this chapter. I showcase a few appli-
cations where a tool like this could be used and highlight some performance
characteristics. If the reader wants to follow along and try out the experiments
themselves, the appendix A contains instructions on running Chef.

5.1 Testing library correctness

One of the most natural uses of symbolic execution, in the area of verifying
library correctness, closely mimics property-based testing, as already explained
previously in section R.1].

If one wanted to evaluate the correctness of a library, a good test would not
only try to get the implementation to crash but would also verify the results.
How to do that when inputs are generated during the runtime?

One way basically mimics property-based testing. One can verify the cor-
rectness of results in some cases. For example, it is not hard to verify whether
a tree is balanced. An AVL tree balancing algorithm could be tested by
being fed a random (or symbolic) tree and just verifying whether it is bal-
anced afterwards. In this simple case, I verify whether the base64encode and
base64decode functions output sensible results by trying to encode and later
decode a symbolic buffer and verifying, whether the result was identical to the
input.

library(base64enc)
chef.start()
input <- chef.raw(100) # limit input length

# Encode and decode it

encoded <- base64encode(input)

decoded <- base64decode(encoded)

# Compare whether the result is tdentical to the input
chef.assert(identical (input, decoded))

# If we got here, there was no segfault, no error and the assert passed
chef.end(F)
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The test did not find any output for which the condition would not hold.
After terminating, S?E reported peak memory consumption of about 4 GB and
took about four and half hours to run.

This example, while useful, it may not detect bugs in the implementation
of base64enc itself. The encoded buffer could be just plain wrong, and while
it might decode correctly, it still does not prove corectness.

One solution is comparing the result of base64enc to another library or to
a trusted reference implementation. In this case, I chose jsonlite.

library(base64enc)
library(jsonlite)

for (strlem in 1:100) {
chef .start ()

str <- chef.string(strlen)
raw <- charToRaw(str)

# Encode and decode it
encoded <- base64encode(raw)
decoded <- base64decode(encoded)

# Compare whether the two strings are identical
chef .assert(identical(raw, decoded))

# Get encoded string from jsonlite
jsonlite_encoded <- base64_enc(str)
chef.assert(identical(jsonlite_encoded, encoded))

chef.end(FALSE) # No issue found

This code could be used with other libraries, even using 3rd party tools
outside of the R environment, due to the way S?E works — once one has a pro-
gram with reference implementation, testing the R libraries become relatively
simple.

In this case, running the code actually yields a discrepancy between those
two libraries once strlen is big enough! It turns out that jsonlite inserts
newline characters into long base64 strings, while base64enc does not. How-
ever, this might not be wrong. While newline characters in the encoded strings
are forbidden by the RFC 4648 [19, Section 3.1], which is referenced in the
documentation, it is not explicitly said anywhere which base64 standard is im-
plemented [20]. Furthermore, this has been reported before and the author
hinted that this is not an issue.td Regardless, I believe this highlights the
ability to use Chef to compare the correctness and the behaviour of various
solutions.

“https://github.com/jeroen/jsonlite/issues/3085
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5.2 Type checking

The tool made as part of this thesis strive to be general and allow various kinds
of analysis to be performed, not only bug finding or some kind of white-box
fuzzing. A good example for that is performing type checking.

R is a language that is not statically typed and as such, it is often not known
upfront which functions accept or output which types. Furthermore, it might
be hard to read from the source code or not available in the documentation in
some cases. Due to this, a tool that could infer type information about various
functions might be useful in some cases.

I demonstrate this on the base64encode function@. Consider the following;:

library(base64enc)
chef.start()

tryCatch({
# Try to create a value with vartable type
any <- chef.any(5)
# Attempt to execute it.
base64encode (any)
}, error = function(e) {
# Signal an error
chef .end (TRUE)
b

# No error happened
chef .end (FALSE)

After running this, one can examine the list of successful and failed inputs.
It can be presumed that if for given type there exists a value that does not
trigger an error, the function accepts the type. If there exists no such value,
the function either does not accept the type assuming the analysis finished and
all paths were taken.

