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Abstrakt

Překladače pro programovaćı jazyky jsou nezbytnou součást́ı vývoje moderńıho
software. Tato práce se zabývá návrhem předńı části překladače pro (skoro)
podmnožinu jazyka C++ nazvanou C+-. Nejprve je specifikován rozsah C+-.
Poté je popsáno využit́ı ANTLR4 pro lexikálńı a syntaktickou analýzu a vy-
tvořeńı abstraktńıho syntaktického stromu. Následuje sémantická analýza a ge-
nerováńı mezikódu LLVM IR pomoćı LLVM C++ API. Implementace překladače
je otestována sadou ukázkových kód̊u.

Kĺıčová slova frontend překladače, LLVM IR, ANTLR, C++, sémantická
analýza, generováńı kódu

Abstract

Compilers for programming languages are an essential part of modern software
development. This thesis deals with the design of the frontend of a compiler
for an (almost) subset of C++ called C+-. First, the scope of C+- is specified.
Then the use of ANTLR4 for lexical and syntactic analysis and the creation of
an abstract syntactic tree is described. This is followed by semantic analysis
and generation of the LLVM IR intermediate code using LLVM C++ API. The
implementation of the compiler is tested with a set of sample codes.

Keywords compiler frontend, LLVM IR, ANTLR, C++, semantic analysis,
code generation
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Introduction

Compilers are programs that are used by most programmers in the world ev-
ery day. They allow us to write code in a high-level programming language
without the need to worry about hardware architecture details. As such, they
are an indispensable part of the modern software development process. They
are complex pieces of software that are usually split into three stages – the
frontend, the middle-end and the backend. The job of the front end is to parse
the source code, verify that it is correct according to given language rules, and
transform it into some intermediate representation. The middle end then takes
this intermediate representation, and performs various optimizations and pos-
sibly other transformations. Finally, the back end generates code that can be
run on a specific machine.

At FIT CTU, we have an undergraduate course Programming Languages
and Compilers, BI(E,K)-PJP, which provides an introduction to compilers.
The course lectures focus on the frontend stage of the compiler, and put a lot
of attention to the first two parts of the front end – lexical analysis and syntactic
analysis. The lectures do not, however, put much emphasis on semantic analysis
and intermediate representation generation, which follow lexical and syntactic
analysis in the frontend stage.

The goal of the thesis is to continue where we finished in BI(E,K)-PJP.
We will use the ANTLR4 framework to handle lexical and syntactic analysis
for us, and focus on semantic analysis and intermediate representation. For
intermediate representation, we will use the LLVM Intermediate Representa-
tion (LLVM IR) from the LLVM framework. The compiled language will be a
subset of the C++ programming language.

This thesis, especially the practical part, will be of use to BI(E,K)-PJP
students. We show how the C++ API can be used to generate LLVM IR which
is a part of the BI(E,K)-PJP semestral project.
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Introduction

Goals of the Thesis

The overarching goal is to write a compiler frontend that compiles a subset of
C++ (and a few non-C++ features) to LLVM IR. This can be broken down into
the following steps:

• Specify the implemented language.

• Use ANTLR4 to parse source code and create the abstract syntax tree
(AST).

• Write code to perform semantic analysis on the AST.

• Write code to generate LLVM IR from the AST.

• Verify functionality of the compiler with test sample codes.

4



Chapter 1
Analysis and Theory

1.1 Compilers

Compilers are used every day by most programmers. They are complex pieces
of software with multiple stages. Nowadays, they are generally split into three
parts: the frontend, the middle-end and the backend [3].

The frontend itself is split into multiple stages. First, during lexical analy-
sis, the source code is split into individual language tokens (such as keywords
and identifiers). Then, during syntactic analysis, the frontend tries to com-
pose the tokens into higher-level language structures, such as expressions and
statements, based on the language’s grammar. Around this stage, the abstract
syntax tree (AST), which represents the semantics of the language, is often
built. Next is the semantic analysis, during which the AST is analyzed for
errors (such as type mismatches), and potentially modified. If the AST passes
through semantic analysis, it is usually translated into an intermediate (or
middle-end) representation, which is sent to the middle-end. For an analogy
between the compiler frontend to the human language, please see Appendix A.

The middle-end representation is usually a low-level programming language.
It is often expressed in the SSA (Single Static Assignment) form [4], because it
allows for good optimizations [5]. The middle-end part of the compiler, some-
times also called the optimizer, takes this intermediate representation, and
performs various target-independent optimizations, such as constant propaga-
tion, dead-code elimination or tail-call elimination [6].

Finally, the backend translates the middle-end representation into specific
instruction sets such as x86, IA-32 or ARM, optionally performing target-specific
optimizations along the way.

An advantage of this 3-part architecture is that when a new language (or
target architecture) is added into a compiler framework, only the frontend
(or backend) has to be implemented, and the rest of the framework can be
reused. This can be seen in Figure 1.2. For a specific example of this 3-part
architecture, consider the GCC [7] architecture in Figure 1.1.

1.2 Existing C++ Compilers

Since the goal of this thesis is to write a compiler for subset of C++, we explore
two commonly used C++ compilers: GCC and Clang/LLVM. A third widely

5



1. Analysis and Theory

Figure 1.1: GCC Architecture [1]

Figure 1.2: Compiler retargetability [2]

used compiler is MSVC [8], but since it’s proprietary software, we were not
able to find much information about its internals.

1.2.1 GCC

GCC, or the GNU Compiler Collection, is a set of open-source compiler tools.
It has front ends for many languages including C, C++, Fortran and Ada [7].
Every GCC front end has it’s own representation, which is then translated into
Generic, a language independent tree structure [9]. Generic is then translated
into GIMPLE, the GCC middle end representation [10]. GIMPLE has an SSA
GIMPLE form, where most optimizations are performed. GIMPLE is then
translated into RTL (Register Transfer Language), a low level intermediate
representation [11]. Finally, the machine code is produced from the RTL.

6



1.3. LLVM Intermediate Representation (LLVM IR)

1.2.2 Clang/LLVM

Clang is an open-source project under the LLVM Project umbrella [12]. It
is a compiler frontend for languages in the C language family (such C, C++,
Objective-C). It parses source code into an AST representation. The AST
purposefully contains a lot of source code information so that aside from code
generation, it can also be used for tasks such as static analysis and code refac-
toring [13], for example it is used by the clang-tidy linter [14]. For code gen-
eration, Clang translates the AST into LLVM Intermediate Representation
(LLVM IR) [15]. Optimizations are performed on the LLVM IR, which is then
translated into machine code using tools from the LLVM project [16].

1.3 LLVM Intermediate Representation (LLVM IR)

LLVM Intermediate Representation (LLVM IR) is a low-level programming
language developed as a part of the LLVM Project. It aims to be target-
independent, uses virtual registers and is written in SSA form, which means
that a register can be assigned to only once. Many languages have frontends
that compile to LLVM IR, such as C, C++, Swift , Julia and Rust [16].
LLVM IR is popular because many code-optimization tools have been writ-
ten for it.

1.3.1 C++ API

A popular way to generate LLVM IR code is to use the LLVM C++ API. It
provides functionality to build entire LLVM IR programs and perform various
passes (such as optimization passes) over them.

The fundamental class is llvm::Module. It contains all information related
to a translation unit. Another important class is llvm::Context. It holds
information that can be shared between LLVM modules such as types. Next
is the llvm::IRBuilder, which is the class through which the programmer
creates specific instructions. These three classes are the base for LLVM IR
generation with the C++ API. Now we introduce the most common classes
that represent LLVM IR objects.

Value Probably the most used class during the process of LLVM IR genera-
tion is llvm::Value. As the name suggests, it represents a value. This can be
a constant, global variable, local variable, function, and much more.

BasicBlock Another very important class is llvm::BasicBlock. Basic blocks
group instructions together. If llvm::Value represents what is computed,
llvm::BasicBlock represents where it’s computed. Basic blocks are used to
organize instructions inside functions.

Terminator Instructions Every basic block finishes with a terminator in-
struction. These are instructions that direct control-flow elsewhere. Among
the most common are ret for returning from a function and br for branching.

7



1. Analysis and Theory

1 grammar Expr;
2

3 prog: (expr NEWLINE)* ;
4 expr: term ((PLUS | MINUS) term)*;
5 term: atom ((STAR | DIV ) atom)*;
6 atom: INT;
7

8 NEWLINE : [\r\n]+ ;
9 INT : [0-9]+ ;

10 PLUS : '+';
11 MINUS : '-';
12 STAR : '*';
13 DIV : '/';

Listing 1.1: Grammar Expr

GEP Instruction GEP stands for Get Element Pointer and it is an instruc-
tion that represents target-agnostic address computation. It is used to index
arrays, pointers and to obtain pointers to struct fields. Among newcomers to
LLVM IR, it is infamous because it tends to be hard to understand at first.
For better understanding, we recommend the blogpost from LLVM [17].

PHI Instruction The phi instruction is a special type of llvm::Value. It’s
initialized with one of multiple values, depending on the basic block predecessor
of the basic block where the phi instruction is located.

1.4 ANother Tool for Language Recognition 4
(ANTLR4)

ANTLR4 [18] (hereinafter referred to as ”ANTLR”) is a parser generator. From
provided grammar, ANTLR can generate a parser for this grammar in target
programming language (Java, C++, Python, Swift, and more [19]). ANTLR
also facilitates visitation of the parse tree that the user can use to write their
own passes over the parse tree.

The grammar is written in EBNF form [20] and can contain some extra
elements. Consider grammar Expr in Listing 1.1 that parses simple expressions.
The first line says that the grammar name is Expr. In the grammar, there are
four rules – prog, expr, term, atom – and six terminals – NEWLINE, INT,
PLUS, MINUS, STAR, DIV. The second line says that the rule prog can be
expanded into any number of expr that is followed by a NEWLINE. expr is
always expanded into term and possibly followed by any number of PLUS or
MINUS and term.

Priorities There are three rules – expr, term, atom – to express operator
priorities. They ensure that 1+2*3 gets parsed as 1+(2*3). However, we can
simplify the grammar as shown in Listing 1.2 to achieve the same result using
ANTLR priorities.
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1.4. ANother Tool for Language Recognition 4 (ANTLR4)

1 grammar Expr;
2

3 prog: (expr NEWLINE)* ;
4 expr: expr (STAR | DIV) expr |
5 expr (PLUS | MINUS) expr |
6 INT;
7

8 NEWLINE : [\r\n]+ ;
9 INT : [0-9]+ ;

10 PLUS : '+';
11 MINUS : '-';
12 STAR : '*';
13 DIV : '/';

Listing 1.2: Grammar Expr with priorities

Figure 1.3: ANTLR parse tree of 1+2*3-4

Now the rule expr has three alternatives and contains direct left-recursion.
The order of the alternatives determines which is preferred if multiple of them
are viable at given parsing step. We order alternatives from those with the high-
est precedence to those with the lowest. Consider a simple example, 1+2*3-4,
and the corresponding ANTLR parse tree in Figure 1.3. We can see the rule
names and alternative numbers taken at each step, ending with terminal sym-
bols as tree leaves.
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1. Analysis and Theory

1 grammar Expr;
2

3 @parser::members {
4 bool inJapan() { /* ... */ }
5 bool notFour() {
6 getCurrentToken()->getText() != "4";
7 }
8 }
9

10 prog: (expr NEWLINE)* ;
11 expr: expr (STAR | DIV) expr |
12 expr (PLUS | MINUS) expr |
13 {! inJapan() || notFour()}? INT;
14

15 NEWLINE : [\r\n]+ ;
16 INT : [0-9]+ ;
17 PLUS : '+';
18 MINUS : '-';
19 STAR : '*';
20 DIV : '/';

Listing 1.3: Grammar Expr with actions

Actions Imagine we’re using the grammar in elevator programs and want to
forbid number 4 if the user is Japanese 1 . We can update the grammar to that
in Listing 1.3. First we add use a new ANTLR construct parser::members. It
contains two C++ functions called inJapan and notFour, which return whether
the current location is Japan, and whether the next parsed token is four. Then,
in expr we place {! inJapan() || notFour()?} before INT. The curly braces
contain an ANTLR action. The action is a C++ expression that should be
executed when the parser reaches this point. If the result of this expression is
of boolean type, the curly braces can be followed by a question mark. Then, if
the expression evaluates to true, the parser proceeds past the action. However,
if it evaluates to false, the parser considers this rule alternative invalid and
returns from the rule. So, our third expr alternative will only be parsed if the
current location is not Japan, or if it is Japan and the number is not four.

