
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of bachelor’s thesis

Phishingalert.cz - forensic module

Jiří Konvičný

Ing. Marek Sušický

Informatics

Software Engineering 2021

Department of Software Engineering

until the end of summer semester 2024/2025

Instructions

The main goal of this thesis is to extend the phishingalert.cz website with a forensic

module that will identify the IP address for the sent websites, download the https

certificate, detect the presence of CloudFlare or any other similar technology, scrape the

entire available website, identify the used versions of libraries and modules and try to

find similar ones in the history. It will also examine DNS records.

Describe similar existing projects, if any, and with their knowledge, design an

appropriate project architecture. Implement, test and document the project

appropriately.

Electronically approved by Ing. Michal Valenta, Ph.D. on 2 December 2023 in Prague.

Bachelor’s thesis

PHISHINGALERT.CZ -
FORENSIC MODULE

Jǐŕı Konvičný

Faculty of Information Technology
Department of Software Engineering
Supervisor: Ing. Marek Sušický
May 16, 2024

Czech Technical University in Prague
Faculty of Information Technology
© 2024 Jǐŕı Konvičný. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Konvičný Jǐŕı. Phishingalert.cz - forensic module. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2024.

Contents

Acknowledgments v

Declaration vi

Abstract vii

List of the abbreviations viii

Introduction 1

1 Analysis 2
1.1 Phishing . 2
1.2 Current state of the phishingalert.cz project . 3
1.3 Requirements . 4

1.3.1 Functional Requirements . 4
1.3.2 Non-functional Requirements . 5

1.4 Data from the website . 5
1.4.1 Domain information . 5
1.4.2 DNS records . 6
1.4.3 SSL certificates . 6
1.4.4 Used modules . 7

1.5 Bot prevention . 7
1.5.1 Reverse proxy . 7
1.5.2 Tracking of user behavior . 7
1.5.3 CAPTCHA . 8
1.5.4 JavaScript fingerprint . 8
1.5.5 IP address quality . 9
1.5.6 Results of the bot prevention analysis . 9

1.6 Ethical considerations . 9
1.7 Similar projects . 9

1.7.1 Reporting tools . 9
1.7.2 Web analysis tools . 11
1.7.3 Results of the analysis of similar projects 12

2 Design 13
2.1 Use cases . 13

2.1.1 Actors . 13
2.1.2 UC1: Reporting a website to phishingalert.cz 13
2.1.3 UC2: Viewing statistics about the reported website 14
2.1.4 UC3: Sending a report to a higher authority 14
2.1.5 UC4: Changing the application configuration 14

2.2 Application architecture . 15
2.3 Server Core . 16

2.3.1 Server Core Architecture . 16

ii

Contents iii

2.3.2 Frontend . 16
2.3.3 Reporting URL to the higher authorities 17

2.4 Scraper . 18
2.4.1 Visiting the reported URL . 18

2.5 Database . 19
2.5.1 Database entities . 20

2.6 Communication between components . 21
2.6.1 HTTPS . 21
2.6.2 Message queue . 21
2.6.3 SFTP . 21

2.7 Programming language and framework . 22

3 Implementation 23
3.1 Data layer . 23
3.2 Server Core . 24

3.2.1 Control panel . 25
3.2.2 Implementation of subsequent URL reporting 25

3.3 Scraper . 28
3.3.1 Obtaining domain information . 28
3.3.2 Obtaining DNS records . 29
3.3.3 Obtaining SSL certificates . 29
3.3.4 Web crawler . 29
3.3.5 Obtaining the information about used modules 31

4 Testing 32
4.1 Automated testing . 32
4.2 End-to-end testing . 32

4.2.1 Accessing websites with bot protection . 33
4.2.2 Accessing potentially malicious websites 33

5 Conclusion 35

A Installation guide 36

Attachment Contents 43

List of Figures

1.1 Example of the smishing message . 3

2.1 Use case diagram . 15
2.2 Component diagram . 16
2.3 Conceptual model of the application database . 20

3.1 Screenshot of the control panel home page . 26
3.2 Screenshot of the page with accident’s statistics 27

4.1 Graph with the performed requests to the test page 33

List of code listings

3.1 Example of the DNS record entity . 23
3.2 Example of the table object for DNS records . 24
3.3 Example of the IntTableRepository abstract class 24
3.4 Example of part of the response from WHOIS lookup 29
3.5 Example of the method used for accessing given URL 30
3.6 Example of the web crawler configuration . 31

iv

I would hereby like to say thanks to my thesis supervisor, Ing. Marek
Sušický, for his valuable advice and the opportunity to work on this
project. My deepest thanks also go to my loving family, who has
always supported me during the times of my studies and in my life
as a whole.

v

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact
that the Czech Technical University in Prague has the right to conclude a licence agreement on
the utilization of this thesis as a school work pursuant of Section 60 (1) of the Act.

In Prague on May 16, 2024

vi

Abstract

This thesis deals with the analysis, design, implementation, and testing of an extension to the
existing phishing reporting tool. The extension consists of two components, with the first being
used to obtain data about reported websites, and the second being used to analyze and visualize
these data. The developed solution can be used to get the website’s domain information, DNS
records, SSL certificates, used libraries and modules, and to download the raw content from the
website with an automated web browser. These information are subsequently merged with those
from the original phishing report, and then they can be used to report the malicious website
to other subjects such as Google or Cloudflare. The final application is written in Kotlin with
Spring Boot framework.

Keywords web scraping, web analysis, crawler, phishing, information security, accident re-
porting, Kotlin, Spring Boot

Abstrakt

Tato práce se zabývá analýzou, návrhem, implementaćı a testováńım rozš́ı̌reńı pro již existuj́ıćı
nástroj pro nahlašováńı phishingu. Toto rozš́ı̌reńı se skládá ze dvou část́ı, přičemž ta prvńı z
nich se stará o źıskáváńı dat z nahlášených stránek, a ta druhá tato data analyzuje a vizualizuje.
Výsledné řešeńı zvládne źıskat informace o internetové doméně nahlášené stránky, DNS záznamy,
SSL certifikáty, použité knihovny a moduly, a mimo to stáhne použité soubory ze stránky pomoćı
automatizovaného webového prohĺıžeče. Takto źıskané informace jsou poté spojeny s informa-
cemi od toho, kdo p̊uvodně nahlásil danou webovou stránku, a následně mohou být použity k
zasláńı hlášeńı daľśım službám jako jsou Google nebo Cloudflare. Výsledná aplikace je napsána
v jazyce Kotlin s použit́ım Spring Boot frameworku.

Kĺıčová slova web scraping, analýza webu, crawler, phishing, informačńı bezpečnost, hlášeńı
incident̊u, Kotlin, Spring Boot

vii

List of the abbreviations

API Application Programming Interface
CA Certificate Authority

CDN Content Delivery Network
DNS Domain Name System

DOM Document Object Model
DSL Domain Specific Language
GUI Graphical User Interface

JSON JavaScript Object Notation
JVM Java Virtual Machine

OS Operating System
PDF Portable Document Format

PS PostScript
SMS Short Message Service
SQL Structured Query Language
SSH Secure Shell
SSL Secure Sockets Layer

URL Uniform Resource Locator
XML Extensible Markup Language

viii

Introduction

Phishing attacks are a threat that affects both basic users and IT professionals who try to protect
them. The number of financial losses caused by these attacks has been on the rise and there does
not seem to be a sign of the situation improving in the near future.[1]

One of the possible ways to combat phishing attacks is to use dedicated reporting tools in
which any user can report a malicious website and hope that the responsible organization will
remove the website from the Internet. These organizations consist of numerous cybersecurity
and software companies, and the sheer number of their various reporting web forms adds a lot
of complexity to the whole process. This can make the user feel overwhelmed, and therefore less
likely to report the malicious website to the right authority.

This has been the main reason for the creation of phishingalert.cz, a phishing reporting tool
that aims to be the primary place where Czech Internet users can report any malicious website
with which they come into contact.

These malicious websites are part of the global Internet, and even though they are often
hosted in high-privacy data centers, there are still useful data that can be gained from them and
then used to identify the common patterns which they share with each other.

The aforementioned phishingalert.cz project wants to combine the information reported by the
user with the forensic analysis1 of the provided website and then forward the gained knowledge
to the higher authority that has the means to act on the report. The public-facing website for
phishing reporting has already been developed, and so has been a basic server-based application
which is operating it. The missing parts are the module which will do the analysis of the reported
website and the user interface for the project’s administrator.

The primary goal is the creation of an extension to the application that provides an admin-
istrator with the ability to obtain various publicly available data about every reported website
and compare the website with malicious websites from the past. These data consist of DNS
records, SSL certificates, web frameworks, JavaScript libraries, and information from the WHOIS
database. The related text analyzes the process of developing this extension and explains the
possible ways of accessing the data, their usefulness, and the problems that could be faced dur-
ing their retrieval. Some of the obtained data are also used to compare the reported website
with results from the past, which can be interesting for the project’s administrator, although a
thorough data analysis is not part of this thesis. The data obtained with the developed tool can
be used as a basis for further cybersecurity research aimed at predicting phishing attacks in the
future.

The secondary goals are the development and testing of the basic administrator’s user inter-
face and rewriting of the existing server-side code in Kotlin. The administrator’s user interface
gives them the ability to view the data about the reported websites and re-send the reported
websites with the obtained data to the higher authorities.

1Looking for available data and finding patterns between them to determine if they are malicious or not.

1

Chapter 1

Analysis

This chapter introduces the reader to the issue of phishing and explains the related concepts.
It shows the current state of the phishingalert.cz project before the writing of this thesis and
describes in detail the concrete requirements which were agreed upon with the thesis supervisor.
This is followed by a review of similar existing solutions and the analysis of mechanisms which
are used to prevent the automated tools from accessing the web.

1.1 Phishing
Phishing is a type of cybercrime that focuses on the acquisition of sensitive data from the user
that can be used for financial or identity theft. The perpetrator often tries to get access to data
such as the victim’s username, password, account number, home address, and credit card details.
This is done by masquerading as a legitimate institution or a personal contact that the victim
already trusts. [2]

The cyber security community recognizes several types of phishing attacks according to their
potential victims and the methods used to carry out them. Intended users of the tool developed
in this thesis may potentially encounter these types of phishing attacks:

Smishing: The name of this phishing type comes from the combination of “SMS” and
“phishing”, and as the name implies, it uses messages sent through SMS or instant messaging
services to distribute malicious URL to the victim. The messages can be divided into two
types. The first type looks as a message from a trusted and reliable source such as the
victim’s banker or system administrator. The second type of smishing tries to abuse the
victim’s response to a shock by informing them about a serious event, such as their identity
or account being stolen, and scaring them with possible consequences which would occur if
they do not respond. [3]

Vishing: Unlike smishing, this phishing type uses voice calls to put pressure on their victim
and lure sensitive personal or corporate information from them. [2] Vishing capitalizes on the
fact that their typical phishing target usually puts more confidence in the safety of telephone
service and is not aware of possible scamming techniques such as caller ID spoofing. The
development of the IP telephony system has made the whole vishing process easier because
the perpetrator is not limited only to the classic mobile network carriers. [3]

Social media phishing: Social media are also popular among the perpetrators who tend to
utilize mainly the messaging capabilities of the platforms, for example Facebook Messenger or
Twitter DMs. [4] There has also been a growing number of phishing links that were delivered

2

Current state of the phishingalert.cz project 3

as promoted posts or paid advertisements on the user’s social media feed. The companies
behind these platforms were reported to not act adequately in some cases. [5]

Figure 1.1 Example of the smishing message targeting Apple users [6]

1.2 Current state of the phishingalert.cz project
This section familiarizes the reader with the state of the phishingalert.cz project before the
implementation of the features that were agreed upon with the supervisor of this thesis.

The project was originally developed by Ing. Marek Sušický as a non-profit tool that can be
used by anyone who wants to report a phishing website on one place without having to manually
find the competent authority who is responsible for deleting the malicious website. The project
itself currently consists of two components:

Frontend: The frontend is represented by one simple web page with information about
the whole reporting process, which also contains a form for filling the details about the
encountered phishing attack. The website is created using HTML and JavaScript, which
is used mainly for input validation. It is hosted on Github Pages1 and runs on a different
server than the backend, with which it communicates through HTTP POST requests. Other
operations than sending a phishing report to the backend are not supported.

