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Abstract

This thesis explores the cubature Kalman filter, an algorithm designed for es-
timating system states in real-time within nonlinear models. While the filter
possesses solid theoretical foundations, the original exposition of this algorithm
may present accessibility challenges due to its reliance on advanced mathe-
matical concepts. This thesis aims to present its derivation comprehensively,
making it more accessible while explaining its core mathematical principles.
Additionally, the cubature Kalman filter is compared with other algorithms for
nonlinear filtering to highlight its unique features. Through practical exam-
ples, this thesis demonstrates the filter’s effectiveness and operation in various
scenarios.

Keywords Kalman filter, state estimation, nonlinear filtering, spherical-
radial coordinates, numerical integration, cubature rules, Gaussian quadrature

Abstrakt

Tato práce zkoumá kubaturní Kalmanův filtr, algoritmus určený pro odhad
stavu systému v reálném čase v rámci nelineárních modelů. Tento filtr má
silné teoretické základy, avšak originální představení tohoto algoritmu může
být hůře přístupné kvůli jeho závislosti na pokročilých matematických kon-
ceptech. Práce si klade za cíl pečlivě představit jeho odvození, tak, aby bylo
přístupnější. Součástí toho jsou v této práci vysvětleny matematické prin-
cipy klíčové pro odvození tohoto algoritmu. Kubaturní Kalmanův filtr je dále
porovnán s jinými nelineárními filtračními algoritmy, aby byly zdůrazněny
jeho jedinečné vlastnosti. Práce také demonstruje účinnost a fungování filtru
na praktických příkladech.

Klíčová slova Kalmanův filtr, stavový odhad, nelineární filtrování, sféricko-
radiální souřadnice, numerická integrace, kubaturní pravidla, Gaussova kvadra-
tura
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CAM constant acceleration model
CKF cubature Kalman filter
CTM coordinated turn model
CVM constant velocity model
EKF extended Kalman filter

KF Kalman filter
MSE mean squared error
UAV unmanned aerial vehicle
UKF unscented Kalman filter
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Introduction

A frequent challenge in engineering practice is to estimate the true state of a
system on the basis of limited and noisy data about the system. For instance,
we may want to estimate the precise location of a vehicle using GPS measure-
ments that are not entirely accurate. Another example would be trying to get
an accurate temperature using a thermostat, which sometimes gives inaccurate
readings.

A typical approach involves constructing a state-space model for the sys-
tem and attempting to estimate the current state of the system based on the
measurement history. The problem, however, is that in practice the model
cannot accurately describe the dynamics of the system. We are always dealing
with noise, either in the state itself or in the measurements. The solution to
this problem is the use of a filter such as the Kalman filter (KF).

The limitation of the Kalman filter is that it is only applicable to linear
models. Nonlinear models require alternative approaches, often still based on
the Kalman filter. One of the methods for nonlinear state estimation is the
cubature Kalman filter. In comparison to other nonlinear state estimation
methods, this filter remains relatively underexplored.

In this thesis, we aim to:
1. Introduce the state-space model, both linear and nonlinear.

2. Derive the Kalman filter, an algorithm for linear state estimation, and
describe its properties and weaknesses.

3. Derive the cubature Kalman filter, an algorithm for nonlinear state esti-
mation, along with introducing the mathematical principles necessary for
its derivation.

4. Describe the properties of the cubature Kalman filter and compare it to
other nonlinear filters.

5. Demonstrate the cubature Kalman filter on simulations and/or real-world
examples suitable for expressing its properties.

1



Chapter 1

State-space model

A vast number of processes in the real world form a system that evolves over
time. At each point in time, the system has a state. If a model for such a
system were to be created, various mathematical tools could be applied to
analyze the system. This model is called a state-space model. By knowing the
current state of the system, we can describe the future behavior of the system
based on future inputs using the state-space model.

Although processes in nature usually evolve in continuous time, we re-
strict ourselves to discrete-time state-space models in this thesis. This allows
us, among other things, to simulate the processes on a computer. Moreover,
the discrete-time description removes the need for tediously solved differential
equations. Thus, the state-space model will depict the system’s state at time
k, considering its state at time k − 1 and the input parameters.

1.1 Linear state-space model
Even though most processes in the real world are nonlinear, linear systems
are more convenient to handle. There are a variety of mathematical tools
that are readily available and well-understood for working with linear systems.
Therefore, we often approximate nonlinear systems by linear systems [1].

Let us represent the state of the system at time k by the vector xk. Thus,
we can form the linear system equation [1] describing the transition from state
xk−1 to state xk as

xk = Fk−1xk−1 +Gk−1uk−1 + wk−1, (1.1)

where uk−1 is the control input at time k−1 in the form of a vector. The Fk−1

matrix, often called the system matrix, and the Gk−1 matrix, called the input
matrix, both of appropriate dimensions, represent the transition based on the
previous state and the control input. The vector wk−1 represents the process

2
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system states x0 x1
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Figure 1.1 Linear state-space model representation of the system dynamics.

noise, which is assumed to be zero-mean and uncorrelated, with a covariance
matrix Qk−1.

The system equation 1.1 is a hidden part of the state-space model, therefore
the true value of the vector xk is never known. It can only be estimated
using observations in the form of measurements. The values obtained from
measuring the system reflect its current state. Let us represent the measured
values at time k by the output vector yk. Thus, we can formulate the linear
measurement equation [1]

yk = Hkxk + vk, (1.2)

where Hk, often called the output matrix, is a matrix of appropriate dimensions
and the vector vk represents the measurement noise, also assumed to be zero-
mean and uncorrelated, with a covariance matrix Rk. Unlike the vector xk,
the vector yk is known to us because it is the result of a measurement.

The linear system equation, along with the linear measurement equation,
constitutes a linear state-space model.

In Figure 1.1, we can observe the evolution of the state vector over time
and its influence on the measurements. However, it is important to note that
the depicted relations are not exact due to the presence of noise.

▶ Example 1.1 (Constant acceleration model). Consider an object moving
in one-dimensional space maintaining a nearly constant acceleration, except
for changes due to noise. The motion of this object can be described by the
equations of the Newtonian system. The state of the object at time k will
include its position pk, velocity rk, and acceleration ak. As mentioned earlier,
we operate within discrete time, therefore, we obtain equations

pk = pk−1 +∆trk−1 +
1

2
∆2

tak−1 + wp,k−1, (1.3)

rk = rk−1 +∆tak−1 + wr,k−1, (1.4)
ak = ak−1 + wa,k−1, (1.5)
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where ∆t is the constant time difference between time k − 1 and k. Then we
can write the system equation in matrix form

xk = Fk−1xk−1 + wk−1, (1.6)

for

xk =

pk
rk
ak

 , (1.7)

Fk =

1 ∆t
1
2∆

2
t

0 1 ∆t

0 0 1

 , (1.8)

wk =

wp,k

wr,k

wa,k

 . (1.9)

For completeness, the vector uk is always a zero vector as there is no control
input. Therefore, the matrix Gk is no longer relevant.

Assume the presence of a measuring device that determines the position of
the object. The measurement equation will have the form

yk = Hkxk + vk, (1.10)

where yk is a one-dimensional vector containing the measurement, vk is also
a one-dimensional vector of measurement noise, and Hk is the output matrix
defined as

Hk =
(
1 0 0

)
. (1.11)

The elements in Hk indicate that the measuring device extracts the position
information along the first dimension from the state vector xk. ◀

1.2 Nonlinear state-space model
In practice, we usually encounter a nonlinear system. The nonlinear state-
space model contains a system and a measurement equation as well. However,
it does not place restrictions on the functions used in these equations. Thus
we receive the nonlinear state-space model [1] constituting equations

xk = f(xk−1, uk−1, wk−1), (1.12)
yk = h(xk, vk), (1.13)

where xk is the state vector at time k, uk−1 is the known control input, yk is the
output vector, wk−1 and vk are zero-mean, uncorrelated noises1 with covariance
matrices Qk and Rk, respectively. The functions f and h are arbitrary vector-
valued functions. A linear state-space system is, therefore, a special case of a
nonlinear one.

1A variant of the state-space model with correlated noises exists as well [1].
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▶ Example 1.2 (Coordinated turn model). Consider an object moving in two-
dimensional space with a nearly constant turn rate, affected only by noise. The
state of the object at time k will consist of the two-dimensional coordinates
x1,k and x2,k, the velocities in both dimensions r1,k and r2,k and the turn rate
ωk. According to [2], we get the discretized state-space model system equation

xk = f(xk−1, uk−1, wk−1)

=


1 0

sin(∆tωk−1)
ωk−1

−1+cos(∆tωk−1)
ωk−1

0

0 1
1−cos(∆tωk−1)

ωk−1

sin(∆tωk−1)
ωk−1

0

0 0 cos(∆tωk−1) − sin(∆tωk−1) 0
0 0 sin(∆tωk−1) cos(∆tωk−1) 0
0 0 0 0 1

xk−1 + wk−1,

(1.14)

where ∆t is the constant discretisation time interval between time k − 1 and
k, wk−1 is the process noise vector, and

xk =


x1,k
x2,k
r1,k
r2,k
ωk

 . (1.15)

At first glance it may appear that f is still just a linear function, but the
matrix we are multiplying the state vector xk−1 by contains ωk−1, which is
also included in the state vector xk−1, causing nonlinearity.

Let only the coordinates of the object position be measured. The resulting
measurement equation will be linear in this case. We get

yk = h(xk, vk) =

(
1 0 0 0 0
0 1 0 0 0

)
xk + vk. (1.16)

Thus, the vector yk will contain the measured coordinates at time k affected
by the measurement noise vk. ◀



Chapter 2

Kalman filter

Given a linear state-space model, we can use the Kalman filter to estimate the
internal state parameters of the system. The linearity of the state-space model
is an important requirement because the Kalman filter relies on linear equa-
tions to predict the state of the system and update it based on measurements.

2.1 Overview of the Kalman filter
The Kalman filter works iteratively, with each iteration corresponding to a
discretization time interval. In each iteration, it produces an estimate of the
current state vector, denoted by x̂k, influenced by a measurement yk.

The covariance matrix of xk, denoted by Pk, plays a pivotal role in the
Kalman filtering process. It holds that

Pk = E [(xk − E [xk]) (xk − E [xk])
⊺] . (2.1)

The covariance Pk indicates the level of uncertainty regarding the estimate.
Each iteration of the Kalman filter algorithm comprises two phases: the

time update and the measurement update. In the time update, it is assumed
that a discretization time interval has passed. The system equation 1.1 of the
state-space model is used to form an estimate of the state vector xk based on
the estimate of xk−1. The estimate formed during the time update is referred
to as the a priori estimate and is denoted by x̂−k . The Pk covariance estimate
at this phase is known as the a priori covariance, denoted as P−

k .
In the measurement update, we aim to improve the a priori estimate by

utilizing the information about the measurement yk and the measurement
equation 1.2 of the state-space model, which lets us form an estimate of yk,
denoted as ŷk. Thus we get a new estimate of xk, which is referred to as the a
posteriori estimate and is denoted by x̂+k . The Pk covariance estimate at this
phase is known as the a posteriori covariance, denoted as P+

k .
Figure 2.1 illustrates the evolution of estimates throughout the Kalman

filter algorithm cycle.

6
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x̂−
k

ŷk

measurement equation

x̂+
k

yk

system equation

measurement
update

time update

Figure 2.1 The state estimate evolution cycle in the Kalman filter and its use of
the state-space model.