Actions allows the programmer to conditionally allow or forbid some rules
based on the context. One disadvantage is that they’re written in the parser
target language (C++ in our example), and thus the grammar loses its inde-
pendence on target language when actions are added into it.

1Some East-Asian cultures have superstitions about the number four [21].
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Chapter 2
Language Specification

This chapter explores all the features that are implemented by our compiler,
and how (if) they differ from their counterparts in C++. We call the imple-
mented language C+- to differentiate it from C++.

This chapter is not a formal language standard.

2.1 Type system

C++ is a statically typed language and so is C+-. There are 4 different type
categories in C+-:

Simple types Represent basic types. This includes fundamental types (int,
char, bool, double, nullptr_t and the incomplete type void), and user
defined types (classes and structs). These types may be qualified as
const, signifying that the underlying value cannot be changed after ini-
tialization.
C+- supports only signed integer types.

Pointer types Represent pointer to another type. This type can be any sim-
ple type, pointer type or array type. Pointer types may also be qualified
as const, with the same meaning as simple types.
Unlike in C++, pointers to functions are not allowed in C+-.

Array types Represent array of fixed number of elements of some type. Ele-
ment type can be any complete simple type, pointer type or array type.
Array types in C+- are always declared with known size (an integer lit-
eral).

Function types Represent a function signature. It is defined by the return
type, list of parameter types, and whether the function takes variadic
arguments. The return type can be void, any complete simple type or
pointer type. A parameter type can be any complete simple type or
pointer type.
Unlike in C++, parameter types cannot be declared of array type.

In the source code, the file src/type/DerivedTypes.h contains our imple-
mentation of these.
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2. Language Specification

Similar types Two types are similiar if they are the same when stripped of
all const qualifiers, and they are not function types [22]. For example, const
int and int are similar. const double * const ** and double ** const *
are similar as well.

c-unqualified types The c-unqualified (or const-unqualified) version of type
T is:

• T without const qualifier if T is a simple type or a pointer type

• T otherwise

For example, int is the c-unqualified version of const int and int. double*
is the c-unqualified version of double *const and double *. However, the c-
unqualified version of const double * is still const double *, because the
const qualifier is removed only at the top level, the pointer in this case.

2.2 Expressions

Expressions are an indispensable part of C++ and C+-. They fundamentally
allow to programmer to process manipulate data in the program. As such, they
create a big part of most programming languages, and of C+-.

2.2.1 List of Expressions in C+-

C+- has these expressions:

• literals: integer (for example 5), character ('c'), boolean (true), float
(3.14), string ("ahoj"), null pointer (nullptr), this expression (this).

• a op b: binary expression where op can is one of:

+, -, *, /, %, &, |, ˆ, <<, >>, <, >, <=, >=, ==,
!=, &&, ||

with the same meaning as in C++.

• a assign op b assignment expression where assign op is one of:

=, +=, -=, *=, /=, %=, &=, |=, ˆ=, <<=, >>=

with the same meaning as in C++.

• a, b comma expression

• f() call expression

• a.b and ap->b member of object expression

• s.m(), sp->m() object method call expression

• a[b] subscript expression

• a ? b : c conditional ternary expression

12



2.2. Expressions

• a++, a-- post increment and decrement expressions

• unop a unary expression where unop is one of:

*, &, +, -, ˜, !, ++, --, sizeof

with the same meaning as in C++.

• sizeof(type) sizeof type expression

Please note that unlike in C++, the +, - and [] operators, when used with a
pointer and integral operands, only work when the pointer is the left operand 2.

2.2.2 Value Categories

Every C++ expression has two independent properties, a type and a value
category [24]. The type system has already been described, now we turn to
value categories in C+-.

In C++, every expression belongs to exactly one of three value categories:
lvalue, xvalue or prvalue [25]. C+- simplifies this system to two categories:
lvalues and rvalues. lvalues in general represent values that have a location
in memory, or as is often put, can be on the left-hand side of the assignment
operator. On the contrary, rvalues in general represent values that do not have
a location in memory, such as literals (except for string literals) or temporary
results of expressions. Expressions that exist both in C++ and C+- work as
follows:

• C++ prvalues are rvalues in C+-,

• C++ lvalues are lvalues in C+-,

and C++ xvalues are handled as follows in C+-:

• a.m, member of object expression with a as (p)rvalue is forbidden,

• a[n] subscript expression where a is an array rvalue is unachievable
(array cannot be an rvalue),

• a ? b : c ternary conditional expression is lvalue if both b and c
are lvalues (after implicit conversions take place), and rvalue if either b
or c one are rvalues (after implicit conversions take place),

• a, b comma expression has the value type of b,

• call expression the result is always an rvalue.

A consequence of the first and last points is that the code in Listing 2.1, which
is valid in C++, will produce an error in C+-.

2This means that the infamous C-(bug)feature 5[a] integer access by array [23] is invalid
in C+-.
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2. Language Specification

1 struct S {
2 int a;
3 S() {
4 this->a = 42;
5 }
6 };
7

8 void f() {
9 S().a; // c+- error: cannot access member of rvalue;

10 // is ok in c++
11 }

Listing 2.1: Member access on result of call expression

2.2.3 Implicit Conversions
C++ is (in)famous for the complexity of the implicit conversions that are allowed
by the standard [22].

C+- uses a simplified system, which is a subset of the C++ standard con-
version sequence.

Obtaining rvalue When converting a value, the first step is to obtain an
rvalue from the converted value. There are 4 options:

1. If the converted value is already an rvalue, this step is skipped,

2. if the converted value is an lvalue of simple or pointer type, lvalue-to-
rvalue conversion takes place,

3. if the converted value is an lvalue of array type, it is converted to an rvalue
of pointer to the first element of the array (array-to-pointer decay),

4. otherwise, the conversion is not well-formed.

Type conversions Once an rvalue is obtained, the following type conver-
sions are allowed:

• char, int, double, T* to bool, where T* is any pointer type, with the
meaning of Does the value equal zero or nullptr?,

• integral conversions (between bool, char, int),

• double to int,

• int to double,

• T* to const T *, const-strengthening of pointer element type,

• T* to void*, converting pointer of any type to void pointer,

• nullptr_t to T*, converting nullptr to any pointer type.
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2.3. Statements

1 void f(char c);
2 void f(double d);
3 void g() {
4 int i = 42;
5 f(i); // error: ambiguous call
6 }

Listing 2.2: Ambiguous call due to type conversion rules

The result of the type conversion is always an rvalue.
Only one implicit type conversion can be performed at a time. This means

that an expression of type char cannot be implicitly converted to expression
of type double (and vice versa), since the conversion would require two steps
with int as the middleman type.

Finally, note that in C+-, integral conversions (e.g. int to char) are not
of higher priority than other type conversions. An implication of this is that
the code in Listing 2.2 will fail to compile in C+-, because the function call is
ambiguous.

2.2.4 Explicit Conversions
C+- supports C-style casts, such as (int*) ptr. Every implicit type conver-
sion can also be done explicitly, and a pointer value of any type can be explicitly
cast to pointer of any other type.

2.3 Statements

Statements are the building blocks of functions. They are used for declarations
inside function, control-flow, and more.

C+- has the following statements:

Declaration statement variable declaration(s) inside of a function.

Expression statement expression followed by a semicolon.

If (Else) statement conditional statement.

Compound statement sequence of statements inside curly braces, intro-
duces new scope unless it’s the body of a function or a For statement.

Do While statement with body and condition.

While statement with condition and body.

For statement with (possibly empty) initializer statement, optional condi-
tion, and optional expression to be executed after each iteration.

Break statement optionally with a positive integer, more on that below.

Continue statement optionally with a positive integer, more on that below.

Return statement with or without an expression.
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1 if(int a = 5) { // valid in C++, invalid in C+-
2 // ...
3 }

Listing 2.3: Declaration as if-statement condition

1 int main() {
2 int i = 0, res = 0;
3

4 while(i < 5) {
5 i += 1;
6 res += 10;
7

8 while(true) {
9 break 2;

10 }
11

12 res += 42314; // this line will never be reached
13 }
14 return res; // return 10 for break 2, 50 for continue 2
15 }

Listing 2.4: Enhanced break and continue

If, While and For statements allow only for an expression in the condition.
Declarations, such as in Listing 2.3, are not allowed.

2.3.1 Enhanced Break and Continue

In C+-, break and continue can be optionally followed by a positive integer 3.
This positive integer indicates from which loop should the program break or
continue. break 1 means breaking (continuing) from the inner most loop; the
same as just break (continue) without any number. break 2 means break-
ing (continuing) from the second inner most loop. break 3 means breaking
(continuing) from the third inner most loop, and so on. Consider the program
in Listing 2.4. This program will return 10. If break 2 were substituted by
continue 2, the program would return 50.

2.4 Functions

Functions can be found in most programming languages. They are used to
express a series of instructions that are repeated in the program. In program-
ming, they are used heavily as a means of code re-use and to make code more
readable by given functions apt names.

3This feature is why C+- is not a subset of C++.
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2.4. Functions

1 int f(int a);
2 int f(const int b);

Listing 2.5: Multiple declarations of one function

Function signatures Functions are declared by their name, return type,
list of parameters and whether they take variadic arguments (ellipsis at the
end of argument list) or not. In C+-, function parameters must always be
declared with a name, and can have default values. Even though functions can
be declared with variadic arguments, these arguments are not accessible to the
programmer in C+-. However, function declarations with variadic arguments
can be used, called, and linked at link time (for example, printf can be linked
from libc and sqrt can be linked from libm).

Multiple function declarations A function can be declared (but not de-
fined) multiple times. Two declarations refer to the same function if:

• they are in the same scope,

• they have the same name,

• they have the same number of parameters and both or neither take vari-
adic arguments,

• their return types match and all their c-unqualified parameter types
match pair-wise.

For example, both declarations in Listing 2.5 refer to the same function. De-
fault argument values can only be specified in one declaration (it doesn’t matter
which declaration, but they can be used only after the declaration where they
had been specified).

Function overloading Functions can be overloaded in C+-. For two func-
tion declarations in the same scope with the same name to denote two different
functions (overloads), they must meet at least one of the following:

• have a different number of parameters,

• have at least one parameter type differ (c-unqualified),

• or one takes variadic arguments, the other does not.

Listing 2.6 contains an example with four different overloads of function f.
However, two overloads cannot differ only in return type. Code in List-

ing 2.7 will lead to an error.
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1 void f(int i);
2 void f(int i1, int i2);
3 void f(int i, ...);
4 void f(double d);

Listing 2.6: Function overloads

1 int f();
2 double f(); // error: differs from another overload only
3 // in return type
4

5 int g();
6 const int g(); // error: differs from another overload
7 // only in return type

Listing 2.7: Function overloads differ only in return type

Overload resolution If there are multiple overloads of one function name,
a call expression to this name must undergo overload resolution. C+- simplifies
the overload resolution rules of C++ [26]. The process of overload resolution in
C+- has three steps:

1. Collect candidate functions.

2. Select viable functions from candidates functions.

3. Find the best matching function from viable functions.

First, the list of candidate functions is formed by name lookup in the current
scope. Then viable functions are selected based on the m arguments passed in
the call. A candidate function F with p parameters is viable if the following
conditions are met:

1. the number of arguments is viable:

• m = p,
• m < p and F has default argument values for parameters m+1, m+

2, ..., p,
• m > p and F accepts variadic arguments.

2. every i-th argument for i in 1...min(p, m) can be implicitly converted to
the type of i-th parameter

If the set of viable functions is empty, there’s no matching function for the call.
Finally, we look for the best match from viable functions. First, for each

viable overload function F, we construct a list with m elements where the i-th
element describes how well the c-unqualified type of i-th argument matches
c-unqualified type of i-th parameter. There are 4 possibilities, from the best
to the worst:
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2.5. Classes

1. no implicit conversion is needed (e.g. argument type int and parameter
type const int),

2. a const qualifier must be added to the element type of pointer parameter
(e.g. argument type int* and parameter type const int*),

3. implicit type conversion between non-similar types must take place (e.g.
argument type int and parameter type double),

4. i > p, the argument is in the variadic arguments list.

For two viable overloads F1 and F2, we say that F1 is a better match than
F2 if it matches every argument at least as well as F2, and matches at least one
argument better than F2. If one overload is better than all the other overloads,
it is chosen. Otherwise, the call is ambiguous.