Backend: The backend is written in Python with Flask2 framework. It provides an API
which supports submitting a phishing report and confirming it through the link which is sent
to the email of the report’s author.
The information about the phishing report and its author is saved in the database which
consists of a single table. In addition to the information provided by the author of the report,
the stored data also include information about the author’s IP address, User-Agent of their
browser, and whether the report is confirmed or not.

As the description of the existing components implies, the number of currently supported
features is not large, and there is room for major potential improvements.

1https://pages.github.com/
2https://flask.palletsprojects.com/en/3.0.x/

https://pages.github.com/
https://flask.palletsprojects.com/en/3.0.x/

Requirements 4

1.3 Requirements
The final application must meet the requirements that were agreed upon with the supervisor of
this thesis. Functional requirements specify concrete functions and features of the product, and
non-functional requirements describe the more general properties and user experience of the final
product. [7]

1.3.1 Functional Requirements
1.3.1.1 F1: Storing of website information
The application should store information about each reported website in persistent storage. The
stored information should contain at least the following entries:

IP address

Domain registrar

Date of domain registration

DNS records

SSL (HTTPS) certificate if present

Website’s source code and related files

Used modules (libraries and frameworks)

User-written note

1.3.1.2 F2: Filtering of phishing reports
The administrator can filter stored reports using common patterns, such as the email of the
person who reported them.

1.3.1.3 F3: Configuration
The application can be configured using a human-readable configuration file. The configuration
should be easily extensible in the future.

1.3.1.4 F4: Bypassing defense against web scraping
The application should implement some techniques to combat anti-scraping measures which could
be used by reported websites. It should bypass at least the basic Cloudflare anti-bot protection
and avoid triggering CAPTCHAs.

1.3.1.5 F5: Reporting of received websites
The received websites will be reported to the appropriate authorities consisting of cybersecurity
organizations and tech firms. These organizations will be chosen from the pool of registered
organizations in the control panel. The whole process should be automated as much as possible,
although the final decision to send these reports should be made by the administrator.

Data from the website 5

1.3.1.6 F6: Finding similar websites from the past
There should be the possibility to return a list of similar websites. The list will be sorted by an
algorithm that takes into account some of the prominent patterns on those websites.

1.3.1.7 F7: Control panel for the administrator
The administrator should be able to view the data from the reported websites in a control
panel with a graphical user interface. This control panel should be protected with password
authentication to mitigate the access of unauthorized users.

1.3.2 Non-functional Requirements
1.3.2.1 N1: Accessibility of the control panel
The control panel for an administrator should be implemented as a website that will be accessed
from a desktop computer. It should support at least Google Chrome and Mozilla Firefox web
browsers.

1.3.2.2 N2: Open source code
The application source code should be public and published under an open source license.

1.3.2.3 N3: Installation guide
The final product should have a clearly written installation guide that could be used by anyone
with the required dependencies to test the developed product.

1.4 Data from the website
This section discusses the specific data from the website that will be obtained by the developed
application and potentially analyzed by it.

1.4.1 Domain information
Every website has a domain name, which is a string of text that is further resolved to an
alphanumeric IP address which is used when accessing the resource on the server. [8]

Each domain is managed by a domain registry, which delegates the reservation of domain
name to registrars, who handle the registration process with the entity that wants to register the
particular domain. Everyone who reserves a top-level domain name3 must fill out their personal
information in the “WHOIS database”.

This “database” is actually a set of independent databases maintained by selected domain
registrars, which can be queried using the WHOIS protocol. The protocol returns information
about the given domain in a human-readable format. [9] The response usually includes regis-
trant’s4 and registrar’s name and contact information, the registration date, the expiration date,
and the name servers. [10] The information in the response can vary depending on the top-level
domain, and the response format is not completely standardized. [11]

Due to issues such as lack of standardization of the WHOIS response, a new protocol called
RDAP5 was developed, which returns the registration data in a structure that can be easily read

3E.g. registering domain names such as google.com or cvut.cz
4Owner of the domain
5Registration Data Access Protocol

Data from the website 6

by a computer program. This protocol should eventually replace WHOIS, but currently both
are used in parallel. [11]

Registrars usually provide an option of private registration, in that case the registrar’s per-
sonal information are filled in the “WHOIS database” instead of the user’s. The actual user’s
information is held in the registrar’s private database, and its security depends on the credibility
of registrar. [12]

This means that the developed program will not have direct access to the personal information
of a malicious website’s owner because they will probably use a registrar providing a private
domain registration. However, the developed service can potentially use public data about the
registrar to contact them and coordinate further proceedings which could lead to the removal of
the malicious website.

1.4.2 DNS records
DNS record, also known as a zone file, is a set of instructions that are used to connect the domain
name to the corresponding IP address within the DNS server. [13]

In simplified terms, the information encoded in each DNS record consists of the following
data, some of them being optional [14, pp. 10–20]:

Domain name

TTL: Marks the time for which a record may be temporarily stored in the local cache, this
field is optional.

Class: A DNS record can theoretically be in one of the multiple classes, in practice only the
Internet class (IN) is used, and this field is optional.

Type: DNS record type helps determine the kind of information stored inside the record.
Some of the common DNS record types are A (marks an IPv4 address corresponding to
the given domain), AAAA (similar to A, but the address is an IPv6), MX (marks a server
that is responsible for a mail exchange coming to the given Domain), and NS (marks an
authoritative name server for the given Domain).

Preference: The preference is present only in some DNS record types, i.e. in MX record.
Records with lower values are preferred over those with higher values.

Record data: This field contains the data to which the domain name is resolved. The data
are of the aforementioned Type.

These records can be useful for spotting various network-related patterns on reported web-
sites. It can be analyzed how many of them use IPv6, which websites also have a dedicated mail
server, or which name servers are popular or shared among them. If the website uses a name
server from some particular company like Cloudflare, there is also a possibility that they will use
their anti-bot protection or other related services which the company provides.

1.4.3 SSL certificates
The SSL certificate, also colloquially referred to as the HTTPS certificate, is a variant of the
X.509 cryptographic certificate used with the SSL protocol. [15] This protocol is used as part of
the HTTPS, and by reading the server’s SSL certificate, the client can verify the identity of the
server which hosts the website or different requested resource. [16]

This certificate’s structure consists of multiple fields which provide details about the entity
to which it was issued and other associated data. The structure’s fields can be simplified into
the following points [15]:

Bot prevention 7

Serial number: A unique integer given to the certificate by the CA (Certificate Authority).
It is unique between all certificates issued by the given CA, bot not globally unique.

Signature algorithm: The cryptographic algorithm which was used to sign the certificate
by the CA.

Signature: Digital signature computed from the part of certificate with the Signature algo-
rithm.

Issuer: Contains the information about the CA which signed and issued the certificate.

Subject: Identifies the entity to which the certificate was issued and which owns the Public
key.

Validity: Specifies the date from which the validity period of the certificate begins, and the
date when it ends.

Public key: Used by client for verifying the identity of the server.

1.4.4 Used modules
This general term includes all external dependencies of the website. Some of the examples are
JavaScript libraries, frameworks, content management systems, ad networks, or used fonts. All
these modules can be potentially described by their name, version, and category.

Information about the used modules can be further utilized to group the websites into cat-
egories according to their dependencies and compare the similarity of their technological back-
ground.

1.5 Bot prevention
The analysis of the reported websites is performed with automated tools (bots) that potentially
face the defense mechanisms mentioned below. However, these mechanisms can also have a
negative impact on legitimate users. This can motivate the teams behind anti-bot services to
not fully utilize such mechanism, and in that case it is mentioned in the related paragraphs.

1.5.1 Reverse proxy
Reverse proxy is an application which is placed in front of selected web servers and intercepts
requests from clients trying to access the web servers behind it. It is used for caching, as a
solution against DDoS6 attacks, and also for blocking suspicious requests that do not seem to
come from a normal user. [17]

The reverse proxy itself does not have to provide any kind of anti-bot protection, but when it
does, it can use some of the techniques which are further explained in the following subsections.

1.5.2 Tracking of user behavior
A detection module for an anti-bot service can utilize the fact that a human user behaves differ-
ently than a bot controlled by a deterministic algorithm.

The behavior patterns can be potentially divided into the following points [18]:
6Distributed Denial-of-Service

Bot prevention 8

Maximum sustained click rate: A human accessing the website is physically limited to
perform only a finite number of mouse clicks, and therefore only a finite number of corre-
sponding HTTP requests. This means that there is a threshold that is very unlikely to be
exceeded by someone who is not a computer program.

Duration of session: When someone visits the website, the unit of time between the first
and the last request is usually shorter if it is a human than if it is a bot. This comes from the
observation that the browsing behavior of a human is more goal oriented and focused than
the behavior of a bot.

Percentage of image requests: The share of image requests (e. g. .jpg and .gif files) in
the total number of requests tends to be higher for a human than for a web crawling bot,
which is usually interested in text and HTML resources7. [19, p. 896]

Percentage of PDF/PS requests: In contrast to previous point, some web crawling bots
tend to make requests to view PDF and PS files more often than humans. [19, p. 896]

Percentage of HTTP 4xx responses (errors): Compared to humans, bots have a higher
percentage of HTTP error codes in responses to their HTTP requests.

Request for robots.txt file: Another thing that can be checked is the access of the client
to the file called robots.txt. This file contains a set of instructions for web crawling bots that
informs them about the sites which then can and cannot access. [20] Some bots tend to ignore
these instructions and do not make a request to access this file, which is not something that
a legitimate user would intentionally do, and therefore it raises suspicion.

1.5.3 CAPTCHA
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart)
is a security measure which is used to block bots from accessing the protected resource on a
website. It is implemented as a simple task which is easy to do for a human, but complicated
for a computer program. [21]

This test is generally seen as an effective method to prevent bots from accessing the protected
resource, but its usage is not popular among users because it slows them down in their work. The
difficulty of CAPTCHAs has also increased over the years because of machine learning algorithms
that can break through older versions of it. Still, some CAPTCHA bypassing is possible due to
specialized companies which provide the option to solve the tests by their employees from third
world countries for an affordable price. [22]

1.5.4 JavaScript fingerprint
This broad term includes all types of anti-bot measures that depend on execution of JavaScript
code. It should be noted that the usage of these types of test can be controversial, because it
penalizes legitimate users who block the execution of JavaScript in their browsers due to perfor-
mance or privacy concerns, and therefore it is not a perfectly reliable bot detection mechanism.
The authors of bot detection algorithms seem to be aware of it and most of the anti-bot services
use these kinds of test just as a part of the bot detection mechanism, not fully depending on it.
[23, p. 148]

However, a large amount of information about the connected device can be gathered in this
way. This includes information about the browser, the operating system, and the hardware,
which can be used to classify possible bots. [23, p. 138]

7This obviously does not apply to all bots, as some of them may be actually interested in images even more
than in the text content.

Ethical considerations 9

1.5.5 IP address quality
The source of the IP address can also be used as one of the factors when the protected server
decides if the incoming request is legitimate or not. Most of the bot traffic comes from the range
of IP addresses which is assigned to public clouds such as AWS8 and Microsoft Azure9. [24]
Some anti-bot services therefore block the requests from such IP addresses or treat them as more
suspicious, although the overall sensitivity of the service to the public clouds highly depends on
the concrete implementation. [23, p. 156]

Creators of malicious bots may try to avoid detection by hiding in residential traffic with IP
addresses that are owned by someone else. Fighting this approach is much harder because it can
lead to an unwanted punishment of legitimate users, who can get completely blocked or trapped
in “the CAPTCHA hell”, which means they have to solve the CAPTCHA every time they try
to access the protected website. [24]

1.5.6 Results of the bot prevention analysis
After going through the list of possible defense mechanisms that can prevent automated tools
from accessing a website, I decided to keep some of them in mind during the development of the
final application.

These are the maximum sustained click rate (the developed tool will visit the URLs with a
limited speed to try to avoid it), percentage of image requests (it will load them in the same way
as the real user would do), request for robots.txt file, and JavaScript execution.