2.2 Derivation of the Kalman filter
This derivation of the Kalman filter draws heavily from [1]. We will present
the derivation in two distinct parts: the time update and the measurement
update.

2.2.1 The time update
In the time update, we assume that we have the a posteriori state estimate
x̂+k−1 and its covariance P+

k−1 from the previous iteration.
Let us define Dk as the history of all control inputs and measurements up

to time k. Therefore
Dk = {ui, yi}ki=0. (2.2)

Another way of thinking about the a priori estimate x̂−k is as the expected
value of xk conditional on Dk−1. Therefore

x̂−k = E [xk | Dk−1] . (2.3)

Similarly for the a posteriori estimate, we get

x̂+k = E [xk | Dk] . (2.4)

From the system equation 1.1 we get

x̂−k = E [Fk−1xk−1 +Gk−1uk−1 + wk−1 | Dk−1] . (2.5)

Since the noise wk−1 is assumed to be zero-mean, we have

x̂−k = Fk−1E [xk−1 | Dk−1] +Gk−1uk−1. (2.6)

And finally, according to Equation 2.4, we get the desired equation

x̂−k = Fk−1x̂
+
k−1 +Gk−1uk−1. (2.7)
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We now aim to derive an equation for P−
k , the a priori covariance. By

leveraging Equation 2.1 and utilizing the a priori state estimate x̂−k , we can
estimate Pk as

P−
k = E

[
(xk − x̂−k )(xk − x̂−k )

⊺] . (2.8)
First, let us examine the expression within the expectation operator. Thus

(xk − x̂−k )(xk − x̂−k )
⊺ = (Fk−1xk−1 +Gk−1uk−1 + wk−1 − x̂−k )(. . . )

⊺ (2.9)
= (Fk−1(xk−1 − x̂+k−1) + wk−1)(. . . )

⊺ (2.10)
= Fk−1(xk−1 − x̂+k−1)(xk−1 − x̂+k−1)

⊺F ⊺
k−1 + wk−1w

⊺
k−1

+ Fk−1(xk−1 − x̂+k−1)w
⊺
k−1

+ wk−1(xk−1 − x̂+k−1)
⊺F ⊺

k−1.

(2.11)

Since (xk−1 − x̂+k−1) is uncorrelated with wk−1, using Equation 2.8 we obtain

P−
k = Fk−1E

[
(xk−1 − x̂+k−1)(xk−1 − x̂+k−1)

⊺]F ⊺
k−1 + E

[
wk−1w

⊺
k−1

]
(2.12)

= Fk−1P
+
k−1F

⊺
k−1 +Qk−1, (2.13)

where Qk−1 represents the covariance matrix of the zero-mean process noise,
as previously defined.

2.2.2 The measurement update
During the measurement update, the aim is to refine the estimate of the state
vector using the measurement yk. The update equation should be linear for
mathematical tractability. To achieve this, we need to find a matrix Kk and a
vector bk that satisfy

x̂+k = Kkyk + bk. (2.14)
The matrix Kk and the vector bk should be determined based on the a priori
state estimate x̂−k and the a priori covariance P−

k obtained in the previous
phase.

Our requirement for the a posteriori estimate x̂+k is unbiasedness, meaning
E
[
xk − x̂+k

]
= 0. Taking the mean of Equation 2.14, we get

x̂+k = Kkyk + bk. (2.15)

Unbiasedness of the a posteriori estimate implies that x̂+k = xk, resulting in
the constraint

bk = xk −Kkyk. (2.16)
By substituting xk with the a priori estimate and yk with the measurement
vector estimate ŷk given by Hkx̂

−
k , recalling the measurement equation 1.2, we

get
bk = x̂−k −Kkŷk, (2.17)
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therefore
x̂+k = Kkyk + x̂−k −KkHkx̂

−
k

= x̂−k +Kk(yk −Hkx̂
−
k ).

(2.18)

Now the objective is to find a matrix Kk that minimizes the optimality
criterion Jk, defined as the trace of the a posteriori covariance. Therefore

Jk = Tr(P+
k ). (2.19)

The criterion is defined as it is because the covariance matrix P+
k represents

the uncertainty associated with the state estimate x̂+k . Specifically, the trace
of P+

k captures this uncertainty by summing the variances of the components
of the state vector along its diagonal. Minimizing this criterion ensures that
the estimate x̂+k is as accurate as possible while accounting for the inherent
uncertainty in the estimation process.

For an arbitrary random vector z, it holds that

Pz = E [(z − z)(z − z)⊺] . (2.20)

Let us set z = xk− x̂+k . The property of unbiasedness ensures that z = 0. This
gives us

Pz = E [zz⊺] = E
[
(xk − x̂+k )(xk − x̂+k )

T
]
= P+

k . (2.21)

Using Equation 2.20 and our definition of z, we can compute Pz as

P+
k = E

[
(xk − x̂+k − E

[
xk − x̂+k

]
)(. . . )⊺

]
(2.22)

= E [(xk − (Kkyk + bk)− xk − (Kkyk + bk))(. . . )
⊺] (2.23)

= E [((xk − xk)−Kk(yk − yk))(. . . )
⊺] (2.24)

= P−
k −KkP

⊺
xy,k − Pxy,kK

⊺
k +KkPy,kK

⊺
k , (2.25)

where Pxy,k denotes the cross-covariance between xk and yk and Py,k denotes
the covariance of yk. The matrix Pxy,k will be referred to as the cross-covariance
matrix. The matrix Py,k will be referred to as the innovation covariance matrix.
Straightforward calculations [1] show that we can obtain the cross-covariance
and the innovation covariance matrices as

Pxy,k = P−
k H⊺

k , (2.26)
Py,k = HkP

−
k H⊺

k +Rk, (2.27)

where Rk represents the covariance matrix of the measurement noise, as pre-
viously defined. We have also used P−

k instead of Pk for the covariance of xk
as it represents our best estimate of Pk.

Given the fact that

KkPy,kK
⊺
k −KkP

⊺
xy,k − Pxy,kK

⊺
k

= (Kk − Pxy,kP
−1
y,k )Py,k(Kk − Pxy,kP

−1
y,k )

⊺ − Pxy,kP
−1
y,kP

⊺
xy,k,

(2.28)
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and recalling Equation 2.25, we can express the optimality criterion Jk as

Jk = Tr(P+
k ) (2.29)

= Tr((Kk − Pxy,kP
−1
y,k )Py,k(Kk − Pxy,kP

−1
y,k )

⊺)

+ Tr(P−
k − Pxy,kP

−1
y,kP

⊺
xy,k).

(2.30)

The first term in Equation 2.30 is always nonnegative. Therefore, to minimize
the first term to zero, we set

Kk = Pxy,kP
−1
y,k . (2.31)

Since the second term in Equation 2.30 is independent of Kk, the optimality
criterion Jk is minimized. The matrix Kk is commonly referred to as the
Kalman gain.

Finally, combining Equations 2.25, 2.28, and 2.31, we obtain

P+
k = P−

k − Pxy,kP
−1
y,kP

⊺
xy,k

= P−
k −KkPy,kK

T
k .

(2.32)

2.3 The Kalman filter algorithm
To ensure clarity, this section provides a summary of the Kalman filter algo-
rithm derived in the previous section.

2.3.1 Initialization
1. Initialize the a posteriori state estimate with the most accurate estimation

of the initial state, ideally
x̂+0 = E [x0] . (2.33)

2. Initialize the a posteriori covariance using a covariance matrix that reflects
the level of confidence in the initial estimate. If we are sure that our initial
estimate is ideal, we set

P+
0 = E

[
(x0 − x̂+0 )(x0 − x̂+0 )

⊺] . (2.34)

2.3.2 The time update
1. Evaluate the a priori state estimate

x̂−k = Fk−1x̂
+
k−1 +Gk−1uk−1. (2.35)

2. Evaluate the a priori covariance

P−
k = Fk−1P

+
k−1F

⊺
k−1 +Qk−1. (2.36)
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2.3.3 The measurement update
1. Evaluate the cross-covariance matrix

Pxy,k = P−
k H⊺

k . (2.37)

2. Evaluate the innovation covariance matrix

Py,k = HkP
−
k H⊺

k +Rk. (2.38)

3. Evaluate the Kalman gain

Kk = Pxy,kP
−1
y,k . (2.39)

4. Evaluate the measurement estimate

ŷk = Hkx̂
−
k . (2.40)

5. Evaluate the a posteriori state estimate

x̂+k = x̂−k +Kk(yk − ŷk). (2.41)

6. Evaluate the a posteriori covariance

P+
k = P−

k −KkPy,kK
⊺
k . (2.42)

2.4 Interpretation of the resulting equations
The derived Kalman filter equations have the advantageous characteristic of
being relatively intuitive in their interpretation. This allows us to have a deeper
comprehension of the functioning principles of the Kalman filter algorithm.

The measurement update aims to update the state estimate by the value
of a measurement. This can be seen in Equation 2.41, where we shift our
previous state estimate by (yk − ŷk) multiplied by the Kalman gain. The term
(yk − ŷk) represents the difference between our prediction of yk and the actual
yk, i.e., the prediction error. We use this prediction error to correct our state
estimate, hence, it represents the innovation.

The higher the prediction error, the more we want our state estimate values
to change. However, if we are uncertain about the measurements and their
predictions, we do not want to emphasize the data as much. We rather want
to emphasize the model that forms our state estimate in the time update. This
is achieved by the Kalman gain. Observing Equation 2.39, we can see that the
Kalman gain takes lower values as the measurement data are less reliable,
which is represented by higher values of the innovation covariance Py,k.

Conversely, if we are uncertain about the state estimate, the values of Pxy,k

are higher. This results in higher Kalman gain, thus, placing more emphasis



Properties of the Kalman filter 12

on the measurements. The Kalman gain then essentially represents the state
estimate uncertainty relative to the total uncertainty of the prediction.

We can interpret the equation for the a posteriori covariance as well. To
make the interpretation clearer, we can express it by

P+
k = (I −KkHk)P

−
k , (2.43)

which is equivalent to Equation 2.42. The equivalence can be shown easily
using the symmetry of the covariance matrices. It is evident from this form
that we obtain P+

k from P−
k by multiplying it by (I−KkHk). Since the Kalman

gain Kk represents the state estimate uncertainty relative to the uncertainty of
the prediction, the state estimate uncertainty decreases the more we emphasize
the measurement data in this time step.

2.5 Properties of the Kalman filter
The Kalman filter is a linear filter, that is, it calculates a state estimate based
on a measurement using a linear equation1, recall Equation 2.14. Its use of
linear equations enables efficient estimation, especially for systems with Gaus-
sian noise. The Kalman filter is also unbiased, meaning that on average, its
estimates are equal to the true values of the quantities being estimated. This
property is crucial for ensuring the accuracy and reliability of the filter’s pre-
dictions over time. We have derived the Kalman filter in a way that preserves
these properties.

To state the following property, let us define the mean squared error.

▶ Definiton 2.1 (Mean squared error). Let x be a random vector and x̂ its
estimate. Then the mean squared error (MSE) is defined as

MSE(x̂, x) = E
[
∥x̂− x∥2

]
. (2.44)

◀

The MSE allows us to measure the accuracy of an estimate. The higher the
value, the worse the estimate. When we use the MSE to evaluate a Kalman
filter process, for each time step k we get the value MSE(x̂+k , xk). In practice,
we can estimate the MSE by averaging ∥x̂+k − xk∥2 over multiple runs of a
simulation (each with a random outcome).