A simple test like this managed to infer that, for example, passing any
SYMSXP to the function causes an immediate error,=? while the function even
accepts (and encodes!) logical vectors for instaunce.E It requested about 4.5 GB
of RAM.

$ chef-tools typeinfer successful_test_cases.json
complex

nil

double

logical

43Part of the package base64enc, which was already used in other tests before.

44Which should not be surprising but is a good example of this test providing an infor-
mation that a type is likely not compatible with the function.

45Tt should be noted that while there are coercion rules in R that can implicitly change
type of a value to another one, such as logical to a numeric [21, pg. 54], the effect seen here
is not caused by coercion. It was verified by running base64encode(I(c(T,F,F))), as the I
function inhibits implicit coercion.
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Testing the result shows that logical vectors indeed work with the base64
encoding.

> library(base64enc)
> base64encode(c(T, F, F))
[1] ”AQAA”

While this might not be surprising to an experienced R developer, I per-
sonally did not anticipate this and it was not mentioned explicitly in the doc-
umentation [22]:

Usage:

base64encode(what, linewidth, newline)
base64decode (what, output = NULL, file)

Arguments:

what: data to be encoded/decoded. For 'base64encode' it can be a
raw vector, text connection or file name. For 'base64decode’
it can be a string or a binary connection.

Another example is type checking the builtin + operator. The tool can not
only provide various types that the function can be run with, but it can also
infer what is the output type based on the inputs.

This is done by utilizing the type inferring tool mentioned before in sec-
tion . To produce a mapping of input/output types, one has to not only
know which types can be passed to the function, but also which types does the
function produce. This is done by signalling the type in the source code like
so:

chef.start ()
tryCatch({
lhs <- chef.any(5)
rhs <- chef.any(5)
result <- lhs + rhs
# The typeinfer tool will know that the type of the result produced
# was caused by lhs and Ths variables
chef .debug(paste ("TYPEINFER", typeof (result), "lhs", "rhs"))
}, error = function(e) {
chef . end (TRUE)
b
chef .end (FALSE)

After running the type inference tool introduced in section @, the user will
be presented with the following:

46T did not let this experiment finish on my laptop due to diminishing returns, but it
requested around 15.3GB of virtual memory. After a while, the analysis tends to produce
drastically less test cases than it was in the beginning, as can be seen in figure .
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$ chef_tools typeinfer successful_test_cases.json debug.txt

nil nil -> integer
double complex -> complex
complex double -> complex
nil complex -> complex
nil logical -> integer
nil double -> double
nil integer -> integer
...

I believe that this tool could be used for this purpose, as it should be able
to automatically process pretty much any library without the need for human
interaction after the initial setup.

5.3 Large-scale testing

One big advantage of symbolic execution is that it is unguided and does not
require human presence to run. This allows one to perform large-scale testing.
Chef is well-suited for that, given one has the required computing power.

For example, one could run the aforementioned type inferring tool on a
large number of functions and packages in order to generate type information
for the R ecosystem.

Another thing that could be done would be checking whether there is a
package that causes a segmentation fault. One can write an R wrapper that
will attempt to symbolically call every function in a given package.

This section presents a simple R script that can be used as a reasonable
starting point to such an endeavour. It iterates on every function in a given
package, finds it arity and, in this example, tries to call it.

The snippet below®! tries to find out whether the is a function that triggers
a segmentation fault when given unexpected input. The function is called, the
result is discarded, as well as an error, should one occur. Errors are expected,
and it would be, on the contrary, quite surprising if there were a bigger number
of functions that do not throw them at all. After all, the functions are called
with a generic symbolic input — any type that Chef supports may be passed to
it. Because of this, errors are ignored.

The only moment where Chef would report an error would be in case a
segmentation fault occurred. This is thanks to a modification I made. In case
the LinuxMonitor plugin is turned on, Chef hooks on its segfault monitor,
receiving a notification each time a segmentation fault occurs. Should one
happen, Chef will generate a test case that leads to that and terminates the
state.