Lastly, let us note that overload names are not required to be mangled in
a specific way (unlike in C++). As a result, it may be impossible to link C+-
binaries with other object files.

Builtin functions Finally, the following functions are automatically de-
clared at the start of every C+- program:

• printf int (const char *, ...)

• scanf int (const char *, ...)

• sprintf int (char *, const char *, ...)

• sscanf int (const char *, const char *, ...)

• malloc void *(int)

• free void (void *)

This is so that C+- users don’t have to declare these functions themselves
whenever they want to use them (and since C+- doesn’t support macros and
header inclusion).

2.5 Classes

Classes are an important concept in programming. They allow the user to
compose a type from other types, and give names to these types (fields) within
the class type. They also provide a way to associate a set of functions (called
methods) with its objects, which is very useful.

C+- has classes and structs. They allow for:

• access modification through the public and private keywords,

• non-static members (fields and methods),

• constructors.
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The default access is private in classes and public in structs. Classes
cannot be forward declared, and must be declared in the global scope. Class
methods cannot be declared const and must be defined at declaration. There
are no default constructors added by the compiler or the user.

An insignificant advantage of C+-, compared to C++, is that class definition
does not have to be followed by a semicolon 4.

2.6 Declarations

Declarations allow the programmer to associate a name with some object. They
are used by the programmer to express basic concepts, such as variables, func-
tions, and classes, in the program.

2.6.1 List of Declarations in C+-

In C+-, the following declarations are possible within listed scopes:

• variable declaration, and possible initialization,

– available in the global scope, class scopes (field declaration, without
initializer), and local scopes

• function declaration (without definition),

– available in the global scope,

• function definition

– available in the global scope and class scopes (methods and con-
structors)

• class definition

– available in the global scope

• empty declaration (extraneous semicolon)

– available in the global scope

Multiple variables and/or functions can be declared at once with a shared
declaration specifier sequence, just as in C++.

Note that unlike in C++, variables of class type are not default initialized by
their zero argument constructor at declaration in C+-. They are in undefined
state, the same as local uninitiliazed variables of fundamental types [27]. In
example code in Listing 2.8, the value of s1.a is undefined, while value of s2.a
is 42.

2.7 Grammar

The grammar of C+- can be found in the file src/parser/grammar/CPM.g4.
We touch on some grammar rules in chapter 3.

4This is another place where we break from being a subset of C++.
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1 struct S {
2 int a;
3 S() {
4 this->a = 42;
5 }
6 };
7 void f() {
8 S s1; // s1.a is undefined
9 S s2 = S(); // s2.a is 42

10 // S s3(); // this would be a function declaration,
11 // search for 'vexing-parse'
12 }

Listing 2.8: Class object default initialization
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Chapter 3
Parsing

We use ANTLR4 to parse source code and create the AST from it. In this
chapter, we go into a little bit more detail about that. First, we start by
describing our AST.

3.1 Abstract Syntax Tree

Abstract syntax tree (AST) is a data structure that can be found in most
conventional compilers. It is a tree structure used to represent the semantics
of given program. This chapter explores the implementation of AST in this
thesis, which can be found in the src/ast directory (see Figure 3.1).

3.1.1 Polymorphism with std::variant

We decided to use std::variant from the C++ standard library to employ
polymorphism in our AST. std::variant is a class template that represents
type-safe union [28].

The following are some of the std::variant aliases which correspond to
different AST nodes categories:

• ast::Expr represents an expression,

• ast::Stmt represents a statement,

• ast::Declaration represents a declaration.

Figure 3.1: Structure of the src/ast directory

src/ast/ ......................directory with our implementaion’s AST
base ..................................nodes used by all other nodes
class ...................................... nodes related to classes
decl .................................. nodes related to declarations
expr ...................................nodes related to expressions
func .....................................nodes related to functions
stmt ................................... nodes related to statements
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3. Parsing

3.1.2 Helper Classes

There are many (more than 50) classes in the src/ast directory which represent
different types of nodes. In this section, we describe the few that are shared
by all nodes.

class ast::SourceInfo In order to provide good error reporting to the user,
we need to be able to map AST nodes back into the source file. For this, we
have the class SourceInfo. It holds information about the line and column
number where the code corresponding to the AST node starts.

class ast::Node There’s some information that is shared by all the nodes,
such as ast::SourceInfo. To share this among all nodes, there is the class
ast::Node, which is the base class of all node types.

ast::Node is not polymorphic (doesn’t have a virtual method or destructor)
by design. We believe it would not be a good long-term design idea to intertwine
two forms of dynamic polymorphism: std::variant and virtual methods. 5

alias ast::node_ptr In AST design, child nodes of a node are usually rep-
resented by pointers. For this, we have the alias node_ptr.

make_node The make_node function is used to create a node_ptr of either
given type, or of given type under given variant.

For example: make_node<IntLiteral>(5) will create an object of type
node_ptr<IntLiteral>. However, make_node<IntLiteral, Expr>(5) will
create an object of type node_ptr<Expr> which is a pointer to an Expr ob-
ject that contains an IntLiteral object.

change_node Since IntLiteral does not inherit from Expr, an object of type
node_ptr<IntLiteral> is not an object of type node_ptr<Expr>. This can
sometimes cause issues when we hold an object of type node_ptr<IntLiteral>,
but need to turn it into an object of type node_ptr<Expr>. For this, we have
the change_node function. It consumes a node_ptr to a node type, and turns
it into a node_ptr of a variant.

3.1.3 AST Dumping

Finally, for debugging and visualizations, we developed an AST visitor class
called AstDumper. This class prints an AST to an output stream in a structured
format that’s similar to that that of clang [12]. Its outputs are used heavily
in Chapter 4.

Our compiler can be used with the options --ast-dump-raw and --ast-dump
to print the AST before semantic analysis and after semantic analysis, respec-
tively.

5An exception to this is ast::Decl, which is a polymorphic class and base to
ast::FunctionDecl. However, we only define the virtual destructor of ast::Decl, and we
don’t override any methods.
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3.2. Grammar

3.2 Grammar

The ANTLR grammar that describes our language can be found in the file
src/parser/grammar/CPM.g4. It was created by starting with the C++ gram-
mar from ANTLR GitHub [29] (distributed under the MIT license), and mod-
ifying it for our purposes.

The grammar is quite long and at times complicated, so we won’t go rule-
by-rule in this section. Rather, we explore a few interesting spots.

3.2.1 Declarators
Declarators are used to express that value of certain name has certain type.
They are used in variable declarations, function definitions, parameter decla-
rations, and more. In C+-, there are 3 fundamental parts of a declarator:

1. declaration specifier sequence, represented by rule declSpecifierSeq,

2. pointer declarator, represented by rule pointerDeclarator,

3. no pointer declarator, represented by rule noPointerDeclarator.

declSpecifierSeq specifies the underlying simple type, possible const quali-
fiers, and can be shared by multiple declarators. pointerDeclarator possible
makes the underlying types pointer(s). noPointerDeclarator (see Listing 3.1)
then takes the type that has been created by pointerDeclarator and has 4
options:

1. Finish the declarator with an identifier.

2. Add parameters and qualifiers, making the current type a function type,
and nest into another no pointer declarator.

3. Add braces with potential expression inside, making the current type an
array type, and nest into another noPointerDeclarator.

4. Nest into another pointerDeclarator.

For better understanding, consider the following example of declaration of
multiple variables:

int i, *const p, **f(), arr[5], (*arr_ptr)[7];

5 values are declared:

1. i of type int (int),

2. p of type int *const (const pointer to int),

3. f of type int** () (function that takes no arguments and returns pointer
to pointer to int),

4. arr of type int [5] (array of 5 ints),

5. arr_ptr of type int (*)[7] (pointer to array of 7 ints).

Listing 3.2 describes how these declarators are parsed step-by-step.
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1 noPointerDeclarator:
2 // identifier
3 declaratorID
4 // function or array
5 | noPointerDeclarator (
6 // function
7 parametersAndQualifiers
8 // array
9 | LeftBracket constantExpression? RightBracket

10 )
11 // nested pointer declarator
12 | LeftParen pointerDeclarator RightParen;

Listing 3.1: noPointerDeclarator grammar rule

3.2.2 Binary Expressions

Different binary operators have different priorities [30]. In the official C++
grammar, this is achieved by having individual rules for operators of the same
priority level, which contain the rule of the next higher priority operator. This
is reflected in the ANTLR GitHub grammar [29], as show in Listing 3.3. This
is what is needed to express all the binary operators found in C+- language.
However, thanks to priorities in ANTLR4 grammars, we can simplify these
10 rules into one single rule as show in Listing 3.4. This makes the grammar
shorter, makes the operator precedence clear, and simplifies visitation of the
parse tree, as we need to implement only one visit method instead of ten.

3.2.3 Grammar Actions

Ideally, we would not have to put any ANTLR actions into our grammar since
they make the grammar parser language-specific. However, C++ grammar is
full of ambiguities and some can only be resolved by the context. Consider the
code i * j;. Is this a declaration of variable j of type i*, or a multiplication
of variables i and j? Without any knowledge of what code came before this
line, this cannot be determined. In order to resolve this specific ambiguity, we
add the following two actions (Listing 3.5 and Listing 3.6) to our grammar.
The action in the rule classHead adds the name of a newly declared class into
list of known types. The second action in rule simpleTypeSpecifier allows an
identifier (that comes from rule theTypeName) to represent a type name only
if it had been added to the list of known types. When the parser encounters
the snippet i * j;, it first tries the route of variable declaration. When it gets
to the first alternative in rule simpleTypeSpecifier, it proceeds if i has been
added to the type list, and cuts off this branch of parsing if not. If this path
was cut off, the parser then tries the multiplication path. 6

6To see the difference, take a look at the valid sample in
tests/valid inputs/i times j amb.cpp. Either run the antlr4-parse command with
-gui to show the parse tree, or use our compiler with the --ast-dump-raw option to see the
AST after parsing.
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3.2. Grammar

/* step 1, declaration specifier sequence */
int // 'int' is the only declaration specifier,

// continue with type 'int' for all declarators

/* step 2, pointer declarators, look for '*' from the left */
i // no '*', continue with type 'int'
*const p // '*const', continue with type 'int *const'
**f() // '**', continue with type 'int **'
arr[5] // no '*', continue with type 'int'
(*arr_ptr)[7] // no '*', continue with type 'int'

/* step 3, no pointer declarators, look from the right */
i // identifier, return {i, int}
p // identifier, return {p, int *const}
f() // parameter list '()', continue into 'f'

// with type 'int** ()'
arr[5] // array size '[5]', continue into 'arr'

// with type 'int[5]'
(*arr_ptr)[7] // array size '[7]', continue into

// '(*arr_ptr)' with type 'int[7]'

/* step 4, nested no pointer declarators, look from the right */
f // identifier, return '{f, int** ()}'
arr // identifier, return '{arr, int[5]}'
(*arr_ptr) // pointer declarator inside (),

// continue into '*arr_ptr' with type 'int[7]'

/* step 5, pointer declarator, look for '*' from the left */
*arr_ptr // '*', continue into 'arr_ptr'

// with type 'int (*)[7]'

/* step 6, no pointer declarator, look from right */
arr_ptr // identifier, return {arr_ptr, int (*)[7]}

/* all declarators have been parsed */

Listing 3.2: Declarator parsing example
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3. Parsing

1 multiplicativeExpression:
2 pointerMemberExpression (
3 (Star | Div | Mod) pointerMemberExpression
4 )*;
5 additiveExpression:
6 multiplicativeExpression (
7 (Plus | Minus) multiplicativeExpression
8 )*;
9 shiftExpression:

10 additiveExpression (shiftOperator additiveExpression)*;
11 shiftOperator: Greater Greater | Less Less;
12 relationalExpression:
13 shiftExpression (
14 (Less | Greater | LessEqual | GreaterEqual)
15 shiftExpression
16 )*;
17 equalityExpression:
18 relationalExpression (
19 (Equal | NotEqual) relationalExpression
20 )*;
21 andExpression: equalityExpression (And equalityExpression)*;
22 exclusiveOrExpression: andExpression (Caret andExpression)*;
23 inclusiveOrExpression:
24 exclusiveOrExpression (Or exclusiveOrExpression)*;
25 logicalAndExpression:
26 inclusiveOrExpression (AndAnd inclusiveOrExpression)*;
27 logicalOrExpression:
28 logicalAndExpression (OrOr logicalAndExpression)*;

Listing 3.3: Binary operator precedence expressed by 10 rules

3.3 AST Building

Now let’s turn to how our AST is built from the parse tree. Once ANTLR
parses the input with our provided grammar, it returns the parse tree. Con-
sider the literal rule in Listing 3.7 from our grammar, which handles literals.
For the C++ parser, ANTLR automatically generates the class in Listing 3.8 to
represent this rule. The methods that return antlr4::tree::TerminalNode*
such as IntegerLiteral or CharacterLiteral correspond to terminals in
the literal grammar rule. If a parsed literal is an integer literal, only the
IntegerLiteral method will return a pointer to an object, while the other
methods will return nullptr. We can use this to implement the visitLiteral
method in our parse tree visitor, which takes a LiteralContext* and return
an ast::node_ptr<ast::Expr> node that represents the literal in the AST.
Here’s the function’s code of first three cases: Note that at the first line, we use
the src_info function, which creates ast::SourceInfo from the rule context.

