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Abstract
This thesis presents a method of seg-
menting electron microscope images of in
vitro Liver Sinusoidal Endothelial Cells
(LSECs). The segmented objects are
LSEC fenestrations, which cover the cells’
bodies. Segmentation masks of LSEC fen-
estrations are commonly used in research
on the influences on fenestration prop-
erties. Neural networks combined with
classical image processing techniques are
used in the solution of this task. In this
thesis, 14 images were used for training,
and 22 images were used for evaluation.
The image modality is Scanning electron
microscopy (SEM), and the individual im-
age sizes are 6 144 × 4 608 pixels, which
corresponds to 57 × 43 µm. The proposed
method was compared to a semiautomatic
method, which is widely used for LSEC
segmentation. The performance of these
two methods was compared using masks,
which we consider to be the ground truth.
A pixel-based evaluation was conducted
by computing the Dice score metric. The
mean Dice score of the 22 test masks is
0.92 ± 0.06 for the semiautomatic and
0.94 ± 0.02 for the automatic method.
Statistical evaluation of the segmented
fenestrations was also performed. The
ground truth fenestration properties were
compared to those found automatically
and semiautomatically by computing the
correlation of the main fenestration prop-
erties in each image. The advantages and
disadvantages of both methods are dis-
cussed.

Keywords: binary image segmentation,
scanning electron microscopy, liver
sinusoidal endothelial cells

Supervisor: Ing. Karel Fliegel, Ph.D.

Abstrakt
Tato práce představuje metodu segmen-
tace snímků in vitro jaterních sinusoidál-
ních endoteliálních buněk (LSECs) poříze-
ných elektronovým mikroskopem. Segmen-
tované objekty jsou fenestrace, které po-
krývají LSEC buňky. Segmentační masky
fenestrací LSEC buněk se běžně používají
ke zkoumání vlivů na vlastnosti fenestrací.
Při řešení této úlohy byly použity neuro-
nové sítě v kombinaci s klasickými me-
todami zpracování obrazu. V této práci
bylo použito 14 snímků pro trénování a
22 snímků pro vyhodnocení. Obrazová
modalita je skenovací elektronová mikro-
skopie (SEM) a jednotlivé snímky mají
velikost 6 144 × 4 608 pixelů, což odpo-
vídá 57 × 43 µm. Navržená metoda byla
porovnána s poloautomatickou metodou,
která se běžně používá pro segmentaci
LSEC buněk. Srovnání těchto dvou me-
tod bylo provedeno pomocí masek, které
považujeme za ground truth. Hodnocení
kvality automatických a semiautomatic-
kých masek na základě hodnot pixelů bylo
provedeno výpočtem metriky Dice score.
Průměrná Dice score hodnota pro 22 testo-
vacích masek je 0,92 ± 0,06 pro poloauto-
matickou a 0,94 ± 0,02 pro automatickou
metodu. Bylo rovněž provedeno statistické
vyhodnocení segmentovaných fenestrací.
Fenestrace v ground truth obrázcích byly
srovnány s fenestracemi získanými oběma
metodami. Byla vypočtena korelace nejdů-
ležitějších vlastností fenestrací v každém
snímku mezi ground truth a oběma me-
todami. Výhody i nevýhody obou metod
jsou diskutovány.

Klíčová slova: binární segmentace
obrazu, skenovací elektronová
mikroskopie, jaterní sinusoidální
endoteliální buňky
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Chapter 1
Introduction

Electron microscopy has the capacity to capture small objects that cannot be
resolved with an optical microscope. There are many areas where electron
microscopy can be used, one of which is the study of cell morphology [1].

One type of cell with distinctive structures is the liver sinusoidal endothelial
cell (LSEC). LSECs line the smallest blood vessels in the liver. Their whole
cell body is dotted with small pores called fenestrations between 50 and
350 nm in size. These fenestrations ensure bidirectional passive transport
of lipoproteins, drugs, and solutes between blood and hepatocytes [2]. The
properties of fenestrations, such as their size and quantity, determine how
well these cells fulfill their function [3].

A decreased number of fenestration in LSECs is linked to various diseases
and health problems [4]. This makes the influences on LSEC health an
interesting topic to study.

Detecting LSEC fenestrations can be time-consuming when done manu-
ally or semiautomatically, depending on the number of studied images and
individual image properties. A fully automatic method for detecting these
structures could decrease the time it takes to examine a large amount of LSEC
images, which is needed for the research of diverse influences on fenestration
properties.

1.1 Task definition

This thesis aims to create a method of segmenting scanning electron mi-
croscopy images of in vitro LSECs. The segmented objects are LSEC fen-
estrations, which cover the cell’s bodies. Part of the solution should be
the computation of relevant fenestration properties from the segmentation
masks. Two key properties are fenestration frequency, which is the total
number of fenestrations per cell area, and LSEC porosity, measured as the
total fenestration area per cell area. Other properties such as fenestrations
roundness and equivalent circle diameter can also be determined.

The performance of the proposed method should be quantified by the

1



1. Introduction .....................................
computation of segmentation quality metrics and statistical evaluation of
fenestration properties.

1.2 Thesis structure

. In Chapter 2, the function and properties of LSECs and their fenestrations
are described. Technical background about electron microscopy is given,
mainly focusing on scanning electron microscopy.. In Chapter 3, a literature review concerning the thesis topic is given.
Previous studies on automatic LSEC segmentation methods are described.
The history and properties of Neural networks are also discussed.. In Chapter 4, the proposed solution is described. The description includes
data preprocessing, and the training and inference process. This chapter
also includes a description of the evaluation steps.. In Chapter 5, results of the methods’ comparison are presented.. In Chapter 6, the presented results are discussed.

2



Chapter 2
Background

This chapter contains a description of liver sinusoidal endothelial cells, a
technical background relating to electron microscopy, and information about
the scanning electron microscope used to produce the images used in this
thesis.