47The snippet is incomplete for brevity, it does not include the arity function not im-
portant to this example. This should illustrate the point, but in case the reader is curious
about the full code, it is available in the chef-nextgen repository (see appendix |A]) as file
main/utils/fuzzer.R.
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ignore_errors <- function(expr) {
tryCatch(
{
eval (expression)
1,
error = function(e) { }
)
}

fuzzPackage <- function(package) {
functions = ls(paste('package:', package, sep='"'))

for(function_str in functions) {
fun <- get(function_str)
ar <- arity(fun)

chef.start ()
chef .debug(paste("Started testing", function_str))

# Fill each argument with 10-bytes-long symbolic wvalue
# of any type
ignore_errors ({

args <- sapply(l:ar,

function(x) chef.any(paste(function_str, "_", x, sep='"'), 10))
do.call(fun, as.list(args))
B
chef .end (F)
}
}
library(jsonlite)

fuzzPackage (" jsonlite")

Such code could be used for variety of cases, not limited to hunting seg-
mentation faults or type information generation, after some modifications. I
hope this highlights the possibilities that Chef offers and its flexibility regard-
ing adapting to different kinds of analysis with ease. While a test like this
would be unlikely to catch more delicate errors, it could be used to massively
test large part of the R ecosystem for low-hanging fruit, given one has the
computing power required.

This test, albeit quite simple, actually managed to find a double-free bug
in one of the eleven tested libraries, as discussed further in section p.5.

481t took about eight hours of running the affected library and consumed 14GB of RAM
at the peak. It was tested on Intel Xeon Gold 6140 (72) @ 2.294GHz, 188GiB of RAM.
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5.4 Performance

Thankfully, a lot of work was poured into S?E and other projects used transi-
tively by Chef, which translated into a quite good performance. S2?FE is even
able to symbolically execute large projects, such as Microsoft Office [[7]. Chef
inherits these great performance characteristics, making running the whole in-
terpreter symbolically viable.

I decided to measure the overhead Chef has over executing R code natively
with a stock interpreter. This is likely to have a large impact on which
codebases are deemed testable with the symbolic execution engine. I’ve chosen
several popular R librariest? of various sizes, extracted example usage and
tests, and ran them with and without Chef. This should give the reader an
overview of how well Chef scales with bigger libraries. Note that no symbolic
variables were defined during the experiments. This is because their choice
heavily depends on the selected project, and depending on their choice, might
not ever terminate in practice — such as when arrays with unbounded lengths
are tested. What I am interested in this section is merely the overhead over
running R natively.

The results shown in figure @ were all Tun on a serverd used only for
this purpose, single-core. Median time was used for comparisons. Time spent
is recorded by hyperfine,E 10 runs. It is either spinning up the whole S?E
within Qemu (estimated overhead can be seen at the empty test results) or
running the R interpreter directly on the source code. The numbers in the
table below were determined by running the test suite of each project.

Package | KLOC* | KLOC | KLOC Chef Plain R Slowdown
R C/C++ | tests
Nothing® 0 0 0 198.6s + 4.5s 0.2s +0.0s 993 x
magrittr 0.6 0.8 0.4 848.8s £ 21.6s 0.8s +0.02s 1061 x
glue 1.2 0.4 1.2 893.4s £ 25.1s 1.8s +0.03s 496 x
withr 0 2.4 2.0 821.2s £ 46.3s 4.0s £0.1s 205x%
stringr 34 0 1.1 1038.1s & 65.6s 3.4s £0.05s 305x
jsonlite 2.2 5.7 1.1 888.0s £ 26.2s 3.5s £ 0.07s 254 x
digest 1.1 9.1 1.4 536.7s + 14.5s 0.6s + 0.2s 895x
tibble 4.8 0.4 4.2 1246.9s + 89.7s 19.7s £ 0.2s 63x
sf 13.9 0.1 5.6 445.0s £ 11.4s 0.3s £ 0.02s 1483 x
cli 17.1 15.2 7.9 850.0s £ 34.4s 28.2s+0.2s 30x
vctrs 15.0 42.7 224 | 29683.9s+1390.8s | 52.1s £+ 0.5s 570x

2 Thousands of lines of code
b No libraries, empty source code. Used for measuring overhead on spinning up the VM
with S2E.