Oftentimes, these visit methods call other visit methods inside them, and
they sometimes have to change the node type using the ast::change_node
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1 binaryExpression:
2 castExpression
3 | binaryExpression (Star | Div | Mod) binaryExpression
4 | binaryExpression (Plus | Minus) binaryExpression
5 | binaryExpression (Greater Greater | Less Less)
6 binaryExpression
7 | binaryExpression (Less | Greater |
8 LessEqual | GreaterEqual) binaryExpression
9 | binaryExpression (Equal | NotEqual) binaryExpression

10 | binaryExpression And binaryExpression
11 | binaryExpression Caret binaryExpression
12 | binaryExpression Or binaryExpression
13 | binaryExpression AndAnd binaryExpression
14 | binaryExpression OrOr binaryExpression
15 ;

Listing 3.4: Single rule with ANTLR priorities to handle binary operator prece-
dence

1 classHead:
2 classKey classHeadName {add_ty($classHeadName.text);} ;

Listing 3.5: Grammar rule classHead

1 simpleTypeSpecifier:
2 {ty_exists()}? theTypeName
3 | Char
4 | Bool
5 | Int
6 | Double
7 | Void;

Listing 3.6: Grammar rule simpleTypeSpecifier

1 literal:
2 IntegerLiteral
3 | CharacterLiteral
4 | FloatingLiteral
5 | StringLiteral
6 | BooleanLiteral
7 | PointerLiteral;

Listing 3.7: literal grammar rule
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3. Parsing

1 class LiteralContext : public antlr4::ParserRuleContext {
2 public:
3 LiteralContext(antlr4::ParserRuleContext *parent,
4 size_t invokingState);
5 virtual size_t getRuleIndex() const override;
6 antlr4::tree::TerminalNode *IntegerLiteral();
7 antlr4::tree::TerminalNode *CharacterLiteral();
8 antlr4::tree::TerminalNode *FloatingLiteral();
9 antlr4::tree::TerminalNode *StringLiteral();

10 antlr4::tree::TerminalNode *BooleanLiteral();
11 antlr4::tree::TerminalNode *PointerLiteral();
12 };

Listing 3.8: LiteralContext class

1 declaration:
2 simpleDeclaration
3 | functionDefinition
4 | classDefinition
5 | emptyDeclaration;

Listing 3.9: declaration rule

function described before. An example of this is the declaration rule in
Listing 3.9 and the corresponding visitDeclaration method in Listing 3.10.

This is how most visit rules are implemented: they visit child rules, obtain
AST nodes from them, and combine these nodes into another node, or change
the node type.

3.4 Error Reporting

If the input doesn’t match the grammar, the parser will automatically print an
error. Consider the code snippet and the error produced by ANTLR (and our
compiler) in Listing 3.11.

However, if the input matches the grammar, but still contains an error
(perhaps because our grammar is too loose in some places), our visitor will
report the error along with printing the line which caused it. Consider the
example with extraneous const specifier in Listing 3.12.
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1 ast::node_ptr<ast::Declaration>
2 MyParserVisitor::visitDeclaration(
3 ParserParser::DeclarationContext *ctx) {
4 auto source_info = src_info(ctx);
5 if(auto child = ctx->simpleDeclaration()) {
6 auto sd = visitSimpleDeclaration(child);
7 return change_node<SimpleDeclar, Declaration>(move(sd));
8 }
9 else if(ctx->functionDefinition()) {

10 auto fd =
11 visitFunctionDefinition(ctx->functionDefinition());
12 return change_node<FuncDef, Declaration>(move(fd));
13 }
14 else if(ctx->classDefinition()) {
15 auto cd = visitClassDefinition(ctx->classDefinition());
16 return change_node<ClassDef, Declaration>(move(cd));
17 }
18 else if(ctx->emptyDeclaration())
19 return make_node<EmptyDeclaration,
20 Declaration>(move(source_info));
21 report_unhandled_case("visitDeclaration", ctx);
22 }

Listing 3.10: visitDeclaration method

1 // declaration with unknown type
2 UnType t;
3

4 /* produced error: */
5 // line 2:0 no viable alternative at input 'UnType'
6 // error: invalid syntax

Listing 3.11: Input that doesn’t match the grammar

1 const const int a;
2

3 /* produced error: */
4 // error: line 1: multiple const qualifiers
5 // const const int a;

Listing 3.12: Input that matches grammar, but still is syntactically invalid
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Chapter 4
Semantic Analysis

Code that passes syntactic analysis (conforms to the grammar) may still break
the language rules in plenty of ways. This is where semantic analysis comes
in. It takes in the AST, checks it for correctness and possibly updates it by
adding new nodes or modifying old ones. In our project, this is done by the
class SemanticChecker.

4.1 Program Correctness

First big responsibility of the SemanticChecker is to check that the program is
correct according to the language rules. There are many ways a grammatically
correct program can break the rules.

4.1.1 Scoping
The scoping rules of C+- are pretty simple. We have the global scope. Then,
every class has its own scope. A function has its own scope with arguments
and locally declared variables. Every for loop has its scope. And finally, a
compound statement introduces a new scope unless it is the body of a function
or a for loop.

In our semantic checker, the compiler keeps track of scopes by having a
linked list, where every scope has a pointer to its parent scope (which is nullptr
for the global scope). The compiler keeps a pointer to the current scope, and
to the global scope. When a new scope is be introduced, the compiler creates
it, sets the current scope as its parent, and saves the pointer to it into the
current scope variable. When a scope finishes, current scope pointer back to
its parent.

A scope itself than contains a map that maps names (identifiers) to lists
of values, std::map<std::string, std::vector<ScopeValue>>. The reason
we use a vector is due to function overloading – one identifier can refer to
multiple functions.

4.1.2 Type Checking
There are many places where the compiler has to check if types match, or one
type can be converted to another. For that, the compiler has the function
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4. Semantic Analysis

implicitly_convertible which decides whether (and how) an rvalue of one
type can be converted rvalue of another type. There’s a lot of type checking
in the compiler, the following are just some examples:

• a = b assignment expression

– a type must not be const-qualified,
– a cannot be an array or a function,
– b must be implicitly convertible to the type of a.

• a op b binary expression

– op must be defined for types of a and b, or they must be implicitly
convertible such that op is defined 7.

• a[b] subscript expression

– a must be of pointer type 8,
– b must be of integral type.

• a ? b : c conditional ternary expression

– a must be implicitly convertible to bool,
– b and c must be implicitly convertible to a common type.

• ++ -- operators

– the operand must be of integral or pointer type (C+- doesn’t allow
for operator overloading).

• ˜ bit-not operator

– the operand must be of integral type.

• (type) expr cast expression

– expr must be explicitly convertible to type.

4.1.3 Value Category Checking
Another property of expressions, their value category, can also lead to incorrect
programs. Consider code 5 = a + b. The compiler has to catch that 5 is an
rvalue, and that it cannot be on the left-side of assignment.

These are all the value category checks that the compiler performs:

• a = b assignment expression

– a must be an lvalue.

7In the source code, this is handled in the SemanticChecker::conversions_for_bin_op
method

8If a is of array type, it will first be decayed to pointer. More on that later in the chapter.
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4.1. Program Correctness

1 void f() {
2 break; // error, not deep enough to call break
3 }
4

5 void g() {
6 while(true)
7 continue 2; // error, not deep enough to call continue 2
8 }

Listing 4.1: Incorrect break and continue

• a ? b : c conditional ternary expression

– if b and c operands are lvalues and no implicit conversions are
needed, the result is an lvalue,

– otherwise the result is an rvalue.

• ++ -- operators

– operand must be an lvalue.

• & address-of operator

– the operand must be an lvalue.

• a.b member access

– a cannot be an rvalue (see Chapter 2).

4.1.4 Statements
During semantic analysis, most statements are quite simple to handle. Usu-
ally, their children are simply visited. But these statements require additional
processing:

Break and Continue Check that the break or continue level does not ex-
ceed current loop depth (both of the functions in Listing 4.1 should cause
an error during compilation).

Return statement Check that the returned expression can be implicitly con-
verted to the function return type; or if the return statement lacks the
return expression, check that the function return type is void. Possible
cases are shown in Listing 4.2.

For, While, DoWhile, If statements Check that the condition expression
is implicitly convertible to bool. Also for the loop statements (For, While,
DoWhile), increase current loop depth by one for the duration of the
body.

Compound statement Create a new scope (unless specified not to according
to Chapter 2, see example in Listing 4.3).
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4. Semantic Analysis

1 double f1() {
2 return 42; // ok, 'int' is implicitly convertible
3 // to 'double'
4 }
5 double f2() {
6 double *ptr;
7 return ptr; // error, 'double*' is not convertible
8 // to 'double'
9 }

10 void f3_help() {
11 return; // ok, return without expression
12 // in 'void' function
13 }
14 void f3() {
15 return f3_help(); // ok, both return type and
16 // returned expression are 'void'
17 }
18 void f4() {
19 return f2(); // error, type of f2() is not 'void'
20 }

Listing 4.2: Return statement options

1 void foo(int a) {
2 int a; // error: redeclaration of 'a'
3

4 for(int i = 0; i < 5; i++) {
5 int i; // error: redeclaration of 'i'
6 // ...
7 }
8 }

Listing 4.3: Special cases of redeclaration inside compound statement

4.1.5 Functions

Functions require a lot of logic from the compiler. They have two stages –
declaration and definition. They can be re-declared, and their parameter types
can differ in their const-qualification between different declarations. They can
have default arguments. They can be overloaded, and function calls have to
go through overload resolution. Let’s take a look at how the compiler handles
some of these issues.

Function name resolution When a function (declaration or definition) is
first encountered, the function must be declared in the scope. First, the com-
piler has to check that the name doesn’t already refer to a different kind of
object, such as a variable. Then, if the scope already contains function(s) un-
der this name, the new function must be compared with each of these functions.
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4.1. Program Correctness

1 void f(double d = nullptr); // error: object of type
2 // 'nullptr_t'
3 // cannot be converted to type
4 // 'double'
5 void g(int i = 5, double d); // error: gap in default
6 // arguments

Listing 4.4: Invalid default arguments

1 int f(int i);
2 // int i1 = f(); // error: no matching function for call of 'f'
3 int f(int i = 5); // re-declare function with default arg
4 int i2 = f(); // ok, 'f' is called as 'f(5)'

Listing 4.5: Late definition of default argument

1 int f(int i, double d = 3.14);
2 int f(int i, double d = 3.14); // error: default argument
3 // redefinition

Listing 4.6: Default argument redefinition

Possible cases are:

1. the new function is a re-declaration of an old function,

2. the new function is a different overload than all the other overloads,

3. the new function differs from an old function only in return type (which
is invalid), and an error must be raised.

Default arguments After name resolution and function declaration, the
compiler handles default arguments. The provided values must be convert-
ible to the parameter types. Also, once default argument value is defined for
parameter number i, all parameters i + 1, i + 2, . . . , must also have default
argument values. Both declarations in Listing 4.4 should not compile. If the
function passes those checks, the compiler has to save the default argument
values as it goes through the program. This is illustrated in Listing 4.5.

Finally, the compiler must check that default arguments are only defined
once, even if the shared default argument values are the same (see Listing 4.6).

