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Abstract

The advancement of autonomous vehicles
(AVs) capabilities necessitates substantial
computational power to process extensive
sensor data and execute complex algo-
rithms in real-time. This thesis explores
the application of Multi-access Edge Com-
puting (MEC) to offload computational
tasks from AVs to MEC servers in a mobile
network, thus enhancing AV capabilities
in terms of computation power, while re-
ducing onboard computational load. The
primary objective of the thesis is to de-
velop and validate an algorithm for offload-
ing decision that considers total (commu-
nication plus computing) latency, com-
munication resources and task computa-
tion requirements. The proposed solution
encompasses a novel MEC architecture
designed for scalability and flexibility of
deployed services, capable of supporting
numerous AVs with diverse computational
requirements. The proposed architecture
includes a dynamic management system of
computational resources to handle fluctu-
ating quality of the communication chan-
nel and load of the MEC server. In the
proposed architecture a Digital Twin (DT)
of AV is created in the MEC to enable
selective computation offloading of AV
processes and providing a synchronized
digital replica capable of optimizing AV
functionalities. This setup ensures that
offloaded tasks operate in real-time con-
ditions identical to the physical AVs. Key
contributions of this thesis include the de-
velopment of a robust task offloading al-
gorithm that effectively manages the task
offloading under varying mobile network
conditions. The algorithm dynamically
decides whether to process tasks locally or
offload it to the MEC server. The offload-
ing decision is based on parameters such
as task deadlines, task size, and communi-
cation channel state. The effectiveness of
the proposed system is validated through
extensive testing on a real AV model of-
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floading the tasks from the AV to the
real MEC server over 5G mobile network,
demonstrating significant improvements
in energy consumption (up to 58 % energy
saved), and the ability to meet real-time
processing deadlines (60 - 90 % increase

in ratio of tasks processed within required
deadline).

Keywords: Multi-access Edge
Computing, Computation Offloading,
Offloading Decision, Real-Time,
Autonomous Vehicles



Abstrakt

Pokrok v oblasti autonomnich vozidel
(AV) vyzaduje znac¢ny vypocetni vykon
pro zpracovani dat ze senzoru a provadéni
slozitych algoritmi v redlném case. Tato
diplomovéa préace zkoumé aplikaci Multi-
access Edge Computing (MEC) pro zpra-
covani vypocetnich tloh z AV na MEC
servery v ramci mobilni sité, ¢imz se zvysi
vypocetni vykon AV a snizi se zatizeni
vypocetnich prostiedka ve vozidle. Hlav-
nim cilem této prace je vyvinout a ovérit
algoritmus pro rozhodovani o presunu vy-
pocti, ktery zohlednuje celkovou (komu-
nika¢ni a vypocetni) latenci, komunika¢ni
zdroje a pozadavky na vypocetni dlohy.
Navrhované feseni zahrnuje novou MEC
architekturu navrzenou pro skalovatelnost
a flexibilitu nasazenych sluzeb, schopnou
podporovat mnozstvi AV s riznymi vy-
pocetnimi pozadavky. Navrhovana archi-
tektura obsahuje dynamicky systém Fizeni
vypocetnich zdrojl, ktery se vyrovnava s
kolisajici kvalitou komunika¢niho kanalu
a zatizenim MEC serveru. V navrhované
architekture je vytvoreno digitalni dvojce
(DT) AV v MEC, ktery umoznuje selek-
tivni pfenos vypocetnich procesi AV a po-
skytuje synchronizovanou digitalni repliku
schopnou optimalizovat funkce AV. Tento
systém zajistuje, ze prenesené tlohy fun-
guji v redlnych podminkach identickych
s fyzickymi AV. Hlavnimi pfinosy této
prace je vyvoj robustniho algoritmu pro
presun tloh. Algoritmus dynamicky roz-
hoduje, zda tilohy zpracovat lokalné nebo
je prenést na MEC server. Rozhodnuti o
prenosu je zalozeno na parametrech, jako
jsou terminy tuloh, velikost tloh a stav
komunikac¢niho kandlu. Efektivita navrho-
vaného systému je ovérena rozsahlym tes-
tovanim na skute¢ném modelu AV, ktery
prenasi tlohy na redlny MEC server pres
5G mobilni sif, coz prokazuje vyznamné
zlepSeni spotieby energie (ispora energie
az 58 % ) a schopnost splnit terminy zpra-
covani v redlném case (60 - 90 % narust

vii

poméru tloh zpracovanych ve stanoveném
terminu).

Klicova slova: Multi-access Edge
Computing, Pfesun Vypocetnich Uloh,
Rozhodovéni o Presunu Uloh, Zpracovan{
v Redlném Case, Autonomni Vozidla
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Chapter 1

Introduction

As mobile devices like smartphones and laptops have evolved, they have
enabled a plethora of new applications. These devices, however, face sig-
nificant limitations due to their battery lifetime and the computing power
required to run complex applications. Traditionally, to overcome these lim-
itations, tasks requiring substantial computing power can be transferred
to a centralized cloud, i.e., large data centers that can handle processing
computation demanding tasks far from the user [I]. This process, known as
"computation offloading," helps to preserve the device’s battery and allows to
run applications beyond the device’s inherent processing capabilities. While
offloading to a centralized cloud can be beneficial, it introduces a challenge
in the form of communication delay. When data is exchanged between device
and the centralized cloud, it is transported over significant distances, hence,
resulting delays are not suitable for real-time applications. For applications
that need instant responses (real-time gaming, hard deadline processes),
these delays render offloading infeasible. This limitation necessitates a so-
lution that can handle complex computations without the associated delay [2].

Multi-Access Edge Computing (MEC) presents a feasible solution to strict
latency requirements, moving away from the centralized model of cloud com-
puting towards a distributed approach. The core concept of MEC involves
bringing computational power closer to the end users by embedding these
resources directly at the network’s edge, such as at gNodeB (gNB). This
proximity reduces latency, making it suitable for applications that demand
quick response times and high computational loads. MEC is particularly
beneficial for supporting a variety of computation-intensive and latency-
sensitive applications on resource-limited mobile devices. By minimizing
the distance that user’s data travel for processing, MEC effectively reduces
both the communication latency and the energy consumption associated
with computing. These advantages are crucial for fulfilling the demanding
requirements of the new era Internet technologies like the Internet of Things
(IoT) and immersive digital experiences. Furthermore, the deployment of
MEC is aimed at merging wireless communication with mobile computing.
This merger has led to innovative designs in computation offloading and
network architecture, which are vital for enabling new services that were
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previously unfeasible due to latency issues. For instance, virtual reality and
complex industrial applications can now benefit from the reduced latency and
increased processing power provided at the edge [3].

The growing popularity of IoT is rapidly increases the number of devices
connected to the internet, such as smart home appliances, health trackers or
entertainment devices [4]. One of the emerging technologies are autonomous
vehicles (AVs). AVs bring enhanced safety, efficiency, and sustainability as
the automotive industry evolves [5]. These AVs use artificial intelligence and
cutting-edge sensors to navigate roadways with limited amount of human
assistance [6]. AVs should be able to handle massive amount of data in
real-time in order to make decisions that are dependable and made right away.
The decentralized nature of MEC allows for the processing of applications,
which require low latency, thus releasing computational resources to localized
critical functions [7]. This ensures that the most crucial decisions, which
require instantaneous processing to maintain safety standards, are handled
locally without delays. Other less critical functionalities can benefit from the
broader computational resources offered by MEC, enhancing the vehicle’s
capabilities without compromising core operational safety. The problematic
nature of processing safety-critical tasks at the edge of the network is de-
scribed in [8]. Considering traveling speed of vehicles even in metropolitan
areas, the AV travels several to dozens of meters before receiving results.
The delay between transmission of input data and reception of processed
offloaded data should be low enough so that the AV has enough time left for
reaction. The delay increases with the number of vehicles in the proximity of a
MEC server which has to distribute the computation resources among the AVs.

Autonomous driving systems require substantial computing power to pro-
cess extensive sensor data. To mitigate this, a hybrid approach using vehicular
cloud computing and edge computing is proposed in [9] to distribute com-
putational tasks among vehicles, roadside infrastructure, and cloud servers,
thereby enhancing response time, reliability, and bandwidth usage. How-
ever, challenges remain in efficiently offloading tasks to edge or cloud while
managing communication bandwidth fluctuations and ensuring timely data
processing, necessitating an advanced method to optimize quality of service
through elastic task offloading. This thesis proposes a solution for effective
task offloading as well as architecture for flexible MEC system capable of
serving large number of AVs.

Progress in simulation technologies enables the possibility to create detailed
digital twin (DT) of most devices, including AVs. DT technology is an inno-
vative solution for AV optimization. Many features of an electric AV can be
computerized to increase its efficiency, performance, and smartness [10]. DT
hosted on a MEC server can be updated in real-time, ensuring that offloaded
applications are run in the same conditions as in the real AV. In this thesis,
a DT of a model AV for experimental purposes is created and all offloaded
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applications that are part of the AV’s operating system are part of this DT
to ensure stable environment that behaves predictably with respect to the AV.

Unlike mobile phones, which are commonly associated with application
offloading, AVs are highly mobile and experience a significant number of
handovers [I1]. Most applications that make predictions rely on a system
model whose state is iteratively updated and corrected; without this, making
continuous and precise predictions would be impossible. Therefore, it is
crucial to maintain the state of the ofloaded application during handovers.
A solution proposed in [12] utilizes the Camino [I3] framework to forward
messages, such as those from Advanced Driver Assistance Systems (ADAS),
over vehicular communication technologies. Another closely related challenge
is service scaling. Prior to a handover, the environment on the next MEC
server should be prepared for the incoming AV. This thesis proposes a solution
for horizontal scaling, which allows a single MEC server to serve multiple AVs.

Application execution framework for MEC-based applications is proposed
n [14]. The proposal requires that every gNB has its own MEC server. The
MEC server collects information about communication and computational
resources. The MEC system proposed in this thesis enables connection of a
single MEC server to multiple gNBs. Thus, the rest of the MEC servers are
able to use 100 % of computational resources for the offloaded applications.
DT-assisted framework is introduced in [I5]. This framework utilizes DT
of the whole network as well as DTs of connected vehicles. Individual DTs
of the vehicles can interact with each other over the internet (inter-twin
communication) for real-time data alignment. The edge layer of the system
contains a centralized controller equipped with DT powered by a deep rein-
forcement learning (DRL) model. The system proposed in this thesis also
utilizes DTs of connected vehicles, however, there is no need for complex
DT of the entire network as we do not use a centralized controller depend-
ing on DRL. This fairly simplifies both design and implementation of the
architecture. Finally, [16] proposes a solution for resource management in
multi-access edge computing networks. This solution considers both cooper-
ative and non-cooperative vehicles. Each MEC server has a DRL powered
controller installed. The proposed controller manages computational, com-
munication and storage resources. Note that all of these works present only
results of numeric simulations. The solution proposed in this thesis is deployed
on real hardware and presented results are based on data from operational AV.

In big cities, traffic density can be extremely high, often resulting in
congested networks that challenge communication resource availability for
AVs [17]. Conversely, in less populated areas, the sparse traffic is usually
outweighed by poor network coverage. These conditions can prevent AVs
from having sufficient resources to offload all tasks they would offload under
optimal conditions. To address this, an algorithm is designed to decide which
tasks should be offloaded and which should be processed locally. As outlined

3
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n [I8], AVs can potentially leverage computational resources from nearby
vehicles through a short-range interface dedicated to vehicle-to-vehicle (V2V)
communications.