1.6 Ethical considerations
It would be ideal if the developed tool visited only malicious websites while completely mitigating
any kind of access to the harmless part of the Web. However, any solution that implements this
approach would be less effective because it cannot be clearly concluded which URL is safe and
which is not without manually checking it first, which is unfeasible for an automated tool. This
means that there will be at least a small number of harmless websites that will be visited and
analyzed, even though they do not have to.

To mitigate unnecessary strain on server resources, the developed tool will have the option
to visit each URL only once in a given time frame, whose length will be configurable.

1.7 Similar projects
As of February 2024, there are multiple existing projects that combine the reporting of malicious
websites with their analysis and, therefore, are relatively similar to the phishingalert.cz project.

Given the assignment of this thesis, I have decided to go into more detail and split this section
into two parts. The first part describes existing tools for malicious websites reporting, and the
second part shows the projects which are focused solely on the website analysis.

1.7.1 Reporting tools
There are multiple tools that the user can use to report a malicious URL or website, and although
the user experience may be similar, their approach to handling the reported data can be quite
different based on the authority behind it.

8https://aws.amazon.com/
9https://azure.microsoft.com/en-us/

https://aws.amazon.com/
https://azure.microsoft.com/en-us/

Similar projects 10

1.7.1.1 URLhaus
This service, which started as a research project at the Bern University of Applied Sciences [25],
is used to share malicious URLs with the aim of eliminating them by collaboration with various
antivirus vendors and blacklist providers. [26]

The whole project uses reports from registered users, who can also add tags with additional
information (malware type, malware’s CPU instruction set, etc.) or make a request to mark the
reported URL as a false positive. The report can be made through the web GUI or through the
public API. [27]

Although the general use case of URLhaus is the reporting of malware hosted at the given
URL and not the reporting of phishing websites, its philosophy of sharing gained data with third
parties is similar to the approach of the phishingalert.cz project. Based on the statistics published
on the URLhaus website, 72.5 % of the reported URLs have been blocked by Cloudflare DNS
[28], although it is not clear whether it is the result of a combined effort of multiple parties or
just URLhaus alone.

The further analysis of the malicious URL payload is done through external services such as
VirusTotal and MalwareBazaar. [29]

1.7.1.2 PhishTank
Phishtank is a community-based site for phishing reporting operated by Cisco Talos Intelligence
Group. Users can submit phishing URLs and vote for existing submissions to confirm that they
consider the submitted URL to be malicious. [30]

Anyone with a registered account can send the malicious URL to PhishTank via their website
or send it to phish@phishtank.com from the previously registered email address. There is also
a public API for getting information about given URL in XML or JSON format, the response
then contains data such as submission date, validity, and whether the reported URL is confirmed
to be malicious. [31] It is also possible to download the whole PhishTank database, which is
useful for a service that will perform many lookups into the data. [32] The usage of PhishTank is
currently limited due to the closed registration of new accounts, although the already registered
users are still able to add new reports. [33]

1.7.1.3 Google Safe Browsing & Web Risk
The tech company Google, known for its search engine and cloud computing services, also has
its own phishing reporting solution, which is split into two parts: Safe Browsing for common
users and non-commercial applications, and Web Risk for commercial solutions. [34]

The main public-facing part of Safe Browsing service is a web form, which consists of two
basic fields, one for the malicious URL and one for the additional details. The form is protected
by reCAPTCHA10 to combat possible spam. [35]

Both services provide an API which can be used to look into Google’s list of unsafe web
resources. This list includes both phishing URLs and malware URLs. [36] The Web Risk API
also includes the option to submit an URL with malicious content that is further reviewed by
Google, although only 100 submissions per month are allowed in the free tier of the Web Risk
service. [37]

Google uses gained data about malicious websites to warn users who try to access the unsecure
website from their list. This is usually done by redirecting the user to a dedicated warning website
that informs them about possible risks. [38]

10https://www.google.com/recaptcha/about/

phish@phishtank.com
https://www.google.com/recaptcha/about/

Similar projects 11

1.7.1.4 Reporting to Cloudflare
Cloudflare is a CDN provider that also has its own reporting web form hosted at abuse.
cloudflare.com. The form contains fields for author contact info, evidence URLs, logs, and
optional comment. [39]

Cloudflare explicitly states that it usually cannot remove the reported website from the
Internet because it actually hosts only a handful of reported websites. Its services are used
mainly as a CDN or a pass-through security node that sits in the middle of the Internet traffic.
In that case, Cloudflare at least forwards the complaint to the website’s hosting provider, and
the further action depends on their decision. [40]

1.7.2 Web analysis tools
The projects listed here were analyzed to see the state of existing solutions which are similar to
the forensic module being developed as part of this thesis. They were also inspected to get an
idea of all the data that can be gathered from the analyzed websites and the possible ways to
retrieve them.

1.7.2.1 urlscan.io
This service describes itself as “a sandbox for the web” [41] and its main functionalities are
scanning and analyzing the requested URLs. The whole process starts by visiting the given URL
with a headless browser masquerading itself as a regular user. The URL can be accessed from
one of the 22 countries provided, and the browser’s User-Agent can be customized to better
mimic the real user’s behavior. The notable data in the result consist of a list of IP addresses
that were contacted during the page load, executed HTTP requests, SSL certificates, the size
of the transferred data, DOM content, used web technologies, JavaScript global variables, and
created cookies. [42]

However, it does not support the downloading of the JavaScript source code, CSS, and all
available DNS records.

There are two ways to request a scan of an URL: one through the web user interface and one
through the API, which can be used for free with a limited rate of requests.

The scan results are divided into three categories based on their visibility. Public scans can
be viewed by anyone on the urlscan.io front page and in the search results. Unlisted scans can be
accessed by the subscribers of urlscan Pro platform, and private scans are visible only to those
who know its unique ID. [43]

1.7.2.2 Cloudflare URL Scanner
The URL Scanner from Cloudflare [44] is relatively similar to the aforementioned urlscan.io
service. It lets the user set up a custom User-Agent, HTTP referrer11, or any other HTTP
header that is then used in the request, which is performed by an automated Google Chrome
browser controlled by the Puppeteer12 library. [45]

The URL Scanner can take a screenshot from multiple targets, such as a smartphone or a
desktop. It also logs all HTTP requests made between the browser and the requested website.
The scanned data include the DOM content of the page, the JavaScript global variables, cookies,
the HTTP version, and some of the technologies used by the page.

Based on scan requests for a few websites, the list of identified technologies is sometimes
shorter than in the case of urlscan.io, and the DNS records are also incomplete, although at least
the A records seem to be present.

11HTTP header which specifies the URL of the web page from which the request was made.
12https://pptr.dev/

abuse.cloudflare.com
abuse.cloudflare.com
https://pptr.dev/

Similar projects 12

The website scan can be requested from the web user interface or through the URL Scanner
API, and the visibility of the scan can be either public or unlisted.

1.7.2.3 Wappalyzer
Unlike urlscan.io and Cloudflare URL Scanner, this tool focuses on the concrete technology used
by the website and does not attempt to show any statistics on the performed HTTP requests or
other metrics associated with Internet traffic. It has its own database of web-related technologies,
such as content management systems, frameworks, JavaScript libraries, analytics services, or
CDNs. [46]

Their detection system finds the used software by inspecting website’s source code, JavaScript
variables, HTTP headers, or cookies. There, it looks at information leaked by the used technology
and compares it with the records from their database. [47] The lookup can be performed using
the Wappalyzer browser extension, API, or one of the supported CRM13 systems. [46]

The downside of this service is its business model. The cheapest API option starts at $250
per month [48], and even though the browser extension is free, its usage in an external project
is obviously very limited.

1.7.3 Results of the analysis of similar projects
After going through existing projects focused on reporting of malicious websites and their anal-
ysis, I conclude that none of them fully comply with the assignment of this thesis. However,
several observations have been made that may help in the design of this project.

The first is the idea of saving the screenshot of the reported page in a way similar to urlscan.io.
This approach seems useful because it can give the project’s administrator an insight about the
reported page without the need of visiting it, and it can also serve as a backup in case the
downloading of the page’s source code fails and the original page gets deleted.

The second observation is related to the sharing aspect of some of the mentioned projects.
Reporting phishing accidents to the higher authorities was already suggested before by the su-
pervisor of this thesis, but the review of existing solutions gave me a more concrete idea of a
possible approach to do this. For example, the Cloudflare reporting tool states that it sends the
submitted report to the hosting provider of the reported website [40], which can be utilized to
reach those hosting providers with relatively low effort produced, although it is obviously still
less effective than getting to them directly. Knowledge of Google Web Risk API also inspired me
to support it as a functionality in the developed project.

The analysis has also introduced me to the public sources of malicious websites, the sources
being URLhaus and PhishTank. The data from their databases can be used to test the project
with real-world data later on and assess the reliability of the developed solution.

13Customer Relationship Management

Chapter 2

Design

This chapter describes the requested use cases of the project, the architecture and components
of the developed application, the design of required functionalities, and the technologies used.

2.1 Use cases
This section describes the actors who will use the application and possible tasks they can perform,
thus creating use cases of the application, which are also visualized in the included use case
diagram.

2.1.1 Actors
There are two actors who are relevant to the developed application:

Administrator: The administrator is a privileged user who can view data from all reported
websites and change the configuration of the application. They have a background in cyber-
security and have at least intermediate knowledge of web applications and related technology.

User: The user is a person who reports suspicious websites in the web form. It can be a
person from the general public without any significant IT skills. They provide their own
contact information for possible future interactions with the administrator and to verify that
they are not a bot.

2.1.2 UC1: Reporting a website to phishingalert.cz
Actor: User

1. User opens the website with reporting form

2. User enters their contact information and information about the reported website into the
web form, this creates a new accident report

3. System checks validity of the entered data and prompts the User to edit it if it contains errors

4. System saves the accident and sends confirmation link to the user’s email address

5. User opens their email client and clicks on the link

6. System changes the status of the reported accident to confirmed

13

Use cases 14

2.1.3 UC2: Viewing statistics about the reported website
Actor: Administrator

1. Administrator opens the website with control panel

2. System shows recently added reports

3. Administrator finds the report for which they were looking for and clicks on a Statistics
button

4. System shows statistics of the report

2.1.4 UC3: Sending a report to a higher authority
Actor: Administrator

1. Administrator opens the website with control panel

2. System shows recently added reports

3. Administrator finds the report for which they were looking for and clicks on a Report website
button

4. System shows a drop down menu with available authorities

5. Administrator clicks on the desired authority

6. System performs the reporting process

2.1.5 UC4: Changing the application configuration
Actor: Administrator

This use case is partially done outside of the application.

1. Administrator goes into the working directory of the application and opens the configuration
file which is located there

2. Administrator changes the required parameters in the configuration file, saves the file and
restarts the application

3. Application starts correctly if the configuration is valid, otherwise it informs the administrator
about the issue, which can be fixed by repeating the previous step

Application architecture 15

Administrator

User

Phishingalert.cz

Sending a report to a
higher authority

Changing the application
configuration

Viewing statistics about
the reported website

Reporting a website to
phishingalert.cz

Figure 2.1 Use case diagram

2.2 Application architecture
The application architecture was designed in a way that respects the core software engineering
principles of low coupling and high cohesion.

It consists of three supporting services (Database, RabbitMQ broker, SFTP client) and two
main components (Server Core and Scraper) whose concrete implementations are independent
of each other.

Server Core 16

Database

JDBC driver
Scraper

Main server

Server Core

HTTPS

JDBC driver

«Service»
RabbitMQ broker

SFTP

«Service»
SFTP server

Message queue

Message queue

Figure 2.2 Component diagram

2.3 Server Core
Server Core is the heart of the entire application that is exposed to the Internet. It handles
all incoming requests and contains business operations such as user authentication and website
analysis.

This component implements the logic behind the entire reporting process, and it also controls
the rendering of the frontend content that is subsequently served to the user or administrator.

2.3.1 Server Core Architecture
The implementation of the Server Core component is based on the MVC pattern. This pattern
consists of three main elements: the Model, the View, and the Controller.