Figure 5.1: Benchmarking results

One can see that although there is a significant slowdown, the results are
not terrible at all! Chef is often only a few hundred-times slower than the
R implementation run natively without a virtual machine, which is, in my

49The R interpreter was used without any modifications, version 4.1.2, built for Ubuntu
22.04.4 LTS.

50Chosen thanks to https://www.r-pkg.org/

51Tntel Xeon Gold 6254 (16) @ 3.099GHz, 24GB RAM.

52 A benchmarking software, https://github.com/sharkdp/hyperfine.
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opinion, not a bad result. The average runtime was 10.4 seconds for plain R
and 56 minutes for Chef, which is 327-times slower. Furthermore, regarding
simple overhead of running Chef, I did not uncover any correlation between
code size and the Chef slowdown.

Regarding the performance with symbolic inputs, it is rather hard to draw a
single conclusion. The runtime depends heavily on the code that is being tested
and varies greatly. Furthermore, it is not needed to actually finish the analysis
and explore all paths of a given program for the analysis to yield interesting
and useful results. The rate of discovery of new test cases can be inspected in
figure @

Generation of new test cases in time

—— Type inference of +
Type inference of <-

25001 — pase64enc/jsonlite

2000 A

1500 A

1000 A

Number of generated test cases

500 A

0 5000 10000 15000 20000 25000 30000 35000 40000
Time [s]

Figure 5.2: New test cases discovered by Chef over time

It can be seen that generation of new test cases is quite fast at the beginning,
but begins to slow down after a while. There might be some spikes time to
time, where the SMT solver resolves a long-running query and S2E generates
a bunch of states shortly after, as seen in the end of the <- type inference
run.
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5.5 Discussion

In the previous sections, I presented few categories of tests that I believe could
be used with Chef.

Library corectness

Testing libraries is in a state where it could be used in practice as of now. The
biggest downside is the human factor: someone has to write the symbolic tests.
While it might be easy to test parts of the codebase with symbolic tests,
this is unlikely to be automated and requires human work. Still, this is in my
opinion an area where it could be used. It should be noted that the tests take
tens of minutes to hours of computing time in order to run and requires few
gigabytes of RAM, depending on the test. Because of that, I see the potential
usage as part of some continuous integration suite that is run overnight, and
not on regular developer’s computer.

One downside I experienced was generation of symbolic variables with vari-
able length.k2 Currently, this is solved by having a loop representing the size of
the symbolic variable, as seen in the example with base64enc and jsonlite.
While it works, it can take a very long time to reach higher iterartions of the
loop — how much, exactly, depends entirely on the individual test.

I see two viable solutions to this problem: one is offloading the problem
to the user. Chef is capable of creating many different symbolic variables,
and they can be combined together. If one wanted to, for example, create a
symbolic string of variable length, it might suffice to create a raw vector of
given size and then producing a string out of data of the raw vector, up to the
first nullbyte. Or the user might generate a symbolic integer, constraint it to
a specific interval using chef.assume and only use the first few characters of
the string as the test. These will not be as fast as native symbolic variable
generation, but could be used regardless.

The second solution to this problem would be adding a support directly to
Chef. However, this is not trivial and would require some additional modifi-
cations that are not part of this thesis. It might improve performance in this
scenario, if it is implemented in the future.

In general, I would recommend to use Chef for this kind of scenarios for
software where testing is important and one has the required computing power,
as long as they do not need to use symbolic variables with variable length or
do not mind the performance loss.

Type checking

Type checking is, in my opinion, one of the most interesting features of Chef.
It can find out accepted types of both libraries and builtin functions, and prove
that by generating an example. It can infer those types in a matter of hours.
I can see using Chef in a project that would, for example, be dedicated to
providing typing information about the R ecosystem, or about the internal

530r property-based tests, in general.

540ne cannot simply pass a symbolic variable as a parameter to a chef function expecting
size, for example the chef.string. The value will be concretized and only will be used,
rendering this process ineffective.
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builtins, where the types would otherwise often have to be inferred from the
code itself.

The disadvantage is that unless it is left run to the end, it generates a
potentially incomplete set of types. However, all of them should be sound,
which is still an interesting property and something I can imagine some projects
being able to work with.