Over the recent years, many algorithms for scheduling task offloading have
been proposed. Early ones consider two-level offloading systems [19], which
is not relevant for this thesis because we assume MEC servers with enough
computation power to host virtual environments of AVs without support from
centralized cloud. In contrast, very recent publications, such as [20], have
embraced machine learning, proposing complex solutions that employ deep
learning and Q-agents. However, these are unnecessarily complex for target
scenario of this thesis, which involves AVs with very limited computational
resources that need to offload as many tasks as possible, some with varying
degrees of dynamic priority and strict deadlines. Some of the tasks cannot be
run locally at all (non-safety critical), while others, when executed locally,
should resort to simpler algorithms, resulting in limited precision. Conversely,
many proposed algorithms assume that vehicles have sufficient resources to
run tasks locally [21], or sometimes have idle resources that can be leveraged
through collaborative offloading [7][21].

The offloading decision algorithm requires several parameters to make
informed decisions. Priorities serve as one of the most important param-
eters considered by the algorithm. When faced with limited computation
resources to the point where it is not possible to run all the applications
locally, priorities signal to the algorithm which applications the AV is most
desperate to offload. This becomes increasingly important in situations where
communication resources are scarce, and it is not possible to offload every
process the AV requires.

Another crucial parameter is the deadline of individual tasks. Combined
with the size of the input/output data, state of the communication channel
and availability of communication resources, the algorithm estimates if delay
requirements for the processed task can be met. Leveraging the architecture
of the MEC, the algorithm can be scaled easily. This is achieved by incredibly
low resource consumption, each instance of the algorithm is intended to pro-
cess requests from a single AV. This design imposes virtually no restrictions
on the flow of requests from the AV to the MEC manager. Thus, the requests
can be periodic or asynchronous, and AVs can dynamically switch between
these approaches depending on their requirements.

This thesis makes following contributions to the field of MEC and its
application to AVs. First, it introduces a novel architecture for a flexible and
scalable MEC system'| capable of supporting a large number of AVs with
diverse computational needs. This architecture includes a dynamic manage-

'The code is open-source and accessible from https://gitlab.fel.cvut.cz/
mobile-and-wireless/autonomous-driving
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ment system designed to handle fluctuating network load. Second, the thesis
presents a robust task offloading algorithm designed to prioritize and manage
computational tasks effectively under varying conditions of network congestion
and resource availability. This algorithm is tailored to handle the unique chal-
lenges posed by the real-time processing requirements of AVs. Additionally,
the thesis leverages DT technology to create a virtual replica of AVs, which
simplifies deployment and provides stable environment for offloaded applica-
tions. The proposed solutions are validated through implementation on real
hardware, providing empirical evidence of their effectiveness and feasibility
in practical scenarios. Through experiments, we demonstrate that solution
proposed in this thesis is not only feasible for deployment on a real AV, it in-
creases AV’s performance and is able to operate in adverse network conditions
where full offloading without any management fails. During the development
of the offloading architecture and algorithm, it became clear that quality of
the autonomous driving is not a suitable metric, as similar performance is
observed for local processing and offloading. However, significant difference
is seen in the total delay and consumed energy. Therefore, after consulting
the supervisors of this thesis it was decided to show the energy savings instead.

The remainder of this thesis is organized as follows: Chapter 2| highlights ex-
isting approaches and identifies gaps that this thesis aims to address. Chapter
3| details the proposed MEC architecture, including the design and functionali-
ties of the dynamic management system and the integration of DT technology.
Chapter 4| describes the implementation of proposed architecture. Chapter [5
presents the testing methods used to validate the proposed solutions. Chap-
ter |6l analyzes the experimental results, comparing the performance of the
proposed system with existing methods and discussing the implications of the
findings. Finally, Chapter [7| concludes the thesis with a summary of contri-
butions, potential applications of the research, and suggestions for future work.






Chapter 2
State of the Art

This chapter delves into the state of the art in MEC architectures and
offloading algorithms. We explore the gap between theoretical frameworks
and their practical applications, particularly in AV systems, assessing how
these innovations enhance computational efficiency. Detailed examinations of
both the architectural setups and offloading mechanisms illustrate the ongoing
advancements and challenges in integrating MEC into broader technological
ecosystems.

. 2.1 MEC Architectures

In this section, we explore the cutting-edge advancements in MEC, particu-
larly focusing on frameworks and architectures developed by the European
Telecommunications Standards Institute (ETSI), Intel and open-source initia-
tive OpenAirInterface (OAI).

B 2.1.1 ETSI-MEC Framework

ETSI is one of the European leading authorities standardizing telecommunica-
tion technologies. In [22], a framework is proposed, utilizing a virtualisation
infrastructure on top of which the MEC applications are residing. Figure
shows the high-level architecture of the MEC framework, split into three
main entities - networks, host and system levels. Similar approach is adopted
by this thesis.
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Figure 2.1: Multi-access Edge Computing framework [22].

In Figure [2.2] we see detailed architecture of the framework. The host level
comprises of the MEC host itself, MEC platform manager and MEC platform.

The MEC host is providing computation, storage and network resources
for the MEC applications. The MEC platform is responsible for offering an
environment where the MEC applications can discover, advertise, consume
and offer MEC services [22]. In case of AVs, this functionality can be replaced
by DT as service discovery is handled within the car (or the DT). Thus, for
MEC in context of AVs, MEC platform and MEC platform manager are
redundant. The MEC applications run in a virtual environment such as a
Virtual Machine (VM) or a containerised application, on top of the Virtuali-
sation infrastructure provided be the MEC host [22]. When offloading AVs
applications, there are several options how to virtualize the applications. A
full-scale DT is not the only possibility to move AVs functionalities to a virtual
environment. Containerization method described in [23] proposes a feasible
solution for getting applications to the MEC host, using the virtualisation
infrastructure.

The MEC system level management comprises of two main entities - MEC
orchestrator and Operation Support System (OSS). The MEC orchestator is
responsible for on-boarding of application packages, checking their integrity
and authentication. Another important functionality of the MEC orchestra-
tor is the selection of appropriate MEC hosts for application instantiation.
However, this approach is in favor of stand-alone applications that can be
independently instantiated and terminated. The role of MEC orchestrator
designed for AVs offloading shifts towards service scaling. The MEC or-

8
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chastrator no longer deals with individual applications but with the whole
virtualized AV. The architecture should account for potentially thousands of
users that the MEC framework has to handle. This calls for a distributed
version of the MEC orchestrator. Each instance should handle certain amount
of MEC hosts with main focus on horizontal scaling (i.e., cloning of DT,
application containers or other forms of virtual environments depending on
implementation) and load-balancing. The OSS receives requests via the CFS
portal for instantiation and termination of applications and decides on the
granting of these requests. This entity is also redundant for MEC systems
handling AVs as instantiation/termination of applications is handled entirely
by the distributed MEC orchestrators.

Mx1
CFs '
portal Operations Support System
Device User app Mm8
app LCM proxy Mm1 =+
Mx2

+ MEC orchestrator [

MEC system level

Mm2 Mm3
Other '
MEC |
Mp3 MEC
platform P service
MEC °
T Mp1 Mp1 MEC MEC
} element Ee?(s cycle °
Traffc 11 pys Mms | [ ™o | marmt || mom 3
mec |[ mec [MECT||[ fues || handing o
App || Arp_[| App MEC platform manager g
MEC platform
jMpZ -+ Mm6é NMm4 4+
Other Data plane T nation infrastct
infrastructure
MEC Virtualisation infrastructure + - manager
host MEC host | Mm7

Figure 2.2: Multi-access edge system reference architecture [22].

Aside from ETSI, there are other players developing MEC solutions. Intel’s
Smart Edge Open toolkit [24] is a significant player in the field of MEC
solutions, providing open-source tools tailored for various edge applications,
including private 5G Wide Area Networks (WANSs), Artificial Intelligence (AI)
workloads, access edges, and Secure Access Service Edge (SASE). Despite its
comprehensive nature, integrating this toolkit into the complex systems of
AVs presents substantial challenges, often necessitating extensive customiza-
tion to meet specific AV requirements. The toolkit’s optimization for Intel
hardware, such as Central Processing Units (CPUs), Field Programmable
Gate Arrays (FPGAs), and GPUs, may constrain automotive manufacturers
who prefer diverse or specialized automotive-grade chips, potentially limiting
broader adoption due to hardware dependency. Additionally, the lack of
extensive public documentation on the system’s architecture complicates the
evaluation of its compatibility with existing automotive technologies, possi-
bly affecting vehicle performance and integration [24]. On the other hand,
OpenAirInterface (OAI) focuses on developing a 3GPP-compliant software
stack for the Radio Access Network (RAN) and the Core Network (CN) of
cellular networks, supporting both 4G and 5G technologies on general-purpose

9
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computing platforms. OAI’'s MEC functionalities, such as the Radio Network
Information Service (RNIS), enhance the adaptability of MEC applications
to network conditions and simplify the orchestration, monitoring, and main-
tenance of RAN and CN functions through its Operations and Maintenance
(OAM) project group. This open-source initiative promotes the adoption of
advanced mobile network features and edge computing technologies, making
it suitable for applications like autonomous driving, IoT, and industrial au-
tomation. The Mobile Edge Computing Platform (MEP) of OAI, while still
under development and somewhat unstable for direct deployment, offers a
scalable and maintainable architecture with integration features that align
well with the needs of the automotive industry [25].

22 Offloading Decision Algorithms

Offloading algorithms play a pivotal role in enhancing computational effi-
ciency. These algorithms make decisions on which tasks shall be offloaded
(transferred) from resource-constrained devices to more powerful computa-
tional nodes, such as MEC servers. In this section we will go through state
of the art algorithms, discussing their advantages and problems.

Algorithm proposed in [26] uses combination of multi-agent reinforcement
learning (MRL) and potential game (PG) theory to make the offloading
decision. The design works with a model where some vehicles have idle com-
putational resource and other vehicles can use them for task offloading. This
assumption is ambitious, considering it requires significant cooperation and
compatibility among vehicles. Even in laboratory conditions where achieving
necessary compatibility would be possible, not every task can be offloaded to
other vehicle. The approach works well for stateless applications; however,
stateful applications are unable to function without updating the model the
AV operates with. Therefore, statefull applications should be processed locally
or on a DT which is periodically updated. Implementing this approach for
stateful applications necessitates frequent data exchanges between all AVs,
rendering it impractical.

Another disadvantage is the necessity for offline training. Significant part
of the algorithm is executed on the vehicle. Apart from the fact that this
consumes additional, already scarce, resources of the vehicle, the design relies
on integration of third party business logic into every vehicle that wants to
be part of the offloading process. That is challenging from development point
of view as it is virtually impossible to keep every vehicle up to date with
current version of the software deployed on the network.

A digital twin-assisted algorithm is proposed in [27]. This algorithm aims
to reduce the decision space by avoiding unreasonable decisions with the help
of DT network. Second goal of the algorithm is to reduce overall cost of the
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system by employing a Deep Reninforcement Learning (DRL) algorithm to
train the offloading strategy.

The system model of this algorithm envisions a network of MEC servers
wirelessly connected to vehicles and wired to a high-performance cloud layer
managing these servers. Vehicles share computational resources to relieve
the burden on MEC servers, which host DTs of connected vehicles, inte-
grating vehicle functionalities on the server. However, the detailed DTs, as
described in [27], significantly increase storage and computation demands on
MEC servers, outweighing the benefits of vehicle-to-vehicle offloading. By
using only coarse DTs, saved resources can be used for MEC management,
reducing latency compared to cloud layer management. As illustrated in this
thesis, a coarse DT focusing on software components rather than hardware
and surroundings of the AV, is sufficient and puts less strain on the MEC
server compared to detailed DT. The DT network (DTN), created through
wired connections between MEC servers, contains extensive vehicle and en-
vironmental data, resulting in considerable overhead. The algorithm uses
the DTN to form clusters of vehicles for efficient scheduling, followed by a
deep reinforcement learning (DRL) process that considers economic factors,
complicating optimization by balancing vehicle performance and economic
behavior. This approach imposes high resource demands on MEC servers
and employs complex procedures that could be simplified, as demonstrated
in this thesis.