The Model is a layer which is responsible for defining the entities in the application and
the operations around them, such as their storing and retrieving. The View layer handles the
presentation of the data to the user and the Controller contains the logic for handling input from
the user and updating the View or Model according to it. [49]

2.3.2 Frontend
The GUI of the application is implemented as a web frontend with a public and an internal
part. The public part consists of a web form which is used for filling in the information about a
phishing attack. The internal part, to which is also referred to as the “control panel”, is used by
the administrator of the whole system.

Server Core 17

2.3.3 Reporting URL to the higher authorities
One of the most needed features was automating the process of reporting URLs to the higher
authorities. Before developing this thesis, the project administrator needed to manually copy
the information about the reported websites from the database and paste it into the reporting
tool of the authority they deemed appropriate.

There are multiple ways to do the reporting process programmatically, each of them having
its pros and cons.

API: Using the public API from the authority itself is the easiest and most reliable way to
send the phishing report. The structure of inserted data and the possible responses from the
server are both well known, which makes the reporting process deterministic and less prone
to bugs.
The reporting process can be partially or fully automated. The fully automated process
would automatically submit a reported URL to an API, while the partially automated process
would do this after the administrator’s action.
The problem lies in the fact that only part of the relevant authorities provide this option and
if they do, there are still other limitations, such as rate limiting, which is the case of Google
Web Risk analyzed in 1.7.1.3.

Fully automated without API: From the administrator’s high-level perspective, this kind
of approach might feel very similar to the usage of an API – just click the button / change a
setting in the configuration file and let the system handle the rest.
The problem lies in the potential implementation of this approach. Because an API is not
present, the whole process would need to be done by some kind of bot which would fill out the
reporting web form and which would potentially need to pass the protections mentioned in
the section 1.5. The most problematic would be the passage through CAPTCHA. Based on
my observations of multiple reporting tools, this obstacle is almost always present in them.
Then there is an ethical problem with breaking the Terms of Service of the used web form
because the firms behind them do not assume that they will be filled by a bot. For example,
Google’s Terms of Service state that the user cannot participate in “bypassing our systems
or protective measures.” [50]
There are also potential problems in the future if the reporting form changes its layout or
implementation. An automated tool would not be able to cope with these changes and could
cause some serious bugs such as submitting incorrect or incomplete data. This approach
could be potentially harmful and it could defeat the whole purpose of the phishingalert.cz
project.

Partially automated without API: This approach combines the concept mentioned above
with a human interaction. The data is automatically inserted into the reporting web form
by the program, while the administrator has to solve CAPTCHA and confirm the sending
of report to the authority. The administrator sees the inserted data before sending them,
making the whole process safer and less prone to accidental spam. It does not violate the
usual Terms of Service agreement because the report is technically being filled by a human.
The only downside is the consumption of the administrator’s time, although it is still signifi-
cantly faster than the old process, which was completely manual.

After going through possible URL reporting options, it was decided to implement two report-
ing strategies – one with API, and one without it. Both options are implemented as a partially
automated solution. Fully automated solutions could face problems with rate limiting from the
server or sending wrong URLs. This does not mean that it could not be reliably done, but the
difficulty of such a process goes beyond the scope of this thesis.

Scraper 18

2.4 Scraper
Scraper is a standalone component that is focused on finding and downloading the required
information about the website. It takes care of the whole download process and communicates
with the Server Core through a message queue.

The main reason for the choice of the independent Scraper component is the possible need
to run the whole scraping process from a machine different from the main server. It also enables
parallel usage of various Scrapers which can handle multiple incoming requests from the message
queue without waiting until the currently busy Scraper finishes.

2.4.1 Visiting the reported URL
Some of the data associated with the website must be accessed by visiting the reported URL
with the related pages and downloading the content directly from them. This can generally be
done with a web crawler, which is a piece of software that can systematically browse the web
and access the requested data.

I have established several criteria that should be met by the web crawler used in this project:

1. URL filtering: The crawler should support at least a basic filtering of the URLs referenced
from the visited website. This is important because some phishing websites contain URLs
to the legitimate page of the organization that they try to impersonate, and visiting these
secure URLs would be a waste of time and computing power. It could also put unnecessary
strain on the organization’s server infrastructure, which is not desirable.

2. Human-like behavior: The crawler should try to imitate a real user who visits the website,
because some refined phishing websites could serve different content to the automated visitor
or use the bot prevention mentioned in 1.5.

3. JavaScript execution support: The execution of JavaScript code is a must due to the fact
that the reported website can be written in a framework like React1 or Vue.js2 that is highly
dependent on it. Crawlers without JavaScript support are also more likely to be blocked by
anti-bot protection. [23, p. 149]

4. Modifiable code: It should be an open source software with permissive license and reason-
able documentation that can be modified for the needs of this project. This means that it
should be ideally written in a JVM language as the rest of the project.

5. Actively maintained: The web crawler should be actively supported and maintained. The
project is considered maintained if the last commit in its source repository is not older than
6 months.

With the aforementioned criteria in mind, the process of finding the appropriate web crawler
has started. Criteria 1 and 3 alone discarded a large number of web crawlers found [51], and after
applying the remaining points, only two options remained in the selection process, the options
being Apache Nutch3 and Apache StormCrawler4.

Apache StormCrawler is designed to be used with the Apache Storm distributed computation
system and therefore was discarded. The remaining Apache Nutch initially seemed like a good
choice, but it would have to be heavily tuned to adhere to the criteria number 2. Given the size
and complexity of the existing Apache Nutch project, this was evaluated as a too time-consuming
task with uncertain outcome.

1https://react.dev/
2https://vuejs.org/
3https://nutch.apache.org/
4https://stormcrawler.apache.org/

https://react.dev/
https://vuejs.org/
https://nutch.apache.org/
https://stormcrawler.apache.org/

Database 19

Therefore, I have decided to write my own web crawler without relying on existing solu-
tions. The developed web crawler is based on the automated browser, which is controlled by the
Playwright library.

This solution trivially supports the criteria number 3, because the JavaScript support is
integrated into any modern web browser and the criteria numbers 4 and 5 are also satisfied,
since the web crawler is developed as part of this thesis. The parts that need to be programmed
are URL filtering and human-like behavior based on the observations from Results of the bot
prevention analysis.

The Playwright library, which is primarily focused on end-to-end testing of web applica-
tions, can be used with all major browser rendering engines including those used by Firefox
and Chromium. Its development is backed by Microsoft and the library offers features such as
automatically waiting for required page elements to load or emulating mobile devices. [52]

I have chosen Mozilla Firefox as the main browser for the web crawling task because it seems
less susceptible to being detected by anti-bot protection than Chromium, although not by a huge
margin. [23, p. 148]

2.5 Database
The Database handles saving and reading of the data in a structure that enables fast execution
of queries and effective storage space utilization.

Nowadays, there are two main types of databases that can be described as follows [53]:

Relational databases: These databases store the data in tables with rows and columns,
with each column representing a specific data attribute and each row representing an instance
of that data. Every table has a primary key that can be used to specify the relationship
between data in the tables, and the user writes SQL queries to interact with the database.
This kind of scheme is useful for use cases where the relationship between entities is important.
Relational databases follow strict ACID5 properties, which means that the database is able
to maintain data integrity despite errors in data processing, and the data should be accurate
at all times.
When it comes to performance, these databases are usually vertically scaled by adding more
CPU cores and RAM to the server. Horizontal scaling is possible by duplicating data across
multiple servers for read-only workloads, but it is not trivial.

Non-relational databases: This type of database, also called NoSQL databases, uses a
less strict and more flexible scheme than a relational one. Data can be stored as a collection
of key-value pairs, JSON objects, or graphs with nodes and edges. This approach can be
useful for data that are flexible in shape or size and may change in the future.
Non-relational databases are not usually compliant with ACID because most of them are only
eventually consistent, which means that the queries can return old data for some period of
time. [54]
These databases can be horizontally scaled by adding more nodes (servers), and the whole
process is more straightforward compared to the scaling of relational databases.

After going through the pros and cons of each database type, it was decided to use a relational
database. It is highly unlikely that the number of accessed data would exceed the performance
limits of the relational database in the future, and the rigid scheme is suited to the nature of
stored data whose structure will not change very often.

PostgreSQL6 was chosen as a relational database implementation because it is open source,
widely adopted, and the project has already used it.

5Atomicity, Consistency, Isolation and Durability
6https://www.postgresql.org/

https://www.postgresql.org/

Database 20

2.5.1 Database entities
The entities in the database are represented and connected in a way described in the conceptual
model of the application database in the figure 2.3.

The Author and Phishing accident are filled in by the Server Core, while the rest of the data
is provided by the Scraper. There is a possibility that the user does not send the confirmation
of their report (Phishing accident), which is part of the process described in 2.1.2, and scraping
does not occur. Due to this, the relationship between the data from the Server Code and the
data from the Scraper is only optional.

The Phishing accident and the Website entities are divided into two separate parts for the
same reason. They could theoretically be put into a single table, but then the Website’s rows
would need to be nullable, which initially seemed as a worse option, although the chosen solution
also has its pitfall in the extra step that is needed in database queries.

The atributes of the entities are based on the previous analysis performed in the Data from
the website section.

Figure 2.3 Conceptual model of the application database

Communication between components 21

2.6 Communication between components
Since the application is divided into multiple components, it is necessary to find a way for them
to communicate with each other. When it comes to implementing a communication protocol,
there are two approaches that can be taken [55]:

Synchronous protocols: Synchronous protocols require the sender and the receiver to act
simultaneously, so when the sender initiates the request, it needs to wait until the receiver re-
sponds. This means that the sender is blocked during the time when the receiver is proceeding
with its request.

Asynchronous protocols: Asynchronous protocols provide a non-blocking mode of com-
munications. The sender initiates the request, but is not blocked during the waiting for the
response and continues in its proceedings instead. This method is often referred to as the
“fire-and-forget model of communication.” [56] The request can be performed later if the
receiver decides to do so.

After reviewing the features of various communication protocols, it was decided to use the
protocols which are described in further detail in this section.

2.6.1 HTTPS
During a discussion with the supervisor of this thesis, it was agreed that the entire application
would be controlled from the browser via the web interface, which means that some variant of
the HTTP should be used. Due to the confidentiality of the transmitted data and the privacy
of the users [57], HTTPS is going to be used for communication between Server Core and the
client device in the deployment.

2.6.2 Message queue
Since the application is divided into the Server Core and the Scraper, it is necessary to find a way
in which the Server Core can send a scraping request to the Scraper module. Communication
should be asynchronous because the scraping process can take a long time and the Server Core
does not have to wait for it to complete because the public user who reports the website cannot
see the results anyway.

The technology that meets these requirements is the message queue. This component can be
described as a buffer that receives messages in a specific order and forwards them to the affected
application while keeping the order unchanged. This allows for the decoupling of the sender and
the recipient, who can work at their own pace and retrieve the messages from the queue only
when they are ready to do so. [56]

RabbitMQ7 was chosen as the broker for message queue.

2.6.3 SFTP
Although there is already a database to store information about the reported websites, there
is still a need to save larger files, such as embedded JavaScript source code or images from the
website. Storing these types of file in the file system managed by the OS is usually more effective
than storing them in the relational database, which is suited for smaller chunks of structured
data. [58]

7https://www.rabbitmq.com/

https://www.rabbitmq.com/

Programming language and framework 22

One of the protocols that supports the transfer of files between two machines is SFTP8. It
allows for operations such as file transfer, directory listings, or remote file removal, and the entire
connection is encrypted thanks to the use of the SSH data stream. The client can authorize itself
to the server using a password or SSH key, and the protocol is implemented on almost all major
platforms. [59]

2.7 Programming language and framework
The already existing part of the project was written in Python using the Flask framework, so the
main question was whether it should just be extended using existing technologies or rewritten in
a different language from scratch.

After exploring the possible options, it was decided to rewrite the project in Kotlin with the
Spring Boot framework. Rewriting an already established solution might seem like unnecessary
work, but the size of the existing code base was relatively small, and Python was previously
picked mainly because of its suitability for fast prototyping, so it was not insisted to keep the
project’s tech stack unchanged.