2.1 Liver sinusoidal endothelial cells (LSECs)

Liver sinusoidal endothelial cells (LSECs) line the blood vessels of the liver,
and they ensure bidirectional passive transport of nanoparticles between
hepatocytes and the blood flowing through the liver. This passive transport
is done through fenestrations, small pores in the membranes of the cells.
Examples of particles that pass through LSEC’s fenestrations from blood are
lipids, proteins, and viruses [2].

The properties of LSEC fenestrations, like their total number and surface
area, can change with time. The main influences on these changes are age
and compounds like ethanol or nicotine. These influences decrease the total
number of fenestrations, reducing their filtration ability. This change is
connected to diseases like liver cirrhosis, diabetes mellitus, and atherosclerosis
[5, 3].

Some in vitro studies show the possibility of increasing the number of
fenestrations. Treatments that have shown a positive effect include caffeine
and theobromine [6].

LSEC fenestrations are usually arranged into groups called sieve plates
(see Figure 2.1) [1]. The size of individual fenestrations is in the range
of 50 to 350 nm, which is below the resolution limit of conventional light
microscopy [7].

3



2. Background .....................................

Figure 2.1: Part of an LSEC (in vitro) captured with a scanning electron
microscope. Sieve plates, which are formed by fenestration clusters, can be seen
on the cell surface. One sieve plate is marked by a white circle. Courtesy of the
Arctic University of Norway.

2.2 Electron microscopy

The optical resolution of the human eye is approximately 0.1 mm. This
resolution can be enhanced by using an optical lens, which is the approach of
optical microscopy. The resolution of an optical microscope is limited by the
wavelength of the light that is used to create the resulting image. Optical
microscopy, which uses light from the visible spectrum, has a resolution limit
of ~200 nm [8].

Electron microscopy substitutes the light source with an electron beam
and switches the lens for electromagnetic coils. Substituting visible light with
electrons of a shorter wavelength results in better resolution. Current electron
microscope technology can achieve resolution even below 1 nm [9]. There are
two main types of electron microscopes: transmission electron microscopes
(TEM) and scanning electron microscopes (SEM) [8]. Since segmenting SEM
images is the topic of this thesis, the following section focuses on SEM.

2.2.1 Scanning electron microscopy (SEM).

Scanning electron microscopy (see Figure 2.2) utilizes a focused electron
beam to scan across the surface of the specimen, producing large numbers of
signals. The signals used to form an image in SEM are backscattered electrons
(BSEs) and secondary electrons (SEs). Additional signals produced when an
electron beam strikes a sample are characteristic X-rays, Auger electrons, and

4



................................. 2.2. Electron microscopy

Figure 2.2: Schematic of a scanning electron microscope. Electrons are produced
by the electron source and accelerated towards the anode, creating the electron
beam. The electron beam is collimated into a relatively parallel stream by the
condensor lenses. Objective lenses focus the electron beam into a probe point,
which scans the specimen surface. Generated signals are detected and processed
[8]. Image taken from [10].

cathodoluminescence [8].
Backscattered electrons are beam electrons that are elastically scattered

through an angle of more than 90°. The scattering results from the deflection
of the beam electron by the specimen atomic nucleus or by outer shell electrons
of similar energy (see Figure 2.3) [8].

Interactions between the electrons that form the beam and the electrons of
the sample result in energy transfer to the sample atoms. Secondary electrons
are generated as a result of the excitation of the specimen electrons during
the ionization of specimen atoms (see Figure 2.3).

Scintillator detectors, which convert electron energy into photons, are used
to form images from BSEs and SEs. These photons are then moved to a
photomultiplier, whose output voltage is amplified and forms the output
image. BSEs have much greater energy than SEs, which makes detecting
these two electron groups on separate detectors possible by applying different
electric charges to the detectors [8].

BSE’s higher energy prevents electrons from being absorbed by the sample,
where they can undergo multiple scattering events. This results in worse
resolution of BSE images than SE, but using BSEs can be beneficial because

5



2. Background .....................................

Figure 2.3: A backscattered electron (left) and a secondary electron (right).
Taken from [10].

Figure 2.4: Images formed by secondary electron signal (left) and backscattered
electron signal (right). Taken from [8].

they carry information about features that are deeper beneath the specimen
surface [8]. The difference between images created from BSE signal and SE
signal is shown in Figure 2.4.

2.3 Available data

LSEC images, which were used to develop and evaluate the proposed method,
were provided to us by Bartłomiej Zapotoczny1. This data has been used for
quantitative analysis in the research of changes in LSEC morphology [7]. The
data, which was given to us, include SEM images of LSECs studied in vitro
and their corresponding binary segmentation masks. Two classes are present
in the binary masks, source image pixels showing fenestrations are assigned
white in the masks, and everything else in the source image is assigned black
(See Figure 2.5).

1https://www.ifj.edu.pl/dept/no5/nz55/department/team

6
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.................................... 2.3. Available data

(a) : Example image patch (b) : Corresponding mask

Figure 2.5: An example image patch of 1 200 × 1 200 pixels (11 × 11 µm) and
its corresponding mask.

(a) : Input image. (b) : Image with increased contrast.

(c) : Binary threshold applied. (d) : Binary mask made by remov-
ing objects from the binary threshold
based on the object size and circular-
ity.

Figure 2.6: The individual steps of the semiautomatic method in the order (a),
(b), (c), and (d). Images taken from [11].

7



2. Background .....................................
The masks were created by a semiautomatic method, which is based

on the difference in contrast between the inside of fenestration and the
LSEC membrane. The steps of this method include contrast enhancement
followed by thresholding. The threshold value must be set manually so that
only fenestrations and not their edges are marked. The last step of the
semiautomatic method is the exclusion of objects based on their size and
circularity [11]. The principle of this method is illustrated in Figure 2.6.

The main disadvantage of the semiautomatic method is having to set the
binary threshold value because image intensity and contrast can vary in
individual SEM images. This variation is mostly caused by the chemical
properties of the staining materials used in specimen preparation [12].

The available dataset contains images with higher contrast and lower
contrast (See Figure 2.7).

(a) : A patch from a higher contrast image and its histogram.