B 23 Running Offloading Components

Any MEC framework has to utilize some sort of virtual environment where
the offloading components are executed. When offloading various applications
which have different requirements on the system it is often necessary to pro-
vide isolated environments. This can be achieved either by providing multiple
virtual machines (VMs) or by using containers. In [28], performance of VM
is compared to container-based Docker and Podman. Although VM slightly
outperforms both Docker and Podman when running a single container, the
performance drop is significantly in favor of container-based virtualization
when multiple containers are introduced. Difference in performance between
Docker and Podman is very small, letting us choose one of them based on
other factors.

Crucial requirement on container-based virtualization is for it to have
minimal effect on communication performance. Study [29] shows, that
container-based virtualization does not introduce noticeable performance
loss in communication, computing and intelligence, which indicates that con-
tainerization has a promising future in the edge-cloud computing paradigm.
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Chapter 3

System Architecture

This chapter starts with a detailed description of the system model, laying
the foundational framework for the subsequent architectural proposal. It
then delves into the system architecture, dissecting the high-level design
of its individual components to illustrate how they collaboratively function
within the overall system. Finally, we provide a brief introduction to the
software tools employed by the MEC architecture, highlighting their roles
and significance in enhancing system performance.

B 31 System Model

Figure (3.1 depicts the system model utilized in this thesis. We assume N
AVs connected to one of the M gNBs through 5G network. Each gNB has
wired connection to at least one MEC server and each worker node is manged
by exactly one manager node. Each manager node hosts multiple instances
of the offloading algorithm depending on traffic density and the number of
worker nodes managed. We assume that wired connections have negligible
latency, meaning, devices with direct wired connection are in close physical
proximity. In the system model, AVs are independent of each other, they
share no information or resource and there are no V2V connections between
them. Individual AVs have limited computational resources, and therefore
exploit the computation power of MEC servers.

It is assumed that worker nodes have incomparably higher computational
and storage resources than a single AV. Every AV in the network has its DT
hosted by a worker node close enough to neglect delays on wired connections.
This means that individual MEC server may get overwhelmed, but combined
with direct neighbors, they have enough resources to host all AVs that require
S0.
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Figure 3.1: System model diagram.
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(a) : AV viewed from above. (b) : AV viewed from below.

Figure 3.2: Photographs of the AV used for experiments.

B 3.2 Model of the AV

This section describes the architecture of the model AV used for experiments
in this thesis. We begin by showcasing the physical construction of the vehicle,
followed by the description of the software architecture and its comparison to
it’s DT.

In Figure |3.2| we see the hardware components deployed on the model
AV used in the thesis. The main components include Light Detection and
Ranging (LiDAR) for obstacle detection and map creation, camera collecting
images for road sign classification convolutional neural network (CNN) and
Quectel RM500Q-GL 5G modem connecting the vehicle to the network. In
picture we see the powertrain of the AV powered by LiPo battery.
Control logic for the powertrain is implemented on Arduino Uno, separating
it from the main processing unit in case of critical failure.

The main processing unit of the vehicle is Raspberry Pi 4 running the

14



3.2. Model of the AV

Lubuntu 20.04 operating system. The software architecture is implemented
in Robot Operating System (ROS) as shown by Figure [3.3. The architecture
comprises of multiple nodes, communicating via multi-cast. The ROS Master
orchestrates naming and registration of services provided by individual nodes
[30]. The control node serves mostly a diagnostic purpose, monitoring the
state of other nodes with the ability to forcefully start or stop them. Then
there are several nodes directly interacting with hardware components. These
are the LiDAR node, laser scan matcher and the emergency break. The
slam toolbox, position publisher, Rapidly-exploring Random Tree (RRT) and
obstacle detection nodes are for path planning and navigation. Lastly, the
Model Predictive Control (MPC) node optimizes vehicle control strategies in
real-time.

{ Control Node J {Emergency BreakJ { Gateway J { Lidar Node J {Lasers:anMatcherJ ﬂ

F 3 4[ F 3 4[ F 3
( ()
N A Yy N h N
v v v v v v

{ Slam Toolbox J {F’osmon PuD\ISherJ { RRT J {Detect Obstacles J { MPC J { ROS Master J

Figure 3.3: ROS architecture.

Figure [3.4] compares architectures of ROS and its DT, and how they ex-
change information. The dashed line between the gateways signifies that
although there is no direct channel between them, there is still ongoing data
exchange. It is worth noting that several nodes are missing in the DT. There
is no point in creating virtual counterparts of nodes that directly interact
with hardware. Slam toolbox is a software node that is not part of the DT.
The purpose of the slam toolbox is to create and update a map of the AV’s
surroundings based on tha data from the LiDAR. If the slam toolbox would
be integrated into the DT both the AV and the DT would create their version
of the map with different resolution depending on the offloading process.
Therefore, only the AV creates and updates the map and periodically sends
it to the DT.

The gateway node plays the same role on-server and locally. Its purpose
is handling of published topics, message transformation, and mainly connec-
tion to the outside world. The gateway node aggregates all messages and
distributes the to their destinations. In the scenario where a node running
on the MEC server needs information from a node running locally on the
AV, the local gateway node sends the data to the MEC server where the DT
node delegates them to the remote node. This is a key part in the offloading
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Figure 3.4: Digital Twin architecture.

procedure as it makes the communication between worker nodes and AVs
manageable.

The AV implements two algorithm for path planning: RRT [31] and A*
[32]. RRT quickly finds feasible paths by randomly sampling the search space
and incrementally building a tree towards the goal. It excels in complex, dy-
namic environments where obstacles are present. On the other hand, A* is a
heuristic-based algorithm that guarantees the shortest path by systematically
exploring nodes based on cost. After a destination point is selected for the
AV a path is determined by either of the algorithms. As discussed in Chapter
6l, A* is more suitable for local execution due to its short execution time
compared to RRT. Therefore, when path planning cannot be offloaded the
AV uses A* while RRT is used by the MEC server to find the path for the
AV.

Apart for the applications executed in the ROS environment there is an-
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3.3. MEC Server

other key functionality of the AV that is deployed to the proposed MEC
system. It is the image processing pipeline that the AV uses to detect and
classify road signs. The pipeline consists of two CNNs. First, larger net-
work is tasked with finding the location of a road sign in an image. The
second, simpler network then classifies the detected sign (e.g., speed limit,
priority road etc.). Executing the image processing pipeline locally results
in extreme prediction times (over 20 seconds) as the AV is not equipped
with GPU making local execution impossible. This is where MEC server
shows its benefit for the AV. Offloading the image processing pipeline to a
MEC server with GPUs significantly reduces classification time (under 1.5
seconds) enabling the AV to detect road signs in time to adjust its driving style.

. 3.3 MEC Server

The MEC server is designed to host virtual environments of AVs it is currently
serving. Each AV should have its own isolated environment to prevent data
leakage with others, which, apart for serious privacy and security disturbance,
could corrupt the applications of all affected AVs and significantly disrupt
the results of stateful applications for an indeterminate period. Complete
isolation between individual environments also enhances security, as autho-
rization grants access to a single environment, protecting it from attacks or
harm from other environments.

Many of the applications running on the AV do not communicate with each
other or relate to one another in any way. For example, an infotainment appli-
cation and an algorithm controlling the cooling system need not exchange any
information; they are independent of each other and could be implemented
in different programming languages, running on different operating systems.
This in fact calls for further containerization at the application level, which
is introduced later in this thesis. By doing so, we can not only categorize the
applications by use case - control, infotainment, passenger apps, ADAS, etc.
— but also provide each application with a dedicated environment for which
it was developed and tested. Containerizing the applications enables us to
transfer them easily while ensuring seamless integration. It allows further
development of these applications from virtually anywhere without needing
to access AV hardware directly.

Every worker MEC server must be able to serve multiple users connected
to its gNB to minize travel distance of the data as much as possible. This
necessitates the ability to scale services horizontally, another benefit of con-
tainerization scheme proposed in this work. In some cases, a worker might
become overwhelmed. To address this, a load-balancing mechanism is intro-
duced to prevent potential problems stemming from drained resources. The
load-balancer should select the nearest worker with available resources to
minimize data travel distance.
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Every instance of this “virtual counterpart” to the AV should have a gate-
way application serving as an interface to the real AV. A communication
gateway is designed to handle connections with AV and a manager MEC
server (see 3.4). Although there would be no technical problem with direct
communication between AV and manager MEC server, it is much more prac-
tical to manage everything from a single application. This approach prevents
any synchronization issues; integration and diagnostics are much easier, and
the external communication scheme is simplified. An equally important part
is the distribution of input data to the offload application containers and
the collection and forwarding of the output data back to the AV. A com-
munication architecture addressing this is described in the detail in Chapter [4.

Aside from ROS nodes, the model AV needs to offload an image processing
pipeline consisting of two CNNs for road sign detection and classification.
Execution time of the pipeline on the Raspberry Pi 4 takes over 20 sec-
onds (given it is the only running process) which makes it unusable for real
life traffic, and therefore is not part of the vehicle’s architecture. On a
MEC server equipped with dedicated graphics processing unit (GPU) the pre-
diction takes less then 1.5 seconds making it a viable solution for this problem.

B 34 Manager MEC Server

Another crucial component of the MEC system is the manager MEC server.
This component orchestrates the offloading process and manages scaling of
worker servers. The primary task of the manager MEC server proposed by
this thesis is to run the offloading decision algorithm (see |4.3)), a core piece of
software designed for efficient use of communication resources in the network,
while taking into account the requirements of the AVs. This algorithm is
computationally light, enabling the manager to scale effectively for dense
traffic conditions. Such scalability is fundamental to the system’s ability to
handle potentially hundreds or even thousands of AVs simultaneously, any
reasonably powerful server should be able to run thousands of instances of
the algorithm.

For the offloading decision to be made, the manager MEC server contin-
uously collects and analyzes data from the Radio Access Network (RAN)
of the gNB serving the processed AV. This RAN data is used to estimate
the Uplink (UL) and Downlink (DL) bitrates between the AV and gNB,
which are required inputs for the proposed offloading decision algorithm. The
manager MEC server also plays a key role in service scaling. It monitors
the performance and capacity of each worker MEC server and adjusts their
workloads as necessary, spawning additional DTs for newly connected AVs if
needed. If a particular server is under high load, the manager can delegate
new AV to other nearby, less burdened server to ensure that service latency
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does not dramatically increase due to travel distance. This dynamic scaling
capability ensures that the system maintains high levels of efficiency and
responsiveness, even under varying and unpredictable operational conditions.

Communication between the manager MEC server and the worker MEC
servers is critically important. The manager must efficiently distribute of-
floading decisions and updates to each AV. It also needs to handle incoming
offloading requests and RAN information. The offloading requests are tailored
to contain information about task deadlines, size of input/output data of
the tasks required to be transmitted and task priorities. The offloading
requests and offloading decisions are transmitted through the worker gateway
interface. Whether the same applies to handling RAN information depends
on implementation, nevertheless the source and destination points remain the
same.

One of the core features of the manager MEC server is it’s ability to scale
horizontally depending on the number of AVs it is serving. With connection
of new AV additional replica of a container executing the offloading decision
process is spawned. This approach ensures that each AV has it’s own indepen-
dent scheduler. The lightweight nature of the container allows large number
of replicas so that single manager MEC server is able to serve thousands of
vehicles before it is required to involve additional server.