Kotlin is a modern, object-oriented programming language that supports interoperability
with Java and therefore has support for a wide number of libraries and extensions. [60] Com-
pared to Java, Kotlin provides null safety and a more concise syntax, although this is down to
personal preference. The main reasons for choosing Kotlin over Python were static typing, better
performance [61], and my greater familiarity with the JVM languages compared to the Python
ecosystem.

Spring Boot is a pre-configured version of the Spring framework, which is suitable for the
development of web-based applications and services. It comes with features such as the integrated
web server, dependency injection, or externalized configuration. [62] This framework was chosen
for its good documentation and the large number of extensions.

Gradle9 is used as a build system for the developed application.

8SSH File Transfer Protocol
9https://kotlinlang.org/docs/gradle.html

https://kotlinlang.org/docs/gradle.html

Chapter 3

Implementation

This chapter takes the reader through the implementation of both application’s components and
describes the various problems faced during the process.

3.1 Data layer
The data layer is implemented in a separate Gradle module named Common, which is used
by both Server Core and Scraper components. This solution makes it easy to edit application
entities and database logic in one place, with the change propagated to the components that
depend on it. The entities consist of Author, DnsRecord, ModuleInfo, PhishingAccident,
SslCertificate, and Website.

Each entity is represented by a data class that is used in business operations throughout the
entire application. The entity does not contain annotations or similar references to the database.
Thanks to that, the code outside of the data layer is independent of the concrete implementation
of the application’s persistence logic.

data class DnsRecord(
override var id: Int?,
var name: String,
var type: Int,
var ipAddress: String,
var timeToLive: Long?,
var priority: Int? = 0,
var websiteId: Int = 0

) : Model<Int>

Listing 3.1 Example of the DNS record entity.

Every entity also has a corresponding object that represents the given entity in the database
as a table. The columns of the table are defined by the DSL of the Exposed1 framework, which
takes care of mapping the object to the database table.

1https://github.com/JetBrains/Exposed

23

https://github.com/JetBrains/Exposed

Server Core 24

object DnsRecords : IntIdTable() {
val name = varchar("name", 30)
val type = integer("type")
val ipAddress = varchar("ip_address", 50)
val timeToLive = long("ttl").nullable()
val priority = integer("priority").nullable()
val website = reference("website_id", Websites)

}

Listing 3.2 Example of the table object for DNS records. The ID generation is implemented by the
IntIdTable class from the Exposed framework.

The framework supports lightweight DAO2 capability, which can generate SQL code for
CRUD3 operations without the help from the developer. [63] The other option is to write these
operations with Exposed DSL, which gives the developer more control about the actual SQL
query that is going to be executed. The DSL approach was chosen for precisely this reason.

abstract class IntTableRepository<MODEL : Model<Int>, TABLE : IntIdTable> (
val table: TABLE,
val converter: RowConverter<MODEL>

) : CrudRepository<MODEL, Int> {
override fun find(id: Int): MODEL? {

val row = table.selectAll().where { table.id eq id }.singleOrNull()
return if (row != null)

converter.rowToRecord(row)
else

null
}

override fun findAll(): Collection<MODEL> {
return table.selectAll().map { converter.rowToRecord(it) }

}
}

Listing 3.3 Part of the IntTableRepository abstract class which is used as a foundation for the
repository operations. This class is then implemented for each entity and in this way new specific
operations can be added.

3.2 Server Core

The Server Core component integrates Apache Tomcat4 web server, which handles incoming
HTTP requests from the user or administrator.

It contains RepositoryService class with business operations. I would like to highlight the
getSimilarAccidents method, which implements the required functionality of finding similar
accidents from the past. It takes an instance of PhishingAccident as an argument, and returns
the collection of accidents that is sorted by the number of modules which they share with the
passed phishing accident. In this way, the administrator can view reported URLs that share a
similar tech stack to the PhishingAccident that interests them.

2Data Access Object
3Create, Read, Update, Delete
4https://tomcat.apache.org/

https://tomcat.apache.org/

Server Core 25

The main page for the submission of phishing reports was taken from the existing part of the
phishingalert.cz project and is marked as such in the project’s source directory, while the control
panel was developed as part of this thesis.

3.2.1 Control panel
The control (admin) panel is implemented as a part of Server Core component and uses Spring
MVC5 framework. The View layer consists of Thymeleaf6 templates, which can be found in the
resources directory in the Server Core project. These templates are filled with data from the
Controllers, which are in the cz.phishingalert.core.controllers.admin package.

The pages of the control panel are styled with CSS from the Bootstrap v5.37 library and the
final design can be seen in the screenshots in figures 3.1 and 3.2

The panel can be accessed from the /admin URL path, from which the other actions can
be performed through the GUI. The functionalities implemented in the control panel are the
following:

Viewing the list of phishing reports which are sorted by the submission ID, available from
/admin path.

Viewing the phishing reports which were submitted by the user with given email, available
from /admin/stats/user/<email> path.

Viewing the detailed statistics about the report with given ID and similar reports from the
past if such reports exist, available from /admin/stats/<ID> path. The modules and DNS
records shared between the viewed report and similar reports are marked with a green color
on the page to visualize their equality.

Sending the report to a higher authority, supported authorities being Google and Cloudflare.
The report is send by accessing /admin/submit/<authority>/<ID> path.

3.2.2 Implementation of subsequent URL reporting
Another functionality is the reporting of obtained phishing URLs to the higher authorities. The
application currently supports reporting to Cloudflare and Google Web Risk, which are analyzed
in the Reporting tools subsection.

The Cloudflare reporting is controlled by the CloudflareController class and I have imple-
mented it to demonstrate the possible way of reporting the URL to an authority without a public
API for report submission. After the administrator clicks on the “Report website” button and
chooses “Cloudflare” as an option, the server redirects them to the Cloudflare reporting form,
which is already prefilled with the data from the original phishing author and with part of the
data gained by the Scraper. This is done by embedding the information in the query parameters
of the web form URL.

Reporting to Google Web Risk is implemented in the WebRiskController class, and presents
the possibility of using the API for the submission of phishing reports. The report is send
through the WebRiskServiceClient8 class of the Web Risk Java package, which utilizes the
gRPC framework. With this framework, the developed application directly calls the methods on
the remote machine in a similar way as if it were a local object. [64] Unfortunately, this method

5https://docs.spring.io/spring-framework/reference/web/webmvc.html
6https://www.thymeleaf.org/
7https://getbootstrap.com/docs/5.3/getting-started/introduction/
8https://cloud.google.com/java/docs/reference/google-cloud-webrisk/latest/com.google.cloud.

webrisk.v1

https://docs.spring.io/spring-framework/reference/web/webmvc.html
https://www.thymeleaf.org/
https://getbootstrap.com/docs/5.3/getting-started/introduction/
https://cloud.google.com/java/docs/reference/google-cloud-webrisk/latest/com.google.cloud.webrisk.v1
https://cloud.google.com/java/docs/reference/google-cloud-webrisk/latest/com.google.cloud.webrisk.v1

Server Core 26

Figure 3.1 Screenshot of the control panel home page

Server Core 27

Figure 3.2 Screenshot of the page with accident’s statistics

Scraper 28

could not be properly tested because the Web Risk submission API is not available for standard
Google Cloud users, and even though I have made a formal request to Google to gain access to
this feature, they did not manage to respond.

3.3 Scraper
The process of downloading the requested data from the entered URL is controlled from the
Orchestrator class, which also coordinates the data exporting process.

The collections of entities, which are returned by the instances of Downloaders described
in the related subsections, can be exported to the two sources: database and standard output
stream. Exporting to the database is used when the Scraper is started in the standard way, and
printing to standard output is used in the demo mode.

The website content, which consists of images, HTML, JavaScript, and CSS files, is stored
in a temporary storage during the web crawling process, and then sent through SFTP via an
instance of SftpExporter class to the server which is set in the configuration file of the Scraper.
The SFTP connection is used only when the application is not running in the demo mode.

The demo mode is useful when it is necessary to test the Scraper without a running instance
of the Server Core component. This mode is automatically entered if the administrator starts
the Scraper with --try-domain=<URL> flag. In that case, communication with the Server Core
through the message queue does not start, and the results of the scraping process for given URL
are shown directly in a terminal and then discarded.

3.3.1 Obtaining domain information
As mentioned in the subsection Domain information, there are currently two protocols available
that can be used to query the database with information about the registration of requested
domain. It was decided to implement the database lookup using both of them, with RDAP
being a primary protocol for this task and WHOIS being a fallback in case the RDAP lookup
fails. Choosing this approach was a necessity caused by the fact that multiple domain registries
still have not implemented the RDAP properly and instead rely on the old WHOIS protocol for
serving the requested data. [65]

The domain information lookup is implemented in the WebsiteDownloader class, and the
results are handled by the code from the cz.phishingalert.scraper.downloaders.parsers
package.

RDAP lookup is implemented using the HttpClient from the java.net.http package. The
lookup function sends an HTTP GET request to the main RDAP server whose URL is set in the
configuration file. If the request is successful, the server responds with a JSON file containing
the information about the domain. This JSON file is then parsed into an instance of Website
class and returned. The parsing process is skipped if the request to the RDAP server fails9, and
the caller of the lookup function is informed about the failure.

The implementation of WHOIS lookup functionality is more complicated. Unlike RDAP,
this protocol does not provide an option to automatically follow redirects to the server which
stores the detailed information about the given domain. Instead, the server response includes
the domain of the referred server in plain text, which can be seen in the example 3.4, and the
client has to parse it. My WHOIS lookup algorithm uses the WhoisClient from the Apache
Commons API10. The algorithm goes to the referred servers until it reaches the final destination
or exceeds the upper limit of the visited servers. Then it attempts to parse the server response
using a set of regular expressions and eventually saves it to an instance of Website class, which

9This usually happens when the domain registry has not implemented RDAP yet
10https://commons.apache.org/proper/commons-net/apidocs/org/apache/commons/net/whois/

WhoisClient.html

https://commons.apache.org/proper/commons-net/apidocs/org/apache/commons/net/whois/WhoisClient.html
https://commons.apache.org/proper/commons-net/apidocs/org/apache/commons/net/whois/WhoisClient.html

Scraper 29

is then returned. The parsing process is not 100% reliable due to the aforementioned lack of
standardization of the WHOIS response format [11], but at least the responses from the major
domain registries are properly parsed.

% IANA WHOIS server
% for more information on IANA, visit http://www.iana.org
% This query returned 1 object

refer: whois.verisign-grs.com
...

Listing 3.4 Example of part of the response from WHOIS lookup. The response from whois.iana.org
contains a reference to another server that has more information about the queried domain.

3.3.2 Obtaining DNS records
The DNS lookup is implemented in the DnsDownloader class with the help of dnsjava library.
Lookups are performed by querying the default DNS server that is set in the system settings,
as this approach seemed more natural than defining this setting separately in the application’s
configuration.

The application currently examines DNS records of type A, AAAA, MX, CNAME, and NS,
since these values are defined for most existing domains. [66] If needed, the range of downloaded
DNS records can be extended by adding the missing types to the constructor of DnsDownloader
and editing the handleRecord method.

3.3.3 Obtaining SSL certificates
The implementation of SSL certificate retrieval can be found in the CertificateDownloader
class. The download process is performed through the Java SSL library11 which obtains the entire
certificate chain through a secure connection. The SHA-1 thumbprint is calculated for each cer-
tificate, and the parsed certificate data are subsequently stored in an instance of SslCertificate
class.

3.3.4 Web crawler
The web crawler is implemented in the cz.phishingalert.scraper.crawler package in the
PlaywrightCrawler class, which extends the more generic Crawler abstract class that can be
used as a basis for another web crawler implementation.

The whole crawling process is done according to the algorithm whose pseudocode can be seen
in the listing 1. It is based on the BFS12 algorithm with appropriate conditions for adding new
URLs to the queue (line 17) and a small optimization which can save some time by not calling
the browser API when not needed (line 12).