Among the class of linear filters, the Kalman filter is the optimal filter
in terms of minimizing the mean squared error, which is proved, e.g., in [3].
Furthermore, if the process and measurement noise are Gaussian, it is the
optimal filter among all possible filters. It should be added that to achieve
optimality, the assumptions for noise must also be satisfied, i.e., it must be
zero-mean and uncorrelated [3].

1Not to be confused with a linear transformation. It is an affine transformation.
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The Kalman filter is a consistent estimator, meaning it provides increas-
ingly accurate estimates as the amount of measurement data increases. Thus,
the estimator converges in mean square criterion2 to the true state value [4].
However, this property is only achieved if all assumptions are met. It is as-
sumed that the noise is zero-mean and uncorrelated and that we can describe
the dynamic system perfectly by a linear state-space model for which we know
the exact values of the matrices Fk, Qk, Hk, and Rk, along with the initial
state and covariance [1]. In practice, the Kalman filter estimator may not con-
verge. Divergence can occur, mainly due to modeling errors and finite precision
arithmetic on a computer [5].

2.6 Nonlinear filtering
Although the Kalman filter is a powerful tool, it can only operate with a
linear state-space model. In the real world, however, virtually all systems are
nonlinear [1]. In order to handle a nonlinear state-space model, the Kalman
filter needs to be modified.

One possible modification of the Kalman filter for nonlinear models is the
extended Kalman filter (EKF). The key idea of EKF is to linearize the non-
linear state-space model functions using Taylor expansion around the current
estimate. Thus, the functions we linearize must be differentiable. The lin-
earized functions are then applicable in the standard Kalman filter. Since the
EKF uses first-order linearization, in the case of highly nonlinear functions, the
estimation may be too imprecise, which may lead to divergence. Despite its
limitations, the EKF remains a suitable option for many nonlinear estimation
problems. There are also versions of EKF working with higher orders, which
are more computationally demanding [1].

Another way to deal with nonlinearity is to use the unscented Kalman filter
(UKF). Unlike the EKF, the UKF does not perform linearization. Instead,
it selects a few representative points, called sigma points, which are used to
capture the statistical properties of the nonlinear system. It further propagates
the sigma points through the nonlinear functions of the state-space model,
which allows it to compute the necessary means and covariances for use in the
standard Kalman filter. The UKF becomes particularly useful for nonlinear
systems where linearization may lead to inaccuracies [6].

An approach to nonlinear filtering that is similar to the UKF is the cu-
bature Kalman filter (CKF). The CKF uses a different method to calculate
representative points, which are called cubature points. We will introduce and
derive the CKF thoroughly in the following chapter.

2The MSE converges to 0 as time k increases.



Chapter 3

Cubature Kalman filter

The method of nonlinear state estimation we focus on in this thesis is the cuba-
ture Kalman filter, as proposed by Arasaratnam and Haykin in their work [7].
The key idea behind this filter is a transformation to spherical-radial coordi-
nates, allowing for the use of symmetry to significantly reduce the amount of
computation required. In this chapter, we will carefully derive the CKF and
describe its properties.

3.1 Preliminary mathematical principles
To comprehend the derivation of the CKF, it is necessary to introduce certain
mathematical principles that the CKF heavily relies on.

First, we will introduce the transformation to a spherical-radial coordinate
system with an emphasis on integration. Then we will show how to integrate
certain functions over the surface of the unit n-sphere. Last, we will introduce
some methods of numerical integration, namely, the Gaussian quadrature.

In this section, using the introduced mathematical principles, we will also
obtain several results that will be crucial for the derivation of the CKF.

3.1.1 Transformation to spherical-radial coordinates
It is not always necessary to use the standard Cartesian coordinate system.
Sometimes it is convenient to use another coordinate system, such as the
spherical-radial coordinate system. The advantage of the spherical-radial co-
ordinate system is that we can leverage its symmetry, which makes it easier to
solve problems that are difficult to solve in the Cartesian coordinate system.

As the name suggests, the spherical-radial coordinate system uses the unit
n-sphere1 to represent the direction of the vector and a radius to represent

1Generalization of the sphere for n dimensions, since we are not bound to a specific
dimension.

14
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the magnitude of the vector. These two pieces of information are sufficient to
express any vector. Specifically, an arbitrary vector x ∈ Rn, represented in
Cartesian coordinates, can be expressed as

x = ry, (3.1)

where ∥y∥ = 1 and r = ∥x∥.
Since the vector y always lies on the unit n-sphere, a vector of dimension

n− 1 is sufficient to express it. For example, in two dimensions, we only need
one angle to accurately express the y vector.

3.1.1.1 Two-dimensional spherical-radial coordinates: The po-
lar coordinates

The spherical-radial coordinate system is often used in two dimensions, where
it is called the polar coordinate system. Although we will not limit ourselves
to two dimensions when deriving the CKF, the polar coordinate system will
serve as the simplest example to understand the spherical-radial coordinate
system.

As we stated earlier, we can express any vector x ∈ R2 with the angle φ
denoting its direction and a radius r which is the magnitude of the vector x.
Thus, given the polar coordinates (r, φ)⊺, we can express the vector x in the
Cartesian coordinates as

x =

(
x1
x2

)
= r

(
cosφ
sinφ

)
. (3.2)

If we have a vector x given in the Cartesian coordinates (x1, x2)
⊺, we can

express it in the polar coordinates as

x =

(
r
φ

)
, (3.3)

for

r = ∥x∥ =
√
x21 + x22, (3.4)

φ =


arccos(x1

r ) if x2 ≥ 0 and r ̸= 0,

− arccos(x1
r ) if x2 < 0 and r ̸= 0,

0 if r = 0.

(3.5)

In Figure 3.1, we can see an example of polar coordinates being used to rep-
resent the vector x =

(√
2,
√
2
)⊺ with r = 2 and φ = π

4 .
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3.1.1.2 Integration in spherical-radial coordinates
It is often useful to transform an integral from Cartesian coordinates to spheri-
cal-radial coordinates. This can be achieved by the change of variables theo-
rem.

▶ Theorem 3.1 (Change of variables theorem). Let Ω ⊆ Rn be a region and
let U be an open set containing Ω so that g: U → Rn is a bijective function
with continuous partial derivatives at each point in U . Suppose f : g(Ω) → R
and f(g)|det(Dg)|: Ω → R are both integrable. Then∫

g(Ω)

f(y)dy =

∫
Ω

f(g(x))|det(Dg)(x)|dx. (3.6)

◀

Proof of this theorem can be found, e.g., in [8].
For now, let us consider a two-dimensional case. Recalling Equation 3.2,

we perform the change of variables using

g(r, φ) =

(
r cosφ
r sinφ

)
. (3.7)

Thus, for an arbitrary function f : R2 → R defined in the Cartesian coordinate
system, we get∫∫

R2

f(x1, x2)dx1dx2 =

∞∫
0

2π∫
0

f(r cosφ, r sinφ)|det(Dg)(r, φ)|dφdr, (3.8)

essentially integrating over every direction and radius, covering the whole R2.
Now we just have to evaluate |det(Dg)(r, φ)|. We get

det(Dg)(r, φ) =

∣∣∣∣∣∂r cosφ∂r
∂r cosφ

∂φ
∂r sinφ

∂r
∂r sinφ

∂φ

∣∣∣∣∣ =
∣∣∣∣cosφ −r sinφ
sinφ r cosφ

∣∣∣∣ = r sin2 φ+ r cos2 φ = r.

(3.9)
Since r is always nonnegative, we have∫∫

R2

f(x1, x2)dx1dx2 =

∞∫
0

2π∫
0

f(r cosφ, r sinφ)rdφdr. (3.10)

We can take advantage of the spherical-radial form to solve integrals that would
be difficult to solve in the Cartesian form.

▶ Example 3.2 (The Gaussian integral). Let us consider an integral I in a
form

I =

∫
R

e−x2
dx. (3.11)
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Although this integral is only a single-variable integral, we can still utilize the
spherical-radial coordinate system to solve it. By taking the square of this
integral, we can introduce another dimension. This gives us

I2 =

∫
R

e−x2
dx

2

=

∫
R

e−x2
dx

∫
R

e−y2dy =

∫∫
R2

e−x2−y2dxdy. (3.12)

Now we can use Equation 3.10 to transform the integral to spherical-radial
coordinates, so we get

I2 =

∞∫
0

2π∫
0

e−r2 cos2 φ−r2 sin2 φrdφdr (3.13)

=

∞∫
0

2π∫
0

e−r2rdφdr (3.14)

= 2π

∞∫
0

e−r2rdr (3.15)

= 2π

0∫
−∞

1

2
esds (3.16)

= π. (3.17)

Since e−x2 is a nonnegative function, we obtain the solution

I =
√
π. (3.18)

◀

Let us now define the surface of the unit n-sphere as

Un = {y ∈ Rn| ∥y∥ = 1} . (3.19)

Similarly to the two-dimensional case, for an arbitrary dimension n it holds [9]

∫
Rn

f(x)dx =

∞∫
0

∫
Un

f(ry)rn−1dσ(y)dr, (3.20)

where σ(y) denotes the spherical surface measure for y ∈ Un. The spherical
surface measure σ(y) essentially represents the area of the surface element at
each point y on the surface of the unit n-sphere Un. Thus we integrate over
each such point, which represents the direction, and over each radius. This
gives us the complete Rn.
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▶ Note 3.3. To satisfy the conditions of Theorem 3.1 we have so far only con-
sidered f as a scalar-valued function. Equation 3.20 holds for vector-valued
functions as well, since the integration of a vector-valued function is simply an
integration of its compounds. When deriving the CKF we will encounter the
need to integrate a vector-valued function using the spherical-radial transfor-
mation. ◀

3.1.2 Integration of monomials over the surface of
the unit n-sphere

In Equation 3.20 we introduced an integral over the surface of the unit n-
sphere, which we also call the spherical integral. The question is how to solve
such an integral. For our purposes, we are satisfied with the case where our
integrand is just a monomial.

▶ Definiton 3.4 (Monomial). For x ∈ Rn, we call the function M: Rn → R
a monomial if

M(x) =

n∏
i=1

xdii , (3.21)

where d1, . . . , dn are nonnegative integers. ◀

An important property of a monomial is its degree. Often, we want to have
some control over the monomial, which we can express by limiting the degree.

▶ Definiton 3.5 (Degree of a monomial). Let M(x) =
∏n

i=1 x
di
i be a mono-

mial for any x ∈ Rn. We define the function deg as

deg(M) =
n∑

i=1

di. (3.22)

We call deg(M) the degree of the monomial M. ◀

▶ Example 3.6. Let us have a monomial M(x) = x31x2 for x = (x1, x2)
⊺ ∈ R2.

Then, since d1 = 3 and d2 = 1, it holds

deg(M) = d1 + d2 = 3 + 1 = 4. (3.23)

◀

To solve an integral in a form∫
Un

M(x)dσ(x), (3.24)

we use an approach that transforms it to the product of n single-variable
integrals. Stroud [10] uses the spherical-radial coordinate system to come up
with the following product formula for such integrals.
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▶ Theorem 3.7 (Product formula for spherical integrals of monomials [10]).
Let us have an integral I in the form

I =

∫
Un

n∏
i=1

xdii dσ(x). (3.25)

Then the value of I is equal to the product of integrals
π∫

−π

(cosφ1)
c1(sinφ1)

d2dφ1, (3.26)

π/2∫
−π/2

(cosφ2)(cosφ2)
c2(sinφ2)

d3dφ2, (3.27)

...
π/2∫

−π/2

(cosφn−1)
n−2(cosφn−1)

cn−1(sinφn−1)
dndφn−1, (3.28)

where

ck =

k∑
i=1

di, k ∈ {1, . . . , n}. (3.29)

◀

We will demonstrate the use of Theorem 3.7 with two examples whose
results will be useful for deriving the CKF. Before we proceed, let us first
define the gamma function that we will use to express the result we obtain.