. 3.5 Software Tools Overview

This section delves into the essential software tools that make AV systems run
smoothly, from deploying them in containers to processing data in real-time
and using advanced communication protocols. Among these tools, Docker
Tools stand out as a key player, making it easier for developers to manage
multiple container applications. Docker Swarm also plays a significant role
by efficiently scaling and organizing distributed environments, taking AV de-
ployment to a new level of effectiveness and scalability. Additionally, Apache
Kafka is highlighted as the platform for handling real-time data streams, en-
suring seamless information exchange crucial for AV decision-making. Lastly,
the integration of 5G communication marks a significant advancement, pro-
viding AV systems with unmatched bandwidth, low latency, and reliability.

B 3.5.1 Docker Tools

Docker-Compose is a tool for defining and running multi-container Docker
applications. With Compose, a YAML file is used to configure application ser-
vices, networks, and volumes. This approach simplifies the deployment, scal-
ing, and operational tasks of container-based applications. Docker-Compose
primarily targets development, testing, and staging environments, offering a
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straightforward way to manage complex applications as a single unit [33].

Docker-Compose comes with several features that make it particularly
useful for managing multi-container setups:

Service Definition: Allows defining and running multi-container Docker
applications.

Isolation: Each service runs in its container, ensuring isolation and
reducing conflicts.

Scalability: Services can be easily scaled up or down based on require-
ments.

Ease of Configuration: Uses a simple YAML file for configuration,
making it easy to define and share configurations.

Stemming from Docker-Compose’s simplicity and ease of use in managing
containers on a single server for a single user, Docker Swarm extends these ca-
pabilities to cater to the complexities of multi-user, multi-server systems. By
harnessing Docker Swarm’s scalability and streamlined management, we can
seamlessly transition from a single-user, single-server setup to a distributed
environment [34].

In Docker Swarm, several key concepts facilitate the management and
orchestration of containerized applications across multiple nodes:

Service: Defines the tasks to be executed, including the container image,
ports, and replicas. Services ensure that the desired state of a container-
ized application is maintained within the Swarm cluster.

Task: The smallest unit in Swarm, representing a single instance of a
service. Tasks are scheduled and executed on nodes within the cluster
based on resource availability and constraints defined by the user.

Node: A physical or virtual machine within the Swarm cluster that
runs Docker Engine and participates in the orchestration. Nodes can
be categorized as manager nodes or worker nodes, each with distinct
responsibilities in the cluster.

Manager Node: Handles cluster management tasks such as scheduling,
orchestration, and maintaining cluster state. Manager nodes are respon-
sible for distributing tasks among worker nodes and ensuring the overall
health and availability of the Swarm cluster.
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8 Worker Node: Executes tasks assigned by the manager nodes. Worker
nodes provide the computational resources necessary to run containerized
applications within the Swarm cluster, scaling horizontally to accommo-
date increased workload demands.

B Node Management

Node management in Docker Swarm involves adding, removing, promoting,
and demoting nodes within the cluster. This ensures scalability, fault tolerance,
and efficient resource utilization. In context of this thesis, a Docker node is
a physical server at the edge of the network. Adding nodes to the Swarm
cluster increases its capacity and allows for better distribution of workload
across available resources. Nodes can be dynamically added or removed to
accommodate changing application requirements or infrastructure conditions.
Promoting nodes to manager status increases the fault tolerance and resilience
of the Swarm cluster by distributing management responsibilities across
multiple nodes. Manager nodes collaborate to maintain consensus and ensure
the consistency of cluster state. Demoting nodes from manager status reduces
the administrative overhead and resource requirements associated with cluster
management. Demoted nodes continue to participate in the execution of
tasks as worker nodes while relinquishing control over cluster management
operations.

B Swarm Overview

To ensure isolation and security, every node deploys new set of services
for each AV. These so called replicas are completely isolated, preventing
mishandling of AV’s data. From the AV’s point of view the interaction is
identical to that of single Docker-Compose deployment. After the connection
is terminated, the node removes excess replicas freeing computation resources
for other services.

® Offloading Manager: The Offloading Manager serves as the orches-
trator of tasks within the Docker Swarm cluster. It runs the offloading
decision algorithm and prompts individual AVs to offload tasks based
on several factors such as channel quality. By intelligently distributing
services to the most suitable nodes, the Offloading Manager enhances
resource utilization and improves overall system performance.

8 Docker Nodes: Docker Nodes form the backbone of the Swarm cluster
and execute tasks assigned by the manager nodes. These nodes can
either be assigned manager (not to confuse with offloading manager) or
worker role, each contributing to the overall computational capacity and
resilience of the cluster.
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Manager nodes collaborate to maintain consensus and manage cluster
state, while worker nodes focus on executing tasks and hosting con-
tainerized applications. The distributed nature of Docker Nodes enables
horizontal scalability and fault tolerance, allowing the Swarm cluster
to seamlessly adapt to changing workload demands and infrastructure
conditions.

® Docker Containers: Docker Containers encapsulate applications and
their dependencies, providing a consistent and portable environment
for execution across different nodes within the Swarm cluster. Contain-
ers offer lightweight isolation, efficient resource utilization, and rapid
deployment.

® Overlay Network: The Overlay Network in Docker Swarm facilitates
seamless communication and connectivity between containers deployed
across different nodes within the cluster. By abstracting network details
and providing a virtualized network layer, the Overlay Network enables
containers to communicate with each other regardless of their physical
location or underlying network infrastructure. This allows for the creation
of distributed applications that span multiple nodes, while maintaining
simplicity and flexibility in network configuration.

The utilization of Docker in this thesis offers several benefits:

® Simplified Management: Managing a multi-container architecture
becomes significantly easier with Docker-Compose.

® Consistency: Docker-Compose ensures consistent environments across
development, testing, and production.

® Isolation and Security: Containers are isolated from each other,
reducing the risk of conflicts and enhancing security.

B Scalability: Easy scaling of services to meet increased demand or
processing requirements.

B 3.5.2 Apache Kafka

Apache Kafka is an open-source stream-processing software platform devel-
oped by the Apache Software Foundation, written in Scala and Java. Kafka
functions as a distributed streaming platform that can publish, subscribe to,
store, and process streams of records in real time. It is designed to handle
high volumes of data, offering high throughput, built-in partitioning, replica-
tion, and inherent fault-tolerance, making it an ideal solution for large-scale
message processing applications [35].

Kafka’s architecture is uniquely suited for handling real-time data feeds
due to its robust set of features:
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® Scalability: Easily scales horizontally, accommodating more data and
higher throughput without incurring downtime.

8 Durability and Reliability: Ensures data is not lost and can withstand
node failures.

8 Performance: Maintains high performance even with very large volumes
of data.

® Real-Time Processing: Capable of handling real-time data feeds with
low latency.

The primary function of Apache Kafka is to build real-time streaming
data pipelines and applications that adapt to the data streams. It is widely
used for various purposes like tracking service calls, monitoring IoT devices,
real-time analytics, and more. In the context of AVs, Kafka can serve as
a powerful tool to handle the continuous stream of data generated by the
vehicles. Capabilities of Apache Kafka are discussed in [36]. In this thesis
Apache Kafka is utilized as a communication broker between the Docker
containers on the server.

Overall, the choice of Apache Kafka is motivated by these factors:

8 High Throughput and Scalability: Kafka’s ability to handle high
volumes of data and scale as needed is crucial for managing the large
amounts of data transmitted between the vehicle and server.

8 Fault Tolerance: Its distributed nature and fault tolerance ensure that
the communication system is robust and can handle potential failures
without data loss.

8 Real-Time Processing: Kafka’s capability for real-time data pro-
cessing is essential for the immediate and synchronous communication
requirements of autonomous vehicles.

Apache Kafka uses a concept called topics. Topics in Kafka are categories
or feeds to which records are stored and published. They act as the channels
through which data flows, allowing producers to send messages to specific
topics, and consumers to subscribe and read from them. Each topic is split
into partitions for scalability and fault tolerance. Brokers, on the other
hand, are Kafka servers that store and manage the data for the topics. Each
broker handles a portion of the partitions, ensuring high availability and
load balancing across the Kafka cluster. Together, topics and brokers enable
Kafka to efficiently handle large volumes of real-time data.

ZooKeeper [37] plays a crucial role in Apache Kafka by managing and
coordinating the Kafka brokers. It keeps track of all the brokers in the cluster
and handles leader election for partition leaders among brokers. Additionally,
ZooKeeper stores configuration information for topics, quotas, and access
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control lists (ACLs) and tracks the state of topics, partitions, and offsets.
Overall, ZooKeeper ensures the reliability and consistency of the Kafka cluster.

B 3.5.3 5G Communication Setup

The advent of 5G technology offers transformative potential for AV systems,
providing the high bandwidth, low latency, and reliable communication neces-
sary for their operation. This section details the setup for 5G communication
between the MEC server and the AV, utilizing the N310 Universal Software
Radio Peripheral (USRP) to act as a front end for running the OAI 5G RAN
and 5G core network.

The 5G communication testbed is designed to closely emulate the real-world
conditions that AVs will experience. The setup comprises the following key
components:

® N310 USRP and OAI 5G Platform: The N310 USRP serves as the
cornerstone of our testbed, configured together with the OAI 5G core
network. This setup enables the simulation of a 5G network environment,
providing a flexible and powerful platform for developing and testing 5G
technologies tailored to the needs of autonomous driving.

B Quectel RM500Q-GL Modem: Quectel RM500Q-GL is a 5G module
optimized specially for IoT/eMBB applications. Adopting the 3GPP
Release 15 technology, it supports both 5G NSA and SA modes. Its
advanced features include support for ultra-fast data transfer speeds,
low latency, and enhanced reliability, making it ideal for applications
requiring high-bandwidth data transmission, such as industrial loT, auto-
motive telematics, and mobile broadband. Additionally, the RM500Q-GL
modem is designed with robust security features to safeguard data trans-
mission, ensuring privacy and integrity across connected devices and
networks. The RM500Q-GL modem is mounted on the AV and is config-
ured as a dongle, connecting the AV to the 5G network.
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Chapter 4

Implementation of the System Architecture

In this chapter, we discuss the practical implementation of the MEC server ar-
chitecture. We will explore the DT of the AV system, including the integration
of ROS nodes and the deployment of the image processing pipeline for road
sign detection in a container. This chapter also covers the implementation
of the communication schemes that ensure seamless interaction between the
AV and the MEC server. Through detailed description of the system setup,
and the challenges encountered during implementation, we aim to provide a
comprehensive view of how theoretical design is transformed into a functional
system that significantly enhances AV’s performance.

B 4.1 Digital Twin of the AV

To virtualize the AV’s functionalities, ROS nodes (as described in are
deployed within a single Docker container. This setup allows for scalable
deployment of multiple AV functionalities across different MEC nodes. Each
ROS node within the MEC infrastructure mirrors the capabilities of its real-
world counterpart but operates under the computational capabilities of the
edge server. By including the entire ROS node system into one Docker image
we ensure that the nodes operate in the same software environment as is on

the AV.

The primary challenge in implementing ROS nodes in a virtualized envi-
ronment is maintaining real-time synchronization between the vehicle and
the MEC server. During offloading, the nodes activated on the server are
deactivated on the AV and vice versa to preserve energy. This is illustrated
in Figure [4.1, where MPC and Detect Obstacles is offloaded. It is essential
that the ROS container receives its messages complete and in correct order
to ensure that the offloaded applications work with uncorrupted and relevant
data. This is guaranteed by using Apache Kafka topics for inter-container
communication, which preserve the chronological order of messages and ensure
their completeness.
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Figure 4.1: Active and inactive ROS nodes during offloading.