(b) : A patch from a lower contrast image and its histogram.

Figure 2.7: An example patch taken from a higher contrast image (a) and a
lower contrast image (b).

8



........................... 2.4. A comment on ground truth masks

From observing the semiautomatic masks, it can be seen that the semiau-
tomatic method has certain limitations. Binary masks can contain falsely
detected fenestrations (False positives). This is mainly caused by the darker
parts of the cell membrane being detected as fenestrations (See Figure 2.8).
Some of these areas are the same size as fenestrations, meaning the false
positives cannot be filtered out based on their size. On the other hand, some
fenestrations are not detected at all (False negatives). This happens when
there is not enough contrast between the fenestration edge and the middle of
the fenestration (See Figure 2.8).

Figure 2.8: An example of a part of an image and its corresponding mask created
by the semiautomatic method. False negative detections are indicated in red,
false positives in blue, and correct detections are indicated in white.

2.4 A comment on ground truth masks

The masks, which are referred to as the ground truth in this thesis, were cre-
ated by the author of this thesis, and Jakub Pospíšil, the thesis co-supervisor.
They were made by editing the semiautomatically segmented masks, as that
was the fastest and easiest way to acquire masks with marked fenestra-
tions. Creating enough ground truth masks from scratch for both training
and statistical evaluation would be extremely time-consuming, as there are
approximately 3 000 fenestrations in each image (~100 000 fenestrations in
the whole dataset). Even with our simplified approach, each mask took
approximately over an hour of editing to reach a satisfactory state. The
changes made to the semiautomatic masks include false detection removal
and the addition of undetected fenestrations. We created these ground truth
masks to the best of our abilities, but we do not claim that they are per-
fect, as they can still contain some overlooked false detections or missing
fenestration. Both the training and testing ground truth masks are pub-
lished online and can be found at https://drive.google.com/drive/folders/
18O8pFbqFLx34X1dliWbPf9EkqeFO0ASK.
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2. Background .....................................
2.5 Fenestration properties

LSEC segmentation masks can be used for the computation of fenestration
properties, as described in [11]. Examples of relevant fenestration properties
are the number of fenestrations per cell area (frequency) and the total area of
fenestrations per cell area (porosity). Fenestration frequency is computed as

f = number of fenestrations
cell area . (2.1)

Fenestration porosity is computed as

p = total area of fenestrations
cell area · 100. (2.2)

Additional fenestration properties are fenestration size, fenestration round-
ness, and equivalent circle diameter.

When computing these properties, fenestrations are assumed to be elliptical
in shape. Fenestration properties are computed by fitting an ellipse to each
found fenestration in a segmentation mask. The major and minor axes of
each ellipse can then be used to find the fenestration roundness, which is
computed as:

R = minor axis
major axis . (2.3)

The equivalent circle diameter of an ellipse is defined as the diameter of a
circle of the same area as the ellipse. It is computed as

d =
√

minor axis · major axis. (2.4)
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Chapter 3
Segmentation of LSEC fenestrations

An automatic method for LSEC segmentation was proposed in [13], using a
fully convolutional neural network (FCNN). The authors use atomic force
microscopy (AFM), an imaging modality different from the one used in
this thesis. The authors present the achieved mean Dice score of 0.773 by
comparing 14 automatically segmented images of size 256 × 256 pixels to
manually segmented ones [13]. Unfortunately, the proposed model weights
and code cannot be found online.

In [11], Ilastik software was used to segment LSEC fenestrations in SEM
images automatically. The segmentation results were compared to manually
segmented images and a semiautomatic method, giving satisfactory results.
The authors list the simplicity of the used software and no need to work with
code as advantages of using Ilastik. As a disadvantage, the authors mention
the need to manually adjust the contrast and brightness of segmented images.
A disadvantage of Ilastik is that it does not offer much flexibility in tuning the
segmentation model compared to using a programming language like Python
and its machine learning libraries. Another disadvantage of using Ilastik is
that one needs to have a GPU, so the training is not too time-consuming [11].

Groups like ZeroCostDLForMic [14] have published various neural network
implementations for general medical image segmentation and classification
on their GitHub page. These implementations are in the form of Python
notebooks intended to be run in Google Colab, and the networks can be
trained on Google’s GPUs. This approach enables anyone to train their model
with their own data without the need to own a GPU for model training.

To the best knowledge of the author of this thesis, there is no publicly
available model trained specifically for the segmentation of LSEC fenestrations
in SEM images.

3.1 CNN architectures for computer vision tasks

Convolutional neural networks (CNNs) are a popular choice for solving
computer vision tasks both in medical and real-world images [15, 16]. They can
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3. Segmentation of LSEC fenestrations...........................
be used in several areas, including image classification, semantic segmentation,
or object detection [15].

As with any method, CNNs also have their drawbacks, some of which
are the need for good training data, large processing power requirements,
and their complexity compared to more traditional methods. Despite these
limitations, they have been used in many computer vision tasks because of
the state-of-the-art results they provide [15].

A large breakthrough in convolutional networks was made in 2012 by Alex
Krizhevsky [17] by training a large network on the ImageNet [18] dataset.
Krizhevsky won the 2012 ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) with his proposed solution, AlexNet. The challenge tasks were
the classification and localization of common objects. Over a million labeled
images were provided for the challenge participants for training [19].

Figure 3.1: The U-net architecture, as presented in [16]. Blue boxes represent
multi-channel feature maps. White boxes represent copied feature maps. The
number of channels is denoted on top of the boxes. The feature map sizes are
provided at their lower left edge. The arrows denote the different operations.
Taken from [16].

In 2014, the Visual Geometry Group (VGG) participated in ILSVRC. They
placed first in the classification task and second in the localization task, and
VGG is a popular architecture for computer vision tasks to this day [20].
In this architecture, the size of the convolution kernels was lowered while
increasing the number of network layers to 16–19 [15, 21].