Each URL retrieved from the queue is handled by the tryToNavigate method, that tries to
access the passed URL and changes the browser’s User-Agent header in case of an unsuccessful
attempt, which can be seen in the listing 3.5. The User-Agent switching is implemented in the
CrawlingProcess helper class, which encapsulates the underlying browser instance.

11https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/package-summary.html
12Breadth-first search

whois.iana.org
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/package-summary.html

Scraper 30

Algorithm 1 Web crawling
Require: u← starting URL

1: Q← empty queue of URLs
2: S ← empty set of already found URLs
3: Insert u at the end of Q
4: Insert u into S
5:
6: while Q is not empty do
7: current← first element from the Q
8: Remove first element from the Q
9:

10: Visit the page at current URL and download resources from it
11: if number of elements in S ≥ limit of visited pages then
12: continue ▷ Optimization for skipping costly operation
13: end if
14:
15: links← URLs referenced from the current page
16: for link in links do
17: if # of elements in S < limit of visited pages AND S does not contain link then
18: Insert link at the end of Q
19: Insert link into S
20: end if
21: end for
22: end while

// Taken from the PlaywrightCrawler.kt
fun tryToNavigate(process: CrawlingProcess, url: URI) {

if (process.page.url() == url.toString()) {
logger.info("Crawler is already at the given $url")
return

}

var triesCount = 1
var pageResponse = process.page.navigate("$url")

?: throw PlaywrightException("...")

while (triesCount <= config.triesPerPageLimit &&
pageResponse.status() == HttpStatus.TOO_MANY_REQUESTS.value()) {

process.switchUserAgent()
pageResponse = process.page.navigate("$url")

?: throw PlaywrightException("...")
triesCount++

}

// Handle the scenario where we ran out of tries and the website
// still didn't let us in.
if (pageResponse.status() == HttpStatus.TOO_MANY_REQUESTS.value())

throw PlaywrightException("...")
}

Listing 3.5 Example of the tryToNavigate method from the crawler which is used for accessing given
URL.

Scraper 31

crawler-config:
browserProfilePath: /home/bob/firefox/common/.mozilla/firefox/profile
visitedPagesLimit: 5 #Max number of visited websites
triesPerPageLimit: 3 #Max number of attempts to navigate the same URL
allowOutsideDomain: true #Visit links which lead to external websites
userAgents:

- "Mozilla/5.0 (X11; Linux x86_64; rv:124.0) Gecko/201001 Firefox/124.0"
- "Mozilla/5.0 (Windows NT; Win64; x64; rv:124.0) Gecko Firefox/124.0"

Listing 3.6 Example of the web scraper configuration in YAML format.

After that, the page’s HTML content, JavaScript files, CSS files, and images are downloaded
to the local storage of the Scraper module. The crawler keeps finding new URLs on the page
and then accessing them until the whole website is crawled or the upper limit of visited URLs is
reached. The crawler also takes a screenshot of the page located at the starting URL.

The crawler settings can be adjusted by changing the values under crawler-config key in
the Scraper module configuration file, as seen in the listing 3.6.

For example, the browserProfilePath setting provides an option to start the browser with
an existing user profile, which is useful when there is a need to start the browser with some
specific user setting or extension. I have observed that the crawling process is usually more
reliable when the started browser uses an extension that automatically closes cookie pop-ups13.
The screenshot of the visited URL looks clearer because the website content is not covered by
the pop-up. The crawler also does not immediately start following the URLs referenced by the
pop-up and follows the URLs referenced by the actual website itself, so the crawled results can be
more relevant. Another useful option is the userAgents list, which can be extended by adding
new strings in the YAML list format.

The upper limit of URLs visited in one crawling session can be set, and the same applies to
the maximum number of attempts after which the browser stops trying to visit the given URL.
The administrator can also allow or disable the crawling of domains different from the one of the
starting URL.

3.3.5 Obtaining the information about used modules
The finding of information about the used modules is implemented in the ModuleDownloader
class.

The process starts by visiting the reported URL with a browser controlled by the aforemen-
tioned Playwright library. After the page is ready, the algorithm loads the file with detection
patterns written in JavaScript and evaluates this JavaScript code directly on the opened web
page. The results are subsequently parsed and returned to the caller of the download method.

The definitions of detection patterns consist of a list of JavaScript functions that look for
exposed global variables and functions that detect if the given technology is present. The file
with these detection patterns was taken from an existing open-source project “Library Detector
For Chrome14”, which is available under the MIT license. The ModuleDownloader is compatible
with its return values, which are parsed in the extractVersion method. This means that the
developed solution should work with future additions to the list of definitions from the “Library
Detector For Chrome” project without any necessary adjustments.

The identified modules consist of various JavaScript libraries and frameworks, content man-
agement systems, and external APIs.

13https://addons.mozilla.org/en-US/firefox/addon/istilldontcareaboutcookies/
14https://github.com/johnmichel/Library-Detector-for-Chrome

https://addons.mozilla.org/en-US/firefox/addon/istilldontcareaboutcookies/
https://github.com/johnmichel/Library-Detector-for-Chrome

Chapter 4

Testing

The application has been partially tested through unit and integration tests during the develop-
ment process. The developed project was also reviewed with end-to-end tests that used real-world
data to check the reliability and performance of the entire system. This chapter describes these
tests in more detail.

4.1 Automated testing
Unit tests are used to test some of the helper methods and functions in the Scraper component,
such as URL and date validation. They are also used to test the parsing of responses from the
RDAP and WHOIS protocol. In case of WHOIS, they have proven to be a very useful tool,
because the response format is not standardized, which was mentioned in the subsection 1.4.1.
Due to this, the parsing process needed to be tuned and verified multiple times.

Integration tests are used only to a small extent to test classes that implement database
operations, such as AuthorRepository or WebsiteRepository. The tests are performed by
querying the H21 in-memory database, which implements all required SQL operations without
the need to start a dedicated database server. These tests also check several business operations
in the RepositoryService class.

4.2 End-to-end testing
The project has been tested mainly manually with end-to-end tests done on real websites from
the Internet, which has seemed like a sensible solution because the application’s use cases are
heavily dependent on it.

However, even with the real data used, the performed tests can still give only a limited picture
of the project’s reliability. This is because the requests to the analyzed websites were made from
residential IP from the network of a local Internet service provider, and therefore are probably
less suspicious in the network traffic than the project’s instance deployed in a large cloud, as was
discussed in the IP address quality subsection.

1https://www.h2database.com/html/main.html

32

https://www.h2database.com/html/main.html

End-to-end testing 33

Figure 4.1 Graph (visible from Cloudflare dashboard after login) with the performed requests to
the test page and their rating according to Cloudflare. Every rating which is not “Unsolved” is seen as

a success.

4.2.1 Accessing websites with bot protection
To test how the Scraper performs against a website with bot protection enabled, I have created
a simple test page and deployed it to Cloudflare Pages2 hosting, which also provides a range
of protections against automated visitors. One of them is the Cloudflare Turnstile, which is an
alternative to the classic CAPTCHA. The user does not have to perform any demanding tasks as
part of the anti-bot check, because their device is checked by the methods based on those listed
in the Bot prevention section instead. [67] I have enabled it in the Cloudflare dashboard to see
if it detects the application and marks it as a bot.

The test page is available at https://learning-js.pages.dev/ and includes the jQuery3

library, CSS stylesheet, image, link to a different page under the same domain, and link to the
external domain.

The test consisted of visiting the page multiple times with various types of the Cloudflare
Turnstile turned on, and then manually checking if the application solved the anti-bot challenge
and, therefore, passed as a real user. As can be seen in the figure 4.1, the application solved
the challenge most of the time. The results of the test show that the developed solution has
no problems with the easier non-interactive challenge, but is usually detected by the harder
interactive challenge, so there is a room for improvement in the Scraper’s crawling module.

The test can be potentially skewed by the other page visitors, but the number of application
runs corresponded to the number of requests in the graph, so it should not be the case in this
specific example.

4.2.2 Accessing potentially malicious websites
This task tested both the Server Core and the Scraper component. It consisted of creating a list
of 20 potentially malicious websites from the PhishTank database and submitting them to the

2https://pages.cloudflare.com/
3https://jquery.com/

https://learning-js.pages.dev/
https://pages.cloudflare.com/
https://jquery.com/

End-to-end testing 34

Server Core which handles the rest.
The website URLs have been manually selected from the https://phishtank.org/ and

subsequently stored in the enclosed text file, which is loaded by the simple Python script stored
in the report sender.py. This script then performs HTTP POST requests towards the Server
Core and the results are manually checked after the Scraper finishes its job.

The results check consists of looking at the details about the downloaded websites in the
database and in the control panel. Similar types of test were performed multiple times during
the development process and it helped with the tuning of domain info parsing and website
crawling.

https://phishtank.org/

Chapter 5

Conclusion

The main goal of this thesis was the creation of the forensic module, which can obtain data
related to the website and use it for comparison with previously reported websites. The next
goal was the implementation of the administrator’s control panel for further phishing reporting
and website analysis.

The module was successfully implemented and provides the project administrator with the
ability to get all the information about website registration, its DNS records, SSL certificates,
and the frameworks and libraries used. It can also download all HTML, CSS, and JavaScript
files used by the frontend of the reported website and transfer them via a secure protocol to the
desired storage. The biggest obstacle was the need of not getting caught by the existing anti-bot
protections, which are presented in the first chapter. With this in mind, an approach based on
a headless browser was used and the whole solution was tested in multiple scenarios, which are
described in the related chapter. The most serious drawback of this approach is the limited speed
of the crawling process, although this has not been considered as a serious problem because of the
low frequency of incoming reports. Should this become an issue, the project architecture provides
the application with the ability to utilize multiple instances of such modules and therefore makes
the whole service easily scalable in the future.

The administration panel was implemented in a form of web application which is rendered
on a side of the server. It provides the administrator with the ability to easily report received
websites to authorities such as Google or Cloudflare, and this list can also be extended in the
future without bigger problems. The program can also show a detailed page about each reported
website and find similar ones based on the modules used. The analysis of reported websites
is currently limited and there is room for improvement which could utilize machine learning
or advanced statistics to employ all the data gained by the module and predict the incoming
phishing attacks.

When it comes to the previously existing part of the application, it was rewritten in Kotlin
with Spring Boot framework which means that the whole project uses one established technology
which can run on most of the modern systems without bigger adjustments.

35

Appendix A

Installation guide

The installation process was tested on Ubuntu 22.04 LTS, with Gradle version 8.5, Docker version
24.0.5., and OpenJDK 19.

The application was developed in IntelliJ IDEA 2023.3 (Ultimate Edition) and its run con-
figuration is part of the project (stored in the .run subdirectory of both core and scraper).
This means that if you have access to this IDE, you will be able to start and test the application
relatively easily by opening both core and scraper in it and running it from there just with a
click of a button without any manual Java/Gradle configuration needed. In that case you only
need to run the docker compose up from the project’s root directory and edit the SFTP server
login detail in the scraper/scraper-config.yml YAML file before running the application.

In order to start the project and try both the Server Core and The Scraper locally, the
following prerequisites are needed:

Terminal with Bash (Unix Shell)

Java 17 SDK or newer

Gradle 8.5 or newer

Docker 24.0 or newer

Running SFTP server (its login credentials can be edited in the scraper/scraper-config.yml
under the sftp-config key)

Free localhost ports 5432 (PostgreSQL), 5672 (RabbitMQ) and 8080 (the Server Core com-
ponent)

Now, to install and run the project without the use of IDE, you need to do the following
steps:

1. Open the project files from the attached medium, or from the GitHub repository. In that
case you can clone the repository with the following command:
git clone https://github.com/jirikx/phishingalert cz new.git

2. Start your SFTP server and add its login details into scraper/scraper-config.yml

3. When you are in the project root directory (phishingalert cz new), run the command:
docker compose up, which will start the PostgreSQL database and RabbitMQ broker.