Detect Obstacles

The ROS Control node acts as the central command center within the MEC
server’s ROS architecture. It is designed to manage the operation of other
ROS nodes by issuing start, stop, and restart commands based on AV’s opera-
tional requirements. This centralized control helps with monitoring individual
nodes for testing purposes. By issuing direct Transmission Control Protocol
(TCP) connection between the real and the virtual Control node (as shown
in we maintain control over the AV even in case the Gateway container
crashes. The Gateway container is otherwise a signle point of connection
between the AV and the MEC server. We are able to bypass this connection
by opening a socket directly between the Control nodes. It is important
to note that this introduces a significant vulnerability into the system’s se-
curity. Therefore it is critical to remove this link after the testing phase is over.

Route planning is a fundamental component in AV operations, requiring
precise map visualization to enable users to select destination points. RVIZ 2
[38], the visualization tool built into ROS serves precisely this purpose as it
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allows users to interact with the map and select points which the AV should
achieve. RVIZ 2 collects and visualizes real-time data from the AV. Users
can therefore see real-time position of the AV, path planned by the AV that
leads to the selected destination and real-time LiDAR data showing obstacles
dynamically (dis)appearing from the view.

The DT is periodically synchronized with its physical counterpart. Updated
map and current position is sent from the real AV to the DT so that tasks
that use this information can be later offloaded without the need to transmit
the map, which is typically the largest object transferred to the MEC server,
making the offloading of these tasks faster. However, the synchronization
should not block the offloading of tasks. Therefore, the proposed offloading
decision algorithm is able to postpone the synchronization should it block
any tasks with higher priority than that of the synchronization process. The
map is updated roughly once every 45 seconds, the frequency of the position
updates is typically 2 Hz, but the size of the position message is quite small.
Thus, the synchronization process causes little overhead.

. 4.2 Communication scheme

This section provides detailed description of implemented communication
scheme between the AV, MEC server and the manager MEC server (external
communication) as well as the communication between containers hosted on
the MEC server (internal communication). The distinction between internal
and external communication is shown by Figure |4.2| to provide more clarity.
Effective communication design is crucial for reliable and efficient operation
of the MEC system. Different strategies are employed for external communi-
cation with AVs and internal communication among the components of the
MEC infrastructure.

Bl 4.2.1 External Communication

For external communication, the MEC system uses TCP (Transmission Con-
trol Protocol). TCP is chosen for its reliability of delivering packets in the
exact order they were sent, which is crucial for maintaining the order of
communication between AVs and the MEC server. TCP’s error-checking
features and its ability to adjust the rate of data transmission based on
network conditions ensure that data transfer between the AV and the MEC
server remains consistent, even over varying mobile network conditions.

The connection between the AV and the MEC server is established over
a mobile network, which is assumed to provide the necessary coverage and
bandwidth to accommodate AV’s data traffic. The gateway container within
the MEC server acts as the primary interface between the external and in-
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Figure 4.2: Internal and external communication between MEC components.

ternal communication, directing incoming data from AV to the appropriate
containers or the MEC manager and vice versa. The gateway container
mediates communication between the AV and the internal components of the
MEC server. It ensures that offloading data are properly routed either to
the containers or to the MEC manager for scheduling and management of
tasks. This for a more organized and manageable communication flow, which
is essential for maintaining system performance and responsiveness.

During the testing phase, the MEC system architecture allows for the
opening of a secondary TCP channel that bypasses the Gateway container
and directly connects the AV’s Control node to the Control node of its DT.
Figure [4.3] shows detail of the communication scheme with focus on this
connection. In testing stages it is sometimes necessary to activate or kill
processes on the AV. The over-the-air (OTA) diagnostics channel enables this
as it sends commands directly to the AV’s Control node. This channel is
intended strictly for OTA diagnostics and testing purposes, providing devel-
opers with direct access to the AV without disturbing ongoing processes on
the MEC server. This direct connection can be instrumental in performing
real-time diagnostics and in-depth system testing, facilitating a more efficient
testing of newly deployed features. It is important to note that while the
secondary TCP channel is valuable for testing, the final product is designed
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to exclusively use the main TCP channel through the Gateway container,
routing all the data through a controlled and secure gateway, minimizing
potential vulnerabilities.

P

\

Container 1 DT Control Node

DT

Container 2

rOffloading Data—— OTA Diagnostics
Y Y
Gateway Node Control Node

A /

Figure 4.3: OTA diagnostics channel bypassing the Gateway container.

B 4.2.2 Internal Communication

Internal communication strategies for vehicle-related services often look to the
state of the art in vehicle communication systems for guidance. In automotive
applications, the Scalable service-Oriented MiddlewarE over IP (SOME/IP)
protocol is commonly used for enabling communication between in-vehicle
services. While SOME/IP is well-suited for internal vehicle communications
due to its service discovery and event handling capabilities, it is out of scope of
this thesis to implement said protocol to the proposed MEC system. Instead,
Apache Kafka - a streaming protocol described earlier in this thesis - is used.
It introduces communication flow similar to that of SOME/IP but is easier
to integrate into the MEC system.

The communication between different components — namely, the manager

MEC server, gateway and application containers — must be reliable and
efficient in handling high volumes of data.
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#® Data Streaming for Messaging: Streaming is the continuous flow of
data that is transmitted in real-time between systems, applications, or
devices. It is used to send, receive, and process data in a steady, uninter-
rupted stream, allowing for real-time analysis, action, and interaction.
A suitable approach for the realm of AVs where large amount of data
is processed and exchanged between applications. For communication
between the Gateway container and other containers, the data streaming
approach is adopted. Streaming is facilitated through topics in a pub-
lish /subscribe model, which efficiently handles the dynamic distribution
of messages based on the current operational context and the subscribing
components’ needs.

# TCP for Structured Communications For interactions transferring
smaller amounts of data in more structured fashion, such as those between
workers and the manager MEC server, TCP is utilized. TCP ensures
that messages are delivered reliably and in order, which is crucial for
control signals and task orchestration commands that require guaranteed
delivery.

The combination of TCP and data streaming protocols accommodates the
diverse needs of the MEC system. While TCP provides a robust and reliable
channel for critical control and management communications, the use of data
streaming for messaging between the gateway and application containers
allows the system to maintain high throughput and flexibility. This approach
ensures that the system can handle varying data loads. The communication
between ROS nodes is essential for coordinating various tasks and exchanging
data. Typically, ROS nodes communicate via multi-cast, enabling efficient
information exchange within the AV’s onboard network. However, when
integrating the AV with the MEC server, a structured communication archi-
tecture needs to be implemented to facilitate seamless interaction between
the vehicle and the AV environment.

Allocation of communication resources is handled entirely by the mobile
network, the offloading decision algorithm only makes the ofloading decisions
and reservation of communication resources. Every MEC manager has access
to real-time RAN information of gNBs connected to the managed worker
MEC servers. The AVs are sending aperiodic offloading requests containing
information about tasks they wish to offload to the worker nodes. The tasks
are assigned priority based on several factors such as AVs ability to process
the task locally before deadline or elapsed time since last execution. These
requests are then forwarded for processing to corresponding manager node
where the offloading decision is made. As it is assumed that the tasks are
independent, they can be processed independently.

Implementation of the proposed communication architecture is shown in
Figure [4.4. The Gateway node in the AV, establishes a TCP connection

with the Gateway container in the Docker nodes. This Gateway node serves
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as the intermediary for collecting and transmitting offloading data to the
Docker node as well as distributing data among other ROS nodes. Upon
receiving offloading decision, the Gateway node forwards input data to the
Docker nodes Gateway container. The input data are parsed by the Gateway
container and distributed via Kafka topics to corresponding containers. The
Kafka topics are hosted by a broker server image. The internal communication
of the Docker node is supervised by ZooKeeper container. If the input data
are intended for the ROS container, they are forwarded to the Gateway node
residing inside the ROS container. Then the operation proceeds in the same
fashion as onboard the AV.

When the offloadrd data are processed, the communication flow is reversed.
Data originating from the server-side ROS nodes follow the multi-cast commu-
nication paradigm, reaching the ROS container’s Gateway node. Subsequently,
this data is transmitted to the Gateway container in the Docker nodes via
Kafka topics. The Gateway container then forwards the data to the AV’s
ROS Gateway node, ensuring synchronized communication between the AV
and its DT.
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Figure 4.4: Tmplemented communication scheme.
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When dealing with Docker Swarm (described in 3.5.1)), used for horizontal
scaling of the containers on the MEC server allowing to accommodate multiple
AVs, integration of Apache Kafka is not as straightforward as in other cases.
It is unnecessary to spawn additional replicas of the Kafka container along
with replicas of other containers as one instance of Apache Kafka can handle
large amounts of topics. However, it is essential for the replicas of ROS, CNN
and Gateway containers to use unique topics otherwise data from one AV
would get distributed to every replica. To prevent this the InitKafka container
is introduced. Each time this container is replicated it requests a Universally
Unique Identifier (UUID) from the MEC manager. The InitKafka container
then constructs the names of individual topics using the UUID and sends
them to the newly spawned containers. This way, every AV is guaranteed
unique Kafka topics preventing data leakage between DTs.

B a3 Offloading Decision Algorithm

When deciding which task to offload and which task to process locally, several
factors have to be considered. The main goal is to offload as many tasks
possible w.r.t their priority.

The algorithm begins by receiving an offloading request containing a list of
tasks from the AV. The request also contains information about task deadlines,
size of data to be transmitted if the task is offloaded and the priority of the
task. Tasks are assigned one of the ten priority levels (0 - highest, 9 - lowest),
depending on the AV’s necessity to offload them. Multiple tasks are allowed
to have the same priority, in such case the algorithm favors tasks with earlier
deadlines.

The tasks are sorted into priority groups (P, n € (0,9)). Starting with
the highest priority group (FP), a reference deadline is determined:

tref — min t;‘ieadline7 (41)
1€Py
where tdeadline j5 the deadline of task 7. As the AV transmits the offloading
data of all offloaded tasks at the same time, this approach ensures that
offloading lower priority tasks with later deadlines does not cause higher
priority tasks to miss their deadlines. Total delay of task i is estimated as

ul dl ,

gpoad — % + 8% + 1000 fflf,U

where B" [B] is the number of bytes to be transmitted from the AV to the
MEC server, BY [B] represents the number of bytes to be transmitted from
the MEC server to the AV, B; [B] is the size of task i, U [kbps] and D
[kbps] are the respective data rates for uplink and downlink and fCFV [Hz]
is the frequency of the MEC server’s CPU. The term f(?—gu is multiplied by

[ms], (4.2)
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1000 for conversion from seconds to milliseconds. If the total delay exceeds
the reference deadline, the task is processed locally; otherwise, the task is
offloaded.

The input data for all offloaded tasks are transmitted at the same time,
therefore, every time the algorithm decides to offload a task, it is accounted
for calculation of next task delay. The offloading decision for each task is
specified by «a.

local
o = 0, loca (4.3)
1, offload

The optimal offloading strategy consists of the optimal offloading decisions
for requested tasks

A*=Jaf, (4.4)

where [ is the set of tasks in the offloading request. Finding the optimal
offloading strategy leads to a constrained optimization problem defined as
follows:

A* = argmax Z i
acA icl

s, offoad < yref g g =1 (4.5)

> aif; < OV

icl

We are trying to process the maximum number of tasks on the MEC server,
however, the MEC server should not be overloaded by the computational
strain from offloaded tasks (f; represents computational resources occupied
by task i) and the offloaded tasks should meet their deadline (924 is the
total delay of the offloaded task). The heuristic value v is introduced to up
the value of tasks with higher priority. If two or more tasks have the same
priority, the task with earlier deadline is assigned more value. The decision
space A = {0, 1} represents possible locations for tasks processing: 0 - local,
1 - MEC server.