▶ Definiton 3.8 (Gamma function [9]). Let Γ : R → R be a function defined
as

Γ(x) =

∞∫
0

tx−1e−tdt, (3.30)

for x > 0. We call the function Γ the gamma function. ◀

The gamma function extends the factorial function to non-integers since it
holds that Γ(n + 1) = n!, for n ∈ N0 [9]. Let us formulate a property of the
gamma function that will be useful for our later calculations. This property
also partially proves the factorial behavior of the gamma function.

▶ Theorem 3.9. For the gamma function Γ and x > 0 it holds

Γ(x+ 1) = xΓ(x). (3.31)

◀
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Proof. From Definition 3.8 we get

Γ(x+ 1) =

∞∫
0

txe−tdt. (3.32)

Using integration by parts, we obtain

Γ(x+ 1) =
[
tx(−e−t)

]t=∞
t=0

−
∞∫
0

xtx(−e−t)dt (3.33)

= x

∞∫
0

txe−tdt (3.34)

= xΓ(x), (3.35)

where we used the fact that limt→∞ txe−t = 0.

The gamma function is used to express the surface area of the unit n-sphere.

▶ Theorem 3.10 (Surface area of the unit n-sphere). For the surface area
An of the unit n-sphere it holds

An =
2
√
πn

Γ(n2 )
. (3.36)

◀

Proof of this theorem can be found, e.g., in [9].

▶ Example 3.11. Let us consider an integral I in a form

I =

∫
Un

1dσ(x). (3.37)

This integral is as simple as it can get. The term 1 is in fact a monomial
with degree 0, therefore d1 = · · · = dn = 0. In Figure 3.2, we can see the
visualization of this integral for a two-dimensional case where Un is a circle.

Obviously, the integral I is equal to the surface area of the unit n-sphere,
since we are integrating 1 over every point on its surface. Therefore

I = Un. (3.38)

Let us now use Theorem 3.7 to express this integral in an alternative form
that may be useful later. Since d1 = · · · = dn = 0, we also get c1 = · · · = cn =
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Figure 3.2 Integral of 1 over the surface of the unit 2-sphere.

0. Thus Theorem 3.7 yields

I =

π∫
−π

1dφ1

π/2∫
−π/2

(cosφ2)dφ2 · · ·
π/2∫

−π/2

(cosφn−1)
n−2dφn−1 (3.39)

= 2π

n−2∏
i=1

π/2∫
−π/2

(cosφ)idφ. (3.40)

◀

Before we continue with the next example, let us define the beta function
that we will use in the example to solve the spherical integral.

▶ Definiton 3.12 (Beta function [11]). Let a > 0 and b > 0. The function
B : R2 → R, defined as

B(a, b) =

1∫
0

ta−1(1− t)b−1dt, (3.41)

is called the beta function. ◀

The beta function can be expressed in an alternative form involving the gamma
function. Both forms will be useful for our purposes.
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Figure 3.3 Integral of x2
1 over the surface of the unit 2-sphere.

▶ Theorem 3.13 (Alternative form of the beta function). For the beta func-
tion B, a > 0, and b > 0 it holds

B(a, b) =
Γ(a) Γ(b)

Γ(a+ b)
. (3.42)

◀

Proof of this theorem can be found, e.g., in [11].

▶ Example 3.14. Let us now consider an integral I in a form

I =

∫
Un

x21dσ(x). (3.43)

In Figure 3.3, we can see the visualization of this integral for a two-dimensional
case where Un is a circle.
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By applying the product formula according to Theorem 3.7, we get

I =

π∫
−π

(cosφ1)
2dφ1 (3.44)

×
π/2∫

−π/2

(cosφ2)(cosφ2)
2dφ2 (3.45)

...

×
π/2∫

−π/2

(cosφn−1)
n−2(cosφn−1)

2dφn−1 (3.46)

= π
n∏

i=3

π/2∫
−π/2

(cosφ)idφ, (3.47)

Which we can express involving the expression we obtained in Equation 3.40
in the previous example. We get

I = 2π
n−2∏
i=1

π/2∫
−π/2

(cosφ)idφ

︸ ︷︷ ︸
An

∫ π/2
−π/2(cosφ)

n−1dφ
∫ π/2
−π/2(cosφ)

ndφ

2
∫ π/2
−π/2 cosφdφ

∫ π/2
−π/2 cos

2 φdφ
(3.48)

=
An

2π

π/2∫
−π/2

(cosφ)n−1dφ

π/2∫
−π/2

(cosφ)ndφ. (3.49)

Using the substitution t = (cosu)2 in the integral that defines the beta function
by Definition 3.12, we get

B(a, b) = 2

π/2∫
0

(cosu)2a−1(sinu)2b−1du. (3.50)

Therefore, using the fact that the cosine function is an even function, we get

π/2∫
−π/2

(cosφ)ndφ = 2

π/2∫
0

(cosφ)ndφ

= B

(
n+ 1

2
,
1

2

)
=

Γ(n+1
2 ) Γ(12)

Γ(n2 + 1)
=

√
π Γ(n+1

2 )

Γ(n2 + 1)
, (3.51)



Preliminary mathematical principles 25

where we used Theorem 3.13 and the fact that Γ(12) =
√
π, which can be

easily shown by a simple substitution giving the Gaussian integral we solved
in Example 3.2. Thus, substituting into Equation 3.49, we obtain

I =
An

2π

√
π Γ(n2 )

Γ(n+1
2 )

√
π Γ(n+1

2 )

Γ(n2 + 1)
(3.52)

=
An

2

Γ(n2 )

Γ(n2 + 1)
(3.53)

and using Theorem 3.9, we finally get

I =
An

n
. (3.54)

◀

The symmetry of the n-sphere gives us an important property concerning
spherical integrals of monomials with odd degrees.

▶ Theorem 3.15 (Spherical integrals of odd-degree monomials). Let M(x)
be a monomial for any x ∈ Rn. Suppose deg(M) is an odd integer. Then∫

Un

M(x)dσ(x) = 0. (3.55)

◀

Proof. Since M(x) =
∏n

i=1 x
di
i and deg(M) =

∑n
i=1 di, we see that in order

for deg(M) to be an odd integer, at least one di must be an odd integer for
i ∈ {1, . . . , n}. Assume, without loss of generality, that d1 is an odd integer.
Therefore, M(x) contains the term xd11 , which is an odd function of x1. An
odd function f has the property f(−y) = −f(y). That implies

(−x1)
d1

n∏
i=2

xdii = −xd11

n∏
i=2

xdii , (3.56)

which results in

M



−x1
x2
...
xn


 = −M



x1
x2
...
xn


 . (3.57)

Thus, when integrating over a symmetric domain, in our case the surface of
the unit n-sphere, for every x =

(
x1, x2, . . . , xn

)⊺ ∈ Un, there exists exactly
one x′ =

(
−x1, x2, . . . , xn

)⊺ ∈ Un. Since M(x) and M(x′) cancel each other
out, the resulting integral is zero.
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3.1.3 Numerical integration
Numerous definite integrals encountered in practice can be exceedingly chal-
lenging to solve analytically. Thus, we often need to use numerical methods
to obtain an approximation of the resulting value. In many practical applica-
tions, if the approximation is accurate enough, it is sufficient to use it instead
of the actual analytical value.

Typically, the goal is to approximate a nonnegatively weighted integral.
That is, an integral of the form

I =

∫
D

w(x)f(x)dx, (3.58)

where D ⊆ Rn, f : Rn → Rn′ is an arbitrary function, and w: Rn → R+
0 is a

weighting function for n, n′ ∈ N. Note that in the special case where w(x) = 1,
we obtain the integral of f .

The standard and well-researched [12] approach to approximating such
integrals is to find the set of points {x1, . . . , xm} ⊂ Rn and the set of corre-
sponding weights {ω1, . . . , ωm} ⊂ R so that the sum

I ≈
m∑
i=1

ωif(xi) (3.59)

is the best approximation by a certain criterion. The advantage of this method
is that once we obtain the points x1, . . . , xm and the weights ω1, . . . , ωm, we
only need to evaluate the function f m times to get the resulting approximation
of I. For many standard forms of I, usually defined by the weighting function
and the region of integration, the points and weights are already precomputed.

Formulas given by Equation 3.59 are called m-point cubature rules. If I
is just a single-variable integral, i.e., n = 1, we call them quadrature rules.
In our case, where w is a nonnegative function, we talk about the Gaussian
cubature [12].

The question remains what criterion to choose for the accuracy of the ap-
proximation. Typically, we want Equation 3.59 to be exact for all polynomials
of degree up to k. This criterion is equivalent to being exact for all mono-
mials of degree up to k. This is because polynomials are sums of monomials,
each multiplied by a constant coefficient, and the integral has the property of
linearity. Hence, we aim to find the cubature points and weights so that

I =

m∑
i=1

ωiM(xi), (3.60)

for monomials M such that deg(M) ≤ k.
Essentially, the higher m we choose, the more accurate the approximation

will be for an arbitrary function. The price for this is higher computational
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complexity. For an m-point Gaussian quadrature rule, it holds that the m
points and m weights can be found to make Equation 3.59 exact for all poly-
nomials of degree up to 2m− 1 [12].

We will now present two special cases of Gaussian quadrature. In a similar
way to the quadrature rules, we will derive a higher-dimensional cubature rule
later in the derivation of the CKF.

3.1.3.1 Gauss–Legendre quadrature
When using the Gauss–Legendre quadrature rules, we consider the integral I
over the region D = [−1, 1] with the weighting function w(x) = 1 [13]. So we
approximate the integral

I =

1∫
−1

f(x)dx, (3.61)

where x ∈ R. This form of the integral I may not be as restrictive as it
appears. By using a simple substitution, we can transform any integral over a
finite region into this form.

The Gauss–Legendre quadrature is not essential for our purposes. However,
it will serve as a clear demonstration of the concept of cubature rules. We will
not present the Gauss–Legendre quadrature in its full generality. Instead, we
will derive a quadrature rule for a specific simple example. This will provide
us with an insight into this method of numerical integration.

▶ Example 3.16. Let us find a Gauss–Legendre quadrature rule that is exact
for all the polynomials of degree up to 3. That is, it needs to be exact for the
monomials x3, x2, x, and 1. Since an m-point Gaussian quadrature rule is
sufficient to solve integrals of polynomials of degree up to 2m− 1 exactly, we
will derive a two-point quadrature rule.

Our goal now is to find the quadrature points x1 and x2 and the weights
ω1 and ω2. This can be achieved by solving the set of equations obtained by
using the monomials x3, x2, x, and 1 in Equation 3.60. Thus, we get∫ 1

−1
1dx = 2 = ω1 · 1 + ω2 · 1, (3.62)∫ 1

−1
xdx = 0 = ω1x1 + ω2x2, (3.63)∫ 1

−1
x2dx =

2

3
= ω1x

2
1 + ω2x

2
2, (3.64)∫ 1

−1
x3dx = 0 = ω1x

3
1 + ω2x

3
2, (3.65)
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which has a solution

x1 =
1√
3
, (3.66)

x2 = − 1√
3
, (3.67)

ω1 = 1, (3.68)
ω2 = 1, (3.69)

that defines the desired two-point Gauss–Legendre quadrature rule.