In 2015, an architecture called U-Net [16] was proposed for the task of
medical image segmentation. It is an encoder-decoder network. The encoder
comprises a series of layers that progressively downscale the image, and the
decoder then upscales the encoder output. The outputs of some encoder
layers are connected to inputs of decoder layers with skip-connections, which
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....................... 3.1. CNN architectures for computer vision tasks

enables precise localization. The U-Net architecture is illustrated in Figure
3.1.

Another architecture proposed in 2015 is the Residual Network (ResNet)
[22]. ResNet uses shortcut connections to solve the vanishing gradient problem
of deep networks. The shortcut connections should ease their training. A
ResNet building block is shown in Figure 3.2.

Figure 3.2: A building block of a ResNet, showing a shortcut connection with
identity mapping of its input x. F (x) is the original non-linear mapping and
F (x) + x is called the residual mapping. relu is the Rectified linear unit. Taken
from [22].

A ResNet, even with 152 layers, 8× deeper than a VGG net, has lower
complexity thanks to using shortcut connections. Compared to VGG, ResNets
tends to show higher performance and error rates [15].

The number of layers of a specific network implementation can differ
depending on the specific task. This is denoted in the network name by
appending the number of layers to the network name. For example, ResNet18
means a ResNet architecture with 18 layers. The choice of architecture and
its depth for a given task depends on the computation and size requirements
and the specific task properties. The comparison of common architecture
sizes is shown in Figure 3.3.

Recently, attempts have been made to create networks, which try to solve
the task of segmenting any object in a natural scene. Meta AI published its
Segment Anything Model (SAM)1 in 2023 [24]. SAM uses Vision Transformer
(ViT)-based image encoder [25]. It was trained on 11 million images with 1
billion masks. Even though microscopy images were included in the training
data, most of the training data include common objects. SAM performs best
when the segmented object is marked by the user, either by a bounding box
around the object or individual points [24]. A disadvantage of such a general
model is the huge model size (the weights file size for the default SAM is 2.4
GB).

Inspired by SAM, in 2023, MicroSAM [26] was introduced, which was
developed to segment microscopy data. MicroSAM builds on top of SAM by
finetuning it with images from light and electron microscopy. To segment
an image, MicroSAM needs the user to mark the segmented objects by a
bounding box or individual points. It is mainly intended for the segmentation

1https://github.com/facebookresearch/segment-anything
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3. Segmentation of LSEC fenestrations...........................

Figure 3.3: Comparison of popular CNN architectures used in computer vision
tasks. The vertical axis shows top 1 accuracy on ImageNet classification. The
horizontal axis shows the number of operations needed to classify an image.
Circle size is proportional to the number of parameters in the network [23].
Taken from [23].

of whole cells, organelles, and nuclei.

3.2 Network training

To train a network, available data is usually preprocessed and split into
training and validation datasets. The training data is used to learn the model
weights, while the validation data estimates the model’s effectiveness. Both
the training and validation data are grouped into smaller batches. Model
weights are updated when one batch of training data passes through the
model. Training is performed in epochs. An epoch is concluded after each
complete pass of the training data through the network [27].

3.2.1 Image augmentations

Image transformations like random rotation or flipping along the horizontal
or vertical axis can be used to create augmented images. The main goal of
creating augmented images is to increase the training dataset size and prevent
overfitting [28].

Augmentations of image range can also be used, for example, histogram
equalization to increase the image contrast [28]. A possible variation of his-
togram equalization is the Contrast Limited Adaptive Histogram Equalization
(CLAHE) [29]. In CLAHE, the image is divided into small blocks called tiles.
In each tile, the histogram is equalized using its cumulative distribution
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................................... 3.2. Network training

function. If any histogram bin is above the specified contrast limit, those
pixels are clipped and distributed uniformly to other bins before applying the
histogram equalization. The clipping is applied to reduce noise amplification
[30].

3.2.2 Fine-tuning

Fine-tuning is the process of initializing a predefined model architecture with
its pretrained weights. Weights, which are commonly used for fine-tuning,
were trained on the ImageNet dataset. This initialized model can then be
retrained with new data. The observed benefits of utilizing pre-trained weights
are better model performance and shorter training times. Fine-tuning using
weights pretrained with ImageNet has been shown to be beneficial for models
intended for the medical image and microscopy domain [31, 32].

3.2.3 Loss function

The loss function measures the dissimilarity between the ground truth and
the predicted segmentation. It is used during the training phase for the
network to learn predictions that are close to the ground truth in terms of
an evaluation metric. A commonly used metric is the Binary cross entropy
(BCE) [33, 34], defined as:

LBCE(y,ŷ) = − 1
N

N∑
n=1

[yn log(ŷ) + (1 − yn) log(1 − ŷ)] , (3.1)

where yn is the n-th ground truth pixel, and ŷn is the corresponding model
output.

The loss function is minimized by the optimizer, for example, stochastic
gradient descent (SGD) [33].

3.2.4 Optimizer

The optimizer updates the model weights in order to minimize the loss
function [35]. The update is based on the loss function derivative, and for
the SGD optimizer, it is described by the equation

θt+1 = θt − ηt∇θL(θ), (3.2)

where θt represents the model parameters at time t, ηt is the learning rate
at time t, and ∇θL(θ) is a vector of first parital derivatives of L(θ) with
respect to parameters θ.

SGD can be generalized by linearly combining the gradient direction with
a constant multiple of the previous parameter update. The multiple constant
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3. Segmentation of LSEC fenestrations...........................
is called the Nesterov momentum γ. The weight update with momentum is
defined as [35]:

θt+1 = θt − ηt∇θL(θ) − γ(θt − θt−1). (3.3)

3.2.5 Segmentation quality evaluation

Quality evaluation metrics measure the similarity between the segmentation
result and the ground truth. Binary segmentation results can be evaluated
with several metrics. Most of them are computed from the number of following
predictions:

.True Positives (TP ) - correctly recognized positive samples.True Negatives (TN) - correctly recognized negative sample. False Positives (FP ) - incorrectly recognized negative samples. False Negatives (FN) - incorrectly recognized positive samples

A commonly used metric in binary segmentation tasks, which uses both
correctly and incorrectly recognized samples for its computation, is Dice score
[36].