The formulated problem is solved by the proposed algorithm illustrated by
the flow chart in Figure [4.5] After all tasks are processed, the constructed
decision is transmitted to the Gateway container from which it is forwarded
to the AV.
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Figure 4.5: Flow chart of the offloading algorithm.
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The offloading request sent from the AV is not the only input to the of-
floading decision algorithm. Uplink and downlink data rates are required
to estimate the transmission delay. For this reason we introduce the bitrate
monitor. This process collects RAN information from FlexRIC, described in
[39]. To exchange information between two parallel processes - the bitrate
monitor constantly collecting data and the offloading algorithm in need to
asynchronously access them, the Inter-Process Communication (IPC) is used.
Through the use of the mutual exclusion (mutex) [40] we ensure that only
one process is accessing the shared data at a time. This guarantees integrity
of the shared data and prevents runtime errors.

The overall time complexity of the offloading decision algorithm is given by
sorting the tasks by priority and is equal to O(nlogn). It is important to note
that n is almost negligible compared to related algorithms, described in this
thesis, which process tasks from all connected AVs, aggregating large number
of tasks. This proposed algorithm requires little to none computational and
storage resources enabling almost indefinite scaling and processing of all the
AVs in parallel, making up for the O(nlogn) time complexity.
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Chapter 5
Testing of the Deployed MEC Server

The testing process is structured to ensure a comprehensive evaluation of
the communication link between the MEC server, MEC manager and AVs,
alongside the verification of the integrated system as a whole. This chapter
details both the static and dynamic testing phases, aiming to validate each
component’s functionality and the overall system’s performance under con-
trolled and real-world conditions. The static testing stage involves validating
the integration of individual components while the AV is stationary. The
dynamic testing validates correct operation of the AV and the MEC system
in realistic conditions.

B 5.1 Static Testing

In this section, we explore the testing of integration with the model AV.
This phase is critical in verifying the integrity and inter-functionality of the
comprehensive system architecture, involving both hardware components and
software systems. We aim to ensure that the interactions between the AV and
the server adheres to expected behaviors in a controlled environment, which
is pivotal before transitioning to more dynamic and unpredictable real-world
conditions.

The initial phase of static testing is conducted on real hardware while the

AV remains stationary and involves testing of individual components from
Figure 4.4,

1. The internal communication within the Docker Node is tested to verify
communication between application containers using Kafka topics.

® This step is essential to verify that each container can publish and
subscribe to the necessary topics without any data loss or corruption.

2. The communication between the Offloading Manager and the Gateway
Container is verified.
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5. Testing of the Deployed MEC Server

® This involves ensuring that the connection is successfully established
and messages are correctly identified and forwarded.

3. The distribution of Kafka topic UUIDs from the Offloading Manager to
the containers is tested.

® This is to confirm that unique topics are used by replicated contain-
ers, which is crucial for maintaining the integrity and flow of data
within the system.

The internal communication within the Docker Node is tested to verify
communication between application containers using Kafka topics. This
step is essential to verify that each container can publish and subscribe to
the necessary topics without any data loss or corruption. Next, the com-
munication between the Offloading Manager and the Gateway Container is
verified. This involves ensuring that connection is successfully established
and messages are correctly identified and forwarded. Following this, we test
the distribution of Kafka topic UUIDs from the Offloading Manager to the
containers to confirm that unique topics are used by replicated containers.
This is crucial for maintaining the integrity and flow of data within the system.

The communication link between the AV and the Gateway container is
another critical aspect that needs thorough testing. In this phase, we ensure
that data sent from the AV is correctly received by the Gateway container
and that responses are accurately sent back to the AV. This step verifies
the reliability and stability of the communication link, which is vital for the
overall functioning of the system. Additionally, the communication between
RVIZ 2, the ROS Container and the AV is verified to ensure that the visual-
ization tool is able to display data and send checkpoints to the AV. Lastly, the
communication link between FlexRIC and the Bitrate Monitor is tested to
ensure that bitrate data is accurately collected, transmitted, and transferred
to the Offloading Algorithm.

After verifying the individual components, we proceed to test the integrity
of the deployed system. The first step in system integration testing is to verify
that the offloading data sent from the AV reaches the intended containers
within the MEC server. This involves conducting end-to-end testing to ensure
data integrity, correct routing, and proper handling by the Gateway container.
We also verify that the data processed by the containers is correctly sent
back to the AV, ensuring a complete data flow. Following this, we test the
offloading requests to ensure that requests sent by the AV are correctly for-
warded to and received by the Offloading Manager. The Offloading Manager
processes these requests and sends the correct offloading decisions back to
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the AV. This step ensures that the offloading mechanism works seamlessly,
maintaining the integrity and efficiency of the system.

This comprehensive testing process ensures that all components and their
interactions are thoroughly validated in a controlled environment. By doing
so, we provide a robust foundation for subsequent dynamic testing phases,
ensuring that the system performs as expected before deployment in more
dynamic and unpredictable real-world conditions.

B 52 Dynamic Testing with the model AV

Dynamic testing represents the phase where the system is evaluated under con-
ditions that closely mimic real-world operations. Before deploying the model
AV on a track, we utilize ROS bags, which are records of previous routes taken
by the AV, to play back the recorded data to reproduce the exact conditions
from past runs. These ROS bags are instrumental in verifying the system’s
functionality without the inherent risks of real-world testing. By replaying
these recorded routes, we can observe the system’s behavior and identify
any serious errors in a controlled environment, ensuring that the AV does
not encounter any unforeseen issues that could result in a crash or malfunction.

Once the system behavior is verified through various scenarios using ROS
bags, we proceed to on-track testing. This stage involves the manual input
of a destination point (goal) in RVIZ 2, which initiates the release of the
AV, and verification that the AV reaches its goal. During this phase, we
closely monitor the states of the onboard ROS nodes through the Control
Node deployed in the DT. This monitoring is crucial to ensure that all nodes
are functioning correctly and to quickly identify and address any issues that
arise. The interaction between the AV and the MEC server is observed in
real-time to confirm that the ofloading processes and communication links
are working as intended.

Logs are collected from the AV, the Docker Node, and the Offloading Man-
ager throughout the testing process. These logs are vital for post-processing
and evaluation, providing detailed insights into the system’s performance,
any errors encountered, and the efficiency of the offloading processes. By
analyzing these logs, we can assess the overall functionality of the system and
make necessary adjustments to improve performance and reliability.

Once the system’s overall functionality is validated through dynamic test-
ing, we are ready to move on to the experimental stage. This stage involves
more extensive and varied testing scenarios to further evaluate the system’s
capabilities and robustness. The successful completion of dynamic testing en-
sures that the system is ready for real-world deployment, providing confidence
in its ability to handle the complexities and challenges of actual operation.
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Chapter 6

Experiments

This chapter presents a series of experiments designed to evaluate the perfor-
mance and effectiveness of the proposed solution. This thesis proposes a MEC
system architecture with an offloading decision algorithm at its core. By
deploying the solution on real hardware we can best evaluate the performance
of the proposed system. The experiments focus on various critical aspects
such as the impact of data rate, ofloading decision time, execution time
comparison, deadline adherence, and energy consumption. Through these
experiments, we aim to provide a comprehensive analysis of the system’s
capabilities and limitations, thereby demonstrating its potential for real-world
applications.

. 6.1 Video Demonstration

As part of the experimental validation of the proposed MEC architecture,
a video demonstration was created to visually present the key aspects and
outcomes of the project. This video provides an overview of the system in
action, demonstrating the real-time offloading of computational tasks from
the AV to the MEC server.

Figure 6.1: Video demonstration accessible from YouTube[47].
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The model AV is build and its control algorithms are developed in related
thesis. Another part of the AV, the image processing pipeline for road sign
detection consisting of two CNNs, is also developed as separate thesis. This
work extends mentioned theses with the proposed MEC architecture. Follow-
ing experiments are performed on the showcased AV.

B 6.2 Experiment Scenario

Experiments are repeated multiple times to provide enough data for relevant
conclusion. We want the conditions to change as little as possible across
these experiments to give us unbiased idea of the overall performance. This is
impossible to achieve with moving AV as we cannot guarantee that the RRT
path planner finds the same path every time, the AV does not steer perfectly
every time due to slightest of interference to the motors preventing it from
going through same points on the map in each experiments. Therefore, after
demonstrating that the AV is able to operate and reach its destination during
dynamic testing described in Chapter |5, we use recorded ROS bags for the
experiments. The ROS bags provide a way to repeat the experiments as close
as possible. The experiments are conducted under different mobile network
conditions: with a high quality communication channel (MCS 27) and a low
quality communication channel (MCS 5). This is to put into perspective how
quality of communication channel affects the offloading process.

We use following hardware and radio setup:

® AV control unit: Raspberry Pi 4 Model B with quad-core ARM Cortex-
A72 processor, 1.5 GHz, 8 GB RAM, 9.69 GFLOPS [41]

® MEC server: Intel NUC11PHKi7CAA2 with i7-1165G7 CPU at 4.7
GHz, 16 GB RAM, 20.4 GFLOPS [42] and NVIDIA RTX 2060 GPU

® 5G mobile network: Frequency band n78 (3.5 GHz), subcarrier spac-
ing 30 kHz, 106 resource blocks (RBs)

During the experiments, we log the following key metrics:

® Algorithm execution time: The time taken by the offloading decision
algorithm to process an offloading request and generate a decision.

® Round-trip time (RTT) of the offloading request: The total time
elapsed from when the AV starts transmitting the offloading request to
when it receives the offloading decision. This includes the transmission
time from the AV to the MEC server, the algorithm execution time, and
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the transmission time from the MEC server back to the AV.

B Task execution time: The time it takes for the task to process its
input data locally on AV put into perspective to the time it takes on the
MEC server.

® Ability of tasks to meet their deadlines: It is important for hard-
deadline tasks to meet their deadlines. We compare local execution, full
offloading and the proposal in their ability to provide computational
resources for the tasks to meet their deadlines.

8 Energy consumptions: We monitor the eneregy consumption of the
AV’s control unit (Raspberry Pi 4) to compare the energy efficiency of
local execution and the proposed solution.

To capture these metrics, timestamps are recorded at various stages of the
offloading process:

8 When the AV begins transmitting the offloading request.

When the MEC server receives the request.

When the offloading decision algorithm completes processing the request
and generates the offloading decision.

When the AV receives the offloading decision.

When the AV starts transmitting the offloading data.

When the AV receives processed data from offloaded tasks.

. 6.3 Data Rate Distribution

In this section, we analyze the data rates experienced by the AV during its
operation by utilizing the data saved by the Bitrate Monitor. The primary
objective of this section is to compare the data rates in channels of different
quality that are used for the experiments. The measured data rates are shown
in Figure 6.2in the form of Cumulative Distribution Function (CDF) [43].
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Figure 6.2: CDF of uplink and downlink data rates for different quality channels.

B 64 Offloading Decision Time

In this section, we examine the performance of the offloading decision al-
gorithm by analyzing the delay it introduces. Specifically, we focus on the
time taken by the algorithm to calculate the offloading decision and the
time the AV has to wait for offloading decision (RTT). These metrics are
crucial for understanding the overall latency introduced by the offloading
decision mechanism and ensuring that it does not compromise the real-time
performance requirements of the AV.