Overload resolution When a function is called, the compiler does overload
resolution to determine whether there’s exactly one function in current scope
that matches the call the best. This is done according to the rules in Chapter 2.
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1 struct S {
2 int foo() {
3 return this->m;
4 }
5

6 int m;
7 };

Listing 4.7: Class member referenced before declaration

4.1.6 Classes

Moving onto classes, they are the only place in our language where objects can
be referred to before they are declared. Consider the code in Listing 4.7. In
member function foo, we are referring to member field m, which has not been
declared at the time of foo’s definition. This is viable code in C++ and in C+-.
This means that the compiler cannot process a class definition with just one
linear pass. The semantic analyzer has to do (at least) two passes over the
class definition.

In the first pass, it collects all the members and their types, and creates
the class symbol table from this. Function default arguments or bodies are not
processed, as they might refer to members that have not been declared yet.

In the second pass, function default arguments and bodies are processed
using the symbol table created in the first pass.

When processing default arguments of methods, we must check that they
do not refer to non-static class members or the implicit this argument [31].
However, they can contain class constructors 9.

Finally, whenever a class member is accessed outside the class, the compiler
checks that it is not private.

4.2 AST Structure Modifications

Second class of responsibilities of the semantic checker is to add new nodes
such that the AST truly reflects the written program, as the parser is limited
in its capabilities.

4.2.1 Implicit Conversions

Consider the program in Listing 4.8. The builtin operator + takes two rval-
ues, so a must first be implicitly converted to an rvalue. However, this is not
reflected in the AST before semantic analysis, because the parser doesn’t differ-
entiate between lvalue and rvalue expressions (see Listing 4.9). So the semantic
checker adds a node for this conversion to the AST (see Listing 4.10).

9In C++, a default argument can also contain references to static class methods or fields
that have not been declared yet. However, C+- doesn’t allow for static members, so we are
only concerned with constructors.
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1 int a = 37;
2 int b = a + 5; // implicit lvalue-to-rvalue for 'a'

Listing 4.8: Example with lvalue-to-rvalue conversion

-InitDeclarator <line:2:5>
|-Decl <line:2:5> b 'int'
-BinaryExpr <line:2:9> '+'
|-IdExpr <line:2:9> a
-IntLiteral <line:2:13> 5

Listing 4.9: AST of b before semantic analysis

-InitDeclarator <line:2:5>
|-Decl <line:2:5> b 'int'
-BinaryExpr <line:2:9> '+'
|-LValToRValExpr <line:2:9>
| -IdExpr <line:2:9> a, declared on line 1
-IntLiteral <line:2:13> 5

Listing 4.10: AST of b after semantic analysis

The same has to be done with the implicit array-to-pointer decay conver-
sion. In C+-, when an lvalue of array type is used in an expression context, it
is automatically decayed to pointer to the first element unless:

• the array is the operand of the & address-of operator,

• the array is the operand of sizeof operator 10.

Finally there are implicit type conversions. These can be found in many
places, such as converting condition expression to bool, one operand of binary
expression to another, or converting function call argument to type of func-
tion parameter. Since the converted value must always be an rvalue, implicit
type conversions are often preceded by lvalue-to-rvalue or array-to-pointer-
decay conversions. This is illustrated in the example in Listing 4.11 and the
corresponding AST in Listing 4.12.

4.2.2 Other Structure Modifications

Now let’s turn to some of the cases that don’t fall under the category of implicit
conversions.

10This is based on C array to pointer conversion, since they cover what is implemented
in C+- rules [32].
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1 void f(void *ptr, int size);
2 int main() {
3 int arr[5];
4 char c;
5 f( arr, // int[5] -> int*, int* -> void*
6 c // lvalue-to-rvalue, char->int
7 );
8 }

Listing 4.11: Implicit conversions combined

-CallExpr <line:5:5> 'void (ptr to void, int)', ...
|-IdExpr <line:5:5> f, declared on line 1
|-ImplicitTypeCastExpr <line:5:5> 'ptr to void'
| -ArrToPtrExpr <line:0:0>
| -IdExpr <line:5:9> arr, declared on line 3
-ImplicitTypeCastExpr <line:5:5> 'int'

-LValToRValExpr <line:5:5>
-IdExpr <line:6:9> c, declared on line 4

Listing 4.12: AST of implicit conversions combined

1 int main() {
2 int arr[5];
3 sizeof arr;
4 }

Listing 4.13: sizeof arr example

sizeof an expression the unary expression sizeof with an expression as
its operand is turned into a sizeof(type) expression. The reason is that the
type of the operand is known at compile type, and so our compiler can replace
the ast::UnaryExpr node with a ast::SizeofTypeExpr node. Consider the
example in Listing 4.13, the AST before semantic analysis (Listing 4.14) and
the AST after semantic analysis (Listing 4.15).

The advantage of this is a simpler AST. However, this can be a disadvantage
for refactoring tools that would use the AST to rename variables [13].

-ExprStmt <line:3:5>
-UnaryExpr <line:3:5> 'sizeof'

-IdExpr <line:3:12> arr

Listing 4.14: AST of sizeof arr before semantic analysis
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-ExprStmt <line:3:5>
-SizeofType <line:3:5> '[5 x int]'

Listing 4.15: AST of sizeof arr after semantic analysis

1 struct S {
2 int a;
3 int foo() {
4 return a + 5; // implicit 'this->a'
5 }
6 };

Listing 4.16: Implicit class member access

-BinaryExpr <line:4:16> '+'
|-IdExpr <line:4:16> a

-IntLiteral <line:4:20> 5

Listing 4.17: AST of implicit member access before semantic analysis

Implicit member access inside class methods During parsing, any time
an identifier is encountered in the context of an expression, such as a in a +
5, an ast::IdExpr node is created. This node signifies the use of a value from
the local scope. However, a doesn’t always have to be from the local scope; it
can refer to a non-static class member. Consider the code in Listing 4.16. If
we look at the AST before semantic analysis (Listing 4.17), the a in a+5 is an
ast::IdExpr, even though it refers to a non-static class member. This is fixed
during semantic analysis (see Listing 4.18).

Adding default arguments to functions calls When the programmer
calls a function with less arguments than is the number of parameters, default
arguments have to be used. During semantic analysis, the compiler recognizes
this and adds these default arguments to the call argument list.

-BinaryExpr <line:4:16> '+'
|-LValToRValExpr <line:4:16>
| -MemberAccess <line:4:16> ->a
| -ImplicitThisExpr <line:4:16>
-IntLiteral <line:4:20> 5

Listing 4.18: AST of implicit member access after semantic analysis
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1 double global_d;
2 int foo(int i, double d = global_d, void *ptr = nullptr);
3 // ...
4 int a = foo(42);

Listing 4.19: Default arguments used in a call

-CallExpr <line:4:9> 'int (int, double, ptr to void)', ...
|-IdExpr <line:4:9> foo, declared on line 2
|-IntLiteral <line:4:13> 42
|-DefaultArgExpr <line:4:9>
| -LValToRValExpr <line:2:5>
| -IdExpr <line:2:27> global_d, declared on line 1
-DefaultArgExpr <line:4:9>

-ImplicitTypeCastExpr <line:2:5> 'ptr to void'
-NullptrLiteral <line:2:49>

Listing 4.20: AST of call expression with default arguments

Consider the example in Listing 4.19 and the corresponding AST of the call
expression in Listing 4.20.

4.3 AST Node Modifications

Sometimes, all that’s needed is to modify the nodes that already exist. We
discuss these cases and their usefulness in the following paragraphs.

Multiple function declarations C+- allows for multiple declarations of one
function. To the programmer, this brings some advantages such as being able to
call a function in a translation unit, while only knowing the function signature,
and not the function definition. To the compiler engineer, this brings some
headache. The compiler has to known whether the function that it’s currently
processing refers to a function that has already been declared, or not. This
matters when we’re generating the intermediate representation (in our case
LLVM IR), where a function should be created only once. For this reason,
when the compiler encounters a function declaration that matches a previous
declaration in the same scope, it saves the pointer to the first declaration of
this function. This is later used by the compiler during LLVM IR generation.

Name resolution During semantic analysis, the compiler is doing scoping
and name resolution. As a part of that, when an identifier is used in an
expression, the compiler has to determine what value this name refers to in the
current scope (possibly by performing overload resolution for functions). Once
it resolves this, it saves a pointer to the declarator of that value in the AST.
This allows AST passes that follow semantic analysis not to track symbol tables.
For an example, see Listing 4.21 and the corresponding AST in Listing 4.22.
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1 int f(int i);
2 int f(void *p);
3 int main() {
4 int i;
5 f(i) + f(nullptr);
6 }

Listing 4.21: Name resolution example

-ExprStmt <line:5:5>
-BinaryExpr <line:5:5> '+'
|-CallExpr <line:5:5> 'int (int)', ... line: 1
| |-IdExpr <line:5:5> f, declared on line 1
| -LValToRValExpr <line:5:5>
| -IdExpr <line:5:7> i, declared on line 4
-CallExpr <line:5:12> 'int (ptr to void)', ... line: 2
|-IdExpr <line:5:12> f, declared on line 2
-ImplicitTypeCastExpr <line:5:12> 'ptr to void'

-NullptrLiteral <line:5:14>

Listing 4.22: AST of f(i) + f(nullptr); in Listing 4.21

1 void f() {
2 int i = 0;
3 i += 3.14; // value from i must be converted to 'double'
4 }

Listing 4.23: Plus-equals operator with type conversion of left-hand side
operand

Assignment left-hand side type When dealing with compound assign-
ment (any assignment operator except for the simple =), we face a unique
challenge: when we’re doing the compound operation before the assignment
itself (e.g. the + of += operator), we might have to convert the left-hand side
value to another type. Consider the code in Listing 4.23 and its equivalent
with simple assignment operator in Listing 4.24.

As shown previously in this chapter, the i in i + 3.14 would first undergo
lvalue-to-rvalue conversion, and then int to double type conversion. Finally,
the result of the addition would undergo double to int conversion before being
stored back to i. We have to replicate this behavior with i += 3.14, but we
cannot add an lvalue-to-rvalue conversion node to i, because as was noted
before, the left-hand side of assignment must be an lvalue. So to allow for this,
the compiler saves the type to which the left-hand side must be converted in
the AST. The AST passes that do code generation after semantic analysis can
then use this information to do the following:
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1 void f() {
2 int i = 0;
3 i = i + 3.14; // value from i must be converted
4 // to 'double'
5 }

Listing 4.24: Equivalent of Listing 4.23 with simple assign operator

1 void f() {
2 int *p;
3 // error, pointer + double is invalid
4 p + 3.14;
5 }

Listing 4.25: Example with an error found during semantic analysis

line 4:2: error: invalid operands for binary op +:
'ptr to int' and 'double'

p + 3.14;

Listing 4.26: Error message of error during semantic analysis

1. load value from lhs (obtain lhs rvalue),

2. convert this lhs rvalue to the type saved in the AST,

3. perform the operation (e.g. +) with converted lhs rvalue and rhs,

4. convert the result back to original lhs type,

5. store the converted result in the lhs.

In section 5.4.4, we show how this is done during the LLVM IR generation.

4.4 Error Reporting

If SemanticChecker encounters a semantic error, it reports it with a message
of what went wrong, and string of the line. Consider example in Listing 4.25
and the corresponding error message from our compiler in Listing 4.26.

Errors are signaled by an exception from SemanticChecker, and so there’s
no error recovery – the compiler catches only one error at a time.

44



Chapter 5
LLVM IR Generation

Now that the AST has been checked for correctness, and has been modified to
include all the necessary information such as implicit conversions, we can visit
the AST and use the LLVM C++ API to create LLVM IR of our program. In
this chapter, we describe some of the interesting details of this process. We
don’t describe all the basics of the C++ API, as that would be a lot of text, and
has been done elsewhere [33, 34]. Readers interested in how specific AST nodes
are processed within our compiler are encouraged to look into the source code.
The AST pass that generates LLVM IR is handled in the class LLBuilder.

Finally, note that we are using LLVM 14 along with some features that are
not present in the newer LLVM versions (such as typed pointers).

5.1 Scoping

LLBuilder doesn’t keep track of scopes, it has is a map that maps declarators
to values: std::map<const ast::Declarator *, llvm::Value *> vals. In
this map, the compiler saves llvm::AllocaInst* created for local variables
and llvm::GlobalVariable* for global variables (the common base type of
these two is llvm::Value) when they are declared. Later, when a variable
is used in an expression context, the compiler uses the ast::IdExpr::var
member, that was saved during semantic analysis, to find the value in the vals
map (see Listing 5.1).