Dice score is computed as

D = 2 · TP

2 · TP + FP + FN
. (3.4)

It can also be expressed as

D = 2 · |S ∩ G|
|S| + |G|

, (3.5)

where. |S| is the number of positive pixels in the created binary mask.. |G| is the number of positive pixels in the ground truth binary mask.. |S ∩ G| is the size of the intersection areas of the created and ground
truth masks.

Dice score values lie in the range [0, 1], where 0 means no overlap, and 1
means perfect overlap [37].
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Chapter 4
Methods

This chapter contains the details of the methods used in model development
and evaluation.

4.1 Model training

The training dataset contains 11 images, the validation dataset contains 3
images, and the test dataset contains 22 images. Images for all three datasets
were chosen so that each dataset contains images that visually differ from each
other. Image differences are mainly caused by image contrast and fenestration
frequency and size.

Each image usually contains more than one cell. In every image, there is
one fully captured cell and only parts of other cells. Available semiautomatic
masks only contain the segmented fenestrations of the fully captured cell in
the image (See Figure 4.1). The partially captured cells were cropped out of
the training and validation images because we do not have their segmentation
masks. These cropped images were then used to create non-overlapping image
patches of the size 224 × 224 pixels for training and validation.

Training and validation patches were not mixed together, meaning that
training images were used to create training patches, and validation images
were used to create validation patches. Using one image for both validation
and training patches could lead to the model performing well on the validation
data. All patches created from a single image have similar characteristics,
which could lead to the better performance on the validation data, but the
performance on new unseen images could be worse.

The 11 training images were split into 1 334 patches, and the 3 validation
images were split into 472 patches. Contrast Limited Adaptive Histogram
Equalization (CLAHE) was applied to these patches to make the image
contrast and intensity more even over the whole dataset. The CLAHE clip
limit was set to 10, and the tile size was set to 11 × 11 pixels. CLAHE
can intensify the noise present in the images. To reduce this effect, median
filtration with the kernel size of 3 × 3 pixels is performed following CLAHE.
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4. Methods.......................................

Figure 4.1: An example image and its semiautomatic mask. The image contains
one full cell and parts of other cells. The segmentation mask contains only the
fenestrations of the fully captured cell.

The effect of CLAHE on high contrast and low contrast images is shown in
Figure 4.2.

The image range was normalized to have an image mean of 0 and a
standard deviation of 1. The image patch size and image range were chosen
so the pretrained ImageNet weights could be used for model initialization.
Augmentations used for the training data are the following: horizontal and
vertical flip, both with a 50% probability, and a resizing of images with the
scale randomly chosen from the interval [0.9, 1.1].

The experiments with different model architectures included trying VGG
and ResNet encoders of different depths, and trying simpler encoders like
EfficientNet. Different loss functions and their combinations were also tested.
A UNet with a ResNet34 encoder was chosen as the final architecture. Binary
cross entropy was used as the loss function to train the model. The model was
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.................................... 4.1. Model training

(a) : Contrast Limited Adaptive Histogram Equalization applied on a high contrast
image.

(b) : Contrast Limited Adaptive Histogram Equalization applied on a low contrast
image.

Figure 4.2: The effect of Contrast Limited Adaptive Histogram Equalization
(CLAHE) on images shown on high contrast (a) and low contrast (b) images and
their respective histograms.
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4. Methods.......................................
initialized with ImageNet weights, and no layers were freezed before training
(the pretrained weights are used just to speed up the training). The sigmoid
function is used as the final activation layer. The batch size is 32 patches,
and the stochastic gradient descent (SGD) optimizer was used with a learning
rate of 0.04, weight decay of 0.01, and momentum of 0.07. The validation loss
is evaluated in each epoch, and if the validation loss improves, the model’s
current weights are saved.

The learning rate is decreased by a factor of 10 if the validation loss does
not improve over 5 epochs, and training is stopped if the validation loss does
not improve over 10 epochs. The maximum number of epochs was set to 200.
The final model stopped on the 101st epoch, and the training took about 1
hour on NVIDIA T4 GPU. The training process is symbolized in Figure 4.3.

Figure 4.3: Illustration of the training process. Training and validation images
are split into patches of size 224 × 224, and preprocessing is applied. The patches
are fed into the network with the chosen transformations (random flip and image
resize in the range [0.9, 1.1]). The training architecture is UNet with ResNet34
encoder. Binary Cross Entropy is used as the loss function, and SGD is used as
the optimizer for training.

During inference, 20 pixels of the image borders are mirrored to avoid
artifacts on the edges. Then, the image is split into overlapping tiles of
224 × 224 pixels with a 20-pixel overlap. These tiles are fed into the model,
and the overlap is linearly weighted to ensure smooth transitions between tiles.
A binary threshold of 0.4 is chosen for the model’s output. The segmentation
of 1 image takes about 6 seconds on NVIDIA T4 GPU. The inference process
is symbolized in Figure 4.4.
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Figure 4.4: The inference process. 20 pixels of the image borders are mirrored,
and the image is split into overlapping patches of 224 × 224 pixels with a
20-pixel overlap. Preprocessing, including CLAHE, median filter, and image
normalization, are applied to individual patches. These image patches are then
fed into the network, and the network outputs are put back together with a linear
weighting on the patches’ overlaps. The output of the network is thresholded
with the value 0.4. Finally, the mask is cropped to get rid of the mirrored
borders.

4.2 Evaluation

The model performance was evaluated using a binary segmentation evaluation
metric (Dice score as described in 3.2.5) and statistics of fenestration properties
described in section 2.5.

Before evaluation, manually created cell masks are applied to all of the
segmentation masks including ground truth masks, semiautomatic masks,
and automatic masks. The cell masks mark only the cell area of interest to
exclude anything detected in the area of the cell nucleus and anything outside
the cell of interest. An example cell mask is shown in Figure 4.5.