Large scale testing

Mass-testing R libraries is in my opinion a functionality with great potential.
One can automatically test large areas of the R ecosystem and discover bugs
without the need of any human action. However, it is hard to write good
tests that would be able to test any R package thoroughly. In section @,
I presented code that would check whether a given library crashes, which is
applicable mostly to libraries written in a lower level language, such as C or
C++.

I tested a small set of libraries. It was not a massive scan of the R ecosystem,
I aimed at verifying whether that approach might be viable, with potential
large-scale verification being done later.

I have searched r-pkg.org for recently updated libraries that require com-
pilation, with the idea that this does not favour popular libraries and avoids
old libraries that are not being used anymore. Out of these, I filtered them by
hand to discard libraries that serve as database connectors for example, since
running them without preparing a setup first would be likely useless and I did
not anticipate any useful findings. I came up with list of 11 librariesed that
were fuzzed with hope that a segmentation fault could be triggered.

Out of these, kit is vulnerable to the following memory bug:

> library(kit)

Attaching kit 0.0.17 (OPENMP enabled using 1 thread)
> clearData(c(NULL, NULL))

double free or corruption (out)

[1] 2963451 IOT instruction (core dumped) R

From inspecting the source code, it looks like the library lacks good verifi-
cation on what is passed into its cleanup function. It tends to assume that it is
an internal object and runs various memory-freeing operations on it, generating
variety of memory problems, depending on what the user passed there.

This shows that even simple tests like the one I came up with earlier can
be useful and can find bugs, even in maintained libraries.

Memory consumption

The last thing I would like to discuss here is memory consumption. While the
R interpreter is relatively lightweight and S?E consumes well under a gigabyte
of memory, the situation becomes worse when a code with heavy state forking is
ran. As highlighted in section {.1], the memory consumption grows lineary with

55fmtr7 jsonlite, tclust, transport, tinycodet, stringi, kyotil, kit, dbarts, sp and
1lda.
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the number of states. This is not manageable for larger test cases, for example,
running eight tests concurrently overnight accumulated about 180 gigabytes of
memory usage due to heavy state forking. As this amount of memory required
can be a dealbreaker for some users, I created a workaround in the form of
a plugin that tracks both local and global memory use, and can prevent new
states from being created when the memory pressure is high. The user can
learn more about configuration of this tool in appendix Al.
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Conclusion

This thesis aimed to implement a symbolic execution engine for R utilizing the
Chef technique.

In order to achieve this, an analysis of existing symbolic execution engines —
S?E and Klee — was performed, researching the principles of symbolic execution
as well as implementation of those two engines.

As Chef is an existing S?E plugin that was to be altered together with the
R interpreter, the inner functionality of both Chef and R was researched and
analysed. Chef was then modified and parts of it were rewritten in order to
function with modern S?E. The R interpreter was altered to support symbolic
execution with Chef, and some performance and user experience optimizations
were made.

The result is a working tool consisting of multiple components packaged in
a docker image with a focus on ease of use by the users. It supports generating
several types of symbolic variables, segmentation fault detection and optimizes
state selection using [CUPA|. Two tools are provided, one for generating test
cases out of symbolic run and another one for automated generation of type
annotations.

Several examples are provided on how to discover functionality discrepancies
between libraries, generate type annotations of various functions or R builtins,
and how to mass-analyse R libraries without user interaction.

An evaluation was done on the performance and usability of the solution.
One discrepancy was found in the implementation of base64 encoding in two
libraries during the evaluation, as well as one use-after-free bug in another
library.

The Chef authors, whose work this thesis is based on, claimed that it took
them merely a few person-days to build a symbolic execution engine for Python
and Lua. While the whole implementation took me much longer than that due
to learning how to use the libraries, understanding the interpreter, setting up a
reliable environment and modifying Chef to work with modern S?E, I assume
that with a working environment and experience with using both S?E and Chef,
making a new symbolic execution engine for another interpreted language could
truly take me around five to ten person-days in the future, especially if I was
already familiar with the language. This observation seems to be in line with
the experience of the authors of Chef.