1 llvm::Value *LLBuilder::operator()(const ast::IdExpr &node) {
2 check(node.var.has_value());
3 const ast::Decl *ast_decl = node.var.value();
4 return vals.at(ast_decl);
5 }

Listing 5.1: ast::IdExpr visit method in LLBuilder
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1 int a = 40;
2 int b = 2;
3 int c = a + b;

Listing 5.2: Global variables initialization

5.1.1 Global Variables and Constructors

Global variables have a special place in C++ in that if their declaration includes
initialization, they are to be initialized before the main function is executed.
How do we achieve this behavior in LLVM IR? We could simply pretend that
they are executed before main by putting the initializer instructions at the
beginning of main. But what if the compiled program doesn’t contain the
main function, and is intended to be later linked with another program? How
do we make sure that the global variables will still be initialized correctly?
Fortunately, LLVM IR was developed with C and C++ in mind, and it provides
exactly what we need, which is the global variable @llvm.global ctors [35].
Simplified, this is a global variable of array type, where the programmer can
store pointers to functions that they want executed before the main function.
It has two interesting properties:

1. the linkage of this variable is appending,

2. the array elements are structs that contain an integer and two pointers.

First, the appending linkage specifies that this variable can be declared in
multiple (LLVM) modules, and that if those modules are linked together, these
lists (arrays) will be concatenated [15]. In the array element type, the struct
with one integer and two pointers, the integer specifies the priority of given
element (function). The lesser it is, the sooner the function will be executed.
For example, if the array @llvm.global ctors contained two struct objects
with priorities 100 and 1, respectively, the function from the second struct
would be executed before the first. The first pointer in the struct is a pointer
to the function that should be executed. Finally, the other pointer allows the
programmer to additionally specify when the function should (not) be executed.
It is often left as null pointer.

Coming back to our LLBuilder and the LLVM IR generation, when the
compiler encounters a global variable with an initializer, it creates the variable
@llvm.global ctors, creates a function where all global initializations will
take place, and puts a pointer to this function into the array. Consider the
example of program with three global variables in Listing 5.2. Our compiler
will produce LLVM IR in Listing 5.3. We can observe how all three variables are
initialized in the run_global_ctors.cpp function 11 , and that this function
is included in the initializer of the @llvm.global ctors variable.

11The dot . in the run_global_ctors.cpp function name is intentional as to avoid name-
collisions with user defined functions.
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1 @global_a = global i32 0
2 @llvm.global_ctors = appending constant [1 x { i32, void ()*,

i8* }]↪→

3 [{ i32, void ()*, i8* }
4 { i32 65535, void ()* @run_global_ctors.cpp, i8* null }]
5 @global_b = global i32 0
6 @global_c = global i32 0
7

8 define internal void @run_global_ctors.cpp()
9 section ".text.startup" {

10 entry:
11 store i32 40, i32* @global_a, align 4
12 store i32 2, i32* @global_b, align 4
13 %0 = load i32, i32* @global_a, align 4
14 %1 = load i32, i32* @global_b, align 4
15 %2 = add i32 %0, %1
16 store i32 %2, i32* @global_c, align 4
17 ret void
18 }

Listing 5.3: Global variables initialization in LLVM IR

5.2 Functions

Functions are the building blocks of LLVM IR. LLVM IR functions are quite
similar to C++ functions – they can be declared and/or defined, their signature
has the same structure as C++ functions, they have the ret instruction to
mirror the return statement. For the most part, all the compiler has to do
to is to visit individual statements within the function and generate code for
them. However, there are a few things that require special attention.

5.2.1 Function Arguments

For one, arguments in C++ are by default mutable (unless they are const-
qualified), while they are not in LLVM IR. Consider the code in Listing 5.4.
This is viable code in C++, which rewrites whatever was in argument a with
value 5. However, consider the line-by-line equivalent of this code in Listing 5.5.
If we try to compile this with clang, we will get the error that’s at the bottom
of Listing 5.5, which says the that operand must be a pointer. The fundamental
difference between C++ and LLVM IR here is that in C++, a function argument
is an is mutable, while in LLVM IR, it is not mutable. To bridge this gap,
our compiler creates an alloca instruction for each argument and stores the
initial value there, before generating code for the body. Then, the arguments
can be treated in LLVM IR as any other variables. If we return back to the
last example, the LLVM IR our compiler generates can be found in Listing 5.6.
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1 void foo(int a) {
2 a = 5;
3 }

Listing 5.4: Function with mutated argument

1 define void @foo(i32 %a) {
2 entry:
3 store i32 5, i32 %a, align 4
4 br label %return
5

6 return: ; preds = %entry
7 ret void
8 }
9

10 ; Error caused at compilation:
11 ; test.ll:6:16: error: store operand must be a pointer
12 ; store i32 5, i32 %a, align 4
13 ; ˆ
14 ; 1 error generated.

Listing 5.5: Naive LLVM IR representation of code in Listing 5.4

1 define void @foo(i32 %a) {
2 entry:
3 %a.addr = alloca i32, align 4
4 store i32 %a, i32* %a.addr, align 4 ; store initial value
5 store i32 5, i32* %a.addr, align 4
6 br label %return
7

8 return: ; preds = %entry
9 ret void

10 }

Listing 5.6: Our LLVM IR representation of code in Listing 5.4
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1 int f() {
2 return 42;
3 }

Listing 5.7: Function with return instruction

1 define i32 @f() {
2 entry:
3 %ret_val = alloca i32, align 4
4 store i32 42, i32* %ret_val, align 4
5 br label %return
6

7 return: ; preds = %entry
8 %0 = load i32, i32* %ret_val, align 4
9 ret i32 %0

10 }

Listing 5.8: Function with return instruction in LLVM IR

5.2.2 Single Return Instruction
In LLVM IR, a function can have multiple return instructions in different basic
blocks. However, it’s common practice to have a single return instruction
per function (clang 17, julia 1.10.0 and rustc 1.78.0 do this in their
LLVM IR). Our compiler does this as well. When it processes a function
definition (ast::FuncDef), it

1. creates a basic block called return,

2. and an alloca with type of the function return type is created and called
ret_val (if the function return type is not void).

What happens in the basic block return is simple: for void functions, it calls
ret void. For not void functions, it creates a load from the ret_val and calls
ret with this load.

When a return statement is encountered in the function body, the returned
expression result is saved in ret_val, and the program branches to return
basic block. For an example, consider Listing 5.7 and Listing 5.8.

5.2.3 Implicit Return Instructions
In C++, functions that return void or are main have an implicit (void or 0)
return, which means that if there’s no return statement at the end of the
function, one is implicitly added. In LLVM IR, however, there are no such
exceptions. So how do we achieve this behavior? First, for the LLVM main
function, we store 0 into the ret_val variable before entering the function
body. Then, for both the void functions and the main function, the compiler
checks if there’s no terminator instruction at the end of the body, and if not,
adds a branch instruction to the return basic block (see Listing 5.9).
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1 // generate function body
2 codegen(*node.body);
3 // generate implicit return for main and void functions
4 if(! builder.GetInsertBlock()->getTerminator())
5 if(node.declarator->id == "main" || ret_ty->isVoidTy())
6 builder.CreateBr(return_bb);
7

8 /* code from LLBuilder::operator()(const ast::FuncDef &node) */

Listing 5.9: Generation of implicit return in LLBuilder

5.3 Statements

Statements get much more interesting during code generation than they were
during semantic analysis.

5.3.1 For, While, Do While, If
First, these statements: ast::ForStmt, ast::WhileStmt, ast::DoWhileStmt,
ast::IfStmt have a common skeleton during LLVM IR generation. They all
share three features:

1. They have a condition expression that directs control flow.

2. They have a body to which control flow should redirect if the condition
evaluates to true.

3. They have a place where control flow should be redirected if the condition
evaluates to false.

And then they have their individual rules. We’ll illustrate the process of
LLVM IR generation on what we deem the most complex of these four state-
ments – the for statement.

ForStmt Aside from the three stages mentioned above, a for statement pos-
sibly has an initializer statement and an extra expression that should be eval-
uated after each loop iteration. The condition is optional as well. The process
of executing a for statement goes like this:

1. Execute the initializer statement.

2. Check if the condition is true; if so, go to step 3, otherwise go to step
5 12.

3. Execute the body.

4. Execute the post-iteration expression and return to step 2.

5. Continue with code that follows the for statement.
12If the for statement doesn’t have a condition (e.g. for(int i = 0; ; i++), it always

branches from step 2 to step 3, as if the condition was true.
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1 int fact(const int n) {
2 int res = 1;
3 for(int i = 1; i <= n; ++i)
4 res = i * res;
5 return res;
6 }

Listing 5.10: Function calculating factorial

Each of these steps has its own basic basic block in LLVM IR. Consider the ex-
ample in Listing 5.10, which contains a function that uses a for statement
to calculate the factorial of a non-negative integer, and the corresponding
LLVM IR generated by our compiler in Listing 5.11. In the entry basic
block, we see the LLVM IR for code before the for loop. Then we branch to
for.pre_3 basic block, which represents the initializer statement int i = 1.
From then on, the LLVM IR follows the steps described above.

Note that there are some special cases which have to be handled – specifi-
cally when the statement body contains a terminator instruction (in C+-, this
can come from a break, continue or a return). These are handled with the
llvm::BasicBlock::getTerminator() and llvm::pred_empty() functions.

BreakStmt and ContinueStmt Related to loops are break and continue
statements. They are the same in that cause a premature exit from a loop
body. However, they differ in the destination of the exit. In the case of break,
the entire loop ought to be stopped. In the case of continue, the program
should skip the rest of the loop body and continue.

To enable this, our compiler keeps two vectors of basic blocks, one for the
break, the other for continue. In the compiler source code, they are named
break_bbs and continue_bbs. Now, whenever a loop is processed, the correct
basic blocks are saved in these the vectors before entering the loop body. For
an example, consider Listing 5.12, which is a snippet from the visit method of
ast::ForStmt. First, basic blocks for individual stages of the for statement
are created. Then, we add the end basic block to break_bbs and the post_iter
basic block to continue_bbs.

With this setup, the LLVM IR generation break statement is simple, as
shown in Listing 5.13. Remember that C+- enables break and continue from
multiple loops (see Section 2.3.1), which is why the vector index is calculated
the way it is.

5.3.2 Unreachable Code Elimination
C++ allows the programmer to write unreachable (dead) code. Consider the
example in Listing 5.14.

This is valid C++ code, even though the declaration statement int a = -1
is unreachable. Generating this dead code in LLVM IR would not only be waste
of bytes, but also lead to ill-formed LLVM IR. The dead code would be placed
after a terminator instruction (in our case, a ret corresponding to the return
42), putting the terminator instruction in the middle of the basic block, which
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1 define i32 @fact(i32 %n) {
2 entry:
3 %ret_val = alloca i32, align 4
4 %n.addr = alloca i32, align 4
5 store i32 %n, i32* %n.addr, align 4
6 %res = alloca i32, align 4
7 store i32 1, i32* %res, align 4
8 br label %for.pre_3
9

10 for.pre_3: ; preds = %entry
11 %i = alloca i32, align 4
12 store i32 1, i32* %i, align 4
13 br label %for.cond_3
14

15 for.cond_3: ; preds = %for.post_3, %for.pre_3
16 %0 = load i32, i32* %i, align 4
17 %1 = load i32, i32* %n.addr, align 4
18 %2 = icmp sle i32 %0, %1
19 br i1 %2, label %for.body_3, label %for.end_3
20

21 for.body_3: ; preds = %for.cond_3
22 %3 = load i32, i32* %i, align 4
23 %4 = load i32, i32* %res, align 4
24 %5 = mul i32 %3, %4
25 store i32 %5, i32* %res, align 4
26 br label %for.post_3
27

28 for.post_3: ; preds = %for.body_3
29 %6 = load i32, i32* %i, align 4
30 %7 = add i32 %6, 1
31 store i32 %7, i32* %i, align 4
32 br label %for.cond_3
33

34 for.end_3: ; preds = %for.cond_3
35 %8 = load i32, i32* %res, align 4
36 store i32 %8, i32* %ret_val, align 4
37 br label %return
38

39 return: ; preds = %for.end_3
40 %9 = load i32, i32* %ret_val, align 4
41 ret i32 %9
42 }

Listing 5.11: Function calculating factorial in LLVM IR
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1 /* code from LLBuilder::operator()(const ast::ForStmt &node)*/
2

3 llvm::BasicBlock * preloop = /* ... */ ,
4 * cond = /* ... */ ,
5 * body = /* ... */ ,
6 * post_iter = /* ... */ ,
7 * end = /* ... */ ;
8 // add bbs for break and continue
9 break_bbs.push_back(end);

10 continue_bbs.push_back(post_iter);
11 // generate preloop
12 // ...