Ellipses are then fitted to all objects in the three datasets to remove
anything with an equivalent circle diameter outside the range [50, 350] nm.
For our evaluation, we do not consider anything outside this range to be a
fenestration. This preprocessing performed before the mask comparison is
described in Figure 4.6.

Dice scores are then computed to compare the similarity of each ground
truth mask to its corresponding semiautomatic and automatic mask.

Statistics are then performed on the ground truth, semiautomatic, and
automatic fitted ellipses. The number of detected fenestrations is computed
for each image, and the correlation of the number of detected fenestrations is
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4. Methods.......................................

Figure 4.5: An example of an image and its cell mask, which is used to remove
unwanted fenestrations. Fenestrations overlapping with the white pixels of
the cell mask are kept, and fenestrations overlapping with the black pixels are
removed.

computed for each method. Fenestration frequency can be calculated as the
number of fenestrations in each cell divided by the cell area. Furthermore,
cell porosity is computed for the segmented cell in each image [11]. Two
approaches to computing the porosity are tested. In the first approach, the
individual fenestration areas are computed as the areas of the fitted ellipses.
In the second approach, the fenestration areas are computed directly from
the white pixels in the segmentation masks. A histogram of fenestration
roundness and equivalent diameter is also computed for the tested dataset.
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Figure 4.6: Illustration of the preprocessing of masks before their compari-
son. Cell masks are applied to the segmentation masks to remove anything
outside the cell of interest and the cell nucleus. Ellipses are then fitted to the
detected fenestrations to filter any fenestrations with a diameter outside the
range [50, 350] nm. Ground truth masks, semiautomatic masks, and automatic
masks are then compared.
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Chapter 5
Results

Dice scores of each image computed for both methods can be found in Table
5.1. The mean dice score for the semiautomatic method is 0.92 ± 0.06. For
the automatic method, it is 0.94 ± 0.02.

The histograms of the fenestration diameter and roundness for all detected
fenestrations can be seen in Figure 5.1. The total number of fenestrations
detected in all of the 22 test images is 73 906 in the ground truth dataset,
72 303 in the semiautomatic dataset, and 75 031 in the automatic dataset.

Porosity computed directly from white and black pixels for each cell can be
found in Table 5.2, and the correlation plot in Figure 5.2. The tangent of the
linear fit is 0.98 for the semiautomatic method and 1.02 for the automatic
method. The coefficient of determination R2 is 0.98 for the semiautomatic
method and 1.00 for the automatic method. Porosity computed from the area
of fitted ellipses for each cell can be found in Table 5.3, and the correlation
plot in Figure 5.3. The tangent of the linear fit is 1.00 for the semiautomatic
method and 1.04 for the automatic method. The coefficient of determination
R2 is 0.98 for the semiautomatic method and 1.00 for the automatic method.

Fenestration frequency for each cell can be found in Table 5.4, and the
correlation plot in Figure 5.4. The tangent of the linear fit is 1.09 for the
semiautomatic method and 0.99 for the automatic method. The coefficient
of determination R2 is 0.99 for the semiautomatic method and 1.00 for the
automatic method.

The mean equivalent diameter of fenestrations in each binary mask is
written in Table 5.5, and the correlation plot of the mean equivalent diameter
of fenestrations in each image is shown in Figure 5.5. The tangent of the
linear fit is 0.99 for the semiautomatic method and 0.95 for the automatic
method. The coefficient of determination R2 is 0.78 for the semiautomatic
method and 0.97 for the automatic method.

Segmentation examples are shown in Figures 5.6 and 5.7. The examples
shown here are small crops from the original images, as the full images are
too large to be shown here. Comparison images of all 22 masks can be found
in the thesis attachment.
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5. Results .......................................

method semiautomatic automatic
mask 1 (LC) 0.96 0.92
mask 2 (HC) 0.92 0.94
mask 3 (HC) 0.93 0.96
mask 4 (HC) 0.94 0.93
mask 5 (HC) 0.93 0.95
mask 6 (LC) 0.94 0.94
mask 7 (LC) 0.98 0.94
mask 8 (LC) 0.96 0.96
mask 9 (LC) 0.96 0.96
mask 10 (LC) 0.95 0.94
mask 11 (LC) 0.97 0.95
mask 12 (LC) 0.98 0.96
mask 13 (LC) 0.97 0.94
mask 14 (HC) 0.95 0.95
mask 15 (HC) 0.95 0.95
mask 16 (HC) 0.96 0.96
mask 17 (HC) 0.92 0.92
mask 18 (HC) 0.92 0.94
mask 19 (LC) 0.90 0.94
mask 20 (LC) 0.80 0.91
mask 21 (LC) 0.87 0.92
mask 22 (LC) 0.69 0.90
mean value 0.92 ± 0.06 0.94 ± 0.02

Table 5.1: Mask dice scores computed for the semiautomatic and automatic
method, comparing the masks to the ground truth masks. The contrasts of
the images from which the masks were computed are denoted in parentheses.
(HC) = high contrast image, (LC) = low contrast image. The min and max
value for each method is written in bold.
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Figure 5.1: Histogram of fenestration size and roundness computed for the
whole dataset of 22 test images. The equivalent diameter was computed with 20
bins in the range [50, 350]. The roundness diameter was computed with 12 bins
in the range [0.4, 1]. The total number of fenestration is 73 906 in the ground
truth masks, 72 303 in the semiautomatically generated masks, and 75 031 in the
automatically generated masks. The mean diameter value is computed from all
the detected fenestrations in each dataset.
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method ground truth semiautomatic automatic
(%) (%) (%)

mask 1 (LC) 6.4 6.5 6.9
mask 2 (HC) 9.0 8.4 9.1
mask 3 (HC) 11.6 10.8 11.5
mask 4 (HC) 12.0 11.4 12.6
mask 5 (HC) 12.3 11.6 12.9
mask 6 (LC) 9.3 8.8 9.5
mask 7 (LC) 4.5 4.5 4.8
mask 8 (LC) 1.9 1.8 1.9
mask 9 (LC) 8.6 8.3 8.7
mask 10 (LC) 7.1 6.7 7.3
mask 11 (LC) 6.0 6.0 6.3
mask 12 (LC) 7.4 7.4 7.8
mask 13 (LC) 6.7 6.5 7.0
mask 14 (HC) 6.1 5.9 6.1
mask 15 (HC) 7.3 6.9 7.6
mask 16 (HC) 6.8 6.6 6.9
mask 17 (HC) 7.3 6.7 7.6
mask 18 (HC) 9.1 8.4 9.0
mask 19 (LC) 4.9 4.0 5.1
mask 20 (LC) 4.1 2.8 4.2
mask 21 (LC) 5.2 4.2 5.4
mask 22 (LC) 1.5 0.9 1.6