93



CONCLUSION

Overall, I personally find Chef to be quite useful in a variety of cases. While
the experiments can take a while to run and tend to consume large amount
of memory unconstrained, it still can prove interesting properties about the
programs and I see the potential of this tool as part of some analysis run
overnight or in a CI setup. While I find it unlikely for this to become part of a
regular development routine, there are plenty of cases where it could be used,
a notable one being type inference in my opinion.

Future work

The tool is just a starting point in the realm of symbolic execution of R. In order
to enable widespread adoption, support for more symbolic variables could be
added, supporting all values constructible in R in the ideal case. usage
could also be improved with more heuristics and strategies in order to facilitate
more efficient execution.

While large-scale analysis of the R ecosystem is already possible with this
tool, adding the above features could make a non-negligible difference in real-
life testing and large-scale analysis.

More thorough scan of the R ecosystem could also be done, utilizing the
technique highlighted in this thesis or coming up with new, more advanced
ones.
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APPENDIX A

Chef usage

First of all, let me clarify the source code organization. While not vital for
usage from the point of view of a regular user, it is crucial for any kind of
development.

Due to its nature, Chef is split into multiple repositories.E

e github.com/SoptikHa2/s2¢ (branch chef) contains modification of S?E
to include Chef plugin. This includes everything mentioned in this thesis
that has something to do with S2E, for example, [CUPA.

o github.com/SoptikHa2 /r-chef-symbolic-execution (branch chef) contains
the R Interpreter modified to work with Chef and S?E. This includes
particularly calls to S?E and custom chef functions.

« gitlab.fit.cvut.cz/stastpe8/chef-nextgen is a storage for docker images and
packages. It includes Dockerfiles vital to building both development and
production-ready images.

o gitlab.fit.cvut.cz/stastpe8/chef-testcase-parser is a Python library that
parses test cases generated by S?E. This is used by tools that work with
the Chef’s output in some way.

« gitlab.fit.cvut.cz/stastpe8/chef-tools contains some tools that automate
the processing of Chef output. Two notable examples®! are the test case
generator, which turns Chef test case file into an R testthat-compatible
file with tests, and the type inference tool that can extract type annota-
tions of functions from a Chef run.

However, the only thing vital to the user is knowledge of how to run a Chef
docker image and how to run the tools. If one wants to make their own tools,
I suggest taking a closer look at the last two repositories in the list above.

56Historically, there was some work done even on the old Chef before the modifications
to support modern S2E. These are available at https://github.com/SoptikHa2/s2e-01d/
tree/chef and https://github.com/SoptikHa2/chef-symbex-1lua. Note that those are in a
proof-of-concept state and are not the result of this thesis one is likely looking for. I include
them here for the sake of complexity, as they contain some fixes that might make running
old Chef much simpler if one desired to do so.

57 And the only examples, so far.
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A. CHEF USAGE

In order to run Chef, one has to create a file with R source code. For
example, let’s assume there is the following code in a file called source.R.

chef .start ()
chef.debug("Running!")
number <- chef.int()

if (number < -4) {
chef.debug("Something bad happened")
chef.end(T) # An error occured

}
chef .assert (number '= 14)

chef.end(F) # No error occured

After that, the only thing to remain is to run Chef. It took about 130
seconds to run on a powerful computer,2d so one should expect this to take a
few minutes.

docker run -v "$PWD":/data <docker-image> run <R-source> <out-dir> [libs]

The docker images available are in the chef-nextgen repository, but one
can simply use gitlab.fit.cvut.cz:5050/stastpe8/chef-nextgen/r-symbex:thesis.

In this case, make sure you are in the directory where you put the source.R
file. Run docker run -v "$PWD":/data gitlab.fit.cvut,.cz:5050/stastpe8
/chef-nextgen/r-symbex:thesis run source.R out-1.24 This will run Chef
and put all experiment data into a new folder called out-1. This will take some
time. You can end it prematurely by pressing C-c, but that might yield in-
complete results.