ω1 = 1

ex1

ω2 = 1

ex2

-1 x2 = − 1√
3

x1 =
1√
3

1

0.5

1

1.5

2

2.5

0

0.5

x

ex

Figure 3.4 Approximation of the integral of ex over [−1, 1] using a two-point
Gauss–Legendre quadrature rule.

We can now use the derived rule to approximate the integral of an arbitrary
function defined on [−1, 1]. For demonstration purposes, let us approximate
the integral of ex as

1∫
−1

exdx ≈ ω1e
x1 + ω2e

x2 = 1 · e
1√
3 + 1 · e−

1√
3 ≈ 2.3427. (3.70)
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The true value of this integral is approximately 2.3504. The approximation of
this integral using the derived two-point Gauss–Legendre quadrature rule is
illustrated in Figure 3.4.

◀
As we already know, an m-point Gaussian quadrature rule can accurately

compute integrals of polynomials of degree up to 2m−1. Let us now explore the
effectiveness of quadrature rules with a smaller number of points. In particular,
let us consider a fifth-degree polynomial

P5(x) = 1 + x− x2 − 3x3 + x4 + 2x5 (3.71)

Our objective now is to approximate its integral∫ 1

−1
P5(x)dx =

26

15
= 1.73̄ (3.72)

using the Gauss–Legendre quadrature. We will use a one-point, a two-point,
and a three-point Gauss–Legendre quadrature.

points approximation error
1 2 0.26̄
2 1.5̄ 0.17̄
3 1.73̄ 0

Table 3.1 Performance comparison of Gauss–Legendre quadrature rules for approx-
imating the integral of a fifth-degree polynomial based on the number of quadrature
points.

In Table 3.1, we can see that the higher the number of points, the better
the approximation given by the quadrature rule. The three-point quadrature
rule gave an exact result, as expected. The approximations are visualized in
Figures 3.5, 3.6, and 3.7.
▶ Note 3.17. In practice, the points and weights are not obtained by solving a
set of equations. Instead, they are obtained by finding the roots of the Legendre
polynomial [14]. Fortunately, these values have already been precomputed and
are available in publicly accessible tables [12]. ◀

3.1.3.2 Generalized Gauss–Laguerre quadrature
The generalized Gauss–Laguerre quadrature rules apply to integrals over the
region D = [0,∞] with the weighting function w(x) = xγe−x, where γ ∈ R
is a parameter [13]. Unlike the Gauss–Legendre quadrature, the generalized
Gauss–Laguerre quadrature allows us to approximate integrals over an infinite
region. The integral I then takes the form

∞∫
0

xγe−xf(x)dx, (3.73)



Preliminary mathematical principles 30

2

-1 -0.5 0.5 1

0.5

1

0

x

P5(x)

Figure 3.5 Approximation of the integral of a fifth-degree polynomial over [−1, 1]
using a one-point Gauss–Legendre quadrature rule.
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Figure 3.6 Approximation of the integral of a fifth-degree polynomial over [−1, 1]
using a two-point Gauss–Legendre quadrature rule.
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Figure 3.7 Approximation of the integral of a fifth-degree polynomial over [−1, 1]
using a three-point Gauss–Legendre quadrature rule.

where x, γ ∈ R.
The points and weights for an m-order Gauss–Laguerre quadrature rule can

be obtained using the generalized Laguerre polynomial [13]. However, for our
later use, it is sufficient to find the weight and point for the first-order Gauss-
Laguerre quadrature rule only. Thus, we can obtain the point and weight by
solving a pair of equations. The following result is essential for the derivation
of the CKF.

▶ Example 3.18. Let us find the first-order Gauss–Laguerre quadrature rule
for the integral

∞∫
0

f(x)x
n
2
−1e−xdx, (3.74)

where n ∈ N.
We can use monomials of the zeroth and first degree, i.e., 1 and x, as the

function f . This gives us the set of equations
∞∫
0

1 · x
n
2
−1e−xdx = ω1 · 1, (3.75)

∞∫
0

x · x
n
2
−1e−xdx = ω1x1. (3.76)
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By recalling Definition 3.8 of the gamma function, we easily obtain

Γ
(n
2

)
= ω1, (3.77)

Γ
(n
2
+ 1
)
= ω1x1. (3.78)

(3.79)

Using Theorem 3.9, we get the final values

ω1 = Γ
(n
2

)
, (3.80)

x1 =
n

2
. (3.81)

◀

3.2 Derivation of the cubature Kalman filter
In this section, we will derive the CKF based on the already introduced Kalman
filter. This derivation heavily relies on the original article [7] that introduced
the CKF.

3.2.1 Filtering with a nonlinear model
To construct a nonlinear filter, we need to work with arbitrary functions that
make up the nonlinear state-space model. The nonlinear state-space model
uses the function f to model the state and the function h to model the mea-
surements (see Equations 1.12, 1.13).

It is often the case that the model noises are additive. This is our first
assumption. That is, the state-space model becomes

xk = f(xk−1, uk−1) + wk−1, (3.82)
yk = h(xk) + vk, (3.83)

where, at time k, xk represents the state vector, uk represents the control input
vector, wk represents the process noise vector, yk represents the measurement
vector, and vk represents the measurement noise vector, as introduced in Chap-
ter 1.

Our other assumption is that the noises are Gaussian. Although no real-
world processes behave in an exact Gaussian manner, the Gaussian distribution
still provides a good approximation and has many advantageous mathematical
properties [15]. That is, we assume

wk ∼ N (0, Qk) , (3.84)
vk ∼ N (0, Rk) . (3.85)



Derivation of the cubature Kalman filter 33

Therefore, the system states and measurements are also Gaussian due to the
transformational properties of the Gaussian distribution.

Similar to the Kalman filter, the CKF operates by alternating between the
time update and the measurement update. The difference lies in the method
used to obtain the estimates and covariances, as linear equations cannot be
used.

At each update, we obtain an estimate of the state and its covariance. Since
the Gaussian distribution is defined by mean and covariance, we have enough
information to form the current probability density of the state estimate, which
is Gaussian.

3.2.1.1 The time update

In the time update, we have the a posteriori estimate x̂+k−1 and the a posteriori
covariance P+

k−1 from the previous time step. Thus, we have the a posteriori
density

p(xk−1|Dk−1) = N (x̂+k−1, P
+
k−1), (3.86)

where Dk−1 denotes the history of all control inputs and measurements up to
time (k − 1), as defined in Equation 2.2.

The aim now is to compute the a priori density p(xk|Dk−1). That is, to
compute the a priori estimate x̂−k and the a priori covariance P−

k . The a priori
estimate is the expected value of the a priori density, that is

x̂−k = E [xk|Dk−1] . (3.87)

Using Equation 3.82, we can substitute xk as

x̂−k = E [f(xk−1, uk−1) + wk−1|Dk−1] . (3.88)

Since the noise wk−1 is assumed to be zero-mean and uncorrelated, it holds

x̂−k = E [f(xk−1, uk−1)|Dk−1]

=

∫
Rn

f(xk−1, uk−1)p(xk−1|Dk−1)dxk−1

=

∫
Rn

f(xk−1, uk−1)N (x̂+k−1, P
+
k−1)dxk−1.

(3.89)

Thus, to obtain the estimate, it is sufficient to compute this integral. For
any given function f we cannot rely on analytical solutions. A numerical
integration method will be required to compute such an integral.

Similarly, for the a priori covariance, we get

P−
k = E

[
(xk − x̂−k )(xk − x̂−k )

⊺|Dk−1

]
= E [f(xk−1, uk−1)f(xk−1, uk−1)

⊺|Dk−1]− x̂−k (x̂
−
k )

⊺ +Qk−1,

(3.90)



Derivation of the cubature Kalman filter 34

where
E [f(xk−1, uk−1)f(xk−1, uk−1)

⊺|Dk−1]

=

∫
Rn

f(xk−1, uk−1)f(xk−1, uk−1)
⊺N (x̂+k−1, P

+
k−1)dxk−1.

(3.91)

3.2.1.2 The measurement update
In the measurement update, we aim to compute the a posteriori density from
the a priori density. Certain equations of the measurement update in the
Kalman filter are not dependent on the state-space model functions. Thus, for
a nonlinear case, we can utilize them as well. We need to compute the other
variables differently. The approach will be very similar to the time update of
the CKF.

From the Kalman filter, we get the following set of equations

Kk = Pxy,kP
−1
y,k , (3.92)

x̂+k = x̂−k +Kk(yk − ŷk), (3.93)
P+
k = P−

k −KkPy,kK
⊺
k . (3.94)

The remaining unknowns are ŷk, Py,k, and Pxy,k.
The noise vk is Gaussian, zero-mean, and uncorrelated as well. We as-

sume the same for the prediction errors. The unknown variables can be then
computed in the same way as in the time update. We get

ŷk = E [yk|Dk−1]

=

∫
Rn

h(xk)N (x̂−k , P
−
k )dxk,

(3.95)

Py,k = E [(yk − ŷk)(yk − ŷk)
⊺|Dk−1]

=

∫
Rn

h(xk)h(xk)
⊺N (x̂−k , P

−
k )dxk − ŷkŷ

⊺
k +Rk,

(3.96)

Pxy,k = E
[
(xk − x̂−k )(yk − ŷk)

⊺|Dk−1

]
=

∫
Rn

xkh(xk)
⊺N (x̂−k , P

−
k )dxk − x̂−k ŷ

⊺
k .

(3.97)

Thus the CKF reduces to computing integrals of a certain form. The rest of
the algorithm is the same as the Kalman filter.

3.2.2 Transformation to spherical-radial coordinates
The remaining problem to solve is how to compute integrals of the form∫

Rn

f(x)N (µ,Σ)dx, (3.98)
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with f being an arbitrary (nonlinear) function.
Let us, for now, consider an integral in a simpler but similar form

I =

∫
Rn

f(x)exp(−xx⊺)dx. (3.99)

Since f is an arbitrary function, this integral is not tractable in general. Thus,
we need to use numerical methods of integration. We will derive our own
cubature rule for this integral. For the cubature rule to be efficient, we exploit
the symmetry by transforming the integral I to the spherical-radial coordinate
system.

Using Equation 3.20, we obtain

I =

∞∫
0

∫
Un

f(ry)rn−1exp(−r2)dσ(y)dr, (3.100)

where Un is the surface of the unit n-sphere. We can express this spherical-
radial integral as two integrals: the spherical and the radial integral. The
spherical integral integrates over the surface of the unit n-sphere and takes the
form

S(r) =

∫
Un

f(ry)dσ(y). (3.101)

The radial integral is the integral I utilizing the spherical integral as a function
of r. It integrates over every radius and takes the form

I =

∞∫
0

S(r)rn−1exp(−r2)dr. (3.102)

We will introduce a cubature rule to compute the spherical integral. Then
we will use the Gaussian quadrature to compute the radial integral, as it is
just a single-variable integral.

3.2.3 Spherical cubature rule
Before we construct our cubature rule for the spherical integral, let us define
a fully symmetric set.

▶ Definiton 3.19 (Symmetric set). Let u1 ≥ u2 ≥ . . . ≥ ur > 0 for r ≤ n.
We call the set U ⊂ Rn of all vectors obtained by permutating and changing
the sign of the compounds of the vector (u1, u2, . . . , ur, 0, . . . , 0)

⊺ ∈ Rn a fully
symmetric set.