4. Now you need to open two subdirectories, core and scraper, each in its own terminal tab.

36

37

5. Set JAVAPATH environment variable to your Java SDK install location, for example
JAVAPATH=/home/bob/.jdks/openjdk-19

6. Then run this in the core directory to start the Server Core:
./gradlew -Dorg.gradle.java.home=$JAVAPATH bootRun --args=’--spring.config.additional
-location=file:./core-config.yml’

7. Now, run this in the scraper directory to start the Scraper:
./gradlew -Dorg.gradle.java.home=$JAVAPATH bootRun --args=’--spring.config.additional
-location=file:./scraper-config.yml’

8. Open localhost:8080 to access the web form or localhost:8080/admin to access the con-
trol panel in your browser.

Bibliography

1. RUSHTON, Jo. Phishing attacks statistics and facts 2024 [online]. 2024-03-01. [visited on
2024-03-28]. Available from: https://www.techopedia.com/phishing-statistics.

2. VERIZON. What is Phishing? Definition, Types of Phishing, & Examples — Verizon [on-
line]. 2024. [visited on 2024-04-30]. Available from: https://www.verizon.com/about/
account-security/phishing.

3. YEBOAH-BOATENG, Ezer Osei; AMANOR, Priscilla Mateko. Phishing, SMiShing &
Vishing: An Assessment of Threats against Mobile Devices. Journal of Emerging Trends in
Computing and Information Sciences. 2014, vol. 5, no. 4, pp. 299–300. Available also from:
https://e-tarjome.com/storage/btn_uploaded/2020-09-12/1599891065_11216-
etarjome%20English.pdf.

4. IBM. What is a Phishing Attack — IBM [online]. [N.d.]. [visited on 2024-04-30]. Available
from: https://www.ibm.com/topics/phishing.

5. JAKOB G. YouTube doesn’t want to take down scam ads [Reddit thread]. r/youtube [online].
2023-12-12. [visited on 2024-04-30]. Available from: https://old.reddit.com/r/youtube/
comments/18gjiqy/youtube_doesnt_want_to_take_down_scam_ads/.

6. SECUREWORLD. 5 Smishing Attack Examples Everyone Should See [online]. 2020. [visited
on 2024-04-30]. Available from: https : / / www . secureworld . io / industry - news / 5 -
smishing-attack-examples-everyone-should-see.

7. ALTEXSOFT. Functional and Nonfunctional Requirements: Specification and Types [on-
line]. 2023. [visited on 2024-02-12]. Available from: https://www.altexsoft.com/blog/
functional-and-non-functional-requirements-specification-and-types/.

8. CLOUDFLARE, Inc. What is a domain name? — Domain name vs. URL [online]. 2024.
[visited on 2024-05-10]. Available from: https://www.cloudflare.com/learning/dns/
glossary/what-is-a-domain-name/.

9. DAIGLE, Leslie. WHOIS Protocol Specification [RFC 3912]. RFC Editor, 2004 [visited on
2024-05-10]. Request for Comments, no. 3912. Available from doi: 10.17487/RFC3912.

10. DOMAINTOOLS. What is Whois Information and Why is it Valuable? [online]. 2024.
[visited on 2024-05-10]. Available from: https://www.domaintools.com/support/what-
is-whois-information-and-why-is-it-valuable/.

11. INTERNET CORPORATION FOR ASSIGNED NAMES AND NUMBERS. RDAP FAQs
[online]. 2018. [visited on 2024-05-10]. Available from: https://www.icann.org/resources/
pages/rdap-faqs-2018-08-31-en.

38

https://www.techopedia.com/phishing-statistics
https://www.verizon.com/about/account-security/phishing
https://www.verizon.com/about/account-security/phishing
https://e-tarjome.com/storage/btn_uploaded/2020-09-12/1599891065_11216-etarjome%20English.pdf
https://e-tarjome.com/storage/btn_uploaded/2020-09-12/1599891065_11216-etarjome%20English.pdf
https://www.ibm.com/topics/phishing
https://old.reddit.com/r/youtube/comments/18gjiqy/youtube_doesnt_want_to_take_down_scam_ads/
https://old.reddit.com/r/youtube/comments/18gjiqy/youtube_doesnt_want_to_take_down_scam_ads/
https://www.secureworld.io/industry-news/5-smishing-attack-examples-everyone-should-see
https://www.secureworld.io/industry-news/5-smishing-attack-examples-everyone-should-see
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/functional-and-non-functional-requirements-specification-and-types/
https://www.cloudflare.com/learning/dns/glossary/what-is-a-domain-name/
https://www.cloudflare.com/learning/dns/glossary/what-is-a-domain-name/
https://doi.org/10.17487/RFC3912
https://www.domaintools.com/support/what-is-whois-information-and-why-is-it-valuable/
https://www.domaintools.com/support/what-is-whois-information-and-why-is-it-valuable/
https://www.icann.org/resources/pages/rdap-faqs-2018-08-31-en
https://www.icann.org/resources/pages/rdap-faqs-2018-08-31-en

Bibliography 39

12. CLOUDFLARE, Inc. What is a domain name registrar? [online]. 2024. [visited on 2024-05-
10]. Available from: https://www.cloudflare.com/learning/dns/glossary/what-is-
a-domain-name-registrar/.

13. VAZQUEZ, Camilo Quiroz; GOODWIN, Michael. What are DNS records? [online]. IBM,
2024-01. [visited on 2024-05-10]. Available from: https://www.ibm.com/topics/dns-
records.

14. MOCKAPETRIS, Paul. Domain names - implementation and specification [RFC 1035].
RFC Editor, 1987 [visited on 2024-05-10]. Request for Comments, no. 1035. Available from
doi: 10.17487/RFC1035.

15. WAYOFTHEPIE. Structure of an SSL (X.509) certificate [online]. DEV Community, 2020-
05-22. [visited on 2024-05-14]. Available from: https://dev.to/wayofthepie/structure-
of-an-ssl-x-509-certificate-16b.

16. CLOUDFLARE, Inc. What is an SSL certificate? [online]. 2024. [visited on 2024-04-25].
Available from: https : / / www . cloudflare . com / learning / ssl / what - is - an - ssl -
certificate/.

17. CLOUDFLARE, Inc. What is a reverse proxy? — Proxy servers explained [online]. 2024.
[visited on 2024-02-12]. Available from: https://www.cloudflare.com/en-gb/learning/
cdn/glossary/reverse-proxy/.

18. STASSOPOULOU, A.; DIKAIAKOS, M.D. Crawler Detection: A Bayesian Approach. In:
International Conference on Internet Surveillance and Protection (ICISP’06) [online]. 2006,
pp. 16–16 [visited on 2024-05-04]. Available from doi: 10.1109/ICISP.2006.7.

19. DIKAIAKOS, Marios D.; STASSOPOULOU, Athena; PAPAGEORGIOU, Loizos. An inves-
tigation of web crawler behavior: characterization and metrics. Computer Communications
[online]. 2005, vol. 28, no. 8, pp. 880–897 [visited on 2024-05-05]. issn 0140-3664. Available
from doi: https://doi.org/10.1016/j.comcom.2005.01.003.

20. CLOUDFLARE, Inc. What is robots.txt? — How a robots.txt file works [online]. 2024.
[visited on 2024-05-05]. Available from: https://www.cloudflare.com/learning/bots/
what-is-robots-txt/.

21. GOOGLE. What is CAPTCHA? [online]. 2024. [visited on 2024-02-12]. Available from:
https://support.google.com/a/answer/1217728.

22. DZIEZA, Josh. Why CAPTCHAs have gotten so difficult [online]. The Verge, 2019-02 [vis-
ited on 2024-05-08]. Available from: https://www.theverge.com/2019/2/1/18205610/
google-captcha-ai-robot-human-difficult-artificial-intelligence.

23. AMIN AZAD, Babak; STAROV, Oleksii; LAPERDRIX, Pierre; NIKIFORAKIS, Nick.
Web Runner 2049: Evaluating Third-Party Anti-bot Services. In: MAURICE, Clémentine;
BILGE, Leyla; STRINGHINI, Gianluca; NEVES, Nuno (eds.). Detection of Intrusions and
Malware, and Vulnerability Assessment [online]. Cham: Springer International Publishing,
2020, pp. 135–159 [visited on 2024-05-04]. isbn 978-3-030-52683-2. Available from: https:
//link.springer.com/chapter/10.1007/978-3-030-52683-2_7.

24. RICHABADAS, Tushar. Threat Spotlight: How bad bot traffic is changing [online]. Bar-
racuda, 2023-10. [visited on 2024-05-08]. Available from: https://blog.barracuda.com/
2023/10/18/threat-spotlight-bad-bot-traffic-changing.

25. BERN UNIVERSITY OF APPLIED SCIENCES. abuse.ch — BFH [online]. 2024. [vis-
ited on 2024-04-25]. Available from: https://www.bfh.ch/en/research/reference-
projects/abuse-ch/.

26. URLHAUS. URLhaus — About [online]. 2024. [visited on 2024-04-25]. Available from:
https://urlhaus.abuse.ch/about/.

https://www.cloudflare.com/learning/dns/glossary/what-is-a-domain-name-registrar/
https://www.cloudflare.com/learning/dns/glossary/what-is-a-domain-name-registrar/
https://www.ibm.com/topics/dns-records
https://www.ibm.com/topics/dns-records
https://doi.org/10.17487/RFC1035
https://dev.to/wayofthepie/structure-of-an-ssl-x-509-certificate-16b
https://dev.to/wayofthepie/structure-of-an-ssl-x-509-certificate-16b
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/
https://www.cloudflare.com/learning/ssl/what-is-an-ssl-certificate/
https://www.cloudflare.com/en-gb/learning/cdn/glossary/reverse-proxy/
https://www.cloudflare.com/en-gb/learning/cdn/glossary/reverse-proxy/
https://doi.org/10.1109/ICISP.2006.7
https://doi.org/https://doi.org/10.1016/j.comcom.2005.01.003
https://www.cloudflare.com/learning/bots/what-is-robots-txt/
https://www.cloudflare.com/learning/bots/what-is-robots-txt/
https://support.google.com/a/answer/1217728
https://www.theverge.com/2019/2/1/18205610/google-captcha-ai-robot-human-difficult-artificial-intelligence
https://www.theverge.com/2019/2/1/18205610/google-captcha-ai-robot-human-difficult-artificial-intelligence
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_7
https://link.springer.com/chapter/10.1007/978-3-030-52683-2_7
https://blog.barracuda.com/2023/10/18/threat-spotlight-bad-bot-traffic-changing
https://blog.barracuda.com/2023/10/18/threat-spotlight-bad-bot-traffic-changing
https://www.bfh.ch/en/research/reference-projects/abuse-ch/
https://www.bfh.ch/en/research/reference-projects/abuse-ch/
https://urlhaus.abuse.ch/about/

Bibliography 40

27. URLHAUS. URLhaus — API [online]. 2024. [visited on 2024-04-25]. Available from: https:
//urlhaus.abuse.ch/api/.

28. URLHAUS. URLhaus — Statistics [online]. 2024. [visited on 2024-04-25]. Available from:
https://urlhaus.abuse.ch/statistics/.

29. URLHAUS. URLhaus — Browse [online]. 2024. [visited on 2024-04-25]. Available from:
https://urlhaus.abuse.ch/browse/.

30. PHISHTANK. PhishTank ¿ Frequently Asked Questions (FAQ) [online]. [N.d.]. [visited on
2024-04-28]. Available from: https://phishtank.org/faq.php.

31. PHISHTANK. PhishTank ¿ API Information [online]. [N.d.]. [visited on 2024-04-28]. Avail-
able from: https://phishtank.org/api_info.php.

32. PHISHTANK. PhishTank ¿ Developer Information [online]. [N.d.]. [visited on 2024-04-28].
Available from: https://phishtank.org/developer_info.php.

33. PHISHTANK. PhishTank [online]. [N.d.]. [visited on 2024-04-28]. Available from: https:
//phishtank.org/.

34. GOOGLE. Google Safe Browsing — Google for Developers [online]. [N.d.]. [visited on 2024-
04-28]. Available from: https://developers.google.com/safe-browsing.

35. GOOGLE. Report a Phishing Page [online]. [N.d.]. [visited on 2024-02-13]. Available from:
https://safebrowsing.google.com/safebrowsing/report_phish/?hl=en/.

36. GOOGLE. Overview — Safe Browsing APIs (v4) — Google for Developers [online]. 2021.
[visited on 2024-04-28]. Available from: https://developers.google.com/safe-browsing/
v4.