Figure [6.3| shows the CDF of the offloading algorithm’s execution time dur-
ing the experiments. The delay caused by the offloading algorithm processing
requested tasks is generally under 100 us, demonstrating that the computa-
tional overhead is low. This is crucial for ensuring that the offloading decision
does not introduce significant delays that could affect the AV’s performance.
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Figure 6.3: Execution time of the offloading decision algorithm.
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The Figure [6.4] representing the CDF of total time the AV has to wait for
the offloading decision, provides insights into the total latency introduced
by the offloading decision process. It includes both the transmission delays
and the offloading algorithm’s execution time. We see that the majority of
the delay is caused by the transmission delay, and the offloading algorithm’s
execution time is negligible in comparison.
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Figure 6.4: Round-trip time from offloading request to offloading decision.

We see that for high quality channel the worst RTT is around 40 ms. As
expected, when the channel quality is low the RTT increases. This might
cause issues for task with low deadlines as significant part of that deadline
might be spent waiting for the offloading decision. The proposed offloading
decision algorithm therefore estimates the RT'T and considers it in the decision
making process.

. 6.5 Comparison of Execution Times

This section aims to compare the execution times of various tasks when
executed locally on the AV versus remotely on the MEC server. By using the
same algorithm and parameters for each task, we ensure that the comparisons
are relevant and highlight the performance gains achieved through offloading.
This comparison demonstrates the enhanced computational capabilities of
the MEC server, which allows for the execution of more complex algorithms
and longer prediction horizons, thereby improving the overall functionality of
the AV.

To conduct this experiment, we selected a set of representative tasks that
are offloaded. These tasks include:

® Model Predictive Control (MPC) [44]: Used for optimizing the
vehicle’s control strategies. MPC uses a dynamic model of the AV to
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predict its future behavior over a finite time horizon. For steering and
speed control, MPC optimizes the AV’s trajectory by adjusting the
steering angle and throttle/brake inputs to minimize a cost function,
which includes terms for tracking a desired path and maintaining stability.

® Pure Pursuit [45]: A simple yet effective path tracking method used
for steering control. The algorithm works by selecting a target point on
the desired path a certain look-ahead distance ahead of the AV’s current
position. The vehicle then adjusts its steering angle to follow a circular
path that intersects this target point, effectively "pursuing" the point.

® Path Planning: Utilizing algorithms such as RRT and A*. RRT is a
path planning algorithm that incrementally builds a tree of possible paths
from the starting position to the goal. It explores the space by randomly
sampling points and extending the tree towards these points. A* is a
graph-based path planning algorithm used for finding the shortest path
from a start to a goal position. It combines the benefits of Dijkstra’s algo-
rithm [46] and a heuristic approach to efficiently explore the search space.

® Obstacle Detection: A computationally intensive task that requires
real-time processing.

® Road Sign Detection & Classification: An image processing pipeline
that locates and classifies road signs can be hugely optimized if executed
on a GPU. The pipeline utilizes two CNNs, one for location of the road
sign in an image, the other for classification of the located road sign.

Each task is executed locally on the AV and on the MEC server. The exe-
cution times are averaged over a range of scenarios to capture the variability
in performance. The same set of input parameters was used in both local
and remote executions to ensure a fair comparison.
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Figure 6.5: Comparison of task execution times (log scale).

The results of the experiment are presented in Figure The Figure
provides a clear visual representation of the performance differences, high-
lighting the efficiency gains achieved through offloading. To mitigate the big
differences of values, the graph is presented with log scaled Y-axis.

CNN RRT MPC Obstacle A* Pure Pursuit
Relative Gain 16.12 198.7 15.4 3.65 2.25 1.19

Table 6.1: Relative gains due to task offloading.

Table [6.1] shows relative gains by executing task on the MEC server. The
most significant difference is for the RRT algorithm used for path planning,
which is more complex and computationally intensive than the A* algorithm.
The local execution on the AV is limited to using the less accurate A* algo-
rithm due to its computational constraints. The remote execution on the
MEC server improves the accuracy and reliability of the path planning process.

Another significant improvement is experienced by the MPC. The enhanced
computational power of the MEC server allows for the use of deeper MPC
models, providing longer prediction horizons. This results in more accurate
and effective control strategies, which significantly improve the performance
of the AV.

The relative gain for obstacle detection is not as significant as for some of
the other tasks, however, it has to be calculated very frequently. Offloading
this task to the MEC server releases computational resource for other tasks.

Although the relative gain from offloading the image processing pipeline is
only the second largest, in absolute numbers, it is by far the most time con-
suming task to execute on AV (over 25 seconds). As the AV is not equipped
with GPU, the road sign classification takes too long for the pipeline to be
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deployed in real environment. However, when executed on the MEC server
the execution time drops enough to enable road sign detection in real traffic
conditions.

. 6.6 Tasks Processed within Deadline

The primary objective of this section is to analyze the ability of the tasks to
meet their deadline during the AV’s operation. This analysis helps to under-
stand the effectiveness of the offloading strategy and the system’s ability to
meet real-time requirements. We evaluate the ratio of met/missed deadlines
for following scenarios: local execution, full offloading (all tasks are offloaded
without any decision making logic) and the proposal with high/low quality
channel quality.
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Figure 6.6: Deadlines missed due to insufficient computational resources.

The Figure depicts how often the individual tasks are able to meet their
deadline. For full local execution we see that the image processing pipeline
takes up all of the computational resources so that except for path planner
no tasks are able to be processed within their deadline. The path planner
is the first task to be executed, and aside from local execution where RRT
often misses its deadline, it is always able to meet the deadline as it is the
only task executed.

For the full offloading the results are slightly better. However, there is
no logic to control if the communication resource available are sufficient to
transfer all of the data needed. This leads to long transmission times which
cause tasks to miss their deadlines. Tasks like the image processing pipeline
require large amount of data to be transmitted blocking the rest of the tasks.
This is addressed by the proposed solution. When there are insufficient
communication resources (as is the case for MCS 5), only some of the tasks
are offloaded. Still a large amount of deadlines is not achieved, because of
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the low data rates preventing image data to be transmitted along the higher
priority tasks. Therefore, the image processing pipeline is always executed
locally and only offloaded tasks are able to meet their deadline.

Finally, the best results are achieved by the proposal experiencing high
channel quality (MCS 27). We see that the AV is able to process images by
offloading them to the MEC server only in this scenario, and consequently,
majority of the deadlines is met. This setup yields the best performance of
the AV.
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Figure 6.7: Comparison of Offloading Efficiency for Different Task Types.

To help understand why channel quality affects the overall performance of
the AV, Figure illustrates how the offloading decision algorithm responds
to offloading requests under different channel conditions. We see that majority
of the missed deadlines is caused by the inability to offload them in time due
to low quality of the communication channel resulting in tasks being executed
locally. Conversely, while the quality of the communication channel is high it
is possible to offload more of the tasks resulting in higher success in achieving
deadlines.

B 67 Energy Consumption

This section compares the energy consumption of the AV’s control unit when
tasks are processed locally versus when task offloading is enabled. By analyz-
ing the energy consumption in different operational modes, we can determine
the efficiency gains achieved through offloading and its impact on the AV’s
overall energy consumption. This analysis is critical for understanding how
offloading affects the AV’s operational range and battery life.

To conduct this experiment, we measure the energy consumption of the
control unit under three different conditions:
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# Idle Energy Consumption: The baseline energy consumption when
the AV is idle and not processing any tasks.

#8 Full Local Energy Consumption: The energy consumption when
tasks are processed locally on the AV’s control unit, using a ROS bag to
ensure consistent conditions.

® Offloading Energy Consumption: The energy consumption when
tasks are offloaded to the MEC server, using the same ROS bag to
maintain consistent conditions.

For each condition, the energy consumption is recorded over the same
period, ensuring that the measurements accurately reflect the energy usage
in each operational mode.
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Figure 6.8: Energy consumption in different operational modes.

The results of the experiment are presented in Figure comparing the
mean energy consumption for three different device modes: Idle, Local, and
Proposal. The data reveals significant differences in energy consumption
across these modes. Zoomed variances for the three modes are shown above
corresponding bars.

The idle energy consumption represents the baseline energy consumption
when the device is not performing any computational tasks. When tasks
are processed locally on the AV’s control unit, the mean energy consump-
tion increases dramatically to 474 J. This is due to the device handling all
computational tasks locally, which requires substantial energy resources. By
comparing this with the idle energy consumption, we can quantify the energy
overhead associated with local task processing. Offloading tasks to the MEC
server reduces the computational load on the AV’s control unit, the mean
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energy consumption is reduced to 279 J (58.86 %).

The variance for all of the modes is minimal, indicating that the energy
consumption is relatively stable, thus predictable. The depicted variance of
proposal is low enough to conclude that the energy consumption is stable
even when offloading is used.
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Chapter 7

Conclusion

In this thesis, we have developed a flexible and scalable MEC architecture
designed to support a large number of AVs with diverse computational needs.
The architecture includes a dynamic management system capable of handling
fluctuating mobile network demand, ensuring efficient task offloading. The
integration of DT provides a stable environment for the offloaded applications.
A robust task offloading algorithm is introduced, prioritizing and managing
computational tasks effectively under varying conditions of mobile network
congestion and resource availability. This algorithm improves the performance
of AVs with scarce computational resource by optimizing the use of MEC
servers.

The implemented MEC system is thoroughly tested to ensure correct oper-
ation in various scenarios. Initially, static tests are performed to validate the
integration of individual components. After successful integration and testing
of internal and external communication in the system we have continued with
dynamic testing. These tests put the AV in operation, validating that it can
navigate through tracks with obstacles present.

The proposed solutions is validated through implementation on real hard-
ware. Experiments demonstrated the feasibility of the system in real-world
scenarios, showing substantial improvements in computational efficiency, en-
ergy consumption, and the ability of tasks to meet real-time processing
deadlines. In the conducted experiments, we have measured up to 58 %
in energy savings and 60 - 90 % increase in ratio of tasks processed within
required deadline.

The system is tested under various mobile network conditions, including
low and high quality communication channels. The results indicated that the
proposed offloading algorithm effectively managed offloading process even in
adverse conditions.

While this research has made improvements in the application of MEC
for AVs, there is room for future work. Ensuring the security of data and
communications between AVs and MEC servers is critical. Future research
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should investigate robust security measures to protect against potential vul-
nerabilities and attacks.

Exploring the use of multi-exit CNNs, which allow early exits at interme-
diate layers of the network, could provide a balance between computational
efficiency and accuracy. This approach could significantly reduce the road
sign classification time while keeping the option to leverage the MEC server.

Future work should also explore the possibility of expanding the DT. There
is potential to expand the functionality of the DT and much can be gained
by introducing interactions between DTs of individual AVs. Information
exchange between DTs could bring new features to the AVs improving their
performance and efficiency.

Finally, future research should focus on handling handovers, which pose

significant challenge for the concept of offloading as the AVs require large
amount of data to be transferred between MEC servers.

o4



Appendix A
Bibliography

Sunyaev A. (2020). Cloud Computing. In: Internet Computing. Springer,
Cham. https://doi.org/10.1007/978-3-030-34957-8__7

Mach P. and Becvar Z. "Mobile Edge Computing: A Survey on
Architecture and Computation Offloading," IFEE Communications
Surveys € Tutorials, vol. 19, no. 3, pp. 1628-1656, 2017, doi:
10.1109/COMST.2017.2682318.

Mao Y., You C., Zhang J., Huang K. and Letaief K. B., "A Survey on
Mobile Edge Computing: The Communication Perspective," in IEEE
Communications Surveys € Tutorials, vol. 19, no. 4, pp. 2322-2358,
Fourthquarter 2017, doi: 10.1109/COMST.2017.2745201.