We denote the set U by [u1, u2, . . . , ur] and use [u1, u2, . . . , ur]i to denote
the i-th point of this set. ◀
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▶ Example 3.20. For the set [1] ⊂ R2 it holds

[1] =

{(
1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}
. (3.103)

◀

We can see that a fully symmetric set [u] ⊂ Rn contains 2n elements.
Let us now construct a third-degree cubature rule that takes the form∫

Un

f(y)dσ(y) ≈ ω

2n∑
i=1

f ([u]i) , (3.104)

that is, we want to find ω and u such that this cubature rule is exact for all
monomials of degree up to 3.

It has been observed that in practice, higher than third-degree cubature
rules yield no improvement or even make the performance worse. Further-
more, the third-degree cubature rule provides efficient computation and helps
mitigate the curse of dimensionality [7].

Thanks to the symmetry of the integration domain and the fact that the
integral is unweighted, meaning it is associated with a weighting function
w(y) = 1, which is constant for each point of integration, it is sufficient to
consider the same weight ω for every cubature point.

For all monomials of an odd degree, the left side of Equation 3.104 is zero
due to Theorem 3.15. Following the same reasoning, the right side is also zero,
since for every vector x in a fully symmetric set U , there exists −x ∈ U . Thus,
the spherical cubature rule is exact for all odd-degree monomials.

It remains to fulfill the requirement that the spherical cubature rule is
exact for all monomials M such that deg(M) ∈ {0, 2}. Because the cubature
points form a symmetric set, it suffices to consider the monomials 1 and y21 as
a function f . Hence, using the same method as in Example 3.16, we get the
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set of equations ∫
Un

1dσ(y) = ω

2n∑
i=1

1 = 2ωn, (3.105)

∫
Un

y21dσ(y) = ω

2n∑
i=1

([u]i)
2
1

= ω
(
((u, 0, . . . , 0)⊺)21

+ ((0, u, . . . , 0)⊺)21
...
+ ((0, 0, . . . , u)⊺)21

+ ((−u, 0, . . . , 0)⊺)21

+ ((0,−u, . . . , 0)⊺)21
...

+((0, 0, . . . ,−u)⊺)21

)
= ω

(
u2 + 02 + . . .+ 02

+(−u)2 + 02 + . . .+ 02
)

= 2ωu2.

(3.106)

In Example 3.11, we obtained the result∫
Un

1dσ(y) = An, (3.107)

where An is the surface area of the unit n-sphere. Further, in Example 3.14,
we obtained the result ∫

Un

y21dσ(y) = An

n
. (3.108)

Hence, the set of equations becomes

An = 2ωn, (3.109)
An

n
= 2ωu2, (3.110)

which has the solution

ω =
An

2n
, (3.111)

u = 1, (3.112)
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Figure 3.8 Cubature points for the third-degree spherical cubature rule in two
dimensions.

since u > 1 from the definition of the symmetric set. The third-degree spherical
cubature rule hence takes the form∫

Un

f(y)dσ(y) ≈ An

2n

2n∑
i=1

f ([1]i) . (3.113)

Since the cubature points form the set [1] ⊂ Un, they are located at the
intersection of the surface of the unit n-sphere and its axes, which is illustrated
in Figure 3.8 for two dimensions.

Thanks to the symmetry of the n-sphere, the spherical cubature rule con-
sists of only 2n cubature points. This means that the number of evaluations
of the function f scales linearly with the dimension. Furthermore, we obtain
the 2n cubature points by solving the set of only two equations.

3.2.4 Radial Gaussian quadrature rule
To approximate the radial integral

I =

∞∫
0

S(r)rn−1exp(−r2)dr, (3.114)

we use the generalized Gauss-Laguerre quadrature. In order to use the general-
ized Gauss-Laguerre quadrature, the integral needs to be in a slightly different
form (see Equation 3.73). Thus, we perform a change of variable by t = r2

that gives us

I =
1

2

∞∫
0

S̃(t)t
n
2
−1exp(−t)dt, (3.115)
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where S̃(t) = S(
√
t). We want the quadrature rule to be exact for S(r) being

all monomials of degree up to 3. Since S(r) = 0 for all monomials of an odd
degree, it suffices to consider S(r) being 1 and r2.

Let us now construct a first-order generalized Gauss-Laguerre quadrature
rule that takes the form

∞∫
0

S̃(t)t
n
2
−1exp(−t)dt ≈ ω1S̃(x1). (3.116)

In Example 3.18, we obtained the result

ω1 = Γ
(n
2

)
, (3.117)

x1 =
n

2
. (3.118)

Since this rule is a first-order rule, it is exact for S̃(t) being 1 and t, thus it is
exact for S(r) being 1 and r2.

We can now change the variables back to obtain the final radial quadrature
rule

∞∫
0

S(r)rn−1exp(−r2)dr ≈ 1

2
Γ
(n
2

)
S

(√
n

2

)
. (3.119)

3.2.5 Combined spherical-radial rule for Gaussian-
weighted integrals

We can combine the spherical rule in Equation 3.113 and the radial rule in
Equation 3.119 to approximate an integral weighted by exp (−x⊺x) as

∞∫
0

∫
Un

f(ry)rn−1exp(−r2)dσ(y)dr ≈ 1

2
Γ
(n
2

) An

2n

2n∑
i=1

f

(√
n

2
[1]i

)
. (3.120)

Using the formula for the surface area of the unit n-sphere, as stated in The-
orem 3.10, we can simplify the approximation term. Thus, we get∫

Rn

f(x)exp(−xx⊺)dx ≈
√
πn

2n

2n∑
i=1

f

(√
n

2
[1]i

)
, (3.121)

where we expressed the integral in the Cartesian form again since the spherical-
radial cubature rule is already derived.

Our initial desire, however, was to approximate the Gaussian-weighted
integral

I =

∫
Rn

f(x)N (µ,Σ)dx. (3.122)
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It is possible to transform this integral into a form for which we have obtained
the spherical-radial cubature rule in Equation 3.121. For the integral I, it
holds

I =

∫
Rn

f(x)
1√

(2π)ndet(Σ)
exp

(
−1

2
(x− µ)⊺Σ−1 (x− µ)

)
dx. (3.123)

We can now perform a change of variables using Theorem 3.1 with x =
√
2Σy+

µ, where we define
√
Σ as

√
Σ
√
Σ
⊺
= Σ which always holds since Σ is a positive

definite matrix. Since

det
(

D
(√

2Σy + µ
))

= det
(√

2Σ
)
=
√
2ndet(Σ), (3.124)

we get

I =

∫
Rn

f
(√

2Σy + µ
) √

2ndet(Σ)√
(2π)ndet(Σ)

exp
(
−1

2

(√
2Σy

)⊺
Σ−1

(√
2Σy

))
dy

=
1√
πn

∫
Rn

f
(√

2Σy + µ
)

exp (−y⊺y) dy.

(3.125)
Combining this result with Equation 3.121, we obtain the spherical-radial cu-
bature rule for arbitrary mean and covariance µ and Σ∫

Rn

f(x)N (µ,Σ)dx ≈ 1

2n

2n∑
i=1

f (ξi) , (3.126)

where ξi is the i-th cubature point defined as

ξi =
√
nΣ[1]i + µ. (3.127)

▶ Note 3.21. In practice, we can obtain the matrix
√
Σ using the Cholesky

decomposition [16]. ◀

3.3 The cubature Kalman filter algorithm
In this section, we present the CKF algorithm derived in the previous section
to ensure clarity.

3.3.1 Initialization
1. Initialize the a posteriori state estimate with the most accurate estimation

of the initial state, ideally
x̂+0 = E [x0] . (3.128)
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2. Initialize the a posteriori covariance using a covariance matrix that reflects
the level of confidence in the initial estimate. If we are sure that our initial
estimate is ideal, we set

P+
0 = E

[
(x0 − x̂+0 )(x0 − x̂+0 )

⊺] . (3.129)

3.3.2 The time update
1. Factorize the a posteriori covariance to obtain the matrix S+

k−1 as follows

P+
k−1 = S+

k−1

(
S+
k−1

)⊺
. (3.130)

Let us represent the i-th column of the matrix S+
k−1 by si.

2. Calculate cubature points

ξi =

{
x̂+k−1 +

√
nsi, i ∈ {1, . . . , n},

x̂+k−1 −
√
nsi−n, i ∈ {n+ 1, . . . , 2n},

(3.131)

for n representing the dimension of the state vector.

3. Propagate the cubature points through the system function

x̃i = f(ξi, uk−1), i ∈ {1, . . . , 2n}. (3.132)

4. Evaluate the a priori state estimate

x̂−k =
1

2n

2n∑
i=1

x̃i. (3.133)

5. Evaluate the a priori covariance

P−
k =

1

2n

2n∑
i=1

(x̃ix̃
⊺
i )− x̂−k

(
x̂−k
)⊺

+Qk−1. (3.134)

3.3.3 The measurement update
1. Factorize the a priori covariance to obtain the matrix S−

k as follows

P−
k−1 = S−

k

(
S−
k

)⊺
. (3.135)

Let us represent the i-th column of the matrix S−
k by si.

2. Calculate cubature points

ξi =

{
x̂−k +

√
nsi, i ∈ {1, . . . , n},

x̂−k −
√
nsi−n, i ∈ {n+ 1, . . . , 2n}.

(3.136)
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3. Propagate cubature points through the measurement function

ỹi = h(ξi), i ∈ {1, . . . , 2n}. (3.137)

4. Evaluate the measurement estimate

ŷk =
1

2n

2n∑
i=1

ỹi. (3.138)

5. Evaluate the cross-covariance matrix

Pxy,k =
1

2n

2n∑
i=1

(ξiỹ
⊺
i )− x̂−k ŷ

⊺
k . (3.139)

6. Evaluate the innovation covariance matrix

Py,k =
1

2n

2n∑
i=1

(ỹiỹ
⊺
i )− ŷkŷ

⊺
k +Rk. (3.140)

7. Evaluate the Kalman gain

Kk = Pxy,kP
−1
y,k . (3.141)

8. Evaluate the a posteriori state estimate

x̂+k = x̂−k +Kk(yk − ŷk). (3.142)

9. Evaluate the a posteriori covariance

P+
k = P−

k −KkPy,kK
⊺
k . (3.143)

3.4 Properties of the cubature Kalman filter
The main, obvious, property of the CKF, which was the motivation for its very
creation, is that the CKF is a nonlinear filter. That is, the CKF can handle a
state-space model that contains nonlinear functions, unlike the Kalman filter
which handles only a linear state-space model.

Another property that makes the CKF stand out among other nonlinear
filters is that the CKF eases the curse of dimensionality [7]. This is because
the cubature rule entails only 2n cubature points, where n is the dimension
of the state vector. This has the additional positive consequence that the
computational complexity in terms of the number of evaluations of the state-
space model functions increases linearly with the dimension.

The CKF algorithm can be suitably modified to be more numerically stable.
The modification is that in each update the square root of the covariance is
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propagated instead of the covariance itself. Thus, there is no need to compute
a square root of a matrix, which is a numerically very sensitive operation. This
solution is called the square-root cubature Kalman filter [7]. This offers other
benefits, in particular preservation of symmetry and positive definiteness of
the covariance and doubled-order precision [17].

It is important to note that the filter was derived for systems with Gaussian
noise. Thus, if the noise is not Gaussian, the filter may not retain its positive
properties. However, the reality is often that the Gaussian distribution is a
satisfactory approximation of real-world processes. If the Gaussianity assump-
tion is satisfied, the CKF, especially its square-root version, is robust in terms
of divergence compared to other nonlinear filters [7].