37. GOOGLE. Pricing — Web Risk — Google Cloud [online]. [N.d.]. [visited on 2024-04-28].
Available from: https://cloud.google.com/web-risk/pricing.

38. GOOGLE. Safe Browsing – Google Safe Browsing [online]. [N.d.]. [visited on 2024-02-13].
Available from: https://safebrowsing.google.com/.

39. CLOUDFLARE, Inc. Abuse form — Cloudflare — The web performance & security com-
pany [online]. 2024. [visited on 2024-04-25]. Available from: https://abuse.cloudflare.
com/phishing/.

40. CLOUDFLARE, Inc. Abuse approach - Cloudflare [online]. 2024. [visited on 2024-02-13].
Available from: https://www.cloudflare.com/en-gb/trust-hub/abuse-approach/.

41. URLSCAN GMBH. URL and website scanner [online]. 2024-05-02. [visited on 2024-05-02].
Available from: https://urlscan.io/.

42. URLSCAN GMBH. About [online]. 2024-05-02. [visited on 2024-05-02]. Available from:
https://urlscan.io/about/.

43. URLSCAN GMBH. FAQ - Frequently Asked Questions [online]. 2024-05-02. [visited on
2024-05-02]. Available from: https://urlscan.io/docs/faq/.

44. CLOUDFLARE, Inc. URL Scanner [online]. 2024. [visited on 2024-05-12]. Available from:
https://radar.cloudflare.com/scan.

45. CARDITA, Sofia; MORARU, Alexandra. Cloudflare’s URL Scanner, new features, and the
story of how we built it [online]. Cloudflare, Inc., 2024-08. [visited on 2024-05-12]. Available
from: https://blog.cloudflare.com/building-urlscanner.

46. WAPPALYZER. Technology lookup [online]. [N.d.]. [visited on 2024-05-12]. Available from:
https://www.wappalyzer.com/lookup/.

47. WAPPALYZER. Find out what CMS or framework a website is using [online]. [N.d.]. [visited
on 2024-05-12]. Available from: https://www.wappalyzer.com/articles/find- out-
what-cms-or-framework-a-website-is-using/.

https://urlhaus.abuse.ch/api/
https://urlhaus.abuse.ch/api/
https://urlhaus.abuse.ch/statistics/
https://urlhaus.abuse.ch/browse/
https://phishtank.org/faq.php
https://phishtank.org/api_info.php
https://phishtank.org/developer_info.php
https://phishtank.org/
https://phishtank.org/
https://developers.google.com/safe-browsing
https://safebrowsing.google.com/safebrowsing/report_phish/?hl=en/
https://developers.google.com/safe-browsing/v4
https://developers.google.com/safe-browsing/v4
https://cloud.google.com/web-risk/pricing
https://safebrowsing.google.com/
https://abuse.cloudflare.com/phishing/
https://abuse.cloudflare.com/phishing/
https://www.cloudflare.com/en-gb/trust-hub/abuse-approach/
https://urlscan.io/
https://urlscan.io/about/
https://urlscan.io/docs/faq/
https://radar.cloudflare.com/scan
https://blog.cloudflare.com/building-urlscanner
https://www.wappalyzer.com/lookup/
https://www.wappalyzer.com/articles/find-out-what-cms-or-framework-a-website-is-using/
https://www.wappalyzer.com/articles/find-out-what-cms-or-framework-a-website-is-using/

Bibliography 41

48. WAPPALYZER. Pricing [online]. [N.d.]. [visited on 2024-05-12]. Available from: https:
//www.wappalyzer.com/pricing/.

49. SHELDON, Robert. What is model-view-controller (MVC)? [online]. TechTarget, 2023-
09. [visited on 2024-05-06]. Available from: https : / / www . techtarget . com / whatis /
definition/model-view-controller-MVC.

50. GOOGLE. Google Terms of Service - What we expect from you [online]. 2022. [visited on
2024-05-05]. Available from: https://policies.google.com/terms?hl=en#toc-what-
we-expect.

51. DATA TOGETHER. Comparison of web archiving software [online]. GitHub, 2017-08-25.
[visited on 2024-05-11]. Available from: https://github.com/datatogether/research/
tree/master/web_archiving.

52. MICROSOFT. Playwright enables reliable end-to-end testing for modern web apps [online].
2024. [visited on 2024-05-11]. Available from: https://playwright.dev/java/.

53. AMAZON WEB SERVICES, INC. What’s the Difference Between Relational and Non-
relational Databases? [online]. 2024. [visited on 2024-05-06]. Available from: https://aws.
amazon.com/compare/the-difference-between-relational-and-non-relational-
databases/.

54. SCYLLADB. What is Eventual Consistency? — Definition and F&Qs [online]. 2024. [vis-
ited on 2024-05-06]. Available from: https://www.scylladb.com/glossary/eventual-
consistency/.

55. KUL, Atakan. Microservice Communication (Synchronous vs Asynchronous) [online]. Medium,
2023-06-15. [visited on 2024-05-08]. Available from: https://atakankul.medium.com/
microservice-communication-synchronous-vs-asynchronous-91b31670b3c6.

56. BANERJEE, Deboshree; AIBIN, Michal. Introduction to Message Queues [online]. Bael-
dung, 2024. [visited on 2024-05-08]. Available from: https://www.baeldung.com/cs/
message-queues.

57. H, Jamie. Serve websites over HTTPS (always): You should be serving web pages over
HTTPS. Are you? [online]. National Cyber Security Centre, 2018-06-06. [visited on 2024-
05-16]. Available from: https://www.ncsc.gov.uk/blog-post/serve-websites-over-
https-always/.

58. GRAY, Jim; INGEN, Catharine van; SEARS, Russell. To BLOB or Not To BLOB: Large
Object Storage in a Database or a Filesystem [online]. Microsoft Research and University
of California at Berkeley, 2006-04. [visited on 2024-05-01]. Tech. rep., MSR-TR-2006-45.
Available from: https://www.microsoft.com/en-us/research/publication/to-blob-
or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/.

59. SMALLCOMBE, Mark. The What’s, How’s and Why’s of SFTP [online]. Integrate.io, 2023-
09-21 [visited on 2024-05-08]. Available from: https://www.integrate.io/blog/the-
whats-hows-and-whys-of-sftp/.

60. AKHIN, Marat; BELYAEV, Mikhail, et al. Kotlin language specification: Kotlin/Core [on-
line]. JetBrains / JetBrains Research, 2020 [visited on 2024-05-07]. Available from: https:
//kotlinlang.org/spec/introduction.html.

61. ATTRACTIVECHAOS. Programming Language Benchmark v2 (plb2) [online]. GitHub,
2024-01-23 [visited on 2024-05-07]. Available from: https://github.com/attractivechaos/
plb2/blob/master/README.md.

62. INC., Broadcom. Spring — Why Spring? [online]. 2024. [visited on 2024-05-08]. Available
from: https://spring.io/why-spring.

https://www.wappalyzer.com/pricing/
https://www.wappalyzer.com/pricing/
https://www.techtarget.com/whatis/definition/model-view-controller-MVC
https://www.techtarget.com/whatis/definition/model-view-controller-MVC
https://policies.google.com/terms?hl=en#toc-what-we-expect
https://policies.google.com/terms?hl=en#toc-what-we-expect
https://github.com/datatogether/research/tree/master/web_archiving
https://github.com/datatogether/research/tree/master/web_archiving
https://playwright.dev/java/
https://aws.amazon.com/compare/the-difference-between-relational-and-non-relational-databases/
https://aws.amazon.com/compare/the-difference-between-relational-and-non-relational-databases/
https://aws.amazon.com/compare/the-difference-between-relational-and-non-relational-databases/
https://www.scylladb.com/glossary/eventual-consistency/
https://www.scylladb.com/glossary/eventual-consistency/
https://atakankul.medium.com/microservice-communication-synchronous-vs-asynchronous-91b31670b3c6
https://atakankul.medium.com/microservice-communication-synchronous-vs-asynchronous-91b31670b3c6
https://www.baeldung.com/cs/message-queues
https://www.baeldung.com/cs/message-queues
https://www.ncsc.gov.uk/blog-post/serve-websites-over-https-always/
https://www.ncsc.gov.uk/blog-post/serve-websites-over-https-always/
https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/
https://www.microsoft.com/en-us/research/publication/to-blob-or-not-to-blob-large-object-storage-in-a-database-or-a-filesystem/
https://www.integrate.io/blog/the-whats-hows-and-whys-of-sftp/
https://www.integrate.io/blog/the-whats-hows-and-whys-of-sftp/
https://kotlinlang.org/spec/introduction.html
https://kotlinlang.org/spec/introduction.html
https://github.com/attractivechaos/plb2/blob/master/README.md
https://github.com/attractivechaos/plb2/blob/master/README.md
https://spring.io/why-spring

Bibliography 42

63. STALLA, Alessio; AIBIN, Michal. Guide to the Kotlin Exposed Framework [online]. Bael-
dung, 2022. [visited on 2024-05-07]. Available from: https://www.baeldung.com/kotlin/
exposed-persistence.

64. GOOGLE. gRPC overview [online]. 2024-05-09. [visited on 2024-05-14]. Available from:
https://cloud.google.com/api-gateway/docs/grpc-overview.

65. BROWN, Gavin. RDAP deployment dashboard [online]. RDAP.org, 2024-05-11. [visited on
2024-05-11]. Available from: https://deployment.rdap.org/.

66. MLYTICS. What are the most common types of DNS records? [online]. 2024. [visited on
2024-05-13]. Available from: https://learning.mlytics.com/domain- name- system/
common-types-of-dns-records/.

67. CLOUDFLARE, Inc. Cloudflare Turnstile [online]. 2024-04-22. [visited on 2024-05-14].
Available from: https://developers.cloudflare.com/turnstile/.

https://www.baeldung.com/kotlin/exposed-persistence
https://www.baeldung.com/kotlin/exposed-persistence
https://cloud.google.com/api-gateway/docs/grpc-overview
https://deployment.rdap.org/
https://learning.mlytics.com/domain-name-system/common-types-of-dns-records/
https://learning.mlytics.com/domain-name-system/common-types-of-dns-records/
https://developers.cloudflare.com/turnstile/

Attachment Contents

readme.txt..................................the file with attachment contents description
phishingalert cz new.......................................implementation source code

common common source code for both components
core...Server Core source code
scraper...Scraper source code
docker-compose.yml....................................compose file for DB and MQ
LICENSE...code license
README.md..short installation guide

tests..resources used for the testing of application
thesis ... the thesis text directory

konviji1-thesis.pdf...the thesis text in PDF
src thesis..LATEX source of the thesis text

43

	Acknowledgments
	Declaration
	Abstract
	List of the abbreviations
	Introduction
	Analysis
	Phishing
	Current state of the phishingalert.cz project
	Requirements
	Functional Requirements
	Non-functional Requirements

	Data from the website
	Domain information
	DNS records
	SSL certificates
	Used modules

	Bot prevention
	Reverse proxy
	Tracking of user behavior
	CAPTCHA
	JavaScript fingerprint
	IP address quality
	Results of the bot prevention analysis

	Ethical considerations
	Similar projects
	Reporting tools
	Web analysis tools
	Results of the analysis of similar projects

	Design
	Use cases
	Actors
	UC1: Reporting a website to phishingalert.cz
	UC2: Viewing statistics about the reported website
	UC3: Sending a report to a higher authority
	UC4: Changing the application configuration

	Application architecture
	Server Core
	Server Core Architecture
	Frontend
	Reporting URL to the higher authorities

	Scraper
	Visiting the reported URL

	Database
	Database entities

	Communication between components
	HTTPS
	Message queue
	SFTP

	Programming language and framework

	Implementation
	Data layer
	Server Core
	Control panel
	Implementation of subsequent URL reporting

	Scraper
	Obtaining domain information
	Obtaining DNS records
	Obtaining SSL certificates
	Web crawler
	Obtaining the information about used modules

	Testing
	Automated testing
	End-to-end testing
	Accessing websites with bot protection
	Accessing potentially malicious websites

	Conclusion
	Installation guide
	Attachment Contents