Table 5.2: Cell porosity expressed as the percentage of the cell area computed
for each image. The fenestration area was computed directly from the number
of fenestration pixels in the segmented masks. The contrasts of the images
from which the masks were computed are denoted in parentheses. (HC) = high
contrast image, (LC) = low contrast image.

28



........................................ 5. Results

Figure 5.2: A correlation plot of the cell porosity in each image computed
directly from mask pixels. Both data sets were fitted with a line with a tangent
of 0.98 for the semiautomatic method and 1.02 for the automatic method. The
coefficient of determination R2 is 0.98 for the semiautomatic method and 1.00
for the automatic method.
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method ground truth semiautomatic automatic
(%) (%) (%)

mask 1 (LC) 6.0 6.1 6.4
mask 2 (HC) 8.5 8.0 8.8
mask 3 (HC) 11.1 10.3 11.3
mask 4 (HC) 11.5 10.9 12.3
mask 5 (HC) 11.5 11.0 12.1
mask 6 (LC) 8.8 8.4 9.0
mask 7 (LC) 4.6 4.3 5.1
mask 8 (LC) 1.8 1.7 1.8
mask 9 (LC) 8.2 7.9 8.4
mask 10 (LC) 6.7 6.4 7.0
mask 11 (LC) 5.9 5.9 6.2
mask 12 (LC) 7.1 7.0 7.4
mask 13 (LC) 6.4 6.2 6.7
mask 14 (HC) 5.9 5.6 5.9
mask 15 (HC) 7.0 6.6 7.5
mask 16 (HC) 6.6 6.3 6.8
mask 17 (HC) 6.9 6.3 7.3
mask 18 (HC) 8.7 8.0 8.7
mask 19 (LC) 4.7 3.9 4.9
mask 20 (LC) 4.2 2.8 4.3
mask 21 (LC) 5.2 4.2 5.5
mask 22 (LC) 1.6 0.9 1.7

Table 5.3: Cell porosity expressed as the percentage of the cell area computed for
each image. The fenestration area was computed from the area of fitted ellipses.
The contrasts of the images from which the masks were computed are denoted
in parentheses. (HC) = high contrast image, (LC) = low contrast image.
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Figure 5.3: A correlation plot of the computed cell porosity in each image
computed from fitted ellipses. Both data sets were fitted with a line with a
tangent of 1.00 for the semiautomatic method and 1.04 for the automatic method.
The coefficient of determination R2 is 0.98 for the semiautomatic method and
1.00 for the automatic method.
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method ground truth semiautomatic automatic
(fenestr./µm2) (fenestr./µm2) (fenestr./µm2)

mask 1 (LC) 6.0 6.2 5.9
mask 2 (HC) 4.4 4.8 4.4
mask 3 (HC) 4.4 4.5 4.3
mask 4 (HC) 6.8 7.2 6.7
mask 5 (HC) 8.0 8.3 8.1
mask 6 (LC) 4.3 4.2 4.4
mask 7 (LC) 1.5 1.6 1.7
mask 8 (LC) 0.9 0.8 0.9
mask 9 (LC) 3.1 3.1 3.1
mask 10 (LC) 3.6 3.3 3.8
mask 11 (LC) 3.1 3.1 3.3
mask 12 (LC) 3.6 3.6 3.8
mask 13 (LC) 3.0 2.8 3.3
mask 14 (HC) 2.9 2.8 2.8
mask 15 (HC) 3.8 3.7 3.7
mask 16 (HC) 3.2 3.0 3.2
mask 17 (HC) 3.8 3.6 4.0
mask 18 (HC) 4.6 4.6 4.7
mask 19 (LC) 2.3 1.9 2.3
mask 20 (LC) 1.6 0.9 1.6
mask 21 (LC) 1.8 1.4 1.8
mask 22 (LC) 0.6 0.5 0.6

Table 5.4: Fenestration frequency in fenestrations per µm2 computed for each
image. The contrasts of the images from which the masks were computed are
denoted in parentheses. (HC) = high contrast image, (LC) = low contrast
image.
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Figure 5.4: A correlation plot of the computed fenestration frequency in each
image. Both data sets were fitted with a line with a tangent of 1.09 for the
semiautomatic method and 0.99 for the automatic method. The coefficient
of determination R2 is 0.99 for the semiautomatic method and 1.00 for the
automatic method.
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method ground truth semiautomatic automatic
(nm) (nm) (nm)

mask 1 (LC) 106 105 111
mask 2 (HC) 131 124 133
mask 3 (HC) 138 130 143
mask 4 (HC) 142 139 148
mask 5 (HC) 144 142 144
mask 6 (LC) 145 140 144
mask 7 (LC) 146 146 145
mask 8 (LC) 148 135 151
mask 9 (LC) 149 154 148
mask 10 (LC) 149 153 147
mask 11 (LC) 150 152 153
mask 12 (LC) 150 153 154
mask 13 (LC) 151 151 150
mask 14 (HC) 153 150 152
mask 15 (HC) 155 151 155
mask 16 (HC) 156 161 152
mask 17 (HC) 165 135 173
mask 18 (HC) 168 187 167
mask 19 (LC) 173 161 174
mask 20 (LC) 178 174 177
mask 21 (LC) 182 188 184
mask 22 (LC) 184 175 183

Table 5.5: Mean equivalent circle diameter of fenestrations in each binary mask.
The contrasts of the images from which the masks were computed are denoted
in parentheses. (HC) = high contrast image, (LC) = low contrast image.
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........................................ 5. Results

Figure 5.5: A correlation plot of the mean equivalent diameter of fenestrations
in each image. Both data sets were fitted with a line with a tangent of 0.99 for
the semiautomatic method and 0.95 for the automatic method. The coefficient
of determination R2 is 0.78 for the semiautomatic method and 0.97 for the
automatic method.
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5. Results .......................................