3.5 Comparison with other nonlinear filters
Additional unique features of the CKF will be highlighted in comparison to
other nonlinear filtering methods. We will compare the CKF with the two
widely used Kalman-based nonlinear filters, the unscented Kalman filter and
the extended Kalman filter.

3.5.1 Comparison with the unscented Kalman filter
The unscented Kalman filter [6], [18] is currently one of the most widely used
nonlinear state estimation methods. However, the fact is that the UKF and
the CKF are very similar. As we will see later, in one particular case, their
algorithms are even identical.

The difference between the CKF and the UKF lies in the choice of cubature
points, in the case of the UKF called sigma points. The rest of the algorithm
remains the same. The sigma points in the UKF are parameterized by κ.
The UKF also introduces an additional sigma point in the center, which has a
different weight than the rest of the sigma points. The UKF then selects the
(2n+ 1) sigma points so that their sample mean and covariance are the same
as the mean and covariance of the distribution of the state vector estimate.
The aim is to approximate the entire distribution using only a few points, as it
would be infeasible to propagate the entire distribution in a nonlinear function.
Specifically, it selects the following sigma points:

ξi =



x̂k, i = 0,

x̂k +
(√

(n+ κ)Pk

)
•i
, i ∈ {1, . . . , n},

x̂k −
(√

(n+ κ)Pk

)
•(i−n)

, i ∈ {n+ 1, . . . , 2n},

(3.144)

where the subscript •i denotes the i-th column of a matrix. The UKF then
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Figure 3.9 Sigma point set with weights ω for κ = 2 in two-dimensional space,
highlighting the 3-sigma Pk covariance ellipse.

selects the corresponding weights

ωi =


κ

n+κ , i = 0,

1
2(n+κ) , i ∈ {1, . . . , 2n}.

(3.145)

The parameter κ controls the behavior at higher orders. For the Gaussian
distribution, this parameter is typically set to κ = 3 − n to capture the kur-
tosis [18]. In Figures 3.9 and 3.10, the selection of points and weights by the
CKF and the UKF is demonstrated.

An interesting scenario occurs when we set κ = 0. In this case, the center
point vanishes due to ω0 = 0. Also, the weights for the rest of the sigma points
are equal to 1

2n . Thus, for κ = 0, the CKF and the UKF result in the exact
same algorithm.

Although the algorithms of the CKF and the UKF are very similar, these
filters are mainly very different in their philosophy and approach to derivation.
The UKF focuses on selecting the sigma points to have the same sample mean
and covariance as the mean and covariance of the distribution of the state
vector estimate so that their propagation approximates the propagation of the
entire distribution. In contrast, the cubature points in the CKF are implicitly
given by the third-order spherical-radial cubature rule. The CKF assumes the
states and measurements to be Gaussian instead of a more general symmet-
ric density. Furthermore, the CKF focuses on computing the first two-order
moments of the measurement vector exactly [7].
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Figure 3.10 Cubature point set with weights ω in two-dimensional space, high-
lighting the 3-sigma Pk covariance ellipse.

The freedom in the choice of the κ parameter also brings disadvantages.
Due to the need to account for different weights for different sigma points,
rounding errors occur, leading to increased numerical inaccuracy. For arbitrary
κ there is no square-root solution available for the UKF. Although there exists
a pseudo square-root version of the UKF [19], this solution may produce a
non-positive definite matrix, due to which the algorithm may end up with an
error [7].

3.5.2 Comparison with the extended Kalman filter
The extended Kalman filter [1] takes a completely different approach than
the CKF or the UKF. It relies on linearizing the system and measurement
functions to obtain the matrices for later use in the classical linear Kalman
filter. Namely, it uses a first-order Taylor series expansion of the state-space
model functions around the current estimate. The first-order Taylor series
expansion is illustrated on ex in Figure 3.11.

In the time update [1], the system function is approximated by linearization
around the a posteriori estimate x̂+k−1 as

f(xk−1, uk−1) ≈ f
(
x̂+k−1, uk−1

)
+ Fk−1

(
xk−1 − x̂+k−1

)
(3.146)

= Fk−1xk−1 + f
(
x̂+k−1, uk−1

)
− Fk−1x̂

+
k−1 (3.147)

= Fk−1xk−1 + ũk−1, (3.148)
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Figure 3.11 Linearization of ex using the first-order Taylor series expansion around
x = 0.

where

Fk =
∂f

∂x

∣∣∣∣
x̂+
k−1

, (3.149)

ũk−1 = f
(
x̂+k−1, uk−1

)
− Fk−1x̂

+
k−1. (3.150)

Thus, we obtain a linear function with Fk being the system matrix and ũk−1

being the new known control input. We can then perform the Kalman filter
time update as usual.

For the a priori estimate, it holds

x̂−k = Fk−1x̂
+
k−1 + ũk−1 (3.151)

= Fk−1x̂
+
k−1 + f

(
x̂+k−1, uk−1

)
− Fk−1x̂

+
k−1 (3.152)

= f
(
x̂+k−1, uk−1

)
. (3.153)

Therefore, the estimate is updated using the nonlinear system function and
the linearization serves only to form the a priori covariance.

The measurement update [1] is similar. We approximate the measurement
function by linearizing it around the a priori estimate x̂−k as

h(xk−1) ≈ h
(
x̂−k
)
+Hk

(
xk − x̂−k

)
(3.154)

= Hkxk + h
(
x̂−k
)
−Hkx̂

−
k (3.155)

= Hkxk + zk (3.156)

where

Hk = Dh
∣∣
x̂−
k
, (3.157)

zk = h
(
x̂−k
)
−Hkx̂

−
k . (3.158)
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Thus, we get a linear function with the measurement matrix Hk and the input
zk. We can then proceed with the Kalman filter measurement update.

Similarly to the time update, for the measurement prediction, it holds

ŷk = Hkx̂
−
k + zk (3.159)

= Hkx̂
−
k + h

(
x̂−k
)
−Hkx̂

−
k (3.160)

= h
(
x̂−k
)
. (3.161)

Therefore, the linearization again only affects the covariance.
The major weakness of the EKF is that it requires derivatives of the state-

space model functions to operate. However, some functions are difficult to
differentiate, or even not differentiable at all. In this case, the CKF is a suitable
option because it works without derivatives. This has another advantage that
it suffices to pass the state-space model functions to the filtering algorithm
making the CKF a prepackaged solution.

The strength of the EKF, in comparison to the CKF, is its computational
efficiency. The EKF essentially boils down to the KF with only a few addi-
tional function evaluations, whereas the CKF requires 4n function evaluations
and 2 Cholesky decompositions per iteration. In addition, the EKF is more
straightforward to implement assuming that the Jacobian matrices are pro-
vided. Nevertheless, since the function approximations are only linear, the
EKF may produce unreliable estimates for higher-nonlinear systems. Conse-
quently, it is more prone to divergence [1].



Chapter 4

Examples

In this chapter, we will present the use of the CKF through several examples.
The examples are chosen to demonstrate the properties of the CKF. They also
serve as a comparison to other filtering methods.

4.1 Example 1: Linear state-space model
Although the CKF is a nonlinear filter, it can work with arbitrary model
functions, including linear functions. Therefore, the CKF can be used with a
linear state-space model. For the linear state-space model matrices F and H,
we define the functions of a nonlinear state-space model

f(xk) = Fxk, (4.1)
h(xk) = Hxk. (4.2)

Our desire now is to use the CKF with a linear state-space model and compare
its performance with the KF.

We will simulate the tracking of a target moving in one-dimensional space
using the constant acceleration model (CAM) from Example 1.1 with the state
vector

xk =

pk
rk
ak

 , (4.3)

where pk represents the position, rk represents the velocity, and ak represents
the acceleration of the target. The CAM consists of the system matrix

F =

1 ∆t
1
2∆

2
t

0 1 ∆t

0 0 1

 , (4.4)

and the output matrix
H =

(
1 0 0

)
, (4.5)

48
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Figure 4.1 Comparison of MSE at each time step between the KF and the CKF
with a linear state-space model.

meaning that we only measure the position of the target.
In our case, we consider ∆t = 1. We set the process noise covariance

Q = diag ((0.3, 0.5, 1)⊺) (4.6)

and the measurement noise covariance

R = I2. (4.7)

We set the initial state
x0 =

(
0, 1, 0

)⊺ (4.8)

and the initial covariance

P0 = diag ((9, 4, 1)⊺) . (4.9)

We will perform 100 independent simulation runs. For each run, a true
target state history and the measurements will be simulated for 100 time steps
using the CAM with the set parameters and Gaussian noise. The CKF and
KF will then be used to filter the measurements, i.e., to obtain an estimate of
the true state at each time step k.

We will measure the performance of the filters using the MSE estimate at
each time k

MSEk =
1

N

N∑
i=1

∥x(i)k − x̂
(i)
k ∥2, (4.10)

where N is the number of simulation runs, in our case N = 100.
In Figure 4.1, we can see that the CKF performed with the same MSE as

the KF. Given that the KF is an optimal filter in terms of minimizing the MSE
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if the model is linear with Gaussian noise, the CKF performed optimally as
well. This is in fact an expected result. Since the cubature rule is exact up to
third-degree monomials, it propagates the first two-order moments exactly, if
the model is linear.

On the other hand, the CKF requires more computing resources to achieve
the same result as the KF. Notably, it executes the Cholesky decomposition
twice in each iteration, which might have an additional negative impact on
numerical stability. Moreover, it computes the required vectors and matri-
ces using redundant operations. For instance, when computing the a priori
estimate, the CKF first evaluates the 2n symmetrically distributed cubature
points by propagating the a posteriori estimate through the linear model 2n-
times, and then it takes their mean, instead of propagating the a posteriori
estimate once, as the KF does.

In conclusion, it is generally better to use the KF instead of the CKF when
the state-space system is linear. On the other hand, the KF cannot handle
nonlinear systems at all. Therefore, the CKF provides a more flexible solution
at a potentially higher cost for certain models.

4.2 Example 2: Nonlinear filters comparison
In this example, we will compare the performance of the three nonlinear fil-
tering algorithms presented in this thesis: the CKF, the UKF, and the EKF.
The comparison will be conducted by simulating the tracking of an object with
a constant velocity model (CVM) [2] describing its movement. Although the
CVM is a linear model, the nonlinearity will arise from the measurements being
in the polar coordinates. This may happen, for example, if the measurements
are obtained using a radar. Thus, the measurement equation will be nonlinear
in this scenario.

The CVM keeps the state vector

xk =


p1,k
p2,k
r1,k
r2,k

 , (4.11)

where x1,k and x2,k denote the location of the object in Cartesian coordinates
with v1,k and v2,k denoting the respectful velocities at time k. The CVM uses
the system function

f(xk) = Fxk, (4.12)

where

F =


1 0 ∆t 0
0 1 0 ∆t

0 0 1 0
0 0 0 1

 , (4.13)
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where ∆t is a constant time interval between time steps. Throughout this
example, we consider ∆t = 1. The Jacobian of the system function f is the
constant matrix F , which we will need for the EKF.