In order to be able to process results, one might want to install the pro-
vided chef-tools command-line utility. To do so, follow instructions in the
chef-tools repository or run the following:

pipx install chef-tools --index-url
https://gitlab.fit.cvut.cz/api/v4/projects/60767/packages/pypi/simple

Now, look around the generated out-1 directory that was generated by
Chef. Most of the files follow the generic S?E structure. The chef-specific files
are the test cases and the output directory with captured stdout of the R
process.

One can explore the debug.txt file for detailed information about the ex-
ecution. The captured standard output of the interpreter can be seen in the
outfiles directory, and the stats.csv contains statistics about the execution,
such as memory usage.

However, the most interesting files are successful_test_cases. json and
err_test_cases. json. There are numerous successful test cases, but only two
erroneous test cases, which is just what was expected.

58 AMD Ryzen 9 5900x, 32GB RAM.

59The target architecture is currently set to x86-64-v2. If you encounter an error like
Illegal instruction, consult https://github.com/HenrikBengtsson/x86-64-1level and ei-
ther buy a newer CPU or build the docker image yourself. The Dockerfile is in the
chef-nextgen repository in the directory main.
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{
E;gputs": [
"name" : "vO_int__number_ 0",
"bytes" : "Oxe 0x0 0x0O 0xO",
"i32" : 14,
"string" : "\\xe\\x0\\xO0\\x0"}
]
¥
1
E;gputs“: [
{ "name" : "vO_int__number_ 0",
"bytes" : "Oxfa Oxff Oxff Oxff",
"i32" : -6,
"string" : "\\xfa\\xff\\xff\\xff"}
]
}
]

In order to see an example of one tool in the chef-tools utility, go to the
out-1 directory and run the following;:

chef-tools testgen err_test_cases.json ../source.R > testthat.R
This will generate an R script that can be run with testthat.

library(testthat)

chef fun_to_test <- function(number) {
print ("Running!")

if (number < -4) {
print ("Something bad happened")
expect_false(T) # An error occured

3

expect_true(number != 14)
expect_false(F) # No error occured

}
context ("Tests generated by Chef")

test_that("Test case 0", {
chef_fun_to_test(14L)

1))

test_that("Test case 1", {
chef_fun_to_test(-6L)

1))

Run it via Rscript testthat.R and verify that it indeed fails the test.
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A. CHEF USAGE

Configuration

The docker image contains sane defaults that most users do not have to touch.
However, should one want to, there is an option to do that. The script that
starts S2E detects whether there is a file called s2e-config.lua in the root
folder that the user passed to the docker image — so most likely the current
working directory if the user followed the previous example to the letter.

The sample configuration can be found at the chef-nextgen repository.
One of the modifications the user might want to do is adding a memory limit.
It is advised that the user puts the following near the end of the file to the
User-specific scripts section.

add_plugin("MemoryForkLimiter")

pluginsConfig.MemoryForkLimiter = {
—-= 70% of system memory usage used up (across all processes)
-- mazGlobalMemUse = 700

-- 5GB used up by this instance of S2E
maxMemoryUseBytes = 5000000000

S0https://gitlab.fit.cvut.cz/stastpe8/chef-nextgen/-/blob/master/main/s2e-
config.lua

617t does not hard-limit S2E memory usage, but rather stops generation of new states if
the memory consumption rises to a certain level.

62


https://gitlab.fit.cvut.cz/stastpe8/chef-nextgen/-/blob/master/main/s2e-config.lua
https://gitlab.fit.cvut.cz/stastpe8/chef-nextgen/-/blob/master/main/s2e-config.lua

APPENDIX B

Contents of attachment

readme.md.......oiviiiiiiiiiien.. an overview of contents of attachment
| _src
chef-nextgen................ infrastructure needed to build the thesis
chef-testcase-parser........ library for parsing generated test cases
chef-t00lS .t vvieiieinnnennnnn. set of tools working with S?E output
r-interpreter......... ...l modified R interpreter
B2 e ittt e e modified S?°E
TheSIS tviit it IATEX sources of this thesis
| eXPerimentsS.....ccoveeiiiennneenneennnnn. experiment data from chapter
| text
| thesis PAE compiled thesis in PDF format
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