Listing 5.12: Adding basic blocks to break_bbs and continue_bbs

1 void LLBuilder::operator()(const ast::BreakStmt &node) {
2 // break_level=1 will result in break_bbs.back()
3 llvm::BasicBlock *bb = break_bbs.at(break_bbs.size() -
4 node.break_level);
5 builder.CreateBr(bb);
6 }

Listing 5.13: LLBuilder visit method of ast::BreakStmt

1 int foo() {
2 return 42;
3 int a = -1;
4 }

Listing 5.14: Unreachable code

is wrong [15]. To avoid generating dead code (statements), our compiler checks
if the current basic block contains a terminator instruction, and if so, it doesn’t
generate the LLVM IR (see Listing 5.15).

5.4 Expressions

Producing LLVM IR for expression AST nodes is usually quite straight-forward.
In this section, we explore some exceptions to this rule.

5.4.1 Representation of void* and nullptr

Most C++ types have a logical counterpart in LLVM IR. Simple type int can
be represented as i32 (assuming a four-byte integer). Pointer type int* can be
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1 void LLBuilder::operator()(const ast::Stmt &node) {
2 // don't generate ir for dead code
3 if(builder.GetInsertBlock()->getTerminator())
4 return;
5 return std::visit(*this, node);
6 }

Listing 5.15: Skipping unreachble code during LLVM IR generation

represented as i32* 13. Array type int[5] can be represented as [5 x i32].
Function type void (int, char) can be represented as (void) (i32, i8).
One exception to this intuitive type translation from C++ to LLVM IR is the
pointer to void type void*. Even though LLVM IR has the type void as a
possible function return type, it does not allow for native pointer to void [37].
Thus our compiler must use a different LLVM IR type to represent our C++
void* type. We use LLVM IR i8* (which is suggested by clang error if we
try to compile LLVM IR with void*).

We face a similar issue with nullptr, which doesn’t have a single represen-
tation in LLVM IR with typed pointers. So we use the LLVM IR null value
of i8*. This makes the implicit conversion from nullptr_t to T* easy, since
the LLVM pointer to pointer conversion can be used (more on that later in a
moment).

5.4.2 Binary Expressions

After implicit conversions take place, a binary expression can fall into one of
four categories based on the operands’ types:

1. integral and integral,

2. double and double,

3. pointer and pointer,

4. pointer and integer.

Categories 1-3 can be intuitively mapped onto llvm::IRBuilder functions.
Listing 5.16 contains a few examples from the LLBuilder::create_binary_op
function that does this in our compiler. For integers, we can see that some
operations specify that the use of the signed (S) version of the operation such
as SDiv.

Note that the create_binary_op function is not only used when visiting
ast::BinaryExpr. It is used by other expressions that can be (at least partly)
decomposed into a binary operation. a[b] is equivalent to a+b, c++ requires a
c+1 to happen at some point, etc.

13Note that since LLVM 17, typed pointers such as i32* are no longer supported [36]
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1 if(lhs_ty->isIntegerTy() && rhs_ty->isIntegerTy()) {
2 // llvm requires binary operands to be of the same type
3 check(lhs_ty == rhs_ty);
4 switch(op) {
5 case ast::Plus: return builder.CreateAdd(lhs, rhs);
6 case ast::Minus: return builder.CreateSub(lhs, rhs);
7 case ast::Star: return builder.CreateMul(lhs, rhs);
8 case ast::Div: return builder.CreateSDiv(lhs, rhs);
9 case ast::Mod: return builder.CreateSRem(lhs, rhs);

10 // ...
11 // doubles
12 else if(lhs_ty->isDoubleTy() && rhs_ty->isDoubleTy()) {
13 check(lhs_ty == rhs_ty);
14 switch(op) {
15 case ast::Plus: return builder.CreateFAdd(lhs, rhs);
16 case ast::Minus: return builder.CreateFSub(lhs, rhs);
17 case ast::Star: return builder.CreateFMul(lhs, rhs);
18 // ...
19 // pointer indexing
20 else if(lhs_ty->isPointerTy() && rhs_ty->isIntegerTy()) {
21 llvm::Type *elem_type = lhs_ty->getPointerElementType();
22 llvm::Value *index = nullptr;
23 switch(op) {
24 case ast::Plus:
25 index = rhs;
26 break;
27 case ast::Minus:
28 // make it 'lhs + (-rhs)'
29 index = create_unary_minus(rhs);
30 break;
31 default:
32 check(false, "unimplemented operator for"
33 "pointer and integer");
34 }
35 return builder.CreateGEP(elem_type, lhs, index);
36 }
37 // pointer comparison and difference
38 else if(lhs_ty->isPointerTy() && rhs_ty->isPointerTy()) {
39 check(lhs_ty == rhs_ty);
40 switch(op) {
41 // use unsigned comparison for pointers
42 case ast::Greater: return builder.CreateICmpUGT(lhs,
43 rhs);
44 case ast::Less: return builder.CreateICmpULT(lhs, rhs);
45 // ...

Listing 5.16: Generating code for binary expressions with llvm::IRBuilder
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1 // to bool conversions
2 else if(dest_ty == types.at("bool")) {
3 llvm::Value *zero = llvm::Constant::getNullValue(val_ty);
4 llvm::Value *res = create_binary_op(val, zero,
5 ast::NotEqual);
6 res->setName("tobool");
7 return res;
8 }

Listing 5.17: Implementation of to bool conversion in LLBuilder

5.4.3 Type Conversions

Type conversions, whether implicit or explicit, can occur in many places in the
AST. Here we take a look at how they’re done in LLVM IR. They are handled
in the LLBuilder::convert function.

To bool conversion The conversion to bool is special. That’s because it’s
not really a type conversion, but rather a binary operation expressing inequality
of the converted value to zero or nullptr. And as such, it is implemented in
LLBuilder (see Listing 5.17).

Integer conversions For integer conversions, LLVM IR provides builtin
functions. Integer extension (widening) can be achieved with sext and zext in-
structions, which do signed and zero extension respectively. Integer truncation
(narrowing) can be achieved with the trunc instruction. The llvm::IRBuilder
provides convenient functions CreateSExtOrTrunc and CreateZExtOrTrunc,
which create either extension or truncation based on the converted value type
and the destination type. We use the CreateSExtOrTrunc function, since C+-
integers are signed. One special case that has to be handled is bool to char
or int extension. Because LLBuilder uses the i1 type to represent bool, we
must use the zext instruction in order to have true converted to 1. If sext
was used, 0b1 (i1, value: true) would become 0b11111111 (i8, value: -128).
We need it to become 0b00000001 (i8, value: 1), so we use zext.

double to int and int to double For conversions between signed integer
and floating types, LLVM IR has the sitofp (signed integer to floating point)
and fptosi (floating point to signed integer) instructions.

Pointer to pointer conversion For pointer to pointer conversion, we use
the LLVM IR bitcast instruction.

Example with all conversions Example code in Listing 5.18 and the cor-
responding LLVM IR in Listing 5.19 show how these conversions look in the
LLVM IR.
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1 void f() {
2 int i, *p;
3 double d;
4 char c;
5 (bool) p; // ptr to bool
6 (bool) i; // int to bool
7 (int) c; // integer extension
8 (char) i; // integer truncation
9 (double) i; // si to fp

10 (int) d; // fp to si
11 (void*) p; // pointer to pointer
12 }

Listing 5.18: Possible type conversions

1 define void @f() {
2 entry:
3 %i = alloca i32, align 4
4 %p = alloca i32*, align 8
5 %d = alloca double, align 8
6 %c = alloca i8, align 1
7 %0 = load i32*, i32** %p, align 8
8 %tobool = icmp ne i32* %0, null ; ptr->bool
9 %1 = load i32, i32* %i, align 4

10 %tobool1 = icmp ne i32 %1, 0 ; int->bool
11 %2 = load i8, i8* %c, align 1
12 %int_conv = sext i8 %2 to i32 ; char->int
13 %3 = load i32, i32* %i, align 4
14 %int_conv2 = trunc i32 %3 to i8 ; int->char
15 %4 = load i32, i32* %i, align 4
16 %sitofp = sitofp i32 %4 to double ; int->double
17 %5 = load double, double* %d, align 8
18 %fptosi = fptosi double %5 to i32 ; double->int
19 %6 = load i32*, i32** %p, align 8
20 %ptrcast = bitcast i32* %6 to i8* ; ptr->ptr
21 br label %return
22

23 return: ; preds = %entry
24 ret void
25 }

Listing 5.19: Possible type conversions in LLVM IR
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1 void f() {
2 int i = 0;
3 i += 3.14; // value from i must be converted to 'double'
4 }

Listing 5.20: Compound assignment with type conversion of left-hand side
operand

1 define void @f() {
2 entry:
3 %i = alloca i32, align 4
4 store i32 0, i32* %i, align 4
5 %0 = load i32, i32* %i, align 4
6 %sitofp = sitofp i32 %0 to double
7 %1 = fadd double %sitofp, 3.140000e+00
8 %fptosi = fptosi double %1 to i32
9 store i32 %fptosi, i32* %i, align 4

10 br label %return
11

12 return: ; preds = %entry
13 ret void
14 }

Listing 5.21: LLVM IR of compound assignment with type conversion of left-
hand side operand

1 int main() {
2 int i1 = 1, i2 = 21;
3 bool b = true;
4 return b ? 2*i2 : -i1;
5 }

Listing 5.22: Ternary conditional operator

5.4.4 Compound Assignment
Earlier in Section 4.2.2, we said that compound assignment requires special
attention during code generation. The reason being that the left-hand side
(assignment destination) is an lvalue, while it is also needed as an rvalue for
the compute operation. LLBuilder uses the algorithm outlined in Chapter 4.
For an example, consider the C++ code in Listing 5.20 and the LLVM IR
equivalent generated by our compiler in Listing 5.21.
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5.4.5 Short-Circuit Evaluation
Another feature that’s in C++ (and in most programming languages) is short-
circuit evaluation [38]. This means that for the following three operators:

1. a && b logical and operator, b will only be evaluated if a is evaluated to
true,

2. a || b logical or operator, b will only be evaluated if a is evaluated to
false,

3. a ? b : c ternary conditional operator, if a is evaluated to true, only b
is evaluated; otherwise only c is evaluated.

This has several advantages over always evaluating all operands:

• Avoid unnecessary resource consumption, e.g.:

nine_out_of_ten_times_true() || very_time_expensive()

will not call very_time_expensive nine out of ten times (unless the
function names lie, of course).

• Allow the programmer to write code that’s safe with short-circuit evalu-
ation, but could cause undefined behavior (e.g. segfault) without it:

ptr ? ptr->value : -1

In order to achieve short-circuit evaluation, we use the phi instruction. Con-
sider the a ? b : c conditional ternary operator as a showcase. The compiler
creates three basic blocks then, else and end. The condition a is evaluated
and based on the result, the program branches either to then (true) or else
(false). Then, b is generated starting 14 in then and c is generated starting in
else. After generating both b and c, the compiler unconditionally branches
to end. Finally, inside basic block end, the phi instruction is used to obtain
either b or c based on the predecessor basic block. For an example, consider
code in Listing 5.22 and the corresponding LLVM IR in Listing 5.23.

5.4.6 sizeof Type
To get portable, target independent sizeof type, the GEP instruction can be
used. The compiler pretends that there is an element of given type at the null
address, calculates the offset to the element of index 1 from that, and converts
this to an integer [39].

5.5 Classes

Finally, classes. During LLVM IR generation, they are split into two parts –
class variables (fields) and class methods.

14We say starting, because code generation of b can create some basic blocks and finish
in a different block than then. For an example, see the LLVM IR generated for program
tests/valid inputs/ternary op contains log ops.cpp

59



5. LLVM IR Generation

1 ; variable initializations
2 ; ...
3 ; here the ternary operator starts:
4 %0 = load i1, i1* %b, align 1
5 br i1 %0, label %ter_then.4, label %ter_else.4
6

7 ter_then.4: ; preds = %entry
8 %1 = load i32, i32* %i2, align 4
9 %2 = mul i32 2, %1

10 br label %ter_end.4
11

12 ter_else.4: ; preds = %entry
13 %3 = load i32, i32* %i1, align 4
14 %4 = sub i32 0, %3
15 br label %ter_end.4
16

17 ter_end.4: ; preds = %ter_else.4, %ter_then.4
18 %5 = phi i32 [ %2, %ter_then.4 ], [ %4, %ter_else.4 ]
19 store i32 %5, i32* %ret_val, align 4
20 br label %return

Listing 5.23: Ternary conditional operator expressed in LLVM IR with the phi
instruction

1 struct Customer {
2 int age;
3 double balance;
4 char name[50];
5 };

Listing 5.24: Example of a struct

1 %Customer = type { i32, double, [50 x i8] }

Listing 5.25: LLVM IR representation of Customer struct from Listing 5.24.