Powell C., Desiniotis C., Dezfouli B. The fog development kit: A platform
for the development and management of fog systems. IEEE Internet
Things J. 2020, 7, 3198-3213

Ahangar M.N.,; Ahmed, Q.Z., Khan F.A., Hafeez M. A Survey of Au-
tonomous Vehicles: Enabling Communication Technologies and Chal-
lenges. Sensors 2021, 21, 706. https://doi.org/10.3390/s21030706

Vargas J., Alsweiss S., Toker, O., Razdan R., Santos J. An Overview
of Autonomous Vehicles Sensors and Their Vulnerability to Weather
Conditions. Sensors 2021, 21, 5397. https://doi.org/10.3390/s21165397

Bute M. S., Fan P.; Liu G., Abbas F., and Ding Z., "A Collaborative
Task Offloading Scheme in Vehicular Edge Computing," in IEEE 93rd
Vehicular Technology Conference (VTC2021-Spring), 2021, pp. 1-5, doi:
10.1109/VTC2021-Spring51267.2021.9448975.

Li M., Gao J., Zhao L. and Shen X., "Adaptive Computing Schedul-
ing for Edge-Assisted Autonomous Driving," in IEEE Transactions on
Vehicular Technology, vol. 70, no. 6, pp. 5318-5331, June 2021, doi:
10.1109/TVT.2021.3062653.

Cui M., Zhong S., Li B., Chen X. and Huang K., "Offloading Au-
tonomous Driving Services via Edge Computing," in IEEFE Internet

55



A. Bibliography

[10]

[11]

[12]

[13]

[14]

[15]

[19]

of Things Journal, vol. 7, no. 10, pp. 10535-10547, Oct. 2020, doi:
10.1109/J10T.2020.3001218.

Ali W.A., Fanti M.P., Roccotelli M., Ranieri L., "A Review of Digital
Twin Technology for Electric and Autonomous Vehicles". Appl. Sci. 2023,
13, 5871. https://doi.org/10.3390/app13105871

Ndashimye E., Sarkar N. and Ray S., "A network selection method
for handover in vehicle-to-infrastructure communications in multi-tier
networks," Wireless Networks. 26. 10.1007/s11276-018-1817-x.

Verschoor T., Charpentier V., Slamnik-Krijestorac N. and Marquez-
Barja J., "The testing framework for Vehicular Edge Computing and
Communications on the Smart Highway," 2023 IEEE 20th Consumer
Communications € Networking Conference (CCNC), Las Vegas, NV,
USA, 2023, pp. 1147-1150, doi: 10.1109/CCNC51644.2023.10060332.

Naudts D., Maglogiannis V., Hadiwardoyo S. et al. "Vehicular Com-
munication Management Framework: A Flexible Hybrid Connectiv-
ity Platform for CCAM Services," in Future Internet, 2021, 13. 81.
10.3390/£i113030081.

Wu L., Zhang R., Li Q. et al. "A mobile edge computing-based applica-
tions execution framework for Internet of Vehicles," in Front. Comput.
Sci. 16, 165506 (2022). https://doi.org/10.1007 /s11704-021-0425-6

Jeremiah S. R., Yang L. T. Park J. H., '"Digital twin-
assisted resource allocation framework based on edge collabora-
tion for vehicular edge computing," in Future Generation Com-
puter Systems, Volume 150, 2024, Pages 243-254, ISSN 0167-739X,
https://doi.org/10.1016/j.future.2023.09.001

Peng H. and Shen X., "Deep Reinforcement Learning Based Resource
Management for Multi-Access Edge Computing in Vehicular Networks,"
in IEEE Transactions on Network Science and Engineering, vol. 7, no.
4, pp. 2416-2428, 1 Oct.-Dec. 2020, doi: 10.1109/TNSE.2020.2978856

Paranjothi A., Khan M. S., Zeadally S., "A survey on congestion detection
and control in connected vehicles," in Ad Hoc Networks, Volume 108, 2020,
102277, ISSN 1570-8705, https://doi.org/10.1016/j.adhoc.2020.102277.

Bréhon—Grataloup L., Kacimi R., Beylot A-L., “Mobile edge
computing for V2X architectures and applications: A survey”,
2022 Computer Networks, Volume 206, 108797, ISSN 1389-1286,
https://doi.org/10.1016/j.comnet.2022.108797.

Wu H., Sun Y. and Wolter K., "Energy-Efficient Decision Making for Mo-
bile Cloud Offloading," in IEEE Transactions on Cloud Computing, vol.
8, no. 2, pp. 570-584, 1 April-June 2020, doi: 10.1109/TCC.2018.2789446

56



[20]

[23]

[27]

28]

A. Bibliography

Zhang J., Wu Y., Min G. and Li K., "Neural Network-Based Game
Theory for Scalable Offloading in Vehicular Edge Computing: A Transfer
Learning Approach," in IEEE Transactions on Intelligent Transportation
Systems, doi: 10.1109/TITS.2023.3348074

Cui T., Hu Y., Shen B., Chen Q. Task Offloading Based on Lyapunov
Optimization for MEC-Assisted Vehicular Platooning Networks. Sensors
2019, 19, 4974. https://doi.org/10.3390/s19224974

“ETSI GS MEC 003 V3.1.1, “Mobile Edge Computing (MEC); Frame-
work and Reference Architecture”,” ETSI, 2022. [Online]. Available:
https://www.etsi.org/ deliver/etsi gs/MEC/001 099/003/03.01.01 60/gs
MEC003v030101p.pdf

Betz T., Li W., Pan F., Kaljavesi G., Zuepke A., Bastoni A., Caccamo M.,
Knoll A. and Betz J. (2024). A containerized microservice architecture for
a ROS 2 autonomous driving software: an End-to-End latency evaluation.
arXiv (Cornell University). https://doi.org/10.48550/arxiv.2404.12683

"Intel Smart Edge Open," (2023). [Release-Notes]. Available:
https://smart-edge-open.github.io/release-notes/ (accessed May 4, 2024)

"OAI-MEP," (2023). [Source Code]. Available:
https://gitlab.eurecom.fr/oai/orchestration/oai-mec/oai-mep (ac-
cessed May 4, 2024)

Wang S., Song X., Xu H., Song T., Zhang G., Yang Y., "Joint of-
floading decision and resource allocation in vehicular edge computing
networks", in Digital Communications and Networks, 2023, ISSN 2352-
8648, https://doi.org/10.1016/j.dcan.2023.03.006.

Zhao L. et al., "A Digital Twin-Assisted Intelligent Partial Offloading
Approach for Vehicular Edge Computing," in IEEE Journal on Selected
Areas in Communications, vol. 41, no. 11, pp. 3386-3400, Nov. 2023, doi:
10.1109/JSAC.2023.3310062.

Dordevi¢ B., Timcéenko V., Lazi¢ M. and Davidovi¢ N., "Performance
comparison of Docker and Podman container-based virtualization," 2022
21st International Symposium INFOTEH-JAHORINA (INFOTEH), East
Sarajevo, Bosnia and Herzegovina, 2022, pp. 1-6, doi: 10.1109/IN-
FOTEHH3737.2022.9751277.

Liu Y., Lan D., Pang Z., Karlsson M. and Gong S., "Performance
Evaluation of Containerization in Edge-Cloud Computing Stacks for
Industrial Applications: A Client Perspective," in IEEE Open Journal
of the Industrial Electronics Society, vol. 2, pp. 153-168, 2021, doi:
10.1109/0JIES.2021.3055901.

“ROS Master,” (2018). ros.org, http://wiki.ros.org/Master (accessed
May 5, 2024).

o7



A. Bibliography

[31]

32]

[33]

[34]

[42]

[43]

LaValle S., "Rapidly-exploring random trees: A new tool for path plan-
ning." in Research Report 9811, 1998.

Hart P. E., Nilsson N. J., Raphael B., "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths". in IEEE Trans-
actions on Systems Science and Cybernetics, 4 (2): 100-7, 1968
doi:10.1109/TSSC.1968.300136.

“Docker compose Overview,” (2024). Docker Documentation,
https://docs.docker.com/compose/ (accessed May 5, 2024).

“Swarm  mode overview,” (2024). Docker Documentation,
https://docs.docker.com/engine/swarm/ (accessed May 5, 2024).

“Documentation,” (2023). Apache Kafka,
https:/ /kafka.apache.org/documentation/#introduction (accessed
May 5, 2024).

Raptis T. P. and Passarella A., "A Survey on Networked Data Streaming
With Apache Kafka," in IEEE Access, vol. 11, pp. 85333-85350, 2023,
doi: 10.1109/ACCESS.2023.3303810.

Hunt P., Konar M., Junqueira F. P., and Reed B, "ZooKeeper: Wait-
Free Coordination for Internet-Scale Systems. in Proceedings of the 2010
USENIX Conference on USENIX Annual Technical Conference, Boston,
MA, USA, 2010, USENIXATC’10, USENIX Association, 11

Maghfiroh H., Santoso H. P., "Navigation of Self-Balancing Robot using
Gazebo and RVIZ," in Journal of Robotics and Control (JRC), 2021

Sep;2(5).

Silva M. et al., "O-RAN and RIC Compliant Solutions for Next Genera-
tion Networks," IEEE INFOCOM 2023 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), Hoboken, NJ, USA,
2023, pp. 1-7, doi: 10.1109/INFOCOMWKSHPS57453.2023.10225994.

"Mutual Exclusion Locks", (1999). Marshall D,
https://users.cs.cf.ac.uk/Dave.Marshall /C /node31.html#SECTION00311
0000000000000000 (accessed May 19, 2024)

"GFLOPS," (2024). VMW Research Group,
https://web.eece.maine.edu/vweaver /group/green_ machines.html
(accessed May 21, 2024)

"Intel Core i7 1165GT" (2024). NANOREVIEW .net
https://nanoreview.net/en/cpu/intel-core-i7-1165g7 (accessed May 21,
2024)

Deisenroth M. P., Faisal A. A., Ong C. S., "Mathematics for Ma-
chine Learning" in Cambridge University Press, 2020, p. 181, ISBN
9781108455145.

o8



A. Bibliography

[44] Schwenzer, M., Ay, M., Bergs, T. et al. Review on model predictive
control: an engineering perspective. Int J Adv Manuf Technol 117,
1327-1349 (2021). https://doi.org/10.1007/s00170-021-07682-3

[45] Samuel M., Mohamed H., Maziah B. M., "A review of some pure-pursuit
based path tracking techniques for control of autonomous vehicle." in
International Journal of Computer Applications 135, 2016, no. 1, pp.
35-38.

[46] Dijkstra E. W., "A note on problems in connection with graphs[J]", in
Numer Math, no. 1, pp. 269-271, 1959.

[47] "Autonomous Driving with Offloading to MEC - Phase II," (2024). 6Gmo-
bile research lab https://www.youtube.com/watch?v=aPKcAR9Qli4
(accessed May 23, 2024).

99



	Introduction
	State of the Art
	MEC Architectures
	ETSI-MEC Framework

	Offloading Decision Algorithms
	Running Offloading Components

	System Architecture
	System Model
	Model of the AV
	MEC Server
	Manager MEC Server
	Software Tools Overview
	Docker Tools
	Apache Kafka
	5G Communication Setup


	Implementation of the System Architecture
	Digital Twin of the AV
	Communication scheme
	External Communication
	Internal Communication

	Offloading Decision Algorithm

	Testing of the Deployed MEC Server
	Static Testing
	Dynamic Testing with the model AV

	Experiments
	Video Demonstration
	Experiment Scenario
	Data Rate Distribution
	Offloading Decision Time
	Comparison of Execution Times
	Tasks Processed within Deadline
	Energy Consumption

	Conclusion
	Bibliography