The measurement function then transforms the Cartesian coordinates into
polar coordinates, which express the location using a distance and an angle.
That is,

h(xk) =

( √
p21,k + p22,k

atan2(p2,k, p1,k)

)
, (4.14)

where the function atan2(y, x) is an extension of the function arctg
( y
x

)
for

angles in the range of the whole circle. This is an equivalent method for
computing the angle to the Equation 3.5. At the points where this function is
differentiable, the function atan2(y, x) is equal to the function arctg

( y
x

)
, with

the exception of a constant, and thus has an equal derivative. Hence, we obtain
the Jacobian

H(xk) =

 p1,k√
p21,k+p22,k

p2,k√
p21,k+p22,k

0 0

− p2,k
p21,k+p22,k

p1,k
p21,k+p22,k

0 0

 . (4.15)

We set the system noise covariance matrix to

Q = σ2
a


∆3

t
3 0

∆2
t
2 0

0
∆3

t
3 0

∆2
t
2

∆2
t
2 0 ∆t 0

0
∆2

t
2 0 ∆t

 , (4.16)

where
σ2
a = 42. (4.17)

Then we set the measurement noise covariance matrix

R = diag
(
σ2
d, σ

2
φ

)
, (4.18)

for
σ2
d = 22, σ2

φ = 0.12, (4.19)

where σ2
d is the variance of the measured distance and σ2

φ is the variance of
the measured angle. This is why we use the transition to polar coordinates as
the measurement function instead of transforming the coordinates in advance.
If we did the latter, we wouldn’t be able to describe the noise correctly since
the angle noise is more prominent the further the object is from the radar.

We initialize the simulation with

x0 = (0, 0, 1, 1)⊺ , (4.20)
P+
0 = I4, (4.21)
x̂+0 ∼ N

(
x0, P

+
0

)
. (4.22)
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Figure 4.2 Comparison of trajectory estimates with the ground truth and mea-
surements.

We will simulate the ground truth and the measurements using the CVM with
Gaussian noise from the initial state x0. Then we will use the CKF, the UKF,
and the EKF to filter the measurements and compare their errors. We will
initialize the UKF with the established [18] κ value of 3 − n, that is κ = 1.
Recall that for κ = 0, we get the CKF. Therefore, comparing the UKF and the
CKF is equivalent to comparing two different values of the UKF parameter
initialization.

In Figure 4.2, we can see how the filters estimated the trajectory in a single
simulation instance. The trajectories are presented in the Cartesian coordinate
system. It is also visible that the measurements are noisier further from the
center due to the angle noise.

In Figures 4.3 and 4.4, we can see a comparison of the errors, which are
calculated as a distance from the true state at time k. We split the errors
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Figure 4.3 Error of the estimated location over time.
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Figure 4.4 Error of the estimated velocity over time.
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Figure 4.5 MSE of the estimated location over time.

into location and velocity errors due to their different magnitude. If we are
interested in knowing the location only, we might dismiss the velocity error
since it is just the inner state of the filter. However, we might be interested in
knowing the estimate of the velocity as well.

In this particular instance, the CKF and the UKF performed a little better
than the EKF. The CKF provided slightly more accurate estimates than the
UKF. However, this is just a result of a single simulation run. To compare the
filters in a more consistent manner, we perform 100 independent simulation
runs to calculate their MSE estimate.

In Figures 4.5 and 4.6, we can observe the estimated MSE of the location
and velocity estimates over time. In both cases, the results indicate that the
CKF yielded the most favorable results, closely followed by the UKF, which
demonstrated comparable performance, and the EKF, showing slightly inferior
accuracy. However, it is crucial to note that these findings are obtained from
a single scenario. The results might significantly differ in other scenarios, such
as a different model or initial values.

4.3 Example 3: Localization of an unmanned aerial
vehicle

This final example will serve to illustrate the application of cubature Kalman
filtering in a real-world scenario. The objective is to identify the precise lo-
cation of a flying unmanned aerial vehicle (UAV), commonly referred to as a
drone. The UAV is equipped with a GPS receiver that provides measurements
every 100 milliseconds. The CKF will be used to filter the noisy measurements,
i.e., to produce more accurate estimates of the exact location.
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Figure 4.6 MSE of the estimated velocity over time.

In contrast to simulations, real-world scenarios present unique challenges.
The fundamental problem is that we are limited in our knowledge of the dy-
namic system we are observing. That is, we do not possess an exact state-space
model that describes the behavior of the system. In addition, once we select
the model, we do not have access to the noise covariance matrices, so we have
to estimate and tune them. However, it is challenging to tune the parameters
because we do not know the ground truth and, therefore, cannot evaluate the
filtered estimates with MSE.

In our case, we have prior information that the UAV is moving in circular
motions over a small area, a few meters in size. The height of flight is known
and constant. This leads us to use the coordinated turn model (CTM) pre-
sented in Example 1.2. The CTM captures the turn rate of the UAV in its
state. The state is thus represented by the vector

xk =


c1,k
c2,k
r1,k
r2,k
ωk

 , (4.23)

where c1,k and c2,k represent the location coordinates, r1,k and r2,k represent
the velocities in corresponding directions, and ωk represents the turn rate.

The CTM consists of the nonlinear system function

f(xk) =


1 0 sin(∆tωk)

ωk

−1+cos(∆tωk)
ωk

0

0 1 1−cos(∆tωk)
ωk

sin(∆tωk)
ωk

0

0 0 cos(∆tωk) − sin(∆tωk) 0
0 0 sin(∆tωk) cos(∆tωk) 0
0 0 0 0 1

xk, (4.24)
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where ∆t = 0.1 since the time interval between measurements is 100 ms and
we operate in seconds.

The measurement function then becomes

h(xk) =

(
1 0 0 0 0
0 1 0 0 0

)
xk, (4.25)

as the measurements consist only of the GPS coordinates.
▶ Note 4.1. The GPS measurements consist of latitude and longitude in de-
grees. However, for ease of manipulation, we convert these values to coor-
dinates in meters relative to the first measured location using the universal
transverse Mercator projection. Given the limited spatial extent of the flight
area, this transformation can be approximated as predominantly linear. As a
result, the measurement noise, which operates within the latitude and longi-
tude dimensions, will scale proportionally. ◀

An appropriate [2] system noise covariance matrix for the CTM has the
form

Q =



∆3
t
3 σ2

a 0
∆2

t
2 σ2

a 0 0

0
∆3

t
3 σ2

a 0
∆2

t
2 σ2

a 0
∆2

t
2 σ2

a 0 ∆tσ
2
a 0 0

0
∆2

t
2 σ2

a 0 ∆tσa 0
0 0 0 0 ∆2

tσ
2
ω

 , (4.26)

where σ2
a and σ2

ω are parameters to determine. Thus, it is sufficient to specify
two variables to obtain the entire covariance matrix. The σa represents the
standard deviation of the acceleration along a coordinate and σω represents
the standard deviation of the turn rate. It is reasonable to set these values as
high as is necessary to account for the most extreme maneuvers that are likely
to occur [2]. In our example, we expect the UAV to change its velocity by at
most 0.5 m/s per second and its turn rate by at most 0.2 units per second.
Therefore, we set the parameters

σ2
a = 0.52, (4.27)

σ2
ω = 0.22. (4.28)

The measurement noise covariance matrix will have the form

R = σ2
yI2, (4.29)

where σ2
y , being the variance of the measurement along one coordinate, is a

parameter to determine. We assume that the standard deviation σy is 20 cm,
so we set

σ2
y = 0.22. (4.30)
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The remaining task is to set the initial state estimate and covariance. A
common approach is to use the first measurement as the initial estimate. How-
ever, the measurement consists only of the location, therefore we need to de-
termine the initial velocities and the initial turn rate separately. In our case,
we have no prior information about the initial velocities and turn rate, so we
set them to zero. Thus, the initial state estimate will take the form

x̂+0 =


y0,0
y0,1
0
0
0

 , (4.31)

where y0 is the first measurement vector.
▶ Note 4.2. The CTM is not defined for ω = 0. However, it can be shown
that as ω approaches 0, the CTM converges to the constant velocity model [2],
which we can switch to in this particular case. ◀

For the initial covariance estimate, we will use a diagonal matrix with
variances of each variable. Since we obtained the initial location from the
measurement, we can use σ2

y for the initial location variances. For the remain-
ing variables, we will attempt to use a higher value than the actual variance,
as the covariance will be corrected after a few iterations. Thus, we set the
initial covariance

P+
0 = diag

((
σ2
y , σ

2
y , 1, 1, 2

)⊺)
. (4.32)

We can observe the filtered trajectory in Figure 4.7. Since we have no
knowledge of the ground truth, we cannot evaluate the filtering performance.
Without further knowledge, it is not possible to determine whether the esti-
mated trajectory aligns with the measurements to a greater or lesser extent.

The inner state of the filter also enables us to obtain estimates of all the
variables within the UAV’s state along with their covariance. We can see the
estimates of each variable with their 95% confidence intervals in Figures 4.8–
4.12.
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Figure 4.7 Estimated trajectory of the UAV.
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Figure 4.8 The p1-coordinate estimation with 95% confidence interval.

0 20 40 60 80 100 120 140
time, k

−2.0

−1.5

−1.0

−0.5

0.0

0.5

p 2
-c

o
or

d
in

at
e

Figure 4.9 The p2-coordinate estimation with 95% confidence interval.



Example 3: Localization of an unmanned aerial vehicle 60

0 20 40 60 80 100 120 140
time, k

−2

−1

0

1

2

ve
lo

ci
ty

,
r 1

Figure 4.10 The velocity r1 estimation with 95% confidence interval.
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Figure 4.11 The velocity r2 estimation with 95% confidence interval.
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Chapter 5

Conclusion

In this final chapter, we will present a summary of the thesis. Furthermore, we
will propose potential future work on the topic of cubature Kalman filtering.

5.1 Summary
The thesis first introduces the state-space model in Chapter 1, as this model
type is crucial for the state estimation approaches described later. This chapter
also provides an explanation of the differences between linear and nonlinear
state-space models. In order to illustrate their practical use, the CVM and
CTM models are presented.

The Kalman filter, an essential algorithm for state estimation involving
a linear state-space model, is derived in Chapter 2. In addition, this chapter
discusses the properties and weaknesses of the Kalman filter. Subsequently, an
overview of several approaches to Kalman filtering with a nonlinear state-space
model is presented.

In Chapter 3, the cubature Kalman filter, an algorithm for nonlinear state
estimation that relies on the Kalman filter, is derived. For this purpose, a
third-degree cubature rule for numerical integration is constructed. An ex-
planation of all preliminary mathematical principles is presented to make the
derivation comprehensive, supported by appropriate examples. Furthermore,
the properties of the CKF are discussed. The chapter concludes with a com-
parison of the CKF with other nonlinear filtering approaches, the UKF and
the EKF.

Finally, in Chapter 4, the unique features of the CKF are demonstrated
through a number of different examples. The examples also serve as a compar-
ison with other filtering algorithms. It was examined that in a linear case, the
CKF provides exactly the same estimates as the traditional Kalman filter, but
with an additional computational cost. The second example displays a com-
parison of the CKF, the UKF, and the EKF on a nonlinear filtering problem
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involving measurements in the polar coordinate system. The final example
demonstrates the use of the CKF in a real-world scenario using data from an
unmanned aerial vehicle.

5.2 Future work
Future work in cubature Kalman filtering could delve into further compar-
isons with other nonlinear filters. In this thesis, we focused on assessing filters
primarily by their estimation accuracy. There remains a gap to explore how
these filters perform in terms of computational efficiency and numerical sta-
bility. Particularly, the CKF is derived in a way that reduces computational
demands and enables implementation that enhances numerical stability. This
provides an opportunity to examine its performance alongside other filters in
these respects.

While the CKF serves as a versatile state estimation method, future re-
search could explore its application in specialized areas such as target tracking.
Extending the CKF to handle cluttered measurements or to track multiple tar-
gets would be a valuable direction for further investigation.
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