5.5.1 Structs in LLVM IR

LLVM IR has the keyword type, which allows the programmer to create data
types consisting of other types, potentially of other composite types (structs).
In this sense, the LLVM IR struct is just like a C struct. A difference between
C and LLVM IR structs, however, is that members of LLVM IR structs are
not named, but identified by their index in the struct type list. Consider the
struct in Listing 5.24 and the LLVM IR equivalent in Listing 5.25.
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1 struct S {
2 int i;
3 double d;
4 };
5

6 void f() {
7 S s;
8 s.i = 42;
9 s.d = 3.14;

10 }

Listing 5.26: Struct member access

1 %S = type { i32, double }
2

3 define void @f() {
4 entry:
5 %s = alloca %S, align 8
6 %S.i = getelementptr %S, %S* %s, i32 0, i32 0
7 store i32 42, i32* %S.i, align 4
8 %S.d = getelementptr %S, %S* %s, i32 0, i32 1
9 store double 3.140000e+00, double* %S.d, align 8

10 br label %return
11

12 return: ; preds = %entry
13 ret void
14 }

Listing 5.27: Struct member access in LLVM IR

5.5.2 MemberAccess with the GEP Instruction
How do we access class members in LLVM IR? With the GEP instruction. Dur-
ing visitation of ast::ClassDef, which represents a class definition, LLBuilder
saves the order of member fields. Then, when member access is encountered
during code generation, LLBuilder maps the C++ member name onto the in-
dex in LLVM IR representation. Consider the example in Listing 5.26 and the
LLVM IR generated by our compiler in Listing 5.27.

5.5.3 Class Methods
LLVM IR doesn’t enable the programmer to create class methods, it only
allows us to create functions. Thus, we represent class methods (constructors
included) simply as LLVM IR functions. During code generation, class methods
don’t require any special treatment compared to normal functions. However,
there’s one small optimization that can be. The this expression is always a
prvalue value in C++ [40], and so an rvalue in C+-.
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1 struct S {
2 int i;
3 int foo() {
4 return 2*this->i;
5 }
6 };
7 int foo(S *const this_) {
8 return 2*this_->i;
9 }

Listing 5.28: Class method and global function equivalent

1 %S = type { i32 }
2

3 define i32 @"S::foo"(%S* %this) {
4 entry:
5 %ret_val = alloca i32, align 4
6 %S.i = getelementptr %S, %S* %this, i32 0, i32 0
7 %0 = load i32, i32* %S.i, align 4
8 %1 = mul i32 2, %0
9 store i32 %1, i32* %ret_val, align 4

10 br label %return
11

12 return: ; preds = %entry
13 %2 = load i32, i32* %ret_val, align 4
14 ret i32 %2
15 }
16

17 define i32 @foo(%S* %this_) {
18 entry:
19 %ret_val = alloca i32, align 4
20 %this_.addr = alloca %S*, align 8 ; extra inst
21 store %S* %this_, %S** %this_.addr, align 8 ; extra inst
22 %0 = load %S*, %S** %this_.addr, align 8 ; extra inst
23 %S.i = getelementptr %S, %S* %0, i32 0, i32 0
24 %1 = load i32, i32* %S.i, align 4
25 %2 = mul i32 2, %1
26 store i32 %2, i32* %ret_val, align 4
27 br label %return
28

29 return: ; preds = %entry
30 %3 = load i32, i32* %ret_val, align 4
31 ret i32 %3
32 }

Listing 5.29: Class method and global function equivalent in LLVM IR
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This means that for the implicit this method argument, the compiler
doesn’t have to generate the initial alloca and store instructions mentioned
earlier in this chapter, because it can never be mutated. And so our com-
piler doesn’t generate them. This is illustrated in Listing 5.28, which contains
a class method S::foo, and a global function ::foo, which are structurally
equivalent. LLVM IR for S::foo is shorter than for ::foo (see Listing 5.29),
because the alloca, store, load instructions were not needed.
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Chapter 6
Testing

In the last chapter of this thesis, we describe how we verify the functionality
of our compiler. All files related to testing are in the tests directory, which
has the following structure:

tests
invalid inputs ................. directory with invalid C+- samples

parsing ....directory with samples that should fail during parsing
sema ......directory with samples that should fail during semantic
analysis

valid inputs ......................directory with valid C+- samples
astdump.cpp ..program to test that a valid sample produces expected
AST dump
parsing-invalid.cpp ..... program to test a sample that should fail
during parsing
README.md description of the directories valid inputs and invalid inputs
run.cpp program to test that a valid sample produces expected output
when run
sc-invalid.cpp .... program to test a sample that should fail during
semantic analysis

6.1 Valid Samples

The directory tests/valid inputs contains programs that fall within the
C+- specification, and so should pass through our compiler and produce valid
LLVM IR. We test that this LLVM IR, when compiled to an executable, pro-
duces the correct return code and output. For a sample test, there can be the
following files:

1. sample.cpp: the program itself, this file must always exist.

2. sample.ret: this file contains the return code that should be returned
from the main function of the program. If this file doesn’t exist, the
expected return value is 0.

3. sample.in: the input that should be passed to the program on stdin.
If this file doesn’t exist, no input is passed to the program.
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4. sample.output: the output on stdout that’s expected from the program.
If this file doesn’t exist, the program should output nothing.

5. sample.ast: the expected AST dump of the sample after semantic anal-
ysis.

Our samples in tests/valid inputs are mostly simple programs that test
a single functionality, such as a binary operator, an implicit conversion, or
function overloading. Many of them test a special case of some feature.

6.2 Invalid Samples

Our tests also include samples that are incorrect according to the language
specification, and should fail during compilation.

First, there are samples that should fail during the parsing stage of the
compilation. This either means that they don’t match the grammar, or they
do, but are still wrong syntactically (such as the earlier mentioned example
with multiple const qualifiers in Listing 3.12).

Second, there are samples that should be parsed, but fail during semantic
analysis. These are also mostly short snippets of code containing a error.
These include declaring an array of void elements, call of a private constructor,
assigning into an rvalue, and much more.

6.3 Test Programs

Along with these samples, we provide four C++ programs, which work on indi-
vidual samples.

• run.cpp tests that our compiler compiles a sample into LLVM IR without
an error, then uses clang to compile the LLVM IR into an executable,
and runs the executable to see if it produces correct output (using the
sample.in, sample.ret and sample.output files described above).

• astdump.cpp tests that a valid sample is AST-dumpable before semantic
analysis and produces expected AST after semantic analysis.

• parsing-invalid.cpp tests that the compilation of a sample fails during
parsing.

• sc-invalid.cpp tests that the compilation of a sample fails during se-
mantic analysis.

6.4 CTest

Our CMakeLists.txt provides a convenient way to run all the tests. After
configuring the project with cmake and building it, ctest can be run from
the build directory to test our compiler with the above-mentioned samples.
run.cpp and astdump.cpp are run on valid samples, sc-invalid.cpp and
parsing-invalid.cpp are run on invalid samples.
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6.5 Results

Our implementation passes all tests on samples from the valid inputs (more
than 150 samples) and invalid inputs (more than 130 samples) directories.

We also compiled our implementation by both gcc and clang (with opti-
mizations -O2 and -fsanitize) to remove any possible errors, warnings and
memory leaks from our implementation. Some warnings were produced by the
ANTLR runtime library, which was used as a third party tool in this thesis.

Testing helped us uncover many edge cases of individual features. For
example, thanks to testing, we discovered that during LLVM IR generation, the
zext instruction must be used to for the bool (i1 in our LLVM IR) promotion
to int. We learnt from this and added the valid inputs/true is one.cpp
sample.

Furthermore, we were able to confidently do big refactors of the project,
and be sure there were no regressions made. Originally, the implementation
had semantic analysis and LLVM IR generation merged into one AST pass.
When we separated it into two passes, the tests gave us confidence that no
functionality was lost during this internal architecture transition.
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Conclusion

The goal of this thesis was to implement a working compiler frontend for a
subset of the C++ programming language, using ANTLR and LLVM IR.

In Chapter 1, we introduced two existing C++ compilers, GCC and Clang,
and then LLVM Intermediate Representation (LLVM IR) and the ANTLR
parser generator.

In Chapter 2, we specified all the functionality included in our subset of C++,
which we called C+-. This included types, expressions, statements, function,
classes and declarations.

In Chapter 3, we took described our implementation of the AST, looked at
the grammar of the language and how our compiler uses ANTLR to build the
AST from user’s input source code.

In Chapter 4, we concerned ourselves with semantic analysis. This included
checking for program correctness, modifying the AST to be more information
complete, and error reporting.

In Chapter 5, we turned to the process of LLVM IR generation from the
AST. We showed how LLVM IR can be used to express high-level programming
concepts, such as loops, short-circuit evaluation, and class methods.

In Chapter 6, we describe our testing methods. We use more than 150 valid
code samples to test that the described functionality works. We also add more
than 130 invalid code samples to test that the compiler catches certain errors,
and does so at the correct stage of the compilation.

Future work might be aimed at extending capabilities of the compiler to
cover more of the C++ programming language, such as class destructors, class
inheritance, virtual methods, templates or exceptions. The current implemen-
tation could also be improved by adding consistent name mangling to function
overloads in LLVM IR, or by refactoring the AST so that it could store more
information from semantic analysis (such as the types of expressions).
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Appendix A
Human Language Analogy to the

Compiler Frontend

If we were to draw an analogy between the compiler frontend and natural
human language, the job of lexical analysis is to split a sentence (or text)
into individuals words and punctuation, and report if an unknown word (say
xalobopa) was used. The job of syntactic analysis is to determine whether
given sentences are correct grammatically. For example, consider the following
English ”sentence”: ”The and if object very called.” We can see that the even
though the individual words are viable English words, the sentence as a whole is
gibberish, and is not grammatically correct. In the language of compilers, this
”sentence” would pass through the lexical analysis (individual words exist),
but not through the syntactic analysis (the sentence structure doesn’t make
sense). Now, a sentence might be grammatically correct, but still not make
sense. Consider the following example: ”A grain of sand was riding a bicycle.”
This sentence is grammatically correct, but obviously doesn’t make sense –
grains of sand don’t ride bicycles! Consider another example: ”Anna spent the
whole week in London. On Monday, she decided to grab breakfast near the Eiffel
Tower.” This sure is a good phrase if you wish to infuriate both the English
and the French, but other than that, it doesn’t make sense – Anna could not
have grabbed breakfast near the Eiffel Tower (France), if she was in London
(England). We could show many more examples to underline the point: just
because a sentence (or text) is grammatically correct, does not imply that it is
semantically correct. The equivalent is true in programming languages, which
is why we need semantic analysis.
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Appendix B
Acronyms

ANTLR ANother Tool for Language Recognition

API Application Programming Interface

AST Abstract Syntax Tree

EBNF Extended Backus-Naur Form

LLVM IR LLVM Intermediate Representation

GCC GNU Compiler Collection

GEP Get Element Pointer

RTL Register Transfer Language

SSA Single Static Assignment
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Appendix C
Contents of Attached Files

impl ................................directory with implementation files
README.md ................................description of the project
license.txt ..................................license of the project
CMakeLists.txt ................CMakeLists for building and testing
examples .....................directory with example C+- programs
.gitlab-ci.yml .....................................GitLab CI file
src ......................directory with implementation source code

ast .....................directory with representation of the AST
ast dumper ......... directory with AST visitor for AST dumping
ll builder ...directory with AST visitor for LLVM IR generation
parser .................................directory with the parser
semantic checker directory with AST visitor for semantic analysis
type ..........................directory with type representation
utils ..............................directory with shared classes
visitor template ...........directory with AST visitor template

tests ...............directory with test samples and tester programs
ci ..............................directory with scripts for GitLab CI

Figure C.1: Structure of impl.zip

thesis ...............directory with files related to the text of the thesis
src ................................directory with LATEX source files

Figure C.2: Structure of thesis.zip
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