(a) : A section of a low contrast input image (test image 22, 2 400 × 1 100 pixels)

(b) : Semiautomatic mask.

(c) : Automatic mask.

Figure 5.6: A comparison of a semiautomatic mask with the ground truth (b)
and automatic mask with the ground truth (c). Segmented mask overlap with
the ground truth is denoted in white, undetected fenestrations by each method
are shown as red, and false detections are shown as blue in (b) and green in
(c).
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........................................ 5. Results

(a) : A section of a high contrast input image (test image 14, 1 400 × 600 pixels).

(b) : Semiautomatic mask.

(c) : Automatic mask.

Figure 5.7: A comparison of a semiautomatic mask with the ground truth (b)
and automatic mask with the ground truth (c). Segmented mask overlap with
the ground truth is denoted in white, undetected fenestrations by each method
are shown as red, and false detections are shown as blue in (b) and green in
(c).
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Chapter 6
Conclusions

The main goal of this thesis was to develop an automatic method for the
segmentation of scanning electron microscope (SEM) images of in vitro liver
sinusoidal endothelial cells (LSECs). LSEC segmentation masks are useful
for the computation of fenestration properties. A commonly used LSEC
segmentation method is semiautomatic, requiring manual parameter setting
by the user. This can be time-consuming, as the contrast of each SEM image
can vary.

In this thesis, a method for automatic fenestration segmentation was
developed and compared to the semiautomatic method. The comparison is
performed on segmentation masks created from 22 images with both methods.

The proposed method shows good performance both on low contrast and
high contrast images, which are contained in the available dataset. The mean
dice score is 0.92 ± 0.06 for the semiautomatic method and 0.94 ± 0.02 for
the automatic method.

Creating good ground truth data of segmented fenestrations is extremely
difficult, and we are aware that the ground truth images could contain some
mistakes, but the evaluation of the proposed method would not have been
possible without these ground truth estimates.

The main advantage of the automatic method over the semiautomatic is that
the automatic method requires no manual parameter setting or adjustment.

Future work could involve making the proposed method more robust to
images with lower contrast than the ones used in this thesis. SEM images
with very low contrast and high noise content often cause the semiautomatic
method to fail (even manual detection would be difficult for these types of
images). After developing the automatic method, we tried to use it on these
images, and the results were not satisfactory. These images have not been
published yet, and we do not have their ground truth masks. Although these
experiments were not included in this thesis, we plan to continue developing
the proposed automatic method to handle a wider range of SEM images, from
low to high contrast.
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Appendix A
Implementation details

The implemented solution can be found on GitHub: https://github.com/
marketakvasova/LSEC_segmentation/tree/main. The repository contains a
Python notebook intended for the model’s use and the notebook with which
the model was trained.

There is also a notebook, which was used to experiment with the automatic
creation of whole cell masks. However, this was not very successful, as the
images have very high resolution, and the tested model downscales them
quite a lot. This results in losing a lot of information about the cell edges.

The Python notebooks can be opened and run in Google Colab. The
GitHub page also includes instructions on how to run the segmentation script
locally.

The training and testing data, and the model weights can be found at https:
//drive.google.com/drive/folders/18O8pFbqFLx34X1dliWbPf9EkqeFO0ASK.
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Appendix B
Attachments

The thesis attachments include:. evaluation_masks: A folder containing the segmentation masks used
for the result evaluation in Chapter 5. This includes all of the ground
truth masks, semiautomatic masks, and automatic masks. All of the
masks were edited as described in Figure 4.6. The objects which are too
small or too large to be a fenestration were removed from these masks
and cell masks were applied to them. This means these masks contain
only the fenestrations that were directly used for the method comparison..mask_comparison: Includes the comparison of all 22 test masks.
The comparison is done by merging the ground truth masks with the
automatic and semiautomatic masks. Examples of these merged masks
are shown in Figures 5.6 and 5.7..README: A file describing the attachment contents.. LSEC_segmentation_training.ipynb: The Colab script which was
used for model training and evaluation.. LSEC_fenestration_segmentation.ipynb: A script for using the
trained model.

Training images, input testing images, and model weights were too large
to include in the attachments. They can be found on Google Drive: https://
drive.google.com/drive/folders/18O8pFbqFLx34X1dliWbPf9EkqeFO0ASK.
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Appendix C
Used software

The implementation was written in Python 3.10 and is supposed to be run in
Google Colab1. Libraries used to create, train, and compare models are: Py-
torch2, Weights & Biases3, Segmentation models pytorch4, Segment anything
model 5, scikit-learn6, albumentations7, tqdm8. Libraries used to handle
and visualize data are the following: jupyter_bbox_widget9, matplotlib10,
seaborn11, numpy12, OpenCV13, scipy14. ChatGPT15 code suggestions were
used during the writing of the code that handles graph plotting.

Manual mask correction was done in GIMP16.
This thesis was written in Overleaf17 and Grammarly18 was used for

grammar corrections.

1https://colab.research.google.com/
2https://pytorch.org/
3https://wandb.ai/site
4https://github.com/qubvel/segmentation_models.pytorch
5https://github.com/facebookresearch/segment-anything
6https://scikit-learn.org/stable/index.html
7https://albumentations.ai/
8https://tqdm.github.io/
9https://github.com/gereleth/jupyter-bbox-widget

10https://matplotlib.org/
11https://seaborn.pydata.org/
12https://numpy.org/
13https://opencv.org/
14https://scipy.org/
15https://openai.com/index/chatgpt
16https://www.gimp.org/
17https://www.overleaf.com/
18https://www.grammarly.com/
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